1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. 5 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. 6 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * a) Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * 14 * b) Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the distribution. 17 * 18 * c) Neither the name of Cisco Systems, Inc. nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 24 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 26 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <netinet/sctp_os.h> 39 #include <netinet/sctp.h> 40 #include <netinet/sctp_header.h> 41 #include <netinet/sctp_pcb.h> 42 #include <netinet/sctp_var.h> 43 #include <netinet/sctp_sysctl.h> 44 #include <netinet/sctputil.h> 45 #include <netinet/sctp_indata.h> 46 #include <netinet/sctp_output.h> 47 #include <netinet/sctp_auth.h> 48 49 #ifdef SCTP_DEBUG 50 #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) 51 #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) 52 #endif /* SCTP_DEBUG */ 53 54 55 void 56 sctp_clear_chunklist(sctp_auth_chklist_t *chklist) 57 { 58 memset(chklist, 0, sizeof(*chklist)); 59 /* chklist->num_chunks = 0; */ 60 } 61 62 sctp_auth_chklist_t * 63 sctp_alloc_chunklist(void) 64 { 65 sctp_auth_chklist_t *chklist; 66 67 SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), 68 SCTP_M_AUTH_CL); 69 if (chklist == NULL) { 70 SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); 71 } else { 72 sctp_clear_chunklist(chklist); 73 } 74 return (chklist); 75 } 76 77 void 78 sctp_free_chunklist(sctp_auth_chklist_t *list) 79 { 80 if (list != NULL) 81 SCTP_FREE(list, SCTP_M_AUTH_CL); 82 } 83 84 sctp_auth_chklist_t * 85 sctp_copy_chunklist(sctp_auth_chklist_t *list) 86 { 87 sctp_auth_chklist_t *new_list; 88 89 if (list == NULL) 90 return (NULL); 91 92 /* get a new list */ 93 new_list = sctp_alloc_chunklist(); 94 if (new_list == NULL) 95 return (NULL); 96 /* copy it */ 97 memcpy(new_list, list, sizeof(*new_list)); 98 99 return (new_list); 100 } 101 102 103 /* 104 * add a chunk to the required chunks list 105 */ 106 int 107 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list) 108 { 109 if (list == NULL) 110 return (-1); 111 112 /* is chunk restricted? */ 113 if ((chunk == SCTP_INITIATION) || 114 (chunk == SCTP_INITIATION_ACK) || 115 (chunk == SCTP_SHUTDOWN_COMPLETE) || 116 (chunk == SCTP_AUTHENTICATION)) { 117 return (-1); 118 } 119 if (list->chunks[chunk] == 0) { 120 list->chunks[chunk] = 1; 121 list->num_chunks++; 122 SCTPDBG(SCTP_DEBUG_AUTH1, 123 "SCTP: added chunk %u (0x%02x) to Auth list\n", 124 chunk, chunk); 125 } 126 return (0); 127 } 128 129 /* 130 * delete a chunk from the required chunks list 131 */ 132 int 133 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list) 134 { 135 if (list == NULL) 136 return (-1); 137 138 if (list->chunks[chunk] == 1) { 139 list->chunks[chunk] = 0; 140 list->num_chunks--; 141 SCTPDBG(SCTP_DEBUG_AUTH1, 142 "SCTP: deleted chunk %u (0x%02x) from Auth list\n", 143 chunk, chunk); 144 } 145 return (0); 146 } 147 148 size_t 149 sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list) 150 { 151 if (list == NULL) 152 return (0); 153 else 154 return (list->num_chunks); 155 } 156 157 /* 158 * return the current number and list of required chunks caller must 159 * guarantee ptr has space for up to 256 bytes 160 */ 161 int 162 sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) 163 { 164 int i, count = 0; 165 166 if (list == NULL) 167 return (0); 168 169 for (i = 0; i < 256; i++) { 170 if (list->chunks[i] != 0) { 171 *ptr++ = i; 172 count++; 173 } 174 } 175 return (count); 176 } 177 178 int 179 sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) 180 { 181 int i, size = 0; 182 183 if (list == NULL) 184 return (0); 185 186 if (list->num_chunks <= 32) { 187 /* just list them, one byte each */ 188 for (i = 0; i < 256; i++) { 189 if (list->chunks[i] != 0) { 190 *ptr++ = i; 191 size++; 192 } 193 } 194 } else { 195 int index, offset; 196 197 /* pack into a 32 byte bitfield */ 198 for (i = 0; i < 256; i++) { 199 if (list->chunks[i] != 0) { 200 index = i / 8; 201 offset = i % 8; 202 ptr[index] |= (1 << offset); 203 } 204 } 205 size = 32; 206 } 207 return (size); 208 } 209 210 int 211 sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks, 212 sctp_auth_chklist_t *list) 213 { 214 int i; 215 int size; 216 217 if (list == NULL) 218 return (0); 219 220 if (num_chunks <= 32) { 221 /* just pull them, one byte each */ 222 for (i = 0; i < num_chunks; i++) { 223 (void)sctp_auth_add_chunk(*ptr++, list); 224 } 225 size = num_chunks; 226 } else { 227 int index, offset; 228 229 /* unpack from a 32 byte bitfield */ 230 for (index = 0; index < 32; index++) { 231 for (offset = 0; offset < 8; offset++) { 232 if (ptr[index] & (1 << offset)) { 233 (void)sctp_auth_add_chunk((index * 8) + offset, list); 234 } 235 } 236 } 237 size = 32; 238 } 239 return (size); 240 } 241 242 243 /* 244 * allocate structure space for a key of length keylen 245 */ 246 sctp_key_t * 247 sctp_alloc_key(uint32_t keylen) 248 { 249 sctp_key_t *new_key; 250 251 SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, 252 SCTP_M_AUTH_KY); 253 if (new_key == NULL) { 254 /* out of memory */ 255 return (NULL); 256 } 257 new_key->keylen = keylen; 258 return (new_key); 259 } 260 261 void 262 sctp_free_key(sctp_key_t *key) 263 { 264 if (key != NULL) 265 SCTP_FREE(key, SCTP_M_AUTH_KY); 266 } 267 268 void 269 sctp_print_key(sctp_key_t *key, const char *str) 270 { 271 uint32_t i; 272 273 if (key == NULL) { 274 SCTP_PRINTF("%s: [Null key]\n", str); 275 return; 276 } 277 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 278 if (key->keylen) { 279 for (i = 0; i < key->keylen; i++) 280 SCTP_PRINTF("%02x", key->key[i]); 281 SCTP_PRINTF("\n"); 282 } else { 283 SCTP_PRINTF("[Null key]\n"); 284 } 285 } 286 287 void 288 sctp_show_key(sctp_key_t *key, const char *str) 289 { 290 uint32_t i; 291 292 if (key == NULL) { 293 SCTP_PRINTF("%s: [Null key]\n", str); 294 return; 295 } 296 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 297 if (key->keylen) { 298 for (i = 0; i < key->keylen; i++) 299 SCTP_PRINTF("%02x", key->key[i]); 300 SCTP_PRINTF("\n"); 301 } else { 302 SCTP_PRINTF("[Null key]\n"); 303 } 304 } 305 306 static uint32_t 307 sctp_get_keylen(sctp_key_t *key) 308 { 309 if (key != NULL) 310 return (key->keylen); 311 else 312 return (0); 313 } 314 315 /* 316 * generate a new random key of length 'keylen' 317 */ 318 sctp_key_t * 319 sctp_generate_random_key(uint32_t keylen) 320 { 321 sctp_key_t *new_key; 322 323 new_key = sctp_alloc_key(keylen); 324 if (new_key == NULL) { 325 /* out of memory */ 326 return (NULL); 327 } 328 SCTP_READ_RANDOM(new_key->key, keylen); 329 new_key->keylen = keylen; 330 return (new_key); 331 } 332 333 sctp_key_t * 334 sctp_set_key(uint8_t *key, uint32_t keylen) 335 { 336 sctp_key_t *new_key; 337 338 new_key = sctp_alloc_key(keylen); 339 if (new_key == NULL) { 340 /* out of memory */ 341 return (NULL); 342 } 343 memcpy(new_key->key, key, keylen); 344 return (new_key); 345 } 346 347 /*- 348 * given two keys of variable size, compute which key is "larger/smaller" 349 * returns: 1 if key1 > key2 350 * -1 if key1 < key2 351 * 0 if key1 = key2 352 */ 353 static int 354 sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2) 355 { 356 uint32_t maxlen; 357 uint32_t i; 358 uint32_t key1len, key2len; 359 uint8_t *key_1, *key_2; 360 uint8_t val1, val2; 361 362 /* sanity/length check */ 363 key1len = sctp_get_keylen(key1); 364 key2len = sctp_get_keylen(key2); 365 if ((key1len == 0) && (key2len == 0)) 366 return (0); 367 else if (key1len == 0) 368 return (-1); 369 else if (key2len == 0) 370 return (1); 371 372 if (key1len < key2len) { 373 maxlen = key2len; 374 } else { 375 maxlen = key1len; 376 } 377 key_1 = key1->key; 378 key_2 = key2->key; 379 /* check for numeric equality */ 380 for (i = 0; i < maxlen; i++) { 381 /* left-pad with zeros */ 382 val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++); 383 val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++); 384 if (val1 > val2) { 385 return (1); 386 } else if (val1 < val2) { 387 return (-1); 388 } 389 } 390 /* keys are equal value, so check lengths */ 391 if (key1len == key2len) 392 return (0); 393 else if (key1len < key2len) 394 return (-1); 395 else 396 return (1); 397 } 398 399 /* 400 * generate the concatenated keying material based on the two keys and the 401 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific 402 * order for concatenation 403 */ 404 sctp_key_t * 405 sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared) 406 { 407 uint32_t keylen; 408 sctp_key_t *new_key; 409 uint8_t *key_ptr; 410 411 keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + 412 sctp_get_keylen(shared); 413 414 if (keylen > 0) { 415 /* get space for the new key */ 416 new_key = sctp_alloc_key(keylen); 417 if (new_key == NULL) { 418 /* out of memory */ 419 return (NULL); 420 } 421 new_key->keylen = keylen; 422 key_ptr = new_key->key; 423 } else { 424 /* all keys empty/null?! */ 425 return (NULL); 426 } 427 428 /* concatenate the keys */ 429 if (sctp_compare_key(key1, key2) <= 0) { 430 /* key is shared + key1 + key2 */ 431 if (sctp_get_keylen(shared)) { 432 memcpy(key_ptr, shared->key, shared->keylen); 433 key_ptr += shared->keylen; 434 } 435 if (sctp_get_keylen(key1)) { 436 memcpy(key_ptr, key1->key, key1->keylen); 437 key_ptr += key1->keylen; 438 } 439 if (sctp_get_keylen(key2)) { 440 memcpy(key_ptr, key2->key, key2->keylen); 441 } 442 } else { 443 /* key is shared + key2 + key1 */ 444 if (sctp_get_keylen(shared)) { 445 memcpy(key_ptr, shared->key, shared->keylen); 446 key_ptr += shared->keylen; 447 } 448 if (sctp_get_keylen(key2)) { 449 memcpy(key_ptr, key2->key, key2->keylen); 450 key_ptr += key2->keylen; 451 } 452 if (sctp_get_keylen(key1)) { 453 memcpy(key_ptr, key1->key, key1->keylen); 454 } 455 } 456 return (new_key); 457 } 458 459 460 sctp_sharedkey_t * 461 sctp_alloc_sharedkey(void) 462 { 463 sctp_sharedkey_t *new_key; 464 465 SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), 466 SCTP_M_AUTH_KY); 467 if (new_key == NULL) { 468 /* out of memory */ 469 return (NULL); 470 } 471 new_key->keyid = 0; 472 new_key->key = NULL; 473 new_key->refcount = 1; 474 new_key->deactivated = 0; 475 return (new_key); 476 } 477 478 void 479 sctp_free_sharedkey(sctp_sharedkey_t *skey) 480 { 481 if (skey == NULL) 482 return; 483 484 if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { 485 if (skey->key != NULL) 486 sctp_free_key(skey->key); 487 SCTP_FREE(skey, SCTP_M_AUTH_KY); 488 } 489 } 490 491 sctp_sharedkey_t * 492 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) 493 { 494 sctp_sharedkey_t *skey; 495 496 LIST_FOREACH(skey, shared_keys, next) { 497 if (skey->keyid == key_id) 498 return (skey); 499 } 500 return (NULL); 501 } 502 503 int 504 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, 505 sctp_sharedkey_t *new_skey) 506 { 507 sctp_sharedkey_t *skey; 508 509 if ((shared_keys == NULL) || (new_skey == NULL)) 510 return (EINVAL); 511 512 /* insert into an empty list? */ 513 if (LIST_EMPTY(shared_keys)) { 514 LIST_INSERT_HEAD(shared_keys, new_skey, next); 515 return (0); 516 } 517 /* insert into the existing list, ordered by key id */ 518 LIST_FOREACH(skey, shared_keys, next) { 519 if (new_skey->keyid < skey->keyid) { 520 /* insert it before here */ 521 LIST_INSERT_BEFORE(skey, new_skey, next); 522 return (0); 523 } else if (new_skey->keyid == skey->keyid) { 524 /* replace the existing key */ 525 /* verify this key *can* be replaced */ 526 if ((skey->deactivated) && (skey->refcount > 1)) { 527 SCTPDBG(SCTP_DEBUG_AUTH1, 528 "can't replace shared key id %u\n", 529 new_skey->keyid); 530 return (EBUSY); 531 } 532 SCTPDBG(SCTP_DEBUG_AUTH1, 533 "replacing shared key id %u\n", 534 new_skey->keyid); 535 LIST_INSERT_BEFORE(skey, new_skey, next); 536 LIST_REMOVE(skey, next); 537 sctp_free_sharedkey(skey); 538 return (0); 539 } 540 if (LIST_NEXT(skey, next) == NULL) { 541 /* belongs at the end of the list */ 542 LIST_INSERT_AFTER(skey, new_skey, next); 543 return (0); 544 } 545 } 546 /* shouldn't reach here */ 547 return (EINVAL); 548 } 549 550 void 551 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) 552 { 553 sctp_sharedkey_t *skey; 554 555 /* find the shared key */ 556 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 557 558 /* bump the ref count */ 559 if (skey) { 560 atomic_add_int(&skey->refcount, 1); 561 SCTPDBG(SCTP_DEBUG_AUTH2, 562 "%s: stcb %p key %u refcount acquire to %d\n", 563 __func__, (void *)stcb, key_id, skey->refcount); 564 } 565 } 566 567 void 568 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked 569 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 570 SCTP_UNUSED 571 #endif 572 ) 573 { 574 sctp_sharedkey_t *skey; 575 576 /* find the shared key */ 577 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 578 579 /* decrement the ref count */ 580 if (skey) { 581 SCTPDBG(SCTP_DEBUG_AUTH2, 582 "%s: stcb %p key %u refcount release to %d\n", 583 __func__, (void *)stcb, key_id, skey->refcount); 584 585 /* see if a notification should be generated */ 586 if ((skey->refcount <= 2) && (skey->deactivated)) { 587 /* notify ULP that key is no longer used */ 588 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, 589 key_id, 0, so_locked); 590 SCTPDBG(SCTP_DEBUG_AUTH2, 591 "%s: stcb %p key %u no longer used, %d\n", 592 __func__, (void *)stcb, key_id, skey->refcount); 593 } 594 sctp_free_sharedkey(skey); 595 } 596 } 597 598 static sctp_sharedkey_t * 599 sctp_copy_sharedkey(const sctp_sharedkey_t *skey) 600 { 601 sctp_sharedkey_t *new_skey; 602 603 if (skey == NULL) 604 return (NULL); 605 new_skey = sctp_alloc_sharedkey(); 606 if (new_skey == NULL) 607 return (NULL); 608 if (skey->key != NULL) 609 new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); 610 else 611 new_skey->key = NULL; 612 new_skey->keyid = skey->keyid; 613 return (new_skey); 614 } 615 616 int 617 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) 618 { 619 sctp_sharedkey_t *skey, *new_skey; 620 int count = 0; 621 622 if ((src == NULL) || (dest == NULL)) 623 return (0); 624 LIST_FOREACH(skey, src, next) { 625 new_skey = sctp_copy_sharedkey(skey); 626 if (new_skey != NULL) { 627 if (sctp_insert_sharedkey(dest, new_skey)) { 628 sctp_free_sharedkey(new_skey); 629 } else { 630 count++; 631 } 632 } 633 } 634 return (count); 635 } 636 637 638 sctp_hmaclist_t * 639 sctp_alloc_hmaclist(uint16_t num_hmacs) 640 { 641 sctp_hmaclist_t *new_list; 642 int alloc_size; 643 644 alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); 645 SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, 646 SCTP_M_AUTH_HL); 647 if (new_list == NULL) { 648 /* out of memory */ 649 return (NULL); 650 } 651 new_list->max_algo = num_hmacs; 652 new_list->num_algo = 0; 653 return (new_list); 654 } 655 656 void 657 sctp_free_hmaclist(sctp_hmaclist_t *list) 658 { 659 if (list != NULL) { 660 SCTP_FREE(list, SCTP_M_AUTH_HL); 661 list = NULL; 662 } 663 } 664 665 int 666 sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id) 667 { 668 int i; 669 670 if (list == NULL) 671 return (-1); 672 if (list->num_algo == list->max_algo) { 673 SCTPDBG(SCTP_DEBUG_AUTH1, 674 "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); 675 return (-1); 676 } 677 if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && 678 (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) { 679 return (-1); 680 } 681 /* Now is it already in the list */ 682 for (i = 0; i < list->num_algo; i++) { 683 if (list->hmac[i] == hmac_id) { 684 /* already in list */ 685 return (-1); 686 } 687 } 688 SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); 689 list->hmac[list->num_algo++] = hmac_id; 690 return (0); 691 } 692 693 sctp_hmaclist_t * 694 sctp_copy_hmaclist(sctp_hmaclist_t *list) 695 { 696 sctp_hmaclist_t *new_list; 697 int i; 698 699 if (list == NULL) 700 return (NULL); 701 /* get a new list */ 702 new_list = sctp_alloc_hmaclist(list->max_algo); 703 if (new_list == NULL) 704 return (NULL); 705 /* copy it */ 706 new_list->max_algo = list->max_algo; 707 new_list->num_algo = list->num_algo; 708 for (i = 0; i < list->num_algo; i++) 709 new_list->hmac[i] = list->hmac[i]; 710 return (new_list); 711 } 712 713 sctp_hmaclist_t * 714 sctp_default_supported_hmaclist(void) 715 { 716 sctp_hmaclist_t *new_list; 717 718 new_list = sctp_alloc_hmaclist(2); 719 if (new_list == NULL) 720 return (NULL); 721 /* We prefer SHA256, so list it first */ 722 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); 723 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); 724 return (new_list); 725 } 726 727 /*- 728 * HMAC algos are listed in priority/preference order 729 * find the best HMAC id to use for the peer based on local support 730 */ 731 uint16_t 732 sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local) 733 { 734 int i, j; 735 736 if ((local == NULL) || (peer == NULL)) 737 return (SCTP_AUTH_HMAC_ID_RSVD); 738 739 for (i = 0; i < peer->num_algo; i++) { 740 for (j = 0; j < local->num_algo; j++) { 741 if (peer->hmac[i] == local->hmac[j]) { 742 /* found the "best" one */ 743 SCTPDBG(SCTP_DEBUG_AUTH1, 744 "SCTP: negotiated peer HMAC id %u\n", 745 peer->hmac[i]); 746 return (peer->hmac[i]); 747 } 748 } 749 } 750 /* didn't find one! */ 751 return (SCTP_AUTH_HMAC_ID_RSVD); 752 } 753 754 /*- 755 * serialize the HMAC algo list and return space used 756 * caller must guarantee ptr has appropriate space 757 */ 758 int 759 sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr) 760 { 761 int i; 762 uint16_t hmac_id; 763 764 if (list == NULL) 765 return (0); 766 767 for (i = 0; i < list->num_algo; i++) { 768 hmac_id = htons(list->hmac[i]); 769 memcpy(ptr, &hmac_id, sizeof(hmac_id)); 770 ptr += sizeof(hmac_id); 771 } 772 return (list->num_algo * sizeof(hmac_id)); 773 } 774 775 int 776 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) 777 { 778 uint32_t i; 779 780 for (i = 0; i < num_hmacs; i++) { 781 if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) { 782 return (0); 783 } 784 } 785 return (-1); 786 } 787 788 sctp_authinfo_t * 789 sctp_alloc_authinfo(void) 790 { 791 sctp_authinfo_t *new_authinfo; 792 793 SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), 794 SCTP_M_AUTH_IF); 795 796 if (new_authinfo == NULL) { 797 /* out of memory */ 798 return (NULL); 799 } 800 memset(new_authinfo, 0, sizeof(*new_authinfo)); 801 return (new_authinfo); 802 } 803 804 void 805 sctp_free_authinfo(sctp_authinfo_t *authinfo) 806 { 807 if (authinfo == NULL) 808 return; 809 810 if (authinfo->random != NULL) 811 sctp_free_key(authinfo->random); 812 if (authinfo->peer_random != NULL) 813 sctp_free_key(authinfo->peer_random); 814 if (authinfo->assoc_key != NULL) 815 sctp_free_key(authinfo->assoc_key); 816 if (authinfo->recv_key != NULL) 817 sctp_free_key(authinfo->recv_key); 818 819 /* We are NOT dynamically allocating authinfo's right now... */ 820 /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ 821 } 822 823 824 uint32_t 825 sctp_get_auth_chunk_len(uint16_t hmac_algo) 826 { 827 int size; 828 829 size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); 830 return (SCTP_SIZE32(size)); 831 } 832 833 uint32_t 834 sctp_get_hmac_digest_len(uint16_t hmac_algo) 835 { 836 switch (hmac_algo) { 837 case SCTP_AUTH_HMAC_ID_SHA1: 838 return (SCTP_AUTH_DIGEST_LEN_SHA1); 839 case SCTP_AUTH_HMAC_ID_SHA256: 840 return (SCTP_AUTH_DIGEST_LEN_SHA256); 841 default: 842 /* unknown HMAC algorithm: can't do anything */ 843 return (0); 844 } /* end switch */ 845 } 846 847 static inline int 848 sctp_get_hmac_block_len(uint16_t hmac_algo) 849 { 850 switch (hmac_algo) { 851 case SCTP_AUTH_HMAC_ID_SHA1: 852 return (64); 853 case SCTP_AUTH_HMAC_ID_SHA256: 854 return (64); 855 case SCTP_AUTH_HMAC_ID_RSVD: 856 default: 857 /* unknown HMAC algorithm: can't do anything */ 858 return (0); 859 } /* end switch */ 860 } 861 862 static void 863 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx) 864 { 865 switch (hmac_algo) { 866 case SCTP_AUTH_HMAC_ID_SHA1: 867 SCTP_SHA1_INIT(&ctx->sha1); 868 break; 869 case SCTP_AUTH_HMAC_ID_SHA256: 870 SCTP_SHA256_INIT(&ctx->sha256); 871 break; 872 case SCTP_AUTH_HMAC_ID_RSVD: 873 default: 874 /* unknown HMAC algorithm: can't do anything */ 875 return; 876 } /* end switch */ 877 } 878 879 static void 880 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx, 881 uint8_t *text, uint32_t textlen) 882 { 883 switch (hmac_algo) { 884 case SCTP_AUTH_HMAC_ID_SHA1: 885 SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen); 886 break; 887 case SCTP_AUTH_HMAC_ID_SHA256: 888 SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen); 889 break; 890 case SCTP_AUTH_HMAC_ID_RSVD: 891 default: 892 /* unknown HMAC algorithm: can't do anything */ 893 return; 894 } /* end switch */ 895 } 896 897 static void 898 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx, 899 uint8_t *digest) 900 { 901 switch (hmac_algo) { 902 case SCTP_AUTH_HMAC_ID_SHA1: 903 SCTP_SHA1_FINAL(digest, &ctx->sha1); 904 break; 905 case SCTP_AUTH_HMAC_ID_SHA256: 906 SCTP_SHA256_FINAL(digest, &ctx->sha256); 907 break; 908 case SCTP_AUTH_HMAC_ID_RSVD: 909 default: 910 /* unknown HMAC algorithm: can't do anything */ 911 return; 912 } /* end switch */ 913 } 914 915 /*- 916 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) 917 * 918 * Compute the HMAC digest using the desired hash key, text, and HMAC 919 * algorithm. Resulting digest is placed in 'digest' and digest length 920 * is returned, if the HMAC was performed. 921 * 922 * WARNING: it is up to the caller to supply sufficient space to hold the 923 * resultant digest. 924 */ 925 uint32_t 926 sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, 927 uint8_t *text, uint32_t textlen, uint8_t *digest) 928 { 929 uint32_t digestlen; 930 uint32_t blocklen; 931 sctp_hash_context_t ctx; 932 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 933 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 934 uint32_t i; 935 936 /* sanity check the material and length */ 937 if ((key == NULL) || (keylen == 0) || (text == NULL) || 938 (textlen == 0) || (digest == NULL)) { 939 /* can't do HMAC with empty key or text or digest store */ 940 return (0); 941 } 942 /* validate the hmac algo and get the digest length */ 943 digestlen = sctp_get_hmac_digest_len(hmac_algo); 944 if (digestlen == 0) 945 return (0); 946 947 /* hash the key if it is longer than the hash block size */ 948 blocklen = sctp_get_hmac_block_len(hmac_algo); 949 if (keylen > blocklen) { 950 sctp_hmac_init(hmac_algo, &ctx); 951 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 952 sctp_hmac_final(hmac_algo, &ctx, temp); 953 /* set the hashed key as the key */ 954 keylen = digestlen; 955 key = temp; 956 } 957 /* initialize the inner/outer pads with the key and "append" zeroes */ 958 memset(ipad, 0, blocklen); 959 memset(opad, 0, blocklen); 960 memcpy(ipad, key, keylen); 961 memcpy(opad, key, keylen); 962 963 /* XOR the key with ipad and opad values */ 964 for (i = 0; i < blocklen; i++) { 965 ipad[i] ^= 0x36; 966 opad[i] ^= 0x5c; 967 } 968 969 /* perform inner hash */ 970 sctp_hmac_init(hmac_algo, &ctx); 971 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 972 sctp_hmac_update(hmac_algo, &ctx, text, textlen); 973 sctp_hmac_final(hmac_algo, &ctx, temp); 974 975 /* perform outer hash */ 976 sctp_hmac_init(hmac_algo, &ctx); 977 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 978 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 979 sctp_hmac_final(hmac_algo, &ctx, digest); 980 981 return (digestlen); 982 } 983 984 /* mbuf version */ 985 uint32_t 986 sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, 987 struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer) 988 { 989 uint32_t digestlen; 990 uint32_t blocklen; 991 sctp_hash_context_t ctx; 992 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 993 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 994 uint32_t i; 995 struct mbuf *m_tmp; 996 997 /* sanity check the material and length */ 998 if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { 999 /* can't do HMAC with empty key or text or digest store */ 1000 return (0); 1001 } 1002 /* validate the hmac algo and get the digest length */ 1003 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1004 if (digestlen == 0) 1005 return (0); 1006 1007 /* hash the key if it is longer than the hash block size */ 1008 blocklen = sctp_get_hmac_block_len(hmac_algo); 1009 if (keylen > blocklen) { 1010 sctp_hmac_init(hmac_algo, &ctx); 1011 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 1012 sctp_hmac_final(hmac_algo, &ctx, temp); 1013 /* set the hashed key as the key */ 1014 keylen = digestlen; 1015 key = temp; 1016 } 1017 /* initialize the inner/outer pads with the key and "append" zeroes */ 1018 memset(ipad, 0, blocklen); 1019 memset(opad, 0, blocklen); 1020 memcpy(ipad, key, keylen); 1021 memcpy(opad, key, keylen); 1022 1023 /* XOR the key with ipad and opad values */ 1024 for (i = 0; i < blocklen; i++) { 1025 ipad[i] ^= 0x36; 1026 opad[i] ^= 0x5c; 1027 } 1028 1029 /* perform inner hash */ 1030 sctp_hmac_init(hmac_algo, &ctx); 1031 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1032 /* find the correct starting mbuf and offset (get start of text) */ 1033 m_tmp = m; 1034 while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) { 1035 m_offset -= SCTP_BUF_LEN(m_tmp); 1036 m_tmp = SCTP_BUF_NEXT(m_tmp); 1037 } 1038 /* now use the rest of the mbuf chain for the text */ 1039 while (m_tmp != NULL) { 1040 if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { 1041 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset, 1042 SCTP_BUF_LEN(m_tmp) - (trailer + m_offset)); 1043 } else { 1044 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset, 1045 SCTP_BUF_LEN(m_tmp) - m_offset); 1046 } 1047 1048 /* clear the offset since it's only for the first mbuf */ 1049 m_offset = 0; 1050 m_tmp = SCTP_BUF_NEXT(m_tmp); 1051 } 1052 sctp_hmac_final(hmac_algo, &ctx, temp); 1053 1054 /* perform outer hash */ 1055 sctp_hmac_init(hmac_algo, &ctx); 1056 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1057 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1058 sctp_hmac_final(hmac_algo, &ctx, digest); 1059 1060 return (digestlen); 1061 } 1062 1063 /*- 1064 * verify the HMAC digest using the desired hash key, text, and HMAC 1065 * algorithm. 1066 * Returns -1 on error, 0 on success. 1067 */ 1068 int 1069 sctp_verify_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, 1070 uint8_t *text, uint32_t textlen, 1071 uint8_t *digest, uint32_t digestlen) 1072 { 1073 uint32_t len; 1074 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1075 1076 /* sanity check the material and length */ 1077 if ((key == NULL) || (keylen == 0) || 1078 (text == NULL) || (textlen == 0) || (digest == NULL)) { 1079 /* can't do HMAC with empty key or text or digest */ 1080 return (-1); 1081 } 1082 len = sctp_get_hmac_digest_len(hmac_algo); 1083 if ((len == 0) || (digestlen != len)) 1084 return (-1); 1085 1086 /* compute the expected hash */ 1087 if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len) 1088 return (-1); 1089 1090 if (memcmp(digest, temp, digestlen) != 0) 1091 return (-1); 1092 else 1093 return (0); 1094 } 1095 1096 1097 /* 1098 * computes the requested HMAC using a key struct (which may be modified if 1099 * the keylen exceeds the HMAC block len). 1100 */ 1101 uint32_t 1102 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text, 1103 uint32_t textlen, uint8_t *digest) 1104 { 1105 uint32_t digestlen; 1106 uint32_t blocklen; 1107 sctp_hash_context_t ctx; 1108 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1109 1110 /* sanity check */ 1111 if ((key == NULL) || (text == NULL) || (textlen == 0) || 1112 (digest == NULL)) { 1113 /* can't do HMAC with empty key or text or digest store */ 1114 return (0); 1115 } 1116 /* validate the hmac algo and get the digest length */ 1117 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1118 if (digestlen == 0) 1119 return (0); 1120 1121 /* hash the key if it is longer than the hash block size */ 1122 blocklen = sctp_get_hmac_block_len(hmac_algo); 1123 if (key->keylen > blocklen) { 1124 sctp_hmac_init(hmac_algo, &ctx); 1125 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1126 sctp_hmac_final(hmac_algo, &ctx, temp); 1127 /* save the hashed key as the new key */ 1128 key->keylen = digestlen; 1129 memcpy(key->key, temp, key->keylen); 1130 } 1131 return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, 1132 digest)); 1133 } 1134 1135 /* mbuf version */ 1136 uint32_t 1137 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m, 1138 uint32_t m_offset, uint8_t *digest) 1139 { 1140 uint32_t digestlen; 1141 uint32_t blocklen; 1142 sctp_hash_context_t ctx; 1143 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1144 1145 /* sanity check */ 1146 if ((key == NULL) || (m == NULL) || (digest == NULL)) { 1147 /* can't do HMAC with empty key or text or digest store */ 1148 return (0); 1149 } 1150 /* validate the hmac algo and get the digest length */ 1151 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1152 if (digestlen == 0) 1153 return (0); 1154 1155 /* hash the key if it is longer than the hash block size */ 1156 blocklen = sctp_get_hmac_block_len(hmac_algo); 1157 if (key->keylen > blocklen) { 1158 sctp_hmac_init(hmac_algo, &ctx); 1159 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1160 sctp_hmac_final(hmac_algo, &ctx, temp); 1161 /* save the hashed key as the new key */ 1162 key->keylen = digestlen; 1163 memcpy(key->key, temp, key->keylen); 1164 } 1165 return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); 1166 } 1167 1168 int 1169 sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id) 1170 { 1171 int i; 1172 1173 if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) 1174 return (0); 1175 1176 for (i = 0; i < list->num_algo; i++) 1177 if (list->hmac[i] == id) 1178 return (1); 1179 1180 /* not in the list */ 1181 return (0); 1182 } 1183 1184 1185 /*- 1186 * clear any cached key(s) if they match the given key id on an association. 1187 * the cached key(s) will be recomputed and re-cached at next use. 1188 * ASSUMES TCB_LOCK is already held 1189 */ 1190 void 1191 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) 1192 { 1193 if (stcb == NULL) 1194 return; 1195 1196 if (keyid == stcb->asoc.authinfo.assoc_keyid) { 1197 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1198 stcb->asoc.authinfo.assoc_key = NULL; 1199 } 1200 if (keyid == stcb->asoc.authinfo.recv_keyid) { 1201 sctp_free_key(stcb->asoc.authinfo.recv_key); 1202 stcb->asoc.authinfo.recv_key = NULL; 1203 } 1204 } 1205 1206 /*- 1207 * clear any cached key(s) if they match the given key id for all assocs on 1208 * an endpoint. 1209 * ASSUMES INP_WLOCK is already held 1210 */ 1211 void 1212 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) 1213 { 1214 struct sctp_tcb *stcb; 1215 1216 if (inp == NULL) 1217 return; 1218 1219 /* clear the cached keys on all assocs on this instance */ 1220 LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { 1221 SCTP_TCB_LOCK(stcb); 1222 sctp_clear_cachedkeys(stcb, keyid); 1223 SCTP_TCB_UNLOCK(stcb); 1224 } 1225 } 1226 1227 /*- 1228 * delete a shared key from an association 1229 * ASSUMES TCB_LOCK is already held 1230 */ 1231 int 1232 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1233 { 1234 sctp_sharedkey_t *skey; 1235 1236 if (stcb == NULL) 1237 return (-1); 1238 1239 /* is the keyid the assoc active sending key */ 1240 if (keyid == stcb->asoc.authinfo.active_keyid) 1241 return (-1); 1242 1243 /* does the key exist? */ 1244 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1245 if (skey == NULL) 1246 return (-1); 1247 1248 /* are there other refcount holders on the key? */ 1249 if (skey->refcount > 1) 1250 return (-1); 1251 1252 /* remove it */ 1253 LIST_REMOVE(skey, next); 1254 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1255 1256 /* clear any cached keys */ 1257 sctp_clear_cachedkeys(stcb, keyid); 1258 return (0); 1259 } 1260 1261 /*- 1262 * deletes a shared key from the endpoint 1263 * ASSUMES INP_WLOCK is already held 1264 */ 1265 int 1266 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1267 { 1268 sctp_sharedkey_t *skey; 1269 1270 if (inp == NULL) 1271 return (-1); 1272 1273 /* is the keyid the active sending key on the endpoint */ 1274 if (keyid == inp->sctp_ep.default_keyid) 1275 return (-1); 1276 1277 /* does the key exist? */ 1278 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1279 if (skey == NULL) 1280 return (-1); 1281 1282 /* endpoint keys are not refcounted */ 1283 1284 /* remove it */ 1285 LIST_REMOVE(skey, next); 1286 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1287 1288 /* clear any cached keys */ 1289 sctp_clear_cachedkeys_ep(inp, keyid); 1290 return (0); 1291 } 1292 1293 /*- 1294 * set the active key on an association 1295 * ASSUMES TCB_LOCK is already held 1296 */ 1297 int 1298 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) 1299 { 1300 sctp_sharedkey_t *skey = NULL; 1301 1302 /* find the key on the assoc */ 1303 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1304 if (skey == NULL) { 1305 /* that key doesn't exist */ 1306 return (-1); 1307 } 1308 if ((skey->deactivated) && (skey->refcount > 1)) { 1309 /* can't reactivate a deactivated key with other refcounts */ 1310 return (-1); 1311 } 1312 /* set the (new) active key */ 1313 stcb->asoc.authinfo.active_keyid = keyid; 1314 /* reset the deactivated flag */ 1315 skey->deactivated = 0; 1316 1317 return (0); 1318 } 1319 1320 /*- 1321 * set the active key on an endpoint 1322 * ASSUMES INP_WLOCK is already held 1323 */ 1324 int 1325 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1326 { 1327 sctp_sharedkey_t *skey; 1328 1329 /* find the key */ 1330 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1331 if (skey == NULL) { 1332 /* that key doesn't exist */ 1333 return (-1); 1334 } 1335 inp->sctp_ep.default_keyid = keyid; 1336 return (0); 1337 } 1338 1339 /*- 1340 * deactivates a shared key from the association 1341 * ASSUMES INP_WLOCK is already held 1342 */ 1343 int 1344 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1345 { 1346 sctp_sharedkey_t *skey; 1347 1348 if (stcb == NULL) 1349 return (-1); 1350 1351 /* is the keyid the assoc active sending key */ 1352 if (keyid == stcb->asoc.authinfo.active_keyid) 1353 return (-1); 1354 1355 /* does the key exist? */ 1356 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1357 if (skey == NULL) 1358 return (-1); 1359 1360 /* are there other refcount holders on the key? */ 1361 if (skey->refcount == 1) { 1362 /* no other users, send a notification for this key */ 1363 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, 1364 SCTP_SO_LOCKED); 1365 } 1366 /* mark the key as deactivated */ 1367 skey->deactivated = 1; 1368 1369 return (0); 1370 } 1371 1372 /*- 1373 * deactivates a shared key from the endpoint 1374 * ASSUMES INP_WLOCK is already held 1375 */ 1376 int 1377 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1378 { 1379 sctp_sharedkey_t *skey; 1380 1381 if (inp == NULL) 1382 return (-1); 1383 1384 /* is the keyid the active sending key on the endpoint */ 1385 if (keyid == inp->sctp_ep.default_keyid) 1386 return (-1); 1387 1388 /* does the key exist? */ 1389 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1390 if (skey == NULL) 1391 return (-1); 1392 1393 /* endpoint keys are not refcounted */ 1394 1395 /* remove it */ 1396 LIST_REMOVE(skey, next); 1397 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1398 1399 return (0); 1400 } 1401 1402 /* 1403 * get local authentication parameters from cookie (from INIT-ACK) 1404 */ 1405 void 1406 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, 1407 uint32_t offset, uint32_t length) 1408 { 1409 struct sctp_paramhdr *phdr, tmp_param; 1410 uint16_t plen, ptype; 1411 uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; 1412 struct sctp_auth_random *p_random = NULL; 1413 uint16_t random_len = 0; 1414 uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; 1415 struct sctp_auth_hmac_algo *hmacs = NULL; 1416 uint16_t hmacs_len = 0; 1417 uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; 1418 struct sctp_auth_chunk_list *chunks = NULL; 1419 uint16_t num_chunks = 0; 1420 sctp_key_t *new_key; 1421 uint32_t keylen; 1422 1423 /* convert to upper bound */ 1424 length += offset; 1425 1426 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, 1427 sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); 1428 while (phdr != NULL) { 1429 ptype = ntohs(phdr->param_type); 1430 plen = ntohs(phdr->param_length); 1431 1432 if ((plen == 0) || (offset + plen > length)) 1433 break; 1434 1435 if (ptype == SCTP_RANDOM) { 1436 if (plen > sizeof(random_store)) 1437 break; 1438 phdr = sctp_get_next_param(m, offset, 1439 (struct sctp_paramhdr *)random_store, plen); 1440 if (phdr == NULL) 1441 return; 1442 /* save the random and length for the key */ 1443 p_random = (struct sctp_auth_random *)phdr; 1444 random_len = plen - sizeof(*p_random); 1445 } else if (ptype == SCTP_HMAC_LIST) { 1446 uint16_t num_hmacs; 1447 uint16_t i; 1448 1449 if (plen > sizeof(hmacs_store)) 1450 break; 1451 phdr = sctp_get_next_param(m, offset, 1452 (struct sctp_paramhdr *)hmacs_store, plen); 1453 if (phdr == NULL) 1454 return; 1455 /* save the hmacs list and num for the key */ 1456 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1457 hmacs_len = plen - sizeof(*hmacs); 1458 num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); 1459 if (stcb->asoc.local_hmacs != NULL) 1460 sctp_free_hmaclist(stcb->asoc.local_hmacs); 1461 stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); 1462 if (stcb->asoc.local_hmacs != NULL) { 1463 for (i = 0; i < num_hmacs; i++) { 1464 (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, 1465 ntohs(hmacs->hmac_ids[i])); 1466 } 1467 } 1468 } else if (ptype == SCTP_CHUNK_LIST) { 1469 int i; 1470 1471 if (plen > sizeof(chunks_store)) 1472 break; 1473 phdr = sctp_get_next_param(m, offset, 1474 (struct sctp_paramhdr *)chunks_store, plen); 1475 if (phdr == NULL) 1476 return; 1477 chunks = (struct sctp_auth_chunk_list *)phdr; 1478 num_chunks = plen - sizeof(*chunks); 1479 /* save chunks list and num for the key */ 1480 if (stcb->asoc.local_auth_chunks != NULL) 1481 sctp_clear_chunklist(stcb->asoc.local_auth_chunks); 1482 else 1483 stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); 1484 for (i = 0; i < num_chunks; i++) { 1485 (void)sctp_auth_add_chunk(chunks->chunk_types[i], 1486 stcb->asoc.local_auth_chunks); 1487 } 1488 } 1489 /* get next parameter */ 1490 offset += SCTP_SIZE32(plen); 1491 if (offset + sizeof(struct sctp_paramhdr) > length) 1492 break; 1493 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), 1494 (uint8_t *)&tmp_param); 1495 } 1496 /* concatenate the full random key */ 1497 keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; 1498 if (chunks != NULL) { 1499 keylen += sizeof(*chunks) + num_chunks; 1500 } 1501 new_key = sctp_alloc_key(keylen); 1502 if (new_key != NULL) { 1503 /* copy in the RANDOM */ 1504 if (p_random != NULL) { 1505 keylen = sizeof(*p_random) + random_len; 1506 memcpy(new_key->key, p_random, keylen); 1507 } 1508 /* append in the AUTH chunks */ 1509 if (chunks != NULL) { 1510 memcpy(new_key->key + keylen, chunks, 1511 sizeof(*chunks) + num_chunks); 1512 keylen += sizeof(*chunks) + num_chunks; 1513 } 1514 /* append in the HMACs */ 1515 if (hmacs != NULL) { 1516 memcpy(new_key->key + keylen, hmacs, 1517 sizeof(*hmacs) + hmacs_len); 1518 } 1519 } 1520 if (stcb->asoc.authinfo.random != NULL) 1521 sctp_free_key(stcb->asoc.authinfo.random); 1522 stcb->asoc.authinfo.random = new_key; 1523 stcb->asoc.authinfo.random_len = random_len; 1524 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); 1525 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); 1526 1527 /* negotiate what HMAC to use for the peer */ 1528 stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, 1529 stcb->asoc.local_hmacs); 1530 1531 /* copy defaults from the endpoint */ 1532 /* FIX ME: put in cookie? */ 1533 stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; 1534 /* copy out the shared key list (by reference) from the endpoint */ 1535 (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, 1536 &stcb->asoc.shared_keys); 1537 } 1538 1539 /* 1540 * compute and fill in the HMAC digest for a packet 1541 */ 1542 void 1543 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, 1544 struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) 1545 { 1546 uint32_t digestlen; 1547 sctp_sharedkey_t *skey; 1548 sctp_key_t *key; 1549 1550 if ((stcb == NULL) || (auth == NULL)) 1551 return; 1552 1553 /* zero the digest + chunk padding */ 1554 digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); 1555 memset(auth->hmac, 0, SCTP_SIZE32(digestlen)); 1556 1557 /* is the desired key cached? */ 1558 if ((keyid != stcb->asoc.authinfo.assoc_keyid) || 1559 (stcb->asoc.authinfo.assoc_key == NULL)) { 1560 if (stcb->asoc.authinfo.assoc_key != NULL) { 1561 /* free the old cached key */ 1562 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1563 } 1564 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1565 /* the only way skey is NULL is if null key id 0 is used */ 1566 if (skey != NULL) 1567 key = skey->key; 1568 else 1569 key = NULL; 1570 /* compute a new assoc key and cache it */ 1571 stcb->asoc.authinfo.assoc_key = 1572 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1573 stcb->asoc.authinfo.peer_random, key); 1574 stcb->asoc.authinfo.assoc_keyid = keyid; 1575 SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", 1576 stcb->asoc.authinfo.assoc_keyid); 1577 #ifdef SCTP_DEBUG 1578 if (SCTP_AUTH_DEBUG) 1579 sctp_print_key(stcb->asoc.authinfo.assoc_key, 1580 "Assoc Key"); 1581 #endif 1582 } 1583 /* set in the active key id */ 1584 auth->shared_key_id = htons(keyid); 1585 1586 /* compute and fill in the digest */ 1587 (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, 1588 m, auth_offset, auth->hmac); 1589 } 1590 1591 1592 static void 1593 sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) 1594 { 1595 struct mbuf *m_tmp; 1596 uint8_t *data; 1597 1598 /* sanity check */ 1599 if (m == NULL) 1600 return; 1601 1602 /* find the correct starting mbuf and offset (get start position) */ 1603 m_tmp = m; 1604 while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) { 1605 m_offset -= SCTP_BUF_LEN(m_tmp); 1606 m_tmp = SCTP_BUF_NEXT(m_tmp); 1607 } 1608 /* now use the rest of the mbuf chain */ 1609 while ((m_tmp != NULL) && (size > 0)) { 1610 data = mtod(m_tmp, uint8_t *)+m_offset; 1611 if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) { 1612 memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset); 1613 size -= SCTP_BUF_LEN(m_tmp) - m_offset; 1614 } else { 1615 memset(data, 0, size); 1616 size = 0; 1617 } 1618 /* clear the offset since it's only for the first mbuf */ 1619 m_offset = 0; 1620 m_tmp = SCTP_BUF_NEXT(m_tmp); 1621 } 1622 } 1623 1624 /*- 1625 * process the incoming Authentication chunk 1626 * return codes: 1627 * -1 on any authentication error 1628 * 0 on authentication verification 1629 */ 1630 int 1631 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, 1632 struct mbuf *m, uint32_t offset) 1633 { 1634 uint16_t chunklen; 1635 uint16_t shared_key_id; 1636 uint16_t hmac_id; 1637 sctp_sharedkey_t *skey; 1638 uint32_t digestlen; 1639 uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1640 uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1641 1642 /* auth is checked for NULL by caller */ 1643 chunklen = ntohs(auth->ch.chunk_length); 1644 if (chunklen < sizeof(*auth)) { 1645 SCTP_STAT_INCR(sctps_recvauthfailed); 1646 return (-1); 1647 } 1648 SCTP_STAT_INCR(sctps_recvauth); 1649 1650 /* get the auth params */ 1651 shared_key_id = ntohs(auth->shared_key_id); 1652 hmac_id = ntohs(auth->hmac_id); 1653 SCTPDBG(SCTP_DEBUG_AUTH1, 1654 "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", 1655 shared_key_id, hmac_id); 1656 1657 /* is the indicated HMAC supported? */ 1658 if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { 1659 struct mbuf *op_err; 1660 struct sctp_error_auth_invalid_hmac *cause; 1661 1662 SCTP_STAT_INCR(sctps_recvivalhmacid); 1663 SCTPDBG(SCTP_DEBUG_AUTH1, 1664 "SCTP Auth: unsupported HMAC id %u\n", 1665 hmac_id); 1666 /* 1667 * report this in an Error Chunk: Unsupported HMAC 1668 * Identifier 1669 */ 1670 op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac), 1671 0, M_NOWAIT, 1, MT_HEADER); 1672 if (op_err != NULL) { 1673 /* pre-reserve some space */ 1674 SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr)); 1675 /* fill in the error */ 1676 cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *); 1677 cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); 1678 cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac)); 1679 cause->hmac_id = ntohs(hmac_id); 1680 SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac); 1681 /* queue it */ 1682 sctp_queue_op_err(stcb, op_err); 1683 } 1684 return (-1); 1685 } 1686 /* get the indicated shared key, if available */ 1687 if ((stcb->asoc.authinfo.recv_key == NULL) || 1688 (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { 1689 /* find the shared key on the assoc first */ 1690 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, 1691 shared_key_id); 1692 /* if the shared key isn't found, discard the chunk */ 1693 if (skey == NULL) { 1694 SCTP_STAT_INCR(sctps_recvivalkeyid); 1695 SCTPDBG(SCTP_DEBUG_AUTH1, 1696 "SCTP Auth: unknown key id %u\n", 1697 shared_key_id); 1698 return (-1); 1699 } 1700 /* generate a notification if this is a new key id */ 1701 if (stcb->asoc.authinfo.recv_keyid != shared_key_id) 1702 /* 1703 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, 1704 * shared_key_id, (void 1705 * *)stcb->asoc.authinfo.recv_keyid); 1706 */ 1707 sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, 1708 shared_key_id, stcb->asoc.authinfo.recv_keyid, 1709 SCTP_SO_NOT_LOCKED); 1710 /* compute a new recv assoc key and cache it */ 1711 if (stcb->asoc.authinfo.recv_key != NULL) 1712 sctp_free_key(stcb->asoc.authinfo.recv_key); 1713 stcb->asoc.authinfo.recv_key = 1714 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1715 stcb->asoc.authinfo.peer_random, skey->key); 1716 stcb->asoc.authinfo.recv_keyid = shared_key_id; 1717 #ifdef SCTP_DEBUG 1718 if (SCTP_AUTH_DEBUG) 1719 sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); 1720 #endif 1721 } 1722 /* validate the digest length */ 1723 digestlen = sctp_get_hmac_digest_len(hmac_id); 1724 if (chunklen < (sizeof(*auth) + digestlen)) { 1725 /* invalid digest length */ 1726 SCTP_STAT_INCR(sctps_recvauthfailed); 1727 SCTPDBG(SCTP_DEBUG_AUTH1, 1728 "SCTP Auth: chunk too short for HMAC\n"); 1729 return (-1); 1730 } 1731 /* save a copy of the digest, zero the pseudo header, and validate */ 1732 memcpy(digest, auth->hmac, digestlen); 1733 sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); 1734 (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, 1735 m, offset, computed_digest); 1736 1737 /* compare the computed digest with the one in the AUTH chunk */ 1738 if (memcmp(digest, computed_digest, digestlen) != 0) { 1739 SCTP_STAT_INCR(sctps_recvauthfailed); 1740 SCTPDBG(SCTP_DEBUG_AUTH1, 1741 "SCTP Auth: HMAC digest check failed\n"); 1742 return (-1); 1743 } 1744 return (0); 1745 } 1746 1747 /* 1748 * Generate NOTIFICATION 1749 */ 1750 void 1751 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, 1752 uint16_t keyid, uint16_t alt_keyid, int so_locked 1753 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 1754 SCTP_UNUSED 1755 #endif 1756 ) 1757 { 1758 struct mbuf *m_notify; 1759 struct sctp_authkey_event *auth; 1760 struct sctp_queued_to_read *control; 1761 1762 if ((stcb == NULL) || 1763 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || 1764 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || 1765 (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) 1766 ) { 1767 /* If the socket is gone we are out of here */ 1768 return; 1769 } 1770 if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) 1771 /* event not enabled */ 1772 return; 1773 1774 m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), 1775 0, M_NOWAIT, 1, MT_HEADER); 1776 if (m_notify == NULL) 1777 /* no space left */ 1778 return; 1779 1780 SCTP_BUF_LEN(m_notify) = 0; 1781 auth = mtod(m_notify, struct sctp_authkey_event *); 1782 memset(auth, 0, sizeof(struct sctp_authkey_event)); 1783 auth->auth_type = SCTP_AUTHENTICATION_EVENT; 1784 auth->auth_flags = 0; 1785 auth->auth_length = sizeof(*auth); 1786 auth->auth_keynumber = keyid; 1787 auth->auth_altkeynumber = alt_keyid; 1788 auth->auth_indication = indication; 1789 auth->auth_assoc_id = sctp_get_associd(stcb); 1790 1791 SCTP_BUF_LEN(m_notify) = sizeof(*auth); 1792 SCTP_BUF_NEXT(m_notify) = NULL; 1793 1794 /* append to socket */ 1795 control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 1796 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); 1797 if (control == NULL) { 1798 /* no memory */ 1799 sctp_m_freem(m_notify); 1800 return; 1801 } 1802 control->length = SCTP_BUF_LEN(m_notify); 1803 control->spec_flags = M_NOTIFICATION; 1804 /* not that we need this */ 1805 control->tail_mbuf = m_notify; 1806 sctp_add_to_readq(stcb->sctp_ep, stcb, control, 1807 &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); 1808 } 1809 1810 1811 /*- 1812 * validates the AUTHentication related parameters in an INIT/INIT-ACK 1813 * Note: currently only used for INIT as INIT-ACK is handled inline 1814 * with sctp_load_addresses_from_init() 1815 */ 1816 int 1817 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) 1818 { 1819 struct sctp_paramhdr *phdr, param_buf; 1820 uint16_t ptype, plen; 1821 int peer_supports_asconf = 0; 1822 int peer_supports_auth = 0; 1823 int got_random = 0, got_hmacs = 0, got_chklist = 0; 1824 uint8_t saw_asconf = 0; 1825 uint8_t saw_asconf_ack = 0; 1826 1827 /* go through each of the params. */ 1828 phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); 1829 while (phdr) { 1830 ptype = ntohs(phdr->param_type); 1831 plen = ntohs(phdr->param_length); 1832 1833 if (offset + plen > limit) { 1834 break; 1835 } 1836 if (plen < sizeof(struct sctp_paramhdr)) { 1837 break; 1838 } 1839 if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { 1840 /* A supported extension chunk */ 1841 struct sctp_supported_chunk_types_param *pr_supported; 1842 uint8_t local_store[SCTP_SMALL_CHUNK_STORE]; 1843 int num_ent, i; 1844 1845 if (plen > sizeof(local_store)) { 1846 break; 1847 } 1848 phdr = sctp_get_next_param(m, offset, 1849 (struct sctp_paramhdr *)&local_store, 1850 plen); 1851 if (phdr == NULL) { 1852 return (-1); 1853 } 1854 pr_supported = (struct sctp_supported_chunk_types_param *)phdr; 1855 num_ent = plen - sizeof(struct sctp_paramhdr); 1856 for (i = 0; i < num_ent; i++) { 1857 switch (pr_supported->chunk_types[i]) { 1858 case SCTP_ASCONF: 1859 case SCTP_ASCONF_ACK: 1860 peer_supports_asconf = 1; 1861 break; 1862 default: 1863 /* one we don't care about */ 1864 break; 1865 } 1866 } 1867 } else if (ptype == SCTP_RANDOM) { 1868 /* enforce the random length */ 1869 if (plen != (sizeof(struct sctp_auth_random) + 1870 SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { 1871 SCTPDBG(SCTP_DEBUG_AUTH1, 1872 "SCTP: invalid RANDOM len\n"); 1873 return (-1); 1874 } 1875 got_random = 1; 1876 } else if (ptype == SCTP_HMAC_LIST) { 1877 struct sctp_auth_hmac_algo *hmacs; 1878 uint8_t store[SCTP_PARAM_BUFFER_SIZE]; 1879 int num_hmacs; 1880 1881 if (plen > sizeof(store)) { 1882 break; 1883 } 1884 phdr = sctp_get_next_param(m, offset, 1885 (struct sctp_paramhdr *)store, 1886 plen); 1887 if (phdr == NULL) { 1888 return (-1); 1889 } 1890 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1891 num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]); 1892 /* validate the hmac list */ 1893 if (sctp_verify_hmac_param(hmacs, num_hmacs)) { 1894 SCTPDBG(SCTP_DEBUG_AUTH1, 1895 "SCTP: invalid HMAC param\n"); 1896 return (-1); 1897 } 1898 got_hmacs = 1; 1899 } else if (ptype == SCTP_CHUNK_LIST) { 1900 struct sctp_auth_chunk_list *chunks; 1901 uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; 1902 int i, num_chunks; 1903 1904 if (plen > sizeof(chunks_store)) { 1905 break; 1906 } 1907 phdr = sctp_get_next_param(m, offset, 1908 (struct sctp_paramhdr *)chunks_store, 1909 plen); 1910 if (phdr == NULL) { 1911 return (-1); 1912 } 1913 /*- 1914 * Flip through the list and mark that the 1915 * peer supports asconf/asconf_ack. 1916 */ 1917 chunks = (struct sctp_auth_chunk_list *)phdr; 1918 num_chunks = plen - sizeof(*chunks); 1919 for (i = 0; i < num_chunks; i++) { 1920 /* record asconf/asconf-ack if listed */ 1921 if (chunks->chunk_types[i] == SCTP_ASCONF) 1922 saw_asconf = 1; 1923 if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) 1924 saw_asconf_ack = 1; 1925 1926 } 1927 if (num_chunks) 1928 got_chklist = 1; 1929 } 1930 offset += SCTP_SIZE32(plen); 1931 if (offset >= limit) { 1932 break; 1933 } 1934 phdr = sctp_get_next_param(m, offset, ¶m_buf, 1935 sizeof(param_buf)); 1936 } 1937 /* validate authentication required parameters */ 1938 if (got_random && got_hmacs) { 1939 peer_supports_auth = 1; 1940 } else { 1941 peer_supports_auth = 0; 1942 } 1943 if (!peer_supports_auth && got_chklist) { 1944 SCTPDBG(SCTP_DEBUG_AUTH1, 1945 "SCTP: peer sent chunk list w/o AUTH\n"); 1946 return (-1); 1947 } 1948 if (peer_supports_asconf && !peer_supports_auth) { 1949 SCTPDBG(SCTP_DEBUG_AUTH1, 1950 "SCTP: peer supports ASCONF but not AUTH\n"); 1951 return (-1); 1952 } else if ((peer_supports_asconf) && (peer_supports_auth) && 1953 ((saw_asconf == 0) || (saw_asconf_ack == 0))) { 1954 return (-2); 1955 } 1956 return (0); 1957 } 1958 1959 void 1960 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) 1961 { 1962 uint16_t chunks_len = 0; 1963 uint16_t hmacs_len = 0; 1964 uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; 1965 sctp_key_t *new_key; 1966 uint16_t keylen; 1967 1968 /* initialize hmac list from endpoint */ 1969 stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); 1970 if (stcb->asoc.local_hmacs != NULL) { 1971 hmacs_len = stcb->asoc.local_hmacs->num_algo * 1972 sizeof(stcb->asoc.local_hmacs->hmac[0]); 1973 } 1974 /* initialize auth chunks list from endpoint */ 1975 stcb->asoc.local_auth_chunks = 1976 sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); 1977 if (stcb->asoc.local_auth_chunks != NULL) { 1978 int i; 1979 1980 for (i = 0; i < 256; i++) { 1981 if (stcb->asoc.local_auth_chunks->chunks[i]) 1982 chunks_len++; 1983 } 1984 } 1985 /* copy defaults from the endpoint */ 1986 stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; 1987 1988 /* copy out the shared key list (by reference) from the endpoint */ 1989 (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, 1990 &stcb->asoc.shared_keys); 1991 1992 /* now set the concatenated key (random + chunks + hmacs) */ 1993 /* key includes parameter headers */ 1994 keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + 1995 hmacs_len; 1996 new_key = sctp_alloc_key(keylen); 1997 if (new_key != NULL) { 1998 struct sctp_paramhdr *ph; 1999 int plen; 2000 2001 /* generate and copy in the RANDOM */ 2002 ph = (struct sctp_paramhdr *)new_key->key; 2003 ph->param_type = htons(SCTP_RANDOM); 2004 plen = sizeof(*ph) + random_len; 2005 ph->param_length = htons(plen); 2006 SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); 2007 keylen = plen; 2008 2009 /* append in the AUTH chunks */ 2010 /* NOTE: currently we always have chunks to list */ 2011 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2012 ph->param_type = htons(SCTP_CHUNK_LIST); 2013 plen = sizeof(*ph) + chunks_len; 2014 ph->param_length = htons(plen); 2015 keylen += sizeof(*ph); 2016 if (stcb->asoc.local_auth_chunks) { 2017 int i; 2018 2019 for (i = 0; i < 256; i++) { 2020 if (stcb->asoc.local_auth_chunks->chunks[i]) 2021 new_key->key[keylen++] = i; 2022 } 2023 } 2024 /* append in the HMACs */ 2025 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2026 ph->param_type = htons(SCTP_HMAC_LIST); 2027 plen = sizeof(*ph) + hmacs_len; 2028 ph->param_length = htons(plen); 2029 keylen += sizeof(*ph); 2030 (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, 2031 new_key->key + keylen); 2032 } 2033 if (stcb->asoc.authinfo.random != NULL) 2034 sctp_free_key(stcb->asoc.authinfo.random); 2035 stcb->asoc.authinfo.random = new_key; 2036 stcb->asoc.authinfo.random_len = random_len; 2037 } 2038