1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/types.h> 81 #include <sys/param.h> 82 #include <sys/kernel.h> 83 #include <sys/stddef.h> 84 #include <sys/condvar.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/malloc.h> 90 #include <sys/mbuf.h> 91 #include <sys/module.h> 92 #include <sys/priv.h> 93 #include <sys/protosw.h> 94 #include <sys/signalvar.h> 95 #include <sys/socket.h> 96 #include <sys/socketvar.h> 97 #include <sys/sockio.h> 98 #include <sys/sx.h> 99 #include <sys/sysctl.h> 100 #include <sys/syslog.h> 101 #include <sys/systm.h> 102 #include <sys/taskqueue.h> 103 #include <sys/time.h> 104 #include <sys/counter.h> 105 #include <machine/atomic.h> 106 107 #include <net/if.h> 108 #include <net/if_var.h> 109 #include <net/if_types.h> 110 #include <net/netisr.h> 111 #include <net/route.h> 112 #include <net/vnet.h> 113 114 #include <netinet/in.h> 115 #include <netinet/igmp.h> 116 #include <netinet/in_systm.h> 117 #include <netinet/in_var.h> 118 #include <netinet/ip.h> 119 #include <netinet/ip_encap.h> 120 #include <netinet/ip_mroute.h> 121 #include <netinet/ip_var.h> 122 #include <netinet/ip_options.h> 123 #include <netinet/pim.h> 124 #include <netinet/pim_var.h> 125 #include <netinet/udp.h> 126 127 #include <machine/in_cksum.h> 128 129 #ifndef KTR_IPMF 130 #define KTR_IPMF KTR_INET 131 #endif 132 133 #define VIFI_INVALID ((vifi_t) -1) 134 135 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 136 137 /* 138 * Locking. We use two locks: one for the virtual interface table and 139 * one for the forwarding table. These locks may be nested in which case 140 * the VIF lock must always be taken first. Note that each lock is used 141 * to cover not only the specific data structure but also related data 142 * structures. 143 */ 144 145 static struct rwlock mrouter_mtx; 146 #define MRW_RLOCK() rw_rlock(&mrouter_mtx) 147 #define MRW_WLOCK() rw_wlock(&mrouter_mtx) 148 #define MRW_RUNLOCK() rw_runlock(&mrouter_mtx) 149 #define MRW_WUNLOCK() rw_wunlock(&mrouter_mtx) 150 #define MRW_UNLOCK() rw_unlock(&mrouter_mtx) 151 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_mtx, RA_LOCKED) 152 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_mtx, RA_WLOCKED) 153 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_mtx) 154 #define MRW_WOWNED() rw_wowned(&mrouter_mtx) 155 #define MRW_LOCK_INIT() \ 156 rw_init(&mrouter_mtx, "IPv4 multicast forwarding") 157 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_mtx) 158 159 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 160 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 161 162 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 163 VNET_PCPUSTAT_SYSINIT(mrtstat); 164 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 165 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 166 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 167 "netinet/ip_mroute.h)"); 168 169 VNET_DEFINE_STATIC(u_long, mfchash); 170 #define V_mfchash VNET(mfchash) 171 #define MFCHASH(a, g) \ 172 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 173 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 174 #define MFCHASHSIZE 256 175 176 static u_long mfchashsize; /* Hash size */ 177 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 178 #define V_nexpire VNET(nexpire) 179 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 180 #define V_mfchashtbl VNET(mfchashtbl) 181 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 182 #define V_task_queue VNET(task_queue) 183 VNET_DEFINE_STATIC(struct task, task); 184 #define V_task VNET(task) 185 186 VNET_DEFINE_STATIC(vifi_t, numvifs); 187 #define V_numvifs VNET(numvifs) 188 VNET_DEFINE_STATIC(struct vif *, viftable); 189 #define V_viftable VNET(viftable) 190 191 static eventhandler_tag if_detach_event_tag = NULL; 192 193 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 194 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 195 196 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 197 #define V_buf_ring_mtx VNET(buf_ring_mtx) 198 199 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 200 #define UPCALL_EXPIRE 6 /* number of timeouts */ 201 202 /* 203 * Bandwidth meter variables and constants 204 */ 205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 206 207 /* 208 * Pending upcalls are stored in a ring which is flushed when 209 * full, or periodically 210 */ 211 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 212 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 213 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 214 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 215 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 216 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 217 218 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 219 220 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 221 VNET_PCPUSTAT_SYSINIT(pimstat); 222 VNET_PCPUSTAT_SYSUNINIT(pimstat); 223 224 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 225 "PIM"); 226 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 227 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 228 229 static u_long pim_squelch_wholepkt = 0; 230 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 231 &pim_squelch_wholepkt, 0, 232 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 233 234 static const struct encaptab *pim_encap_cookie; 235 static int pim_encapcheck(const struct mbuf *, int, int, void *); 236 static int pim_input(struct mbuf *, int, int, void *); 237 238 extern int in_mcast_loop; 239 240 static const struct encap_config ipv4_encap_cfg = { 241 .proto = IPPROTO_PIM, 242 .min_length = sizeof(struct ip) + PIM_MINLEN, 243 .exact_match = 8, 244 .check = pim_encapcheck, 245 .input = pim_input 246 }; 247 248 /* 249 * Note: the PIM Register encapsulation adds the following in front of a 250 * data packet: 251 * 252 * struct pim_encap_hdr { 253 * struct ip ip; 254 * struct pim_encap_pimhdr pim; 255 * } 256 * 257 */ 258 259 struct pim_encap_pimhdr { 260 struct pim pim; 261 uint32_t flags; 262 }; 263 #define PIM_ENCAP_TTL 64 264 265 static struct ip pim_encap_iphdr = { 266 #if BYTE_ORDER == LITTLE_ENDIAN 267 sizeof(struct ip) >> 2, 268 IPVERSION, 269 #else 270 IPVERSION, 271 sizeof(struct ip) >> 2, 272 #endif 273 0, /* tos */ 274 sizeof(struct ip), /* total length */ 275 0, /* id */ 276 0, /* frag offset */ 277 PIM_ENCAP_TTL, 278 IPPROTO_PIM, 279 0, /* checksum */ 280 }; 281 282 static struct pim_encap_pimhdr pim_encap_pimhdr = { 283 { 284 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 285 0, /* reserved */ 286 0, /* checksum */ 287 }, 288 0 /* flags */ 289 }; 290 291 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 292 #define V_reg_vif_num VNET(reg_vif_num) 293 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 294 #define V_multicast_register_if VNET(multicast_register_if) 295 296 /* 297 * Private variables. 298 */ 299 300 static u_long X_ip_mcast_src(int); 301 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 302 struct ip_moptions *); 303 static int X_ip_mrouter_done(void); 304 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 305 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 306 static int X_legal_vif_num(int); 307 static int X_mrt_ioctl(u_long, caddr_t, int); 308 309 static int add_bw_upcall(struct bw_upcall *); 310 static int add_mfc(struct mfcctl2 *); 311 static int add_vif(struct vifctl *); 312 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 313 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 314 struct timeval *); 315 static void bw_upcalls_send(void); 316 static int del_bw_upcall(struct bw_upcall *); 317 static int del_mfc(struct mfcctl2 *); 318 static int del_vif(vifi_t); 319 static int del_vif_locked(vifi_t, struct ifnet **); 320 static void expire_bw_upcalls_send(void *); 321 static void expire_mfc(struct mfc *); 322 static void expire_upcalls(void *); 323 static void free_bw_list(struct bw_meter *); 324 static int get_sg_cnt(struct sioc_sg_req *); 325 static int get_vif_cnt(struct sioc_vif_req *); 326 static void if_detached_event(void *, struct ifnet *); 327 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 328 static int ip_mrouter_init(struct socket *, int); 329 static __inline struct mfc * 330 mfc_find(struct in_addr *, struct in_addr *); 331 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 332 static struct mbuf * 333 pim_register_prepare(struct ip *, struct mbuf *); 334 static int pim_register_send(struct ip *, struct vif *, 335 struct mbuf *, struct mfc *); 336 static int pim_register_send_rp(struct ip *, struct vif *, 337 struct mbuf *, struct mfc *); 338 static int pim_register_send_upcall(struct ip *, struct vif *, 339 struct mbuf *, struct mfc *); 340 static void send_packet(struct vif *, struct mbuf *); 341 static int set_api_config(uint32_t *); 342 static int set_assert(int); 343 static int socket_send(struct socket *, struct mbuf *, 344 struct sockaddr_in *); 345 346 /* 347 * Kernel multicast forwarding API capabilities and setup. 348 * If more API capabilities are added to the kernel, they should be 349 * recorded in `mrt_api_support'. 350 */ 351 #define MRT_API_VERSION 0x0305 352 353 static const int mrt_api_version = MRT_API_VERSION; 354 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 355 MRT_MFC_FLAGS_BORDER_VIF | 356 MRT_MFC_RP | 357 MRT_MFC_BW_UPCALL); 358 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 359 #define V_mrt_api_config VNET(mrt_api_config) 360 VNET_DEFINE_STATIC(int, pim_assert_enabled); 361 #define V_pim_assert_enabled VNET(pim_assert_enabled) 362 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 363 364 /* 365 * Find a route for a given origin IP address and multicast group address. 366 * Statistics must be updated by the caller. 367 */ 368 static __inline struct mfc * 369 mfc_find(struct in_addr *o, struct in_addr *g) 370 { 371 struct mfc *rt; 372 373 /* 374 * Might be called both RLOCK and WLOCK. 375 * Check if any, it's caller responsibility 376 * to choose correct option. 377 */ 378 MRW_LOCK_ASSERT(); 379 380 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 381 if (in_hosteq(rt->mfc_origin, *o) && 382 in_hosteq(rt->mfc_mcastgrp, *g) && 383 buf_ring_empty(rt->mfc_stall_ring)) 384 break; 385 } 386 387 return (rt); 388 } 389 390 static __inline struct mfc * 391 mfc_alloc(void) 392 { 393 struct mfc *rt; 394 rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 395 if (rt == NULL) 396 return rt; 397 398 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 399 M_NOWAIT, &V_buf_ring_mtx); 400 if (rt->mfc_stall_ring == NULL) { 401 free(rt, M_MRTABLE); 402 return NULL; 403 } 404 405 return rt; 406 } 407 408 /* 409 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 410 */ 411 static int 412 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 413 { 414 int error, optval; 415 vifi_t vifi; 416 struct vifctl vifc; 417 struct mfcctl2 mfc; 418 struct bw_upcall bw_upcall; 419 uint32_t i; 420 421 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 422 return EPERM; 423 424 error = 0; 425 switch (sopt->sopt_name) { 426 case MRT_INIT: 427 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 428 if (error) 429 break; 430 error = ip_mrouter_init(so, optval); 431 break; 432 433 case MRT_DONE: 434 error = ip_mrouter_done(); 435 break; 436 437 case MRT_ADD_VIF: 438 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 439 if (error) 440 break; 441 error = add_vif(&vifc); 442 break; 443 444 case MRT_DEL_VIF: 445 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 446 if (error) 447 break; 448 error = del_vif(vifi); 449 break; 450 451 case MRT_ADD_MFC: 452 case MRT_DEL_MFC: 453 /* 454 * select data size depending on API version. 455 */ 456 if (sopt->sopt_name == MRT_ADD_MFC && 457 V_mrt_api_config & MRT_API_FLAGS_ALL) { 458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 459 sizeof(struct mfcctl2)); 460 } else { 461 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 462 sizeof(struct mfcctl)); 463 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 464 sizeof(mfc) - sizeof(struct mfcctl)); 465 } 466 if (error) 467 break; 468 if (sopt->sopt_name == MRT_ADD_MFC) 469 error = add_mfc(&mfc); 470 else 471 error = del_mfc(&mfc); 472 break; 473 474 case MRT_ASSERT: 475 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 476 if (error) 477 break; 478 set_assert(optval); 479 break; 480 481 case MRT_API_CONFIG: 482 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 483 if (!error) 484 error = set_api_config(&i); 485 if (!error) 486 error = sooptcopyout(sopt, &i, sizeof i); 487 break; 488 489 case MRT_ADD_BW_UPCALL: 490 case MRT_DEL_BW_UPCALL: 491 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 492 sizeof bw_upcall); 493 if (error) 494 break; 495 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 496 error = add_bw_upcall(&bw_upcall); 497 else 498 error = del_bw_upcall(&bw_upcall); 499 break; 500 501 default: 502 error = EOPNOTSUPP; 503 break; 504 } 505 return error; 506 } 507 508 /* 509 * Handle MRT getsockopt commands 510 */ 511 static int 512 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 513 { 514 int error; 515 516 switch (sopt->sopt_name) { 517 case MRT_VERSION: 518 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 519 break; 520 521 case MRT_ASSERT: 522 error = sooptcopyout(sopt, &V_pim_assert_enabled, 523 sizeof V_pim_assert_enabled); 524 break; 525 526 case MRT_API_SUPPORT: 527 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 528 break; 529 530 case MRT_API_CONFIG: 531 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 532 break; 533 534 default: 535 error = EOPNOTSUPP; 536 break; 537 } 538 return error; 539 } 540 541 /* 542 * Handle ioctl commands to obtain information from the cache 543 */ 544 static int 545 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 546 { 547 int error = 0; 548 549 /* 550 * Currently the only function calling this ioctl routine is rtioctl_fib(). 551 * Typically, only root can create the raw socket in order to execute 552 * this ioctl method, however the request might be coming from a prison 553 */ 554 error = priv_check(curthread, PRIV_NETINET_MROUTE); 555 if (error) 556 return (error); 557 switch (cmd) { 558 case (SIOCGETVIFCNT): 559 error = get_vif_cnt((struct sioc_vif_req *)data); 560 break; 561 562 case (SIOCGETSGCNT): 563 error = get_sg_cnt((struct sioc_sg_req *)data); 564 break; 565 566 default: 567 error = EINVAL; 568 break; 569 } 570 return error; 571 } 572 573 /* 574 * returns the packet, byte, rpf-failure count for the source group provided 575 */ 576 static int 577 get_sg_cnt(struct sioc_sg_req *req) 578 { 579 struct mfc *rt; 580 581 MRW_RLOCK(); 582 rt = mfc_find(&req->src, &req->grp); 583 if (rt == NULL) { 584 MRW_RUNLOCK(); 585 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 586 return EADDRNOTAVAIL; 587 } 588 req->pktcnt = rt->mfc_pkt_cnt; 589 req->bytecnt = rt->mfc_byte_cnt; 590 req->wrong_if = rt->mfc_wrong_if; 591 MRW_RUNLOCK(); 592 return 0; 593 } 594 595 /* 596 * returns the input and output packet and byte counts on the vif provided 597 */ 598 static int 599 get_vif_cnt(struct sioc_vif_req *req) 600 { 601 vifi_t vifi = req->vifi; 602 603 MRW_RLOCK(); 604 if (vifi >= V_numvifs) { 605 MRW_RUNLOCK(); 606 return EINVAL; 607 } 608 609 mtx_lock_spin(&V_viftable[vifi].v_spin); 610 req->icount = V_viftable[vifi].v_pkt_in; 611 req->ocount = V_viftable[vifi].v_pkt_out; 612 req->ibytes = V_viftable[vifi].v_bytes_in; 613 req->obytes = V_viftable[vifi].v_bytes_out; 614 mtx_unlock_spin(&V_viftable[vifi].v_spin); 615 MRW_RUNLOCK(); 616 617 return 0; 618 } 619 620 static void 621 if_detached_event(void *arg __unused, struct ifnet *ifp) 622 { 623 vifi_t vifi; 624 u_long i, vifi_cnt = 0; 625 struct ifnet *free_ptr; 626 627 MRW_WLOCK(); 628 629 if (V_ip_mrouter == NULL) { 630 MRW_WUNLOCK(); 631 return; 632 } 633 634 /* 635 * Tear down multicast forwarder state associated with this ifnet. 636 * 1. Walk the vif list, matching vifs against this ifnet. 637 * 2. Walk the multicast forwarding cache (mfc) looking for 638 * inner matches with this vif's index. 639 * 3. Expire any matching multicast forwarding cache entries. 640 * 4. Free vif state. This should disable ALLMULTI on the interface. 641 */ 642 for (vifi = 0; vifi < V_numvifs; vifi++) { 643 if (V_viftable[vifi].v_ifp != ifp) 644 continue; 645 for (i = 0; i < mfchashsize; i++) { 646 struct mfc *rt, *nrt; 647 648 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 649 if (rt->mfc_parent == vifi) { 650 expire_mfc(rt); 651 } 652 } 653 } 654 del_vif_locked(vifi, &free_ptr); 655 if (free_ptr != NULL) 656 vifi_cnt++; 657 } 658 659 MRW_WUNLOCK(); 660 661 /* 662 * Free IFP. We don't have to use free_ptr here as it is the same 663 * that ifp. Perform free as many times as required in case 664 * refcount is greater than 1. 665 */ 666 for (i = 0; i < vifi_cnt; i++) 667 if_free(ifp); 668 } 669 670 static void 671 ip_mrouter_upcall_thread(void *arg, int pending __unused) 672 { 673 CURVNET_SET((struct vnet *) arg); 674 675 MRW_WLOCK(); 676 bw_upcalls_send(); 677 MRW_WUNLOCK(); 678 679 CURVNET_RESTORE(); 680 } 681 682 /* 683 * Enable multicast forwarding. 684 */ 685 static int 686 ip_mrouter_init(struct socket *so, int version) 687 { 688 689 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 690 so->so_type, so->so_proto->pr_protocol); 691 692 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 693 return EOPNOTSUPP; 694 695 if (version != 1) 696 return ENOPROTOOPT; 697 698 MRW_WLOCK(); 699 700 if (ip_mrouter_unloading) { 701 MRW_WUNLOCK(); 702 return ENOPROTOOPT; 703 } 704 705 if (V_ip_mrouter != NULL) { 706 MRW_WUNLOCK(); 707 return EADDRINUSE; 708 } 709 710 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 711 HASH_NOWAIT); 712 713 /* Create upcall ring */ 714 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 715 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 716 M_NOWAIT, &V_bw_upcalls_ring_mtx); 717 if (!V_bw_upcalls_ring) { 718 MRW_WUNLOCK(); 719 return (ENOMEM); 720 } 721 722 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 723 taskqueue_cancel(V_task_queue, &V_task, NULL); 724 taskqueue_unblock(V_task_queue); 725 726 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 727 curvnet); 728 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 729 curvnet); 730 731 V_ip_mrouter = so; 732 atomic_add_int(&ip_mrouter_cnt, 1); 733 734 /* This is a mutex required by buf_ring init, but not used internally */ 735 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 736 737 MRW_WUNLOCK(); 738 739 CTR1(KTR_IPMF, "%s: done", __func__); 740 741 return 0; 742 } 743 744 /* 745 * Disable multicast forwarding. 746 */ 747 static int 748 X_ip_mrouter_done(void) 749 { 750 struct ifnet *ifp; 751 u_long i; 752 vifi_t vifi; 753 struct bw_upcall *bu; 754 755 if (V_ip_mrouter == NULL) 756 return (EINVAL); 757 758 /* 759 * Detach/disable hooks to the reset of the system. 760 */ 761 V_ip_mrouter = NULL; 762 atomic_subtract_int(&ip_mrouter_cnt, 1); 763 V_mrt_api_config = 0; 764 765 /* 766 * Wait for all epoch sections to complete to ensure 767 * V_ip_mrouter = NULL is visible to others. 768 */ 769 epoch_wait_preempt(net_epoch_preempt); 770 771 /* Stop and drain task queue */ 772 taskqueue_block(V_task_queue); 773 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 774 taskqueue_drain(V_task_queue, &V_task); 775 } 776 777 MRW_WLOCK(); 778 taskqueue_cancel(V_task_queue, &V_task, NULL); 779 780 /* Destroy upcall ring */ 781 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 782 free(bu, M_MRTABLE); 783 } 784 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 785 mtx_destroy(&V_bw_upcalls_ring_mtx); 786 787 /* 788 * For each phyint in use, disable promiscuous reception of all IP 789 * multicasts. 790 */ 791 for (vifi = 0; vifi < V_numvifs; vifi++) { 792 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 793 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 794 ifp = V_viftable[vifi].v_ifp; 795 if_allmulti(ifp, 0); 796 } 797 } 798 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 799 V_numvifs = 0; 800 V_pim_assert_enabled = 0; 801 802 callout_stop(&V_expire_upcalls_ch); 803 callout_stop(&V_bw_upcalls_ch); 804 805 /* 806 * Free all multicast forwarding cache entries. 807 * Do not use hashdestroy(), as we must perform other cleanup. 808 */ 809 for (i = 0; i < mfchashsize; i++) { 810 struct mfc *rt, *nrt; 811 812 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 813 expire_mfc(rt); 814 } 815 } 816 free(V_mfchashtbl, M_MRTABLE); 817 V_mfchashtbl = NULL; 818 819 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 820 821 V_reg_vif_num = VIFI_INVALID; 822 823 mtx_destroy(&V_buf_ring_mtx); 824 825 MRW_WUNLOCK(); 826 827 CTR1(KTR_IPMF, "%s: done", __func__); 828 829 return 0; 830 } 831 832 /* 833 * Set PIM assert processing global 834 */ 835 static int 836 set_assert(int i) 837 { 838 if ((i != 1) && (i != 0)) 839 return EINVAL; 840 841 V_pim_assert_enabled = i; 842 843 return 0; 844 } 845 846 /* 847 * Configure API capabilities 848 */ 849 int 850 set_api_config(uint32_t *apival) 851 { 852 u_long i; 853 854 /* 855 * We can set the API capabilities only if it is the first operation 856 * after MRT_INIT. I.e.: 857 * - there are no vifs installed 858 * - pim_assert is not enabled 859 * - the MFC table is empty 860 */ 861 if (V_numvifs > 0) { 862 *apival = 0; 863 return EPERM; 864 } 865 if (V_pim_assert_enabled) { 866 *apival = 0; 867 return EPERM; 868 } 869 870 MRW_RLOCK(); 871 872 for (i = 0; i < mfchashsize; i++) { 873 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 874 MRW_RUNLOCK(); 875 *apival = 0; 876 return EPERM; 877 } 878 } 879 880 MRW_RUNLOCK(); 881 882 V_mrt_api_config = *apival & mrt_api_support; 883 *apival = V_mrt_api_config; 884 885 return 0; 886 } 887 888 /* 889 * Add a vif to the vif table 890 */ 891 static int 892 add_vif(struct vifctl *vifcp) 893 { 894 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 895 struct sockaddr_in sin = {sizeof sin, AF_INET}; 896 struct ifaddr *ifa; 897 struct ifnet *ifp; 898 int error; 899 900 901 if (vifcp->vifc_vifi >= MAXVIFS) 902 return EINVAL; 903 /* rate limiting is no longer supported by this code */ 904 if (vifcp->vifc_rate_limit != 0) { 905 log(LOG_ERR, "rate limiting is no longer supported\n"); 906 return EINVAL; 907 } 908 909 if (in_nullhost(vifcp->vifc_lcl_addr)) 910 return EADDRNOTAVAIL; 911 912 /* Find the interface with an address in AF_INET family */ 913 if (vifcp->vifc_flags & VIFF_REGISTER) { 914 /* 915 * XXX: Because VIFF_REGISTER does not really need a valid 916 * local interface (e.g. it could be 127.0.0.2), we don't 917 * check its address. 918 */ 919 ifp = NULL; 920 } else { 921 struct epoch_tracker et; 922 923 sin.sin_addr = vifcp->vifc_lcl_addr; 924 NET_EPOCH_ENTER(et); 925 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 926 if (ifa == NULL) { 927 NET_EPOCH_EXIT(et); 928 return EADDRNOTAVAIL; 929 } 930 ifp = ifa->ifa_ifp; 931 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 932 NET_EPOCH_EXIT(et); 933 } 934 935 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 936 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 937 return EOPNOTSUPP; 938 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 939 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 940 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 941 if (V_reg_vif_num == VIFI_INVALID) { 942 if_initname(V_multicast_register_if, "register_vif", 0); 943 V_reg_vif_num = vifcp->vifc_vifi; 944 } 945 } else { /* Make sure the interface supports multicast */ 946 if ((ifp->if_flags & IFF_MULTICAST) == 0) 947 return EOPNOTSUPP; 948 949 /* Enable promiscuous reception of all IP multicasts from the if */ 950 error = if_allmulti(ifp, 1); 951 if (error) 952 return error; 953 } 954 955 MRW_WLOCK(); 956 957 if (!in_nullhost(vifp->v_lcl_addr)) { 958 if (ifp) 959 V_multicast_register_if = NULL; 960 MRW_WUNLOCK(); 961 if (ifp) 962 if_free(ifp); 963 return EADDRINUSE; 964 } 965 966 vifp->v_flags = vifcp->vifc_flags; 967 vifp->v_threshold = vifcp->vifc_threshold; 968 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 969 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 970 vifp->v_ifp = ifp; 971 /* initialize per vif pkt counters */ 972 vifp->v_pkt_in = 0; 973 vifp->v_pkt_out = 0; 974 vifp->v_bytes_in = 0; 975 vifp->v_bytes_out = 0; 976 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 977 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 978 979 /* Adjust numvifs up if the vifi is higher than numvifs */ 980 if (V_numvifs <= vifcp->vifc_vifi) 981 V_numvifs = vifcp->vifc_vifi + 1; 982 983 MRW_WUNLOCK(); 984 985 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 986 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 987 (int)vifcp->vifc_threshold); 988 989 return 0; 990 } 991 992 /* 993 * Delete a vif from the vif table 994 */ 995 static int 996 del_vif_locked(vifi_t vifi, struct ifnet **ifp_free) 997 { 998 struct vif *vifp; 999 1000 *ifp_free = NULL; 1001 1002 MRW_WLOCK_ASSERT(); 1003 1004 if (vifi >= V_numvifs) { 1005 return EINVAL; 1006 } 1007 vifp = &V_viftable[vifi]; 1008 if (in_nullhost(vifp->v_lcl_addr)) { 1009 return EADDRNOTAVAIL; 1010 } 1011 1012 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1013 if_allmulti(vifp->v_ifp, 0); 1014 1015 if (vifp->v_flags & VIFF_REGISTER) { 1016 V_reg_vif_num = VIFI_INVALID; 1017 if (vifp->v_ifp) { 1018 if (vifp->v_ifp == V_multicast_register_if) 1019 V_multicast_register_if = NULL; 1020 *ifp_free = vifp->v_ifp; 1021 } 1022 } 1023 1024 mtx_destroy(&vifp->v_spin); 1025 1026 bzero((caddr_t)vifp, sizeof (*vifp)); 1027 1028 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1029 1030 /* Adjust numvifs down */ 1031 for (vifi = V_numvifs; vifi > 0; vifi--) 1032 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1033 break; 1034 V_numvifs = vifi; 1035 1036 return 0; 1037 } 1038 1039 static int 1040 del_vif(vifi_t vifi) 1041 { 1042 int cc; 1043 struct ifnet *free_ptr; 1044 1045 MRW_WLOCK(); 1046 cc = del_vif_locked(vifi, &free_ptr); 1047 MRW_WUNLOCK(); 1048 1049 if (free_ptr) 1050 if_free(free_ptr); 1051 1052 return cc; 1053 } 1054 1055 /* 1056 * update an mfc entry without resetting counters and S,G addresses. 1057 */ 1058 static void 1059 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1060 { 1061 int i; 1062 1063 rt->mfc_parent = mfccp->mfcc_parent; 1064 for (i = 0; i < V_numvifs; i++) { 1065 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1066 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1067 MRT_MFC_FLAGS_ALL; 1068 } 1069 /* set the RP address */ 1070 if (V_mrt_api_config & MRT_MFC_RP) 1071 rt->mfc_rp = mfccp->mfcc_rp; 1072 else 1073 rt->mfc_rp.s_addr = INADDR_ANY; 1074 } 1075 1076 /* 1077 * fully initialize an mfc entry from the parameter. 1078 */ 1079 static void 1080 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1081 { 1082 rt->mfc_origin = mfccp->mfcc_origin; 1083 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1084 1085 update_mfc_params(rt, mfccp); 1086 1087 /* initialize pkt counters per src-grp */ 1088 rt->mfc_pkt_cnt = 0; 1089 rt->mfc_byte_cnt = 0; 1090 rt->mfc_wrong_if = 0; 1091 timevalclear(&rt->mfc_last_assert); 1092 } 1093 1094 static void 1095 expire_mfc(struct mfc *rt) 1096 { 1097 struct rtdetq *rte; 1098 1099 MRW_WLOCK_ASSERT(); 1100 1101 free_bw_list(rt->mfc_bw_meter_leq); 1102 free_bw_list(rt->mfc_bw_meter_geq); 1103 1104 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1105 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1106 if (rte) { 1107 m_freem(rte->m); 1108 free(rte, M_MRTABLE); 1109 } 1110 } 1111 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1112 1113 LIST_REMOVE(rt, mfc_hash); 1114 free(rt, M_MRTABLE); 1115 } 1116 1117 /* 1118 * Add an mfc entry 1119 */ 1120 static int 1121 add_mfc(struct mfcctl2 *mfccp) 1122 { 1123 struct mfc *rt; 1124 struct rtdetq *rte; 1125 u_long hash = 0; 1126 u_short nstl; 1127 1128 MRW_WLOCK(); 1129 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1130 1131 /* If an entry already exists, just update the fields */ 1132 if (rt) { 1133 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1134 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1135 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1136 mfccp->mfcc_parent); 1137 update_mfc_params(rt, mfccp); 1138 MRW_WUNLOCK(); 1139 return (0); 1140 } 1141 1142 /* 1143 * Find the entry for which the upcall was made and update 1144 */ 1145 nstl = 0; 1146 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1147 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1148 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1149 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1150 !buf_ring_empty(rt->mfc_stall_ring)) { 1151 CTR5(KTR_IPMF, 1152 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1153 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1154 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1155 mfccp->mfcc_parent, 1156 rt->mfc_stall_ring); 1157 if (nstl++) 1158 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1159 1160 init_mfc_params(rt, mfccp); 1161 rt->mfc_expire = 0; /* Don't clean this guy up */ 1162 V_nexpire[hash]--; 1163 1164 /* Free queued packets, but attempt to forward them first. */ 1165 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1166 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1167 if (rte->ifp != NULL) 1168 ip_mdq(rte->m, rte->ifp, rt, -1); 1169 m_freem(rte->m); 1170 free(rte, M_MRTABLE); 1171 } 1172 } 1173 } 1174 1175 /* 1176 * It is possible that an entry is being inserted without an upcall 1177 */ 1178 if (nstl == 0) { 1179 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1180 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1181 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1182 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1183 init_mfc_params(rt, mfccp); 1184 if (rt->mfc_expire) 1185 V_nexpire[hash]--; 1186 rt->mfc_expire = 0; 1187 break; /* XXX */ 1188 } 1189 } 1190 1191 if (rt == NULL) { /* no upcall, so make a new entry */ 1192 rt = mfc_alloc(); 1193 if (rt == NULL) { 1194 MRW_WUNLOCK(); 1195 return (ENOBUFS); 1196 } 1197 1198 init_mfc_params(rt, mfccp); 1199 1200 rt->mfc_expire = 0; 1201 rt->mfc_bw_meter_leq = NULL; 1202 rt->mfc_bw_meter_geq = NULL; 1203 1204 /* insert new entry at head of hash chain */ 1205 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1206 } 1207 } 1208 1209 MRW_WUNLOCK(); 1210 1211 return (0); 1212 } 1213 1214 /* 1215 * Delete an mfc entry 1216 */ 1217 static int 1218 del_mfc(struct mfcctl2 *mfccp) 1219 { 1220 struct in_addr origin; 1221 struct in_addr mcastgrp; 1222 struct mfc *rt; 1223 1224 origin = mfccp->mfcc_origin; 1225 mcastgrp = mfccp->mfcc_mcastgrp; 1226 1227 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1228 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1229 1230 MRW_WLOCK(); 1231 1232 rt = mfc_find(&origin, &mcastgrp); 1233 if (rt == NULL) { 1234 MRW_WUNLOCK(); 1235 return EADDRNOTAVAIL; 1236 } 1237 1238 /* 1239 * free the bw_meter entries 1240 */ 1241 free_bw_list(rt->mfc_bw_meter_leq); 1242 rt->mfc_bw_meter_leq = NULL; 1243 free_bw_list(rt->mfc_bw_meter_geq); 1244 rt->mfc_bw_meter_geq = NULL; 1245 1246 LIST_REMOVE(rt, mfc_hash); 1247 free(rt, M_MRTABLE); 1248 1249 MRW_WUNLOCK(); 1250 1251 return (0); 1252 } 1253 1254 /* 1255 * Send a message to the routing daemon on the multicast routing socket. 1256 */ 1257 static int 1258 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1259 { 1260 if (s) { 1261 SOCKBUF_LOCK(&s->so_rcv); 1262 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1263 NULL) != 0) { 1264 sorwakeup_locked(s); 1265 return 0; 1266 } 1267 soroverflow_locked(s); 1268 } 1269 m_freem(mm); 1270 return -1; 1271 } 1272 1273 /* 1274 * IP multicast forwarding function. This function assumes that the packet 1275 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1276 * pointed to by "ifp", and the packet is to be relayed to other networks 1277 * that have members of the packet's destination IP multicast group. 1278 * 1279 * The packet is returned unscathed to the caller, unless it is 1280 * erroneous, in which case a non-zero return value tells the caller to 1281 * discard it. 1282 */ 1283 1284 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1285 1286 static int 1287 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1288 struct ip_moptions *imo) 1289 { 1290 struct mfc *rt; 1291 int error; 1292 vifi_t vifi; 1293 struct mbuf *mb0; 1294 struct rtdetq *rte; 1295 u_long hash; 1296 int hlen; 1297 1298 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1299 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1300 1301 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1302 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1303 /* 1304 * Packet arrived via a physical interface or 1305 * an encapsulated tunnel or a register_vif. 1306 */ 1307 } else { 1308 /* 1309 * Packet arrived through a source-route tunnel. 1310 * Source-route tunnels are no longer supported. 1311 */ 1312 return (1); 1313 } 1314 1315 /* 1316 * BEGIN: MCAST ROUTING HOT PATH 1317 */ 1318 MRW_RLOCK(); 1319 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1320 if (ip->ip_ttl < MAXTTL) 1321 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1322 error = ip_mdq(m, ifp, NULL, vifi); 1323 MRW_RUNLOCK(); 1324 return error; 1325 } 1326 1327 /* 1328 * Don't forward a packet with time-to-live of zero or one, 1329 * or a packet destined to a local-only group. 1330 */ 1331 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1332 MRW_RUNLOCK(); 1333 return 0; 1334 } 1335 1336 mfc_find_retry: 1337 /* 1338 * Determine forwarding vifs from the forwarding cache table 1339 */ 1340 MRTSTAT_INC(mrts_mfc_lookups); 1341 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1342 1343 /* Entry exists, so forward if necessary */ 1344 if (rt != NULL) { 1345 error = ip_mdq(m, ifp, rt, -1); 1346 /* Generic unlock here as we might release R or W lock */ 1347 MRW_UNLOCK(); 1348 return error; 1349 } 1350 1351 /* 1352 * END: MCAST ROUTING HOT PATH 1353 */ 1354 1355 /* Further processing must be done with WLOCK taken */ 1356 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1357 MRW_RUNLOCK(); 1358 MRW_WLOCK(); 1359 goto mfc_find_retry; 1360 } 1361 1362 /* 1363 * If we don't have a route for packet's origin, 1364 * Make a copy of the packet & send message to routing daemon 1365 */ 1366 hlen = ip->ip_hl << 2; 1367 1368 MRTSTAT_INC(mrts_mfc_misses); 1369 MRTSTAT_INC(mrts_no_route); 1370 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1371 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1372 1373 /* 1374 * Allocate mbufs early so that we don't do extra work if we are 1375 * just going to fail anyway. Make sure to pullup the header so 1376 * that other people can't step on it. 1377 */ 1378 rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE, 1379 M_NOWAIT|M_ZERO); 1380 if (rte == NULL) { 1381 MRW_WUNLOCK(); 1382 return ENOBUFS; 1383 } 1384 1385 mb0 = m_copypacket(m, M_NOWAIT); 1386 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1387 mb0 = m_pullup(mb0, hlen); 1388 if (mb0 == NULL) { 1389 free(rte, M_MRTABLE); 1390 MRW_WUNLOCK(); 1391 return ENOBUFS; 1392 } 1393 1394 /* is there an upcall waiting for this flow ? */ 1395 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1396 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1397 { 1398 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1399 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1400 !buf_ring_empty(rt->mfc_stall_ring)) 1401 break; 1402 } 1403 1404 if (rt == NULL) { 1405 int i; 1406 struct igmpmsg *im; 1407 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1408 struct mbuf *mm; 1409 1410 /* 1411 * Locate the vifi for the incoming interface for this packet. 1412 * If none found, drop packet. 1413 */ 1414 for (vifi = 0; vifi < V_numvifs && 1415 V_viftable[vifi].v_ifp != ifp; vifi++) 1416 ; 1417 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1418 goto non_fatal; 1419 1420 /* no upcall, so make a new entry */ 1421 rt = mfc_alloc(); 1422 if (rt == NULL) 1423 goto fail; 1424 1425 /* Make a copy of the header to send to the user level process */ 1426 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1427 if (mm == NULL) 1428 goto fail1; 1429 1430 /* 1431 * Send message to routing daemon to install 1432 * a route into the kernel table 1433 */ 1434 1435 im = mtod(mm, struct igmpmsg*); 1436 im->im_msgtype = IGMPMSG_NOCACHE; 1437 im->im_mbz = 0; 1438 im->im_vif = vifi; 1439 1440 MRTSTAT_INC(mrts_upcalls); 1441 1442 k_igmpsrc.sin_addr = ip->ip_src; 1443 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1444 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1445 MRTSTAT_INC(mrts_upq_sockfull); 1446 fail1: free(rt, M_MRTABLE); 1447 fail: free(rte, M_MRTABLE); 1448 m_freem(mb0); 1449 MRW_WUNLOCK(); 1450 return ENOBUFS; 1451 } 1452 1453 /* insert new entry at head of hash chain */ 1454 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1455 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1456 rt->mfc_expire = UPCALL_EXPIRE; 1457 V_nexpire[hash]++; 1458 for (i = 0; i < V_numvifs; i++) { 1459 rt->mfc_ttls[i] = 0; 1460 rt->mfc_flags[i] = 0; 1461 } 1462 rt->mfc_parent = -1; 1463 1464 /* clear the RP address */ 1465 rt->mfc_rp.s_addr = INADDR_ANY; 1466 rt->mfc_bw_meter_leq = NULL; 1467 rt->mfc_bw_meter_geq = NULL; 1468 1469 /* initialize pkt counters per src-grp */ 1470 rt->mfc_pkt_cnt = 0; 1471 rt->mfc_byte_cnt = 0; 1472 rt->mfc_wrong_if = 0; 1473 timevalclear(&rt->mfc_last_assert); 1474 1475 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1476 1477 /* Add RT to hashtable as it didn't exist before */ 1478 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1479 } else { 1480 /* determine if queue has overflowed */ 1481 if (buf_ring_full(rt->mfc_stall_ring)) { 1482 MRTSTAT_INC(mrts_upq_ovflw); 1483 non_fatal: free(rte, M_MRTABLE); 1484 m_freem(mb0); 1485 MRW_WUNLOCK(); 1486 return (0); 1487 } 1488 1489 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1490 } 1491 1492 rte->m = mb0; 1493 rte->ifp = ifp; 1494 1495 MRW_WUNLOCK(); 1496 1497 return 0; 1498 } 1499 1500 /* 1501 * Clean up the cache entry if upcall is not serviced 1502 */ 1503 static void 1504 expire_upcalls(void *arg) 1505 { 1506 u_long i; 1507 1508 CURVNET_SET((struct vnet *) arg); 1509 1510 /*This callout is always run with MRW_WLOCK taken. */ 1511 1512 for (i = 0; i < mfchashsize; i++) { 1513 struct mfc *rt, *nrt; 1514 1515 if (V_nexpire[i] == 0) 1516 continue; 1517 1518 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1519 if (buf_ring_empty(rt->mfc_stall_ring)) 1520 continue; 1521 1522 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1523 continue; 1524 1525 MRTSTAT_INC(mrts_cache_cleanups); 1526 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1527 (u_long)ntohl(rt->mfc_origin.s_addr), 1528 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1529 1530 expire_mfc(rt); 1531 } 1532 } 1533 1534 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1535 curvnet); 1536 1537 CURVNET_RESTORE(); 1538 } 1539 1540 /* 1541 * Packet forwarding routine once entry in the cache is made 1542 */ 1543 static int 1544 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1545 { 1546 struct ip *ip = mtod(m, struct ip *); 1547 vifi_t vifi; 1548 int plen = ntohs(ip->ip_len); 1549 1550 MRW_LOCK_ASSERT(); 1551 1552 /* 1553 * If xmt_vif is not -1, send on only the requested vif. 1554 * 1555 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1556 */ 1557 if (xmt_vif < V_numvifs) { 1558 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1559 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1560 else 1561 phyint_send(ip, V_viftable + xmt_vif, m); 1562 return 1; 1563 } 1564 1565 /* 1566 * Don't forward if it didn't arrive from the parent vif for its origin. 1567 */ 1568 vifi = rt->mfc_parent; 1569 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1570 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1571 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1572 MRTSTAT_INC(mrts_wrong_if); 1573 ++rt->mfc_wrong_if; 1574 /* 1575 * If we are doing PIM assert processing, send a message 1576 * to the routing daemon. 1577 * 1578 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1579 * can complete the SPT switch, regardless of the type 1580 * of the iif (broadcast media, GRE tunnel, etc). 1581 */ 1582 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1583 V_viftable[vifi].v_ifp) { 1584 if (ifp == V_multicast_register_if) 1585 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1586 1587 /* Get vifi for the incoming packet */ 1588 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1589 vifi++) 1590 ; 1591 if (vifi >= V_numvifs) 1592 return 0; /* The iif is not found: ignore the packet. */ 1593 1594 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1595 return 0; /* WRONGVIF disabled: ignore the packet */ 1596 1597 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1598 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1599 struct igmpmsg *im; 1600 int hlen = ip->ip_hl << 2; 1601 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1602 1603 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1604 mm = m_pullup(mm, hlen); 1605 if (mm == NULL) 1606 return ENOBUFS; 1607 1608 im = mtod(mm, struct igmpmsg *); 1609 im->im_msgtype = IGMPMSG_WRONGVIF; 1610 im->im_mbz = 0; 1611 im->im_vif = vifi; 1612 1613 MRTSTAT_INC(mrts_upcalls); 1614 1615 k_igmpsrc.sin_addr = im->im_src; 1616 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1617 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1618 MRTSTAT_INC(mrts_upq_sockfull); 1619 return ENOBUFS; 1620 } 1621 } 1622 } 1623 return 0; 1624 } 1625 1626 /* If I sourced this packet, it counts as output, else it was input. */ 1627 mtx_lock_spin(&V_viftable[vifi].v_spin); 1628 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1629 V_viftable[vifi].v_pkt_out++; 1630 V_viftable[vifi].v_bytes_out += plen; 1631 } else { 1632 V_viftable[vifi].v_pkt_in++; 1633 V_viftable[vifi].v_bytes_in += plen; 1634 } 1635 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1636 1637 rt->mfc_pkt_cnt++; 1638 rt->mfc_byte_cnt += plen; 1639 1640 /* 1641 * For each vif, decide if a copy of the packet should be forwarded. 1642 * Forward if: 1643 * - the ttl exceeds the vif's threshold 1644 * - there are group members downstream on interface 1645 */ 1646 for (vifi = 0; vifi < V_numvifs; vifi++) 1647 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1648 V_viftable[vifi].v_pkt_out++; 1649 V_viftable[vifi].v_bytes_out += plen; 1650 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1651 pim_register_send(ip, V_viftable + vifi, m, rt); 1652 else 1653 phyint_send(ip, V_viftable + vifi, m); 1654 } 1655 1656 /* 1657 * Perform upcall-related bw measuring. 1658 */ 1659 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1660 struct bw_meter *x; 1661 struct timeval now; 1662 1663 microtime(&now); 1664 /* Process meters for Greater-or-EQual case */ 1665 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1666 bw_meter_geq_receive_packet(x, plen, &now); 1667 1668 /* Process meters for Lower-or-EQual case */ 1669 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1670 /* 1671 * Record that a packet is received. 1672 * Spin lock has to be taken as callout context 1673 * (expire_bw_meter_leq) might modify these fields 1674 * as well 1675 */ 1676 mtx_lock_spin(&x->bm_spin); 1677 x->bm_measured.b_packets++; 1678 x->bm_measured.b_bytes += plen; 1679 mtx_unlock_spin(&x->bm_spin); 1680 } 1681 } 1682 1683 return 0; 1684 } 1685 1686 /* 1687 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1688 */ 1689 static int 1690 X_legal_vif_num(int vif) 1691 { 1692 int ret; 1693 1694 ret = 0; 1695 if (vif < 0) 1696 return (ret); 1697 1698 MRW_RLOCK(); 1699 if (vif < V_numvifs) 1700 ret = 1; 1701 MRW_RUNLOCK(); 1702 1703 return (ret); 1704 } 1705 1706 /* 1707 * Return the local address used by this vif 1708 */ 1709 static u_long 1710 X_ip_mcast_src(int vifi) 1711 { 1712 in_addr_t addr; 1713 1714 addr = INADDR_ANY; 1715 if (vifi < 0) 1716 return (addr); 1717 1718 MRW_RLOCK(); 1719 if (vifi < V_numvifs) 1720 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1721 MRW_RUNLOCK(); 1722 1723 return (addr); 1724 } 1725 1726 static void 1727 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1728 { 1729 struct mbuf *mb_copy; 1730 int hlen = ip->ip_hl << 2; 1731 1732 MRW_LOCK_ASSERT(); 1733 1734 /* 1735 * Make a new reference to the packet; make sure that 1736 * the IP header is actually copied, not just referenced, 1737 * so that ip_output() only scribbles on the copy. 1738 */ 1739 mb_copy = m_copypacket(m, M_NOWAIT); 1740 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1741 mb_copy = m_pullup(mb_copy, hlen); 1742 if (mb_copy == NULL) 1743 return; 1744 1745 send_packet(vifp, mb_copy); 1746 } 1747 1748 static void 1749 send_packet(struct vif *vifp, struct mbuf *m) 1750 { 1751 struct ip_moptions imo; 1752 int error __unused; 1753 1754 MRW_LOCK_ASSERT(); 1755 1756 imo.imo_multicast_ifp = vifp->v_ifp; 1757 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1758 imo.imo_multicast_loop = !!in_mcast_loop; 1759 imo.imo_multicast_vif = -1; 1760 STAILQ_INIT(&imo.imo_head); 1761 1762 /* 1763 * Re-entrancy should not be a problem here, because 1764 * the packets that we send out and are looped back at us 1765 * should get rejected because they appear to come from 1766 * the loopback interface, thus preventing looping. 1767 */ 1768 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1769 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1770 (ptrdiff_t)(vifp - V_viftable), error); 1771 } 1772 1773 /* 1774 * Stubs for old RSVP socket shim implementation. 1775 */ 1776 1777 static int 1778 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1779 { 1780 1781 return (EOPNOTSUPP); 1782 } 1783 1784 static void 1785 X_ip_rsvp_force_done(struct socket *so __unused) 1786 { 1787 1788 } 1789 1790 static int 1791 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1792 { 1793 struct mbuf *m; 1794 1795 m = *mp; 1796 *mp = NULL; 1797 if (!V_rsvp_on) 1798 m_freem(m); 1799 return (IPPROTO_DONE); 1800 } 1801 1802 /* 1803 * Code for bandwidth monitors 1804 */ 1805 1806 /* 1807 * Define common interface for timeval-related methods 1808 */ 1809 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1810 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1811 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1812 1813 static uint32_t 1814 compute_bw_meter_flags(struct bw_upcall *req) 1815 { 1816 uint32_t flags = 0; 1817 1818 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1819 flags |= BW_METER_UNIT_PACKETS; 1820 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1821 flags |= BW_METER_UNIT_BYTES; 1822 if (req->bu_flags & BW_UPCALL_GEQ) 1823 flags |= BW_METER_GEQ; 1824 if (req->bu_flags & BW_UPCALL_LEQ) 1825 flags |= BW_METER_LEQ; 1826 1827 return flags; 1828 } 1829 1830 static void 1831 expire_bw_meter_leq(void *arg) 1832 { 1833 struct bw_meter *x = arg; 1834 struct timeval now; 1835 /* 1836 * INFO: 1837 * callout is always executed with MRW_WLOCK taken 1838 */ 1839 1840 CURVNET_SET((struct vnet *)x->arg); 1841 1842 microtime(&now); 1843 1844 /* 1845 * Test if we should deliver an upcall 1846 */ 1847 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1848 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1849 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1850 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1851 /* Prepare an upcall for delivery */ 1852 bw_meter_prepare_upcall(x, &now); 1853 } 1854 1855 /* Send all upcalls that are pending delivery */ 1856 taskqueue_enqueue(V_task_queue, &V_task); 1857 1858 /* Reset counters */ 1859 x->bm_start_time = now; 1860 /* Spin lock has to be taken as ip_forward context 1861 * might modify these fields as well 1862 */ 1863 mtx_lock_spin(&x->bm_spin); 1864 x->bm_measured.b_bytes = 0; 1865 x->bm_measured.b_packets = 0; 1866 mtx_unlock_spin(&x->bm_spin); 1867 1868 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1869 1870 CURVNET_RESTORE(); 1871 } 1872 1873 /* 1874 * Add a bw_meter entry 1875 */ 1876 static int 1877 add_bw_upcall(struct bw_upcall *req) 1878 { 1879 struct mfc *mfc; 1880 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1881 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1882 struct timeval now; 1883 struct bw_meter *x, **bwm_ptr; 1884 uint32_t flags; 1885 1886 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1887 return EOPNOTSUPP; 1888 1889 /* Test if the flags are valid */ 1890 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1891 return EINVAL; 1892 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1893 return EINVAL; 1894 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1895 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1896 return EINVAL; 1897 1898 /* Test if the threshold time interval is valid */ 1899 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1900 return EINVAL; 1901 1902 flags = compute_bw_meter_flags(req); 1903 1904 /* 1905 * Find if we have already same bw_meter entry 1906 */ 1907 MRW_WLOCK(); 1908 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1909 if (mfc == NULL) { 1910 MRW_WUNLOCK(); 1911 return EADDRNOTAVAIL; 1912 } 1913 1914 /* Choose an appropriate bw_meter list */ 1915 if (req->bu_flags & BW_UPCALL_GEQ) 1916 bwm_ptr = &mfc->mfc_bw_meter_geq; 1917 else 1918 bwm_ptr = &mfc->mfc_bw_meter_leq; 1919 1920 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1921 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1922 &req->bu_threshold.b_time, ==)) 1923 && (x->bm_threshold.b_packets 1924 == req->bu_threshold.b_packets) 1925 && (x->bm_threshold.b_bytes 1926 == req->bu_threshold.b_bytes) 1927 && (x->bm_flags & BW_METER_USER_FLAGS) 1928 == flags) { 1929 MRW_WUNLOCK(); 1930 return 0; /* XXX Already installed */ 1931 } 1932 } 1933 1934 /* Allocate the new bw_meter entry */ 1935 x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER, 1936 M_ZERO | M_NOWAIT); 1937 if (x == NULL) { 1938 MRW_WUNLOCK(); 1939 return ENOBUFS; 1940 } 1941 1942 /* Set the new bw_meter entry */ 1943 x->bm_threshold.b_time = req->bu_threshold.b_time; 1944 microtime(&now); 1945 x->bm_start_time = now; 1946 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1947 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1948 x->bm_measured.b_packets = 0; 1949 x->bm_measured.b_bytes = 0; 1950 x->bm_flags = flags; 1951 x->bm_time_next = NULL; 1952 x->bm_mfc = mfc; 1953 x->arg = curvnet; 1954 sprintf(x->bm_spin_name, "BM spin %p", x); 1955 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1956 1957 /* For LEQ case create periodic callout */ 1958 if (req->bu_flags & BW_UPCALL_LEQ) { 1959 callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK); 1960 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1961 expire_bw_meter_leq, x); 1962 } 1963 1964 /* Add the new bw_meter entry to the front of entries for this MFC */ 1965 x->bm_mfc_next = *bwm_ptr; 1966 *bwm_ptr = x; 1967 1968 MRW_WUNLOCK(); 1969 1970 return 0; 1971 } 1972 1973 static void 1974 free_bw_list(struct bw_meter *list) 1975 { 1976 while (list != NULL) { 1977 struct bw_meter *x = list; 1978 1979 /* MRW_WLOCK must be held here */ 1980 if (x->bm_flags & BW_METER_LEQ) { 1981 callout_drain(&x->bm_meter_callout); 1982 mtx_destroy(&x->bm_spin); 1983 } 1984 1985 list = list->bm_mfc_next; 1986 free(x, M_BWMETER); 1987 } 1988 } 1989 1990 /* 1991 * Delete one or multiple bw_meter entries 1992 */ 1993 static int 1994 del_bw_upcall(struct bw_upcall *req) 1995 { 1996 struct mfc *mfc; 1997 struct bw_meter *x, **bwm_ptr; 1998 1999 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2000 return EOPNOTSUPP; 2001 2002 MRW_WLOCK(); 2003 2004 /* Find the corresponding MFC entry */ 2005 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2006 if (mfc == NULL) { 2007 MRW_WUNLOCK(); 2008 return EADDRNOTAVAIL; 2009 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2010 /* 2011 * Delete all bw_meter entries for this mfc 2012 */ 2013 struct bw_meter *list; 2014 2015 /* Free LEQ list */ 2016 list = mfc->mfc_bw_meter_leq; 2017 mfc->mfc_bw_meter_leq = NULL; 2018 free_bw_list(list); 2019 2020 /* Free GEQ list */ 2021 list = mfc->mfc_bw_meter_geq; 2022 mfc->mfc_bw_meter_geq = NULL; 2023 free_bw_list(list); 2024 MRW_WUNLOCK(); 2025 return 0; 2026 } else { /* Delete a single bw_meter entry */ 2027 struct bw_meter *prev; 2028 uint32_t flags = 0; 2029 2030 flags = compute_bw_meter_flags(req); 2031 2032 /* Choose an appropriate bw_meter list */ 2033 if (req->bu_flags & BW_UPCALL_GEQ) 2034 bwm_ptr = &mfc->mfc_bw_meter_geq; 2035 else 2036 bwm_ptr = &mfc->mfc_bw_meter_leq; 2037 2038 /* Find the bw_meter entry to delete */ 2039 for (prev = NULL, x = *bwm_ptr; x != NULL; 2040 prev = x, x = x->bm_mfc_next) { 2041 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2042 &req->bu_threshold.b_time, ==)) && 2043 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2044 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2045 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2046 break; 2047 } 2048 if (x != NULL) { /* Delete entry from the list for this MFC */ 2049 if (prev != NULL) 2050 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2051 else 2052 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2053 2054 if (req->bu_flags & BW_UPCALL_LEQ) 2055 callout_stop(&x->bm_meter_callout); 2056 2057 MRW_WUNLOCK(); 2058 /* Free the bw_meter entry */ 2059 free(x, M_BWMETER); 2060 return 0; 2061 } else { 2062 MRW_WUNLOCK(); 2063 return EINVAL; 2064 } 2065 } 2066 /* NOTREACHED */ 2067 } 2068 2069 /* 2070 * Perform bandwidth measurement processing that may result in an upcall 2071 */ 2072 static void 2073 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2074 { 2075 struct timeval delta; 2076 2077 MRW_LOCK_ASSERT(); 2078 2079 delta = *nowp; 2080 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2081 2082 /* 2083 * Processing for ">=" type of bw_meter entry. 2084 * bm_spin does not have to be hold here as in GEQ 2085 * case this is the only context accessing bm_measured. 2086 */ 2087 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2088 /* Reset the bw_meter entry */ 2089 x->bm_start_time = *nowp; 2090 x->bm_measured.b_packets = 0; 2091 x->bm_measured.b_bytes = 0; 2092 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2093 } 2094 2095 /* Record that a packet is received */ 2096 x->bm_measured.b_packets++; 2097 x->bm_measured.b_bytes += plen; 2098 2099 /* 2100 * Test if we should deliver an upcall 2101 */ 2102 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2103 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2104 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2105 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2106 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2107 /* Prepare an upcall for delivery */ 2108 bw_meter_prepare_upcall(x, nowp); 2109 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2110 } 2111 } 2112 } 2113 2114 /* 2115 * Prepare a bandwidth-related upcall 2116 */ 2117 static void 2118 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2119 { 2120 struct timeval delta; 2121 struct bw_upcall *u; 2122 2123 MRW_LOCK_ASSERT(); 2124 2125 /* 2126 * Compute the measured time interval 2127 */ 2128 delta = *nowp; 2129 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2130 2131 /* 2132 * Set the bw_upcall entry 2133 */ 2134 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2135 if (!u) { 2136 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2137 return; 2138 } 2139 u->bu_src = x->bm_mfc->mfc_origin; 2140 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2141 u->bu_threshold.b_time = x->bm_threshold.b_time; 2142 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2143 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2144 u->bu_measured.b_time = delta; 2145 u->bu_measured.b_packets = x->bm_measured.b_packets; 2146 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2147 u->bu_flags = 0; 2148 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2149 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2150 if (x->bm_flags & BW_METER_UNIT_BYTES) 2151 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2152 if (x->bm_flags & BW_METER_GEQ) 2153 u->bu_flags |= BW_UPCALL_GEQ; 2154 if (x->bm_flags & BW_METER_LEQ) 2155 u->bu_flags |= BW_UPCALL_LEQ; 2156 2157 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2158 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2159 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2160 taskqueue_enqueue(V_task_queue, &V_task); 2161 } 2162 } 2163 /* 2164 * Send the pending bandwidth-related upcalls 2165 */ 2166 static void 2167 bw_upcalls_send(void) 2168 { 2169 struct mbuf *m; 2170 int len = 0; 2171 struct bw_upcall *bu; 2172 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2173 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2174 0, /* unused2 */ 2175 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2176 0, /* im_mbz */ 2177 0, /* im_vif */ 2178 0, /* unused3 */ 2179 { 0 }, /* im_src */ 2180 { 0 } }; /* im_dst */ 2181 2182 MRW_LOCK_ASSERT(); 2183 2184 if (buf_ring_empty(V_bw_upcalls_ring)) 2185 return; 2186 2187 /* 2188 * Allocate a new mbuf, initialize it with the header and 2189 * the payload for the pending calls. 2190 */ 2191 m = m_gethdr(M_NOWAIT, MT_DATA); 2192 if (m == NULL) { 2193 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2194 return; 2195 } 2196 2197 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2198 len += sizeof(struct igmpmsg); 2199 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2200 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2201 len += sizeof(struct bw_upcall); 2202 free(bu, M_MRTABLE); 2203 } 2204 2205 /* 2206 * Send the upcalls 2207 * XXX do we need to set the address in k_igmpsrc ? 2208 */ 2209 MRTSTAT_INC(mrts_upcalls); 2210 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2211 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2212 MRTSTAT_INC(mrts_upq_sockfull); 2213 } 2214 } 2215 2216 /* 2217 * A periodic function for sending all upcalls that are pending delivery 2218 */ 2219 static void 2220 expire_bw_upcalls_send(void *arg) 2221 { 2222 CURVNET_SET((struct vnet *) arg); 2223 2224 /* This callout is run with MRW_RLOCK taken */ 2225 2226 bw_upcalls_send(); 2227 2228 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2229 curvnet); 2230 CURVNET_RESTORE(); 2231 } 2232 2233 /* 2234 * End of bandwidth monitoring code 2235 */ 2236 2237 /* 2238 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2239 * 2240 */ 2241 static int 2242 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2243 struct mfc *rt) 2244 { 2245 struct mbuf *mb_copy, *mm; 2246 2247 /* 2248 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2249 * rendezvous point was unspecified, and we were told not to. 2250 */ 2251 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2252 in_nullhost(rt->mfc_rp)) 2253 return 0; 2254 2255 mb_copy = pim_register_prepare(ip, m); 2256 if (mb_copy == NULL) 2257 return ENOBUFS; 2258 2259 /* 2260 * Send all the fragments. Note that the mbuf for each fragment 2261 * is freed by the sending machinery. 2262 */ 2263 for (mm = mb_copy; mm; mm = mb_copy) { 2264 mb_copy = mm->m_nextpkt; 2265 mm->m_nextpkt = 0; 2266 mm = m_pullup(mm, sizeof(struct ip)); 2267 if (mm != NULL) { 2268 ip = mtod(mm, struct ip *); 2269 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2270 pim_register_send_rp(ip, vifp, mm, rt); 2271 } else { 2272 pim_register_send_upcall(ip, vifp, mm, rt); 2273 } 2274 } 2275 } 2276 2277 return 0; 2278 } 2279 2280 /* 2281 * Return a copy of the data packet that is ready for PIM Register 2282 * encapsulation. 2283 * XXX: Note that in the returned copy the IP header is a valid one. 2284 */ 2285 static struct mbuf * 2286 pim_register_prepare(struct ip *ip, struct mbuf *m) 2287 { 2288 struct mbuf *mb_copy = NULL; 2289 int mtu; 2290 2291 /* Take care of delayed checksums */ 2292 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2293 in_delayed_cksum(m); 2294 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2295 } 2296 2297 /* 2298 * Copy the old packet & pullup its IP header into the 2299 * new mbuf so we can modify it. 2300 */ 2301 mb_copy = m_copypacket(m, M_NOWAIT); 2302 if (mb_copy == NULL) 2303 return NULL; 2304 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2305 if (mb_copy == NULL) 2306 return NULL; 2307 2308 /* take care of the TTL */ 2309 ip = mtod(mb_copy, struct ip *); 2310 --ip->ip_ttl; 2311 2312 /* Compute the MTU after the PIM Register encapsulation */ 2313 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2314 2315 if (ntohs(ip->ip_len) <= mtu) { 2316 /* Turn the IP header into a valid one */ 2317 ip->ip_sum = 0; 2318 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2319 } else { 2320 /* Fragment the packet */ 2321 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2322 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2323 m_freem(mb_copy); 2324 return NULL; 2325 } 2326 } 2327 return mb_copy; 2328 } 2329 2330 /* 2331 * Send an upcall with the data packet to the user-level process. 2332 */ 2333 static int 2334 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2335 struct mbuf *mb_copy, struct mfc *rt) 2336 { 2337 struct mbuf *mb_first; 2338 int len = ntohs(ip->ip_len); 2339 struct igmpmsg *im; 2340 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2341 2342 MRW_LOCK_ASSERT(); 2343 2344 /* 2345 * Add a new mbuf with an upcall header 2346 */ 2347 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2348 if (mb_first == NULL) { 2349 m_freem(mb_copy); 2350 return ENOBUFS; 2351 } 2352 mb_first->m_data += max_linkhdr; 2353 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2354 mb_first->m_len = sizeof(struct igmpmsg); 2355 mb_first->m_next = mb_copy; 2356 2357 /* Send message to routing daemon */ 2358 im = mtod(mb_first, struct igmpmsg *); 2359 im->im_msgtype = IGMPMSG_WHOLEPKT; 2360 im->im_mbz = 0; 2361 im->im_vif = vifp - V_viftable; 2362 im->im_src = ip->ip_src; 2363 im->im_dst = ip->ip_dst; 2364 2365 k_igmpsrc.sin_addr = ip->ip_src; 2366 2367 MRTSTAT_INC(mrts_upcalls); 2368 2369 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2370 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2371 MRTSTAT_INC(mrts_upq_sockfull); 2372 return ENOBUFS; 2373 } 2374 2375 /* Keep statistics */ 2376 PIMSTAT_INC(pims_snd_registers_msgs); 2377 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2378 2379 return 0; 2380 } 2381 2382 /* 2383 * Encapsulate the data packet in PIM Register message and send it to the RP. 2384 */ 2385 static int 2386 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2387 struct mfc *rt) 2388 { 2389 struct mbuf *mb_first; 2390 struct ip *ip_outer; 2391 struct pim_encap_pimhdr *pimhdr; 2392 int len = ntohs(ip->ip_len); 2393 vifi_t vifi = rt->mfc_parent; 2394 2395 MRW_LOCK_ASSERT(); 2396 2397 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2398 m_freem(mb_copy); 2399 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2400 } 2401 2402 /* 2403 * Add a new mbuf with the encapsulating header 2404 */ 2405 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2406 if (mb_first == NULL) { 2407 m_freem(mb_copy); 2408 return ENOBUFS; 2409 } 2410 mb_first->m_data += max_linkhdr; 2411 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2412 mb_first->m_next = mb_copy; 2413 2414 mb_first->m_pkthdr.len = len + mb_first->m_len; 2415 2416 /* 2417 * Fill in the encapsulating IP and PIM header 2418 */ 2419 ip_outer = mtod(mb_first, struct ip *); 2420 *ip_outer = pim_encap_iphdr; 2421 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2422 sizeof(pim_encap_pimhdr)); 2423 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2424 ip_outer->ip_dst = rt->mfc_rp; 2425 /* 2426 * Copy the inner header TOS to the outer header, and take care of the 2427 * IP_DF bit. 2428 */ 2429 ip_outer->ip_tos = ip->ip_tos; 2430 if (ip->ip_off & htons(IP_DF)) 2431 ip_outer->ip_off |= htons(IP_DF); 2432 ip_fillid(ip_outer); 2433 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2434 + sizeof(pim_encap_iphdr)); 2435 *pimhdr = pim_encap_pimhdr; 2436 /* If the iif crosses a border, set the Border-bit */ 2437 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2438 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2439 2440 mb_first->m_data += sizeof(pim_encap_iphdr); 2441 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2442 mb_first->m_data -= sizeof(pim_encap_iphdr); 2443 2444 send_packet(vifp, mb_first); 2445 2446 /* Keep statistics */ 2447 PIMSTAT_INC(pims_snd_registers_msgs); 2448 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2449 2450 return 0; 2451 } 2452 2453 /* 2454 * pim_encapcheck() is called by the encap4_input() path at runtime to 2455 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2456 * into the kernel. 2457 */ 2458 static int 2459 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2460 int proto __unused, void *arg __unused) 2461 { 2462 2463 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2464 return (8); /* claim the datagram. */ 2465 } 2466 2467 /* 2468 * PIM-SMv2 and PIM-DM messages processing. 2469 * Receives and verifies the PIM control messages, and passes them 2470 * up to the listening socket, using rip_input(). 2471 * The only message with special processing is the PIM_REGISTER message 2472 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2473 * is passed to if_simloop(). 2474 */ 2475 static int 2476 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2477 { 2478 struct ip *ip = mtod(m, struct ip *); 2479 struct pim *pim; 2480 int iphlen = off; 2481 int minlen; 2482 int datalen = ntohs(ip->ip_len) - iphlen; 2483 int ip_tos; 2484 2485 /* Keep statistics */ 2486 PIMSTAT_INC(pims_rcv_total_msgs); 2487 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2488 2489 /* 2490 * Validate lengths 2491 */ 2492 if (datalen < PIM_MINLEN) { 2493 PIMSTAT_INC(pims_rcv_tooshort); 2494 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2495 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2496 m_freem(m); 2497 return (IPPROTO_DONE); 2498 } 2499 2500 /* 2501 * If the packet is at least as big as a REGISTER, go agead 2502 * and grab the PIM REGISTER header size, to avoid another 2503 * possible m_pullup() later. 2504 * 2505 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2506 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2507 */ 2508 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2509 /* 2510 * Get the IP and PIM headers in contiguous memory, and 2511 * possibly the PIM REGISTER header. 2512 */ 2513 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2514 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2515 return (IPPROTO_DONE); 2516 } 2517 2518 /* m_pullup() may have given us a new mbuf so reset ip. */ 2519 ip = mtod(m, struct ip *); 2520 ip_tos = ip->ip_tos; 2521 2522 /* adjust mbuf to point to the PIM header */ 2523 m->m_data += iphlen; 2524 m->m_len -= iphlen; 2525 pim = mtod(m, struct pim *); 2526 2527 /* 2528 * Validate checksum. If PIM REGISTER, exclude the data packet. 2529 * 2530 * XXX: some older PIMv2 implementations don't make this distinction, 2531 * so for compatibility reason perform the checksum over part of the 2532 * message, and if error, then over the whole message. 2533 */ 2534 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2535 /* do nothing, checksum okay */ 2536 } else if (in_cksum(m, datalen)) { 2537 PIMSTAT_INC(pims_rcv_badsum); 2538 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2539 m_freem(m); 2540 return (IPPROTO_DONE); 2541 } 2542 2543 /* PIM version check */ 2544 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2545 PIMSTAT_INC(pims_rcv_badversion); 2546 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2547 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2548 m_freem(m); 2549 return (IPPROTO_DONE); 2550 } 2551 2552 /* restore mbuf back to the outer IP */ 2553 m->m_data -= iphlen; 2554 m->m_len += iphlen; 2555 2556 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2557 /* 2558 * Since this is a REGISTER, we'll make a copy of the register 2559 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2560 * routing daemon. 2561 */ 2562 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2563 struct mbuf *mcp; 2564 struct ip *encap_ip; 2565 u_int32_t *reghdr; 2566 struct ifnet *vifp; 2567 2568 MRW_RLOCK(); 2569 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2570 MRW_RUNLOCK(); 2571 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2572 (int)V_reg_vif_num); 2573 m_freem(m); 2574 return (IPPROTO_DONE); 2575 } 2576 /* XXX need refcnt? */ 2577 vifp = V_viftable[V_reg_vif_num].v_ifp; 2578 MRW_RUNLOCK(); 2579 2580 /* 2581 * Validate length 2582 */ 2583 if (datalen < PIM_REG_MINLEN) { 2584 PIMSTAT_INC(pims_rcv_tooshort); 2585 PIMSTAT_INC(pims_rcv_badregisters); 2586 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2587 m_freem(m); 2588 return (IPPROTO_DONE); 2589 } 2590 2591 reghdr = (u_int32_t *)(pim + 1); 2592 encap_ip = (struct ip *)(reghdr + 1); 2593 2594 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2595 __func__, ntohl(encap_ip->ip_src.s_addr), 2596 ntohs(encap_ip->ip_len)); 2597 2598 /* verify the version number of the inner packet */ 2599 if (encap_ip->ip_v != IPVERSION) { 2600 PIMSTAT_INC(pims_rcv_badregisters); 2601 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2602 m_freem(m); 2603 return (IPPROTO_DONE); 2604 } 2605 2606 /* verify the inner packet is destined to a mcast group */ 2607 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2608 PIMSTAT_INC(pims_rcv_badregisters); 2609 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2610 ntohl(encap_ip->ip_dst.s_addr)); 2611 m_freem(m); 2612 return (IPPROTO_DONE); 2613 } 2614 2615 /* If a NULL_REGISTER, pass it to the daemon */ 2616 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2617 goto pim_input_to_daemon; 2618 2619 /* 2620 * Copy the TOS from the outer IP header to the inner IP header. 2621 */ 2622 if (encap_ip->ip_tos != ip_tos) { 2623 /* Outer TOS -> inner TOS */ 2624 encap_ip->ip_tos = ip_tos; 2625 /* Recompute the inner header checksum. Sigh... */ 2626 2627 /* adjust mbuf to point to the inner IP header */ 2628 m->m_data += (iphlen + PIM_MINLEN); 2629 m->m_len -= (iphlen + PIM_MINLEN); 2630 2631 encap_ip->ip_sum = 0; 2632 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2633 2634 /* restore mbuf to point back to the outer IP header */ 2635 m->m_data -= (iphlen + PIM_MINLEN); 2636 m->m_len += (iphlen + PIM_MINLEN); 2637 } 2638 2639 /* 2640 * Decapsulate the inner IP packet and loopback to forward it 2641 * as a normal multicast packet. Also, make a copy of the 2642 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2643 * to pass to the daemon later, so it can take the appropriate 2644 * actions (e.g., send back PIM_REGISTER_STOP). 2645 * XXX: here m->m_data points to the outer IP header. 2646 */ 2647 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2648 if (mcp == NULL) { 2649 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2650 m_freem(m); 2651 return (IPPROTO_DONE); 2652 } 2653 2654 /* Keep statistics */ 2655 /* XXX: registers_bytes include only the encap. mcast pkt */ 2656 PIMSTAT_INC(pims_rcv_registers_msgs); 2657 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2658 2659 /* 2660 * forward the inner ip packet; point m_data at the inner ip. 2661 */ 2662 m_adj(m, iphlen + PIM_MINLEN); 2663 2664 CTR4(KTR_IPMF, 2665 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2666 __func__, 2667 (u_long)ntohl(encap_ip->ip_src.s_addr), 2668 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2669 (int)V_reg_vif_num); 2670 2671 /* NB: vifp was collected above; can it change on us? */ 2672 if_simloop(vifp, m, dst.sin_family, 0); 2673 2674 /* prepare the register head to send to the mrouting daemon */ 2675 m = mcp; 2676 } 2677 2678 pim_input_to_daemon: 2679 /* 2680 * Pass the PIM message up to the daemon; if it is a Register message, 2681 * pass the 'head' only up to the daemon. This includes the 2682 * outer IP header, PIM header, PIM-Register header and the 2683 * inner IP header. 2684 * XXX: the outer IP header pkt size of a Register is not adjust to 2685 * reflect the fact that the inner multicast data is truncated. 2686 */ 2687 return (rip_input(&m, &off, proto)); 2688 } 2689 2690 static int 2691 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2692 { 2693 struct mfc *rt; 2694 int error, i; 2695 2696 if (req->newptr) 2697 return (EPERM); 2698 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2699 return (0); 2700 error = sysctl_wire_old_buffer(req, 0); 2701 if (error) 2702 return (error); 2703 2704 MRW_RLOCK(); 2705 for (i = 0; i < mfchashsize; i++) { 2706 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2707 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2708 if (error) 2709 goto out_locked; 2710 } 2711 } 2712 out_locked: 2713 MRW_RUNLOCK(); 2714 return (error); 2715 } 2716 2717 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2718 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2719 "IPv4 Multicast Forwarding Table " 2720 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2721 2722 static int 2723 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2724 { 2725 int error; 2726 2727 if (req->newptr) 2728 return (EPERM); 2729 if (V_viftable == NULL) /* XXX unlocked */ 2730 return (0); 2731 error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS); 2732 if (error) 2733 return (error); 2734 2735 MRW_RLOCK(); 2736 error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS); 2737 MRW_RUNLOCK(); 2738 return (error); 2739 } 2740 2741 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2742 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2743 sysctl_viflist, "S,vif[MAXVIFS]", 2744 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2745 2746 static void 2747 vnet_mroute_init(const void *unused __unused) 2748 { 2749 2750 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2751 2752 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2753 M_MRTABLE, M_WAITOK|M_ZERO); 2754 2755 callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0); 2756 callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0); 2757 2758 /* Prepare taskqueue */ 2759 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2760 taskqueue_thread_enqueue, &V_task_queue); 2761 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2762 } 2763 2764 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2765 NULL); 2766 2767 static void 2768 vnet_mroute_uninit(const void *unused __unused) 2769 { 2770 2771 /* Taskqueue should be cancelled and drained before freeing */ 2772 taskqueue_free(V_task_queue); 2773 2774 free(V_viftable, M_MRTABLE); 2775 free(V_nexpire, M_MRTABLE); 2776 V_nexpire = NULL; 2777 } 2778 2779 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2780 vnet_mroute_uninit, NULL); 2781 2782 static int 2783 ip_mroute_modevent(module_t mod, int type, void *unused) 2784 { 2785 2786 switch (type) { 2787 case MOD_LOAD: 2788 MRW_LOCK_INIT(); 2789 2790 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2791 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2792 if (if_detach_event_tag == NULL) { 2793 printf("ip_mroute: unable to register " 2794 "ifnet_departure_event handler\n"); 2795 MRW_LOCK_DESTROY(); 2796 return (EINVAL); 2797 } 2798 2799 mfchashsize = MFCHASHSIZE; 2800 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2801 !powerof2(mfchashsize)) { 2802 printf("WARNING: %s not a power of 2; using default\n", 2803 "net.inet.ip.mfchashsize"); 2804 mfchashsize = MFCHASHSIZE; 2805 } 2806 2807 pim_squelch_wholepkt = 0; 2808 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2809 &pim_squelch_wholepkt); 2810 2811 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2812 if (pim_encap_cookie == NULL) { 2813 printf("ip_mroute: unable to attach pim encap\n"); 2814 MRW_LOCK_DESTROY(); 2815 return (EINVAL); 2816 } 2817 2818 ip_mcast_src = X_ip_mcast_src; 2819 ip_mforward = X_ip_mforward; 2820 ip_mrouter_done = X_ip_mrouter_done; 2821 ip_mrouter_get = X_ip_mrouter_get; 2822 ip_mrouter_set = X_ip_mrouter_set; 2823 2824 ip_rsvp_force_done = X_ip_rsvp_force_done; 2825 ip_rsvp_vif = X_ip_rsvp_vif; 2826 2827 legal_vif_num = X_legal_vif_num; 2828 mrt_ioctl = X_mrt_ioctl; 2829 rsvp_input_p = X_rsvp_input; 2830 break; 2831 2832 case MOD_UNLOAD: 2833 /* 2834 * Typically module unload happens after the user-level 2835 * process has shutdown the kernel services (the check 2836 * below insures someone can't just yank the module out 2837 * from under a running process). But if the module is 2838 * just loaded and then unloaded w/o starting up a user 2839 * process we still need to cleanup. 2840 */ 2841 MRW_WLOCK(); 2842 if (ip_mrouter_cnt != 0) { 2843 MRW_WUNLOCK(); 2844 return (EINVAL); 2845 } 2846 ip_mrouter_unloading = 1; 2847 MRW_WUNLOCK(); 2848 2849 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2850 2851 if (pim_encap_cookie) { 2852 ip_encap_detach(pim_encap_cookie); 2853 pim_encap_cookie = NULL; 2854 } 2855 2856 ip_mcast_src = NULL; 2857 ip_mforward = NULL; 2858 ip_mrouter_done = NULL; 2859 ip_mrouter_get = NULL; 2860 ip_mrouter_set = NULL; 2861 2862 ip_rsvp_force_done = NULL; 2863 ip_rsvp_vif = NULL; 2864 2865 legal_vif_num = NULL; 2866 mrt_ioctl = NULL; 2867 rsvp_input_p = NULL; 2868 2869 MRW_LOCK_DESTROY(); 2870 break; 2871 2872 default: 2873 return EOPNOTSUPP; 2874 } 2875 return 0; 2876 } 2877 2878 static moduledata_t ip_mroutemod = { 2879 "ip_mroute", 2880 ip_mroute_modevent, 2881 0 2882 }; 2883 2884 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2885