1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_bootp.h" 38 #include "opt_ipstealth.h" 39 #include "opt_ipsec.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/hhook.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/rmlock.h> 55 #include <sys/rwlock.h> 56 #include <sys/sdt.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <net/netisr.h> 68 #include <net/rss_config.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_kdtrace.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/in_var.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/ip_var.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/ip_options.h> 82 #include <machine/in_cksum.h> 83 #include <netinet/ip_carp.h> 84 #include <netinet/in_rss.h> 85 #include <netinet/ip_mroute.h> 86 87 #include <netipsec/ipsec_support.h> 88 89 #include <sys/socketvar.h> 90 91 #include <security/mac/mac_framework.h> 92 93 #ifdef CTASSERT 94 CTASSERT(sizeof(struct ip) == 20); 95 #endif 96 97 /* IP reassembly functions are defined in ip_reass.c. */ 98 extern void ipreass_init(void); 99 extern void ipreass_drain(void); 100 extern void ipreass_slowtimo(void); 101 #ifdef VIMAGE 102 extern void ipreass_destroy(void); 103 #endif 104 105 VNET_DEFINE(int, rsvp_on); 106 107 VNET_DEFINE(int, ipforwarding); 108 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, 109 &VNET_NAME(ipforwarding), 0, 110 "Enable IP forwarding between interfaces"); 111 112 /* 113 * Respond with an ICMP host redirect when we forward a packet out of 114 * the same interface on which it was received. See RFC 792. 115 */ 116 VNET_DEFINE(int, ipsendredirects) = 1; 117 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, 118 &VNET_NAME(ipsendredirects), 0, 119 "Enable sending IP redirects"); 120 121 VNET_DEFINE_STATIC(bool, ip_strong_es) = false; 122 #define V_ip_strong_es VNET(ip_strong_es) 123 SYSCTL_BOOL(_net_inet_ip, OID_AUTO, rfc1122_strong_es, 124 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_strong_es), false, 125 "Packet's IP destination address must match address on arrival interface"); 126 127 VNET_DEFINE_STATIC(bool, ip_sav) = true; 128 #define V_ip_sav VNET(ip_sav) 129 SYSCTL_BOOL(_net_inet_ip, OID_AUTO, source_address_validation, 130 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_sav), true, 131 "Drop incoming packets with source address that is a local address"); 132 133 VNET_DEFINE(pfil_head_t, inet_pfil_head); /* Packet filter hooks */ 134 135 static struct netisr_handler ip_nh = { 136 .nh_name = "ip", 137 .nh_handler = ip_input, 138 .nh_proto = NETISR_IP, 139 #ifdef RSS 140 .nh_m2cpuid = rss_soft_m2cpuid_v4, 141 .nh_policy = NETISR_POLICY_CPU, 142 .nh_dispatch = NETISR_DISPATCH_HYBRID, 143 #else 144 .nh_policy = NETISR_POLICY_FLOW, 145 #endif 146 }; 147 148 #ifdef RSS 149 /* 150 * Directly dispatched frames are currently assumed 151 * to have a flowid already calculated. 152 * 153 * It should likely have something that assert it 154 * actually has valid flow details. 155 */ 156 static struct netisr_handler ip_direct_nh = { 157 .nh_name = "ip_direct", 158 .nh_handler = ip_direct_input, 159 .nh_proto = NETISR_IP_DIRECT, 160 .nh_m2cpuid = rss_soft_m2cpuid_v4, 161 .nh_policy = NETISR_POLICY_CPU, 162 .nh_dispatch = NETISR_DISPATCH_HYBRID, 163 }; 164 #endif 165 166 extern struct domain inetdomain; 167 extern struct protosw inetsw[]; 168 u_char ip_protox[IPPROTO_MAX]; 169 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ 170 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ 171 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ 172 173 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 174 CTASSERT(sizeof(struct in_ifaddrhashhead) == sizeof(LIST_HEAD(, in_addr))); 175 176 #ifdef IPCTL_DEFMTU 177 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 178 &ip_mtu, 0, "Default MTU"); 179 #endif 180 181 #ifdef IPSTEALTH 182 VNET_DEFINE(int, ipstealth); 183 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, 184 &VNET_NAME(ipstealth), 0, 185 "IP stealth mode, no TTL decrementation on forwarding"); 186 #endif 187 188 /* 189 * IP statistics are stored in the "array" of counter(9)s. 190 */ 191 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); 192 VNET_PCPUSTAT_SYSINIT(ipstat); 193 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, 194 "IP statistics (struct ipstat, netinet/ip_var.h)"); 195 196 #ifdef VIMAGE 197 VNET_PCPUSTAT_SYSUNINIT(ipstat); 198 #endif /* VIMAGE */ 199 200 /* 201 * Kernel module interface for updating ipstat. The argument is an index 202 * into ipstat treated as an array. 203 */ 204 void 205 kmod_ipstat_inc(int statnum) 206 { 207 208 counter_u64_add(VNET(ipstat)[statnum], 1); 209 } 210 211 void 212 kmod_ipstat_dec(int statnum) 213 { 214 215 counter_u64_add(VNET(ipstat)[statnum], -1); 216 } 217 218 static int 219 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) 220 { 221 int error, qlimit; 222 223 netisr_getqlimit(&ip_nh, &qlimit); 224 error = sysctl_handle_int(oidp, &qlimit, 0, req); 225 if (error || !req->newptr) 226 return (error); 227 if (qlimit < 1) 228 return (EINVAL); 229 return (netisr_setqlimit(&ip_nh, qlimit)); 230 } 231 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, 232 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 233 sysctl_netinet_intr_queue_maxlen, "I", 234 "Maximum size of the IP input queue"); 235 236 static int 237 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) 238 { 239 u_int64_t qdrops_long; 240 int error, qdrops; 241 242 netisr_getqdrops(&ip_nh, &qdrops_long); 243 qdrops = qdrops_long; 244 error = sysctl_handle_int(oidp, &qdrops, 0, req); 245 if (error || !req->newptr) 246 return (error); 247 if (qdrops != 0) 248 return (EINVAL); 249 netisr_clearqdrops(&ip_nh); 250 return (0); 251 } 252 253 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, 254 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 255 0, 0, sysctl_netinet_intr_queue_drops, "I", 256 "Number of packets dropped from the IP input queue"); 257 258 #ifdef RSS 259 static int 260 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) 261 { 262 int error, qlimit; 263 264 netisr_getqlimit(&ip_direct_nh, &qlimit); 265 error = sysctl_handle_int(oidp, &qlimit, 0, req); 266 if (error || !req->newptr) 267 return (error); 268 if (qlimit < 1) 269 return (EINVAL); 270 return (netisr_setqlimit(&ip_direct_nh, qlimit)); 271 } 272 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, 273 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 274 0, 0, sysctl_netinet_intr_direct_queue_maxlen, 275 "I", "Maximum size of the IP direct input queue"); 276 277 static int 278 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) 279 { 280 u_int64_t qdrops_long; 281 int error, qdrops; 282 283 netisr_getqdrops(&ip_direct_nh, &qdrops_long); 284 qdrops = qdrops_long; 285 error = sysctl_handle_int(oidp, &qdrops, 0, req); 286 if (error || !req->newptr) 287 return (error); 288 if (qdrops != 0) 289 return (EINVAL); 290 netisr_clearqdrops(&ip_direct_nh); 291 return (0); 292 } 293 294 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, 295 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 296 sysctl_netinet_intr_direct_queue_drops, "I", 297 "Number of packets dropped from the IP direct input queue"); 298 #endif /* RSS */ 299 300 /* 301 * IP initialization: fill in IP protocol switch table. 302 * All protocols not implemented in kernel go to raw IP protocol handler. 303 */ 304 void 305 ip_init(void) 306 { 307 struct pfil_head_args args; 308 struct protosw *pr; 309 int i; 310 311 CK_STAILQ_INIT(&V_in_ifaddrhead); 312 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 313 314 /* Initialize IP reassembly queue. */ 315 ipreass_init(); 316 317 /* Initialize packet filter hooks. */ 318 args.pa_version = PFIL_VERSION; 319 args.pa_flags = PFIL_IN | PFIL_OUT; 320 args.pa_type = PFIL_TYPE_IP4; 321 args.pa_headname = PFIL_INET_NAME; 322 V_inet_pfil_head = pfil_head_register(&args); 323 324 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, 325 &V_ipsec_hhh_in[HHOOK_IPSEC_INET], 326 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 327 printf("%s: WARNING: unable to register input helper hook\n", 328 __func__); 329 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, 330 &V_ipsec_hhh_out[HHOOK_IPSEC_INET], 331 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 332 printf("%s: WARNING: unable to register output helper hook\n", 333 __func__); 334 335 /* Skip initialization of globals for non-default instances. */ 336 #ifdef VIMAGE 337 if (!IS_DEFAULT_VNET(curvnet)) { 338 netisr_register_vnet(&ip_nh); 339 #ifdef RSS 340 netisr_register_vnet(&ip_direct_nh); 341 #endif 342 return; 343 } 344 #endif 345 346 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 347 if (pr == NULL) 348 panic("ip_init: PF_INET not found"); 349 350 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 351 for (i = 0; i < IPPROTO_MAX; i++) 352 ip_protox[i] = pr - inetsw; 353 /* 354 * Cycle through IP protocols and put them into the appropriate place 355 * in ip_protox[]. 356 */ 357 for (pr = inetdomain.dom_protosw; 358 pr < inetdomain.dom_protoswNPROTOSW; pr++) 359 if (pr->pr_domain->dom_family == PF_INET && 360 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 361 /* Be careful to only index valid IP protocols. */ 362 if (pr->pr_protocol < IPPROTO_MAX) 363 ip_protox[pr->pr_protocol] = pr - inetsw; 364 } 365 366 netisr_register(&ip_nh); 367 #ifdef RSS 368 netisr_register(&ip_direct_nh); 369 #endif 370 } 371 372 #ifdef VIMAGE 373 static void 374 ip_destroy(void *unused __unused) 375 { 376 int error; 377 378 #ifdef RSS 379 netisr_unregister_vnet(&ip_direct_nh); 380 #endif 381 netisr_unregister_vnet(&ip_nh); 382 383 pfil_head_unregister(V_inet_pfil_head); 384 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); 385 if (error != 0) { 386 printf("%s: WARNING: unable to deregister input helper hook " 387 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " 388 "error %d returned\n", __func__, error); 389 } 390 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); 391 if (error != 0) { 392 printf("%s: WARNING: unable to deregister output helper hook " 393 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " 394 "error %d returned\n", __func__, error); 395 } 396 397 /* Remove the IPv4 addresses from all interfaces. */ 398 in_ifscrub_all(); 399 400 /* Make sure the IPv4 routes are gone as well. */ 401 rib_flush_routes_family(AF_INET); 402 403 /* Destroy IP reassembly queue. */ 404 ipreass_destroy(); 405 406 /* Cleanup in_ifaddr hash table; should be empty. */ 407 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); 408 } 409 410 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); 411 #endif 412 413 #ifdef RSS 414 /* 415 * IP direct input routine. 416 * 417 * This is called when reinjecting completed fragments where 418 * all of the previous checking and book-keeping has been done. 419 */ 420 void 421 ip_direct_input(struct mbuf *m) 422 { 423 struct ip *ip; 424 int hlen; 425 426 ip = mtod(m, struct ip *); 427 hlen = ip->ip_hl << 2; 428 429 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 430 if (IPSEC_ENABLED(ipv4)) { 431 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 432 return; 433 } 434 #endif /* IPSEC */ 435 IPSTAT_INC(ips_delivered); 436 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 437 return; 438 } 439 #endif 440 441 /* 442 * Ip input routine. Checksum and byte swap header. If fragmented 443 * try to reassemble. Process options. Pass to next level. 444 */ 445 void 446 ip_input(struct mbuf *m) 447 { 448 MROUTER_RLOCK_TRACKER; 449 struct ip *ip = NULL; 450 struct in_ifaddr *ia = NULL; 451 struct ifaddr *ifa; 452 struct ifnet *ifp; 453 int hlen = 0; 454 uint16_t sum, ip_len; 455 int dchg = 0; /* dest changed after fw */ 456 struct in_addr odst; /* original dst address */ 457 bool strong_es; 458 459 M_ASSERTPKTHDR(m); 460 NET_EPOCH_ASSERT(); 461 462 if (m->m_flags & M_FASTFWD_OURS) { 463 m->m_flags &= ~M_FASTFWD_OURS; 464 /* Set up some basics that will be used later. */ 465 ip = mtod(m, struct ip *); 466 hlen = ip->ip_hl << 2; 467 ip_len = ntohs(ip->ip_len); 468 goto ours; 469 } 470 471 IPSTAT_INC(ips_total); 472 473 if (__predict_false(m->m_pkthdr.len < sizeof(struct ip))) 474 goto tooshort; 475 476 if (m->m_len < sizeof(struct ip)) { 477 m = m_pullup(m, sizeof(struct ip)); 478 if (__predict_false(m == NULL)) { 479 IPSTAT_INC(ips_toosmall); 480 return; 481 } 482 } 483 ip = mtod(m, struct ip *); 484 485 if (__predict_false(ip->ip_v != IPVERSION)) { 486 IPSTAT_INC(ips_badvers); 487 goto bad; 488 } 489 490 hlen = ip->ip_hl << 2; 491 if (__predict_false(hlen < sizeof(struct ip))) { /* minimum header length */ 492 IPSTAT_INC(ips_badhlen); 493 goto bad; 494 } 495 if (hlen > m->m_len) { 496 m = m_pullup(m, hlen); 497 if (__predict_false(m == NULL)) { 498 IPSTAT_INC(ips_badhlen); 499 return; 500 } 501 ip = mtod(m, struct ip *); 502 } 503 504 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); 505 506 /* IN_LOOPBACK must not appear on the wire - RFC1122 */ 507 ifp = m->m_pkthdr.rcvif; 508 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 509 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 510 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 511 IPSTAT_INC(ips_badaddr); 512 goto bad; 513 } 514 } 515 516 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 517 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 518 } else { 519 if (hlen == sizeof(struct ip)) { 520 sum = in_cksum_hdr(ip); 521 } else { 522 sum = in_cksum(m, hlen); 523 } 524 } 525 if (__predict_false(sum)) { 526 IPSTAT_INC(ips_badsum); 527 goto bad; 528 } 529 530 #ifdef ALTQ 531 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 532 /* packet is dropped by traffic conditioner */ 533 return; 534 #endif 535 536 ip_len = ntohs(ip->ip_len); 537 if (__predict_false(ip_len < hlen)) { 538 IPSTAT_INC(ips_badlen); 539 goto bad; 540 } 541 542 /* 543 * Check that the amount of data in the buffers 544 * is as at least much as the IP header would have us expect. 545 * Trim mbufs if longer than we expect. 546 * Drop packet if shorter than we expect. 547 */ 548 if (__predict_false(m->m_pkthdr.len < ip_len)) { 549 tooshort: 550 IPSTAT_INC(ips_tooshort); 551 goto bad; 552 } 553 if (m->m_pkthdr.len > ip_len) { 554 if (m->m_len == m->m_pkthdr.len) { 555 m->m_len = ip_len; 556 m->m_pkthdr.len = ip_len; 557 } else 558 m_adj(m, ip_len - m->m_pkthdr.len); 559 } 560 561 /* 562 * Try to forward the packet, but if we fail continue. 563 * ip_tryforward() does not generate redirects, so fall 564 * through to normal processing if redirects are required. 565 * ip_tryforward() does inbound and outbound packet firewall 566 * processing. If firewall has decided that destination becomes 567 * our local address, it sets M_FASTFWD_OURS flag. In this 568 * case skip another inbound firewall processing and update 569 * ip pointer. 570 */ 571 if (V_ipforwarding != 0 572 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 573 && (!IPSEC_ENABLED(ipv4) || 574 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) 575 #endif 576 ) { 577 if ((m = ip_tryforward(m)) == NULL) 578 return; 579 if (m->m_flags & M_FASTFWD_OURS) { 580 m->m_flags &= ~M_FASTFWD_OURS; 581 ip = mtod(m, struct ip *); 582 goto ours; 583 } 584 } 585 586 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 587 /* 588 * Bypass packet filtering for packets previously handled by IPsec. 589 */ 590 if (IPSEC_ENABLED(ipv4) && 591 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) 592 goto passin; 593 #endif 594 595 /* 596 * Run through list of hooks for input packets. 597 * 598 * NB: Beware of the destination address changing (e.g. 599 * by NAT rewriting). When this happens, tell 600 * ip_forward to do the right thing. 601 */ 602 603 /* Jump over all PFIL processing if hooks are not active. */ 604 if (!PFIL_HOOKED_IN(V_inet_pfil_head)) 605 goto passin; 606 607 odst = ip->ip_dst; 608 if (pfil_run_hooks(V_inet_pfil_head, &m, ifp, PFIL_IN, NULL) != 609 PFIL_PASS) 610 return; 611 if (m == NULL) /* consumed by filter */ 612 return; 613 614 ip = mtod(m, struct ip *); 615 dchg = (odst.s_addr != ip->ip_dst.s_addr); 616 617 if (m->m_flags & M_FASTFWD_OURS) { 618 m->m_flags &= ~M_FASTFWD_OURS; 619 goto ours; 620 } 621 if (m->m_flags & M_IP_NEXTHOP) { 622 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { 623 /* 624 * Directly ship the packet on. This allows 625 * forwarding packets originally destined to us 626 * to some other directly connected host. 627 */ 628 ip_forward(m, 1); 629 return; 630 } 631 } 632 passin: 633 634 /* 635 * Process options and, if not destined for us, 636 * ship it on. ip_dooptions returns 1 when an 637 * error was detected (causing an icmp message 638 * to be sent and the original packet to be freed). 639 */ 640 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 641 return; 642 643 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 644 * matter if it is destined to another node, or whether it is 645 * a multicast one, RSVP wants it! and prevents it from being forwarded 646 * anywhere else. Also checks if the rsvp daemon is running before 647 * grabbing the packet. 648 */ 649 if (ip->ip_p == IPPROTO_RSVP && V_rsvp_on) 650 goto ours; 651 652 /* 653 * Check our list of addresses, to see if the packet is for us. 654 * If we don't have any addresses, assume any unicast packet 655 * we receive might be for us (and let the upper layers deal 656 * with it). 657 */ 658 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && 659 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 660 goto ours; 661 662 /* 663 * Enable a consistency check between the destination address 664 * and the arrival interface for a unicast packet (the RFC 1122 665 * strong ES model) with a list of additional predicates: 666 * - if IP forwarding is disabled 667 * - the packet is not locally generated 668 * - the packet is not subject to 'ipfw fwd' 669 * - Interface is not running CARP. If the packet got here, we already 670 * checked it with carp_iamatch() and carp_forus(). 671 */ 672 strong_es = V_ip_strong_es && (V_ipforwarding == 0) && 673 ((ifp->if_flags & IFF_LOOPBACK) == 0) && 674 ifp->if_carp == NULL && (dchg == 0); 675 676 /* 677 * Check for exact addresses in the hash bucket. 678 */ 679 CK_LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 680 if (IA_SIN(ia)->sin_addr.s_addr != ip->ip_dst.s_addr) 681 continue; 682 683 /* 684 * net.inet.ip.rfc1122_strong_es: the address matches, verify 685 * that the packet arrived via the correct interface. 686 */ 687 if (__predict_false(strong_es && ia->ia_ifp != ifp)) { 688 IPSTAT_INC(ips_badaddr); 689 goto bad; 690 } 691 692 /* 693 * net.inet.ip.source_address_validation: drop incoming 694 * packets that pretend to be ours. 695 */ 696 if (V_ip_sav && !(ifp->if_flags & IFF_LOOPBACK) && 697 __predict_false(in_localip_fib(ip->ip_src, ifp->if_fib))) { 698 IPSTAT_INC(ips_badaddr); 699 goto bad; 700 } 701 702 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 703 counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); 704 goto ours; 705 } 706 707 /* 708 * Check for broadcast addresses. 709 * 710 * Only accept broadcast packets that arrive via the matching 711 * interface. Reception of forwarded directed broadcasts would 712 * be handled via ip_forward() and ether_output() with the loopback 713 * into the stack for SIMPLEX interfaces handled by ether_output(). 714 */ 715 if (ifp->if_flags & IFF_BROADCAST) { 716 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 717 if (ifa->ifa_addr->sa_family != AF_INET) 718 continue; 719 ia = ifatoia(ifa); 720 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 721 ip->ip_dst.s_addr) { 722 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 723 counter_u64_add(ia->ia_ifa.ifa_ibytes, 724 m->m_pkthdr.len); 725 goto ours; 726 } 727 #ifdef BOOTP_COMPAT 728 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { 729 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 730 counter_u64_add(ia->ia_ifa.ifa_ibytes, 731 m->m_pkthdr.len); 732 goto ours; 733 } 734 #endif 735 } 736 ia = NULL; 737 } 738 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 739 MROUTER_RLOCK(); 740 /* 741 * RFC 3927 2.7: Do not forward multicast packets from 742 * IN_LINKLOCAL. 743 */ 744 if (V_ip_mrouter && !IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) { 745 /* 746 * If we are acting as a multicast router, all 747 * incoming multicast packets are passed to the 748 * kernel-level multicast forwarding function. 749 * The packet is returned (relatively) intact; if 750 * ip_mforward() returns a non-zero value, the packet 751 * must be discarded, else it may be accepted below. 752 */ 753 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { 754 MROUTER_RUNLOCK(); 755 IPSTAT_INC(ips_cantforward); 756 m_freem(m); 757 return; 758 } 759 760 /* 761 * The process-level routing daemon needs to receive 762 * all multicast IGMP packets, whether or not this 763 * host belongs to their destination groups. 764 */ 765 if (ip->ip_p == IPPROTO_IGMP) { 766 MROUTER_RUNLOCK(); 767 goto ours; 768 } 769 IPSTAT_INC(ips_forward); 770 } 771 MROUTER_RUNLOCK(); 772 /* 773 * Assume the packet is for us, to avoid prematurely taking 774 * a lock on the in_multi hash. Protocols must perform 775 * their own filtering and update statistics accordingly. 776 */ 777 goto ours; 778 } 779 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 780 goto ours; 781 if (ip->ip_dst.s_addr == INADDR_ANY) 782 goto ours; 783 /* RFC 3927 2.7: Do not forward packets to or from IN_LINKLOCAL. */ 784 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) || 785 IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) { 786 IPSTAT_INC(ips_cantforward); 787 m_freem(m); 788 return; 789 } 790 791 /* 792 * Not for us; forward if possible and desirable. 793 */ 794 if (V_ipforwarding == 0) { 795 IPSTAT_INC(ips_cantforward); 796 m_freem(m); 797 } else { 798 ip_forward(m, dchg); 799 } 800 return; 801 802 ours: 803 #ifdef IPSTEALTH 804 /* 805 * IPSTEALTH: Process non-routing options only 806 * if the packet is destined for us. 807 */ 808 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) 809 return; 810 #endif /* IPSTEALTH */ 811 812 /* 813 * Attempt reassembly; if it succeeds, proceed. 814 * ip_reass() will return a different mbuf. 815 */ 816 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { 817 /* XXXGL: shouldn't we save & set m_flags? */ 818 m = ip_reass(m); 819 if (m == NULL) 820 return; 821 ip = mtod(m, struct ip *); 822 /* Get the header length of the reassembled packet */ 823 hlen = ip->ip_hl << 2; 824 } 825 826 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 827 if (IPSEC_ENABLED(ipv4)) { 828 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 829 return; 830 } 831 #endif /* IPSEC */ 832 833 /* 834 * Switch out to protocol's input routine. 835 */ 836 IPSTAT_INC(ips_delivered); 837 838 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 839 return; 840 bad: 841 m_freem(m); 842 } 843 844 /* 845 * IP timer processing; 846 * if a timer expires on a reassembly 847 * queue, discard it. 848 */ 849 void 850 ip_slowtimo(void) 851 { 852 VNET_ITERATOR_DECL(vnet_iter); 853 854 VNET_LIST_RLOCK_NOSLEEP(); 855 VNET_FOREACH(vnet_iter) { 856 CURVNET_SET(vnet_iter); 857 ipreass_slowtimo(); 858 CURVNET_RESTORE(); 859 } 860 VNET_LIST_RUNLOCK_NOSLEEP(); 861 } 862 863 void 864 ip_drain(void) 865 { 866 VNET_ITERATOR_DECL(vnet_iter); 867 868 VNET_LIST_RLOCK_NOSLEEP(); 869 VNET_FOREACH(vnet_iter) { 870 CURVNET_SET(vnet_iter); 871 ipreass_drain(); 872 CURVNET_RESTORE(); 873 } 874 VNET_LIST_RUNLOCK_NOSLEEP(); 875 } 876 877 /* 878 * The protocol to be inserted into ip_protox[] must be already registered 879 * in inetsw[], either statically or through pf_proto_register(). 880 */ 881 int 882 ipproto_register(short ipproto) 883 { 884 struct protosw *pr; 885 886 /* Sanity checks. */ 887 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 888 return (EPROTONOSUPPORT); 889 890 /* 891 * The protocol slot must not be occupied by another protocol 892 * already. An index pointing to IPPROTO_RAW is unused. 893 */ 894 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 895 if (pr == NULL) 896 return (EPFNOSUPPORT); 897 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 898 return (EEXIST); 899 900 /* Find the protocol position in inetsw[] and set the index. */ 901 for (pr = inetdomain.dom_protosw; 902 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 903 if (pr->pr_domain->dom_family == PF_INET && 904 pr->pr_protocol && pr->pr_protocol == ipproto) { 905 ip_protox[pr->pr_protocol] = pr - inetsw; 906 return (0); 907 } 908 } 909 return (EPROTONOSUPPORT); 910 } 911 912 int 913 ipproto_unregister(short ipproto) 914 { 915 struct protosw *pr; 916 917 /* Sanity checks. */ 918 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 919 return (EPROTONOSUPPORT); 920 921 /* Check if the protocol was indeed registered. */ 922 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 923 if (pr == NULL) 924 return (EPFNOSUPPORT); 925 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 926 return (ENOENT); 927 928 /* Reset the protocol slot to IPPROTO_RAW. */ 929 ip_protox[ipproto] = pr - inetsw; 930 return (0); 931 } 932 933 u_char inetctlerrmap[PRC_NCMDS] = { 934 0, 0, 0, 0, 935 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 936 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 937 EMSGSIZE, EHOSTUNREACH, 0, 0, 938 0, 0, EHOSTUNREACH, 0, 939 ENOPROTOOPT, ECONNREFUSED 940 }; 941 942 /* 943 * Forward a packet. If some error occurs return the sender 944 * an icmp packet. Note we can't always generate a meaningful 945 * icmp message because icmp doesn't have a large enough repertoire 946 * of codes and types. 947 * 948 * If not forwarding, just drop the packet. This could be confusing 949 * if ipforwarding was zero but some routing protocol was advancing 950 * us as a gateway to somewhere. However, we must let the routing 951 * protocol deal with that. 952 * 953 * The srcrt parameter indicates whether the packet is being forwarded 954 * via a source route. 955 */ 956 void 957 ip_forward(struct mbuf *m, int srcrt) 958 { 959 struct ip *ip = mtod(m, struct ip *); 960 struct in_ifaddr *ia; 961 struct mbuf *mcopy; 962 struct sockaddr_in *sin; 963 struct in_addr dest; 964 struct route ro; 965 uint32_t flowid; 966 int error, type = 0, code = 0, mtu = 0; 967 968 NET_EPOCH_ASSERT(); 969 970 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 971 IPSTAT_INC(ips_cantforward); 972 m_freem(m); 973 return; 974 } 975 if ( 976 #ifdef IPSTEALTH 977 V_ipstealth == 0 && 978 #endif 979 ip->ip_ttl <= IPTTLDEC) { 980 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); 981 return; 982 } 983 984 bzero(&ro, sizeof(ro)); 985 sin = (struct sockaddr_in *)&ro.ro_dst; 986 sin->sin_family = AF_INET; 987 sin->sin_len = sizeof(*sin); 988 sin->sin_addr = ip->ip_dst; 989 flowid = m->m_pkthdr.flowid; 990 ro.ro_nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_REF, flowid); 991 if (ro.ro_nh != NULL) { 992 ia = ifatoia(ro.ro_nh->nh_ifa); 993 } else 994 ia = NULL; 995 /* 996 * Save the IP header and at most 8 bytes of the payload, 997 * in case we need to generate an ICMP message to the src. 998 * 999 * XXX this can be optimized a lot by saving the data in a local 1000 * buffer on the stack (72 bytes at most), and only allocating the 1001 * mbuf if really necessary. The vast majority of the packets 1002 * are forwarded without having to send an ICMP back (either 1003 * because unnecessary, or because rate limited), so we are 1004 * really we are wasting a lot of work here. 1005 * 1006 * We don't use m_copym() because it might return a reference 1007 * to a shared cluster. Both this function and ip_output() 1008 * assume exclusive access to the IP header in `m', so any 1009 * data in a cluster may change before we reach icmp_error(). 1010 */ 1011 mcopy = m_gethdr(M_NOWAIT, m->m_type); 1012 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1013 /* 1014 * It's probably ok if the pkthdr dup fails (because 1015 * the deep copy of the tag chain failed), but for now 1016 * be conservative and just discard the copy since 1017 * code below may some day want the tags. 1018 */ 1019 m_free(mcopy); 1020 mcopy = NULL; 1021 } 1022 if (mcopy != NULL) { 1023 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); 1024 mcopy->m_pkthdr.len = mcopy->m_len; 1025 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1026 } 1027 #ifdef IPSTEALTH 1028 if (V_ipstealth == 0) 1029 #endif 1030 ip->ip_ttl -= IPTTLDEC; 1031 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1032 if (IPSEC_ENABLED(ipv4)) { 1033 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { 1034 /* mbuf consumed by IPsec */ 1035 RO_NHFREE(&ro); 1036 m_freem(mcopy); 1037 if (error != EINPROGRESS) 1038 IPSTAT_INC(ips_cantforward); 1039 return; 1040 } 1041 /* No IPsec processing required */ 1042 } 1043 #endif /* IPSEC */ 1044 /* 1045 * If forwarding packet using same interface that it came in on, 1046 * perhaps should send a redirect to sender to shortcut a hop. 1047 * Only send redirect if source is sending directly to us, 1048 * and if packet was not source routed (or has any options). 1049 * Also, don't send redirect if forwarding using a default route 1050 * or a route modified by a redirect. 1051 */ 1052 dest.s_addr = 0; 1053 if (!srcrt && V_ipsendredirects && 1054 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { 1055 struct nhop_object *nh; 1056 1057 nh = ro.ro_nh; 1058 1059 if (nh != NULL && ((nh->nh_flags & (NHF_REDIRECT|NHF_DEFAULT)) == 0)) { 1060 struct in_ifaddr *nh_ia = (struct in_ifaddr *)(nh->nh_ifa); 1061 u_long src = ntohl(ip->ip_src.s_addr); 1062 1063 if (nh_ia != NULL && 1064 (src & nh_ia->ia_subnetmask) == nh_ia->ia_subnet) { 1065 /* Router requirements says to only send host redirects */ 1066 type = ICMP_REDIRECT; 1067 code = ICMP_REDIRECT_HOST; 1068 if (nh->nh_flags & NHF_GATEWAY) { 1069 if (nh->gw_sa.sa_family == AF_INET) 1070 dest.s_addr = nh->gw4_sa.sin_addr.s_addr; 1071 else /* Do not redirect in case gw is AF_INET6 */ 1072 type = 0; 1073 } else 1074 dest.s_addr = ip->ip_dst.s_addr; 1075 } 1076 } 1077 } 1078 1079 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1080 1081 if (error == EMSGSIZE && ro.ro_nh) 1082 mtu = ro.ro_nh->nh_mtu; 1083 RO_NHFREE(&ro); 1084 1085 if (error) 1086 IPSTAT_INC(ips_cantforward); 1087 else { 1088 IPSTAT_INC(ips_forward); 1089 if (type) 1090 IPSTAT_INC(ips_redirectsent); 1091 else { 1092 if (mcopy) 1093 m_freem(mcopy); 1094 return; 1095 } 1096 } 1097 if (mcopy == NULL) 1098 return; 1099 1100 switch (error) { 1101 case 0: /* forwarded, but need redirect */ 1102 /* type, code set above */ 1103 break; 1104 1105 case ENETUNREACH: 1106 case EHOSTUNREACH: 1107 case ENETDOWN: 1108 case EHOSTDOWN: 1109 default: 1110 type = ICMP_UNREACH; 1111 code = ICMP_UNREACH_HOST; 1112 break; 1113 1114 case EMSGSIZE: 1115 type = ICMP_UNREACH; 1116 code = ICMP_UNREACH_NEEDFRAG; 1117 /* 1118 * If the MTU was set before make sure we are below the 1119 * interface MTU. 1120 * If the MTU wasn't set before use the interface mtu or 1121 * fall back to the next smaller mtu step compared to the 1122 * current packet size. 1123 */ 1124 if (mtu != 0) { 1125 if (ia != NULL) 1126 mtu = min(mtu, ia->ia_ifp->if_mtu); 1127 } else { 1128 if (ia != NULL) 1129 mtu = ia->ia_ifp->if_mtu; 1130 else 1131 mtu = ip_next_mtu(ntohs(ip->ip_len), 0); 1132 } 1133 IPSTAT_INC(ips_cantfrag); 1134 break; 1135 1136 case ENOBUFS: 1137 case EACCES: /* ipfw denied packet */ 1138 m_freem(mcopy); 1139 return; 1140 } 1141 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1142 } 1143 1144 #define CHECK_SO_CT(sp, ct) \ 1145 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) 1146 1147 void 1148 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1149 struct mbuf *m) 1150 { 1151 bool stamped; 1152 1153 stamped = false; 1154 if ((inp->inp_socket->so_options & SO_BINTIME) || 1155 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { 1156 struct bintime boottimebin, bt; 1157 struct timespec ts1; 1158 1159 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1160 M_TSTMP)) { 1161 mbuf_tstmp2timespec(m, &ts1); 1162 timespec2bintime(&ts1, &bt); 1163 getboottimebin(&boottimebin); 1164 bintime_add(&bt, &boottimebin); 1165 } else { 1166 bintime(&bt); 1167 } 1168 *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), 1169 SCM_BINTIME, SOL_SOCKET); 1170 if (*mp != NULL) { 1171 mp = &(*mp)->m_next; 1172 stamped = true; 1173 } 1174 } 1175 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { 1176 struct bintime boottimebin, bt1; 1177 struct timespec ts1; 1178 struct timeval tv; 1179 1180 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1181 M_TSTMP)) { 1182 mbuf_tstmp2timespec(m, &ts1); 1183 timespec2bintime(&ts1, &bt1); 1184 getboottimebin(&boottimebin); 1185 bintime_add(&bt1, &boottimebin); 1186 bintime2timeval(&bt1, &tv); 1187 } else { 1188 microtime(&tv); 1189 } 1190 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), 1191 SCM_TIMESTAMP, SOL_SOCKET); 1192 if (*mp != NULL) { 1193 mp = &(*mp)->m_next; 1194 stamped = true; 1195 } 1196 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { 1197 struct bintime boottimebin; 1198 struct timespec ts, ts1; 1199 1200 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1201 M_TSTMP)) { 1202 mbuf_tstmp2timespec(m, &ts); 1203 getboottimebin(&boottimebin); 1204 bintime2timespec(&boottimebin, &ts1); 1205 timespecadd(&ts, &ts1, &ts); 1206 } else { 1207 nanotime(&ts); 1208 } 1209 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1210 SCM_REALTIME, SOL_SOCKET); 1211 if (*mp != NULL) { 1212 mp = &(*mp)->m_next; 1213 stamped = true; 1214 } 1215 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { 1216 struct timespec ts; 1217 1218 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1219 M_TSTMP)) 1220 mbuf_tstmp2timespec(m, &ts); 1221 else 1222 nanouptime(&ts); 1223 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1224 SCM_MONOTONIC, SOL_SOCKET); 1225 if (*mp != NULL) { 1226 mp = &(*mp)->m_next; 1227 stamped = true; 1228 } 1229 } 1230 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1231 M_TSTMP)) { 1232 struct sock_timestamp_info sti; 1233 1234 bzero(&sti, sizeof(sti)); 1235 sti.st_info_flags = ST_INFO_HW; 1236 if ((m->m_flags & M_TSTMP_HPREC) != 0) 1237 sti.st_info_flags |= ST_INFO_HW_HPREC; 1238 *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO, 1239 SOL_SOCKET); 1240 if (*mp != NULL) 1241 mp = &(*mp)->m_next; 1242 } 1243 if (inp->inp_flags & INP_RECVDSTADDR) { 1244 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, 1245 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1246 if (*mp) 1247 mp = &(*mp)->m_next; 1248 } 1249 if (inp->inp_flags & INP_RECVTTL) { 1250 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, 1251 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1252 if (*mp) 1253 mp = &(*mp)->m_next; 1254 } 1255 #ifdef notyet 1256 /* XXX 1257 * Moving these out of udp_input() made them even more broken 1258 * than they already were. 1259 */ 1260 /* options were tossed already */ 1261 if (inp->inp_flags & INP_RECVOPTS) { 1262 *mp = sbcreatecontrol((caddr_t)opts_deleted_above, 1263 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1264 if (*mp) 1265 mp = &(*mp)->m_next; 1266 } 1267 /* ip_srcroute doesn't do what we want here, need to fix */ 1268 if (inp->inp_flags & INP_RECVRETOPTS) { 1269 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), 1270 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1271 if (*mp) 1272 mp = &(*mp)->m_next; 1273 } 1274 #endif 1275 if (inp->inp_flags & INP_RECVIF) { 1276 struct ifnet *ifp; 1277 struct sdlbuf { 1278 struct sockaddr_dl sdl; 1279 u_char pad[32]; 1280 } sdlbuf; 1281 struct sockaddr_dl *sdp; 1282 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1283 1284 if ((ifp = m->m_pkthdr.rcvif) && 1285 ifp->if_index && ifp->if_index <= V_if_index) { 1286 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1287 /* 1288 * Change our mind and don't try copy. 1289 */ 1290 if (sdp->sdl_family != AF_LINK || 1291 sdp->sdl_len > sizeof(sdlbuf)) { 1292 goto makedummy; 1293 } 1294 bcopy(sdp, sdl2, sdp->sdl_len); 1295 } else { 1296 makedummy: 1297 sdl2->sdl_len = 1298 offsetof(struct sockaddr_dl, sdl_data[0]); 1299 sdl2->sdl_family = AF_LINK; 1300 sdl2->sdl_index = 0; 1301 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1302 } 1303 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, 1304 IP_RECVIF, IPPROTO_IP); 1305 if (*mp) 1306 mp = &(*mp)->m_next; 1307 } 1308 if (inp->inp_flags & INP_RECVTOS) { 1309 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, 1310 sizeof(u_char), IP_RECVTOS, IPPROTO_IP); 1311 if (*mp) 1312 mp = &(*mp)->m_next; 1313 } 1314 1315 if (inp->inp_flags2 & INP_RECVFLOWID) { 1316 uint32_t flowid, flow_type; 1317 1318 flowid = m->m_pkthdr.flowid; 1319 flow_type = M_HASHTYPE_GET(m); 1320 1321 /* 1322 * XXX should handle the failure of one or the 1323 * other - don't populate both? 1324 */ 1325 *mp = sbcreatecontrol((caddr_t) &flowid, 1326 sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); 1327 if (*mp) 1328 mp = &(*mp)->m_next; 1329 *mp = sbcreatecontrol((caddr_t) &flow_type, 1330 sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); 1331 if (*mp) 1332 mp = &(*mp)->m_next; 1333 } 1334 1335 #ifdef RSS 1336 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { 1337 uint32_t flowid, flow_type; 1338 uint32_t rss_bucketid; 1339 1340 flowid = m->m_pkthdr.flowid; 1341 flow_type = M_HASHTYPE_GET(m); 1342 1343 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { 1344 *mp = sbcreatecontrol((caddr_t) &rss_bucketid, 1345 sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); 1346 if (*mp) 1347 mp = &(*mp)->m_next; 1348 } 1349 } 1350 #endif 1351 } 1352 1353 /* 1354 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1355 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1356 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1357 * compiled. 1358 */ 1359 VNET_DEFINE_STATIC(int, ip_rsvp_on); 1360 VNET_DEFINE(struct socket *, ip_rsvpd); 1361 1362 #define V_ip_rsvp_on VNET(ip_rsvp_on) 1363 1364 int 1365 ip_rsvp_init(struct socket *so) 1366 { 1367 1368 if (so->so_type != SOCK_RAW || 1369 so->so_proto->pr_protocol != IPPROTO_RSVP) 1370 return EOPNOTSUPP; 1371 1372 if (V_ip_rsvpd != NULL) 1373 return EADDRINUSE; 1374 1375 V_ip_rsvpd = so; 1376 /* 1377 * This may seem silly, but we need to be sure we don't over-increment 1378 * the RSVP counter, in case something slips up. 1379 */ 1380 if (!V_ip_rsvp_on) { 1381 V_ip_rsvp_on = 1; 1382 V_rsvp_on++; 1383 } 1384 1385 return 0; 1386 } 1387 1388 int 1389 ip_rsvp_done(void) 1390 { 1391 1392 V_ip_rsvpd = NULL; 1393 /* 1394 * This may seem silly, but we need to be sure we don't over-decrement 1395 * the RSVP counter, in case something slips up. 1396 */ 1397 if (V_ip_rsvp_on) { 1398 V_ip_rsvp_on = 0; 1399 V_rsvp_on--; 1400 } 1401 return 0; 1402 } 1403 1404 int 1405 rsvp_input(struct mbuf **mp, int *offp, int proto) 1406 { 1407 struct mbuf *m; 1408 1409 m = *mp; 1410 *mp = NULL; 1411 1412 if (rsvp_input_p) { /* call the real one if loaded */ 1413 *mp = m; 1414 rsvp_input_p(mp, offp, proto); 1415 return (IPPROTO_DONE); 1416 } 1417 1418 /* Can still get packets with rsvp_on = 0 if there is a local member 1419 * of the group to which the RSVP packet is addressed. But in this 1420 * case we want to throw the packet away. 1421 */ 1422 1423 if (!V_rsvp_on) { 1424 m_freem(m); 1425 return (IPPROTO_DONE); 1426 } 1427 1428 if (V_ip_rsvpd != NULL) { 1429 *mp = m; 1430 rip_input(mp, offp, proto); 1431 return (IPPROTO_DONE); 1432 } 1433 /* Drop the packet */ 1434 m_freem(m); 1435 return (IPPROTO_DONE); 1436 } 1437