1 /*- 2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 * $FreeBSD$ 26 */ 27 28 #ifndef _IPFW2_H 29 #define _IPFW2_H 30 31 /* 32 * The default rule number. By the design of ip_fw, the default rule 33 * is the last one, so its number can also serve as the highest number 34 * allowed for a rule. The ip_fw code relies on both meanings of this 35 * constant. 36 */ 37 #define IPFW_DEFAULT_RULE 65535 38 39 /* 40 * The number of ipfw tables. The maximum allowed table number is the 41 * (IPFW_TABLES_MAX - 1). 42 */ 43 #define IPFW_TABLES_MAX 128 44 45 /* 46 * Most commands (queue, pipe, tag, untag, limit...) can have a 16-bit 47 * argument between 1 and 65534. The value 0 is unused, the value 48 * 65535 (IP_FW_TABLEARG) is used to represent 'tablearg', i.e. the 49 * can be 1..65534, or 65535 to indicate the use of a 'tablearg' 50 * result of the most recent table() lookup. 51 * Note that 16bit is only a historical limit, resulting from 52 * the use of a 16-bit fields for that value. In reality, we can have 53 * 2^32 pipes, queues, tag values and so on, and use 0 as a tablearg. 54 */ 55 #define IPFW_ARG_MIN 1 56 #define IPFW_ARG_MAX 65534 57 #define IP_FW_TABLEARG 65535 /* XXX should use 0 */ 58 59 /* 60 * The kernel representation of ipfw rules is made of a list of 61 * 'instructions' (for all practical purposes equivalent to BPF 62 * instructions), which specify which fields of the packet 63 * (or its metadata) should be analysed. 64 * 65 * Each instruction is stored in a structure which begins with 66 * "ipfw_insn", and can contain extra fields depending on the 67 * instruction type (listed below). 68 * Note that the code is written so that individual instructions 69 * have a size which is a multiple of 32 bits. This means that, if 70 * such structures contain pointers or other 64-bit entities, 71 * (there is just one instance now) they may end up unaligned on 72 * 64-bit architectures, so the must be handled with care. 73 * 74 * "enum ipfw_opcodes" are the opcodes supported. We can have up 75 * to 256 different opcodes. When adding new opcodes, they should 76 * be appended to the end of the opcode list before O_LAST_OPCODE, 77 * this will prevent the ABI from being broken, otherwise users 78 * will have to recompile ipfw(8) when they update the kernel. 79 */ 80 81 enum ipfw_opcodes { /* arguments (4 byte each) */ 82 O_NOP, 83 84 O_IP_SRC, /* u32 = IP */ 85 O_IP_SRC_MASK, /* ip = IP/mask */ 86 O_IP_SRC_ME, /* none */ 87 O_IP_SRC_SET, /* u32=base, arg1=len, bitmap */ 88 89 O_IP_DST, /* u32 = IP */ 90 O_IP_DST_MASK, /* ip = IP/mask */ 91 O_IP_DST_ME, /* none */ 92 O_IP_DST_SET, /* u32=base, arg1=len, bitmap */ 93 94 O_IP_SRCPORT, /* (n)port list:mask 4 byte ea */ 95 O_IP_DSTPORT, /* (n)port list:mask 4 byte ea */ 96 O_PROTO, /* arg1=protocol */ 97 98 O_MACADDR2, /* 2 mac addr:mask */ 99 O_MAC_TYPE, /* same as srcport */ 100 101 O_LAYER2, /* none */ 102 O_IN, /* none */ 103 O_FRAG, /* none */ 104 105 O_RECV, /* none */ 106 O_XMIT, /* none */ 107 O_VIA, /* none */ 108 109 O_IPOPT, /* arg1 = 2*u8 bitmap */ 110 O_IPLEN, /* arg1 = len */ 111 O_IPID, /* arg1 = id */ 112 113 O_IPTOS, /* arg1 = id */ 114 O_IPPRECEDENCE, /* arg1 = precedence << 5 */ 115 O_IPTTL, /* arg1 = TTL */ 116 117 O_IPVER, /* arg1 = version */ 118 O_UID, /* u32 = id */ 119 O_GID, /* u32 = id */ 120 O_ESTAB, /* none (tcp established) */ 121 O_TCPFLAGS, /* arg1 = 2*u8 bitmap */ 122 O_TCPWIN, /* arg1 = desired win */ 123 O_TCPSEQ, /* u32 = desired seq. */ 124 O_TCPACK, /* u32 = desired seq. */ 125 O_ICMPTYPE, /* u32 = icmp bitmap */ 126 O_TCPOPTS, /* arg1 = 2*u8 bitmap */ 127 128 O_VERREVPATH, /* none */ 129 O_VERSRCREACH, /* none */ 130 131 O_PROBE_STATE, /* none */ 132 O_KEEP_STATE, /* none */ 133 O_LIMIT, /* ipfw_insn_limit */ 134 O_LIMIT_PARENT, /* dyn_type, not an opcode. */ 135 136 /* 137 * These are really 'actions'. 138 */ 139 140 O_LOG, /* ipfw_insn_log */ 141 O_PROB, /* u32 = match probability */ 142 143 O_CHECK_STATE, /* none */ 144 O_ACCEPT, /* none */ 145 O_DENY, /* none */ 146 O_REJECT, /* arg1=icmp arg (same as deny) */ 147 O_COUNT, /* none */ 148 O_SKIPTO, /* arg1=next rule number */ 149 O_PIPE, /* arg1=pipe number */ 150 O_QUEUE, /* arg1=queue number */ 151 O_DIVERT, /* arg1=port number */ 152 O_TEE, /* arg1=port number */ 153 O_FORWARD_IP, /* fwd sockaddr */ 154 O_FORWARD_MAC, /* fwd mac */ 155 O_NAT, /* nope */ 156 O_REASS, /* none */ 157 158 /* 159 * More opcodes. 160 */ 161 O_IPSEC, /* has ipsec history */ 162 O_IP_SRC_LOOKUP, /* arg1=table number, u32=value */ 163 O_IP_DST_LOOKUP, /* arg1=table number, u32=value */ 164 O_ANTISPOOF, /* none */ 165 O_JAIL, /* u32 = id */ 166 O_ALTQ, /* u32 = altq classif. qid */ 167 O_DIVERTED, /* arg1=bitmap (1:loop, 2:out) */ 168 O_TCPDATALEN, /* arg1 = tcp data len */ 169 O_IP6_SRC, /* address without mask */ 170 O_IP6_SRC_ME, /* my addresses */ 171 O_IP6_SRC_MASK, /* address with the mask */ 172 O_IP6_DST, 173 O_IP6_DST_ME, 174 O_IP6_DST_MASK, 175 O_FLOW6ID, /* for flow id tag in the ipv6 pkt */ 176 O_ICMP6TYPE, /* icmp6 packet type filtering */ 177 O_EXT_HDR, /* filtering for ipv6 extension header */ 178 O_IP6, 179 180 /* 181 * actions for ng_ipfw 182 */ 183 O_NETGRAPH, /* send to ng_ipfw */ 184 O_NGTEE, /* copy to ng_ipfw */ 185 186 O_IP4, 187 188 O_UNREACH6, /* arg1=icmpv6 code arg (deny) */ 189 190 O_TAG, /* arg1=tag number */ 191 O_TAGGED, /* arg1=tag number */ 192 193 O_SETFIB, /* arg1=FIB number */ 194 O_FIB, /* arg1=FIB desired fib number */ 195 196 O_LAST_OPCODE /* not an opcode! */ 197 }; 198 199 /* 200 * The extension header are filtered only for presence using a bit 201 * vector with a flag for each header. 202 */ 203 #define EXT_FRAGMENT 0x1 204 #define EXT_HOPOPTS 0x2 205 #define EXT_ROUTING 0x4 206 #define EXT_AH 0x8 207 #define EXT_ESP 0x10 208 #define EXT_DSTOPTS 0x20 209 #define EXT_RTHDR0 0x40 210 #define EXT_RTHDR2 0x80 211 212 /* 213 * Template for instructions. 214 * 215 * ipfw_insn is used for all instructions which require no operands, 216 * a single 16-bit value (arg1), or a couple of 8-bit values. 217 * 218 * For other instructions which require different/larger arguments 219 * we have derived structures, ipfw_insn_*. 220 * 221 * The size of the instruction (in 32-bit words) is in the low 222 * 6 bits of "len". The 2 remaining bits are used to implement 223 * NOT and OR on individual instructions. Given a type, you can 224 * compute the length to be put in "len" using F_INSN_SIZE(t) 225 * 226 * F_NOT negates the match result of the instruction. 227 * 228 * F_OR is used to build or blocks. By default, instructions 229 * are evaluated as part of a logical AND. An "or" block 230 * { X or Y or Z } contains F_OR set in all but the last 231 * instruction of the block. A match will cause the code 232 * to skip past the last instruction of the block. 233 * 234 * NOTA BENE: in a couple of places we assume that 235 * sizeof(ipfw_insn) == sizeof(u_int32_t) 236 * this needs to be fixed. 237 * 238 */ 239 typedef struct _ipfw_insn { /* template for instructions */ 240 enum ipfw_opcodes opcode:8; 241 u_int8_t len; /* number of 32-bit words */ 242 #define F_NOT 0x80 243 #define F_OR 0x40 244 #define F_LEN_MASK 0x3f 245 #define F_LEN(cmd) ((cmd)->len & F_LEN_MASK) 246 247 u_int16_t arg1; 248 } ipfw_insn; 249 250 /* 251 * The F_INSN_SIZE(type) computes the size, in 4-byte words, of 252 * a given type. 253 */ 254 #define F_INSN_SIZE(t) ((sizeof (t))/sizeof(u_int32_t)) 255 256 /* 257 * This is used to store an array of 16-bit entries (ports etc.) 258 */ 259 typedef struct _ipfw_insn_u16 { 260 ipfw_insn o; 261 u_int16_t ports[2]; /* there may be more */ 262 } ipfw_insn_u16; 263 264 /* 265 * This is used to store an array of 32-bit entries 266 * (uid, single IPv4 addresses etc.) 267 */ 268 typedef struct _ipfw_insn_u32 { 269 ipfw_insn o; 270 u_int32_t d[1]; /* one or more */ 271 } ipfw_insn_u32; 272 273 /* 274 * This is used to store IP addr-mask pairs. 275 */ 276 typedef struct _ipfw_insn_ip { 277 ipfw_insn o; 278 struct in_addr addr; 279 struct in_addr mask; 280 } ipfw_insn_ip; 281 282 /* 283 * This is used to forward to a given address (ip). 284 */ 285 typedef struct _ipfw_insn_sa { 286 ipfw_insn o; 287 struct sockaddr_in sa; 288 } ipfw_insn_sa; 289 290 /* 291 * This is used for MAC addr-mask pairs. 292 */ 293 typedef struct _ipfw_insn_mac { 294 ipfw_insn o; 295 u_char addr[12]; /* dst[6] + src[6] */ 296 u_char mask[12]; /* dst[6] + src[6] */ 297 } ipfw_insn_mac; 298 299 /* 300 * This is used for interface match rules (recv xx, xmit xx). 301 */ 302 typedef struct _ipfw_insn_if { 303 ipfw_insn o; 304 union { 305 struct in_addr ip; 306 int glob; 307 } p; 308 char name[IFNAMSIZ]; 309 } ipfw_insn_if; 310 311 /* 312 * This is used for storing an altq queue id number. 313 */ 314 typedef struct _ipfw_insn_altq { 315 ipfw_insn o; 316 u_int32_t qid; 317 } ipfw_insn_altq; 318 319 /* 320 * This is used for limit rules. 321 */ 322 typedef struct _ipfw_insn_limit { 323 ipfw_insn o; 324 u_int8_t _pad; 325 u_int8_t limit_mask; /* combination of DYN_* below */ 326 #define DYN_SRC_ADDR 0x1 327 #define DYN_SRC_PORT 0x2 328 #define DYN_DST_ADDR 0x4 329 #define DYN_DST_PORT 0x8 330 331 u_int16_t conn_limit; 332 } ipfw_insn_limit; 333 334 /* 335 * This is used for log instructions. 336 */ 337 typedef struct _ipfw_insn_log { 338 ipfw_insn o; 339 u_int32_t max_log; /* how many do we log -- 0 = all */ 340 u_int32_t log_left; /* how many left to log */ 341 } ipfw_insn_log; 342 343 /* 344 * Data structures required by both ipfw(8) and ipfw(4) but not part of the 345 * management API are protected by IPFW_INTERNAL. 346 */ 347 #ifdef IPFW_INTERNAL 348 /* Server pool support (LSNAT). */ 349 struct cfg_spool { 350 LIST_ENTRY(cfg_spool) _next; /* chain of spool instances */ 351 struct in_addr addr; 352 u_short port; 353 }; 354 #endif 355 356 /* Redirect modes id. */ 357 #define REDIR_ADDR 0x01 358 #define REDIR_PORT 0x02 359 #define REDIR_PROTO 0x04 360 361 #ifdef IPFW_INTERNAL 362 /* Nat redirect configuration. */ 363 struct cfg_redir { 364 LIST_ENTRY(cfg_redir) _next; /* chain of redir instances */ 365 u_int16_t mode; /* type of redirect mode */ 366 struct in_addr laddr; /* local ip address */ 367 struct in_addr paddr; /* public ip address */ 368 struct in_addr raddr; /* remote ip address */ 369 u_short lport; /* local port */ 370 u_short pport; /* public port */ 371 u_short rport; /* remote port */ 372 u_short pport_cnt; /* number of public ports */ 373 u_short rport_cnt; /* number of remote ports */ 374 int proto; /* protocol: tcp/udp */ 375 struct alias_link **alink; 376 /* num of entry in spool chain */ 377 u_int16_t spool_cnt; 378 /* chain of spool instances */ 379 LIST_HEAD(spool_chain, cfg_spool) spool_chain; 380 }; 381 #endif 382 383 #define NAT_BUF_LEN 1024 384 385 #ifdef IPFW_INTERNAL 386 /* Nat configuration data struct. */ 387 struct cfg_nat { 388 /* chain of nat instances */ 389 LIST_ENTRY(cfg_nat) _next; 390 int id; /* nat id */ 391 struct in_addr ip; /* nat ip address */ 392 char if_name[IF_NAMESIZE]; /* interface name */ 393 int mode; /* aliasing mode */ 394 struct libalias *lib; /* libalias instance */ 395 /* number of entry in spool chain */ 396 int redir_cnt; 397 /* chain of redir instances */ 398 LIST_HEAD(redir_chain, cfg_redir) redir_chain; 399 }; 400 #endif 401 402 #define SOF_NAT sizeof(struct cfg_nat) 403 #define SOF_REDIR sizeof(struct cfg_redir) 404 #define SOF_SPOOL sizeof(struct cfg_spool) 405 406 /* Nat command. */ 407 typedef struct _ipfw_insn_nat { 408 ipfw_insn o; 409 struct cfg_nat *nat; 410 } ipfw_insn_nat; 411 412 /* Apply ipv6 mask on ipv6 addr */ 413 #define APPLY_MASK(addr,mask) \ 414 (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \ 415 (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \ 416 (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \ 417 (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3]; 418 419 /* Structure for ipv6 */ 420 typedef struct _ipfw_insn_ip6 { 421 ipfw_insn o; 422 struct in6_addr addr6; 423 struct in6_addr mask6; 424 } ipfw_insn_ip6; 425 426 /* Used to support icmp6 types */ 427 typedef struct _ipfw_insn_icmp6 { 428 ipfw_insn o; 429 uint32_t d[7]; /* XXX This number si related to the netinet/icmp6.h 430 * define ICMP6_MAXTYPE 431 * as follows: n = ICMP6_MAXTYPE/32 + 1 432 * Actually is 203 433 */ 434 } ipfw_insn_icmp6; 435 436 /* 437 * Here we have the structure representing an ipfw rule. 438 * 439 * It starts with a general area (with link fields and counters) 440 * followed by an array of one or more instructions, which the code 441 * accesses as an array of 32-bit values. 442 * 443 * Given a rule pointer r: 444 * 445 * r->cmd is the start of the first instruction. 446 * ACTION_PTR(r) is the start of the first action (things to do 447 * once a rule matched). 448 * 449 * When assembling instruction, remember the following: 450 * 451 * + if a rule has a "keep-state" (or "limit") option, then the 452 * first instruction (at r->cmd) MUST BE an O_PROBE_STATE 453 * + if a rule has a "log" option, then the first action 454 * (at ACTION_PTR(r)) MUST be O_LOG 455 * + if a rule has an "altq" option, it comes after "log" 456 * + if a rule has an O_TAG option, it comes after "log" and "altq" 457 * 458 * NOTE: we use a simple linked list of rules because we never need 459 * to delete a rule without scanning the list. We do not use 460 * queue(3) macros for portability and readability. 461 */ 462 463 struct ip_fw { 464 struct ip_fw *next; /* linked list of rules */ 465 struct ip_fw *next_rule; /* ptr to next [skipto] rule */ 466 /* 'next_rule' is used to pass up 'set_disable' status */ 467 468 uint16_t act_ofs; /* offset of action in 32-bit units */ 469 uint16_t cmd_len; /* # of 32-bit words in cmd */ 470 uint16_t rulenum; /* rule number */ 471 uint8_t set; /* rule set (0..31) */ 472 #define RESVD_SET 31 /* set for default and persistent rules */ 473 uint8_t _pad; /* padding */ 474 uint32_t id; /* rule id */ 475 476 /* These fields are present in all rules. */ 477 uint64_t pcnt; /* Packet counter */ 478 uint64_t bcnt; /* Byte counter */ 479 uint32_t timestamp; /* tv_sec of last match */ 480 481 ipfw_insn cmd[1]; /* storage for commands */ 482 }; 483 484 #define ACTION_PTR(rule) \ 485 (ipfw_insn *)( (u_int32_t *)((rule)->cmd) + ((rule)->act_ofs) ) 486 487 #define RULESIZE(rule) (sizeof(struct ip_fw) + \ 488 ((struct ip_fw *)(rule))->cmd_len * 4 - 4) 489 490 /* 491 * This structure is used as a flow mask and a flow id for various 492 * parts of the code. 493 */ 494 struct ipfw_flow_id { 495 u_int32_t dst_ip; 496 u_int32_t src_ip; 497 u_int16_t dst_port; 498 u_int16_t src_port; 499 u_int8_t fib; 500 u_int8_t proto; 501 u_int8_t flags; /* protocol-specific flags */ 502 uint8_t addr_type; /* 4 = ipv4, 6 = ipv6, 1=ether ? */ 503 struct in6_addr dst_ip6; /* could also store MAC addr! */ 504 struct in6_addr src_ip6; 505 u_int32_t flow_id6; 506 u_int32_t frag_id6; 507 }; 508 509 #define IS_IP6_FLOW_ID(id) ((id)->addr_type == 6) 510 511 /* 512 * Dynamic ipfw rule. 513 */ 514 typedef struct _ipfw_dyn_rule ipfw_dyn_rule; 515 516 struct _ipfw_dyn_rule { 517 ipfw_dyn_rule *next; /* linked list of rules. */ 518 struct ip_fw *rule; /* pointer to rule */ 519 /* 'rule' is used to pass up the rule number (from the parent) */ 520 521 ipfw_dyn_rule *parent; /* pointer to parent rule */ 522 u_int64_t pcnt; /* packet match counter */ 523 u_int64_t bcnt; /* byte match counter */ 524 struct ipfw_flow_id id; /* (masked) flow id */ 525 u_int32_t expire; /* expire time */ 526 u_int32_t bucket; /* which bucket in hash table */ 527 u_int32_t state; /* state of this rule (typically a 528 * combination of TCP flags) 529 */ 530 u_int32_t ack_fwd; /* most recent ACKs in forward */ 531 u_int32_t ack_rev; /* and reverse directions (used */ 532 /* to generate keepalives) */ 533 u_int16_t dyn_type; /* rule type */ 534 u_int16_t count; /* refcount */ 535 }; 536 537 /* 538 * Definitions for IP option names. 539 */ 540 #define IP_FW_IPOPT_LSRR 0x01 541 #define IP_FW_IPOPT_SSRR 0x02 542 #define IP_FW_IPOPT_RR 0x04 543 #define IP_FW_IPOPT_TS 0x08 544 545 /* 546 * Definitions for TCP option names. 547 */ 548 #define IP_FW_TCPOPT_MSS 0x01 549 #define IP_FW_TCPOPT_WINDOW 0x02 550 #define IP_FW_TCPOPT_SACK 0x04 551 #define IP_FW_TCPOPT_TS 0x08 552 #define IP_FW_TCPOPT_CC 0x10 553 554 #define ICMP_REJECT_RST 0x100 /* fake ICMP code (send a TCP RST) */ 555 #define ICMP6_UNREACH_RST 0x100 /* fake ICMPv6 code (send a TCP RST) */ 556 557 /* 558 * These are used for lookup tables. 559 */ 560 typedef struct _ipfw_table_entry { 561 in_addr_t addr; /* network address */ 562 u_int32_t value; /* value */ 563 u_int16_t tbl; /* table number */ 564 u_int8_t masklen; /* mask length */ 565 } ipfw_table_entry; 566 567 typedef struct _ipfw_table { 568 u_int32_t size; /* size of entries in bytes */ 569 u_int32_t cnt; /* # of entries */ 570 u_int16_t tbl; /* table number */ 571 ipfw_table_entry ent[0]; /* entries */ 572 } ipfw_table; 573 574 /* 575 * Main firewall chains definitions and global var's definitions. 576 */ 577 #ifdef _KERNEL 578 579 #define MTAG_IPFW 1148380143 /* IPFW-tagged cookie */ 580 581 /* Return values from ipfw_chk() */ 582 enum { 583 IP_FW_PASS = 0, 584 IP_FW_DENY, 585 IP_FW_DIVERT, 586 IP_FW_TEE, 587 IP_FW_DUMMYNET, 588 IP_FW_NETGRAPH, 589 IP_FW_NGTEE, 590 IP_FW_NAT, 591 IP_FW_REASS, 592 }; 593 594 /* flags for divert mtag */ 595 #define IP_FW_DIVERT_LOOPBACK_FLAG 0x00080000 596 #define IP_FW_DIVERT_OUTPUT_FLAG 0x00100000 597 598 /* 599 * Structure for collecting parameters to dummynet for ip6_output forwarding 600 */ 601 struct _ip6dn_args { 602 struct ip6_pktopts *opt_or; 603 struct route_in6 ro_or; 604 int flags_or; 605 struct ip6_moptions *im6o_or; 606 struct ifnet *origifp_or; 607 struct ifnet *ifp_or; 608 struct sockaddr_in6 dst_or; 609 u_long mtu_or; 610 struct route_in6 ro_pmtu_or; 611 }; 612 613 /* 614 * Arguments for calling ipfw_chk() and dummynet_io(). We put them 615 * all into a structure because this way it is easier and more 616 * efficient to pass variables around and extend the interface. 617 */ 618 struct ip_fw_args { 619 struct mbuf *m; /* the mbuf chain */ 620 struct ifnet *oif; /* output interface */ 621 struct sockaddr_in *next_hop; /* forward address */ 622 struct ip_fw *rule; /* matching rule */ 623 uint32_t rule_id; /* matching rule id */ 624 uint32_t chain_id; /* ruleset id */ 625 struct ether_header *eh; /* for bridged packets */ 626 627 struct ipfw_flow_id f_id; /* grabbed from IP header */ 628 uint32_t cookie; /* a cookie depending on rule action */ 629 struct inpcb *inp; 630 631 struct _ip6dn_args dummypar; /* dummynet->ip6_output */ 632 struct sockaddr_in hopstore; /* store here if cannot use a pointer */ 633 }; 634 635 /* 636 * Function definitions. 637 */ 638 639 /* Firewall hooks */ 640 struct sockopt; 641 struct dn_flow_set; 642 643 int ipfw_check_in(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp); 644 int ipfw_check_out(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp); 645 646 int ipfw_chk(struct ip_fw_args *); 647 648 int ipfw_init(void); 649 void ipfw_destroy(void); 650 #ifdef NOTYET 651 void ipfw_nat_destroy(void); 652 #endif 653 654 VNET_DECLARE(int, fw_one_pass); 655 VNET_DECLARE(int, fw_enable); 656 #define V_fw_one_pass VNET(fw_one_pass) 657 #define V_fw_enable VNET(fw_enable) 658 659 #ifdef INET6 660 VNET_DECLARE(int, fw6_enable); 661 #define V_fw6_enable VNET(fw6_enable) 662 #endif 663 664 struct ip_fw_chain { 665 struct ip_fw *rules; /* list of rules */ 666 struct ip_fw *reap; /* list of rules to reap */ 667 LIST_HEAD(, cfg_nat) nat; /* list of nat entries */ 668 struct radix_node_head *tables[IPFW_TABLES_MAX]; 669 struct rwlock rwmtx; 670 uint32_t id; /* ruleset id */ 671 }; 672 673 #ifdef IPFW_INTERNAL 674 675 #define IPFW_LOCK_INIT(_chain) \ 676 rw_init(&(_chain)->rwmtx, "IPFW static rules") 677 #define IPFW_LOCK_DESTROY(_chain) rw_destroy(&(_chain)->rwmtx) 678 #define IPFW_WLOCK_ASSERT(_chain) rw_assert(&(_chain)->rwmtx, RA_WLOCKED) 679 680 #define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx) 681 #define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx) 682 #define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx) 683 #define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx) 684 685 #define LOOKUP_NAT(l, i, p) do { \ 686 LIST_FOREACH((p), &(l.nat), _next) { \ 687 if ((p)->id == (i)) { \ 688 break; \ 689 } \ 690 } \ 691 } while (0) 692 693 typedef int ipfw_nat_t(struct ip_fw_args *, struct cfg_nat *, struct mbuf *); 694 typedef int ipfw_nat_cfg_t(struct sockopt *); 695 #endif 696 697 VNET_DECLARE(struct ip_fw_chain, layer3_chain); 698 #define V_layer3_chain VNET(layer3_chain) 699 700 #endif /* _KERNEL */ 701 #endif /* _IPFW2_H */ 702