1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * 53 * MROUTING Revision: 3.5 54 * and PIM-SMv2 and PIM-DM support, advanced API support, 55 * bandwidth metering and signaling 56 */ 57 58 /* 59 * TODO: Prefix functions with ipmf_. 60 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 61 * domain attachment (if_afdata) so we can track consumers of that service. 62 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 63 * move it to socket options. 64 * TODO: Cleanup LSRR removal further. 65 * TODO: Push RSVP stubs into raw_ip.c. 66 * TODO: Use bitstring.h for vif set. 67 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 68 * TODO: Sync ip6_mroute.c with this file. 69 */ 70 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 #include "opt_inet.h" 75 #include "opt_mrouting.h" 76 77 #define _PIM_VT 1 78 79 #include <sys/param.h> 80 #include <sys/kernel.h> 81 #include <sys/stddef.h> 82 #include <sys/eventhandler.h> 83 #include <sys/lock.h> 84 #include <sys/ktr.h> 85 #include <sys/malloc.h> 86 #include <sys/mbuf.h> 87 #include <sys/module.h> 88 #include <sys/priv.h> 89 #include <sys/protosw.h> 90 #include <sys/signalvar.h> 91 #include <sys/socket.h> 92 #include <sys/socketvar.h> 93 #include <sys/sockio.h> 94 #include <sys/sx.h> 95 #include <sys/sysctl.h> 96 #include <sys/syslog.h> 97 #include <sys/systm.h> 98 #include <sys/time.h> 99 #include <sys/counter.h> 100 101 #include <net/if.h> 102 #include <net/if_var.h> 103 #include <net/netisr.h> 104 #include <net/route.h> 105 #include <net/vnet.h> 106 107 #include <netinet/in.h> 108 #include <netinet/igmp.h> 109 #include <netinet/in_systm.h> 110 #include <netinet/in_var.h> 111 #include <netinet/ip.h> 112 #include <netinet/ip_encap.h> 113 #include <netinet/ip_mroute.h> 114 #include <netinet/ip_var.h> 115 #include <netinet/ip_options.h> 116 #include <netinet/pim.h> 117 #include <netinet/pim_var.h> 118 #include <netinet/udp.h> 119 120 #include <machine/in_cksum.h> 121 122 #ifndef KTR_IPMF 123 #define KTR_IPMF KTR_INET 124 #endif 125 126 #define VIFI_INVALID ((vifi_t) -1) 127 128 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */ 129 #define V_last_tv_sec VNET(last_tv_sec) 130 131 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 132 133 /* 134 * Locking. We use two locks: one for the virtual interface table and 135 * one for the forwarding table. These locks may be nested in which case 136 * the VIF lock must always be taken first. Note that each lock is used 137 * to cover not only the specific data structure but also related data 138 * structures. 139 */ 140 141 static struct mtx mrouter_mtx; 142 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 143 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 144 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 145 #define MROUTER_LOCK_INIT() \ 146 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 147 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 148 149 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 150 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 151 152 static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat); 153 VNET_PCPUSTAT_SYSINIT(mrtstat); 154 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 155 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 156 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 157 "netinet/ip_mroute.h)"); 158 159 static VNET_DEFINE(u_long, mfchash); 160 #define V_mfchash VNET(mfchash) 161 #define MFCHASH(a, g) \ 162 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 163 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 164 #define MFCHASHSIZE 256 165 166 static u_long mfchashsize; /* Hash size */ 167 static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */ 168 #define V_nexpire VNET(nexpire) 169 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 170 #define V_mfchashtbl VNET(mfchashtbl) 171 172 static struct mtx mfc_mtx; 173 #define MFC_LOCK() mtx_lock(&mfc_mtx) 174 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 175 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 176 #define MFC_LOCK_INIT() \ 177 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 178 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 179 180 static VNET_DEFINE(vifi_t, numvifs); 181 #define V_numvifs VNET(numvifs) 182 static VNET_DEFINE(struct vif, viftable[MAXVIFS]); 183 #define V_viftable VNET(viftable) 184 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_VNET | CTLFLAG_RD, 185 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]", 186 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 187 188 static struct mtx vif_mtx; 189 #define VIF_LOCK() mtx_lock(&vif_mtx) 190 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 191 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 192 #define VIF_LOCK_INIT() \ 193 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 194 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 195 196 static eventhandler_tag if_detach_event_tag = NULL; 197 198 static VNET_DEFINE(struct callout, expire_upcalls_ch); 199 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 200 201 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 202 #define UPCALL_EXPIRE 6 /* number of timeouts */ 203 204 /* 205 * Bandwidth meter variables and constants 206 */ 207 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 208 /* 209 * Pending timeouts are stored in a hash table, the key being the 210 * expiration time. Periodically, the entries are analysed and processed. 211 */ 212 #define BW_METER_BUCKETS 1024 213 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]); 214 #define V_bw_meter_timers VNET(bw_meter_timers) 215 static VNET_DEFINE(struct callout, bw_meter_ch); 216 #define V_bw_meter_ch VNET(bw_meter_ch) 217 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 218 219 /* 220 * Pending upcalls are stored in a vector which is flushed when 221 * full, or periodically 222 */ 223 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]); 224 #define V_bw_upcalls VNET(bw_upcalls) 225 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */ 226 #define V_bw_upcalls_n VNET(bw_upcalls_n) 227 static VNET_DEFINE(struct callout, bw_upcalls_ch); 228 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 229 230 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 231 232 static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat); 233 VNET_PCPUSTAT_SYSINIT(pimstat); 234 VNET_PCPUSTAT_SYSUNINIT(pimstat); 235 236 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 237 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 238 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 239 240 static u_long pim_squelch_wholepkt = 0; 241 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 242 &pim_squelch_wholepkt, 0, 243 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 244 245 extern struct domain inetdomain; 246 static const struct protosw in_pim_protosw = { 247 .pr_type = SOCK_RAW, 248 .pr_domain = &inetdomain, 249 .pr_protocol = IPPROTO_PIM, 250 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 251 .pr_input = pim_input, 252 .pr_output = rip_output, 253 .pr_ctloutput = rip_ctloutput, 254 .pr_usrreqs = &rip_usrreqs 255 }; 256 static const struct encaptab *pim_encap_cookie; 257 258 static int pim_encapcheck(const struct mbuf *, int, int, void *); 259 260 /* 261 * Note: the PIM Register encapsulation adds the following in front of a 262 * data packet: 263 * 264 * struct pim_encap_hdr { 265 * struct ip ip; 266 * struct pim_encap_pimhdr pim; 267 * } 268 * 269 */ 270 271 struct pim_encap_pimhdr { 272 struct pim pim; 273 uint32_t flags; 274 }; 275 #define PIM_ENCAP_TTL 64 276 277 static struct ip pim_encap_iphdr = { 278 #if BYTE_ORDER == LITTLE_ENDIAN 279 sizeof(struct ip) >> 2, 280 IPVERSION, 281 #else 282 IPVERSION, 283 sizeof(struct ip) >> 2, 284 #endif 285 0, /* tos */ 286 sizeof(struct ip), /* total length */ 287 0, /* id */ 288 0, /* frag offset */ 289 PIM_ENCAP_TTL, 290 IPPROTO_PIM, 291 0, /* checksum */ 292 }; 293 294 static struct pim_encap_pimhdr pim_encap_pimhdr = { 295 { 296 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 297 0, /* reserved */ 298 0, /* checksum */ 299 }, 300 0 /* flags */ 301 }; 302 303 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID; 304 #define V_reg_vif_num VNET(reg_vif_num) 305 static VNET_DEFINE(struct ifnet, multicast_register_if); 306 #define V_multicast_register_if VNET(multicast_register_if) 307 308 /* 309 * Private variables. 310 */ 311 312 static u_long X_ip_mcast_src(int); 313 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 314 struct ip_moptions *); 315 static int X_ip_mrouter_done(void); 316 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 317 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 318 static int X_legal_vif_num(int); 319 static int X_mrt_ioctl(u_long, caddr_t, int); 320 321 static int add_bw_upcall(struct bw_upcall *); 322 static int add_mfc(struct mfcctl2 *); 323 static int add_vif(struct vifctl *); 324 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 325 static void bw_meter_process(void); 326 static void bw_meter_receive_packet(struct bw_meter *, int, 327 struct timeval *); 328 static void bw_upcalls_send(void); 329 static int del_bw_upcall(struct bw_upcall *); 330 static int del_mfc(struct mfcctl2 *); 331 static int del_vif(vifi_t); 332 static int del_vif_locked(vifi_t); 333 static void expire_bw_meter_process(void *); 334 static void expire_bw_upcalls_send(void *); 335 static void expire_mfc(struct mfc *); 336 static void expire_upcalls(void *); 337 static void free_bw_list(struct bw_meter *); 338 static int get_sg_cnt(struct sioc_sg_req *); 339 static int get_vif_cnt(struct sioc_vif_req *); 340 static void if_detached_event(void *, struct ifnet *); 341 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 342 static int ip_mrouter_init(struct socket *, int); 343 static __inline struct mfc * 344 mfc_find(struct in_addr *, struct in_addr *); 345 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 346 static struct mbuf * 347 pim_register_prepare(struct ip *, struct mbuf *); 348 static int pim_register_send(struct ip *, struct vif *, 349 struct mbuf *, struct mfc *); 350 static int pim_register_send_rp(struct ip *, struct vif *, 351 struct mbuf *, struct mfc *); 352 static int pim_register_send_upcall(struct ip *, struct vif *, 353 struct mbuf *, struct mfc *); 354 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 355 static void send_packet(struct vif *, struct mbuf *); 356 static int set_api_config(uint32_t *); 357 static int set_assert(int); 358 static int socket_send(struct socket *, struct mbuf *, 359 struct sockaddr_in *); 360 static void unschedule_bw_meter(struct bw_meter *); 361 362 /* 363 * Kernel multicast forwarding API capabilities and setup. 364 * If more API capabilities are added to the kernel, they should be 365 * recorded in `mrt_api_support'. 366 */ 367 #define MRT_API_VERSION 0x0305 368 369 static const int mrt_api_version = MRT_API_VERSION; 370 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 371 MRT_MFC_FLAGS_BORDER_VIF | 372 MRT_MFC_RP | 373 MRT_MFC_BW_UPCALL); 374 static VNET_DEFINE(uint32_t, mrt_api_config); 375 #define V_mrt_api_config VNET(mrt_api_config) 376 static VNET_DEFINE(int, pim_assert_enabled); 377 #define V_pim_assert_enabled VNET(pim_assert_enabled) 378 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 379 380 /* 381 * Find a route for a given origin IP address and multicast group address. 382 * Statistics must be updated by the caller. 383 */ 384 static __inline struct mfc * 385 mfc_find(struct in_addr *o, struct in_addr *g) 386 { 387 struct mfc *rt; 388 389 MFC_LOCK_ASSERT(); 390 391 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 392 if (in_hosteq(rt->mfc_origin, *o) && 393 in_hosteq(rt->mfc_mcastgrp, *g) && 394 TAILQ_EMPTY(&rt->mfc_stall)) 395 break; 396 } 397 398 return (rt); 399 } 400 401 /* 402 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 403 */ 404 static int 405 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 406 { 407 int error, optval; 408 vifi_t vifi; 409 struct vifctl vifc; 410 struct mfcctl2 mfc; 411 struct bw_upcall bw_upcall; 412 uint32_t i; 413 414 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 415 return EPERM; 416 417 error = 0; 418 switch (sopt->sopt_name) { 419 case MRT_INIT: 420 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 421 if (error) 422 break; 423 error = ip_mrouter_init(so, optval); 424 break; 425 426 case MRT_DONE: 427 error = ip_mrouter_done(); 428 break; 429 430 case MRT_ADD_VIF: 431 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 432 if (error) 433 break; 434 error = add_vif(&vifc); 435 break; 436 437 case MRT_DEL_VIF: 438 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 439 if (error) 440 break; 441 error = del_vif(vifi); 442 break; 443 444 case MRT_ADD_MFC: 445 case MRT_DEL_MFC: 446 /* 447 * select data size depending on API version. 448 */ 449 if (sopt->sopt_name == MRT_ADD_MFC && 450 V_mrt_api_config & MRT_API_FLAGS_ALL) { 451 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 452 sizeof(struct mfcctl2)); 453 } else { 454 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 455 sizeof(struct mfcctl)); 456 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 457 sizeof(mfc) - sizeof(struct mfcctl)); 458 } 459 if (error) 460 break; 461 if (sopt->sopt_name == MRT_ADD_MFC) 462 error = add_mfc(&mfc); 463 else 464 error = del_mfc(&mfc); 465 break; 466 467 case MRT_ASSERT: 468 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 469 if (error) 470 break; 471 set_assert(optval); 472 break; 473 474 case MRT_API_CONFIG: 475 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 476 if (!error) 477 error = set_api_config(&i); 478 if (!error) 479 error = sooptcopyout(sopt, &i, sizeof i); 480 break; 481 482 case MRT_ADD_BW_UPCALL: 483 case MRT_DEL_BW_UPCALL: 484 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 485 sizeof bw_upcall); 486 if (error) 487 break; 488 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 489 error = add_bw_upcall(&bw_upcall); 490 else 491 error = del_bw_upcall(&bw_upcall); 492 break; 493 494 default: 495 error = EOPNOTSUPP; 496 break; 497 } 498 return error; 499 } 500 501 /* 502 * Handle MRT getsockopt commands 503 */ 504 static int 505 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 506 { 507 int error; 508 509 switch (sopt->sopt_name) { 510 case MRT_VERSION: 511 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 512 break; 513 514 case MRT_ASSERT: 515 error = sooptcopyout(sopt, &V_pim_assert_enabled, 516 sizeof V_pim_assert_enabled); 517 break; 518 519 case MRT_API_SUPPORT: 520 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 521 break; 522 523 case MRT_API_CONFIG: 524 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 525 break; 526 527 default: 528 error = EOPNOTSUPP; 529 break; 530 } 531 return error; 532 } 533 534 /* 535 * Handle ioctl commands to obtain information from the cache 536 */ 537 static int 538 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 539 { 540 int error = 0; 541 542 /* 543 * Currently the only function calling this ioctl routine is rtioctl_fib(). 544 * Typically, only root can create the raw socket in order to execute 545 * this ioctl method, however the request might be coming from a prison 546 */ 547 error = priv_check(curthread, PRIV_NETINET_MROUTE); 548 if (error) 549 return (error); 550 switch (cmd) { 551 case (SIOCGETVIFCNT): 552 error = get_vif_cnt((struct sioc_vif_req *)data); 553 break; 554 555 case (SIOCGETSGCNT): 556 error = get_sg_cnt((struct sioc_sg_req *)data); 557 break; 558 559 default: 560 error = EINVAL; 561 break; 562 } 563 return error; 564 } 565 566 /* 567 * returns the packet, byte, rpf-failure count for the source group provided 568 */ 569 static int 570 get_sg_cnt(struct sioc_sg_req *req) 571 { 572 struct mfc *rt; 573 574 MFC_LOCK(); 575 rt = mfc_find(&req->src, &req->grp); 576 if (rt == NULL) { 577 MFC_UNLOCK(); 578 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 579 return EADDRNOTAVAIL; 580 } 581 req->pktcnt = rt->mfc_pkt_cnt; 582 req->bytecnt = rt->mfc_byte_cnt; 583 req->wrong_if = rt->mfc_wrong_if; 584 MFC_UNLOCK(); 585 return 0; 586 } 587 588 /* 589 * returns the input and output packet and byte counts on the vif provided 590 */ 591 static int 592 get_vif_cnt(struct sioc_vif_req *req) 593 { 594 vifi_t vifi = req->vifi; 595 596 VIF_LOCK(); 597 if (vifi >= V_numvifs) { 598 VIF_UNLOCK(); 599 return EINVAL; 600 } 601 602 req->icount = V_viftable[vifi].v_pkt_in; 603 req->ocount = V_viftable[vifi].v_pkt_out; 604 req->ibytes = V_viftable[vifi].v_bytes_in; 605 req->obytes = V_viftable[vifi].v_bytes_out; 606 VIF_UNLOCK(); 607 608 return 0; 609 } 610 611 static void 612 if_detached_event(void *arg __unused, struct ifnet *ifp) 613 { 614 vifi_t vifi; 615 u_long i; 616 617 MROUTER_LOCK(); 618 619 if (V_ip_mrouter == NULL) { 620 MROUTER_UNLOCK(); 621 return; 622 } 623 624 VIF_LOCK(); 625 MFC_LOCK(); 626 627 /* 628 * Tear down multicast forwarder state associated with this ifnet. 629 * 1. Walk the vif list, matching vifs against this ifnet. 630 * 2. Walk the multicast forwarding cache (mfc) looking for 631 * inner matches with this vif's index. 632 * 3. Expire any matching multicast forwarding cache entries. 633 * 4. Free vif state. This should disable ALLMULTI on the interface. 634 */ 635 for (vifi = 0; vifi < V_numvifs; vifi++) { 636 if (V_viftable[vifi].v_ifp != ifp) 637 continue; 638 for (i = 0; i < mfchashsize; i++) { 639 struct mfc *rt, *nrt; 640 641 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 642 if (rt->mfc_parent == vifi) { 643 expire_mfc(rt); 644 } 645 } 646 } 647 del_vif_locked(vifi); 648 } 649 650 MFC_UNLOCK(); 651 VIF_UNLOCK(); 652 653 MROUTER_UNLOCK(); 654 } 655 656 /* 657 * Enable multicast forwarding. 658 */ 659 static int 660 ip_mrouter_init(struct socket *so, int version) 661 { 662 663 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 664 so->so_type, so->so_proto->pr_protocol); 665 666 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 667 return EOPNOTSUPP; 668 669 if (version != 1) 670 return ENOPROTOOPT; 671 672 MROUTER_LOCK(); 673 674 if (ip_mrouter_unloading) { 675 MROUTER_UNLOCK(); 676 return ENOPROTOOPT; 677 } 678 679 if (V_ip_mrouter != NULL) { 680 MROUTER_UNLOCK(); 681 return EADDRINUSE; 682 } 683 684 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 685 HASH_NOWAIT); 686 687 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 688 curvnet); 689 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 690 curvnet); 691 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 692 curvnet); 693 694 V_ip_mrouter = so; 695 ip_mrouter_cnt++; 696 697 MROUTER_UNLOCK(); 698 699 CTR1(KTR_IPMF, "%s: done", __func__); 700 701 return 0; 702 } 703 704 /* 705 * Disable multicast forwarding. 706 */ 707 static int 708 X_ip_mrouter_done(void) 709 { 710 struct ifnet *ifp; 711 u_long i; 712 vifi_t vifi; 713 714 MROUTER_LOCK(); 715 716 if (V_ip_mrouter == NULL) { 717 MROUTER_UNLOCK(); 718 return EINVAL; 719 } 720 721 /* 722 * Detach/disable hooks to the reset of the system. 723 */ 724 V_ip_mrouter = NULL; 725 ip_mrouter_cnt--; 726 V_mrt_api_config = 0; 727 728 VIF_LOCK(); 729 730 /* 731 * For each phyint in use, disable promiscuous reception of all IP 732 * multicasts. 733 */ 734 for (vifi = 0; vifi < V_numvifs; vifi++) { 735 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 736 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 737 ifp = V_viftable[vifi].v_ifp; 738 if_allmulti(ifp, 0); 739 } 740 } 741 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 742 V_numvifs = 0; 743 V_pim_assert_enabled = 0; 744 745 VIF_UNLOCK(); 746 747 callout_stop(&V_expire_upcalls_ch); 748 callout_stop(&V_bw_upcalls_ch); 749 callout_stop(&V_bw_meter_ch); 750 751 MFC_LOCK(); 752 753 /* 754 * Free all multicast forwarding cache entries. 755 * Do not use hashdestroy(), as we must perform other cleanup. 756 */ 757 for (i = 0; i < mfchashsize; i++) { 758 struct mfc *rt, *nrt; 759 760 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 761 expire_mfc(rt); 762 } 763 } 764 free(V_mfchashtbl, M_MRTABLE); 765 V_mfchashtbl = NULL; 766 767 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 768 769 V_bw_upcalls_n = 0; 770 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 771 772 MFC_UNLOCK(); 773 774 V_reg_vif_num = VIFI_INVALID; 775 776 MROUTER_UNLOCK(); 777 778 CTR1(KTR_IPMF, "%s: done", __func__); 779 780 return 0; 781 } 782 783 /* 784 * Set PIM assert processing global 785 */ 786 static int 787 set_assert(int i) 788 { 789 if ((i != 1) && (i != 0)) 790 return EINVAL; 791 792 V_pim_assert_enabled = i; 793 794 return 0; 795 } 796 797 /* 798 * Configure API capabilities 799 */ 800 int 801 set_api_config(uint32_t *apival) 802 { 803 u_long i; 804 805 /* 806 * We can set the API capabilities only if it is the first operation 807 * after MRT_INIT. I.e.: 808 * - there are no vifs installed 809 * - pim_assert is not enabled 810 * - the MFC table is empty 811 */ 812 if (V_numvifs > 0) { 813 *apival = 0; 814 return EPERM; 815 } 816 if (V_pim_assert_enabled) { 817 *apival = 0; 818 return EPERM; 819 } 820 821 MFC_LOCK(); 822 823 for (i = 0; i < mfchashsize; i++) { 824 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 825 MFC_UNLOCK(); 826 *apival = 0; 827 return EPERM; 828 } 829 } 830 831 MFC_UNLOCK(); 832 833 V_mrt_api_config = *apival & mrt_api_support; 834 *apival = V_mrt_api_config; 835 836 return 0; 837 } 838 839 /* 840 * Add a vif to the vif table 841 */ 842 static int 843 add_vif(struct vifctl *vifcp) 844 { 845 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 846 struct sockaddr_in sin = {sizeof sin, AF_INET}; 847 struct ifaddr *ifa; 848 struct ifnet *ifp; 849 int error; 850 851 VIF_LOCK(); 852 if (vifcp->vifc_vifi >= MAXVIFS) { 853 VIF_UNLOCK(); 854 return EINVAL; 855 } 856 /* rate limiting is no longer supported by this code */ 857 if (vifcp->vifc_rate_limit != 0) { 858 log(LOG_ERR, "rate limiting is no longer supported\n"); 859 VIF_UNLOCK(); 860 return EINVAL; 861 } 862 if (!in_nullhost(vifp->v_lcl_addr)) { 863 VIF_UNLOCK(); 864 return EADDRINUSE; 865 } 866 if (in_nullhost(vifcp->vifc_lcl_addr)) { 867 VIF_UNLOCK(); 868 return EADDRNOTAVAIL; 869 } 870 871 /* Find the interface with an address in AF_INET family */ 872 if (vifcp->vifc_flags & VIFF_REGISTER) { 873 /* 874 * XXX: Because VIFF_REGISTER does not really need a valid 875 * local interface (e.g. it could be 127.0.0.2), we don't 876 * check its address. 877 */ 878 ifp = NULL; 879 } else { 880 sin.sin_addr = vifcp->vifc_lcl_addr; 881 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 882 if (ifa == NULL) { 883 VIF_UNLOCK(); 884 return EADDRNOTAVAIL; 885 } 886 ifp = ifa->ifa_ifp; 887 ifa_free(ifa); 888 } 889 890 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 891 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 892 VIF_UNLOCK(); 893 return EOPNOTSUPP; 894 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 895 ifp = &V_multicast_register_if; 896 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 897 if (V_reg_vif_num == VIFI_INVALID) { 898 if_initname(&V_multicast_register_if, "register_vif", 0); 899 V_multicast_register_if.if_flags = IFF_LOOPBACK; 900 V_reg_vif_num = vifcp->vifc_vifi; 901 } 902 } else { /* Make sure the interface supports multicast */ 903 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 904 VIF_UNLOCK(); 905 return EOPNOTSUPP; 906 } 907 908 /* Enable promiscuous reception of all IP multicasts from the if */ 909 error = if_allmulti(ifp, 1); 910 if (error) { 911 VIF_UNLOCK(); 912 return error; 913 } 914 } 915 916 vifp->v_flags = vifcp->vifc_flags; 917 vifp->v_threshold = vifcp->vifc_threshold; 918 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 919 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 920 vifp->v_ifp = ifp; 921 /* initialize per vif pkt counters */ 922 vifp->v_pkt_in = 0; 923 vifp->v_pkt_out = 0; 924 vifp->v_bytes_in = 0; 925 vifp->v_bytes_out = 0; 926 927 /* Adjust numvifs up if the vifi is higher than numvifs */ 928 if (V_numvifs <= vifcp->vifc_vifi) 929 V_numvifs = vifcp->vifc_vifi + 1; 930 931 VIF_UNLOCK(); 932 933 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 934 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 935 (int)vifcp->vifc_threshold); 936 937 return 0; 938 } 939 940 /* 941 * Delete a vif from the vif table 942 */ 943 static int 944 del_vif_locked(vifi_t vifi) 945 { 946 struct vif *vifp; 947 948 VIF_LOCK_ASSERT(); 949 950 if (vifi >= V_numvifs) { 951 return EINVAL; 952 } 953 vifp = &V_viftable[vifi]; 954 if (in_nullhost(vifp->v_lcl_addr)) { 955 return EADDRNOTAVAIL; 956 } 957 958 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 959 if_allmulti(vifp->v_ifp, 0); 960 961 if (vifp->v_flags & VIFF_REGISTER) 962 V_reg_vif_num = VIFI_INVALID; 963 964 bzero((caddr_t)vifp, sizeof (*vifp)); 965 966 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 967 968 /* Adjust numvifs down */ 969 for (vifi = V_numvifs; vifi > 0; vifi--) 970 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 971 break; 972 V_numvifs = vifi; 973 974 return 0; 975 } 976 977 static int 978 del_vif(vifi_t vifi) 979 { 980 int cc; 981 982 VIF_LOCK(); 983 cc = del_vif_locked(vifi); 984 VIF_UNLOCK(); 985 986 return cc; 987 } 988 989 /* 990 * update an mfc entry without resetting counters and S,G addresses. 991 */ 992 static void 993 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 994 { 995 int i; 996 997 rt->mfc_parent = mfccp->mfcc_parent; 998 for (i = 0; i < V_numvifs; i++) { 999 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1000 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1001 MRT_MFC_FLAGS_ALL; 1002 } 1003 /* set the RP address */ 1004 if (V_mrt_api_config & MRT_MFC_RP) 1005 rt->mfc_rp = mfccp->mfcc_rp; 1006 else 1007 rt->mfc_rp.s_addr = INADDR_ANY; 1008 } 1009 1010 /* 1011 * fully initialize an mfc entry from the parameter. 1012 */ 1013 static void 1014 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1015 { 1016 rt->mfc_origin = mfccp->mfcc_origin; 1017 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1018 1019 update_mfc_params(rt, mfccp); 1020 1021 /* initialize pkt counters per src-grp */ 1022 rt->mfc_pkt_cnt = 0; 1023 rt->mfc_byte_cnt = 0; 1024 rt->mfc_wrong_if = 0; 1025 timevalclear(&rt->mfc_last_assert); 1026 } 1027 1028 static void 1029 expire_mfc(struct mfc *rt) 1030 { 1031 struct rtdetq *rte, *nrte; 1032 1033 MFC_LOCK_ASSERT(); 1034 1035 free_bw_list(rt->mfc_bw_meter); 1036 1037 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1038 m_freem(rte->m); 1039 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1040 free(rte, M_MRTABLE); 1041 } 1042 1043 LIST_REMOVE(rt, mfc_hash); 1044 free(rt, M_MRTABLE); 1045 } 1046 1047 /* 1048 * Add an mfc entry 1049 */ 1050 static int 1051 add_mfc(struct mfcctl2 *mfccp) 1052 { 1053 struct mfc *rt; 1054 struct rtdetq *rte, *nrte; 1055 u_long hash = 0; 1056 u_short nstl; 1057 1058 VIF_LOCK(); 1059 MFC_LOCK(); 1060 1061 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1062 1063 /* If an entry already exists, just update the fields */ 1064 if (rt) { 1065 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1066 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1067 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1068 mfccp->mfcc_parent); 1069 update_mfc_params(rt, mfccp); 1070 MFC_UNLOCK(); 1071 VIF_UNLOCK(); 1072 return (0); 1073 } 1074 1075 /* 1076 * Find the entry for which the upcall was made and update 1077 */ 1078 nstl = 0; 1079 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1080 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1081 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1082 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1083 !TAILQ_EMPTY(&rt->mfc_stall)) { 1084 CTR5(KTR_IPMF, 1085 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1086 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1087 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1088 mfccp->mfcc_parent, 1089 TAILQ_FIRST(&rt->mfc_stall)); 1090 if (nstl++) 1091 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1092 1093 init_mfc_params(rt, mfccp); 1094 rt->mfc_expire = 0; /* Don't clean this guy up */ 1095 V_nexpire[hash]--; 1096 1097 /* Free queued packets, but attempt to forward them first. */ 1098 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1099 if (rte->ifp != NULL) 1100 ip_mdq(rte->m, rte->ifp, rt, -1); 1101 m_freem(rte->m); 1102 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1103 rt->mfc_nstall--; 1104 free(rte, M_MRTABLE); 1105 } 1106 } 1107 } 1108 1109 /* 1110 * It is possible that an entry is being inserted without an upcall 1111 */ 1112 if (nstl == 0) { 1113 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1114 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1115 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1116 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1117 init_mfc_params(rt, mfccp); 1118 if (rt->mfc_expire) 1119 V_nexpire[hash]--; 1120 rt->mfc_expire = 0; 1121 break; /* XXX */ 1122 } 1123 } 1124 1125 if (rt == NULL) { /* no upcall, so make a new entry */ 1126 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1127 if (rt == NULL) { 1128 MFC_UNLOCK(); 1129 VIF_UNLOCK(); 1130 return (ENOBUFS); 1131 } 1132 1133 init_mfc_params(rt, mfccp); 1134 TAILQ_INIT(&rt->mfc_stall); 1135 rt->mfc_nstall = 0; 1136 1137 rt->mfc_expire = 0; 1138 rt->mfc_bw_meter = NULL; 1139 1140 /* insert new entry at head of hash chain */ 1141 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1142 } 1143 } 1144 1145 MFC_UNLOCK(); 1146 VIF_UNLOCK(); 1147 1148 return (0); 1149 } 1150 1151 /* 1152 * Delete an mfc entry 1153 */ 1154 static int 1155 del_mfc(struct mfcctl2 *mfccp) 1156 { 1157 struct in_addr origin; 1158 struct in_addr mcastgrp; 1159 struct mfc *rt; 1160 1161 origin = mfccp->mfcc_origin; 1162 mcastgrp = mfccp->mfcc_mcastgrp; 1163 1164 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1165 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1166 1167 MFC_LOCK(); 1168 1169 rt = mfc_find(&origin, &mcastgrp); 1170 if (rt == NULL) { 1171 MFC_UNLOCK(); 1172 return EADDRNOTAVAIL; 1173 } 1174 1175 /* 1176 * free the bw_meter entries 1177 */ 1178 free_bw_list(rt->mfc_bw_meter); 1179 rt->mfc_bw_meter = NULL; 1180 1181 LIST_REMOVE(rt, mfc_hash); 1182 free(rt, M_MRTABLE); 1183 1184 MFC_UNLOCK(); 1185 1186 return (0); 1187 } 1188 1189 /* 1190 * Send a message to the routing daemon on the multicast routing socket. 1191 */ 1192 static int 1193 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1194 { 1195 if (s) { 1196 SOCKBUF_LOCK(&s->so_rcv); 1197 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1198 NULL) != 0) { 1199 sorwakeup_locked(s); 1200 return 0; 1201 } 1202 SOCKBUF_UNLOCK(&s->so_rcv); 1203 } 1204 m_freem(mm); 1205 return -1; 1206 } 1207 1208 /* 1209 * IP multicast forwarding function. This function assumes that the packet 1210 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1211 * pointed to by "ifp", and the packet is to be relayed to other networks 1212 * that have members of the packet's destination IP multicast group. 1213 * 1214 * The packet is returned unscathed to the caller, unless it is 1215 * erroneous, in which case a non-zero return value tells the caller to 1216 * discard it. 1217 */ 1218 1219 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1220 1221 static int 1222 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1223 struct ip_moptions *imo) 1224 { 1225 struct mfc *rt; 1226 int error; 1227 vifi_t vifi; 1228 1229 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1230 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1231 1232 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1233 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1234 /* 1235 * Packet arrived via a physical interface or 1236 * an encapsulated tunnel or a register_vif. 1237 */ 1238 } else { 1239 /* 1240 * Packet arrived through a source-route tunnel. 1241 * Source-route tunnels are no longer supported. 1242 */ 1243 return (1); 1244 } 1245 1246 VIF_LOCK(); 1247 MFC_LOCK(); 1248 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1249 if (ip->ip_ttl < MAXTTL) 1250 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1251 error = ip_mdq(m, ifp, NULL, vifi); 1252 MFC_UNLOCK(); 1253 VIF_UNLOCK(); 1254 return error; 1255 } 1256 1257 /* 1258 * Don't forward a packet with time-to-live of zero or one, 1259 * or a packet destined to a local-only group. 1260 */ 1261 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1262 MFC_UNLOCK(); 1263 VIF_UNLOCK(); 1264 return 0; 1265 } 1266 1267 /* 1268 * Determine forwarding vifs from the forwarding cache table 1269 */ 1270 MRTSTAT_INC(mrts_mfc_lookups); 1271 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1272 1273 /* Entry exists, so forward if necessary */ 1274 if (rt != NULL) { 1275 error = ip_mdq(m, ifp, rt, -1); 1276 MFC_UNLOCK(); 1277 VIF_UNLOCK(); 1278 return error; 1279 } else { 1280 /* 1281 * If we don't have a route for packet's origin, 1282 * Make a copy of the packet & send message to routing daemon 1283 */ 1284 1285 struct mbuf *mb0; 1286 struct rtdetq *rte; 1287 u_long hash; 1288 int hlen = ip->ip_hl << 2; 1289 1290 MRTSTAT_INC(mrts_mfc_misses); 1291 MRTSTAT_INC(mrts_no_route); 1292 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1293 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1294 1295 /* 1296 * Allocate mbufs early so that we don't do extra work if we are 1297 * just going to fail anyway. Make sure to pullup the header so 1298 * that other people can't step on it. 1299 */ 1300 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1301 M_NOWAIT|M_ZERO); 1302 if (rte == NULL) { 1303 MFC_UNLOCK(); 1304 VIF_UNLOCK(); 1305 return ENOBUFS; 1306 } 1307 1308 mb0 = m_copypacket(m, M_NOWAIT); 1309 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1310 mb0 = m_pullup(mb0, hlen); 1311 if (mb0 == NULL) { 1312 free(rte, M_MRTABLE); 1313 MFC_UNLOCK(); 1314 VIF_UNLOCK(); 1315 return ENOBUFS; 1316 } 1317 1318 /* is there an upcall waiting for this flow ? */ 1319 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1320 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1321 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1322 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1323 !TAILQ_EMPTY(&rt->mfc_stall)) 1324 break; 1325 } 1326 1327 if (rt == NULL) { 1328 int i; 1329 struct igmpmsg *im; 1330 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1331 struct mbuf *mm; 1332 1333 /* 1334 * Locate the vifi for the incoming interface for this packet. 1335 * If none found, drop packet. 1336 */ 1337 for (vifi = 0; vifi < V_numvifs && 1338 V_viftable[vifi].v_ifp != ifp; vifi++) 1339 ; 1340 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1341 goto non_fatal; 1342 1343 /* no upcall, so make a new entry */ 1344 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1345 if (rt == NULL) 1346 goto fail; 1347 1348 /* Make a copy of the header to send to the user level process */ 1349 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1350 if (mm == NULL) 1351 goto fail1; 1352 1353 /* 1354 * Send message to routing daemon to install 1355 * a route into the kernel table 1356 */ 1357 1358 im = mtod(mm, struct igmpmsg *); 1359 im->im_msgtype = IGMPMSG_NOCACHE; 1360 im->im_mbz = 0; 1361 im->im_vif = vifi; 1362 1363 MRTSTAT_INC(mrts_upcalls); 1364 1365 k_igmpsrc.sin_addr = ip->ip_src; 1366 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1367 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1368 MRTSTAT_INC(mrts_upq_sockfull); 1369 fail1: 1370 free(rt, M_MRTABLE); 1371 fail: 1372 free(rte, M_MRTABLE); 1373 m_freem(mb0); 1374 MFC_UNLOCK(); 1375 VIF_UNLOCK(); 1376 return ENOBUFS; 1377 } 1378 1379 /* insert new entry at head of hash chain */ 1380 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1381 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1382 rt->mfc_expire = UPCALL_EXPIRE; 1383 V_nexpire[hash]++; 1384 for (i = 0; i < V_numvifs; i++) { 1385 rt->mfc_ttls[i] = 0; 1386 rt->mfc_flags[i] = 0; 1387 } 1388 rt->mfc_parent = -1; 1389 1390 /* clear the RP address */ 1391 rt->mfc_rp.s_addr = INADDR_ANY; 1392 rt->mfc_bw_meter = NULL; 1393 1394 /* initialize pkt counters per src-grp */ 1395 rt->mfc_pkt_cnt = 0; 1396 rt->mfc_byte_cnt = 0; 1397 rt->mfc_wrong_if = 0; 1398 timevalclear(&rt->mfc_last_assert); 1399 1400 TAILQ_INIT(&rt->mfc_stall); 1401 rt->mfc_nstall = 0; 1402 1403 /* link into table */ 1404 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1405 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1406 rt->mfc_nstall++; 1407 1408 } else { 1409 /* determine if queue has overflowed */ 1410 if (rt->mfc_nstall > MAX_UPQ) { 1411 MRTSTAT_INC(mrts_upq_ovflw); 1412 non_fatal: 1413 free(rte, M_MRTABLE); 1414 m_freem(mb0); 1415 MFC_UNLOCK(); 1416 VIF_UNLOCK(); 1417 return (0); 1418 } 1419 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1420 rt->mfc_nstall++; 1421 } 1422 1423 rte->m = mb0; 1424 rte->ifp = ifp; 1425 1426 MFC_UNLOCK(); 1427 VIF_UNLOCK(); 1428 1429 return 0; 1430 } 1431 } 1432 1433 /* 1434 * Clean up the cache entry if upcall is not serviced 1435 */ 1436 static void 1437 expire_upcalls(void *arg) 1438 { 1439 u_long i; 1440 1441 CURVNET_SET((struct vnet *) arg); 1442 1443 MFC_LOCK(); 1444 1445 for (i = 0; i < mfchashsize; i++) { 1446 struct mfc *rt, *nrt; 1447 1448 if (V_nexpire[i] == 0) 1449 continue; 1450 1451 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1452 if (TAILQ_EMPTY(&rt->mfc_stall)) 1453 continue; 1454 1455 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1456 continue; 1457 1458 /* 1459 * free the bw_meter entries 1460 */ 1461 while (rt->mfc_bw_meter != NULL) { 1462 struct bw_meter *x = rt->mfc_bw_meter; 1463 1464 rt->mfc_bw_meter = x->bm_mfc_next; 1465 free(x, M_BWMETER); 1466 } 1467 1468 MRTSTAT_INC(mrts_cache_cleanups); 1469 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1470 (u_long)ntohl(rt->mfc_origin.s_addr), 1471 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1472 1473 expire_mfc(rt); 1474 } 1475 } 1476 1477 MFC_UNLOCK(); 1478 1479 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1480 curvnet); 1481 1482 CURVNET_RESTORE(); 1483 } 1484 1485 /* 1486 * Packet forwarding routine once entry in the cache is made 1487 */ 1488 static int 1489 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1490 { 1491 struct ip *ip = mtod(m, struct ip *); 1492 vifi_t vifi; 1493 int plen = ntohs(ip->ip_len); 1494 1495 VIF_LOCK_ASSERT(); 1496 1497 /* 1498 * If xmt_vif is not -1, send on only the requested vif. 1499 * 1500 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1501 */ 1502 if (xmt_vif < V_numvifs) { 1503 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1504 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1505 else 1506 phyint_send(ip, V_viftable + xmt_vif, m); 1507 return 1; 1508 } 1509 1510 /* 1511 * Don't forward if it didn't arrive from the parent vif for its origin. 1512 */ 1513 vifi = rt->mfc_parent; 1514 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1515 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1516 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1517 MRTSTAT_INC(mrts_wrong_if); 1518 ++rt->mfc_wrong_if; 1519 /* 1520 * If we are doing PIM assert processing, send a message 1521 * to the routing daemon. 1522 * 1523 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1524 * can complete the SPT switch, regardless of the type 1525 * of the iif (broadcast media, GRE tunnel, etc). 1526 */ 1527 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1528 V_viftable[vifi].v_ifp) { 1529 1530 if (ifp == &V_multicast_register_if) 1531 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1532 1533 /* Get vifi for the incoming packet */ 1534 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1535 vifi++) 1536 ; 1537 if (vifi >= V_numvifs) 1538 return 0; /* The iif is not found: ignore the packet. */ 1539 1540 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1541 return 0; /* WRONGVIF disabled: ignore the packet */ 1542 1543 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1544 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1545 struct igmpmsg *im; 1546 int hlen = ip->ip_hl << 2; 1547 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1548 1549 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1550 mm = m_pullup(mm, hlen); 1551 if (mm == NULL) 1552 return ENOBUFS; 1553 1554 im = mtod(mm, struct igmpmsg *); 1555 im->im_msgtype = IGMPMSG_WRONGVIF; 1556 im->im_mbz = 0; 1557 im->im_vif = vifi; 1558 1559 MRTSTAT_INC(mrts_upcalls); 1560 1561 k_igmpsrc.sin_addr = im->im_src; 1562 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1563 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1564 MRTSTAT_INC(mrts_upq_sockfull); 1565 return ENOBUFS; 1566 } 1567 } 1568 } 1569 return 0; 1570 } 1571 1572 1573 /* If I sourced this packet, it counts as output, else it was input. */ 1574 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1575 V_viftable[vifi].v_pkt_out++; 1576 V_viftable[vifi].v_bytes_out += plen; 1577 } else { 1578 V_viftable[vifi].v_pkt_in++; 1579 V_viftable[vifi].v_bytes_in += plen; 1580 } 1581 rt->mfc_pkt_cnt++; 1582 rt->mfc_byte_cnt += plen; 1583 1584 /* 1585 * For each vif, decide if a copy of the packet should be forwarded. 1586 * Forward if: 1587 * - the ttl exceeds the vif's threshold 1588 * - there are group members downstream on interface 1589 */ 1590 for (vifi = 0; vifi < V_numvifs; vifi++) 1591 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1592 V_viftable[vifi].v_pkt_out++; 1593 V_viftable[vifi].v_bytes_out += plen; 1594 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1595 pim_register_send(ip, V_viftable + vifi, m, rt); 1596 else 1597 phyint_send(ip, V_viftable + vifi, m); 1598 } 1599 1600 /* 1601 * Perform upcall-related bw measuring. 1602 */ 1603 if (rt->mfc_bw_meter != NULL) { 1604 struct bw_meter *x; 1605 struct timeval now; 1606 1607 microtime(&now); 1608 MFC_LOCK_ASSERT(); 1609 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1610 bw_meter_receive_packet(x, plen, &now); 1611 } 1612 1613 return 0; 1614 } 1615 1616 /* 1617 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1618 */ 1619 static int 1620 X_legal_vif_num(int vif) 1621 { 1622 int ret; 1623 1624 ret = 0; 1625 if (vif < 0) 1626 return (ret); 1627 1628 VIF_LOCK(); 1629 if (vif < V_numvifs) 1630 ret = 1; 1631 VIF_UNLOCK(); 1632 1633 return (ret); 1634 } 1635 1636 /* 1637 * Return the local address used by this vif 1638 */ 1639 static u_long 1640 X_ip_mcast_src(int vifi) 1641 { 1642 in_addr_t addr; 1643 1644 addr = INADDR_ANY; 1645 if (vifi < 0) 1646 return (addr); 1647 1648 VIF_LOCK(); 1649 if (vifi < V_numvifs) 1650 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1651 VIF_UNLOCK(); 1652 1653 return (addr); 1654 } 1655 1656 static void 1657 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1658 { 1659 struct mbuf *mb_copy; 1660 int hlen = ip->ip_hl << 2; 1661 1662 VIF_LOCK_ASSERT(); 1663 1664 /* 1665 * Make a new reference to the packet; make sure that 1666 * the IP header is actually copied, not just referenced, 1667 * so that ip_output() only scribbles on the copy. 1668 */ 1669 mb_copy = m_copypacket(m, M_NOWAIT); 1670 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1671 mb_copy = m_pullup(mb_copy, hlen); 1672 if (mb_copy == NULL) 1673 return; 1674 1675 send_packet(vifp, mb_copy); 1676 } 1677 1678 static void 1679 send_packet(struct vif *vifp, struct mbuf *m) 1680 { 1681 struct ip_moptions imo; 1682 struct in_multi *imm[2]; 1683 int error; 1684 1685 VIF_LOCK_ASSERT(); 1686 1687 imo.imo_multicast_ifp = vifp->v_ifp; 1688 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1689 imo.imo_multicast_loop = 1; 1690 imo.imo_multicast_vif = -1; 1691 imo.imo_num_memberships = 0; 1692 imo.imo_max_memberships = 2; 1693 imo.imo_membership = &imm[0]; 1694 1695 /* 1696 * Re-entrancy should not be a problem here, because 1697 * the packets that we send out and are looped back at us 1698 * should get rejected because they appear to come from 1699 * the loopback interface, thus preventing looping. 1700 */ 1701 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1702 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1703 (ptrdiff_t)(vifp - V_viftable), error); 1704 } 1705 1706 /* 1707 * Stubs for old RSVP socket shim implementation. 1708 */ 1709 1710 static int 1711 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1712 { 1713 1714 return (EOPNOTSUPP); 1715 } 1716 1717 static void 1718 X_ip_rsvp_force_done(struct socket *so __unused) 1719 { 1720 1721 } 1722 1723 static int 1724 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1725 { 1726 struct mbuf *m; 1727 1728 m = *mp; 1729 *mp = NULL; 1730 if (!V_rsvp_on) 1731 m_freem(m); 1732 return (IPPROTO_DONE); 1733 } 1734 1735 /* 1736 * Code for bandwidth monitors 1737 */ 1738 1739 /* 1740 * Define common interface for timeval-related methods 1741 */ 1742 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1743 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1744 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1745 1746 static uint32_t 1747 compute_bw_meter_flags(struct bw_upcall *req) 1748 { 1749 uint32_t flags = 0; 1750 1751 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1752 flags |= BW_METER_UNIT_PACKETS; 1753 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1754 flags |= BW_METER_UNIT_BYTES; 1755 if (req->bu_flags & BW_UPCALL_GEQ) 1756 flags |= BW_METER_GEQ; 1757 if (req->bu_flags & BW_UPCALL_LEQ) 1758 flags |= BW_METER_LEQ; 1759 1760 return flags; 1761 } 1762 1763 /* 1764 * Add a bw_meter entry 1765 */ 1766 static int 1767 add_bw_upcall(struct bw_upcall *req) 1768 { 1769 struct mfc *mfc; 1770 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1771 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1772 struct timeval now; 1773 struct bw_meter *x; 1774 uint32_t flags; 1775 1776 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1777 return EOPNOTSUPP; 1778 1779 /* Test if the flags are valid */ 1780 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1781 return EINVAL; 1782 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1783 return EINVAL; 1784 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1785 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1786 return EINVAL; 1787 1788 /* Test if the threshold time interval is valid */ 1789 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1790 return EINVAL; 1791 1792 flags = compute_bw_meter_flags(req); 1793 1794 /* 1795 * Find if we have already same bw_meter entry 1796 */ 1797 MFC_LOCK(); 1798 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1799 if (mfc == NULL) { 1800 MFC_UNLOCK(); 1801 return EADDRNOTAVAIL; 1802 } 1803 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1804 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1805 &req->bu_threshold.b_time, ==)) && 1806 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1807 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1808 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1809 MFC_UNLOCK(); 1810 return 0; /* XXX Already installed */ 1811 } 1812 } 1813 1814 /* Allocate the new bw_meter entry */ 1815 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1816 if (x == NULL) { 1817 MFC_UNLOCK(); 1818 return ENOBUFS; 1819 } 1820 1821 /* Set the new bw_meter entry */ 1822 x->bm_threshold.b_time = req->bu_threshold.b_time; 1823 microtime(&now); 1824 x->bm_start_time = now; 1825 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1826 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1827 x->bm_measured.b_packets = 0; 1828 x->bm_measured.b_bytes = 0; 1829 x->bm_flags = flags; 1830 x->bm_time_next = NULL; 1831 x->bm_time_hash = BW_METER_BUCKETS; 1832 1833 /* Add the new bw_meter entry to the front of entries for this MFC */ 1834 x->bm_mfc = mfc; 1835 x->bm_mfc_next = mfc->mfc_bw_meter; 1836 mfc->mfc_bw_meter = x; 1837 schedule_bw_meter(x, &now); 1838 MFC_UNLOCK(); 1839 1840 return 0; 1841 } 1842 1843 static void 1844 free_bw_list(struct bw_meter *list) 1845 { 1846 while (list != NULL) { 1847 struct bw_meter *x = list; 1848 1849 list = list->bm_mfc_next; 1850 unschedule_bw_meter(x); 1851 free(x, M_BWMETER); 1852 } 1853 } 1854 1855 /* 1856 * Delete one or multiple bw_meter entries 1857 */ 1858 static int 1859 del_bw_upcall(struct bw_upcall *req) 1860 { 1861 struct mfc *mfc; 1862 struct bw_meter *x; 1863 1864 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1865 return EOPNOTSUPP; 1866 1867 MFC_LOCK(); 1868 1869 /* Find the corresponding MFC entry */ 1870 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1871 if (mfc == NULL) { 1872 MFC_UNLOCK(); 1873 return EADDRNOTAVAIL; 1874 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1875 /* 1876 * Delete all bw_meter entries for this mfc 1877 */ 1878 struct bw_meter *list; 1879 1880 list = mfc->mfc_bw_meter; 1881 mfc->mfc_bw_meter = NULL; 1882 free_bw_list(list); 1883 MFC_UNLOCK(); 1884 return 0; 1885 } else { /* Delete a single bw_meter entry */ 1886 struct bw_meter *prev; 1887 uint32_t flags = 0; 1888 1889 flags = compute_bw_meter_flags(req); 1890 1891 /* Find the bw_meter entry to delete */ 1892 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1893 prev = x, x = x->bm_mfc_next) { 1894 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1895 &req->bu_threshold.b_time, ==)) && 1896 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1897 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1898 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1899 break; 1900 } 1901 if (x != NULL) { /* Delete entry from the list for this MFC */ 1902 if (prev != NULL) 1903 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1904 else 1905 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1906 1907 unschedule_bw_meter(x); 1908 MFC_UNLOCK(); 1909 /* Free the bw_meter entry */ 1910 free(x, M_BWMETER); 1911 return 0; 1912 } else { 1913 MFC_UNLOCK(); 1914 return EINVAL; 1915 } 1916 } 1917 /* NOTREACHED */ 1918 } 1919 1920 /* 1921 * Perform bandwidth measurement processing that may result in an upcall 1922 */ 1923 static void 1924 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1925 { 1926 struct timeval delta; 1927 1928 MFC_LOCK_ASSERT(); 1929 1930 delta = *nowp; 1931 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1932 1933 if (x->bm_flags & BW_METER_GEQ) { 1934 /* 1935 * Processing for ">=" type of bw_meter entry 1936 */ 1937 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1938 /* Reset the bw_meter entry */ 1939 x->bm_start_time = *nowp; 1940 x->bm_measured.b_packets = 0; 1941 x->bm_measured.b_bytes = 0; 1942 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1943 } 1944 1945 /* Record that a packet is received */ 1946 x->bm_measured.b_packets++; 1947 x->bm_measured.b_bytes += plen; 1948 1949 /* 1950 * Test if we should deliver an upcall 1951 */ 1952 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1953 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1954 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1955 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1956 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1957 /* Prepare an upcall for delivery */ 1958 bw_meter_prepare_upcall(x, nowp); 1959 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1960 } 1961 } 1962 } else if (x->bm_flags & BW_METER_LEQ) { 1963 /* 1964 * Processing for "<=" type of bw_meter entry 1965 */ 1966 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1967 /* 1968 * We are behind time with the multicast forwarding table 1969 * scanning for "<=" type of bw_meter entries, so test now 1970 * if we should deliver an upcall. 1971 */ 1972 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1973 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1974 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1975 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1976 /* Prepare an upcall for delivery */ 1977 bw_meter_prepare_upcall(x, nowp); 1978 } 1979 /* Reschedule the bw_meter entry */ 1980 unschedule_bw_meter(x); 1981 schedule_bw_meter(x, nowp); 1982 } 1983 1984 /* Record that a packet is received */ 1985 x->bm_measured.b_packets++; 1986 x->bm_measured.b_bytes += plen; 1987 1988 /* 1989 * Test if we should restart the measuring interval 1990 */ 1991 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1992 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1993 (x->bm_flags & BW_METER_UNIT_BYTES && 1994 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1995 /* Don't restart the measuring interval */ 1996 } else { 1997 /* Do restart the measuring interval */ 1998 /* 1999 * XXX: note that we don't unschedule and schedule, because this 2000 * might be too much overhead per packet. Instead, when we process 2001 * all entries for a given timer hash bin, we check whether it is 2002 * really a timeout. If not, we reschedule at that time. 2003 */ 2004 x->bm_start_time = *nowp; 2005 x->bm_measured.b_packets = 0; 2006 x->bm_measured.b_bytes = 0; 2007 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2008 } 2009 } 2010 } 2011 2012 /* 2013 * Prepare a bandwidth-related upcall 2014 */ 2015 static void 2016 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2017 { 2018 struct timeval delta; 2019 struct bw_upcall *u; 2020 2021 MFC_LOCK_ASSERT(); 2022 2023 /* 2024 * Compute the measured time interval 2025 */ 2026 delta = *nowp; 2027 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2028 2029 /* 2030 * If there are too many pending upcalls, deliver them now 2031 */ 2032 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2033 bw_upcalls_send(); 2034 2035 /* 2036 * Set the bw_upcall entry 2037 */ 2038 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2039 u->bu_src = x->bm_mfc->mfc_origin; 2040 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2041 u->bu_threshold.b_time = x->bm_threshold.b_time; 2042 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2043 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2044 u->bu_measured.b_time = delta; 2045 u->bu_measured.b_packets = x->bm_measured.b_packets; 2046 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2047 u->bu_flags = 0; 2048 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2049 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2050 if (x->bm_flags & BW_METER_UNIT_BYTES) 2051 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2052 if (x->bm_flags & BW_METER_GEQ) 2053 u->bu_flags |= BW_UPCALL_GEQ; 2054 if (x->bm_flags & BW_METER_LEQ) 2055 u->bu_flags |= BW_UPCALL_LEQ; 2056 } 2057 2058 /* 2059 * Send the pending bandwidth-related upcalls 2060 */ 2061 static void 2062 bw_upcalls_send(void) 2063 { 2064 struct mbuf *m; 2065 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2066 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2067 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2068 0, /* unused2 */ 2069 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2070 0, /* im_mbz */ 2071 0, /* im_vif */ 2072 0, /* unused3 */ 2073 { 0 }, /* im_src */ 2074 { 0 } }; /* im_dst */ 2075 2076 MFC_LOCK_ASSERT(); 2077 2078 if (V_bw_upcalls_n == 0) 2079 return; /* No pending upcalls */ 2080 2081 V_bw_upcalls_n = 0; 2082 2083 /* 2084 * Allocate a new mbuf, initialize it with the header and 2085 * the payload for the pending calls. 2086 */ 2087 m = m_gethdr(M_NOWAIT, MT_DATA); 2088 if (m == NULL) { 2089 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2090 return; 2091 } 2092 2093 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2094 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2095 2096 /* 2097 * Send the upcalls 2098 * XXX do we need to set the address in k_igmpsrc ? 2099 */ 2100 MRTSTAT_INC(mrts_upcalls); 2101 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2102 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2103 MRTSTAT_INC(mrts_upq_sockfull); 2104 } 2105 } 2106 2107 /* 2108 * Compute the timeout hash value for the bw_meter entries 2109 */ 2110 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2111 do { \ 2112 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2113 \ 2114 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2115 (hash) = next_timeval.tv_sec; \ 2116 if (next_timeval.tv_usec) \ 2117 (hash)++; /* XXX: make sure we don't timeout early */ \ 2118 (hash) %= BW_METER_BUCKETS; \ 2119 } while (0) 2120 2121 /* 2122 * Schedule a timer to process periodically bw_meter entry of type "<=" 2123 * by linking the entry in the proper hash bucket. 2124 */ 2125 static void 2126 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2127 { 2128 int time_hash; 2129 2130 MFC_LOCK_ASSERT(); 2131 2132 if (!(x->bm_flags & BW_METER_LEQ)) 2133 return; /* XXX: we schedule timers only for "<=" entries */ 2134 2135 /* 2136 * Reset the bw_meter entry 2137 */ 2138 x->bm_start_time = *nowp; 2139 x->bm_measured.b_packets = 0; 2140 x->bm_measured.b_bytes = 0; 2141 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2142 2143 /* 2144 * Compute the timeout hash value and insert the entry 2145 */ 2146 BW_METER_TIMEHASH(x, time_hash); 2147 x->bm_time_next = V_bw_meter_timers[time_hash]; 2148 V_bw_meter_timers[time_hash] = x; 2149 x->bm_time_hash = time_hash; 2150 } 2151 2152 /* 2153 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2154 * by removing the entry from the proper hash bucket. 2155 */ 2156 static void 2157 unschedule_bw_meter(struct bw_meter *x) 2158 { 2159 int time_hash; 2160 struct bw_meter *prev, *tmp; 2161 2162 MFC_LOCK_ASSERT(); 2163 2164 if (!(x->bm_flags & BW_METER_LEQ)) 2165 return; /* XXX: we schedule timers only for "<=" entries */ 2166 2167 /* 2168 * Compute the timeout hash value and delete the entry 2169 */ 2170 time_hash = x->bm_time_hash; 2171 if (time_hash >= BW_METER_BUCKETS) 2172 return; /* Entry was not scheduled */ 2173 2174 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2175 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2176 if (tmp == x) 2177 break; 2178 2179 if (tmp == NULL) 2180 panic("unschedule_bw_meter: bw_meter entry not found"); 2181 2182 if (prev != NULL) 2183 prev->bm_time_next = x->bm_time_next; 2184 else 2185 V_bw_meter_timers[time_hash] = x->bm_time_next; 2186 2187 x->bm_time_next = NULL; 2188 x->bm_time_hash = BW_METER_BUCKETS; 2189 } 2190 2191 2192 /* 2193 * Process all "<=" type of bw_meter that should be processed now, 2194 * and for each entry prepare an upcall if necessary. Each processed 2195 * entry is rescheduled again for the (periodic) processing. 2196 * 2197 * This is run periodically (once per second normally). On each round, 2198 * all the potentially matching entries are in the hash slot that we are 2199 * looking at. 2200 */ 2201 static void 2202 bw_meter_process() 2203 { 2204 uint32_t loops; 2205 int i; 2206 struct timeval now, process_endtime; 2207 2208 microtime(&now); 2209 if (V_last_tv_sec == now.tv_sec) 2210 return; /* nothing to do */ 2211 2212 loops = now.tv_sec - V_last_tv_sec; 2213 V_last_tv_sec = now.tv_sec; 2214 if (loops > BW_METER_BUCKETS) 2215 loops = BW_METER_BUCKETS; 2216 2217 MFC_LOCK(); 2218 /* 2219 * Process all bins of bw_meter entries from the one after the last 2220 * processed to the current one. On entry, i points to the last bucket 2221 * visited, so we need to increment i at the beginning of the loop. 2222 */ 2223 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2224 struct bw_meter *x, *tmp_list; 2225 2226 if (++i >= BW_METER_BUCKETS) 2227 i = 0; 2228 2229 /* Disconnect the list of bw_meter entries from the bin */ 2230 tmp_list = V_bw_meter_timers[i]; 2231 V_bw_meter_timers[i] = NULL; 2232 2233 /* Process the list of bw_meter entries */ 2234 while (tmp_list != NULL) { 2235 x = tmp_list; 2236 tmp_list = tmp_list->bm_time_next; 2237 2238 /* Test if the time interval is over */ 2239 process_endtime = x->bm_start_time; 2240 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2241 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2242 /* Not yet: reschedule, but don't reset */ 2243 int time_hash; 2244 2245 BW_METER_TIMEHASH(x, time_hash); 2246 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2247 /* 2248 * XXX: somehow the bin processing is a bit ahead of time. 2249 * Put the entry in the next bin. 2250 */ 2251 if (++time_hash >= BW_METER_BUCKETS) 2252 time_hash = 0; 2253 } 2254 x->bm_time_next = V_bw_meter_timers[time_hash]; 2255 V_bw_meter_timers[time_hash] = x; 2256 x->bm_time_hash = time_hash; 2257 2258 continue; 2259 } 2260 2261 /* 2262 * Test if we should deliver an upcall 2263 */ 2264 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2265 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2266 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2267 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2268 /* Prepare an upcall for delivery */ 2269 bw_meter_prepare_upcall(x, &now); 2270 } 2271 2272 /* 2273 * Reschedule for next processing 2274 */ 2275 schedule_bw_meter(x, &now); 2276 } 2277 } 2278 2279 /* Send all upcalls that are pending delivery */ 2280 bw_upcalls_send(); 2281 2282 MFC_UNLOCK(); 2283 } 2284 2285 /* 2286 * A periodic function for sending all upcalls that are pending delivery 2287 */ 2288 static void 2289 expire_bw_upcalls_send(void *arg) 2290 { 2291 CURVNET_SET((struct vnet *) arg); 2292 2293 MFC_LOCK(); 2294 bw_upcalls_send(); 2295 MFC_UNLOCK(); 2296 2297 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2298 curvnet); 2299 CURVNET_RESTORE(); 2300 } 2301 2302 /* 2303 * A periodic function for periodic scanning of the multicast forwarding 2304 * table for processing all "<=" bw_meter entries. 2305 */ 2306 static void 2307 expire_bw_meter_process(void *arg) 2308 { 2309 CURVNET_SET((struct vnet *) arg); 2310 2311 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2312 bw_meter_process(); 2313 2314 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2315 curvnet); 2316 CURVNET_RESTORE(); 2317 } 2318 2319 /* 2320 * End of bandwidth monitoring code 2321 */ 2322 2323 /* 2324 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2325 * 2326 */ 2327 static int 2328 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2329 struct mfc *rt) 2330 { 2331 struct mbuf *mb_copy, *mm; 2332 2333 /* 2334 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2335 * rendezvous point was unspecified, and we were told not to. 2336 */ 2337 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2338 in_nullhost(rt->mfc_rp)) 2339 return 0; 2340 2341 mb_copy = pim_register_prepare(ip, m); 2342 if (mb_copy == NULL) 2343 return ENOBUFS; 2344 2345 /* 2346 * Send all the fragments. Note that the mbuf for each fragment 2347 * is freed by the sending machinery. 2348 */ 2349 for (mm = mb_copy; mm; mm = mb_copy) { 2350 mb_copy = mm->m_nextpkt; 2351 mm->m_nextpkt = 0; 2352 mm = m_pullup(mm, sizeof(struct ip)); 2353 if (mm != NULL) { 2354 ip = mtod(mm, struct ip *); 2355 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2356 pim_register_send_rp(ip, vifp, mm, rt); 2357 } else { 2358 pim_register_send_upcall(ip, vifp, mm, rt); 2359 } 2360 } 2361 } 2362 2363 return 0; 2364 } 2365 2366 /* 2367 * Return a copy of the data packet that is ready for PIM Register 2368 * encapsulation. 2369 * XXX: Note that in the returned copy the IP header is a valid one. 2370 */ 2371 static struct mbuf * 2372 pim_register_prepare(struct ip *ip, struct mbuf *m) 2373 { 2374 struct mbuf *mb_copy = NULL; 2375 int mtu; 2376 2377 /* Take care of delayed checksums */ 2378 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2379 in_delayed_cksum(m); 2380 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2381 } 2382 2383 /* 2384 * Copy the old packet & pullup its IP header into the 2385 * new mbuf so we can modify it. 2386 */ 2387 mb_copy = m_copypacket(m, M_NOWAIT); 2388 if (mb_copy == NULL) 2389 return NULL; 2390 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2391 if (mb_copy == NULL) 2392 return NULL; 2393 2394 /* take care of the TTL */ 2395 ip = mtod(mb_copy, struct ip *); 2396 --ip->ip_ttl; 2397 2398 /* Compute the MTU after the PIM Register encapsulation */ 2399 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2400 2401 if (ntohs(ip->ip_len) <= mtu) { 2402 /* Turn the IP header into a valid one */ 2403 ip->ip_sum = 0; 2404 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2405 } else { 2406 /* Fragment the packet */ 2407 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2408 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2409 m_freem(mb_copy); 2410 return NULL; 2411 } 2412 } 2413 return mb_copy; 2414 } 2415 2416 /* 2417 * Send an upcall with the data packet to the user-level process. 2418 */ 2419 static int 2420 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2421 struct mbuf *mb_copy, struct mfc *rt) 2422 { 2423 struct mbuf *mb_first; 2424 int len = ntohs(ip->ip_len); 2425 struct igmpmsg *im; 2426 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2427 2428 VIF_LOCK_ASSERT(); 2429 2430 /* 2431 * Add a new mbuf with an upcall header 2432 */ 2433 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2434 if (mb_first == NULL) { 2435 m_freem(mb_copy); 2436 return ENOBUFS; 2437 } 2438 mb_first->m_data += max_linkhdr; 2439 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2440 mb_first->m_len = sizeof(struct igmpmsg); 2441 mb_first->m_next = mb_copy; 2442 2443 /* Send message to routing daemon */ 2444 im = mtod(mb_first, struct igmpmsg *); 2445 im->im_msgtype = IGMPMSG_WHOLEPKT; 2446 im->im_mbz = 0; 2447 im->im_vif = vifp - V_viftable; 2448 im->im_src = ip->ip_src; 2449 im->im_dst = ip->ip_dst; 2450 2451 k_igmpsrc.sin_addr = ip->ip_src; 2452 2453 MRTSTAT_INC(mrts_upcalls); 2454 2455 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2456 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2457 MRTSTAT_INC(mrts_upq_sockfull); 2458 return ENOBUFS; 2459 } 2460 2461 /* Keep statistics */ 2462 PIMSTAT_INC(pims_snd_registers_msgs); 2463 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2464 2465 return 0; 2466 } 2467 2468 /* 2469 * Encapsulate the data packet in PIM Register message and send it to the RP. 2470 */ 2471 static int 2472 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2473 struct mfc *rt) 2474 { 2475 struct mbuf *mb_first; 2476 struct ip *ip_outer; 2477 struct pim_encap_pimhdr *pimhdr; 2478 int len = ntohs(ip->ip_len); 2479 vifi_t vifi = rt->mfc_parent; 2480 2481 VIF_LOCK_ASSERT(); 2482 2483 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2484 m_freem(mb_copy); 2485 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2486 } 2487 2488 /* 2489 * Add a new mbuf with the encapsulating header 2490 */ 2491 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2492 if (mb_first == NULL) { 2493 m_freem(mb_copy); 2494 return ENOBUFS; 2495 } 2496 mb_first->m_data += max_linkhdr; 2497 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2498 mb_first->m_next = mb_copy; 2499 2500 mb_first->m_pkthdr.len = len + mb_first->m_len; 2501 2502 /* 2503 * Fill in the encapsulating IP and PIM header 2504 */ 2505 ip_outer = mtod(mb_first, struct ip *); 2506 *ip_outer = pim_encap_iphdr; 2507 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2508 sizeof(pim_encap_pimhdr)); 2509 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2510 ip_outer->ip_dst = rt->mfc_rp; 2511 /* 2512 * Copy the inner header TOS to the outer header, and take care of the 2513 * IP_DF bit. 2514 */ 2515 ip_outer->ip_tos = ip->ip_tos; 2516 if (ip->ip_off & htons(IP_DF)) 2517 ip_outer->ip_off |= htons(IP_DF); 2518 ip_fillid(ip_outer); 2519 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2520 + sizeof(pim_encap_iphdr)); 2521 *pimhdr = pim_encap_pimhdr; 2522 /* If the iif crosses a border, set the Border-bit */ 2523 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2524 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2525 2526 mb_first->m_data += sizeof(pim_encap_iphdr); 2527 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2528 mb_first->m_data -= sizeof(pim_encap_iphdr); 2529 2530 send_packet(vifp, mb_first); 2531 2532 /* Keep statistics */ 2533 PIMSTAT_INC(pims_snd_registers_msgs); 2534 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2535 2536 return 0; 2537 } 2538 2539 /* 2540 * pim_encapcheck() is called by the encap4_input() path at runtime to 2541 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2542 * into the kernel. 2543 */ 2544 static int 2545 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2546 { 2547 2548 #ifdef DIAGNOSTIC 2549 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2550 #endif 2551 if (proto != IPPROTO_PIM) 2552 return 0; /* not for us; reject the datagram. */ 2553 2554 return 64; /* claim the datagram. */ 2555 } 2556 2557 /* 2558 * PIM-SMv2 and PIM-DM messages processing. 2559 * Receives and verifies the PIM control messages, and passes them 2560 * up to the listening socket, using rip_input(). 2561 * The only message with special processing is the PIM_REGISTER message 2562 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2563 * is passed to if_simloop(). 2564 */ 2565 int 2566 pim_input(struct mbuf **mp, int *offp, int proto) 2567 { 2568 struct mbuf *m = *mp; 2569 struct ip *ip = mtod(m, struct ip *); 2570 struct pim *pim; 2571 int iphlen = *offp; 2572 int minlen; 2573 int datalen = ntohs(ip->ip_len) - iphlen; 2574 int ip_tos; 2575 2576 *mp = NULL; 2577 2578 /* Keep statistics */ 2579 PIMSTAT_INC(pims_rcv_total_msgs); 2580 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2581 2582 /* 2583 * Validate lengths 2584 */ 2585 if (datalen < PIM_MINLEN) { 2586 PIMSTAT_INC(pims_rcv_tooshort); 2587 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2588 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2589 m_freem(m); 2590 return (IPPROTO_DONE); 2591 } 2592 2593 /* 2594 * If the packet is at least as big as a REGISTER, go agead 2595 * and grab the PIM REGISTER header size, to avoid another 2596 * possible m_pullup() later. 2597 * 2598 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2599 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2600 */ 2601 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2602 /* 2603 * Get the IP and PIM headers in contiguous memory, and 2604 * possibly the PIM REGISTER header. 2605 */ 2606 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2607 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2608 return (IPPROTO_DONE); 2609 } 2610 2611 /* m_pullup() may have given us a new mbuf so reset ip. */ 2612 ip = mtod(m, struct ip *); 2613 ip_tos = ip->ip_tos; 2614 2615 /* adjust mbuf to point to the PIM header */ 2616 m->m_data += iphlen; 2617 m->m_len -= iphlen; 2618 pim = mtod(m, struct pim *); 2619 2620 /* 2621 * Validate checksum. If PIM REGISTER, exclude the data packet. 2622 * 2623 * XXX: some older PIMv2 implementations don't make this distinction, 2624 * so for compatibility reason perform the checksum over part of the 2625 * message, and if error, then over the whole message. 2626 */ 2627 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2628 /* do nothing, checksum okay */ 2629 } else if (in_cksum(m, datalen)) { 2630 PIMSTAT_INC(pims_rcv_badsum); 2631 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2632 m_freem(m); 2633 return (IPPROTO_DONE); 2634 } 2635 2636 /* PIM version check */ 2637 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2638 PIMSTAT_INC(pims_rcv_badversion); 2639 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2640 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2641 m_freem(m); 2642 return (IPPROTO_DONE); 2643 } 2644 2645 /* restore mbuf back to the outer IP */ 2646 m->m_data -= iphlen; 2647 m->m_len += iphlen; 2648 2649 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2650 /* 2651 * Since this is a REGISTER, we'll make a copy of the register 2652 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2653 * routing daemon. 2654 */ 2655 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2656 struct mbuf *mcp; 2657 struct ip *encap_ip; 2658 u_int32_t *reghdr; 2659 struct ifnet *vifp; 2660 2661 VIF_LOCK(); 2662 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2663 VIF_UNLOCK(); 2664 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2665 (int)V_reg_vif_num); 2666 m_freem(m); 2667 return (IPPROTO_DONE); 2668 } 2669 /* XXX need refcnt? */ 2670 vifp = V_viftable[V_reg_vif_num].v_ifp; 2671 VIF_UNLOCK(); 2672 2673 /* 2674 * Validate length 2675 */ 2676 if (datalen < PIM_REG_MINLEN) { 2677 PIMSTAT_INC(pims_rcv_tooshort); 2678 PIMSTAT_INC(pims_rcv_badregisters); 2679 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2680 m_freem(m); 2681 return (IPPROTO_DONE); 2682 } 2683 2684 reghdr = (u_int32_t *)(pim + 1); 2685 encap_ip = (struct ip *)(reghdr + 1); 2686 2687 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2688 __func__, ntohl(encap_ip->ip_src.s_addr), 2689 ntohs(encap_ip->ip_len)); 2690 2691 /* verify the version number of the inner packet */ 2692 if (encap_ip->ip_v != IPVERSION) { 2693 PIMSTAT_INC(pims_rcv_badregisters); 2694 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2695 m_freem(m); 2696 return (IPPROTO_DONE); 2697 } 2698 2699 /* verify the inner packet is destined to a mcast group */ 2700 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2701 PIMSTAT_INC(pims_rcv_badregisters); 2702 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2703 ntohl(encap_ip->ip_dst.s_addr)); 2704 m_freem(m); 2705 return (IPPROTO_DONE); 2706 } 2707 2708 /* If a NULL_REGISTER, pass it to the daemon */ 2709 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2710 goto pim_input_to_daemon; 2711 2712 /* 2713 * Copy the TOS from the outer IP header to the inner IP header. 2714 */ 2715 if (encap_ip->ip_tos != ip_tos) { 2716 /* Outer TOS -> inner TOS */ 2717 encap_ip->ip_tos = ip_tos; 2718 /* Recompute the inner header checksum. Sigh... */ 2719 2720 /* adjust mbuf to point to the inner IP header */ 2721 m->m_data += (iphlen + PIM_MINLEN); 2722 m->m_len -= (iphlen + PIM_MINLEN); 2723 2724 encap_ip->ip_sum = 0; 2725 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2726 2727 /* restore mbuf to point back to the outer IP header */ 2728 m->m_data -= (iphlen + PIM_MINLEN); 2729 m->m_len += (iphlen + PIM_MINLEN); 2730 } 2731 2732 /* 2733 * Decapsulate the inner IP packet and loopback to forward it 2734 * as a normal multicast packet. Also, make a copy of the 2735 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2736 * to pass to the daemon later, so it can take the appropriate 2737 * actions (e.g., send back PIM_REGISTER_STOP). 2738 * XXX: here m->m_data points to the outer IP header. 2739 */ 2740 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2741 if (mcp == NULL) { 2742 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2743 m_freem(m); 2744 return (IPPROTO_DONE); 2745 } 2746 2747 /* Keep statistics */ 2748 /* XXX: registers_bytes include only the encap. mcast pkt */ 2749 PIMSTAT_INC(pims_rcv_registers_msgs); 2750 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2751 2752 /* 2753 * forward the inner ip packet; point m_data at the inner ip. 2754 */ 2755 m_adj(m, iphlen + PIM_MINLEN); 2756 2757 CTR4(KTR_IPMF, 2758 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2759 __func__, 2760 (u_long)ntohl(encap_ip->ip_src.s_addr), 2761 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2762 (int)V_reg_vif_num); 2763 2764 /* NB: vifp was collected above; can it change on us? */ 2765 if_simloop(vifp, m, dst.sin_family, 0); 2766 2767 /* prepare the register head to send to the mrouting daemon */ 2768 m = mcp; 2769 } 2770 2771 pim_input_to_daemon: 2772 /* 2773 * Pass the PIM message up to the daemon; if it is a Register message, 2774 * pass the 'head' only up to the daemon. This includes the 2775 * outer IP header, PIM header, PIM-Register header and the 2776 * inner IP header. 2777 * XXX: the outer IP header pkt size of a Register is not adjust to 2778 * reflect the fact that the inner multicast data is truncated. 2779 */ 2780 *mp = m; 2781 rip_input(mp, offp, proto); 2782 2783 return (IPPROTO_DONE); 2784 } 2785 2786 static int 2787 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2788 { 2789 struct mfc *rt; 2790 int error, i; 2791 2792 if (req->newptr) 2793 return (EPERM); 2794 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2795 return (0); 2796 error = sysctl_wire_old_buffer(req, 0); 2797 if (error) 2798 return (error); 2799 2800 MFC_LOCK(); 2801 for (i = 0; i < mfchashsize; i++) { 2802 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2803 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2804 if (error) 2805 goto out_locked; 2806 } 2807 } 2808 out_locked: 2809 MFC_UNLOCK(); 2810 return (error); 2811 } 2812 2813 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2814 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2815 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2816 2817 static void 2818 vnet_mroute_init(const void *unused __unused) 2819 { 2820 2821 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2822 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 2823 callout_init(&V_expire_upcalls_ch, 1); 2824 callout_init(&V_bw_upcalls_ch, 1); 2825 callout_init(&V_bw_meter_ch, 1); 2826 } 2827 2828 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2829 NULL); 2830 2831 static void 2832 vnet_mroute_uninit(const void *unused __unused) 2833 { 2834 2835 free(V_nexpire, M_MRTABLE); 2836 V_nexpire = NULL; 2837 } 2838 2839 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2840 vnet_mroute_uninit, NULL); 2841 2842 static int 2843 ip_mroute_modevent(module_t mod, int type, void *unused) 2844 { 2845 2846 switch (type) { 2847 case MOD_LOAD: 2848 MROUTER_LOCK_INIT(); 2849 2850 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2851 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2852 if (if_detach_event_tag == NULL) { 2853 printf("ip_mroute: unable to register " 2854 "ifnet_departure_event handler\n"); 2855 MROUTER_LOCK_DESTROY(); 2856 return (EINVAL); 2857 } 2858 2859 MFC_LOCK_INIT(); 2860 VIF_LOCK_INIT(); 2861 2862 mfchashsize = MFCHASHSIZE; 2863 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2864 !powerof2(mfchashsize)) { 2865 printf("WARNING: %s not a power of 2; using default\n", 2866 "net.inet.ip.mfchashsize"); 2867 mfchashsize = MFCHASHSIZE; 2868 } 2869 2870 pim_squelch_wholepkt = 0; 2871 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2872 &pim_squelch_wholepkt); 2873 2874 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 2875 pim_encapcheck, &in_pim_protosw, NULL); 2876 if (pim_encap_cookie == NULL) { 2877 printf("ip_mroute: unable to attach pim encap\n"); 2878 VIF_LOCK_DESTROY(); 2879 MFC_LOCK_DESTROY(); 2880 MROUTER_LOCK_DESTROY(); 2881 return (EINVAL); 2882 } 2883 2884 ip_mcast_src = X_ip_mcast_src; 2885 ip_mforward = X_ip_mforward; 2886 ip_mrouter_done = X_ip_mrouter_done; 2887 ip_mrouter_get = X_ip_mrouter_get; 2888 ip_mrouter_set = X_ip_mrouter_set; 2889 2890 ip_rsvp_force_done = X_ip_rsvp_force_done; 2891 ip_rsvp_vif = X_ip_rsvp_vif; 2892 2893 legal_vif_num = X_legal_vif_num; 2894 mrt_ioctl = X_mrt_ioctl; 2895 rsvp_input_p = X_rsvp_input; 2896 break; 2897 2898 case MOD_UNLOAD: 2899 /* 2900 * Typically module unload happens after the user-level 2901 * process has shutdown the kernel services (the check 2902 * below insures someone can't just yank the module out 2903 * from under a running process). But if the module is 2904 * just loaded and then unloaded w/o starting up a user 2905 * process we still need to cleanup. 2906 */ 2907 MROUTER_LOCK(); 2908 if (ip_mrouter_cnt != 0) { 2909 MROUTER_UNLOCK(); 2910 return (EINVAL); 2911 } 2912 ip_mrouter_unloading = 1; 2913 MROUTER_UNLOCK(); 2914 2915 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2916 2917 if (pim_encap_cookie) { 2918 encap_detach(pim_encap_cookie); 2919 pim_encap_cookie = NULL; 2920 } 2921 2922 ip_mcast_src = NULL; 2923 ip_mforward = NULL; 2924 ip_mrouter_done = NULL; 2925 ip_mrouter_get = NULL; 2926 ip_mrouter_set = NULL; 2927 2928 ip_rsvp_force_done = NULL; 2929 ip_rsvp_vif = NULL; 2930 2931 legal_vif_num = NULL; 2932 mrt_ioctl = NULL; 2933 rsvp_input_p = NULL; 2934 2935 VIF_LOCK_DESTROY(); 2936 MFC_LOCK_DESTROY(); 2937 MROUTER_LOCK_DESTROY(); 2938 break; 2939 2940 default: 2941 return EOPNOTSUPP; 2942 } 2943 return 0; 2944 } 2945 2946 static moduledata_t ip_mroutemod = { 2947 "ip_mroute", 2948 ip_mroute_modevent, 2949 0 2950 }; 2951 2952 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2953