1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/types.h> 81 #include <sys/param.h> 82 #include <sys/kernel.h> 83 #include <sys/stddef.h> 84 #include <sys/condvar.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/malloc.h> 90 #include <sys/mbuf.h> 91 #include <sys/module.h> 92 #include <sys/priv.h> 93 #include <sys/protosw.h> 94 #include <sys/signalvar.h> 95 #include <sys/socket.h> 96 #include <sys/socketvar.h> 97 #include <sys/sockio.h> 98 #include <sys/sx.h> 99 #include <sys/sysctl.h> 100 #include <sys/syslog.h> 101 #include <sys/systm.h> 102 #include <sys/taskqueue.h> 103 #include <sys/time.h> 104 #include <sys/counter.h> 105 #include <machine/atomic.h> 106 107 #include <net/if.h> 108 #include <net/if_var.h> 109 #include <net/if_types.h> 110 #include <net/netisr.h> 111 #include <net/route.h> 112 #include <net/vnet.h> 113 114 #include <netinet/in.h> 115 #include <netinet/igmp.h> 116 #include <netinet/in_systm.h> 117 #include <netinet/in_var.h> 118 #include <netinet/ip.h> 119 #include <netinet/ip_encap.h> 120 #include <netinet/ip_mroute.h> 121 #include <netinet/ip_var.h> 122 #include <netinet/ip_options.h> 123 #include <netinet/pim.h> 124 #include <netinet/pim_var.h> 125 #include <netinet/udp.h> 126 127 #include <machine/in_cksum.h> 128 129 #ifndef KTR_IPMF 130 #define KTR_IPMF KTR_INET 131 #endif 132 133 #define VIFI_INVALID ((vifi_t) -1) 134 135 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 136 137 /* 138 * Locking. We use two locks: one for the virtual interface table and 139 * one for the forwarding table. These locks may be nested in which case 140 * the VIF lock must always be taken first. Note that each lock is used 141 * to cover not only the specific data structure but also related data 142 * structures. 143 */ 144 145 static struct rwlock mrouter_mtx; 146 #define MRW_RLOCK() rw_rlock(&mrouter_mtx) 147 #define MRW_WLOCK() rw_wlock(&mrouter_mtx) 148 #define MRW_RUNLOCK() rw_runlock(&mrouter_mtx) 149 #define MRW_WUNLOCK() rw_wunlock(&mrouter_mtx) 150 #define MRW_UNLOCK() rw_unlock(&mrouter_mtx) 151 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_mtx, RA_LOCKED) 152 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_mtx, RA_WLOCKED) 153 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_mtx) 154 #define MRW_WOWNED() rw_wowned(&mrouter_mtx) 155 #define MRW_LOCK_INIT() \ 156 rw_init(&mrouter_mtx, "IPv4 multicast forwarding") 157 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_mtx) 158 159 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 160 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 161 162 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 163 VNET_PCPUSTAT_SYSINIT(mrtstat); 164 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 165 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 166 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 167 "netinet/ip_mroute.h)"); 168 169 VNET_DEFINE_STATIC(u_long, mfchash); 170 #define V_mfchash VNET(mfchash) 171 #define MFCHASH(a, g) \ 172 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 173 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 174 #define MFCHASHSIZE 256 175 176 static u_long mfchashsize; /* Hash size */ 177 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 178 #define V_nexpire VNET(nexpire) 179 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 180 #define V_mfchashtbl VNET(mfchashtbl) 181 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 182 #define V_task_queue VNET(task_queue) 183 VNET_DEFINE_STATIC(struct task, task); 184 #define V_task VNET(task) 185 186 VNET_DEFINE_STATIC(vifi_t, numvifs); 187 #define V_numvifs VNET(numvifs) 188 VNET_DEFINE_STATIC(struct vif *, viftable); 189 #define V_viftable VNET(viftable) 190 191 static eventhandler_tag if_detach_event_tag = NULL; 192 193 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 194 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 195 196 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 197 #define V_buf_ring_mtx VNET(buf_ring_mtx) 198 199 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 200 #define UPCALL_EXPIRE 6 /* number of timeouts */ 201 202 /* 203 * Bandwidth meter variables and constants 204 */ 205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 206 207 /* 208 * Pending upcalls are stored in a ring which is flushed when 209 * full, or periodically 210 */ 211 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 212 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 213 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 214 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 215 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 216 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 217 218 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 219 220 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 221 VNET_PCPUSTAT_SYSINIT(pimstat); 222 VNET_PCPUSTAT_SYSUNINIT(pimstat); 223 224 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 225 "PIM"); 226 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 227 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 228 229 static u_long pim_squelch_wholepkt = 0; 230 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 231 &pim_squelch_wholepkt, 0, 232 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 233 234 static const struct encaptab *pim_encap_cookie; 235 static int pim_encapcheck(const struct mbuf *, int, int, void *); 236 static int pim_input(struct mbuf *, int, int, void *); 237 238 extern int in_mcast_loop; 239 240 static const struct encap_config ipv4_encap_cfg = { 241 .proto = IPPROTO_PIM, 242 .min_length = sizeof(struct ip) + PIM_MINLEN, 243 .exact_match = 8, 244 .check = pim_encapcheck, 245 .input = pim_input 246 }; 247 248 /* 249 * Note: the PIM Register encapsulation adds the following in front of a 250 * data packet: 251 * 252 * struct pim_encap_hdr { 253 * struct ip ip; 254 * struct pim_encap_pimhdr pim; 255 * } 256 * 257 */ 258 259 struct pim_encap_pimhdr { 260 struct pim pim; 261 uint32_t flags; 262 }; 263 #define PIM_ENCAP_TTL 64 264 265 static struct ip pim_encap_iphdr = { 266 #if BYTE_ORDER == LITTLE_ENDIAN 267 sizeof(struct ip) >> 2, 268 IPVERSION, 269 #else 270 IPVERSION, 271 sizeof(struct ip) >> 2, 272 #endif 273 0, /* tos */ 274 sizeof(struct ip), /* total length */ 275 0, /* id */ 276 0, /* frag offset */ 277 PIM_ENCAP_TTL, 278 IPPROTO_PIM, 279 0, /* checksum */ 280 }; 281 282 static struct pim_encap_pimhdr pim_encap_pimhdr = { 283 { 284 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 285 0, /* reserved */ 286 0, /* checksum */ 287 }, 288 0 /* flags */ 289 }; 290 291 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 292 #define V_reg_vif_num VNET(reg_vif_num) 293 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 294 #define V_multicast_register_if VNET(multicast_register_if) 295 296 /* 297 * Private variables. 298 */ 299 300 static u_long X_ip_mcast_src(int); 301 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 302 struct ip_moptions *); 303 static int X_ip_mrouter_done(void); 304 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 305 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 306 static int X_legal_vif_num(int); 307 static int X_mrt_ioctl(u_long, caddr_t, int); 308 309 static int add_bw_upcall(struct bw_upcall *); 310 static int add_mfc(struct mfcctl2 *); 311 static int add_vif(struct vifctl *); 312 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 313 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 314 struct timeval *); 315 static void bw_upcalls_send(void); 316 static int del_bw_upcall(struct bw_upcall *); 317 static int del_mfc(struct mfcctl2 *); 318 static int del_vif(vifi_t); 319 static int del_vif_locked(vifi_t, struct ifnet **); 320 static void expire_bw_upcalls_send(void *); 321 static void expire_mfc(struct mfc *); 322 static void expire_upcalls(void *); 323 static void free_bw_list(struct bw_meter *); 324 static int get_sg_cnt(struct sioc_sg_req *); 325 static int get_vif_cnt(struct sioc_vif_req *); 326 static void if_detached_event(void *, struct ifnet *); 327 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 328 static int ip_mrouter_init(struct socket *, int); 329 static __inline struct mfc * 330 mfc_find(struct in_addr *, struct in_addr *); 331 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 332 static struct mbuf * 333 pim_register_prepare(struct ip *, struct mbuf *); 334 static int pim_register_send(struct ip *, struct vif *, 335 struct mbuf *, struct mfc *); 336 static int pim_register_send_rp(struct ip *, struct vif *, 337 struct mbuf *, struct mfc *); 338 static int pim_register_send_upcall(struct ip *, struct vif *, 339 struct mbuf *, struct mfc *); 340 static void send_packet(struct vif *, struct mbuf *); 341 static int set_api_config(uint32_t *); 342 static int set_assert(int); 343 static int socket_send(struct socket *, struct mbuf *, 344 struct sockaddr_in *); 345 346 /* 347 * Kernel multicast forwarding API capabilities and setup. 348 * If more API capabilities are added to the kernel, they should be 349 * recorded in `mrt_api_support'. 350 */ 351 #define MRT_API_VERSION 0x0305 352 353 static const int mrt_api_version = MRT_API_VERSION; 354 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 355 MRT_MFC_FLAGS_BORDER_VIF | 356 MRT_MFC_RP | 357 MRT_MFC_BW_UPCALL); 358 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 359 #define V_mrt_api_config VNET(mrt_api_config) 360 VNET_DEFINE_STATIC(int, pim_assert_enabled); 361 #define V_pim_assert_enabled VNET(pim_assert_enabled) 362 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 363 364 /* 365 * Find a route for a given origin IP address and multicast group address. 366 * Statistics must be updated by the caller. 367 */ 368 static __inline struct mfc * 369 mfc_find(struct in_addr *o, struct in_addr *g) 370 { 371 struct mfc *rt; 372 373 /* 374 * Might be called both RLOCK and WLOCK. 375 * Check if any, it's caller responsibility 376 * to choose correct option. 377 */ 378 MRW_LOCK_ASSERT(); 379 380 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 381 if (in_hosteq(rt->mfc_origin, *o) && 382 in_hosteq(rt->mfc_mcastgrp, *g) && 383 buf_ring_empty(rt->mfc_stall_ring)) 384 break; 385 } 386 387 return (rt); 388 } 389 390 static __inline struct mfc * 391 mfc_alloc(void) 392 { 393 struct mfc *rt; 394 rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 395 if (rt == NULL) 396 return rt; 397 398 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 399 M_NOWAIT, &V_buf_ring_mtx); 400 if (rt->mfc_stall_ring == NULL) { 401 free(rt, M_MRTABLE); 402 return NULL; 403 } 404 405 return rt; 406 } 407 408 /* 409 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 410 */ 411 static int 412 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 413 { 414 int error, optval; 415 vifi_t vifi; 416 struct vifctl vifc; 417 struct mfcctl2 mfc; 418 struct bw_upcall bw_upcall; 419 uint32_t i; 420 421 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 422 return EPERM; 423 424 error = 0; 425 switch (sopt->sopt_name) { 426 case MRT_INIT: 427 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 428 if (error) 429 break; 430 error = ip_mrouter_init(so, optval); 431 break; 432 433 case MRT_DONE: 434 error = ip_mrouter_done(); 435 break; 436 437 case MRT_ADD_VIF: 438 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 439 if (error) 440 break; 441 error = add_vif(&vifc); 442 break; 443 444 case MRT_DEL_VIF: 445 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 446 if (error) 447 break; 448 error = del_vif(vifi); 449 break; 450 451 case MRT_ADD_MFC: 452 case MRT_DEL_MFC: 453 /* 454 * select data size depending on API version. 455 */ 456 if (sopt->sopt_name == MRT_ADD_MFC && 457 V_mrt_api_config & MRT_API_FLAGS_ALL) { 458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 459 sizeof(struct mfcctl2)); 460 } else { 461 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 462 sizeof(struct mfcctl)); 463 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 464 sizeof(mfc) - sizeof(struct mfcctl)); 465 } 466 if (error) 467 break; 468 if (sopt->sopt_name == MRT_ADD_MFC) 469 error = add_mfc(&mfc); 470 else 471 error = del_mfc(&mfc); 472 break; 473 474 case MRT_ASSERT: 475 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 476 if (error) 477 break; 478 set_assert(optval); 479 break; 480 481 case MRT_API_CONFIG: 482 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 483 if (!error) 484 error = set_api_config(&i); 485 if (!error) 486 error = sooptcopyout(sopt, &i, sizeof i); 487 break; 488 489 case MRT_ADD_BW_UPCALL: 490 case MRT_DEL_BW_UPCALL: 491 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 492 sizeof bw_upcall); 493 if (error) 494 break; 495 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 496 error = add_bw_upcall(&bw_upcall); 497 else 498 error = del_bw_upcall(&bw_upcall); 499 break; 500 501 default: 502 error = EOPNOTSUPP; 503 break; 504 } 505 return error; 506 } 507 508 /* 509 * Handle MRT getsockopt commands 510 */ 511 static int 512 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 513 { 514 int error; 515 516 switch (sopt->sopt_name) { 517 case MRT_VERSION: 518 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 519 break; 520 521 case MRT_ASSERT: 522 error = sooptcopyout(sopt, &V_pim_assert_enabled, 523 sizeof V_pim_assert_enabled); 524 break; 525 526 case MRT_API_SUPPORT: 527 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 528 break; 529 530 case MRT_API_CONFIG: 531 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 532 break; 533 534 default: 535 error = EOPNOTSUPP; 536 break; 537 } 538 return error; 539 } 540 541 /* 542 * Handle ioctl commands to obtain information from the cache 543 */ 544 static int 545 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 546 { 547 int error = 0; 548 549 /* 550 * Currently the only function calling this ioctl routine is rtioctl_fib(). 551 * Typically, only root can create the raw socket in order to execute 552 * this ioctl method, however the request might be coming from a prison 553 */ 554 error = priv_check(curthread, PRIV_NETINET_MROUTE); 555 if (error) 556 return (error); 557 switch (cmd) { 558 case (SIOCGETVIFCNT): 559 error = get_vif_cnt((struct sioc_vif_req *)data); 560 break; 561 562 case (SIOCGETSGCNT): 563 error = get_sg_cnt((struct sioc_sg_req *)data); 564 break; 565 566 default: 567 error = EINVAL; 568 break; 569 } 570 return error; 571 } 572 573 /* 574 * returns the packet, byte, rpf-failure count for the source group provided 575 */ 576 static int 577 get_sg_cnt(struct sioc_sg_req *req) 578 { 579 struct mfc *rt; 580 581 MRW_RLOCK(); 582 rt = mfc_find(&req->src, &req->grp); 583 if (rt == NULL) { 584 MRW_RUNLOCK(); 585 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 586 return EADDRNOTAVAIL; 587 } 588 req->pktcnt = rt->mfc_pkt_cnt; 589 req->bytecnt = rt->mfc_byte_cnt; 590 req->wrong_if = rt->mfc_wrong_if; 591 MRW_RUNLOCK(); 592 return 0; 593 } 594 595 /* 596 * returns the input and output packet and byte counts on the vif provided 597 */ 598 static int 599 get_vif_cnt(struct sioc_vif_req *req) 600 { 601 vifi_t vifi = req->vifi; 602 603 MRW_RLOCK(); 604 if (vifi >= V_numvifs) { 605 MRW_RUNLOCK(); 606 return EINVAL; 607 } 608 609 mtx_lock_spin(&V_viftable[vifi].v_spin); 610 req->icount = V_viftable[vifi].v_pkt_in; 611 req->ocount = V_viftable[vifi].v_pkt_out; 612 req->ibytes = V_viftable[vifi].v_bytes_in; 613 req->obytes = V_viftable[vifi].v_bytes_out; 614 mtx_unlock_spin(&V_viftable[vifi].v_spin); 615 MRW_RUNLOCK(); 616 617 return 0; 618 } 619 620 static void 621 if_detached_event(void *arg __unused, struct ifnet *ifp) 622 { 623 vifi_t vifi; 624 u_long i, vifi_cnt = 0; 625 struct ifnet *free_ptr; 626 627 MRW_WLOCK(); 628 629 if (V_ip_mrouter == NULL) { 630 MRW_WUNLOCK(); 631 return; 632 } 633 634 /* 635 * Tear down multicast forwarder state associated with this ifnet. 636 * 1. Walk the vif list, matching vifs against this ifnet. 637 * 2. Walk the multicast forwarding cache (mfc) looking for 638 * inner matches with this vif's index. 639 * 3. Expire any matching multicast forwarding cache entries. 640 * 4. Free vif state. This should disable ALLMULTI on the interface. 641 */ 642 for (vifi = 0; vifi < V_numvifs; vifi++) { 643 if (V_viftable[vifi].v_ifp != ifp) 644 continue; 645 for (i = 0; i < mfchashsize; i++) { 646 struct mfc *rt, *nrt; 647 648 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 649 if (rt->mfc_parent == vifi) { 650 expire_mfc(rt); 651 } 652 } 653 } 654 del_vif_locked(vifi, &free_ptr); 655 if (free_ptr != NULL) 656 vifi_cnt++; 657 } 658 659 MRW_WUNLOCK(); 660 661 /* 662 * Free IFP. We don't have to use free_ptr here as it is the same 663 * that ifp. Perform free as many times as required in case 664 * refcount is greater than 1. 665 */ 666 for (i = 0; i < vifi_cnt; i++) 667 if_free(ifp); 668 } 669 670 static void 671 ip_mrouter_upcall_thread(void *arg, int pending __unused) 672 { 673 CURVNET_SET((struct vnet *) arg); 674 675 MRW_WLOCK(); 676 bw_upcalls_send(); 677 MRW_WUNLOCK(); 678 679 CURVNET_RESTORE(); 680 } 681 682 /* 683 * Enable multicast forwarding. 684 */ 685 static int 686 ip_mrouter_init(struct socket *so, int version) 687 { 688 689 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 690 so->so_type, so->so_proto->pr_protocol); 691 692 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 693 return EOPNOTSUPP; 694 695 if (version != 1) 696 return ENOPROTOOPT; 697 698 MRW_WLOCK(); 699 700 if (ip_mrouter_unloading) { 701 MRW_WUNLOCK(); 702 return ENOPROTOOPT; 703 } 704 705 if (V_ip_mrouter != NULL) { 706 MRW_WUNLOCK(); 707 return EADDRINUSE; 708 } 709 710 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 711 HASH_NOWAIT); 712 713 /* Create upcall ring */ 714 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 715 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 716 M_NOWAIT, &V_bw_upcalls_ring_mtx); 717 if (!V_bw_upcalls_ring) { 718 MRW_WUNLOCK(); 719 return (ENOMEM); 720 } 721 722 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 723 taskqueue_cancel(V_task_queue, &V_task, NULL); 724 taskqueue_unblock(V_task_queue); 725 726 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 727 curvnet); 728 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 729 curvnet); 730 731 V_ip_mrouter = so; 732 atomic_add_int(&ip_mrouter_cnt, 1); 733 734 /* This is a mutex required by buf_ring init, but not used internally */ 735 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 736 737 MRW_WUNLOCK(); 738 739 CTR1(KTR_IPMF, "%s: done", __func__); 740 741 return 0; 742 } 743 744 /* 745 * Disable multicast forwarding. 746 */ 747 static int 748 X_ip_mrouter_done(void) 749 { 750 struct ifnet **ifps; 751 int nifp; 752 u_long i; 753 vifi_t vifi; 754 struct bw_upcall *bu; 755 756 if (V_ip_mrouter == NULL) 757 return (EINVAL); 758 759 /* 760 * Detach/disable hooks to the reset of the system. 761 */ 762 V_ip_mrouter = NULL; 763 atomic_subtract_int(&ip_mrouter_cnt, 1); 764 V_mrt_api_config = 0; 765 766 /* 767 * Wait for all epoch sections to complete to ensure 768 * V_ip_mrouter = NULL is visible to others. 769 */ 770 epoch_wait_preempt(net_epoch_preempt); 771 772 /* Stop and drain task queue */ 773 taskqueue_block(V_task_queue); 774 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 775 taskqueue_drain(V_task_queue, &V_task); 776 } 777 778 ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK); 779 780 MRW_WLOCK(); 781 taskqueue_cancel(V_task_queue, &V_task, NULL); 782 783 /* Destroy upcall ring */ 784 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 785 free(bu, M_MRTABLE); 786 } 787 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 788 mtx_destroy(&V_bw_upcalls_ring_mtx); 789 790 /* 791 * For each phyint in use, prepare to disable promiscuous reception 792 * of all IP multicasts. Defer the actual call until the lock is released; 793 * just record the list of interfaces while locked. Some interfaces use 794 * sx locks in their ioctl routines, which is not allowed while holding 795 * a non-sleepable lock. 796 */ 797 KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible")); 798 for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) { 799 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 800 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 801 ifps[nifp++] = V_viftable[vifi].v_ifp; 802 } 803 } 804 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 805 V_numvifs = 0; 806 V_pim_assert_enabled = 0; 807 808 callout_stop(&V_expire_upcalls_ch); 809 callout_stop(&V_bw_upcalls_ch); 810 811 /* 812 * Free all multicast forwarding cache entries. 813 * Do not use hashdestroy(), as we must perform other cleanup. 814 */ 815 for (i = 0; i < mfchashsize; i++) { 816 struct mfc *rt, *nrt; 817 818 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 819 expire_mfc(rt); 820 } 821 } 822 free(V_mfchashtbl, M_MRTABLE); 823 V_mfchashtbl = NULL; 824 825 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 826 827 V_reg_vif_num = VIFI_INVALID; 828 829 mtx_destroy(&V_buf_ring_mtx); 830 831 MRW_WUNLOCK(); 832 833 /* 834 * Now drop our claim on promiscuous multicast on the interfaces recorded 835 * above. This is safe to do now because ALLMULTI is reference counted. 836 */ 837 for (vifi = 0; vifi < nifp; vifi++) 838 if_allmulti(ifps[vifi], 0); 839 free(ifps, M_TEMP); 840 841 CTR1(KTR_IPMF, "%s: done", __func__); 842 843 return 0; 844 } 845 846 /* 847 * Set PIM assert processing global 848 */ 849 static int 850 set_assert(int i) 851 { 852 if ((i != 1) && (i != 0)) 853 return EINVAL; 854 855 V_pim_assert_enabled = i; 856 857 return 0; 858 } 859 860 /* 861 * Configure API capabilities 862 */ 863 int 864 set_api_config(uint32_t *apival) 865 { 866 u_long i; 867 868 /* 869 * We can set the API capabilities only if it is the first operation 870 * after MRT_INIT. I.e.: 871 * - there are no vifs installed 872 * - pim_assert is not enabled 873 * - the MFC table is empty 874 */ 875 if (V_numvifs > 0) { 876 *apival = 0; 877 return EPERM; 878 } 879 if (V_pim_assert_enabled) { 880 *apival = 0; 881 return EPERM; 882 } 883 884 MRW_RLOCK(); 885 886 for (i = 0; i < mfchashsize; i++) { 887 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 888 MRW_RUNLOCK(); 889 *apival = 0; 890 return EPERM; 891 } 892 } 893 894 MRW_RUNLOCK(); 895 896 V_mrt_api_config = *apival & mrt_api_support; 897 *apival = V_mrt_api_config; 898 899 return 0; 900 } 901 902 /* 903 * Add a vif to the vif table 904 */ 905 static int 906 add_vif(struct vifctl *vifcp) 907 { 908 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 909 struct sockaddr_in sin = {sizeof sin, AF_INET}; 910 struct ifaddr *ifa; 911 struct ifnet *ifp; 912 int error; 913 914 915 if (vifcp->vifc_vifi >= MAXVIFS) 916 return EINVAL; 917 /* rate limiting is no longer supported by this code */ 918 if (vifcp->vifc_rate_limit != 0) { 919 log(LOG_ERR, "rate limiting is no longer supported\n"); 920 return EINVAL; 921 } 922 923 if (in_nullhost(vifcp->vifc_lcl_addr)) 924 return EADDRNOTAVAIL; 925 926 /* Find the interface with an address in AF_INET family */ 927 if (vifcp->vifc_flags & VIFF_REGISTER) { 928 /* 929 * XXX: Because VIFF_REGISTER does not really need a valid 930 * local interface (e.g. it could be 127.0.0.2), we don't 931 * check its address. 932 */ 933 ifp = NULL; 934 } else { 935 struct epoch_tracker et; 936 937 sin.sin_addr = vifcp->vifc_lcl_addr; 938 NET_EPOCH_ENTER(et); 939 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 940 if (ifa == NULL) { 941 NET_EPOCH_EXIT(et); 942 return EADDRNOTAVAIL; 943 } 944 ifp = ifa->ifa_ifp; 945 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 946 NET_EPOCH_EXIT(et); 947 } 948 949 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 950 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 951 return EOPNOTSUPP; 952 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 953 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 954 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 955 if (V_reg_vif_num == VIFI_INVALID) { 956 if_initname(V_multicast_register_if, "register_vif", 0); 957 V_reg_vif_num = vifcp->vifc_vifi; 958 } 959 } else { /* Make sure the interface supports multicast */ 960 if ((ifp->if_flags & IFF_MULTICAST) == 0) 961 return EOPNOTSUPP; 962 963 /* Enable promiscuous reception of all IP multicasts from the if */ 964 error = if_allmulti(ifp, 1); 965 if (error) 966 return error; 967 } 968 969 MRW_WLOCK(); 970 971 if (!in_nullhost(vifp->v_lcl_addr)) { 972 if (ifp) 973 V_multicast_register_if = NULL; 974 MRW_WUNLOCK(); 975 if (ifp) 976 if_free(ifp); 977 return EADDRINUSE; 978 } 979 980 vifp->v_flags = vifcp->vifc_flags; 981 vifp->v_threshold = vifcp->vifc_threshold; 982 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 983 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 984 vifp->v_ifp = ifp; 985 /* initialize per vif pkt counters */ 986 vifp->v_pkt_in = 0; 987 vifp->v_pkt_out = 0; 988 vifp->v_bytes_in = 0; 989 vifp->v_bytes_out = 0; 990 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 991 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 992 993 /* Adjust numvifs up if the vifi is higher than numvifs */ 994 if (V_numvifs <= vifcp->vifc_vifi) 995 V_numvifs = vifcp->vifc_vifi + 1; 996 997 MRW_WUNLOCK(); 998 999 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 1000 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 1001 (int)vifcp->vifc_threshold); 1002 1003 return 0; 1004 } 1005 1006 /* 1007 * Delete a vif from the vif table 1008 */ 1009 static int 1010 del_vif_locked(vifi_t vifi, struct ifnet **ifp_free) 1011 { 1012 struct vif *vifp; 1013 1014 *ifp_free = NULL; 1015 1016 MRW_WLOCK_ASSERT(); 1017 1018 if (vifi >= V_numvifs) { 1019 return EINVAL; 1020 } 1021 vifp = &V_viftable[vifi]; 1022 if (in_nullhost(vifp->v_lcl_addr)) { 1023 return EADDRNOTAVAIL; 1024 } 1025 1026 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1027 if_allmulti(vifp->v_ifp, 0); 1028 1029 if (vifp->v_flags & VIFF_REGISTER) { 1030 V_reg_vif_num = VIFI_INVALID; 1031 if (vifp->v_ifp) { 1032 if (vifp->v_ifp == V_multicast_register_if) 1033 V_multicast_register_if = NULL; 1034 *ifp_free = vifp->v_ifp; 1035 } 1036 } 1037 1038 mtx_destroy(&vifp->v_spin); 1039 1040 bzero((caddr_t)vifp, sizeof (*vifp)); 1041 1042 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1043 1044 /* Adjust numvifs down */ 1045 for (vifi = V_numvifs; vifi > 0; vifi--) 1046 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1047 break; 1048 V_numvifs = vifi; 1049 1050 return 0; 1051 } 1052 1053 static int 1054 del_vif(vifi_t vifi) 1055 { 1056 int cc; 1057 struct ifnet *free_ptr; 1058 1059 MRW_WLOCK(); 1060 cc = del_vif_locked(vifi, &free_ptr); 1061 MRW_WUNLOCK(); 1062 1063 if (free_ptr) 1064 if_free(free_ptr); 1065 1066 return cc; 1067 } 1068 1069 /* 1070 * update an mfc entry without resetting counters and S,G addresses. 1071 */ 1072 static void 1073 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1074 { 1075 int i; 1076 1077 rt->mfc_parent = mfccp->mfcc_parent; 1078 for (i = 0; i < V_numvifs; i++) { 1079 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1080 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1081 MRT_MFC_FLAGS_ALL; 1082 } 1083 /* set the RP address */ 1084 if (V_mrt_api_config & MRT_MFC_RP) 1085 rt->mfc_rp = mfccp->mfcc_rp; 1086 else 1087 rt->mfc_rp.s_addr = INADDR_ANY; 1088 } 1089 1090 /* 1091 * fully initialize an mfc entry from the parameter. 1092 */ 1093 static void 1094 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1095 { 1096 rt->mfc_origin = mfccp->mfcc_origin; 1097 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1098 1099 update_mfc_params(rt, mfccp); 1100 1101 /* initialize pkt counters per src-grp */ 1102 rt->mfc_pkt_cnt = 0; 1103 rt->mfc_byte_cnt = 0; 1104 rt->mfc_wrong_if = 0; 1105 timevalclear(&rt->mfc_last_assert); 1106 } 1107 1108 static void 1109 expire_mfc(struct mfc *rt) 1110 { 1111 struct rtdetq *rte; 1112 1113 MRW_WLOCK_ASSERT(); 1114 1115 free_bw_list(rt->mfc_bw_meter_leq); 1116 free_bw_list(rt->mfc_bw_meter_geq); 1117 1118 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1119 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1120 if (rte) { 1121 m_freem(rte->m); 1122 free(rte, M_MRTABLE); 1123 } 1124 } 1125 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1126 1127 LIST_REMOVE(rt, mfc_hash); 1128 free(rt, M_MRTABLE); 1129 } 1130 1131 /* 1132 * Add an mfc entry 1133 */ 1134 static int 1135 add_mfc(struct mfcctl2 *mfccp) 1136 { 1137 struct mfc *rt; 1138 struct rtdetq *rte; 1139 u_long hash = 0; 1140 u_short nstl; 1141 struct epoch_tracker et; 1142 1143 MRW_WLOCK(); 1144 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1145 1146 /* If an entry already exists, just update the fields */ 1147 if (rt) { 1148 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1149 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1150 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1151 mfccp->mfcc_parent); 1152 update_mfc_params(rt, mfccp); 1153 MRW_WUNLOCK(); 1154 return (0); 1155 } 1156 1157 /* 1158 * Find the entry for which the upcall was made and update 1159 */ 1160 nstl = 0; 1161 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1162 NET_EPOCH_ENTER(et); 1163 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1164 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1165 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1166 !buf_ring_empty(rt->mfc_stall_ring)) { 1167 CTR5(KTR_IPMF, 1168 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1169 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1170 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1171 mfccp->mfcc_parent, 1172 rt->mfc_stall_ring); 1173 if (nstl++) 1174 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1175 1176 init_mfc_params(rt, mfccp); 1177 rt->mfc_expire = 0; /* Don't clean this guy up */ 1178 V_nexpire[hash]--; 1179 1180 /* Free queued packets, but attempt to forward them first. */ 1181 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1182 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1183 if (rte->ifp != NULL) 1184 ip_mdq(rte->m, rte->ifp, rt, -1); 1185 m_freem(rte->m); 1186 free(rte, M_MRTABLE); 1187 } 1188 } 1189 } 1190 NET_EPOCH_EXIT(et); 1191 1192 /* 1193 * It is possible that an entry is being inserted without an upcall 1194 */ 1195 if (nstl == 0) { 1196 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1197 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1198 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1199 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1200 init_mfc_params(rt, mfccp); 1201 if (rt->mfc_expire) 1202 V_nexpire[hash]--; 1203 rt->mfc_expire = 0; 1204 break; /* XXX */ 1205 } 1206 } 1207 1208 if (rt == NULL) { /* no upcall, so make a new entry */ 1209 rt = mfc_alloc(); 1210 if (rt == NULL) { 1211 MRW_WUNLOCK(); 1212 return (ENOBUFS); 1213 } 1214 1215 init_mfc_params(rt, mfccp); 1216 1217 rt->mfc_expire = 0; 1218 rt->mfc_bw_meter_leq = NULL; 1219 rt->mfc_bw_meter_geq = NULL; 1220 1221 /* insert new entry at head of hash chain */ 1222 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1223 } 1224 } 1225 1226 MRW_WUNLOCK(); 1227 1228 return (0); 1229 } 1230 1231 /* 1232 * Delete an mfc entry 1233 */ 1234 static int 1235 del_mfc(struct mfcctl2 *mfccp) 1236 { 1237 struct in_addr origin; 1238 struct in_addr mcastgrp; 1239 struct mfc *rt; 1240 1241 origin = mfccp->mfcc_origin; 1242 mcastgrp = mfccp->mfcc_mcastgrp; 1243 1244 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1245 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1246 1247 MRW_WLOCK(); 1248 1249 rt = mfc_find(&origin, &mcastgrp); 1250 if (rt == NULL) { 1251 MRW_WUNLOCK(); 1252 return EADDRNOTAVAIL; 1253 } 1254 1255 /* 1256 * free the bw_meter entries 1257 */ 1258 free_bw_list(rt->mfc_bw_meter_leq); 1259 rt->mfc_bw_meter_leq = NULL; 1260 free_bw_list(rt->mfc_bw_meter_geq); 1261 rt->mfc_bw_meter_geq = NULL; 1262 1263 LIST_REMOVE(rt, mfc_hash); 1264 free(rt, M_MRTABLE); 1265 1266 MRW_WUNLOCK(); 1267 1268 return (0); 1269 } 1270 1271 /* 1272 * Send a message to the routing daemon on the multicast routing socket. 1273 */ 1274 static int 1275 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1276 { 1277 if (s) { 1278 SOCKBUF_LOCK(&s->so_rcv); 1279 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1280 NULL) != 0) { 1281 sorwakeup_locked(s); 1282 return 0; 1283 } 1284 soroverflow_locked(s); 1285 } 1286 m_freem(mm); 1287 return -1; 1288 } 1289 1290 /* 1291 * IP multicast forwarding function. This function assumes that the packet 1292 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1293 * pointed to by "ifp", and the packet is to be relayed to other networks 1294 * that have members of the packet's destination IP multicast group. 1295 * 1296 * The packet is returned unscathed to the caller, unless it is 1297 * erroneous, in which case a non-zero return value tells the caller to 1298 * discard it. 1299 */ 1300 1301 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1302 1303 static int 1304 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1305 struct ip_moptions *imo) 1306 { 1307 struct mfc *rt; 1308 int error; 1309 vifi_t vifi; 1310 struct mbuf *mb0; 1311 struct rtdetq *rte; 1312 u_long hash; 1313 int hlen; 1314 1315 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1316 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1317 1318 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1319 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1320 /* 1321 * Packet arrived via a physical interface or 1322 * an encapsulated tunnel or a register_vif. 1323 */ 1324 } else { 1325 /* 1326 * Packet arrived through a source-route tunnel. 1327 * Source-route tunnels are no longer supported. 1328 */ 1329 return (1); 1330 } 1331 1332 /* 1333 * BEGIN: MCAST ROUTING HOT PATH 1334 */ 1335 MRW_RLOCK(); 1336 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1337 if (ip->ip_ttl < MAXTTL) 1338 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1339 error = ip_mdq(m, ifp, NULL, vifi); 1340 MRW_RUNLOCK(); 1341 return error; 1342 } 1343 1344 /* 1345 * Don't forward a packet with time-to-live of zero or one, 1346 * or a packet destined to a local-only group. 1347 */ 1348 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1349 MRW_RUNLOCK(); 1350 return 0; 1351 } 1352 1353 mfc_find_retry: 1354 /* 1355 * Determine forwarding vifs from the forwarding cache table 1356 */ 1357 MRTSTAT_INC(mrts_mfc_lookups); 1358 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1359 1360 /* Entry exists, so forward if necessary */ 1361 if (rt != NULL) { 1362 error = ip_mdq(m, ifp, rt, -1); 1363 /* Generic unlock here as we might release R or W lock */ 1364 MRW_UNLOCK(); 1365 return error; 1366 } 1367 1368 /* 1369 * END: MCAST ROUTING HOT PATH 1370 */ 1371 1372 /* Further processing must be done with WLOCK taken */ 1373 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1374 MRW_RUNLOCK(); 1375 MRW_WLOCK(); 1376 goto mfc_find_retry; 1377 } 1378 1379 /* 1380 * If we don't have a route for packet's origin, 1381 * Make a copy of the packet & send message to routing daemon 1382 */ 1383 hlen = ip->ip_hl << 2; 1384 1385 MRTSTAT_INC(mrts_mfc_misses); 1386 MRTSTAT_INC(mrts_no_route); 1387 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1388 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1389 1390 /* 1391 * Allocate mbufs early so that we don't do extra work if we are 1392 * just going to fail anyway. Make sure to pullup the header so 1393 * that other people can't step on it. 1394 */ 1395 rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE, 1396 M_NOWAIT|M_ZERO); 1397 if (rte == NULL) { 1398 MRW_WUNLOCK(); 1399 return ENOBUFS; 1400 } 1401 1402 mb0 = m_copypacket(m, M_NOWAIT); 1403 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1404 mb0 = m_pullup(mb0, hlen); 1405 if (mb0 == NULL) { 1406 free(rte, M_MRTABLE); 1407 MRW_WUNLOCK(); 1408 return ENOBUFS; 1409 } 1410 1411 /* is there an upcall waiting for this flow ? */ 1412 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1413 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1414 { 1415 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1416 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1417 !buf_ring_empty(rt->mfc_stall_ring)) 1418 break; 1419 } 1420 1421 if (rt == NULL) { 1422 int i; 1423 struct igmpmsg *im; 1424 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1425 struct mbuf *mm; 1426 1427 /* 1428 * Locate the vifi for the incoming interface for this packet. 1429 * If none found, drop packet. 1430 */ 1431 for (vifi = 0; vifi < V_numvifs && 1432 V_viftable[vifi].v_ifp != ifp; vifi++) 1433 ; 1434 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1435 goto non_fatal; 1436 1437 /* no upcall, so make a new entry */ 1438 rt = mfc_alloc(); 1439 if (rt == NULL) 1440 goto fail; 1441 1442 /* Make a copy of the header to send to the user level process */ 1443 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1444 if (mm == NULL) 1445 goto fail1; 1446 1447 /* 1448 * Send message to routing daemon to install 1449 * a route into the kernel table 1450 */ 1451 1452 im = mtod(mm, struct igmpmsg*); 1453 im->im_msgtype = IGMPMSG_NOCACHE; 1454 im->im_mbz = 0; 1455 im->im_vif = vifi; 1456 1457 MRTSTAT_INC(mrts_upcalls); 1458 1459 k_igmpsrc.sin_addr = ip->ip_src; 1460 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1461 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1462 MRTSTAT_INC(mrts_upq_sockfull); 1463 fail1: free(rt, M_MRTABLE); 1464 fail: free(rte, M_MRTABLE); 1465 m_freem(mb0); 1466 MRW_WUNLOCK(); 1467 return ENOBUFS; 1468 } 1469 1470 /* insert new entry at head of hash chain */ 1471 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1472 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1473 rt->mfc_expire = UPCALL_EXPIRE; 1474 V_nexpire[hash]++; 1475 for (i = 0; i < V_numvifs; i++) { 1476 rt->mfc_ttls[i] = 0; 1477 rt->mfc_flags[i] = 0; 1478 } 1479 rt->mfc_parent = -1; 1480 1481 /* clear the RP address */ 1482 rt->mfc_rp.s_addr = INADDR_ANY; 1483 rt->mfc_bw_meter_leq = NULL; 1484 rt->mfc_bw_meter_geq = NULL; 1485 1486 /* initialize pkt counters per src-grp */ 1487 rt->mfc_pkt_cnt = 0; 1488 rt->mfc_byte_cnt = 0; 1489 rt->mfc_wrong_if = 0; 1490 timevalclear(&rt->mfc_last_assert); 1491 1492 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1493 1494 /* Add RT to hashtable as it didn't exist before */ 1495 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1496 } else { 1497 /* determine if queue has overflowed */ 1498 if (buf_ring_full(rt->mfc_stall_ring)) { 1499 MRTSTAT_INC(mrts_upq_ovflw); 1500 non_fatal: free(rte, M_MRTABLE); 1501 m_freem(mb0); 1502 MRW_WUNLOCK(); 1503 return (0); 1504 } 1505 1506 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1507 } 1508 1509 rte->m = mb0; 1510 rte->ifp = ifp; 1511 1512 MRW_WUNLOCK(); 1513 1514 return 0; 1515 } 1516 1517 /* 1518 * Clean up the cache entry if upcall is not serviced 1519 */ 1520 static void 1521 expire_upcalls(void *arg) 1522 { 1523 u_long i; 1524 1525 CURVNET_SET((struct vnet *) arg); 1526 1527 /*This callout is always run with MRW_WLOCK taken. */ 1528 1529 for (i = 0; i < mfchashsize; i++) { 1530 struct mfc *rt, *nrt; 1531 1532 if (V_nexpire[i] == 0) 1533 continue; 1534 1535 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1536 if (buf_ring_empty(rt->mfc_stall_ring)) 1537 continue; 1538 1539 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1540 continue; 1541 1542 MRTSTAT_INC(mrts_cache_cleanups); 1543 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1544 (u_long)ntohl(rt->mfc_origin.s_addr), 1545 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1546 1547 expire_mfc(rt); 1548 } 1549 } 1550 1551 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1552 curvnet); 1553 1554 CURVNET_RESTORE(); 1555 } 1556 1557 /* 1558 * Packet forwarding routine once entry in the cache is made 1559 */ 1560 static int 1561 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1562 { 1563 struct ip *ip = mtod(m, struct ip *); 1564 vifi_t vifi; 1565 int plen = ntohs(ip->ip_len); 1566 1567 MRW_LOCK_ASSERT(); 1568 NET_EPOCH_ASSERT(); 1569 1570 /* 1571 * If xmt_vif is not -1, send on only the requested vif. 1572 * 1573 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1574 */ 1575 if (xmt_vif < V_numvifs) { 1576 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1577 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1578 else 1579 phyint_send(ip, V_viftable + xmt_vif, m); 1580 return 1; 1581 } 1582 1583 /* 1584 * Don't forward if it didn't arrive from the parent vif for its origin. 1585 */ 1586 vifi = rt->mfc_parent; 1587 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1588 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1589 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1590 MRTSTAT_INC(mrts_wrong_if); 1591 ++rt->mfc_wrong_if; 1592 /* 1593 * If we are doing PIM assert processing, send a message 1594 * to the routing daemon. 1595 * 1596 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1597 * can complete the SPT switch, regardless of the type 1598 * of the iif (broadcast media, GRE tunnel, etc). 1599 */ 1600 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1601 V_viftable[vifi].v_ifp) { 1602 if (ifp == V_multicast_register_if) 1603 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1604 1605 /* Get vifi for the incoming packet */ 1606 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1607 vifi++) 1608 ; 1609 if (vifi >= V_numvifs) 1610 return 0; /* The iif is not found: ignore the packet. */ 1611 1612 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1613 return 0; /* WRONGVIF disabled: ignore the packet */ 1614 1615 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1616 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1617 struct igmpmsg *im; 1618 int hlen = ip->ip_hl << 2; 1619 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1620 1621 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1622 mm = m_pullup(mm, hlen); 1623 if (mm == NULL) 1624 return ENOBUFS; 1625 1626 im = mtod(mm, struct igmpmsg *); 1627 im->im_msgtype = IGMPMSG_WRONGVIF; 1628 im->im_mbz = 0; 1629 im->im_vif = vifi; 1630 1631 MRTSTAT_INC(mrts_upcalls); 1632 1633 k_igmpsrc.sin_addr = im->im_src; 1634 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1635 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1636 MRTSTAT_INC(mrts_upq_sockfull); 1637 return ENOBUFS; 1638 } 1639 } 1640 } 1641 return 0; 1642 } 1643 1644 /* If I sourced this packet, it counts as output, else it was input. */ 1645 mtx_lock_spin(&V_viftable[vifi].v_spin); 1646 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1647 V_viftable[vifi].v_pkt_out++; 1648 V_viftable[vifi].v_bytes_out += plen; 1649 } else { 1650 V_viftable[vifi].v_pkt_in++; 1651 V_viftable[vifi].v_bytes_in += plen; 1652 } 1653 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1654 1655 rt->mfc_pkt_cnt++; 1656 rt->mfc_byte_cnt += plen; 1657 1658 /* 1659 * For each vif, decide if a copy of the packet should be forwarded. 1660 * Forward if: 1661 * - the ttl exceeds the vif's threshold 1662 * - there are group members downstream on interface 1663 */ 1664 for (vifi = 0; vifi < V_numvifs; vifi++) 1665 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1666 V_viftable[vifi].v_pkt_out++; 1667 V_viftable[vifi].v_bytes_out += plen; 1668 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1669 pim_register_send(ip, V_viftable + vifi, m, rt); 1670 else 1671 phyint_send(ip, V_viftable + vifi, m); 1672 } 1673 1674 /* 1675 * Perform upcall-related bw measuring. 1676 */ 1677 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1678 struct bw_meter *x; 1679 struct timeval now; 1680 1681 microtime(&now); 1682 /* Process meters for Greater-or-EQual case */ 1683 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1684 bw_meter_geq_receive_packet(x, plen, &now); 1685 1686 /* Process meters for Lower-or-EQual case */ 1687 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1688 /* 1689 * Record that a packet is received. 1690 * Spin lock has to be taken as callout context 1691 * (expire_bw_meter_leq) might modify these fields 1692 * as well 1693 */ 1694 mtx_lock_spin(&x->bm_spin); 1695 x->bm_measured.b_packets++; 1696 x->bm_measured.b_bytes += plen; 1697 mtx_unlock_spin(&x->bm_spin); 1698 } 1699 } 1700 1701 return 0; 1702 } 1703 1704 /* 1705 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1706 */ 1707 static int 1708 X_legal_vif_num(int vif) 1709 { 1710 int ret; 1711 1712 ret = 0; 1713 if (vif < 0) 1714 return (ret); 1715 1716 MRW_RLOCK(); 1717 if (vif < V_numvifs) 1718 ret = 1; 1719 MRW_RUNLOCK(); 1720 1721 return (ret); 1722 } 1723 1724 /* 1725 * Return the local address used by this vif 1726 */ 1727 static u_long 1728 X_ip_mcast_src(int vifi) 1729 { 1730 in_addr_t addr; 1731 1732 addr = INADDR_ANY; 1733 if (vifi < 0) 1734 return (addr); 1735 1736 MRW_RLOCK(); 1737 if (vifi < V_numvifs) 1738 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1739 MRW_RUNLOCK(); 1740 1741 return (addr); 1742 } 1743 1744 static void 1745 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1746 { 1747 struct mbuf *mb_copy; 1748 int hlen = ip->ip_hl << 2; 1749 1750 MRW_LOCK_ASSERT(); 1751 1752 /* 1753 * Make a new reference to the packet; make sure that 1754 * the IP header is actually copied, not just referenced, 1755 * so that ip_output() only scribbles on the copy. 1756 */ 1757 mb_copy = m_copypacket(m, M_NOWAIT); 1758 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1759 mb_copy = m_pullup(mb_copy, hlen); 1760 if (mb_copy == NULL) 1761 return; 1762 1763 send_packet(vifp, mb_copy); 1764 } 1765 1766 static void 1767 send_packet(struct vif *vifp, struct mbuf *m) 1768 { 1769 struct ip_moptions imo; 1770 int error __unused; 1771 1772 MRW_LOCK_ASSERT(); 1773 NET_EPOCH_ASSERT(); 1774 1775 imo.imo_multicast_ifp = vifp->v_ifp; 1776 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1777 imo.imo_multicast_loop = !!in_mcast_loop; 1778 imo.imo_multicast_vif = -1; 1779 STAILQ_INIT(&imo.imo_head); 1780 1781 /* 1782 * Re-entrancy should not be a problem here, because 1783 * the packets that we send out and are looped back at us 1784 * should get rejected because they appear to come from 1785 * the loopback interface, thus preventing looping. 1786 */ 1787 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1788 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1789 (ptrdiff_t)(vifp - V_viftable), error); 1790 } 1791 1792 /* 1793 * Stubs for old RSVP socket shim implementation. 1794 */ 1795 1796 static int 1797 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1798 { 1799 1800 return (EOPNOTSUPP); 1801 } 1802 1803 static void 1804 X_ip_rsvp_force_done(struct socket *so __unused) 1805 { 1806 1807 } 1808 1809 static int 1810 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1811 { 1812 struct mbuf *m; 1813 1814 m = *mp; 1815 *mp = NULL; 1816 if (!V_rsvp_on) 1817 m_freem(m); 1818 return (IPPROTO_DONE); 1819 } 1820 1821 /* 1822 * Code for bandwidth monitors 1823 */ 1824 1825 /* 1826 * Define common interface for timeval-related methods 1827 */ 1828 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1829 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1830 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1831 1832 static uint32_t 1833 compute_bw_meter_flags(struct bw_upcall *req) 1834 { 1835 uint32_t flags = 0; 1836 1837 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1838 flags |= BW_METER_UNIT_PACKETS; 1839 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1840 flags |= BW_METER_UNIT_BYTES; 1841 if (req->bu_flags & BW_UPCALL_GEQ) 1842 flags |= BW_METER_GEQ; 1843 if (req->bu_flags & BW_UPCALL_LEQ) 1844 flags |= BW_METER_LEQ; 1845 1846 return flags; 1847 } 1848 1849 static void 1850 expire_bw_meter_leq(void *arg) 1851 { 1852 struct bw_meter *x = arg; 1853 struct timeval now; 1854 /* 1855 * INFO: 1856 * callout is always executed with MRW_WLOCK taken 1857 */ 1858 1859 CURVNET_SET((struct vnet *)x->arg); 1860 1861 microtime(&now); 1862 1863 /* 1864 * Test if we should deliver an upcall 1865 */ 1866 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1867 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1868 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1869 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1870 /* Prepare an upcall for delivery */ 1871 bw_meter_prepare_upcall(x, &now); 1872 } 1873 1874 /* Send all upcalls that are pending delivery */ 1875 taskqueue_enqueue(V_task_queue, &V_task); 1876 1877 /* Reset counters */ 1878 x->bm_start_time = now; 1879 /* Spin lock has to be taken as ip_forward context 1880 * might modify these fields as well 1881 */ 1882 mtx_lock_spin(&x->bm_spin); 1883 x->bm_measured.b_bytes = 0; 1884 x->bm_measured.b_packets = 0; 1885 mtx_unlock_spin(&x->bm_spin); 1886 1887 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1888 1889 CURVNET_RESTORE(); 1890 } 1891 1892 /* 1893 * Add a bw_meter entry 1894 */ 1895 static int 1896 add_bw_upcall(struct bw_upcall *req) 1897 { 1898 struct mfc *mfc; 1899 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1900 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1901 struct timeval now; 1902 struct bw_meter *x, **bwm_ptr; 1903 uint32_t flags; 1904 1905 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1906 return EOPNOTSUPP; 1907 1908 /* Test if the flags are valid */ 1909 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1910 return EINVAL; 1911 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1912 return EINVAL; 1913 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1914 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1915 return EINVAL; 1916 1917 /* Test if the threshold time interval is valid */ 1918 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1919 return EINVAL; 1920 1921 flags = compute_bw_meter_flags(req); 1922 1923 /* 1924 * Find if we have already same bw_meter entry 1925 */ 1926 MRW_WLOCK(); 1927 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1928 if (mfc == NULL) { 1929 MRW_WUNLOCK(); 1930 return EADDRNOTAVAIL; 1931 } 1932 1933 /* Choose an appropriate bw_meter list */ 1934 if (req->bu_flags & BW_UPCALL_GEQ) 1935 bwm_ptr = &mfc->mfc_bw_meter_geq; 1936 else 1937 bwm_ptr = &mfc->mfc_bw_meter_leq; 1938 1939 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1940 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1941 &req->bu_threshold.b_time, ==)) 1942 && (x->bm_threshold.b_packets 1943 == req->bu_threshold.b_packets) 1944 && (x->bm_threshold.b_bytes 1945 == req->bu_threshold.b_bytes) 1946 && (x->bm_flags & BW_METER_USER_FLAGS) 1947 == flags) { 1948 MRW_WUNLOCK(); 1949 return 0; /* XXX Already installed */ 1950 } 1951 } 1952 1953 /* Allocate the new bw_meter entry */ 1954 x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER, 1955 M_ZERO | M_NOWAIT); 1956 if (x == NULL) { 1957 MRW_WUNLOCK(); 1958 return ENOBUFS; 1959 } 1960 1961 /* Set the new bw_meter entry */ 1962 x->bm_threshold.b_time = req->bu_threshold.b_time; 1963 microtime(&now); 1964 x->bm_start_time = now; 1965 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1966 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1967 x->bm_measured.b_packets = 0; 1968 x->bm_measured.b_bytes = 0; 1969 x->bm_flags = flags; 1970 x->bm_time_next = NULL; 1971 x->bm_mfc = mfc; 1972 x->arg = curvnet; 1973 sprintf(x->bm_spin_name, "BM spin %p", x); 1974 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1975 1976 /* For LEQ case create periodic callout */ 1977 if (req->bu_flags & BW_UPCALL_LEQ) { 1978 callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK); 1979 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1980 expire_bw_meter_leq, x); 1981 } 1982 1983 /* Add the new bw_meter entry to the front of entries for this MFC */ 1984 x->bm_mfc_next = *bwm_ptr; 1985 *bwm_ptr = x; 1986 1987 MRW_WUNLOCK(); 1988 1989 return 0; 1990 } 1991 1992 static void 1993 free_bw_list(struct bw_meter *list) 1994 { 1995 while (list != NULL) { 1996 struct bw_meter *x = list; 1997 1998 /* MRW_WLOCK must be held here */ 1999 if (x->bm_flags & BW_METER_LEQ) { 2000 callout_drain(&x->bm_meter_callout); 2001 mtx_destroy(&x->bm_spin); 2002 } 2003 2004 list = list->bm_mfc_next; 2005 free(x, M_BWMETER); 2006 } 2007 } 2008 2009 /* 2010 * Delete one or multiple bw_meter entries 2011 */ 2012 static int 2013 del_bw_upcall(struct bw_upcall *req) 2014 { 2015 struct mfc *mfc; 2016 struct bw_meter *x, **bwm_ptr; 2017 2018 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2019 return EOPNOTSUPP; 2020 2021 MRW_WLOCK(); 2022 2023 /* Find the corresponding MFC entry */ 2024 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2025 if (mfc == NULL) { 2026 MRW_WUNLOCK(); 2027 return EADDRNOTAVAIL; 2028 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2029 /* 2030 * Delete all bw_meter entries for this mfc 2031 */ 2032 struct bw_meter *list; 2033 2034 /* Free LEQ list */ 2035 list = mfc->mfc_bw_meter_leq; 2036 mfc->mfc_bw_meter_leq = NULL; 2037 free_bw_list(list); 2038 2039 /* Free GEQ list */ 2040 list = mfc->mfc_bw_meter_geq; 2041 mfc->mfc_bw_meter_geq = NULL; 2042 free_bw_list(list); 2043 MRW_WUNLOCK(); 2044 return 0; 2045 } else { /* Delete a single bw_meter entry */ 2046 struct bw_meter *prev; 2047 uint32_t flags = 0; 2048 2049 flags = compute_bw_meter_flags(req); 2050 2051 /* Choose an appropriate bw_meter list */ 2052 if (req->bu_flags & BW_UPCALL_GEQ) 2053 bwm_ptr = &mfc->mfc_bw_meter_geq; 2054 else 2055 bwm_ptr = &mfc->mfc_bw_meter_leq; 2056 2057 /* Find the bw_meter entry to delete */ 2058 for (prev = NULL, x = *bwm_ptr; x != NULL; 2059 prev = x, x = x->bm_mfc_next) { 2060 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2061 &req->bu_threshold.b_time, ==)) && 2062 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2063 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2064 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2065 break; 2066 } 2067 if (x != NULL) { /* Delete entry from the list for this MFC */ 2068 if (prev != NULL) 2069 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2070 else 2071 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2072 2073 if (req->bu_flags & BW_UPCALL_LEQ) 2074 callout_stop(&x->bm_meter_callout); 2075 2076 MRW_WUNLOCK(); 2077 /* Free the bw_meter entry */ 2078 free(x, M_BWMETER); 2079 return 0; 2080 } else { 2081 MRW_WUNLOCK(); 2082 return EINVAL; 2083 } 2084 } 2085 /* NOTREACHED */ 2086 } 2087 2088 /* 2089 * Perform bandwidth measurement processing that may result in an upcall 2090 */ 2091 static void 2092 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2093 { 2094 struct timeval delta; 2095 2096 MRW_LOCK_ASSERT(); 2097 2098 delta = *nowp; 2099 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2100 2101 /* 2102 * Processing for ">=" type of bw_meter entry. 2103 * bm_spin does not have to be hold here as in GEQ 2104 * case this is the only context accessing bm_measured. 2105 */ 2106 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2107 /* Reset the bw_meter entry */ 2108 x->bm_start_time = *nowp; 2109 x->bm_measured.b_packets = 0; 2110 x->bm_measured.b_bytes = 0; 2111 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2112 } 2113 2114 /* Record that a packet is received */ 2115 x->bm_measured.b_packets++; 2116 x->bm_measured.b_bytes += plen; 2117 2118 /* 2119 * Test if we should deliver an upcall 2120 */ 2121 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2122 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2123 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2124 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2125 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2126 /* Prepare an upcall for delivery */ 2127 bw_meter_prepare_upcall(x, nowp); 2128 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2129 } 2130 } 2131 } 2132 2133 /* 2134 * Prepare a bandwidth-related upcall 2135 */ 2136 static void 2137 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2138 { 2139 struct timeval delta; 2140 struct bw_upcall *u; 2141 2142 MRW_LOCK_ASSERT(); 2143 2144 /* 2145 * Compute the measured time interval 2146 */ 2147 delta = *nowp; 2148 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2149 2150 /* 2151 * Set the bw_upcall entry 2152 */ 2153 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2154 if (!u) { 2155 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2156 return; 2157 } 2158 u->bu_src = x->bm_mfc->mfc_origin; 2159 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2160 u->bu_threshold.b_time = x->bm_threshold.b_time; 2161 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2162 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2163 u->bu_measured.b_time = delta; 2164 u->bu_measured.b_packets = x->bm_measured.b_packets; 2165 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2166 u->bu_flags = 0; 2167 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2168 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2169 if (x->bm_flags & BW_METER_UNIT_BYTES) 2170 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2171 if (x->bm_flags & BW_METER_GEQ) 2172 u->bu_flags |= BW_UPCALL_GEQ; 2173 if (x->bm_flags & BW_METER_LEQ) 2174 u->bu_flags |= BW_UPCALL_LEQ; 2175 2176 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2177 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2178 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2179 taskqueue_enqueue(V_task_queue, &V_task); 2180 } 2181 } 2182 /* 2183 * Send the pending bandwidth-related upcalls 2184 */ 2185 static void 2186 bw_upcalls_send(void) 2187 { 2188 struct mbuf *m; 2189 int len = 0; 2190 struct bw_upcall *bu; 2191 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2192 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2193 0, /* unused2 */ 2194 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2195 0, /* im_mbz */ 2196 0, /* im_vif */ 2197 0, /* unused3 */ 2198 { 0 }, /* im_src */ 2199 { 0 } }; /* im_dst */ 2200 2201 MRW_LOCK_ASSERT(); 2202 2203 if (buf_ring_empty(V_bw_upcalls_ring)) 2204 return; 2205 2206 /* 2207 * Allocate a new mbuf, initialize it with the header and 2208 * the payload for the pending calls. 2209 */ 2210 m = m_gethdr(M_NOWAIT, MT_DATA); 2211 if (m == NULL) { 2212 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2213 return; 2214 } 2215 2216 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2217 len += sizeof(struct igmpmsg); 2218 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2219 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2220 len += sizeof(struct bw_upcall); 2221 free(bu, M_MRTABLE); 2222 } 2223 2224 /* 2225 * Send the upcalls 2226 * XXX do we need to set the address in k_igmpsrc ? 2227 */ 2228 MRTSTAT_INC(mrts_upcalls); 2229 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2230 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2231 MRTSTAT_INC(mrts_upq_sockfull); 2232 } 2233 } 2234 2235 /* 2236 * A periodic function for sending all upcalls that are pending delivery 2237 */ 2238 static void 2239 expire_bw_upcalls_send(void *arg) 2240 { 2241 CURVNET_SET((struct vnet *) arg); 2242 2243 /* This callout is run with MRW_RLOCK taken */ 2244 2245 bw_upcalls_send(); 2246 2247 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2248 curvnet); 2249 CURVNET_RESTORE(); 2250 } 2251 2252 /* 2253 * End of bandwidth monitoring code 2254 */ 2255 2256 /* 2257 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2258 * 2259 */ 2260 static int 2261 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2262 struct mfc *rt) 2263 { 2264 struct mbuf *mb_copy, *mm; 2265 2266 /* 2267 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2268 * rendezvous point was unspecified, and we were told not to. 2269 */ 2270 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2271 in_nullhost(rt->mfc_rp)) 2272 return 0; 2273 2274 mb_copy = pim_register_prepare(ip, m); 2275 if (mb_copy == NULL) 2276 return ENOBUFS; 2277 2278 /* 2279 * Send all the fragments. Note that the mbuf for each fragment 2280 * is freed by the sending machinery. 2281 */ 2282 for (mm = mb_copy; mm; mm = mb_copy) { 2283 mb_copy = mm->m_nextpkt; 2284 mm->m_nextpkt = 0; 2285 mm = m_pullup(mm, sizeof(struct ip)); 2286 if (mm != NULL) { 2287 ip = mtod(mm, struct ip *); 2288 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2289 pim_register_send_rp(ip, vifp, mm, rt); 2290 } else { 2291 pim_register_send_upcall(ip, vifp, mm, rt); 2292 } 2293 } 2294 } 2295 2296 return 0; 2297 } 2298 2299 /* 2300 * Return a copy of the data packet that is ready for PIM Register 2301 * encapsulation. 2302 * XXX: Note that in the returned copy the IP header is a valid one. 2303 */ 2304 static struct mbuf * 2305 pim_register_prepare(struct ip *ip, struct mbuf *m) 2306 { 2307 struct mbuf *mb_copy = NULL; 2308 int mtu; 2309 2310 /* Take care of delayed checksums */ 2311 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2312 in_delayed_cksum(m); 2313 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2314 } 2315 2316 /* 2317 * Copy the old packet & pullup its IP header into the 2318 * new mbuf so we can modify it. 2319 */ 2320 mb_copy = m_copypacket(m, M_NOWAIT); 2321 if (mb_copy == NULL) 2322 return NULL; 2323 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2324 if (mb_copy == NULL) 2325 return NULL; 2326 2327 /* take care of the TTL */ 2328 ip = mtod(mb_copy, struct ip *); 2329 --ip->ip_ttl; 2330 2331 /* Compute the MTU after the PIM Register encapsulation */ 2332 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2333 2334 if (ntohs(ip->ip_len) <= mtu) { 2335 /* Turn the IP header into a valid one */ 2336 ip->ip_sum = 0; 2337 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2338 } else { 2339 /* Fragment the packet */ 2340 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2341 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2342 m_freem(mb_copy); 2343 return NULL; 2344 } 2345 } 2346 return mb_copy; 2347 } 2348 2349 /* 2350 * Send an upcall with the data packet to the user-level process. 2351 */ 2352 static int 2353 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2354 struct mbuf *mb_copy, struct mfc *rt) 2355 { 2356 struct mbuf *mb_first; 2357 int len = ntohs(ip->ip_len); 2358 struct igmpmsg *im; 2359 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2360 2361 MRW_LOCK_ASSERT(); 2362 2363 /* 2364 * Add a new mbuf with an upcall header 2365 */ 2366 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2367 if (mb_first == NULL) { 2368 m_freem(mb_copy); 2369 return ENOBUFS; 2370 } 2371 mb_first->m_data += max_linkhdr; 2372 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2373 mb_first->m_len = sizeof(struct igmpmsg); 2374 mb_first->m_next = mb_copy; 2375 2376 /* Send message to routing daemon */ 2377 im = mtod(mb_first, struct igmpmsg *); 2378 im->im_msgtype = IGMPMSG_WHOLEPKT; 2379 im->im_mbz = 0; 2380 im->im_vif = vifp - V_viftable; 2381 im->im_src = ip->ip_src; 2382 im->im_dst = ip->ip_dst; 2383 2384 k_igmpsrc.sin_addr = ip->ip_src; 2385 2386 MRTSTAT_INC(mrts_upcalls); 2387 2388 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2389 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2390 MRTSTAT_INC(mrts_upq_sockfull); 2391 return ENOBUFS; 2392 } 2393 2394 /* Keep statistics */ 2395 PIMSTAT_INC(pims_snd_registers_msgs); 2396 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2397 2398 return 0; 2399 } 2400 2401 /* 2402 * Encapsulate the data packet in PIM Register message and send it to the RP. 2403 */ 2404 static int 2405 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2406 struct mfc *rt) 2407 { 2408 struct mbuf *mb_first; 2409 struct ip *ip_outer; 2410 struct pim_encap_pimhdr *pimhdr; 2411 int len = ntohs(ip->ip_len); 2412 vifi_t vifi = rt->mfc_parent; 2413 2414 MRW_LOCK_ASSERT(); 2415 2416 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2417 m_freem(mb_copy); 2418 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2419 } 2420 2421 /* 2422 * Add a new mbuf with the encapsulating header 2423 */ 2424 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2425 if (mb_first == NULL) { 2426 m_freem(mb_copy); 2427 return ENOBUFS; 2428 } 2429 mb_first->m_data += max_linkhdr; 2430 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2431 mb_first->m_next = mb_copy; 2432 2433 mb_first->m_pkthdr.len = len + mb_first->m_len; 2434 2435 /* 2436 * Fill in the encapsulating IP and PIM header 2437 */ 2438 ip_outer = mtod(mb_first, struct ip *); 2439 *ip_outer = pim_encap_iphdr; 2440 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2441 sizeof(pim_encap_pimhdr)); 2442 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2443 ip_outer->ip_dst = rt->mfc_rp; 2444 /* 2445 * Copy the inner header TOS to the outer header, and take care of the 2446 * IP_DF bit. 2447 */ 2448 ip_outer->ip_tos = ip->ip_tos; 2449 if (ip->ip_off & htons(IP_DF)) 2450 ip_outer->ip_off |= htons(IP_DF); 2451 ip_fillid(ip_outer); 2452 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2453 + sizeof(pim_encap_iphdr)); 2454 *pimhdr = pim_encap_pimhdr; 2455 /* If the iif crosses a border, set the Border-bit */ 2456 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2457 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2458 2459 mb_first->m_data += sizeof(pim_encap_iphdr); 2460 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2461 mb_first->m_data -= sizeof(pim_encap_iphdr); 2462 2463 send_packet(vifp, mb_first); 2464 2465 /* Keep statistics */ 2466 PIMSTAT_INC(pims_snd_registers_msgs); 2467 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2468 2469 return 0; 2470 } 2471 2472 /* 2473 * pim_encapcheck() is called by the encap4_input() path at runtime to 2474 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2475 * into the kernel. 2476 */ 2477 static int 2478 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2479 int proto __unused, void *arg __unused) 2480 { 2481 2482 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2483 return (8); /* claim the datagram. */ 2484 } 2485 2486 /* 2487 * PIM-SMv2 and PIM-DM messages processing. 2488 * Receives and verifies the PIM control messages, and passes them 2489 * up to the listening socket, using rip_input(). 2490 * The only message with special processing is the PIM_REGISTER message 2491 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2492 * is passed to if_simloop(). 2493 */ 2494 static int 2495 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2496 { 2497 struct ip *ip = mtod(m, struct ip *); 2498 struct pim *pim; 2499 int iphlen = off; 2500 int minlen; 2501 int datalen = ntohs(ip->ip_len) - iphlen; 2502 int ip_tos; 2503 2504 /* Keep statistics */ 2505 PIMSTAT_INC(pims_rcv_total_msgs); 2506 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2507 2508 /* 2509 * Validate lengths 2510 */ 2511 if (datalen < PIM_MINLEN) { 2512 PIMSTAT_INC(pims_rcv_tooshort); 2513 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2514 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2515 m_freem(m); 2516 return (IPPROTO_DONE); 2517 } 2518 2519 /* 2520 * If the packet is at least as big as a REGISTER, go agead 2521 * and grab the PIM REGISTER header size, to avoid another 2522 * possible m_pullup() later. 2523 * 2524 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2525 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2526 */ 2527 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2528 /* 2529 * Get the IP and PIM headers in contiguous memory, and 2530 * possibly the PIM REGISTER header. 2531 */ 2532 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2533 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2534 return (IPPROTO_DONE); 2535 } 2536 2537 /* m_pullup() may have given us a new mbuf so reset ip. */ 2538 ip = mtod(m, struct ip *); 2539 ip_tos = ip->ip_tos; 2540 2541 /* adjust mbuf to point to the PIM header */ 2542 m->m_data += iphlen; 2543 m->m_len -= iphlen; 2544 pim = mtod(m, struct pim *); 2545 2546 /* 2547 * Validate checksum. If PIM REGISTER, exclude the data packet. 2548 * 2549 * XXX: some older PIMv2 implementations don't make this distinction, 2550 * so for compatibility reason perform the checksum over part of the 2551 * message, and if error, then over the whole message. 2552 */ 2553 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2554 /* do nothing, checksum okay */ 2555 } else if (in_cksum(m, datalen)) { 2556 PIMSTAT_INC(pims_rcv_badsum); 2557 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2558 m_freem(m); 2559 return (IPPROTO_DONE); 2560 } 2561 2562 /* PIM version check */ 2563 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2564 PIMSTAT_INC(pims_rcv_badversion); 2565 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2566 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2567 m_freem(m); 2568 return (IPPROTO_DONE); 2569 } 2570 2571 /* restore mbuf back to the outer IP */ 2572 m->m_data -= iphlen; 2573 m->m_len += iphlen; 2574 2575 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2576 /* 2577 * Since this is a REGISTER, we'll make a copy of the register 2578 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2579 * routing daemon. 2580 */ 2581 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2582 struct mbuf *mcp; 2583 struct ip *encap_ip; 2584 u_int32_t *reghdr; 2585 struct ifnet *vifp; 2586 2587 MRW_RLOCK(); 2588 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2589 MRW_RUNLOCK(); 2590 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2591 (int)V_reg_vif_num); 2592 m_freem(m); 2593 return (IPPROTO_DONE); 2594 } 2595 /* XXX need refcnt? */ 2596 vifp = V_viftable[V_reg_vif_num].v_ifp; 2597 MRW_RUNLOCK(); 2598 2599 /* 2600 * Validate length 2601 */ 2602 if (datalen < PIM_REG_MINLEN) { 2603 PIMSTAT_INC(pims_rcv_tooshort); 2604 PIMSTAT_INC(pims_rcv_badregisters); 2605 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2606 m_freem(m); 2607 return (IPPROTO_DONE); 2608 } 2609 2610 reghdr = (u_int32_t *)(pim + 1); 2611 encap_ip = (struct ip *)(reghdr + 1); 2612 2613 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2614 __func__, ntohl(encap_ip->ip_src.s_addr), 2615 ntohs(encap_ip->ip_len)); 2616 2617 /* verify the version number of the inner packet */ 2618 if (encap_ip->ip_v != IPVERSION) { 2619 PIMSTAT_INC(pims_rcv_badregisters); 2620 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2621 m_freem(m); 2622 return (IPPROTO_DONE); 2623 } 2624 2625 /* verify the inner packet is destined to a mcast group */ 2626 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2627 PIMSTAT_INC(pims_rcv_badregisters); 2628 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2629 ntohl(encap_ip->ip_dst.s_addr)); 2630 m_freem(m); 2631 return (IPPROTO_DONE); 2632 } 2633 2634 /* If a NULL_REGISTER, pass it to the daemon */ 2635 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2636 goto pim_input_to_daemon; 2637 2638 /* 2639 * Copy the TOS from the outer IP header to the inner IP header. 2640 */ 2641 if (encap_ip->ip_tos != ip_tos) { 2642 /* Outer TOS -> inner TOS */ 2643 encap_ip->ip_tos = ip_tos; 2644 /* Recompute the inner header checksum. Sigh... */ 2645 2646 /* adjust mbuf to point to the inner IP header */ 2647 m->m_data += (iphlen + PIM_MINLEN); 2648 m->m_len -= (iphlen + PIM_MINLEN); 2649 2650 encap_ip->ip_sum = 0; 2651 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2652 2653 /* restore mbuf to point back to the outer IP header */ 2654 m->m_data -= (iphlen + PIM_MINLEN); 2655 m->m_len += (iphlen + PIM_MINLEN); 2656 } 2657 2658 /* 2659 * Decapsulate the inner IP packet and loopback to forward it 2660 * as a normal multicast packet. Also, make a copy of the 2661 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2662 * to pass to the daemon later, so it can take the appropriate 2663 * actions (e.g., send back PIM_REGISTER_STOP). 2664 * XXX: here m->m_data points to the outer IP header. 2665 */ 2666 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2667 if (mcp == NULL) { 2668 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2669 m_freem(m); 2670 return (IPPROTO_DONE); 2671 } 2672 2673 /* Keep statistics */ 2674 /* XXX: registers_bytes include only the encap. mcast pkt */ 2675 PIMSTAT_INC(pims_rcv_registers_msgs); 2676 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2677 2678 /* 2679 * forward the inner ip packet; point m_data at the inner ip. 2680 */ 2681 m_adj(m, iphlen + PIM_MINLEN); 2682 2683 CTR4(KTR_IPMF, 2684 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2685 __func__, 2686 (u_long)ntohl(encap_ip->ip_src.s_addr), 2687 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2688 (int)V_reg_vif_num); 2689 2690 /* NB: vifp was collected above; can it change on us? */ 2691 if_simloop(vifp, m, dst.sin_family, 0); 2692 2693 /* prepare the register head to send to the mrouting daemon */ 2694 m = mcp; 2695 } 2696 2697 pim_input_to_daemon: 2698 /* 2699 * Pass the PIM message up to the daemon; if it is a Register message, 2700 * pass the 'head' only up to the daemon. This includes the 2701 * outer IP header, PIM header, PIM-Register header and the 2702 * inner IP header. 2703 * XXX: the outer IP header pkt size of a Register is not adjust to 2704 * reflect the fact that the inner multicast data is truncated. 2705 */ 2706 return (rip_input(&m, &off, proto)); 2707 } 2708 2709 static int 2710 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2711 { 2712 struct mfc *rt; 2713 int error, i; 2714 2715 if (req->newptr) 2716 return (EPERM); 2717 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2718 return (0); 2719 error = sysctl_wire_old_buffer(req, 0); 2720 if (error) 2721 return (error); 2722 2723 MRW_RLOCK(); 2724 for (i = 0; i < mfchashsize; i++) { 2725 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2726 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2727 if (error) 2728 goto out_locked; 2729 } 2730 } 2731 out_locked: 2732 MRW_RUNLOCK(); 2733 return (error); 2734 } 2735 2736 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2737 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2738 "IPv4 Multicast Forwarding Table " 2739 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2740 2741 static int 2742 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2743 { 2744 int error, i; 2745 2746 if (req->newptr) 2747 return (EPERM); 2748 if (V_viftable == NULL) /* XXX unlocked */ 2749 return (0); 2750 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); 2751 if (error) 2752 return (error); 2753 2754 MRW_RLOCK(); 2755 /* Copy out user-visible portion of vif entry. */ 2756 for (i = 0; i < MAXVIFS; i++) { 2757 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); 2758 if (error) 2759 break; 2760 } 2761 MRW_RUNLOCK(); 2762 return (error); 2763 } 2764 2765 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2766 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2767 sysctl_viflist, "S,vif[MAXVIFS]", 2768 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2769 2770 static void 2771 vnet_mroute_init(const void *unused __unused) 2772 { 2773 2774 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2775 2776 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2777 M_MRTABLE, M_WAITOK|M_ZERO); 2778 2779 callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0); 2780 callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0); 2781 2782 /* Prepare taskqueue */ 2783 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2784 taskqueue_thread_enqueue, &V_task_queue); 2785 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2786 } 2787 2788 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2789 NULL); 2790 2791 static void 2792 vnet_mroute_uninit(const void *unused __unused) 2793 { 2794 2795 /* Taskqueue should be cancelled and drained before freeing */ 2796 taskqueue_free(V_task_queue); 2797 2798 free(V_viftable, M_MRTABLE); 2799 free(V_nexpire, M_MRTABLE); 2800 V_nexpire = NULL; 2801 } 2802 2803 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2804 vnet_mroute_uninit, NULL); 2805 2806 static int 2807 ip_mroute_modevent(module_t mod, int type, void *unused) 2808 { 2809 2810 switch (type) { 2811 case MOD_LOAD: 2812 MRW_LOCK_INIT(); 2813 2814 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2815 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2816 if (if_detach_event_tag == NULL) { 2817 printf("ip_mroute: unable to register " 2818 "ifnet_departure_event handler\n"); 2819 MRW_LOCK_DESTROY(); 2820 return (EINVAL); 2821 } 2822 2823 mfchashsize = MFCHASHSIZE; 2824 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2825 !powerof2(mfchashsize)) { 2826 printf("WARNING: %s not a power of 2; using default\n", 2827 "net.inet.ip.mfchashsize"); 2828 mfchashsize = MFCHASHSIZE; 2829 } 2830 2831 pim_squelch_wholepkt = 0; 2832 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2833 &pim_squelch_wholepkt); 2834 2835 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2836 if (pim_encap_cookie == NULL) { 2837 printf("ip_mroute: unable to attach pim encap\n"); 2838 MRW_LOCK_DESTROY(); 2839 return (EINVAL); 2840 } 2841 2842 ip_mcast_src = X_ip_mcast_src; 2843 ip_mforward = X_ip_mforward; 2844 ip_mrouter_done = X_ip_mrouter_done; 2845 ip_mrouter_get = X_ip_mrouter_get; 2846 ip_mrouter_set = X_ip_mrouter_set; 2847 2848 ip_rsvp_force_done = X_ip_rsvp_force_done; 2849 ip_rsvp_vif = X_ip_rsvp_vif; 2850 2851 legal_vif_num = X_legal_vif_num; 2852 mrt_ioctl = X_mrt_ioctl; 2853 rsvp_input_p = X_rsvp_input; 2854 break; 2855 2856 case MOD_UNLOAD: 2857 /* 2858 * Typically module unload happens after the user-level 2859 * process has shutdown the kernel services (the check 2860 * below insures someone can't just yank the module out 2861 * from under a running process). But if the module is 2862 * just loaded and then unloaded w/o starting up a user 2863 * process we still need to cleanup. 2864 */ 2865 MRW_WLOCK(); 2866 if (ip_mrouter_cnt != 0) { 2867 MRW_WUNLOCK(); 2868 return (EINVAL); 2869 } 2870 ip_mrouter_unloading = 1; 2871 MRW_WUNLOCK(); 2872 2873 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2874 2875 if (pim_encap_cookie) { 2876 ip_encap_detach(pim_encap_cookie); 2877 pim_encap_cookie = NULL; 2878 } 2879 2880 ip_mcast_src = NULL; 2881 ip_mforward = NULL; 2882 ip_mrouter_done = NULL; 2883 ip_mrouter_get = NULL; 2884 ip_mrouter_set = NULL; 2885 2886 ip_rsvp_force_done = NULL; 2887 ip_rsvp_vif = NULL; 2888 2889 legal_vif_num = NULL; 2890 mrt_ioctl = NULL; 2891 rsvp_input_p = NULL; 2892 2893 MRW_LOCK_DESTROY(); 2894 break; 2895 2896 default: 2897 return EOPNOTSUPP; 2898 } 2899 return 0; 2900 } 2901 2902 static moduledata_t ip_mroutemod = { 2903 "ip_mroute", 2904 ip_mroute_modevent, 2905 0 2906 }; 2907 2908 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2909