1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/ktls.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/protosw.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_private.h> 65 #include <net/if_vlan_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/ethernet.h> 68 #include <net/netisr.h> 69 #include <net/pfil.h> 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/rss_config.h> 73 #include <net/vnet.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_kdtrace.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/ip.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_rss.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/ip_options.h> 86 87 #include <netinet/udp.h> 88 #include <netinet/udp_var.h> 89 90 #if defined(SCTP) || defined(SCTP_SUPPORT) 91 #include <netinet/sctp.h> 92 #include <netinet/sctp_crc32.h> 93 #endif 94 95 #include <netipsec/ipsec_support.h> 96 97 #include <machine/in_cksum.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #ifdef MBUF_STRESS_TEST 102 static int mbuf_frag_size = 0; 103 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 104 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 105 #endif 106 107 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 108 109 extern int in_mcast_loop; 110 111 static inline int 112 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 113 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 114 { 115 struct m_tag *fwd_tag = NULL; 116 struct mbuf *m; 117 struct in_addr odst; 118 struct ip *ip; 119 int pflags = PFIL_OUT; 120 121 m = *mp; 122 ip = mtod(m, struct ip *); 123 124 /* Run through list of hooks for output packets. */ 125 odst.s_addr = ip->ip_dst.s_addr; 126 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 127 case PFIL_DROPPED: 128 *error = EACCES; 129 /* FALLTHROUGH */ 130 case PFIL_CONSUMED: 131 return 1; /* Finished */ 132 case PFIL_PASS: 133 *error = 0; 134 } 135 m = *mp; 136 ip = mtod(m, struct ip *); 137 138 /* See if destination IP address was changed by packet filter. */ 139 if (odst.s_addr != ip->ip_dst.s_addr) { 140 m->m_flags |= M_SKIP_FIREWALL; 141 /* If destination is now ourself drop to ip_input(). */ 142 if (in_localip(ip->ip_dst)) { 143 m->m_flags |= M_FASTFWD_OURS; 144 if (m->m_pkthdr.rcvif == NULL) 145 m->m_pkthdr.rcvif = V_loif; 146 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 147 m->m_pkthdr.csum_flags |= 148 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 149 m->m_pkthdr.csum_data = 0xffff; 150 } 151 m->m_pkthdr.csum_flags |= 152 CSUM_IP_CHECKED | CSUM_IP_VALID; 153 #if defined(SCTP) || defined(SCTP_SUPPORT) 154 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 155 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 156 #endif 157 *error = netisr_queue(NETISR_IP, m); 158 return 1; /* Finished */ 159 } 160 161 bzero(dst, sizeof(*dst)); 162 dst->sin_family = AF_INET; 163 dst->sin_len = sizeof(*dst); 164 dst->sin_addr = ip->ip_dst; 165 166 return -1; /* Reloop */ 167 } 168 /* See if fib was changed by packet filter. */ 169 if ((*fibnum) != M_GETFIB(m)) { 170 m->m_flags |= M_SKIP_FIREWALL; 171 *fibnum = M_GETFIB(m); 172 return -1; /* Reloop for FIB change */ 173 } 174 175 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 176 if (m->m_flags & M_FASTFWD_OURS) { 177 if (m->m_pkthdr.rcvif == NULL) 178 m->m_pkthdr.rcvif = V_loif; 179 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 180 m->m_pkthdr.csum_flags |= 181 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 182 m->m_pkthdr.csum_data = 0xffff; 183 } 184 #if defined(SCTP) || defined(SCTP_SUPPORT) 185 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 186 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 187 #endif 188 m->m_pkthdr.csum_flags |= 189 CSUM_IP_CHECKED | CSUM_IP_VALID; 190 191 *error = netisr_queue(NETISR_IP, m); 192 return 1; /* Finished */ 193 } 194 /* Or forward to some other address? */ 195 if ((m->m_flags & M_IP_NEXTHOP) && 196 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 197 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 198 m->m_flags |= M_SKIP_FIREWALL; 199 m->m_flags &= ~M_IP_NEXTHOP; 200 m_tag_delete(m, fwd_tag); 201 202 return -1; /* Reloop for CHANGE of dst */ 203 } 204 205 return 0; 206 } 207 208 static int 209 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 210 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 211 { 212 #ifdef KERN_TLS 213 struct ktls_session *tls = NULL; 214 #endif 215 struct m_snd_tag *mst; 216 int error; 217 218 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 219 mst = NULL; 220 221 #ifdef KERN_TLS 222 /* 223 * If this is an unencrypted TLS record, save a reference to 224 * the record. This local reference is used to call 225 * ktls_output_eagain after the mbuf has been freed (thus 226 * dropping the mbuf's reference) in if_output. 227 */ 228 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 229 tls = ktls_hold(m->m_next->m_epg_tls); 230 mst = tls->snd_tag; 231 232 /* 233 * If a TLS session doesn't have a valid tag, it must 234 * have had an earlier ifp mismatch, so drop this 235 * packet. 236 */ 237 if (mst == NULL) { 238 m_freem(m); 239 error = EAGAIN; 240 goto done; 241 } 242 /* 243 * Always stamp tags that include NIC ktls. 244 */ 245 stamp_tag = true; 246 } 247 #endif 248 #ifdef RATELIMIT 249 if (inp != NULL && mst == NULL) { 250 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 251 (inp->inp_snd_tag != NULL && 252 inp->inp_snd_tag->ifp != ifp)) 253 in_pcboutput_txrtlmt(inp, ifp, m); 254 255 if (inp->inp_snd_tag != NULL) 256 mst = inp->inp_snd_tag; 257 } 258 #endif 259 if (stamp_tag && mst != NULL) { 260 KASSERT(m->m_pkthdr.rcvif == NULL, 261 ("trying to add a send tag to a forwarded packet")); 262 if (mst->ifp != ifp) { 263 m_freem(m); 264 error = EAGAIN; 265 goto done; 266 } 267 268 /* stamp send tag on mbuf */ 269 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 270 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 271 } 272 273 error = (*ifp->if_output)(ifp, m, gw, ro); 274 275 done: 276 /* Check for route change invalidating send tags. */ 277 #ifdef KERN_TLS 278 if (tls != NULL) { 279 if (error == EAGAIN) 280 error = ktls_output_eagain(inp, tls); 281 ktls_free(tls); 282 } 283 #endif 284 #ifdef RATELIMIT 285 if (error == EAGAIN) 286 in_pcboutput_eagain(inp); 287 #endif 288 return (error); 289 } 290 291 /* rte<>ro_flags translation */ 292 static inline void 293 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 294 { 295 int nh_flags = nh->nh_flags; 296 297 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 298 299 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 300 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 301 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 302 } 303 304 /* 305 * IP output. The packet in mbuf chain m contains a skeletal IP 306 * header (with len, off, ttl, proto, tos, src, dst). 307 * The mbuf chain containing the packet will be freed. 308 * The mbuf opt, if present, will not be freed. 309 * If route ro is present and has ro_rt initialized, route lookup would be 310 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 311 * then result of route lookup is stored in ro->ro_rt. 312 * 313 * In the IP forwarding case, the packet will arrive with options already 314 * inserted, so must have a NULL opt pointer. 315 */ 316 int 317 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 318 struct ip_moptions *imo, struct inpcb *inp) 319 { 320 struct ip *ip; 321 struct ifnet *ifp = NULL; /* keep compiler happy */ 322 struct mbuf *m0; 323 int hlen = sizeof (struct ip); 324 int mtu = 0; 325 int error = 0; 326 int vlan_pcp = -1; 327 struct sockaddr_in *dst; 328 const struct sockaddr *gw; 329 struct in_ifaddr *ia = NULL; 330 struct in_addr src; 331 int isbroadcast; 332 uint16_t ip_len, ip_off; 333 struct route iproute; 334 uint32_t fibnum; 335 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 336 int no_route_but_check_spd = 0; 337 #endif 338 339 M_ASSERTPKTHDR(m); 340 NET_EPOCH_ASSERT(); 341 342 if (inp != NULL) { 343 INP_LOCK_ASSERT(inp); 344 M_SETFIB(m, inp->inp_inc.inc_fibnum); 345 if ((flags & IP_NODEFAULTFLOWID) == 0) { 346 m->m_pkthdr.flowid = inp->inp_flowid; 347 M_HASHTYPE_SET(m, inp->inp_flowtype); 348 } 349 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 350 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 351 INP_2PCP_SHIFT; 352 #ifdef NUMA 353 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 354 #endif 355 } 356 357 if (opt) { 358 int len = 0; 359 m = ip_insertoptions(m, opt, &len); 360 if (len != 0) 361 hlen = len; /* ip->ip_hl is updated above */ 362 } 363 ip = mtod(m, struct ip *); 364 ip_len = ntohs(ip->ip_len); 365 ip_off = ntohs(ip->ip_off); 366 367 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 368 ip->ip_v = IPVERSION; 369 ip->ip_hl = hlen >> 2; 370 ip_fillid(ip); 371 } else { 372 /* Header already set, fetch hlen from there */ 373 hlen = ip->ip_hl << 2; 374 } 375 if ((flags & IP_FORWARDING) == 0) 376 IPSTAT_INC(ips_localout); 377 378 /* 379 * dst/gw handling: 380 * 381 * gw is readonly but can point either to dst OR rt_gateway, 382 * therefore we need restore gw if we're redoing lookup. 383 */ 384 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 385 if (ro == NULL) { 386 ro = &iproute; 387 bzero(ro, sizeof (*ro)); 388 } 389 dst = (struct sockaddr_in *)&ro->ro_dst; 390 if (ro->ro_nh == NULL) { 391 dst->sin_family = AF_INET; 392 dst->sin_len = sizeof(*dst); 393 dst->sin_addr = ip->ip_dst; 394 } 395 gw = (const struct sockaddr *)dst; 396 again: 397 /* 398 * Validate route against routing table additions; 399 * a better/more specific route might have been added. 400 */ 401 if (inp != NULL && ro->ro_nh != NULL) 402 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 403 /* 404 * If there is a cached route, 405 * check that it is to the same destination 406 * and is still up. If not, free it and try again. 407 * The address family should also be checked in case of sharing the 408 * cache with IPv6. 409 * Also check whether routing cache needs invalidation. 410 */ 411 if (ro->ro_nh != NULL && 412 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 413 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 414 RO_INVALIDATE_CACHE(ro); 415 ia = NULL; 416 /* 417 * If routing to interface only, short circuit routing lookup. 418 * The use of an all-ones broadcast address implies this; an 419 * interface is specified by the broadcast address of an interface, 420 * or the destination address of a ptp interface. 421 */ 422 if (flags & IP_SENDONES) { 423 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 424 M_GETFIB(m)))) == NULL && 425 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 426 M_GETFIB(m)))) == NULL) { 427 IPSTAT_INC(ips_noroute); 428 error = ENETUNREACH; 429 goto bad; 430 } 431 ip->ip_dst.s_addr = INADDR_BROADCAST; 432 dst->sin_addr = ip->ip_dst; 433 ifp = ia->ia_ifp; 434 mtu = ifp->if_mtu; 435 ip->ip_ttl = 1; 436 isbroadcast = 1; 437 src = IA_SIN(ia)->sin_addr; 438 } else if (flags & IP_ROUTETOIF) { 439 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 440 M_GETFIB(m)))) == NULL && 441 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 442 M_GETFIB(m)))) == NULL) { 443 IPSTAT_INC(ips_noroute); 444 error = ENETUNREACH; 445 goto bad; 446 } 447 ifp = ia->ia_ifp; 448 mtu = ifp->if_mtu; 449 ip->ip_ttl = 1; 450 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 451 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 452 src = IA_SIN(ia)->sin_addr; 453 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 454 imo != NULL && imo->imo_multicast_ifp != NULL) { 455 /* 456 * Bypass the normal routing lookup for multicast 457 * packets if the interface is specified. 458 */ 459 ifp = imo->imo_multicast_ifp; 460 mtu = ifp->if_mtu; 461 IFP_TO_IA(ifp, ia); 462 isbroadcast = 0; /* fool gcc */ 463 /* Interface may have no addresses. */ 464 if (ia != NULL) 465 src = IA_SIN(ia)->sin_addr; 466 else 467 src.s_addr = INADDR_ANY; 468 } else if (ro != &iproute) { 469 if (ro->ro_nh == NULL) { 470 /* 471 * We want to do any cloning requested by the link 472 * layer, as this is probably required in all cases 473 * for correct operation (as it is for ARP). 474 */ 475 uint32_t flowid; 476 flowid = m->m_pkthdr.flowid; 477 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 478 NHR_REF, flowid); 479 480 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 481 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 482 /* 483 * There is no route for this packet, but it is 484 * possible that a matching SPD entry exists. 485 */ 486 no_route_but_check_spd = 1; 487 goto sendit; 488 #endif 489 IPSTAT_INC(ips_noroute); 490 error = EHOSTUNREACH; 491 goto bad; 492 } 493 } 494 struct nhop_object *nh = ro->ro_nh; 495 496 ia = ifatoia(nh->nh_ifa); 497 ifp = nh->nh_ifp; 498 counter_u64_add(nh->nh_pksent, 1); 499 rt_update_ro_flags(ro, nh); 500 if (nh->nh_flags & NHF_GATEWAY) 501 gw = &nh->gw_sa; 502 if (nh->nh_flags & NHF_HOST) 503 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 504 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) 505 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); 506 else 507 isbroadcast = 0; 508 mtu = nh->nh_mtu; 509 src = IA_SIN(ia)->sin_addr; 510 } else { 511 struct nhop_object *nh; 512 513 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE, 514 m->m_pkthdr.flowid); 515 if (nh == NULL) { 516 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 517 /* 518 * There is no route for this packet, but it is 519 * possible that a matching SPD entry exists. 520 */ 521 no_route_but_check_spd = 1; 522 goto sendit; 523 #endif 524 IPSTAT_INC(ips_noroute); 525 error = EHOSTUNREACH; 526 goto bad; 527 } 528 ifp = nh->nh_ifp; 529 mtu = nh->nh_mtu; 530 rt_update_ro_flags(ro, nh); 531 if (nh->nh_flags & NHF_GATEWAY) 532 gw = &nh->gw_sa; 533 ia = ifatoia(nh->nh_ifa); 534 src = IA_SIN(ia)->sin_addr; 535 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 536 (NHF_HOST | NHF_BROADCAST)) || 537 ((ifp->if_flags & IFF_BROADCAST) && 538 (gw->sa_family == AF_INET) && 539 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); 540 } 541 542 /* Catch a possible divide by zero later. */ 543 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 544 __func__, mtu, ro, 545 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 546 547 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 548 m->m_flags |= M_MCAST; 549 /* 550 * IP destination address is multicast. Make sure "gw" 551 * still points to the address in "ro". (It may have been 552 * changed to point to a gateway address, above.) 553 */ 554 gw = (const struct sockaddr *)dst; 555 /* 556 * See if the caller provided any multicast options 557 */ 558 if (imo != NULL) { 559 ip->ip_ttl = imo->imo_multicast_ttl; 560 if (imo->imo_multicast_vif != -1) 561 ip->ip_src.s_addr = 562 ip_mcast_src ? 563 ip_mcast_src(imo->imo_multicast_vif) : 564 INADDR_ANY; 565 } else 566 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 567 /* 568 * Confirm that the outgoing interface supports multicast. 569 */ 570 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 571 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 572 IPSTAT_INC(ips_noroute); 573 error = ENETUNREACH; 574 goto bad; 575 } 576 } 577 /* 578 * If source address not specified yet, use address 579 * of outgoing interface. 580 */ 581 if (ip->ip_src.s_addr == INADDR_ANY) 582 ip->ip_src = src; 583 584 if ((imo == NULL && in_mcast_loop) || 585 (imo && imo->imo_multicast_loop)) { 586 /* 587 * Loop back multicast datagram if not expressly 588 * forbidden to do so, even if we are not a member 589 * of the group; ip_input() will filter it later, 590 * thus deferring a hash lookup and mutex acquisition 591 * at the expense of a cheap copy using m_copym(). 592 */ 593 ip_mloopback(ifp, m, hlen); 594 } else { 595 /* 596 * If we are acting as a multicast router, perform 597 * multicast forwarding as if the packet had just 598 * arrived on the interface to which we are about 599 * to send. The multicast forwarding function 600 * recursively calls this function, using the 601 * IP_FORWARDING flag to prevent infinite recursion. 602 * 603 * Multicasts that are looped back by ip_mloopback(), 604 * above, will be forwarded by the ip_input() routine, 605 * if necessary. 606 */ 607 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 608 /* 609 * If rsvp daemon is not running, do not 610 * set ip_moptions. This ensures that the packet 611 * is multicast and not just sent down one link 612 * as prescribed by rsvpd. 613 */ 614 if (!V_rsvp_on) 615 imo = NULL; 616 if (ip_mforward && 617 ip_mforward(ip, ifp, m, imo) != 0) { 618 m_freem(m); 619 goto done; 620 } 621 } 622 } 623 624 /* 625 * Multicasts with a time-to-live of zero may be looped- 626 * back, above, but must not be transmitted on a network. 627 * Also, multicasts addressed to the loopback interface 628 * are not sent -- the above call to ip_mloopback() will 629 * loop back a copy. ip_input() will drop the copy if 630 * this host does not belong to the destination group on 631 * the loopback interface. 632 */ 633 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 634 m_freem(m); 635 goto done; 636 } 637 638 goto sendit; 639 } 640 641 /* 642 * If the source address is not specified yet, use the address 643 * of the outoing interface. 644 */ 645 if (ip->ip_src.s_addr == INADDR_ANY) 646 ip->ip_src = src; 647 648 /* 649 * Look for broadcast address and 650 * verify user is allowed to send 651 * such a packet. 652 */ 653 if (isbroadcast) { 654 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 655 error = EADDRNOTAVAIL; 656 goto bad; 657 } 658 if ((flags & IP_ALLOWBROADCAST) == 0) { 659 error = EACCES; 660 goto bad; 661 } 662 /* don't allow broadcast messages to be fragmented */ 663 if (ip_len > mtu) { 664 error = EMSGSIZE; 665 goto bad; 666 } 667 m->m_flags |= M_BCAST; 668 } else { 669 m->m_flags &= ~M_BCAST; 670 } 671 672 sendit: 673 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 674 if (IPSEC_ENABLED(ipv4)) { 675 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 676 if (error == EINPROGRESS) 677 error = 0; 678 goto done; 679 } 680 } 681 /* 682 * Check if there was a route for this packet; return error if not. 683 */ 684 if (no_route_but_check_spd) { 685 IPSTAT_INC(ips_noroute); 686 error = EHOSTUNREACH; 687 goto bad; 688 } 689 /* Update variables that are affected by ipsec4_output(). */ 690 ip = mtod(m, struct ip *); 691 hlen = ip->ip_hl << 2; 692 #endif /* IPSEC */ 693 694 /* Jump over all PFIL processing if hooks are not active. */ 695 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 696 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 697 &error)) { 698 case 1: /* Finished */ 699 goto done; 700 701 case 0: /* Continue normally */ 702 ip = mtod(m, struct ip *); 703 break; 704 705 case -1: /* Need to try again */ 706 /* Reset everything for a new round */ 707 if (ro != NULL) { 708 RO_NHFREE(ro); 709 ro->ro_prepend = NULL; 710 } 711 gw = (const struct sockaddr *)dst; 712 ip = mtod(m, struct ip *); 713 goto again; 714 } 715 } 716 717 if (vlan_pcp > -1) 718 EVL_APPLY_PRI(m, vlan_pcp); 719 720 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 721 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 722 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 723 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 724 IPSTAT_INC(ips_badaddr); 725 error = EADDRNOTAVAIL; 726 goto bad; 727 } 728 } 729 730 /* Ensure the packet data is mapped if the interface requires it. */ 731 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 732 m = mb_unmapped_to_ext(m); 733 if (m == NULL) { 734 IPSTAT_INC(ips_odropped); 735 error = ENOBUFS; 736 goto bad; 737 } 738 } 739 740 m->m_pkthdr.csum_flags |= CSUM_IP; 741 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 742 in_delayed_cksum(m); 743 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 744 } 745 #if defined(SCTP) || defined(SCTP_SUPPORT) 746 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 747 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 748 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 749 } 750 #endif 751 752 /* 753 * If small enough for interface, or the interface will take 754 * care of the fragmentation for us, we can just send directly. 755 * Note that if_vxlan could have requested TSO even though the outer 756 * frame is UDP. It is correct to not fragment such datagrams and 757 * instead just pass them on to the driver. 758 */ 759 if (ip_len <= mtu || 760 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 761 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 762 ip->ip_sum = 0; 763 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 764 ip->ip_sum = in_cksum(m, hlen); 765 m->m_pkthdr.csum_flags &= ~CSUM_IP; 766 } 767 768 /* 769 * Record statistics for this interface address. 770 * With CSUM_TSO the byte/packet count will be slightly 771 * incorrect because we count the IP+TCP headers only 772 * once instead of for every generated packet. 773 */ 774 if (!(flags & IP_FORWARDING) && ia) { 775 if (m->m_pkthdr.csum_flags & 776 (CSUM_TSO | CSUM_INNER_TSO)) 777 counter_u64_add(ia->ia_ifa.ifa_opackets, 778 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 779 else 780 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 781 782 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 783 } 784 #ifdef MBUF_STRESS_TEST 785 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 786 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 787 #endif 788 /* 789 * Reset layer specific mbuf flags 790 * to avoid confusing lower layers. 791 */ 792 m_clrprotoflags(m); 793 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 794 error = ip_output_send(inp, ifp, m, gw, ro, 795 (flags & IP_NO_SND_TAG_RL) ? false : true); 796 goto done; 797 } 798 799 /* Balk when DF bit is set or the interface didn't support TSO. */ 800 if ((ip_off & IP_DF) || 801 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 802 error = EMSGSIZE; 803 IPSTAT_INC(ips_cantfrag); 804 goto bad; 805 } 806 807 /* 808 * Too large for interface; fragment if possible. If successful, 809 * on return, m will point to a list of packets to be sent. 810 */ 811 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 812 if (error) 813 goto bad; 814 for (; m; m = m0) { 815 m0 = m->m_nextpkt; 816 m->m_nextpkt = 0; 817 if (error == 0) { 818 /* Record statistics for this interface address. */ 819 if (ia != NULL) { 820 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 821 counter_u64_add(ia->ia_ifa.ifa_obytes, 822 m->m_pkthdr.len); 823 } 824 /* 825 * Reset layer specific mbuf flags 826 * to avoid confusing upper layers. 827 */ 828 m_clrprotoflags(m); 829 830 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 831 mtod(m, struct ip *), NULL); 832 error = ip_output_send(inp, ifp, m, gw, ro, true); 833 } else 834 m_freem(m); 835 } 836 837 if (error == 0) 838 IPSTAT_INC(ips_fragmented); 839 840 done: 841 return (error); 842 bad: 843 m_freem(m); 844 goto done; 845 } 846 847 /* 848 * Create a chain of fragments which fit the given mtu. m_frag points to the 849 * mbuf to be fragmented; on return it points to the chain with the fragments. 850 * Return 0 if no error. If error, m_frag may contain a partially built 851 * chain of fragments that should be freed by the caller. 852 * 853 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 854 */ 855 int 856 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 857 u_long if_hwassist_flags) 858 { 859 int error = 0; 860 int hlen = ip->ip_hl << 2; 861 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 862 int off; 863 struct mbuf *m0 = *m_frag; /* the original packet */ 864 int firstlen; 865 struct mbuf **mnext; 866 int nfrags; 867 uint16_t ip_len, ip_off; 868 869 ip_len = ntohs(ip->ip_len); 870 ip_off = ntohs(ip->ip_off); 871 872 /* 873 * Packet shall not have "Don't Fragment" flag and have at least 8 874 * bytes of payload. 875 */ 876 if (__predict_false((ip_off & IP_DF) || len < 8)) { 877 IPSTAT_INC(ips_cantfrag); 878 return (EMSGSIZE); 879 } 880 881 /* 882 * If the interface will not calculate checksums on 883 * fragmented packets, then do it here. 884 */ 885 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 886 in_delayed_cksum(m0); 887 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 888 } 889 #if defined(SCTP) || defined(SCTP_SUPPORT) 890 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 891 sctp_delayed_cksum(m0, hlen); 892 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 893 } 894 #endif 895 if (len > PAGE_SIZE) { 896 /* 897 * Fragment large datagrams such that each segment 898 * contains a multiple of PAGE_SIZE amount of data, 899 * plus headers. This enables a receiver to perform 900 * page-flipping zero-copy optimizations. 901 * 902 * XXX When does this help given that sender and receiver 903 * could have different page sizes, and also mtu could 904 * be less than the receiver's page size ? 905 */ 906 int newlen; 907 908 off = MIN(mtu, m0->m_pkthdr.len); 909 910 /* 911 * firstlen (off - hlen) must be aligned on an 912 * 8-byte boundary 913 */ 914 if (off < hlen) 915 goto smart_frag_failure; 916 off = ((off - hlen) & ~7) + hlen; 917 newlen = (~PAGE_MASK) & mtu; 918 if ((newlen + sizeof (struct ip)) > mtu) { 919 /* we failed, go back the default */ 920 smart_frag_failure: 921 newlen = len; 922 off = hlen + len; 923 } 924 len = newlen; 925 926 } else { 927 off = hlen + len; 928 } 929 930 firstlen = off - hlen; 931 mnext = &m0->m_nextpkt; /* pointer to next packet */ 932 933 /* 934 * Loop through length of segment after first fragment, 935 * make new header and copy data of each part and link onto chain. 936 * Here, m0 is the original packet, m is the fragment being created. 937 * The fragments are linked off the m_nextpkt of the original 938 * packet, which after processing serves as the first fragment. 939 */ 940 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 941 struct ip *mhip; /* ip header on the fragment */ 942 struct mbuf *m; 943 int mhlen = sizeof (struct ip); 944 945 m = m_gethdr(M_NOWAIT, MT_DATA); 946 if (m == NULL) { 947 error = ENOBUFS; 948 IPSTAT_INC(ips_odropped); 949 goto done; 950 } 951 /* 952 * Make sure the complete packet header gets copied 953 * from the originating mbuf to the newly created 954 * mbuf. This also ensures that existing firewall 955 * classification(s), VLAN tags and so on get copied 956 * to the resulting fragmented packet(s): 957 */ 958 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 959 m_free(m); 960 error = ENOBUFS; 961 IPSTAT_INC(ips_odropped); 962 goto done; 963 } 964 /* 965 * In the first mbuf, leave room for the link header, then 966 * copy the original IP header including options. The payload 967 * goes into an additional mbuf chain returned by m_copym(). 968 */ 969 m->m_data += max_linkhdr; 970 mhip = mtod(m, struct ip *); 971 *mhip = *ip; 972 if (hlen > sizeof (struct ip)) { 973 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 974 mhip->ip_v = IPVERSION; 975 mhip->ip_hl = mhlen >> 2; 976 } 977 m->m_len = mhlen; 978 /* XXX do we need to add ip_off below ? */ 979 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 980 if (off + len >= ip_len) 981 len = ip_len - off; 982 else 983 mhip->ip_off |= IP_MF; 984 mhip->ip_len = htons((u_short)(len + mhlen)); 985 m->m_next = m_copym(m0, off, len, M_NOWAIT); 986 if (m->m_next == NULL) { /* copy failed */ 987 m_free(m); 988 error = ENOBUFS; /* ??? */ 989 IPSTAT_INC(ips_odropped); 990 goto done; 991 } 992 m->m_pkthdr.len = mhlen + len; 993 #ifdef MAC 994 mac_netinet_fragment(m0, m); 995 #endif 996 mhip->ip_off = htons(mhip->ip_off); 997 mhip->ip_sum = 0; 998 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 999 mhip->ip_sum = in_cksum(m, mhlen); 1000 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1001 } 1002 *mnext = m; 1003 mnext = &m->m_nextpkt; 1004 } 1005 IPSTAT_ADD(ips_ofragments, nfrags); 1006 1007 /* 1008 * Update first fragment by trimming what's been copied out 1009 * and updating header. 1010 */ 1011 m_adj(m0, hlen + firstlen - ip_len); 1012 m0->m_pkthdr.len = hlen + firstlen; 1013 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1014 ip->ip_off = htons(ip_off | IP_MF); 1015 ip->ip_sum = 0; 1016 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1017 ip->ip_sum = in_cksum(m0, hlen); 1018 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1019 } 1020 1021 done: 1022 *m_frag = m0; 1023 return error; 1024 } 1025 1026 void 1027 in_delayed_cksum(struct mbuf *m) 1028 { 1029 struct ip *ip; 1030 struct udphdr *uh; 1031 uint16_t cklen, csum, offset; 1032 1033 ip = mtod(m, struct ip *); 1034 offset = ip->ip_hl << 2 ; 1035 1036 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1037 /* if udp header is not in the first mbuf copy udplen */ 1038 if (offset + sizeof(struct udphdr) > m->m_len) { 1039 m_copydata(m, offset + offsetof(struct udphdr, 1040 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1041 cklen = ntohs(cklen); 1042 } else { 1043 uh = (struct udphdr *)mtodo(m, offset); 1044 cklen = ntohs(uh->uh_ulen); 1045 } 1046 csum = in_cksum_skip(m, cklen + offset, offset); 1047 if (csum == 0) 1048 csum = 0xffff; 1049 } else { 1050 cklen = ntohs(ip->ip_len); 1051 csum = in_cksum_skip(m, cklen, offset); 1052 } 1053 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1054 1055 if (offset + sizeof(csum) > m->m_len) 1056 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1057 else 1058 *(u_short *)mtodo(m, offset) = csum; 1059 } 1060 1061 /* 1062 * IP socket option processing. 1063 */ 1064 int 1065 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1066 { 1067 struct inpcb *inp = sotoinpcb(so); 1068 int error, optval; 1069 #ifdef RSS 1070 uint32_t rss_bucket; 1071 int retval; 1072 #endif 1073 1074 error = optval = 0; 1075 if (sopt->sopt_level != IPPROTO_IP) { 1076 error = EINVAL; 1077 1078 if (sopt->sopt_level == SOL_SOCKET && 1079 sopt->sopt_dir == SOPT_SET) { 1080 switch (sopt->sopt_name) { 1081 case SO_REUSEADDR: 1082 INP_WLOCK(inp); 1083 if ((so->so_options & SO_REUSEADDR) != 0) 1084 inp->inp_flags2 |= INP_REUSEADDR; 1085 else 1086 inp->inp_flags2 &= ~INP_REUSEADDR; 1087 INP_WUNLOCK(inp); 1088 error = 0; 1089 break; 1090 case SO_REUSEPORT: 1091 INP_WLOCK(inp); 1092 if ((so->so_options & SO_REUSEPORT) != 0) 1093 inp->inp_flags2 |= INP_REUSEPORT; 1094 else 1095 inp->inp_flags2 &= ~INP_REUSEPORT; 1096 INP_WUNLOCK(inp); 1097 error = 0; 1098 break; 1099 case SO_REUSEPORT_LB: 1100 INP_WLOCK(inp); 1101 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1102 inp->inp_flags2 |= INP_REUSEPORT_LB; 1103 else 1104 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1105 INP_WUNLOCK(inp); 1106 error = 0; 1107 break; 1108 case SO_SETFIB: 1109 INP_WLOCK(inp); 1110 inp->inp_inc.inc_fibnum = so->so_fibnum; 1111 INP_WUNLOCK(inp); 1112 error = 0; 1113 break; 1114 case SO_MAX_PACING_RATE: 1115 #ifdef RATELIMIT 1116 INP_WLOCK(inp); 1117 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1118 INP_WUNLOCK(inp); 1119 error = 0; 1120 #else 1121 error = EOPNOTSUPP; 1122 #endif 1123 break; 1124 default: 1125 break; 1126 } 1127 } 1128 return (error); 1129 } 1130 1131 switch (sopt->sopt_dir) { 1132 case SOPT_SET: 1133 switch (sopt->sopt_name) { 1134 case IP_OPTIONS: 1135 #ifdef notyet 1136 case IP_RETOPTS: 1137 #endif 1138 { 1139 struct mbuf *m; 1140 if (sopt->sopt_valsize > MLEN) { 1141 error = EMSGSIZE; 1142 break; 1143 } 1144 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1145 if (m == NULL) { 1146 error = ENOBUFS; 1147 break; 1148 } 1149 m->m_len = sopt->sopt_valsize; 1150 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1151 m->m_len); 1152 if (error) { 1153 m_free(m); 1154 break; 1155 } 1156 INP_WLOCK(inp); 1157 error = ip_pcbopts(inp, sopt->sopt_name, m); 1158 INP_WUNLOCK(inp); 1159 return (error); 1160 } 1161 1162 case IP_BINDANY: 1163 if (sopt->sopt_td != NULL) { 1164 error = priv_check(sopt->sopt_td, 1165 PRIV_NETINET_BINDANY); 1166 if (error) 1167 break; 1168 } 1169 /* FALLTHROUGH */ 1170 case IP_BINDMULTI: 1171 #ifdef RSS 1172 case IP_RSS_LISTEN_BUCKET: 1173 #endif 1174 case IP_TOS: 1175 case IP_TTL: 1176 case IP_MINTTL: 1177 case IP_RECVOPTS: 1178 case IP_RECVRETOPTS: 1179 case IP_ORIGDSTADDR: 1180 case IP_RECVDSTADDR: 1181 case IP_RECVTTL: 1182 case IP_RECVIF: 1183 case IP_ONESBCAST: 1184 case IP_DONTFRAG: 1185 case IP_RECVTOS: 1186 case IP_RECVFLOWID: 1187 #ifdef RSS 1188 case IP_RECVRSSBUCKETID: 1189 #endif 1190 case IP_VLAN_PCP: 1191 error = sooptcopyin(sopt, &optval, sizeof optval, 1192 sizeof optval); 1193 if (error) 1194 break; 1195 1196 switch (sopt->sopt_name) { 1197 case IP_TOS: 1198 inp->inp_ip_tos = optval; 1199 break; 1200 1201 case IP_TTL: 1202 inp->inp_ip_ttl = optval; 1203 break; 1204 1205 case IP_MINTTL: 1206 if (optval >= 0 && optval <= MAXTTL) 1207 inp->inp_ip_minttl = optval; 1208 else 1209 error = EINVAL; 1210 break; 1211 1212 #define OPTSET(bit) do { \ 1213 INP_WLOCK(inp); \ 1214 if (optval) \ 1215 inp->inp_flags |= bit; \ 1216 else \ 1217 inp->inp_flags &= ~bit; \ 1218 INP_WUNLOCK(inp); \ 1219 } while (0) 1220 1221 #define OPTSET2(bit, val) do { \ 1222 INP_WLOCK(inp); \ 1223 if (val) \ 1224 inp->inp_flags2 |= bit; \ 1225 else \ 1226 inp->inp_flags2 &= ~bit; \ 1227 INP_WUNLOCK(inp); \ 1228 } while (0) 1229 1230 case IP_RECVOPTS: 1231 OPTSET(INP_RECVOPTS); 1232 break; 1233 1234 case IP_RECVRETOPTS: 1235 OPTSET(INP_RECVRETOPTS); 1236 break; 1237 1238 case IP_RECVDSTADDR: 1239 OPTSET(INP_RECVDSTADDR); 1240 break; 1241 1242 case IP_ORIGDSTADDR: 1243 OPTSET2(INP_ORIGDSTADDR, optval); 1244 break; 1245 1246 case IP_RECVTTL: 1247 OPTSET(INP_RECVTTL); 1248 break; 1249 1250 case IP_RECVIF: 1251 OPTSET(INP_RECVIF); 1252 break; 1253 1254 case IP_ONESBCAST: 1255 OPTSET(INP_ONESBCAST); 1256 break; 1257 case IP_DONTFRAG: 1258 OPTSET(INP_DONTFRAG); 1259 break; 1260 case IP_BINDANY: 1261 OPTSET(INP_BINDANY); 1262 break; 1263 case IP_RECVTOS: 1264 OPTSET(INP_RECVTOS); 1265 break; 1266 case IP_BINDMULTI: 1267 OPTSET2(INP_BINDMULTI, optval); 1268 break; 1269 case IP_RECVFLOWID: 1270 OPTSET2(INP_RECVFLOWID, optval); 1271 break; 1272 #ifdef RSS 1273 case IP_RSS_LISTEN_BUCKET: 1274 if ((optval >= 0) && 1275 (optval < rss_getnumbuckets())) { 1276 inp->inp_rss_listen_bucket = optval; 1277 OPTSET2(INP_RSS_BUCKET_SET, 1); 1278 } else { 1279 error = EINVAL; 1280 } 1281 break; 1282 case IP_RECVRSSBUCKETID: 1283 OPTSET2(INP_RECVRSSBUCKETID, optval); 1284 break; 1285 #endif 1286 case IP_VLAN_PCP: 1287 if ((optval >= -1) && (optval <= 1288 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1289 if (optval == -1) { 1290 INP_WLOCK(inp); 1291 inp->inp_flags2 &= 1292 ~(INP_2PCP_SET | 1293 INP_2PCP_MASK); 1294 INP_WUNLOCK(inp); 1295 } else { 1296 INP_WLOCK(inp); 1297 inp->inp_flags2 |= 1298 INP_2PCP_SET; 1299 inp->inp_flags2 &= 1300 ~INP_2PCP_MASK; 1301 inp->inp_flags2 |= 1302 optval << INP_2PCP_SHIFT; 1303 INP_WUNLOCK(inp); 1304 } 1305 } else 1306 error = EINVAL; 1307 break; 1308 } 1309 break; 1310 #undef OPTSET 1311 #undef OPTSET2 1312 1313 /* 1314 * Multicast socket options are processed by the in_mcast 1315 * module. 1316 */ 1317 case IP_MULTICAST_IF: 1318 case IP_MULTICAST_VIF: 1319 case IP_MULTICAST_TTL: 1320 case IP_MULTICAST_LOOP: 1321 case IP_ADD_MEMBERSHIP: 1322 case IP_DROP_MEMBERSHIP: 1323 case IP_ADD_SOURCE_MEMBERSHIP: 1324 case IP_DROP_SOURCE_MEMBERSHIP: 1325 case IP_BLOCK_SOURCE: 1326 case IP_UNBLOCK_SOURCE: 1327 case IP_MSFILTER: 1328 case MCAST_JOIN_GROUP: 1329 case MCAST_LEAVE_GROUP: 1330 case MCAST_JOIN_SOURCE_GROUP: 1331 case MCAST_LEAVE_SOURCE_GROUP: 1332 case MCAST_BLOCK_SOURCE: 1333 case MCAST_UNBLOCK_SOURCE: 1334 error = inp_setmoptions(inp, sopt); 1335 break; 1336 1337 case IP_PORTRANGE: 1338 error = sooptcopyin(sopt, &optval, sizeof optval, 1339 sizeof optval); 1340 if (error) 1341 break; 1342 1343 INP_WLOCK(inp); 1344 switch (optval) { 1345 case IP_PORTRANGE_DEFAULT: 1346 inp->inp_flags &= ~(INP_LOWPORT); 1347 inp->inp_flags &= ~(INP_HIGHPORT); 1348 break; 1349 1350 case IP_PORTRANGE_HIGH: 1351 inp->inp_flags &= ~(INP_LOWPORT); 1352 inp->inp_flags |= INP_HIGHPORT; 1353 break; 1354 1355 case IP_PORTRANGE_LOW: 1356 inp->inp_flags &= ~(INP_HIGHPORT); 1357 inp->inp_flags |= INP_LOWPORT; 1358 break; 1359 1360 default: 1361 error = EINVAL; 1362 break; 1363 } 1364 INP_WUNLOCK(inp); 1365 break; 1366 1367 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1368 case IP_IPSEC_POLICY: 1369 if (IPSEC_ENABLED(ipv4)) { 1370 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1371 break; 1372 } 1373 /* FALLTHROUGH */ 1374 #endif /* IPSEC */ 1375 1376 default: 1377 error = ENOPROTOOPT; 1378 break; 1379 } 1380 break; 1381 1382 case SOPT_GET: 1383 switch (sopt->sopt_name) { 1384 case IP_OPTIONS: 1385 case IP_RETOPTS: 1386 INP_RLOCK(inp); 1387 if (inp->inp_options) { 1388 struct mbuf *options; 1389 1390 options = m_copym(inp->inp_options, 0, 1391 M_COPYALL, M_NOWAIT); 1392 INP_RUNLOCK(inp); 1393 if (options != NULL) { 1394 error = sooptcopyout(sopt, 1395 mtod(options, char *), 1396 options->m_len); 1397 m_freem(options); 1398 } else 1399 error = ENOMEM; 1400 } else { 1401 INP_RUNLOCK(inp); 1402 sopt->sopt_valsize = 0; 1403 } 1404 break; 1405 1406 case IP_TOS: 1407 case IP_TTL: 1408 case IP_MINTTL: 1409 case IP_RECVOPTS: 1410 case IP_RECVRETOPTS: 1411 case IP_ORIGDSTADDR: 1412 case IP_RECVDSTADDR: 1413 case IP_RECVTTL: 1414 case IP_RECVIF: 1415 case IP_PORTRANGE: 1416 case IP_ONESBCAST: 1417 case IP_DONTFRAG: 1418 case IP_BINDANY: 1419 case IP_RECVTOS: 1420 case IP_BINDMULTI: 1421 case IP_FLOWID: 1422 case IP_FLOWTYPE: 1423 case IP_RECVFLOWID: 1424 #ifdef RSS 1425 case IP_RSSBUCKETID: 1426 case IP_RECVRSSBUCKETID: 1427 #endif 1428 case IP_VLAN_PCP: 1429 switch (sopt->sopt_name) { 1430 case IP_TOS: 1431 optval = inp->inp_ip_tos; 1432 break; 1433 1434 case IP_TTL: 1435 optval = inp->inp_ip_ttl; 1436 break; 1437 1438 case IP_MINTTL: 1439 optval = inp->inp_ip_minttl; 1440 break; 1441 1442 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1443 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1444 1445 case IP_RECVOPTS: 1446 optval = OPTBIT(INP_RECVOPTS); 1447 break; 1448 1449 case IP_RECVRETOPTS: 1450 optval = OPTBIT(INP_RECVRETOPTS); 1451 break; 1452 1453 case IP_RECVDSTADDR: 1454 optval = OPTBIT(INP_RECVDSTADDR); 1455 break; 1456 1457 case IP_ORIGDSTADDR: 1458 optval = OPTBIT2(INP_ORIGDSTADDR); 1459 break; 1460 1461 case IP_RECVTTL: 1462 optval = OPTBIT(INP_RECVTTL); 1463 break; 1464 1465 case IP_RECVIF: 1466 optval = OPTBIT(INP_RECVIF); 1467 break; 1468 1469 case IP_PORTRANGE: 1470 if (inp->inp_flags & INP_HIGHPORT) 1471 optval = IP_PORTRANGE_HIGH; 1472 else if (inp->inp_flags & INP_LOWPORT) 1473 optval = IP_PORTRANGE_LOW; 1474 else 1475 optval = 0; 1476 break; 1477 1478 case IP_ONESBCAST: 1479 optval = OPTBIT(INP_ONESBCAST); 1480 break; 1481 case IP_DONTFRAG: 1482 optval = OPTBIT(INP_DONTFRAG); 1483 break; 1484 case IP_BINDANY: 1485 optval = OPTBIT(INP_BINDANY); 1486 break; 1487 case IP_RECVTOS: 1488 optval = OPTBIT(INP_RECVTOS); 1489 break; 1490 case IP_FLOWID: 1491 optval = inp->inp_flowid; 1492 break; 1493 case IP_FLOWTYPE: 1494 optval = inp->inp_flowtype; 1495 break; 1496 case IP_RECVFLOWID: 1497 optval = OPTBIT2(INP_RECVFLOWID); 1498 break; 1499 #ifdef RSS 1500 case IP_RSSBUCKETID: 1501 retval = rss_hash2bucket(inp->inp_flowid, 1502 inp->inp_flowtype, 1503 &rss_bucket); 1504 if (retval == 0) 1505 optval = rss_bucket; 1506 else 1507 error = EINVAL; 1508 break; 1509 case IP_RECVRSSBUCKETID: 1510 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1511 break; 1512 #endif 1513 case IP_BINDMULTI: 1514 optval = OPTBIT2(INP_BINDMULTI); 1515 break; 1516 case IP_VLAN_PCP: 1517 if (OPTBIT2(INP_2PCP_SET)) { 1518 optval = (inp->inp_flags2 & 1519 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1520 } else { 1521 optval = -1; 1522 } 1523 break; 1524 } 1525 error = sooptcopyout(sopt, &optval, sizeof optval); 1526 break; 1527 1528 /* 1529 * Multicast socket options are processed by the in_mcast 1530 * module. 1531 */ 1532 case IP_MULTICAST_IF: 1533 case IP_MULTICAST_VIF: 1534 case IP_MULTICAST_TTL: 1535 case IP_MULTICAST_LOOP: 1536 case IP_MSFILTER: 1537 error = inp_getmoptions(inp, sopt); 1538 break; 1539 1540 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1541 case IP_IPSEC_POLICY: 1542 if (IPSEC_ENABLED(ipv4)) { 1543 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1544 break; 1545 } 1546 /* FALLTHROUGH */ 1547 #endif /* IPSEC */ 1548 1549 default: 1550 error = ENOPROTOOPT; 1551 break; 1552 } 1553 break; 1554 } 1555 return (error); 1556 } 1557 1558 /* 1559 * Routine called from ip_output() to loop back a copy of an IP multicast 1560 * packet to the input queue of a specified interface. Note that this 1561 * calls the output routine of the loopback "driver", but with an interface 1562 * pointer that might NOT be a loopback interface -- evil, but easier than 1563 * replicating that code here. 1564 */ 1565 static void 1566 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1567 { 1568 struct ip *ip; 1569 struct mbuf *copym; 1570 1571 /* 1572 * Make a deep copy of the packet because we're going to 1573 * modify the pack in order to generate checksums. 1574 */ 1575 copym = m_dup(m, M_NOWAIT); 1576 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1577 copym = m_pullup(copym, hlen); 1578 if (copym != NULL) { 1579 /* If needed, compute the checksum and mark it as valid. */ 1580 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1581 in_delayed_cksum(copym); 1582 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1583 copym->m_pkthdr.csum_flags |= 1584 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1585 copym->m_pkthdr.csum_data = 0xffff; 1586 } 1587 /* 1588 * We don't bother to fragment if the IP length is greater 1589 * than the interface's MTU. Can this possibly matter? 1590 */ 1591 ip = mtod(copym, struct ip *); 1592 ip->ip_sum = 0; 1593 ip->ip_sum = in_cksum(copym, hlen); 1594 if_simloop(ifp, copym, AF_INET, 0); 1595 } 1596 } 1597