1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. 5 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. 6 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * a) Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * 14 * b) Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the distribution. 17 * 18 * c) Neither the name of Cisco Systems, Inc. nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 24 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 26 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <netinet/sctp_os.h> 39 #include <netinet/sctp.h> 40 #include <netinet/sctp_header.h> 41 #include <netinet/sctp_pcb.h> 42 #include <netinet/sctp_var.h> 43 #include <netinet/sctp_sysctl.h> 44 #include <netinet/sctputil.h> 45 #include <netinet/sctp_indata.h> 46 #include <netinet/sctp_output.h> 47 #include <netinet/sctp_auth.h> 48 49 #ifdef SCTP_DEBUG 50 #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) 51 #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) 52 #endif /* SCTP_DEBUG */ 53 54 55 void 56 sctp_clear_chunklist(sctp_auth_chklist_t *chklist) 57 { 58 memset(chklist, 0, sizeof(*chklist)); 59 /* chklist->num_chunks = 0; */ 60 } 61 62 sctp_auth_chklist_t * 63 sctp_alloc_chunklist(void) 64 { 65 sctp_auth_chklist_t *chklist; 66 67 SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), 68 SCTP_M_AUTH_CL); 69 if (chklist == NULL) { 70 SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); 71 } else { 72 sctp_clear_chunklist(chklist); 73 } 74 return (chklist); 75 } 76 77 void 78 sctp_free_chunklist(sctp_auth_chklist_t *list) 79 { 80 if (list != NULL) 81 SCTP_FREE(list, SCTP_M_AUTH_CL); 82 } 83 84 sctp_auth_chklist_t * 85 sctp_copy_chunklist(sctp_auth_chklist_t *list) 86 { 87 sctp_auth_chklist_t *new_list; 88 89 if (list == NULL) 90 return (NULL); 91 92 /* get a new list */ 93 new_list = sctp_alloc_chunklist(); 94 if (new_list == NULL) 95 return (NULL); 96 /* copy it */ 97 memcpy(new_list, list, sizeof(*new_list)); 98 99 return (new_list); 100 } 101 102 103 /* 104 * add a chunk to the required chunks list 105 */ 106 int 107 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list) 108 { 109 if (list == NULL) 110 return (-1); 111 112 /* is chunk restricted? */ 113 if ((chunk == SCTP_INITIATION) || 114 (chunk == SCTP_INITIATION_ACK) || 115 (chunk == SCTP_SHUTDOWN_COMPLETE) || 116 (chunk == SCTP_AUTHENTICATION)) { 117 return (-1); 118 } 119 if (list->chunks[chunk] == 0) { 120 list->chunks[chunk] = 1; 121 list->num_chunks++; 122 SCTPDBG(SCTP_DEBUG_AUTH1, 123 "SCTP: added chunk %u (0x%02x) to Auth list\n", 124 chunk, chunk); 125 } 126 return (0); 127 } 128 129 /* 130 * delete a chunk from the required chunks list 131 */ 132 int 133 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list) 134 { 135 if (list == NULL) 136 return (-1); 137 138 if (list->chunks[chunk] == 1) { 139 list->chunks[chunk] = 0; 140 list->num_chunks--; 141 SCTPDBG(SCTP_DEBUG_AUTH1, 142 "SCTP: deleted chunk %u (0x%02x) from Auth list\n", 143 chunk, chunk); 144 } 145 return (0); 146 } 147 148 size_t 149 sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list) 150 { 151 if (list == NULL) 152 return (0); 153 else 154 return (list->num_chunks); 155 } 156 157 /* 158 * return the current number and list of required chunks caller must 159 * guarantee ptr has space for up to 256 bytes 160 */ 161 int 162 sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) 163 { 164 int i, count = 0; 165 166 if (list == NULL) 167 return (0); 168 169 for (i = 0; i < 256; i++) { 170 if (list->chunks[i] != 0) { 171 *ptr++ = i; 172 count++; 173 } 174 } 175 return (count); 176 } 177 178 int 179 sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) 180 { 181 int i, size = 0; 182 183 if (list == NULL) 184 return (0); 185 186 if (list->num_chunks <= 32) { 187 /* just list them, one byte each */ 188 for (i = 0; i < 256; i++) { 189 if (list->chunks[i] != 0) { 190 *ptr++ = i; 191 size++; 192 } 193 } 194 } else { 195 int index, offset; 196 197 /* pack into a 32 byte bitfield */ 198 for (i = 0; i < 256; i++) { 199 if (list->chunks[i] != 0) { 200 index = i / 8; 201 offset = i % 8; 202 ptr[index] |= (1 << offset); 203 } 204 } 205 size = 32; 206 } 207 return (size); 208 } 209 210 int 211 sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks, 212 sctp_auth_chklist_t *list) 213 { 214 int i; 215 int size; 216 217 if (list == NULL) 218 return (0); 219 220 if (num_chunks <= 32) { 221 /* just pull them, one byte each */ 222 for (i = 0; i < num_chunks; i++) { 223 (void)sctp_auth_add_chunk(*ptr++, list); 224 } 225 size = num_chunks; 226 } else { 227 int index, offset; 228 229 /* unpack from a 32 byte bitfield */ 230 for (index = 0; index < 32; index++) { 231 for (offset = 0; offset < 8; offset++) { 232 if (ptr[index] & (1 << offset)) { 233 (void)sctp_auth_add_chunk((index * 8) + offset, list); 234 } 235 } 236 } 237 size = 32; 238 } 239 return (size); 240 } 241 242 243 /* 244 * allocate structure space for a key of length keylen 245 */ 246 sctp_key_t * 247 sctp_alloc_key(uint32_t keylen) 248 { 249 sctp_key_t *new_key; 250 251 SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, 252 SCTP_M_AUTH_KY); 253 if (new_key == NULL) { 254 /* out of memory */ 255 return (NULL); 256 } 257 new_key->keylen = keylen; 258 return (new_key); 259 } 260 261 void 262 sctp_free_key(sctp_key_t *key) 263 { 264 if (key != NULL) 265 SCTP_FREE(key, SCTP_M_AUTH_KY); 266 } 267 268 void 269 sctp_print_key(sctp_key_t *key, const char *str) 270 { 271 uint32_t i; 272 273 if (key == NULL) { 274 SCTP_PRINTF("%s: [Null key]\n", str); 275 return; 276 } 277 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 278 if (key->keylen) { 279 for (i = 0; i < key->keylen; i++) 280 SCTP_PRINTF("%02x", key->key[i]); 281 SCTP_PRINTF("\n"); 282 } else { 283 SCTP_PRINTF("[Null key]\n"); 284 } 285 } 286 287 void 288 sctp_show_key(sctp_key_t *key, const char *str) 289 { 290 uint32_t i; 291 292 if (key == NULL) { 293 SCTP_PRINTF("%s: [Null key]\n", str); 294 return; 295 } 296 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 297 if (key->keylen) { 298 for (i = 0; i < key->keylen; i++) 299 SCTP_PRINTF("%02x", key->key[i]); 300 SCTP_PRINTF("\n"); 301 } else { 302 SCTP_PRINTF("[Null key]\n"); 303 } 304 } 305 306 static uint32_t 307 sctp_get_keylen(sctp_key_t *key) 308 { 309 if (key != NULL) 310 return (key->keylen); 311 else 312 return (0); 313 } 314 315 /* 316 * generate a new random key of length 'keylen' 317 */ 318 sctp_key_t * 319 sctp_generate_random_key(uint32_t keylen) 320 { 321 sctp_key_t *new_key; 322 323 new_key = sctp_alloc_key(keylen); 324 if (new_key == NULL) { 325 /* out of memory */ 326 return (NULL); 327 } 328 SCTP_READ_RANDOM(new_key->key, keylen); 329 new_key->keylen = keylen; 330 return (new_key); 331 } 332 333 sctp_key_t * 334 sctp_set_key(uint8_t *key, uint32_t keylen) 335 { 336 sctp_key_t *new_key; 337 338 new_key = sctp_alloc_key(keylen); 339 if (new_key == NULL) { 340 /* out of memory */ 341 return (NULL); 342 } 343 memcpy(new_key->key, key, keylen); 344 return (new_key); 345 } 346 347 /*- 348 * given two keys of variable size, compute which key is "larger/smaller" 349 * returns: 1 if key1 > key2 350 * -1 if key1 < key2 351 * 0 if key1 = key2 352 */ 353 static int 354 sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2) 355 { 356 uint32_t maxlen; 357 uint32_t i; 358 uint32_t key1len, key2len; 359 uint8_t *key_1, *key_2; 360 uint8_t val1, val2; 361 362 /* sanity/length check */ 363 key1len = sctp_get_keylen(key1); 364 key2len = sctp_get_keylen(key2); 365 if ((key1len == 0) && (key2len == 0)) 366 return (0); 367 else if (key1len == 0) 368 return (-1); 369 else if (key2len == 0) 370 return (1); 371 372 if (key1len < key2len) { 373 maxlen = key2len; 374 } else { 375 maxlen = key1len; 376 } 377 key_1 = key1->key; 378 key_2 = key2->key; 379 /* check for numeric equality */ 380 for (i = 0; i < maxlen; i++) { 381 /* left-pad with zeros */ 382 val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++); 383 val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++); 384 if (val1 > val2) { 385 return (1); 386 } else if (val1 < val2) { 387 return (-1); 388 } 389 } 390 /* keys are equal value, so check lengths */ 391 if (key1len == key2len) 392 return (0); 393 else if (key1len < key2len) 394 return (-1); 395 else 396 return (1); 397 } 398 399 /* 400 * generate the concatenated keying material based on the two keys and the 401 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific 402 * order for concatenation 403 */ 404 sctp_key_t * 405 sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared) 406 { 407 uint32_t keylen; 408 sctp_key_t *new_key; 409 uint8_t *key_ptr; 410 411 keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + 412 sctp_get_keylen(shared); 413 414 if (keylen > 0) { 415 /* get space for the new key */ 416 new_key = sctp_alloc_key(keylen); 417 if (new_key == NULL) { 418 /* out of memory */ 419 return (NULL); 420 } 421 new_key->keylen = keylen; 422 key_ptr = new_key->key; 423 } else { 424 /* all keys empty/null?! */ 425 return (NULL); 426 } 427 428 /* concatenate the keys */ 429 if (sctp_compare_key(key1, key2) <= 0) { 430 /* key is shared + key1 + key2 */ 431 if (sctp_get_keylen(shared)) { 432 memcpy(key_ptr, shared->key, shared->keylen); 433 key_ptr += shared->keylen; 434 } 435 if (sctp_get_keylen(key1)) { 436 memcpy(key_ptr, key1->key, key1->keylen); 437 key_ptr += key1->keylen; 438 } 439 if (sctp_get_keylen(key2)) { 440 memcpy(key_ptr, key2->key, key2->keylen); 441 } 442 } else { 443 /* key is shared + key2 + key1 */ 444 if (sctp_get_keylen(shared)) { 445 memcpy(key_ptr, shared->key, shared->keylen); 446 key_ptr += shared->keylen; 447 } 448 if (sctp_get_keylen(key2)) { 449 memcpy(key_ptr, key2->key, key2->keylen); 450 key_ptr += key2->keylen; 451 } 452 if (sctp_get_keylen(key1)) { 453 memcpy(key_ptr, key1->key, key1->keylen); 454 } 455 } 456 return (new_key); 457 } 458 459 460 sctp_sharedkey_t * 461 sctp_alloc_sharedkey(void) 462 { 463 sctp_sharedkey_t *new_key; 464 465 SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), 466 SCTP_M_AUTH_KY); 467 if (new_key == NULL) { 468 /* out of memory */ 469 return (NULL); 470 } 471 new_key->keyid = 0; 472 new_key->key = NULL; 473 new_key->refcount = 1; 474 new_key->deactivated = 0; 475 return (new_key); 476 } 477 478 void 479 sctp_free_sharedkey(sctp_sharedkey_t *skey) 480 { 481 if (skey == NULL) 482 return; 483 484 if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { 485 if (skey->key != NULL) 486 sctp_free_key(skey->key); 487 SCTP_FREE(skey, SCTP_M_AUTH_KY); 488 } 489 } 490 491 sctp_sharedkey_t * 492 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) 493 { 494 sctp_sharedkey_t *skey; 495 496 LIST_FOREACH(skey, shared_keys, next) { 497 if (skey->keyid == key_id) 498 return (skey); 499 } 500 return (NULL); 501 } 502 503 int 504 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, 505 sctp_sharedkey_t *new_skey) 506 { 507 sctp_sharedkey_t *skey; 508 509 if ((shared_keys == NULL) || (new_skey == NULL)) 510 return (EINVAL); 511 512 /* insert into an empty list? */ 513 if (LIST_EMPTY(shared_keys)) { 514 LIST_INSERT_HEAD(shared_keys, new_skey, next); 515 return (0); 516 } 517 /* insert into the existing list, ordered by key id */ 518 LIST_FOREACH(skey, shared_keys, next) { 519 if (new_skey->keyid < skey->keyid) { 520 /* insert it before here */ 521 LIST_INSERT_BEFORE(skey, new_skey, next); 522 return (0); 523 } else if (new_skey->keyid == skey->keyid) { 524 /* replace the existing key */ 525 /* verify this key *can* be replaced */ 526 if ((skey->deactivated) || (skey->refcount > 1)) { 527 SCTPDBG(SCTP_DEBUG_AUTH1, 528 "can't replace shared key id %u\n", 529 new_skey->keyid); 530 return (EBUSY); 531 } 532 SCTPDBG(SCTP_DEBUG_AUTH1, 533 "replacing shared key id %u\n", 534 new_skey->keyid); 535 LIST_INSERT_BEFORE(skey, new_skey, next); 536 LIST_REMOVE(skey, next); 537 sctp_free_sharedkey(skey); 538 return (0); 539 } 540 if (LIST_NEXT(skey, next) == NULL) { 541 /* belongs at the end of the list */ 542 LIST_INSERT_AFTER(skey, new_skey, next); 543 return (0); 544 } 545 } 546 /* shouldn't reach here */ 547 return (EINVAL); 548 } 549 550 void 551 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) 552 { 553 sctp_sharedkey_t *skey; 554 555 /* find the shared key */ 556 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 557 558 /* bump the ref count */ 559 if (skey) { 560 atomic_add_int(&skey->refcount, 1); 561 SCTPDBG(SCTP_DEBUG_AUTH2, 562 "%s: stcb %p key %u refcount acquire to %d\n", 563 __func__, (void *)stcb, key_id, skey->refcount); 564 } 565 } 566 567 void 568 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked) 569 { 570 sctp_sharedkey_t *skey; 571 572 /* find the shared key */ 573 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 574 575 /* decrement the ref count */ 576 if (skey) { 577 SCTPDBG(SCTP_DEBUG_AUTH2, 578 "%s: stcb %p key %u refcount release to %d\n", 579 __func__, (void *)stcb, key_id, skey->refcount); 580 581 /* see if a notification should be generated */ 582 if ((skey->refcount <= 2) && (skey->deactivated)) { 583 /* notify ULP that key is no longer used */ 584 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, 585 key_id, 0, so_locked); 586 SCTPDBG(SCTP_DEBUG_AUTH2, 587 "%s: stcb %p key %u no longer used, %d\n", 588 __func__, (void *)stcb, key_id, skey->refcount); 589 } 590 sctp_free_sharedkey(skey); 591 } 592 } 593 594 static sctp_sharedkey_t * 595 sctp_copy_sharedkey(const sctp_sharedkey_t *skey) 596 { 597 sctp_sharedkey_t *new_skey; 598 599 if (skey == NULL) 600 return (NULL); 601 new_skey = sctp_alloc_sharedkey(); 602 if (new_skey == NULL) 603 return (NULL); 604 if (skey->key != NULL) 605 new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); 606 else 607 new_skey->key = NULL; 608 new_skey->keyid = skey->keyid; 609 return (new_skey); 610 } 611 612 int 613 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) 614 { 615 sctp_sharedkey_t *skey, *new_skey; 616 int count = 0; 617 618 if ((src == NULL) || (dest == NULL)) 619 return (0); 620 LIST_FOREACH(skey, src, next) { 621 new_skey = sctp_copy_sharedkey(skey); 622 if (new_skey != NULL) { 623 if (sctp_insert_sharedkey(dest, new_skey)) { 624 sctp_free_sharedkey(new_skey); 625 } else { 626 count++; 627 } 628 } 629 } 630 return (count); 631 } 632 633 634 sctp_hmaclist_t * 635 sctp_alloc_hmaclist(uint16_t num_hmacs) 636 { 637 sctp_hmaclist_t *new_list; 638 int alloc_size; 639 640 alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); 641 SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, 642 SCTP_M_AUTH_HL); 643 if (new_list == NULL) { 644 /* out of memory */ 645 return (NULL); 646 } 647 new_list->max_algo = num_hmacs; 648 new_list->num_algo = 0; 649 return (new_list); 650 } 651 652 void 653 sctp_free_hmaclist(sctp_hmaclist_t *list) 654 { 655 if (list != NULL) { 656 SCTP_FREE(list, SCTP_M_AUTH_HL); 657 } 658 } 659 660 int 661 sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id) 662 { 663 int i; 664 665 if (list == NULL) 666 return (-1); 667 if (list->num_algo == list->max_algo) { 668 SCTPDBG(SCTP_DEBUG_AUTH1, 669 "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); 670 return (-1); 671 } 672 if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && 673 (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) { 674 return (-1); 675 } 676 /* Now is it already in the list */ 677 for (i = 0; i < list->num_algo; i++) { 678 if (list->hmac[i] == hmac_id) { 679 /* already in list */ 680 return (-1); 681 } 682 } 683 SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); 684 list->hmac[list->num_algo++] = hmac_id; 685 return (0); 686 } 687 688 sctp_hmaclist_t * 689 sctp_copy_hmaclist(sctp_hmaclist_t *list) 690 { 691 sctp_hmaclist_t *new_list; 692 int i; 693 694 if (list == NULL) 695 return (NULL); 696 /* get a new list */ 697 new_list = sctp_alloc_hmaclist(list->max_algo); 698 if (new_list == NULL) 699 return (NULL); 700 /* copy it */ 701 new_list->max_algo = list->max_algo; 702 new_list->num_algo = list->num_algo; 703 for (i = 0; i < list->num_algo; i++) 704 new_list->hmac[i] = list->hmac[i]; 705 return (new_list); 706 } 707 708 sctp_hmaclist_t * 709 sctp_default_supported_hmaclist(void) 710 { 711 sctp_hmaclist_t *new_list; 712 713 new_list = sctp_alloc_hmaclist(2); 714 if (new_list == NULL) 715 return (NULL); 716 /* We prefer SHA256, so list it first */ 717 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); 718 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); 719 return (new_list); 720 } 721 722 /*- 723 * HMAC algos are listed in priority/preference order 724 * find the best HMAC id to use for the peer based on local support 725 */ 726 uint16_t 727 sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local) 728 { 729 int i, j; 730 731 if ((local == NULL) || (peer == NULL)) 732 return (SCTP_AUTH_HMAC_ID_RSVD); 733 734 for (i = 0; i < peer->num_algo; i++) { 735 for (j = 0; j < local->num_algo; j++) { 736 if (peer->hmac[i] == local->hmac[j]) { 737 /* found the "best" one */ 738 SCTPDBG(SCTP_DEBUG_AUTH1, 739 "SCTP: negotiated peer HMAC id %u\n", 740 peer->hmac[i]); 741 return (peer->hmac[i]); 742 } 743 } 744 } 745 /* didn't find one! */ 746 return (SCTP_AUTH_HMAC_ID_RSVD); 747 } 748 749 /*- 750 * serialize the HMAC algo list and return space used 751 * caller must guarantee ptr has appropriate space 752 */ 753 int 754 sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr) 755 { 756 int i; 757 uint16_t hmac_id; 758 759 if (list == NULL) 760 return (0); 761 762 for (i = 0; i < list->num_algo; i++) { 763 hmac_id = htons(list->hmac[i]); 764 memcpy(ptr, &hmac_id, sizeof(hmac_id)); 765 ptr += sizeof(hmac_id); 766 } 767 return (list->num_algo * sizeof(hmac_id)); 768 } 769 770 int 771 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) 772 { 773 uint32_t i; 774 775 for (i = 0; i < num_hmacs; i++) { 776 if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) { 777 return (0); 778 } 779 } 780 return (-1); 781 } 782 783 sctp_authinfo_t * 784 sctp_alloc_authinfo(void) 785 { 786 sctp_authinfo_t *new_authinfo; 787 788 SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), 789 SCTP_M_AUTH_IF); 790 791 if (new_authinfo == NULL) { 792 /* out of memory */ 793 return (NULL); 794 } 795 memset(new_authinfo, 0, sizeof(*new_authinfo)); 796 return (new_authinfo); 797 } 798 799 void 800 sctp_free_authinfo(sctp_authinfo_t *authinfo) 801 { 802 if (authinfo == NULL) 803 return; 804 805 if (authinfo->random != NULL) 806 sctp_free_key(authinfo->random); 807 if (authinfo->peer_random != NULL) 808 sctp_free_key(authinfo->peer_random); 809 if (authinfo->assoc_key != NULL) 810 sctp_free_key(authinfo->assoc_key); 811 if (authinfo->recv_key != NULL) 812 sctp_free_key(authinfo->recv_key); 813 814 /* We are NOT dynamically allocating authinfo's right now... */ 815 /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ 816 } 817 818 819 uint32_t 820 sctp_get_auth_chunk_len(uint16_t hmac_algo) 821 { 822 int size; 823 824 size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); 825 return (SCTP_SIZE32(size)); 826 } 827 828 uint32_t 829 sctp_get_hmac_digest_len(uint16_t hmac_algo) 830 { 831 switch (hmac_algo) { 832 case SCTP_AUTH_HMAC_ID_SHA1: 833 return (SCTP_AUTH_DIGEST_LEN_SHA1); 834 case SCTP_AUTH_HMAC_ID_SHA256: 835 return (SCTP_AUTH_DIGEST_LEN_SHA256); 836 default: 837 /* unknown HMAC algorithm: can't do anything */ 838 return (0); 839 } /* end switch */ 840 } 841 842 static inline int 843 sctp_get_hmac_block_len(uint16_t hmac_algo) 844 { 845 switch (hmac_algo) { 846 case SCTP_AUTH_HMAC_ID_SHA1: 847 return (64); 848 case SCTP_AUTH_HMAC_ID_SHA256: 849 return (64); 850 case SCTP_AUTH_HMAC_ID_RSVD: 851 default: 852 /* unknown HMAC algorithm: can't do anything */ 853 return (0); 854 } /* end switch */ 855 } 856 857 static void 858 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx) 859 { 860 switch (hmac_algo) { 861 case SCTP_AUTH_HMAC_ID_SHA1: 862 SCTP_SHA1_INIT(&ctx->sha1); 863 break; 864 case SCTP_AUTH_HMAC_ID_SHA256: 865 SCTP_SHA256_INIT(&ctx->sha256); 866 break; 867 case SCTP_AUTH_HMAC_ID_RSVD: 868 default: 869 /* unknown HMAC algorithm: can't do anything */ 870 return; 871 } /* end switch */ 872 } 873 874 static void 875 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx, 876 uint8_t *text, uint32_t textlen) 877 { 878 switch (hmac_algo) { 879 case SCTP_AUTH_HMAC_ID_SHA1: 880 SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen); 881 break; 882 case SCTP_AUTH_HMAC_ID_SHA256: 883 SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen); 884 break; 885 case SCTP_AUTH_HMAC_ID_RSVD: 886 default: 887 /* unknown HMAC algorithm: can't do anything */ 888 return; 889 } /* end switch */ 890 } 891 892 static void 893 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx, 894 uint8_t *digest) 895 { 896 switch (hmac_algo) { 897 case SCTP_AUTH_HMAC_ID_SHA1: 898 SCTP_SHA1_FINAL(digest, &ctx->sha1); 899 break; 900 case SCTP_AUTH_HMAC_ID_SHA256: 901 SCTP_SHA256_FINAL(digest, &ctx->sha256); 902 break; 903 case SCTP_AUTH_HMAC_ID_RSVD: 904 default: 905 /* unknown HMAC algorithm: can't do anything */ 906 return; 907 } /* end switch */ 908 } 909 910 /*- 911 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) 912 * 913 * Compute the HMAC digest using the desired hash key, text, and HMAC 914 * algorithm. Resulting digest is placed in 'digest' and digest length 915 * is returned, if the HMAC was performed. 916 * 917 * WARNING: it is up to the caller to supply sufficient space to hold the 918 * resultant digest. 919 */ 920 uint32_t 921 sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, 922 uint8_t *text, uint32_t textlen, uint8_t *digest) 923 { 924 uint32_t digestlen; 925 uint32_t blocklen; 926 sctp_hash_context_t ctx; 927 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 928 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 929 uint32_t i; 930 931 /* sanity check the material and length */ 932 if ((key == NULL) || (keylen == 0) || (text == NULL) || 933 (textlen == 0) || (digest == NULL)) { 934 /* can't do HMAC with empty key or text or digest store */ 935 return (0); 936 } 937 /* validate the hmac algo and get the digest length */ 938 digestlen = sctp_get_hmac_digest_len(hmac_algo); 939 if (digestlen == 0) 940 return (0); 941 942 /* hash the key if it is longer than the hash block size */ 943 blocklen = sctp_get_hmac_block_len(hmac_algo); 944 if (keylen > blocklen) { 945 sctp_hmac_init(hmac_algo, &ctx); 946 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 947 sctp_hmac_final(hmac_algo, &ctx, temp); 948 /* set the hashed key as the key */ 949 keylen = digestlen; 950 key = temp; 951 } 952 /* initialize the inner/outer pads with the key and "append" zeroes */ 953 memset(ipad, 0, blocklen); 954 memset(opad, 0, blocklen); 955 memcpy(ipad, key, keylen); 956 memcpy(opad, key, keylen); 957 958 /* XOR the key with ipad and opad values */ 959 for (i = 0; i < blocklen; i++) { 960 ipad[i] ^= 0x36; 961 opad[i] ^= 0x5c; 962 } 963 964 /* perform inner hash */ 965 sctp_hmac_init(hmac_algo, &ctx); 966 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 967 sctp_hmac_update(hmac_algo, &ctx, text, textlen); 968 sctp_hmac_final(hmac_algo, &ctx, temp); 969 970 /* perform outer hash */ 971 sctp_hmac_init(hmac_algo, &ctx); 972 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 973 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 974 sctp_hmac_final(hmac_algo, &ctx, digest); 975 976 return (digestlen); 977 } 978 979 /* mbuf version */ 980 uint32_t 981 sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, 982 struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer) 983 { 984 uint32_t digestlen; 985 uint32_t blocklen; 986 sctp_hash_context_t ctx; 987 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 988 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 989 uint32_t i; 990 struct mbuf *m_tmp; 991 992 /* sanity check the material and length */ 993 if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { 994 /* can't do HMAC with empty key or text or digest store */ 995 return (0); 996 } 997 /* validate the hmac algo and get the digest length */ 998 digestlen = sctp_get_hmac_digest_len(hmac_algo); 999 if (digestlen == 0) 1000 return (0); 1001 1002 /* hash the key if it is longer than the hash block size */ 1003 blocklen = sctp_get_hmac_block_len(hmac_algo); 1004 if (keylen > blocklen) { 1005 sctp_hmac_init(hmac_algo, &ctx); 1006 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 1007 sctp_hmac_final(hmac_algo, &ctx, temp); 1008 /* set the hashed key as the key */ 1009 keylen = digestlen; 1010 key = temp; 1011 } 1012 /* initialize the inner/outer pads with the key and "append" zeroes */ 1013 memset(ipad, 0, blocklen); 1014 memset(opad, 0, blocklen); 1015 memcpy(ipad, key, keylen); 1016 memcpy(opad, key, keylen); 1017 1018 /* XOR the key with ipad and opad values */ 1019 for (i = 0; i < blocklen; i++) { 1020 ipad[i] ^= 0x36; 1021 opad[i] ^= 0x5c; 1022 } 1023 1024 /* perform inner hash */ 1025 sctp_hmac_init(hmac_algo, &ctx); 1026 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1027 /* find the correct starting mbuf and offset (get start of text) */ 1028 m_tmp = m; 1029 while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) { 1030 m_offset -= SCTP_BUF_LEN(m_tmp); 1031 m_tmp = SCTP_BUF_NEXT(m_tmp); 1032 } 1033 /* now use the rest of the mbuf chain for the text */ 1034 while (m_tmp != NULL) { 1035 if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { 1036 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset, 1037 SCTP_BUF_LEN(m_tmp) - (trailer + m_offset)); 1038 } else { 1039 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset, 1040 SCTP_BUF_LEN(m_tmp) - m_offset); 1041 } 1042 1043 /* clear the offset since it's only for the first mbuf */ 1044 m_offset = 0; 1045 m_tmp = SCTP_BUF_NEXT(m_tmp); 1046 } 1047 sctp_hmac_final(hmac_algo, &ctx, temp); 1048 1049 /* perform outer hash */ 1050 sctp_hmac_init(hmac_algo, &ctx); 1051 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1052 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1053 sctp_hmac_final(hmac_algo, &ctx, digest); 1054 1055 return (digestlen); 1056 } 1057 1058 /* 1059 * computes the requested HMAC using a key struct (which may be modified if 1060 * the keylen exceeds the HMAC block len). 1061 */ 1062 uint32_t 1063 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text, 1064 uint32_t textlen, uint8_t *digest) 1065 { 1066 uint32_t digestlen; 1067 uint32_t blocklen; 1068 sctp_hash_context_t ctx; 1069 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1070 1071 /* sanity check */ 1072 if ((key == NULL) || (text == NULL) || (textlen == 0) || 1073 (digest == NULL)) { 1074 /* can't do HMAC with empty key or text or digest store */ 1075 return (0); 1076 } 1077 /* validate the hmac algo and get the digest length */ 1078 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1079 if (digestlen == 0) 1080 return (0); 1081 1082 /* hash the key if it is longer than the hash block size */ 1083 blocklen = sctp_get_hmac_block_len(hmac_algo); 1084 if (key->keylen > blocklen) { 1085 sctp_hmac_init(hmac_algo, &ctx); 1086 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1087 sctp_hmac_final(hmac_algo, &ctx, temp); 1088 /* save the hashed key as the new key */ 1089 key->keylen = digestlen; 1090 memcpy(key->key, temp, key->keylen); 1091 } 1092 return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, 1093 digest)); 1094 } 1095 1096 /* mbuf version */ 1097 uint32_t 1098 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m, 1099 uint32_t m_offset, uint8_t *digest) 1100 { 1101 uint32_t digestlen; 1102 uint32_t blocklen; 1103 sctp_hash_context_t ctx; 1104 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1105 1106 /* sanity check */ 1107 if ((key == NULL) || (m == NULL) || (digest == NULL)) { 1108 /* can't do HMAC with empty key or text or digest store */ 1109 return (0); 1110 } 1111 /* validate the hmac algo and get the digest length */ 1112 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1113 if (digestlen == 0) 1114 return (0); 1115 1116 /* hash the key if it is longer than the hash block size */ 1117 blocklen = sctp_get_hmac_block_len(hmac_algo); 1118 if (key->keylen > blocklen) { 1119 sctp_hmac_init(hmac_algo, &ctx); 1120 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1121 sctp_hmac_final(hmac_algo, &ctx, temp); 1122 /* save the hashed key as the new key */ 1123 key->keylen = digestlen; 1124 memcpy(key->key, temp, key->keylen); 1125 } 1126 return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); 1127 } 1128 1129 int 1130 sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id) 1131 { 1132 int i; 1133 1134 if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) 1135 return (0); 1136 1137 for (i = 0; i < list->num_algo; i++) 1138 if (list->hmac[i] == id) 1139 return (1); 1140 1141 /* not in the list */ 1142 return (0); 1143 } 1144 1145 1146 /*- 1147 * clear any cached key(s) if they match the given key id on an association. 1148 * the cached key(s) will be recomputed and re-cached at next use. 1149 * ASSUMES TCB_LOCK is already held 1150 */ 1151 void 1152 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) 1153 { 1154 if (stcb == NULL) 1155 return; 1156 1157 if (keyid == stcb->asoc.authinfo.assoc_keyid) { 1158 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1159 stcb->asoc.authinfo.assoc_key = NULL; 1160 } 1161 if (keyid == stcb->asoc.authinfo.recv_keyid) { 1162 sctp_free_key(stcb->asoc.authinfo.recv_key); 1163 stcb->asoc.authinfo.recv_key = NULL; 1164 } 1165 } 1166 1167 /*- 1168 * clear any cached key(s) if they match the given key id for all assocs on 1169 * an endpoint. 1170 * ASSUMES INP_WLOCK is already held 1171 */ 1172 void 1173 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) 1174 { 1175 struct sctp_tcb *stcb; 1176 1177 if (inp == NULL) 1178 return; 1179 1180 /* clear the cached keys on all assocs on this instance */ 1181 LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { 1182 SCTP_TCB_LOCK(stcb); 1183 sctp_clear_cachedkeys(stcb, keyid); 1184 SCTP_TCB_UNLOCK(stcb); 1185 } 1186 } 1187 1188 /*- 1189 * delete a shared key from an association 1190 * ASSUMES TCB_LOCK is already held 1191 */ 1192 int 1193 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1194 { 1195 sctp_sharedkey_t *skey; 1196 1197 if (stcb == NULL) 1198 return (-1); 1199 1200 /* is the keyid the assoc active sending key */ 1201 if (keyid == stcb->asoc.authinfo.active_keyid) 1202 return (-1); 1203 1204 /* does the key exist? */ 1205 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1206 if (skey == NULL) 1207 return (-1); 1208 1209 /* are there other refcount holders on the key? */ 1210 if (skey->refcount > 1) 1211 return (-1); 1212 1213 /* remove it */ 1214 LIST_REMOVE(skey, next); 1215 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1216 1217 /* clear any cached keys */ 1218 sctp_clear_cachedkeys(stcb, keyid); 1219 return (0); 1220 } 1221 1222 /*- 1223 * deletes a shared key from the endpoint 1224 * ASSUMES INP_WLOCK is already held 1225 */ 1226 int 1227 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1228 { 1229 sctp_sharedkey_t *skey; 1230 1231 if (inp == NULL) 1232 return (-1); 1233 1234 /* is the keyid the active sending key on the endpoint */ 1235 if (keyid == inp->sctp_ep.default_keyid) 1236 return (-1); 1237 1238 /* does the key exist? */ 1239 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1240 if (skey == NULL) 1241 return (-1); 1242 1243 /* endpoint keys are not refcounted */ 1244 1245 /* remove it */ 1246 LIST_REMOVE(skey, next); 1247 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1248 1249 /* clear any cached keys */ 1250 sctp_clear_cachedkeys_ep(inp, keyid); 1251 return (0); 1252 } 1253 1254 /*- 1255 * set the active key on an association 1256 * ASSUMES TCB_LOCK is already held 1257 */ 1258 int 1259 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) 1260 { 1261 sctp_sharedkey_t *skey = NULL; 1262 1263 /* find the key on the assoc */ 1264 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1265 if (skey == NULL) { 1266 /* that key doesn't exist */ 1267 return (-1); 1268 } 1269 if ((skey->deactivated) && (skey->refcount > 1)) { 1270 /* can't reactivate a deactivated key with other refcounts */ 1271 return (-1); 1272 } 1273 1274 /* set the (new) active key */ 1275 stcb->asoc.authinfo.active_keyid = keyid; 1276 /* reset the deactivated flag */ 1277 skey->deactivated = 0; 1278 1279 return (0); 1280 } 1281 1282 /*- 1283 * set the active key on an endpoint 1284 * ASSUMES INP_WLOCK is already held 1285 */ 1286 int 1287 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1288 { 1289 sctp_sharedkey_t *skey; 1290 1291 /* find the key */ 1292 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1293 if (skey == NULL) { 1294 /* that key doesn't exist */ 1295 return (-1); 1296 } 1297 inp->sctp_ep.default_keyid = keyid; 1298 return (0); 1299 } 1300 1301 /*- 1302 * deactivates a shared key from the association 1303 * ASSUMES INP_WLOCK is already held 1304 */ 1305 int 1306 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1307 { 1308 sctp_sharedkey_t *skey; 1309 1310 if (stcb == NULL) 1311 return (-1); 1312 1313 /* is the keyid the assoc active sending key */ 1314 if (keyid == stcb->asoc.authinfo.active_keyid) 1315 return (-1); 1316 1317 /* does the key exist? */ 1318 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1319 if (skey == NULL) 1320 return (-1); 1321 1322 /* are there other refcount holders on the key? */ 1323 if (skey->refcount == 1) { 1324 /* no other users, send a notification for this key */ 1325 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, 1326 SCTP_SO_LOCKED); 1327 } 1328 1329 /* mark the key as deactivated */ 1330 skey->deactivated = 1; 1331 1332 return (0); 1333 } 1334 1335 /*- 1336 * deactivates a shared key from the endpoint 1337 * ASSUMES INP_WLOCK is already held 1338 */ 1339 int 1340 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1341 { 1342 sctp_sharedkey_t *skey; 1343 1344 if (inp == NULL) 1345 return (-1); 1346 1347 /* is the keyid the active sending key on the endpoint */ 1348 if (keyid == inp->sctp_ep.default_keyid) 1349 return (-1); 1350 1351 /* does the key exist? */ 1352 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1353 if (skey == NULL) 1354 return (-1); 1355 1356 /* endpoint keys are not refcounted */ 1357 1358 /* remove it */ 1359 LIST_REMOVE(skey, next); 1360 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1361 1362 return (0); 1363 } 1364 1365 /* 1366 * get local authentication parameters from cookie (from INIT-ACK) 1367 */ 1368 void 1369 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, 1370 uint32_t offset, uint32_t length) 1371 { 1372 struct sctp_paramhdr *phdr, tmp_param; 1373 uint16_t plen, ptype; 1374 uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; 1375 struct sctp_auth_random *p_random = NULL; 1376 uint16_t random_len = 0; 1377 uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; 1378 struct sctp_auth_hmac_algo *hmacs = NULL; 1379 uint16_t hmacs_len = 0; 1380 uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; 1381 struct sctp_auth_chunk_list *chunks = NULL; 1382 uint16_t num_chunks = 0; 1383 sctp_key_t *new_key; 1384 uint32_t keylen; 1385 1386 /* convert to upper bound */ 1387 length += offset; 1388 1389 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, 1390 sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); 1391 while (phdr != NULL) { 1392 ptype = ntohs(phdr->param_type); 1393 plen = ntohs(phdr->param_length); 1394 1395 if ((plen < sizeof(struct sctp_paramhdr)) || 1396 (offset + plen > length)) 1397 break; 1398 1399 if (ptype == SCTP_RANDOM) { 1400 if (plen > sizeof(random_store)) 1401 break; 1402 phdr = sctp_get_next_param(m, offset, 1403 (struct sctp_paramhdr *)random_store, plen); 1404 if (phdr == NULL) 1405 return; 1406 /* save the random and length for the key */ 1407 p_random = (struct sctp_auth_random *)phdr; 1408 random_len = plen - sizeof(*p_random); 1409 } else if (ptype == SCTP_HMAC_LIST) { 1410 uint16_t num_hmacs; 1411 uint16_t i; 1412 1413 if (plen > sizeof(hmacs_store)) 1414 break; 1415 phdr = sctp_get_next_param(m, offset, 1416 (struct sctp_paramhdr *)hmacs_store, plen); 1417 if (phdr == NULL) 1418 return; 1419 /* save the hmacs list and num for the key */ 1420 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1421 hmacs_len = plen - sizeof(*hmacs); 1422 num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); 1423 if (stcb->asoc.local_hmacs != NULL) 1424 sctp_free_hmaclist(stcb->asoc.local_hmacs); 1425 stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); 1426 if (stcb->asoc.local_hmacs != NULL) { 1427 for (i = 0; i < num_hmacs; i++) { 1428 (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, 1429 ntohs(hmacs->hmac_ids[i])); 1430 } 1431 } 1432 } else if (ptype == SCTP_CHUNK_LIST) { 1433 int i; 1434 1435 if (plen > sizeof(chunks_store)) 1436 break; 1437 phdr = sctp_get_next_param(m, offset, 1438 (struct sctp_paramhdr *)chunks_store, plen); 1439 if (phdr == NULL) 1440 return; 1441 chunks = (struct sctp_auth_chunk_list *)phdr; 1442 num_chunks = plen - sizeof(*chunks); 1443 /* save chunks list and num for the key */ 1444 if (stcb->asoc.local_auth_chunks != NULL) 1445 sctp_clear_chunklist(stcb->asoc.local_auth_chunks); 1446 else 1447 stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); 1448 for (i = 0; i < num_chunks; i++) { 1449 (void)sctp_auth_add_chunk(chunks->chunk_types[i], 1450 stcb->asoc.local_auth_chunks); 1451 } 1452 } 1453 /* get next parameter */ 1454 offset += SCTP_SIZE32(plen); 1455 if (offset + sizeof(struct sctp_paramhdr) > length) 1456 break; 1457 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), 1458 (uint8_t *)&tmp_param); 1459 } 1460 /* concatenate the full random key */ 1461 keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; 1462 if (chunks != NULL) { 1463 keylen += sizeof(*chunks) + num_chunks; 1464 } 1465 new_key = sctp_alloc_key(keylen); 1466 if (new_key != NULL) { 1467 /* copy in the RANDOM */ 1468 if (p_random != NULL) { 1469 keylen = sizeof(*p_random) + random_len; 1470 memcpy(new_key->key, p_random, keylen); 1471 } else { 1472 keylen = 0; 1473 } 1474 /* append in the AUTH chunks */ 1475 if (chunks != NULL) { 1476 memcpy(new_key->key + keylen, chunks, 1477 sizeof(*chunks) + num_chunks); 1478 keylen += sizeof(*chunks) + num_chunks; 1479 } 1480 /* append in the HMACs */ 1481 if (hmacs != NULL) { 1482 memcpy(new_key->key + keylen, hmacs, 1483 sizeof(*hmacs) + hmacs_len); 1484 } 1485 } 1486 if (stcb->asoc.authinfo.random != NULL) 1487 sctp_free_key(stcb->asoc.authinfo.random); 1488 stcb->asoc.authinfo.random = new_key; 1489 stcb->asoc.authinfo.random_len = random_len; 1490 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); 1491 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); 1492 1493 /* negotiate what HMAC to use for the peer */ 1494 stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, 1495 stcb->asoc.local_hmacs); 1496 1497 /* copy defaults from the endpoint */ 1498 /* FIX ME: put in cookie? */ 1499 stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; 1500 /* copy out the shared key list (by reference) from the endpoint */ 1501 (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, 1502 &stcb->asoc.shared_keys); 1503 } 1504 1505 /* 1506 * compute and fill in the HMAC digest for a packet 1507 */ 1508 void 1509 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, 1510 struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) 1511 { 1512 uint32_t digestlen; 1513 sctp_sharedkey_t *skey; 1514 sctp_key_t *key; 1515 1516 if ((stcb == NULL) || (auth == NULL)) 1517 return; 1518 1519 /* zero the digest + chunk padding */ 1520 digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); 1521 memset(auth->hmac, 0, SCTP_SIZE32(digestlen)); 1522 1523 /* is the desired key cached? */ 1524 if ((keyid != stcb->asoc.authinfo.assoc_keyid) || 1525 (stcb->asoc.authinfo.assoc_key == NULL)) { 1526 if (stcb->asoc.authinfo.assoc_key != NULL) { 1527 /* free the old cached key */ 1528 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1529 } 1530 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1531 /* the only way skey is NULL is if null key id 0 is used */ 1532 if (skey != NULL) 1533 key = skey->key; 1534 else 1535 key = NULL; 1536 /* compute a new assoc key and cache it */ 1537 stcb->asoc.authinfo.assoc_key = 1538 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1539 stcb->asoc.authinfo.peer_random, key); 1540 stcb->asoc.authinfo.assoc_keyid = keyid; 1541 SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", 1542 stcb->asoc.authinfo.assoc_keyid); 1543 #ifdef SCTP_DEBUG 1544 if (SCTP_AUTH_DEBUG) 1545 sctp_print_key(stcb->asoc.authinfo.assoc_key, 1546 "Assoc Key"); 1547 #endif 1548 } 1549 1550 /* set in the active key id */ 1551 auth->shared_key_id = htons(keyid); 1552 1553 /* compute and fill in the digest */ 1554 (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, 1555 m, auth_offset, auth->hmac); 1556 } 1557 1558 1559 static void 1560 sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) 1561 { 1562 struct mbuf *m_tmp; 1563 uint8_t *data; 1564 1565 /* sanity check */ 1566 if (m == NULL) 1567 return; 1568 1569 /* find the correct starting mbuf and offset (get start position) */ 1570 m_tmp = m; 1571 while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) { 1572 m_offset -= SCTP_BUF_LEN(m_tmp); 1573 m_tmp = SCTP_BUF_NEXT(m_tmp); 1574 } 1575 /* now use the rest of the mbuf chain */ 1576 while ((m_tmp != NULL) && (size > 0)) { 1577 data = mtod(m_tmp, uint8_t *)+m_offset; 1578 if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) { 1579 memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset); 1580 size -= SCTP_BUF_LEN(m_tmp) - m_offset; 1581 } else { 1582 memset(data, 0, size); 1583 size = 0; 1584 } 1585 /* clear the offset since it's only for the first mbuf */ 1586 m_offset = 0; 1587 m_tmp = SCTP_BUF_NEXT(m_tmp); 1588 } 1589 } 1590 1591 /*- 1592 * process the incoming Authentication chunk 1593 * return codes: 1594 * -1 on any authentication error 1595 * 0 on authentication verification 1596 */ 1597 int 1598 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, 1599 struct mbuf *m, uint32_t offset) 1600 { 1601 uint16_t chunklen; 1602 uint16_t shared_key_id; 1603 uint16_t hmac_id; 1604 sctp_sharedkey_t *skey; 1605 uint32_t digestlen; 1606 uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1607 uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1608 1609 /* auth is checked for NULL by caller */ 1610 chunklen = ntohs(auth->ch.chunk_length); 1611 if (chunklen < sizeof(*auth)) { 1612 SCTP_STAT_INCR(sctps_recvauthfailed); 1613 return (-1); 1614 } 1615 SCTP_STAT_INCR(sctps_recvauth); 1616 1617 /* get the auth params */ 1618 shared_key_id = ntohs(auth->shared_key_id); 1619 hmac_id = ntohs(auth->hmac_id); 1620 SCTPDBG(SCTP_DEBUG_AUTH1, 1621 "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", 1622 shared_key_id, hmac_id); 1623 1624 /* is the indicated HMAC supported? */ 1625 if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { 1626 struct mbuf *op_err; 1627 struct sctp_error_auth_invalid_hmac *cause; 1628 1629 SCTP_STAT_INCR(sctps_recvivalhmacid); 1630 SCTPDBG(SCTP_DEBUG_AUTH1, 1631 "SCTP Auth: unsupported HMAC id %u\n", 1632 hmac_id); 1633 /* 1634 * report this in an Error Chunk: Unsupported HMAC 1635 * Identifier 1636 */ 1637 op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac), 1638 0, M_NOWAIT, 1, MT_HEADER); 1639 if (op_err != NULL) { 1640 /* pre-reserve some space */ 1641 SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr)); 1642 /* fill in the error */ 1643 cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *); 1644 cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); 1645 cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac)); 1646 cause->hmac_id = ntohs(hmac_id); 1647 SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac); 1648 /* queue it */ 1649 sctp_queue_op_err(stcb, op_err); 1650 } 1651 return (-1); 1652 } 1653 /* get the indicated shared key, if available */ 1654 if ((stcb->asoc.authinfo.recv_key == NULL) || 1655 (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { 1656 /* find the shared key on the assoc first */ 1657 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, 1658 shared_key_id); 1659 /* if the shared key isn't found, discard the chunk */ 1660 if (skey == NULL) { 1661 SCTP_STAT_INCR(sctps_recvivalkeyid); 1662 SCTPDBG(SCTP_DEBUG_AUTH1, 1663 "SCTP Auth: unknown key id %u\n", 1664 shared_key_id); 1665 return (-1); 1666 } 1667 /* generate a notification if this is a new key id */ 1668 if (stcb->asoc.authinfo.recv_keyid != shared_key_id) 1669 /* 1670 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, 1671 * shared_key_id, (void 1672 * *)stcb->asoc.authinfo.recv_keyid); 1673 */ 1674 sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, 1675 shared_key_id, stcb->asoc.authinfo.recv_keyid, 1676 SCTP_SO_NOT_LOCKED); 1677 /* compute a new recv assoc key and cache it */ 1678 if (stcb->asoc.authinfo.recv_key != NULL) 1679 sctp_free_key(stcb->asoc.authinfo.recv_key); 1680 stcb->asoc.authinfo.recv_key = 1681 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1682 stcb->asoc.authinfo.peer_random, skey->key); 1683 stcb->asoc.authinfo.recv_keyid = shared_key_id; 1684 #ifdef SCTP_DEBUG 1685 if (SCTP_AUTH_DEBUG) 1686 sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); 1687 #endif 1688 } 1689 /* validate the digest length */ 1690 digestlen = sctp_get_hmac_digest_len(hmac_id); 1691 if (chunklen < (sizeof(*auth) + digestlen)) { 1692 /* invalid digest length */ 1693 SCTP_STAT_INCR(sctps_recvauthfailed); 1694 SCTPDBG(SCTP_DEBUG_AUTH1, 1695 "SCTP Auth: chunk too short for HMAC\n"); 1696 return (-1); 1697 } 1698 /* save a copy of the digest, zero the pseudo header, and validate */ 1699 memcpy(digest, auth->hmac, digestlen); 1700 sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); 1701 (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, 1702 m, offset, computed_digest); 1703 1704 /* compare the computed digest with the one in the AUTH chunk */ 1705 if (timingsafe_bcmp(digest, computed_digest, digestlen) != 0) { 1706 SCTP_STAT_INCR(sctps_recvauthfailed); 1707 SCTPDBG(SCTP_DEBUG_AUTH1, 1708 "SCTP Auth: HMAC digest check failed\n"); 1709 return (-1); 1710 } 1711 return (0); 1712 } 1713 1714 /* 1715 * Generate NOTIFICATION 1716 */ 1717 void 1718 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, 1719 uint16_t keyid, uint16_t alt_keyid, int so_locked) 1720 { 1721 struct mbuf *m_notify; 1722 struct sctp_authkey_event *auth; 1723 struct sctp_queued_to_read *control; 1724 1725 if ((stcb == NULL) || 1726 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || 1727 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || 1728 (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) 1729 ) { 1730 /* If the socket is gone we are out of here */ 1731 return; 1732 } 1733 1734 if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) 1735 /* event not enabled */ 1736 return; 1737 1738 m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), 1739 0, M_NOWAIT, 1, MT_HEADER); 1740 if (m_notify == NULL) 1741 /* no space left */ 1742 return; 1743 1744 SCTP_BUF_LEN(m_notify) = 0; 1745 auth = mtod(m_notify, struct sctp_authkey_event *); 1746 memset(auth, 0, sizeof(struct sctp_authkey_event)); 1747 auth->auth_type = SCTP_AUTHENTICATION_EVENT; 1748 auth->auth_flags = 0; 1749 auth->auth_length = sizeof(*auth); 1750 auth->auth_keynumber = keyid; 1751 auth->auth_altkeynumber = alt_keyid; 1752 auth->auth_indication = indication; 1753 auth->auth_assoc_id = sctp_get_associd(stcb); 1754 1755 SCTP_BUF_LEN(m_notify) = sizeof(*auth); 1756 SCTP_BUF_NEXT(m_notify) = NULL; 1757 1758 /* append to socket */ 1759 control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 1760 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); 1761 if (control == NULL) { 1762 /* no memory */ 1763 sctp_m_freem(m_notify); 1764 return; 1765 } 1766 control->length = SCTP_BUF_LEN(m_notify); 1767 control->spec_flags = M_NOTIFICATION; 1768 /* not that we need this */ 1769 control->tail_mbuf = m_notify; 1770 sctp_add_to_readq(stcb->sctp_ep, stcb, control, 1771 &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); 1772 } 1773 1774 1775 /*- 1776 * validates the AUTHentication related parameters in an INIT/INIT-ACK 1777 * Note: currently only used for INIT as INIT-ACK is handled inline 1778 * with sctp_load_addresses_from_init() 1779 */ 1780 int 1781 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) 1782 { 1783 struct sctp_paramhdr *phdr, param_buf; 1784 uint16_t ptype, plen; 1785 int peer_supports_asconf = 0; 1786 int peer_supports_auth = 0; 1787 int got_random = 0, got_hmacs = 0, got_chklist = 0; 1788 uint8_t saw_asconf = 0; 1789 uint8_t saw_asconf_ack = 0; 1790 1791 /* go through each of the params. */ 1792 phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); 1793 while (phdr) { 1794 ptype = ntohs(phdr->param_type); 1795 plen = ntohs(phdr->param_length); 1796 1797 if (offset + plen > limit) { 1798 break; 1799 } 1800 if (plen < sizeof(struct sctp_paramhdr)) { 1801 break; 1802 } 1803 if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { 1804 /* A supported extension chunk */ 1805 struct sctp_supported_chunk_types_param *pr_supported; 1806 uint8_t local_store[SCTP_SMALL_CHUNK_STORE]; 1807 int num_ent, i; 1808 1809 if (plen > sizeof(local_store)) { 1810 break; 1811 } 1812 phdr = sctp_get_next_param(m, offset, 1813 (struct sctp_paramhdr *)&local_store, 1814 plen); 1815 if (phdr == NULL) { 1816 return (-1); 1817 } 1818 pr_supported = (struct sctp_supported_chunk_types_param *)phdr; 1819 num_ent = plen - sizeof(struct sctp_paramhdr); 1820 for (i = 0; i < num_ent; i++) { 1821 switch (pr_supported->chunk_types[i]) { 1822 case SCTP_ASCONF: 1823 case SCTP_ASCONF_ACK: 1824 peer_supports_asconf = 1; 1825 break; 1826 default: 1827 /* one we don't care about */ 1828 break; 1829 } 1830 } 1831 } else if (ptype == SCTP_RANDOM) { 1832 /* enforce the random length */ 1833 if (plen != (sizeof(struct sctp_auth_random) + 1834 SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { 1835 SCTPDBG(SCTP_DEBUG_AUTH1, 1836 "SCTP: invalid RANDOM len\n"); 1837 return (-1); 1838 } 1839 got_random = 1; 1840 } else if (ptype == SCTP_HMAC_LIST) { 1841 struct sctp_auth_hmac_algo *hmacs; 1842 uint8_t store[SCTP_PARAM_BUFFER_SIZE]; 1843 int num_hmacs; 1844 1845 if (plen > sizeof(store)) { 1846 break; 1847 } 1848 phdr = sctp_get_next_param(m, offset, 1849 (struct sctp_paramhdr *)store, 1850 plen); 1851 if (phdr == NULL) { 1852 return (-1); 1853 } 1854 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1855 num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]); 1856 /* validate the hmac list */ 1857 if (sctp_verify_hmac_param(hmacs, num_hmacs)) { 1858 SCTPDBG(SCTP_DEBUG_AUTH1, 1859 "SCTP: invalid HMAC param\n"); 1860 return (-1); 1861 } 1862 got_hmacs = 1; 1863 } else if (ptype == SCTP_CHUNK_LIST) { 1864 struct sctp_auth_chunk_list *chunks; 1865 uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; 1866 int i, num_chunks; 1867 1868 if (plen > sizeof(chunks_store)) { 1869 break; 1870 } 1871 phdr = sctp_get_next_param(m, offset, 1872 (struct sctp_paramhdr *)chunks_store, 1873 plen); 1874 if (phdr == NULL) { 1875 return (-1); 1876 } 1877 /*- 1878 * Flip through the list and mark that the 1879 * peer supports asconf/asconf_ack. 1880 */ 1881 chunks = (struct sctp_auth_chunk_list *)phdr; 1882 num_chunks = plen - sizeof(*chunks); 1883 for (i = 0; i < num_chunks; i++) { 1884 /* record asconf/asconf-ack if listed */ 1885 if (chunks->chunk_types[i] == SCTP_ASCONF) 1886 saw_asconf = 1; 1887 if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) 1888 saw_asconf_ack = 1; 1889 1890 } 1891 if (num_chunks) 1892 got_chklist = 1; 1893 } 1894 1895 offset += SCTP_SIZE32(plen); 1896 if (offset >= limit) { 1897 break; 1898 } 1899 phdr = sctp_get_next_param(m, offset, ¶m_buf, 1900 sizeof(param_buf)); 1901 } 1902 /* validate authentication required parameters */ 1903 if (got_random && got_hmacs) { 1904 peer_supports_auth = 1; 1905 } else { 1906 peer_supports_auth = 0; 1907 } 1908 if (!peer_supports_auth && got_chklist) { 1909 SCTPDBG(SCTP_DEBUG_AUTH1, 1910 "SCTP: peer sent chunk list w/o AUTH\n"); 1911 return (-1); 1912 } 1913 if (peer_supports_asconf && !peer_supports_auth) { 1914 SCTPDBG(SCTP_DEBUG_AUTH1, 1915 "SCTP: peer supports ASCONF but not AUTH\n"); 1916 return (-1); 1917 } else if ((peer_supports_asconf) && (peer_supports_auth) && 1918 ((saw_asconf == 0) || (saw_asconf_ack == 0))) { 1919 return (-2); 1920 } 1921 return (0); 1922 } 1923 1924 void 1925 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) 1926 { 1927 uint16_t chunks_len = 0; 1928 uint16_t hmacs_len = 0; 1929 uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; 1930 sctp_key_t *new_key; 1931 uint16_t keylen; 1932 1933 /* initialize hmac list from endpoint */ 1934 stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); 1935 if (stcb->asoc.local_hmacs != NULL) { 1936 hmacs_len = stcb->asoc.local_hmacs->num_algo * 1937 sizeof(stcb->asoc.local_hmacs->hmac[0]); 1938 } 1939 /* initialize auth chunks list from endpoint */ 1940 stcb->asoc.local_auth_chunks = 1941 sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); 1942 if (stcb->asoc.local_auth_chunks != NULL) { 1943 int i; 1944 1945 for (i = 0; i < 256; i++) { 1946 if (stcb->asoc.local_auth_chunks->chunks[i]) 1947 chunks_len++; 1948 } 1949 } 1950 /* copy defaults from the endpoint */ 1951 stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; 1952 1953 /* copy out the shared key list (by reference) from the endpoint */ 1954 (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, 1955 &stcb->asoc.shared_keys); 1956 1957 /* now set the concatenated key (random + chunks + hmacs) */ 1958 /* key includes parameter headers */ 1959 keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + 1960 hmacs_len; 1961 new_key = sctp_alloc_key(keylen); 1962 if (new_key != NULL) { 1963 struct sctp_paramhdr *ph; 1964 int plen; 1965 1966 /* generate and copy in the RANDOM */ 1967 ph = (struct sctp_paramhdr *)new_key->key; 1968 ph->param_type = htons(SCTP_RANDOM); 1969 plen = sizeof(*ph) + random_len; 1970 ph->param_length = htons(plen); 1971 SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); 1972 keylen = plen; 1973 1974 /* append in the AUTH chunks */ 1975 /* NOTE: currently we always have chunks to list */ 1976 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 1977 ph->param_type = htons(SCTP_CHUNK_LIST); 1978 plen = sizeof(*ph) + chunks_len; 1979 ph->param_length = htons(plen); 1980 keylen += sizeof(*ph); 1981 if (stcb->asoc.local_auth_chunks) { 1982 int i; 1983 1984 for (i = 0; i < 256; i++) { 1985 if (stcb->asoc.local_auth_chunks->chunks[i]) 1986 new_key->key[keylen++] = i; 1987 } 1988 } 1989 1990 /* append in the HMACs */ 1991 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 1992 ph->param_type = htons(SCTP_HMAC_LIST); 1993 plen = sizeof(*ph) + hmacs_len; 1994 ph->param_length = htons(plen); 1995 keylen += sizeof(*ph); 1996 (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, 1997 new_key->key + keylen); 1998 } 1999 if (stcb->asoc.authinfo.random != NULL) 2000 sctp_free_key(stcb->asoc.authinfo.random); 2001 stcb->asoc.authinfo.random = new_key; 2002 stcb->asoc.authinfo.random_len = random_len; 2003 } 2004