1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 #include "opt_ipsec.h" 46 #include "opt_inet.h" 47 #include "opt_inet6.h" 48 #include "opt_ratelimit.h" 49 #include "opt_route.h" 50 #include "opt_rss.h" 51 52 #include <sys/param.h> 53 #include <sys/hash.h> 54 #include <sys/systm.h> 55 #include <sys/libkern.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mbuf.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/proc.h> 62 #include <sys/protosw.h> 63 #include <sys/smp.h> 64 #include <sys/smr.h> 65 #include <sys/socket.h> 66 #include <sys/socketvar.h> 67 #include <sys/sockio.h> 68 #include <sys/priv.h> 69 #include <sys/proc.h> 70 #include <sys/refcount.h> 71 #include <sys/jail.h> 72 #include <sys/kernel.h> 73 #include <sys/sysctl.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/uma.h> 80 #include <vm/vm.h> 81 82 #include <net/if.h> 83 #include <net/if_var.h> 84 #include <net/if_private.h> 85 #include <net/if_types.h> 86 #include <net/if_llatbl.h> 87 #include <net/route.h> 88 #include <net/rss_config.h> 89 #include <net/vnet.h> 90 91 #if defined(INET) || defined(INET6) 92 #include <netinet/in.h> 93 #include <netinet/in_pcb.h> 94 #include <netinet/in_pcb_var.h> 95 #include <netinet/tcp.h> 96 #ifdef INET 97 #include <netinet/in_var.h> 98 #include <netinet/in_fib.h> 99 #endif 100 #include <netinet/ip_var.h> 101 #ifdef INET6 102 #include <netinet/ip6.h> 103 #include <netinet6/in6_pcb.h> 104 #include <netinet6/in6_var.h> 105 #include <netinet6/ip6_var.h> 106 #endif /* INET6 */ 107 #include <net/route/nhop.h> 108 #endif 109 110 #include <netipsec/ipsec_support.h> 111 112 #include <security/mac/mac_framework.h> 113 114 #define INPCBLBGROUP_SIZMIN 8 115 #define INPCBLBGROUP_SIZMAX 256 116 117 #define INP_FREED 0x00000200 /* Went through in_pcbfree(). */ 118 #define INP_INLBGROUP 0x01000000 /* Inserted into inpcblbgroup. */ 119 120 /* 121 * These configure the range of local port addresses assigned to 122 * "unspecified" outgoing connections/packets/whatever. 123 */ 124 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 125 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 126 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 127 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 128 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 129 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 130 131 /* 132 * Reserved ports accessible only to root. There are significant 133 * security considerations that must be accounted for when changing these, 134 * but the security benefits can be great. Please be careful. 135 */ 136 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 137 VNET_DEFINE(int, ipport_reservedlow); 138 139 /* Enable random ephemeral port allocation by default. */ 140 VNET_DEFINE(int, ipport_randomized) = 1; 141 142 #ifdef INET 143 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 144 struct in_addr faddr, u_int fport_arg, 145 struct in_addr laddr, u_int lport_arg, 146 int lookupflags, uint8_t numa_domain); 147 148 #define RANGECHK(var, min, max) \ 149 if ((var) < (min)) { (var) = (min); } \ 150 else if ((var) > (max)) { (var) = (max); } 151 152 static int 153 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 154 { 155 int error; 156 157 error = sysctl_handle_int(oidp, arg1, arg2, req); 158 if (error == 0) { 159 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 160 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 161 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 162 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 163 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 164 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 165 } 166 return (error); 167 } 168 169 #undef RANGECHK 170 171 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 172 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 173 "IP Ports"); 174 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 177 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 178 ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 181 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 182 ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 196 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 197 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 198 ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 200 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 201 &VNET_NAME(ipport_reservedhigh), 0, ""); 202 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 203 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 207 208 #ifdef RATELIMIT 209 counter_u64_t rate_limit_new; 210 counter_u64_t rate_limit_chg; 211 counter_u64_t rate_limit_active; 212 counter_u64_t rate_limit_alloc_fail; 213 counter_u64_t rate_limit_set_ok; 214 215 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 216 "IP Rate Limiting"); 217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 218 &rate_limit_active, "Active rate limited connections"); 219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 220 &rate_limit_alloc_fail, "Rate limited connection failures"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 222 &rate_limit_set_ok, "Rate limited setting succeeded"); 223 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 224 &rate_limit_new, "Total Rate limit new attempts"); 225 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 226 &rate_limit_chg, "Total Rate limited change attempts"); 227 #endif /* RATELIMIT */ 228 229 #endif /* INET */ 230 231 VNET_DEFINE(uint32_t, in_pcbhashseed); 232 static void 233 in_pcbhashseed_init(void) 234 { 235 236 V_in_pcbhashseed = arc4random(); 237 } 238 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 239 in_pcbhashseed_init, 0); 240 241 static void in_pcbremhash(struct inpcb *); 242 243 /* 244 * in_pcb.c: manage the Protocol Control Blocks. 245 * 246 * NOTE: It is assumed that most of these functions will be called with 247 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 248 * functions often modify hash chains or addresses in pcbs. 249 */ 250 251 static struct inpcblbgroup * 252 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, 253 u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, 254 uint8_t numa_domain) 255 { 256 struct inpcblbgroup *grp; 257 size_t bytes; 258 259 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 260 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 261 if (grp == NULL) 262 return (NULL); 263 grp->il_cred = crhold(cred); 264 grp->il_vflag = vflag; 265 grp->il_lport = port; 266 grp->il_numa_domain = numa_domain; 267 grp->il_dependladdr = *addr; 268 grp->il_inpsiz = size; 269 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 270 return (grp); 271 } 272 273 static void 274 in_pcblbgroup_free_deferred(epoch_context_t ctx) 275 { 276 struct inpcblbgroup *grp; 277 278 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 279 crfree(grp->il_cred); 280 free(grp, M_PCB); 281 } 282 283 static void 284 in_pcblbgroup_free(struct inpcblbgroup *grp) 285 { 286 287 CK_LIST_REMOVE(grp, il_list); 288 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 289 } 290 291 static struct inpcblbgroup * 292 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 293 struct inpcblbgroup *old_grp, int size) 294 { 295 struct inpcblbgroup *grp; 296 int i; 297 298 grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, 299 old_grp->il_lport, &old_grp->il_dependladdr, size, 300 old_grp->il_numa_domain); 301 if (grp == NULL) 302 return (NULL); 303 304 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 305 ("invalid new local group size %d and old local group count %d", 306 grp->il_inpsiz, old_grp->il_inpcnt)); 307 308 for (i = 0; i < old_grp->il_inpcnt; ++i) 309 grp->il_inp[i] = old_grp->il_inp[i]; 310 grp->il_inpcnt = old_grp->il_inpcnt; 311 in_pcblbgroup_free(old_grp); 312 return (grp); 313 } 314 315 /* 316 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 317 * and shrink group if possible. 318 */ 319 static void 320 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 321 int i) 322 { 323 struct inpcblbgroup *grp, *new_grp; 324 325 grp = *grpp; 326 for (; i + 1 < grp->il_inpcnt; ++i) 327 grp->il_inp[i] = grp->il_inp[i + 1]; 328 grp->il_inpcnt--; 329 330 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 331 grp->il_inpcnt <= grp->il_inpsiz / 4) { 332 /* Shrink this group. */ 333 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 334 if (new_grp != NULL) 335 *grpp = new_grp; 336 } 337 } 338 339 /* 340 * Add PCB to load balance group for SO_REUSEPORT_LB option. 341 */ 342 static int 343 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 344 { 345 const static struct timeval interval = { 60, 0 }; 346 static struct timeval lastprint; 347 struct inpcbinfo *pcbinfo; 348 struct inpcblbgrouphead *hdr; 349 struct inpcblbgroup *grp; 350 uint32_t idx; 351 352 pcbinfo = inp->inp_pcbinfo; 353 354 INP_WLOCK_ASSERT(inp); 355 INP_HASH_WLOCK_ASSERT(pcbinfo); 356 357 #ifdef INET6 358 /* 359 * Don't allow IPv4 mapped INET6 wild socket. 360 */ 361 if ((inp->inp_vflag & INP_IPV4) && 362 inp->inp_laddr.s_addr == INADDR_ANY && 363 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 364 return (0); 365 } 366 #endif 367 368 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 369 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 370 CK_LIST_FOREACH(grp, hdr, il_list) { 371 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 372 grp->il_vflag == inp->inp_vflag && 373 grp->il_lport == inp->inp_lport && 374 grp->il_numa_domain == numa_domain && 375 memcmp(&grp->il_dependladdr, 376 &inp->inp_inc.inc_ie.ie_dependladdr, 377 sizeof(grp->il_dependladdr)) == 0) { 378 break; 379 } 380 } 381 if (grp == NULL) { 382 /* Create new load balance group. */ 383 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, 384 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 385 INPCBLBGROUP_SIZMIN, numa_domain); 386 if (grp == NULL) 387 return (ENOBUFS); 388 } else if (grp->il_inpcnt == grp->il_inpsiz) { 389 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 390 if (ratecheck(&lastprint, &interval)) 391 printf("lb group port %d, limit reached\n", 392 ntohs(grp->il_lport)); 393 return (0); 394 } 395 396 /* Expand this local group. */ 397 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 398 if (grp == NULL) 399 return (ENOBUFS); 400 } 401 402 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 403 ("invalid local group size %d and count %d", grp->il_inpsiz, 404 grp->il_inpcnt)); 405 406 grp->il_inp[grp->il_inpcnt] = inp; 407 grp->il_inpcnt++; 408 inp->inp_flags |= INP_INLBGROUP; 409 return (0); 410 } 411 412 /* 413 * Remove PCB from load balance group. 414 */ 415 static void 416 in_pcbremlbgrouphash(struct inpcb *inp) 417 { 418 struct inpcbinfo *pcbinfo; 419 struct inpcblbgrouphead *hdr; 420 struct inpcblbgroup *grp; 421 int i; 422 423 pcbinfo = inp->inp_pcbinfo; 424 425 INP_WLOCK_ASSERT(inp); 426 MPASS(inp->inp_flags & INP_INLBGROUP); 427 INP_HASH_WLOCK_ASSERT(pcbinfo); 428 429 hdr = &pcbinfo->ipi_lbgrouphashbase[ 430 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 431 CK_LIST_FOREACH(grp, hdr, il_list) { 432 for (i = 0; i < grp->il_inpcnt; ++i) { 433 if (grp->il_inp[i] != inp) 434 continue; 435 436 if (grp->il_inpcnt == 1) { 437 /* We are the last, free this local group. */ 438 in_pcblbgroup_free(grp); 439 } else { 440 /* Pull up inpcbs, shrink group if possible. */ 441 in_pcblbgroup_reorder(hdr, &grp, i); 442 } 443 inp->inp_flags &= ~INP_INLBGROUP; 444 return; 445 } 446 } 447 KASSERT(0, ("%s: did not find %p", __func__, inp)); 448 } 449 450 int 451 in_pcblbgroup_numa(struct inpcb *inp, int arg) 452 { 453 struct inpcbinfo *pcbinfo; 454 struct inpcblbgrouphead *hdr; 455 struct inpcblbgroup *grp; 456 int err, i; 457 uint8_t numa_domain; 458 459 switch (arg) { 460 case TCP_REUSPORT_LB_NUMA_NODOM: 461 numa_domain = M_NODOM; 462 break; 463 case TCP_REUSPORT_LB_NUMA_CURDOM: 464 numa_domain = PCPU_GET(domain); 465 break; 466 default: 467 if (arg < 0 || arg >= vm_ndomains) 468 return (EINVAL); 469 numa_domain = arg; 470 } 471 472 err = 0; 473 pcbinfo = inp->inp_pcbinfo; 474 INP_WLOCK_ASSERT(inp); 475 INP_HASH_WLOCK(pcbinfo); 476 hdr = &pcbinfo->ipi_lbgrouphashbase[ 477 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 478 CK_LIST_FOREACH(grp, hdr, il_list) { 479 for (i = 0; i < grp->il_inpcnt; ++i) { 480 if (grp->il_inp[i] != inp) 481 continue; 482 483 if (grp->il_numa_domain == numa_domain) { 484 goto abort_with_hash_wlock; 485 } 486 487 /* Remove it from the old group. */ 488 in_pcbremlbgrouphash(inp); 489 490 /* Add it to the new group based on numa domain. */ 491 in_pcbinslbgrouphash(inp, numa_domain); 492 goto abort_with_hash_wlock; 493 } 494 } 495 err = ENOENT; 496 abort_with_hash_wlock: 497 INP_HASH_WUNLOCK(pcbinfo); 498 return (err); 499 } 500 501 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 502 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 503 504 /* 505 * Initialize an inpcbinfo - a per-VNET instance of connections db. 506 */ 507 void 508 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 509 u_int hash_nelements, u_int porthash_nelements) 510 { 511 512 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 513 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 514 NULL, MTX_DEF); 515 #ifdef VIMAGE 516 pcbinfo->ipi_vnet = curvnet; 517 #endif 518 CK_LIST_INIT(&pcbinfo->ipi_listhead); 519 pcbinfo->ipi_count = 0; 520 pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB, 521 &pcbinfo->ipi_hashmask); 522 pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB, 523 &pcbinfo->ipi_hashmask); 524 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 525 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 526 &pcbinfo->ipi_porthashmask); 527 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 528 &pcbinfo->ipi_lbgrouphashmask); 529 pcbinfo->ipi_zone = pcbstor->ips_zone; 530 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 531 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 532 } 533 534 /* 535 * Destroy an inpcbinfo. 536 */ 537 void 538 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 539 { 540 541 KASSERT(pcbinfo->ipi_count == 0, 542 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 543 544 hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask); 545 hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask); 546 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 547 pcbinfo->ipi_porthashmask); 548 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 549 pcbinfo->ipi_lbgrouphashmask); 550 mtx_destroy(&pcbinfo->ipi_hash_lock); 551 mtx_destroy(&pcbinfo->ipi_lock); 552 } 553 554 /* 555 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 556 */ 557 static void inpcb_fini(void *, int); 558 void 559 in_pcbstorage_init(void *arg) 560 { 561 struct inpcbstorage *pcbstor = arg; 562 563 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 564 pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit, 565 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 566 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 567 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 568 uma_zone_set_smr(pcbstor->ips_portzone, 569 uma_zone_get_smr(pcbstor->ips_zone)); 570 } 571 572 /* 573 * Destroy a pcbstorage - used by unloadable protocols. 574 */ 575 void 576 in_pcbstorage_destroy(void *arg) 577 { 578 struct inpcbstorage *pcbstor = arg; 579 580 uma_zdestroy(pcbstor->ips_zone); 581 uma_zdestroy(pcbstor->ips_portzone); 582 } 583 584 /* 585 * Allocate a PCB and associate it with the socket. 586 * On success return with the PCB locked. 587 */ 588 int 589 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 590 { 591 struct inpcb *inp; 592 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 593 int error; 594 #endif 595 596 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 597 if (inp == NULL) 598 return (ENOBUFS); 599 bzero(&inp->inp_start_zero, inp_zero_size); 600 #ifdef NUMA 601 inp->inp_numa_domain = M_NODOM; 602 #endif 603 inp->inp_pcbinfo = pcbinfo; 604 inp->inp_socket = so; 605 inp->inp_cred = crhold(so->so_cred); 606 inp->inp_inc.inc_fibnum = so->so_fibnum; 607 #ifdef MAC 608 error = mac_inpcb_init(inp, M_NOWAIT); 609 if (error != 0) 610 goto out; 611 mac_inpcb_create(so, inp); 612 #endif 613 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 614 error = ipsec_init_pcbpolicy(inp); 615 if (error != 0) { 616 #ifdef MAC 617 mac_inpcb_destroy(inp); 618 #endif 619 goto out; 620 } 621 #endif /*IPSEC*/ 622 #ifdef INET6 623 if (INP_SOCKAF(so) == AF_INET6) { 624 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 625 if (V_ip6_v6only) 626 inp->inp_flags |= IN6P_IPV6_V6ONLY; 627 #ifdef INET 628 else 629 inp->inp_vflag |= INP_IPV4; 630 #endif 631 if (V_ip6_auto_flowlabel) 632 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 633 inp->in6p_hops = -1; /* use kernel default */ 634 } 635 #endif 636 #if defined(INET) && defined(INET6) 637 else 638 #endif 639 #ifdef INET 640 inp->inp_vflag |= INP_IPV4; 641 #endif 642 inp->inp_smr = SMR_SEQ_INVALID; 643 644 /* 645 * Routes in inpcb's can cache L2 as well; they are guaranteed 646 * to be cleaned up. 647 */ 648 inp->inp_route.ro_flags = RT_LLE_CACHE; 649 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 650 INP_WLOCK(inp); 651 INP_INFO_WLOCK(pcbinfo); 652 pcbinfo->ipi_count++; 653 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 654 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 655 INP_INFO_WUNLOCK(pcbinfo); 656 so->so_pcb = inp; 657 658 return (0); 659 660 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 661 out: 662 uma_zfree_smr(pcbinfo->ipi_zone, inp); 663 return (error); 664 #endif 665 } 666 667 #ifdef INET 668 int 669 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) 670 { 671 int anonport, error; 672 673 KASSERT(sin == NULL || sin->sin_family == AF_INET, 674 ("%s: invalid address family for %p", __func__, sin)); 675 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in), 676 ("%s: invalid address length for %p", __func__, sin)); 677 INP_WLOCK_ASSERT(inp); 678 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 679 680 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 681 return (EINVAL); 682 anonport = sin == NULL || sin->sin_port == 0; 683 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr, 684 &inp->inp_lport, cred); 685 if (error) 686 return (error); 687 if (in_pcbinshash(inp) != 0) { 688 inp->inp_laddr.s_addr = INADDR_ANY; 689 inp->inp_lport = 0; 690 return (EAGAIN); 691 } 692 if (anonport) 693 inp->inp_flags |= INP_ANONPORT; 694 return (0); 695 } 696 #endif 697 698 #if defined(INET) || defined(INET6) 699 /* 700 * Assign a local port like in_pcb_lport(), but also used with connect() 701 * and a foreign address and port. If fsa is non-NULL, choose a local port 702 * that is unused with those, otherwise one that is completely unused. 703 * lsa can be NULL for IPv6. 704 */ 705 int 706 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 707 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 708 { 709 struct inpcbinfo *pcbinfo; 710 struct inpcb *tmpinp; 711 unsigned short *lastport; 712 int count, error; 713 u_short aux, first, last, lport; 714 #ifdef INET 715 struct in_addr laddr, faddr; 716 #endif 717 #ifdef INET6 718 struct in6_addr *laddr6, *faddr6; 719 #endif 720 721 pcbinfo = inp->inp_pcbinfo; 722 723 /* 724 * Because no actual state changes occur here, a global write lock on 725 * the pcbinfo isn't required. 726 */ 727 INP_LOCK_ASSERT(inp); 728 INP_HASH_LOCK_ASSERT(pcbinfo); 729 730 if (inp->inp_flags & INP_HIGHPORT) { 731 first = V_ipport_hifirstauto; /* sysctl */ 732 last = V_ipport_hilastauto; 733 lastport = &pcbinfo->ipi_lasthi; 734 } else if (inp->inp_flags & INP_LOWPORT) { 735 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 736 if (error) 737 return (error); 738 first = V_ipport_lowfirstauto; /* 1023 */ 739 last = V_ipport_lowlastauto; /* 600 */ 740 lastport = &pcbinfo->ipi_lastlow; 741 } else { 742 first = V_ipport_firstauto; /* sysctl */ 743 last = V_ipport_lastauto; 744 lastport = &pcbinfo->ipi_lastport; 745 } 746 747 /* 748 * Instead of having two loops further down counting up or down 749 * make sure that first is always <= last and go with only one 750 * code path implementing all logic. 751 */ 752 if (first > last) { 753 aux = first; 754 first = last; 755 last = aux; 756 } 757 758 #ifdef INET 759 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 760 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 761 if (lsa != NULL) 762 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 763 if (fsa != NULL) 764 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 765 } 766 #endif 767 #ifdef INET6 768 laddr6 = NULL; 769 if ((inp->inp_vflag & INP_IPV6) != 0) { 770 if (lsa != NULL) 771 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 772 if (fsa != NULL) 773 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 774 } 775 #endif 776 777 tmpinp = NULL; 778 lport = *lportp; 779 780 if (V_ipport_randomized) 781 *lastport = first + (arc4random() % (last - first)); 782 783 count = last - first; 784 785 do { 786 if (count-- < 0) /* completely used? */ 787 return (EADDRNOTAVAIL); 788 ++*lastport; 789 if (*lastport < first || *lastport > last) 790 *lastport = first; 791 lport = htons(*lastport); 792 793 if (fsa != NULL) { 794 #ifdef INET 795 if (lsa->sa_family == AF_INET) { 796 tmpinp = in_pcblookup_hash_locked(pcbinfo, 797 faddr, fport, laddr, lport, lookupflags, 798 M_NODOM); 799 } 800 #endif 801 #ifdef INET6 802 if (lsa->sa_family == AF_INET6) { 803 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 804 faddr6, fport, laddr6, lport, lookupflags, 805 M_NODOM); 806 } 807 #endif 808 } else { 809 #ifdef INET6 810 if ((inp->inp_vflag & INP_IPV6) != 0) { 811 tmpinp = in6_pcblookup_local(pcbinfo, 812 &inp->in6p_laddr, lport, lookupflags, cred); 813 #ifdef INET 814 if (tmpinp == NULL && 815 (inp->inp_vflag & INP_IPV4)) 816 tmpinp = in_pcblookup_local(pcbinfo, 817 laddr, lport, lookupflags, cred); 818 #endif 819 } 820 #endif 821 #if defined(INET) && defined(INET6) 822 else 823 #endif 824 #ifdef INET 825 tmpinp = in_pcblookup_local(pcbinfo, laddr, 826 lport, lookupflags, cred); 827 #endif 828 } 829 } while (tmpinp != NULL); 830 831 *lportp = lport; 832 833 return (0); 834 } 835 836 /* 837 * Select a local port (number) to use. 838 */ 839 int 840 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 841 struct ucred *cred, int lookupflags) 842 { 843 struct sockaddr_in laddr; 844 845 if (laddrp) { 846 bzero(&laddr, sizeof(laddr)); 847 laddr.sin_family = AF_INET; 848 laddr.sin_addr = *laddrp; 849 } 850 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 851 NULL, lportp, NULL, 0, cred, lookupflags)); 852 } 853 #endif /* INET || INET6 */ 854 855 #ifdef INET 856 /* 857 * Set up a bind operation on a PCB, performing port allocation 858 * as required, but do not actually modify the PCB. Callers can 859 * either complete the bind by setting inp_laddr/inp_lport and 860 * calling in_pcbinshash(), or they can just use the resulting 861 * port and address to authorise the sending of a once-off packet. 862 * 863 * On error, the values of *laddrp and *lportp are not changed. 864 */ 865 int 866 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, 867 u_short *lportp, struct ucred *cred) 868 { 869 struct socket *so = inp->inp_socket; 870 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 871 struct in_addr laddr; 872 u_short lport = 0; 873 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 874 int error; 875 876 /* 877 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 878 * so that we don't have to add to the (already messy) code below. 879 */ 880 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 881 882 /* 883 * No state changes, so read locks are sufficient here. 884 */ 885 INP_LOCK_ASSERT(inp); 886 INP_HASH_LOCK_ASSERT(pcbinfo); 887 888 laddr.s_addr = *laddrp; 889 if (sin != NULL && laddr.s_addr != INADDR_ANY) 890 return (EINVAL); 891 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 892 lookupflags = INPLOOKUP_WILDCARD; 893 if (sin == NULL) { 894 if ((error = prison_local_ip4(cred, &laddr)) != 0) 895 return (error); 896 } else { 897 KASSERT(sin->sin_family == AF_INET, 898 ("%s: invalid family for address %p", __func__, sin)); 899 KASSERT(sin->sin_len == sizeof(*sin), 900 ("%s: invalid length for address %p", __func__, sin)); 901 902 error = prison_local_ip4(cred, &sin->sin_addr); 903 if (error) 904 return (error); 905 if (sin->sin_port != *lportp) { 906 /* Don't allow the port to change. */ 907 if (*lportp != 0) 908 return (EINVAL); 909 lport = sin->sin_port; 910 } 911 /* NB: lport is left as 0 if the port isn't being changed. */ 912 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 913 /* 914 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 915 * allow complete duplication of binding if 916 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 917 * and a multicast address is bound on both 918 * new and duplicated sockets. 919 */ 920 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 921 reuseport = SO_REUSEADDR|SO_REUSEPORT; 922 /* 923 * XXX: How to deal with SO_REUSEPORT_LB here? 924 * Treat same as SO_REUSEPORT for now. 925 */ 926 if ((so->so_options & 927 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 928 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 929 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 930 sin->sin_port = 0; /* yech... */ 931 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 932 /* 933 * Is the address a local IP address? 934 * If INP_BINDANY is set, then the socket may be bound 935 * to any endpoint address, local or not. 936 */ 937 if ((inp->inp_flags & INP_BINDANY) == 0 && 938 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 939 return (EADDRNOTAVAIL); 940 } 941 laddr = sin->sin_addr; 942 if (lport) { 943 struct inpcb *t; 944 945 /* GROSS */ 946 if (ntohs(lport) <= V_ipport_reservedhigh && 947 ntohs(lport) >= V_ipport_reservedlow && 948 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 949 return (EACCES); 950 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 951 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 952 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 953 lport, INPLOOKUP_WILDCARD, cred); 954 /* 955 * XXX 956 * This entire block sorely needs a rewrite. 957 */ 958 if (t != NULL && 959 (so->so_type != SOCK_STREAM || 960 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 961 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 962 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 963 (t->inp_socket->so_options & SO_REUSEPORT) || 964 (t->inp_socket->so_options & SO_REUSEPORT_LB) == 0) && 965 (inp->inp_cred->cr_uid != 966 t->inp_cred->cr_uid)) 967 return (EADDRINUSE); 968 } 969 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 970 lport, lookupflags, cred); 971 if (t != NULL && (reuseport & t->inp_socket->so_options) == 0 && 972 (reuseport_lb & t->inp_socket->so_options) == 0) { 973 #ifdef INET6 974 if (ntohl(sin->sin_addr.s_addr) != 975 INADDR_ANY || 976 ntohl(t->inp_laddr.s_addr) != 977 INADDR_ANY || 978 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 979 (t->inp_vflag & INP_IPV6PROTO) == 0) 980 #endif 981 return (EADDRINUSE); 982 } 983 } 984 } 985 if (*lportp != 0) 986 lport = *lportp; 987 if (lport == 0) { 988 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 989 if (error != 0) 990 return (error); 991 } 992 *laddrp = laddr.s_addr; 993 *lportp = lport; 994 return (0); 995 } 996 997 /* 998 * Connect from a socket to a specified address. 999 * Both address and port must be specified in argument sin. 1000 * If don't have a local address for this socket yet, 1001 * then pick one. 1002 */ 1003 int 1004 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred, 1005 bool rehash __unused) 1006 { 1007 u_short lport, fport; 1008 in_addr_t laddr, faddr; 1009 int anonport, error; 1010 1011 INP_WLOCK_ASSERT(inp); 1012 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1013 KASSERT(in_nullhost(inp->inp_faddr), 1014 ("%s: inp is already connected", __func__)); 1015 1016 lport = inp->inp_lport; 1017 laddr = inp->inp_laddr.s_addr; 1018 anonport = (lport == 0); 1019 error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport, 1020 cred); 1021 if (error) 1022 return (error); 1023 1024 inp->inp_faddr.s_addr = faddr; 1025 inp->inp_fport = fport; 1026 1027 /* Do the initial binding of the local address if required. */ 1028 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1029 inp->inp_lport = lport; 1030 inp->inp_laddr.s_addr = laddr; 1031 if (in_pcbinshash(inp) != 0) { 1032 inp->inp_laddr.s_addr = inp->inp_faddr.s_addr = 1033 INADDR_ANY; 1034 inp->inp_lport = inp->inp_fport = 0; 1035 return (EAGAIN); 1036 } 1037 } else { 1038 inp->inp_lport = lport; 1039 inp->inp_laddr.s_addr = laddr; 1040 if ((inp->inp_flags & INP_INHASHLIST) != 0) 1041 in_pcbrehash(inp); 1042 else 1043 in_pcbinshash(inp); 1044 } 1045 1046 if (anonport) 1047 inp->inp_flags |= INP_ANONPORT; 1048 return (0); 1049 } 1050 1051 /* 1052 * Do proper source address selection on an unbound socket in case 1053 * of connect. Take jails into account as well. 1054 */ 1055 int 1056 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1057 struct ucred *cred) 1058 { 1059 struct ifaddr *ifa; 1060 struct sockaddr *sa; 1061 struct sockaddr_in *sin, dst; 1062 struct nhop_object *nh; 1063 int error; 1064 1065 NET_EPOCH_ASSERT(); 1066 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1067 1068 /* 1069 * Bypass source address selection and use the primary jail IP 1070 * if requested. 1071 */ 1072 if (!prison_saddrsel_ip4(cred, laddr)) 1073 return (0); 1074 1075 error = 0; 1076 1077 nh = NULL; 1078 bzero(&dst, sizeof(dst)); 1079 sin = &dst; 1080 sin->sin_family = AF_INET; 1081 sin->sin_len = sizeof(struct sockaddr_in); 1082 sin->sin_addr.s_addr = faddr->s_addr; 1083 1084 /* 1085 * If route is known our src addr is taken from the i/f, 1086 * else punt. 1087 * 1088 * Find out route to destination. 1089 */ 1090 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1091 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1092 0, NHR_NONE, 0); 1093 1094 /* 1095 * If we found a route, use the address corresponding to 1096 * the outgoing interface. 1097 * 1098 * Otherwise assume faddr is reachable on a directly connected 1099 * network and try to find a corresponding interface to take 1100 * the source address from. 1101 */ 1102 if (nh == NULL || nh->nh_ifp == NULL) { 1103 struct in_ifaddr *ia; 1104 struct ifnet *ifp; 1105 1106 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1107 inp->inp_socket->so_fibnum)); 1108 if (ia == NULL) { 1109 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1110 inp->inp_socket->so_fibnum)); 1111 } 1112 if (ia == NULL) { 1113 error = ENETUNREACH; 1114 goto done; 1115 } 1116 1117 if (!prison_flag(cred, PR_IP4)) { 1118 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1119 goto done; 1120 } 1121 1122 ifp = ia->ia_ifp; 1123 ia = NULL; 1124 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1125 sa = ifa->ifa_addr; 1126 if (sa->sa_family != AF_INET) 1127 continue; 1128 sin = (struct sockaddr_in *)sa; 1129 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1130 ia = (struct in_ifaddr *)ifa; 1131 break; 1132 } 1133 } 1134 if (ia != NULL) { 1135 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1136 goto done; 1137 } 1138 1139 /* 3. As a last resort return the 'default' jail address. */ 1140 error = prison_get_ip4(cred, laddr); 1141 goto done; 1142 } 1143 1144 /* 1145 * If the outgoing interface on the route found is not 1146 * a loopback interface, use the address from that interface. 1147 * In case of jails do those three steps: 1148 * 1. check if the interface address belongs to the jail. If so use it. 1149 * 2. check if we have any address on the outgoing interface 1150 * belonging to this jail. If so use it. 1151 * 3. as a last resort return the 'default' jail address. 1152 */ 1153 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1154 struct in_ifaddr *ia; 1155 struct ifnet *ifp; 1156 1157 /* If not jailed, use the default returned. */ 1158 if (!prison_flag(cred, PR_IP4)) { 1159 ia = (struct in_ifaddr *)nh->nh_ifa; 1160 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1161 goto done; 1162 } 1163 1164 /* Jailed. */ 1165 /* 1. Check if the iface address belongs to the jail. */ 1166 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1167 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1168 ia = (struct in_ifaddr *)nh->nh_ifa; 1169 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1170 goto done; 1171 } 1172 1173 /* 1174 * 2. Check if we have any address on the outgoing interface 1175 * belonging to this jail. 1176 */ 1177 ia = NULL; 1178 ifp = nh->nh_ifp; 1179 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1180 sa = ifa->ifa_addr; 1181 if (sa->sa_family != AF_INET) 1182 continue; 1183 sin = (struct sockaddr_in *)sa; 1184 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1185 ia = (struct in_ifaddr *)ifa; 1186 break; 1187 } 1188 } 1189 if (ia != NULL) { 1190 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1191 goto done; 1192 } 1193 1194 /* 3. As a last resort return the 'default' jail address. */ 1195 error = prison_get_ip4(cred, laddr); 1196 goto done; 1197 } 1198 1199 /* 1200 * The outgoing interface is marked with 'loopback net', so a route 1201 * to ourselves is here. 1202 * Try to find the interface of the destination address and then 1203 * take the address from there. That interface is not necessarily 1204 * a loopback interface. 1205 * In case of jails, check that it is an address of the jail 1206 * and if we cannot find, fall back to the 'default' jail address. 1207 */ 1208 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1209 struct in_ifaddr *ia; 1210 1211 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1212 inp->inp_socket->so_fibnum)); 1213 if (ia == NULL) 1214 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1215 inp->inp_socket->so_fibnum)); 1216 if (ia == NULL) 1217 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1218 1219 if (!prison_flag(cred, PR_IP4)) { 1220 if (ia == NULL) { 1221 error = ENETUNREACH; 1222 goto done; 1223 } 1224 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1225 goto done; 1226 } 1227 1228 /* Jailed. */ 1229 if (ia != NULL) { 1230 struct ifnet *ifp; 1231 1232 ifp = ia->ia_ifp; 1233 ia = NULL; 1234 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1235 sa = ifa->ifa_addr; 1236 if (sa->sa_family != AF_INET) 1237 continue; 1238 sin = (struct sockaddr_in *)sa; 1239 if (prison_check_ip4(cred, 1240 &sin->sin_addr) == 0) { 1241 ia = (struct in_ifaddr *)ifa; 1242 break; 1243 } 1244 } 1245 if (ia != NULL) { 1246 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1247 goto done; 1248 } 1249 } 1250 1251 /* 3. As a last resort return the 'default' jail address. */ 1252 error = prison_get_ip4(cred, laddr); 1253 goto done; 1254 } 1255 1256 done: 1257 if (error == 0 && laddr->s_addr == INADDR_ANY) 1258 return (EHOSTUNREACH); 1259 return (error); 1260 } 1261 1262 /* 1263 * Set up for a connect from a socket to the specified address. 1264 * On entry, *laddrp and *lportp should contain the current local 1265 * address and port for the PCB; these are updated to the values 1266 * that should be placed in inp_laddr and inp_lport to complete 1267 * the connect. 1268 * 1269 * On success, *faddrp and *fportp will be set to the remote address 1270 * and port. These are not updated in the error case. 1271 */ 1272 int 1273 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin, 1274 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1275 struct ucred *cred) 1276 { 1277 struct in_ifaddr *ia; 1278 struct in_addr laddr, faddr; 1279 u_short lport, fport; 1280 int error; 1281 1282 KASSERT(sin->sin_family == AF_INET, 1283 ("%s: invalid address family for %p", __func__, sin)); 1284 KASSERT(sin->sin_len == sizeof(*sin), 1285 ("%s: invalid address length for %p", __func__, sin)); 1286 1287 /* 1288 * Because a global state change doesn't actually occur here, a read 1289 * lock is sufficient. 1290 */ 1291 NET_EPOCH_ASSERT(); 1292 INP_LOCK_ASSERT(inp); 1293 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1294 1295 if (sin->sin_port == 0) 1296 return (EADDRNOTAVAIL); 1297 laddr.s_addr = *laddrp; 1298 lport = *lportp; 1299 faddr = sin->sin_addr; 1300 fport = sin->sin_port; 1301 #ifdef ROUTE_MPATH 1302 if (CALC_FLOWID_OUTBOUND) { 1303 uint32_t hash_val, hash_type; 1304 1305 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1306 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1307 1308 inp->inp_flowid = hash_val; 1309 inp->inp_flowtype = hash_type; 1310 } 1311 #endif 1312 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1313 /* 1314 * If the destination address is INADDR_ANY, 1315 * use the primary local address. 1316 * If the supplied address is INADDR_BROADCAST, 1317 * and the primary interface supports broadcast, 1318 * choose the broadcast address for that interface. 1319 */ 1320 if (faddr.s_addr == INADDR_ANY) { 1321 faddr = 1322 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1323 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1324 return (error); 1325 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1326 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1327 IFF_BROADCAST) 1328 faddr = satosin(&CK_STAILQ_FIRST( 1329 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1330 } 1331 } 1332 if (laddr.s_addr == INADDR_ANY) { 1333 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1334 /* 1335 * If the destination address is multicast and an outgoing 1336 * interface has been set as a multicast option, prefer the 1337 * address of that interface as our source address. 1338 */ 1339 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1340 inp->inp_moptions != NULL) { 1341 struct ip_moptions *imo; 1342 struct ifnet *ifp; 1343 1344 imo = inp->inp_moptions; 1345 if (imo->imo_multicast_ifp != NULL) { 1346 ifp = imo->imo_multicast_ifp; 1347 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1348 if (ia->ia_ifp == ifp && 1349 prison_check_ip4(cred, 1350 &ia->ia_addr.sin_addr) == 0) 1351 break; 1352 } 1353 if (ia == NULL) 1354 error = EADDRNOTAVAIL; 1355 else { 1356 laddr = ia->ia_addr.sin_addr; 1357 error = 0; 1358 } 1359 } 1360 } 1361 if (error) 1362 return (error); 1363 } 1364 1365 if (lport != 0) { 1366 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1367 fport, laddr, lport, 0, M_NODOM) != NULL) 1368 return (EADDRINUSE); 1369 } else { 1370 struct sockaddr_in lsin, fsin; 1371 1372 bzero(&lsin, sizeof(lsin)); 1373 bzero(&fsin, sizeof(fsin)); 1374 lsin.sin_family = AF_INET; 1375 lsin.sin_addr = laddr; 1376 fsin.sin_family = AF_INET; 1377 fsin.sin_addr = faddr; 1378 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1379 &lport, (struct sockaddr *)& fsin, fport, cred, 1380 INPLOOKUP_WILDCARD); 1381 if (error) 1382 return (error); 1383 } 1384 *laddrp = laddr.s_addr; 1385 *lportp = lport; 1386 *faddrp = faddr.s_addr; 1387 *fportp = fport; 1388 return (0); 1389 } 1390 1391 void 1392 in_pcbdisconnect(struct inpcb *inp) 1393 { 1394 1395 INP_WLOCK_ASSERT(inp); 1396 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1397 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 1398 ("%s: inp %p was already disconnected", __func__, inp)); 1399 1400 in_pcbremhash_locked(inp); 1401 1402 /* See the comment in in_pcbinshash(). */ 1403 inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr); 1404 inp->inp_laddr.s_addr = INADDR_ANY; 1405 inp->inp_faddr.s_addr = INADDR_ANY; 1406 inp->inp_fport = 0; 1407 } 1408 #endif /* INET */ 1409 1410 /* 1411 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1412 * For most protocols, this will be invoked immediately prior to calling 1413 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1414 * socket, in which case in_pcbfree() is deferred. 1415 */ 1416 void 1417 in_pcbdetach(struct inpcb *inp) 1418 { 1419 1420 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1421 1422 #ifdef RATELIMIT 1423 if (inp->inp_snd_tag != NULL) 1424 in_pcbdetach_txrtlmt(inp); 1425 #endif 1426 inp->inp_socket->so_pcb = NULL; 1427 inp->inp_socket = NULL; 1428 } 1429 1430 /* 1431 * inpcb hash lookups are protected by SMR section. 1432 * 1433 * Once desired pcb has been found, switching from SMR section to a pcb 1434 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1435 * here because SMR is a critical section. 1436 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1437 */ 1438 void 1439 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1440 { 1441 1442 lock == INPLOOKUP_RLOCKPCB ? 1443 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1444 } 1445 1446 void 1447 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1448 { 1449 1450 lock == INPLOOKUP_RLOCKPCB ? 1451 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1452 } 1453 1454 int 1455 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1456 { 1457 1458 return (lock == INPLOOKUP_RLOCKPCB ? 1459 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1460 } 1461 1462 static inline bool 1463 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1464 { 1465 1466 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1467 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1468 1469 if (__predict_true(inp_trylock(inp, lock))) { 1470 if (__predict_false(inp->inp_flags & ignflags)) { 1471 smr_exit(inp->inp_pcbinfo->ipi_smr); 1472 inp_unlock(inp, lock); 1473 return (false); 1474 } 1475 smr_exit(inp->inp_pcbinfo->ipi_smr); 1476 return (true); 1477 } 1478 1479 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1480 smr_exit(inp->inp_pcbinfo->ipi_smr); 1481 inp_lock(inp, lock); 1482 if (__predict_false(in_pcbrele(inp, lock))) 1483 return (false); 1484 /* 1485 * inp acquired through refcount & lock for sure didn't went 1486 * through uma_zfree(). However, it may have already went 1487 * through in_pcbfree() and has another reference, that 1488 * prevented its release by our in_pcbrele(). 1489 */ 1490 if (__predict_false(inp->inp_flags & ignflags)) { 1491 inp_unlock(inp, lock); 1492 return (false); 1493 } 1494 return (true); 1495 } else { 1496 smr_exit(inp->inp_pcbinfo->ipi_smr); 1497 return (false); 1498 } 1499 } 1500 1501 bool 1502 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1503 { 1504 1505 /* 1506 * in_pcblookup() family of functions ignore not only freed entries, 1507 * that may be found due to lockless access to the hash, but dropped 1508 * entries, too. 1509 */ 1510 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1511 } 1512 1513 /* 1514 * inp_next() - inpcb hash/list traversal iterator 1515 * 1516 * Requires initialized struct inpcb_iterator for context. 1517 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1518 * 1519 * - Iterator can have either write-lock or read-lock semantics, that can not 1520 * be changed later. 1521 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1522 * a single hash slot. Note: only rip_input() does the latter. 1523 * - Iterator may have optional bool matching function. The matching function 1524 * will be executed for each inpcb in the SMR context, so it can not acquire 1525 * locks and can safely access only immutable fields of inpcb. 1526 * 1527 * A fresh initialized iterator has NULL inpcb in its context and that 1528 * means that inp_next() call would return the very first inpcb on the list 1529 * locked with desired semantic. In all following calls the context pointer 1530 * shall hold the current inpcb pointer. The KPI user is not supposed to 1531 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1532 * and write NULL to its context. After end of traversal an iterator can be 1533 * reused. 1534 * 1535 * List traversals have the following features/constraints: 1536 * - New entries won't be seen, as they are always added to the head of a list. 1537 * - Removed entries won't stop traversal as long as they are not added to 1538 * a different list. This is violated by in_pcbrehash(). 1539 */ 1540 #define II_LIST_FIRST(ipi, hash) \ 1541 (((hash) == INP_ALL_LIST) ? \ 1542 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1543 CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)])) 1544 #define II_LIST_NEXT(inp, hash) \ 1545 (((hash) == INP_ALL_LIST) ? \ 1546 CK_LIST_NEXT((inp), inp_list) : \ 1547 CK_LIST_NEXT((inp), inp_hash_exact)) 1548 #define II_LOCK_ASSERT(inp, lock) \ 1549 rw_assert(&(inp)->inp_lock, \ 1550 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1551 struct inpcb * 1552 inp_next(struct inpcb_iterator *ii) 1553 { 1554 const struct inpcbinfo *ipi = ii->ipi; 1555 inp_match_t *match = ii->match; 1556 void *ctx = ii->ctx; 1557 inp_lookup_t lock = ii->lock; 1558 int hash = ii->hash; 1559 struct inpcb *inp; 1560 1561 if (ii->inp == NULL) { /* First call. */ 1562 smr_enter(ipi->ipi_smr); 1563 /* This is unrolled CK_LIST_FOREACH(). */ 1564 for (inp = II_LIST_FIRST(ipi, hash); 1565 inp != NULL; 1566 inp = II_LIST_NEXT(inp, hash)) { 1567 if (match != NULL && (match)(inp, ctx) == false) 1568 continue; 1569 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1570 break; 1571 else { 1572 smr_enter(ipi->ipi_smr); 1573 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1574 inp = II_LIST_FIRST(ipi, hash); 1575 if (inp == NULL) 1576 break; 1577 } 1578 } 1579 1580 if (inp == NULL) 1581 smr_exit(ipi->ipi_smr); 1582 else 1583 ii->inp = inp; 1584 1585 return (inp); 1586 } 1587 1588 /* Not a first call. */ 1589 smr_enter(ipi->ipi_smr); 1590 restart: 1591 inp = ii->inp; 1592 II_LOCK_ASSERT(inp, lock); 1593 next: 1594 inp = II_LIST_NEXT(inp, hash); 1595 if (inp == NULL) { 1596 smr_exit(ipi->ipi_smr); 1597 goto found; 1598 } 1599 1600 if (match != NULL && (match)(inp, ctx) == false) 1601 goto next; 1602 1603 if (__predict_true(inp_trylock(inp, lock))) { 1604 if (__predict_false(inp->inp_flags & INP_FREED)) { 1605 /* 1606 * Entries are never inserted in middle of a list, thus 1607 * as long as we are in SMR, we can continue traversal. 1608 * Jump to 'restart' should yield in the same result, 1609 * but could produce unnecessary looping. Could this 1610 * looping be unbound? 1611 */ 1612 inp_unlock(inp, lock); 1613 goto next; 1614 } else { 1615 smr_exit(ipi->ipi_smr); 1616 goto found; 1617 } 1618 } 1619 1620 /* 1621 * Can't obtain lock immediately, thus going hard. Once we exit the 1622 * SMR section we can no longer jump to 'next', and our only stable 1623 * anchoring point is ii->inp, which we keep locked for this case, so 1624 * we jump to 'restart'. 1625 */ 1626 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1627 smr_exit(ipi->ipi_smr); 1628 inp_lock(inp, lock); 1629 if (__predict_false(in_pcbrele(inp, lock))) { 1630 smr_enter(ipi->ipi_smr); 1631 goto restart; 1632 } 1633 /* 1634 * See comment in inp_smr_lock(). 1635 */ 1636 if (__predict_false(inp->inp_flags & INP_FREED)) { 1637 inp_unlock(inp, lock); 1638 smr_enter(ipi->ipi_smr); 1639 goto restart; 1640 } 1641 } else 1642 goto next; 1643 1644 found: 1645 inp_unlock(ii->inp, lock); 1646 ii->inp = inp; 1647 1648 return (ii->inp); 1649 } 1650 1651 /* 1652 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1653 * stability of an inpcb pointer despite the inpcb lock being released or 1654 * SMR section exited. 1655 * 1656 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1657 */ 1658 void 1659 in_pcbref(struct inpcb *inp) 1660 { 1661 u_int old __diagused; 1662 1663 old = refcount_acquire(&inp->inp_refcount); 1664 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1665 } 1666 1667 /* 1668 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1669 * freeing the pcb, if the reference was very last. 1670 */ 1671 bool 1672 in_pcbrele_rlocked(struct inpcb *inp) 1673 { 1674 1675 INP_RLOCK_ASSERT(inp); 1676 1677 if (!refcount_release(&inp->inp_refcount)) 1678 return (false); 1679 1680 MPASS(inp->inp_flags & INP_FREED); 1681 MPASS(inp->inp_socket == NULL); 1682 crfree(inp->inp_cred); 1683 #ifdef INVARIANTS 1684 inp->inp_cred = NULL; 1685 #endif 1686 INP_RUNLOCK(inp); 1687 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1688 return (true); 1689 } 1690 1691 bool 1692 in_pcbrele_wlocked(struct inpcb *inp) 1693 { 1694 1695 INP_WLOCK_ASSERT(inp); 1696 1697 if (!refcount_release(&inp->inp_refcount)) 1698 return (false); 1699 1700 MPASS(inp->inp_flags & INP_FREED); 1701 MPASS(inp->inp_socket == NULL); 1702 crfree(inp->inp_cred); 1703 #ifdef INVARIANTS 1704 inp->inp_cred = NULL; 1705 #endif 1706 INP_WUNLOCK(inp); 1707 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1708 return (true); 1709 } 1710 1711 bool 1712 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1713 { 1714 1715 return (lock == INPLOOKUP_RLOCKPCB ? 1716 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1717 } 1718 1719 /* 1720 * Unconditionally schedule an inpcb to be freed by decrementing its 1721 * reference count, which should occur only after the inpcb has been detached 1722 * from its socket. If another thread holds a temporary reference (acquired 1723 * using in_pcbref()) then the free is deferred until that reference is 1724 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1725 * Almost all work, including removal from global lists, is done in this 1726 * context, where the pcbinfo lock is held. 1727 */ 1728 void 1729 in_pcbfree(struct inpcb *inp) 1730 { 1731 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1732 #ifdef INET 1733 struct ip_moptions *imo; 1734 #endif 1735 #ifdef INET6 1736 struct ip6_moptions *im6o; 1737 #endif 1738 1739 INP_WLOCK_ASSERT(inp); 1740 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1741 KASSERT((inp->inp_flags & INP_FREED) == 0, 1742 ("%s: called twice for pcb %p", __func__, inp)); 1743 1744 inp->inp_flags |= INP_FREED; 1745 INP_INFO_WLOCK(pcbinfo); 1746 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1747 pcbinfo->ipi_count--; 1748 CK_LIST_REMOVE(inp, inp_list); 1749 INP_INFO_WUNLOCK(pcbinfo); 1750 1751 if (inp->inp_flags & INP_INHASHLIST) 1752 in_pcbremhash(inp); 1753 1754 RO_INVALIDATE_CACHE(&inp->inp_route); 1755 #ifdef MAC 1756 mac_inpcb_destroy(inp); 1757 #endif 1758 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1759 if (inp->inp_sp != NULL) 1760 ipsec_delete_pcbpolicy(inp); 1761 #endif 1762 #ifdef INET 1763 if (inp->inp_options) 1764 (void)m_free(inp->inp_options); 1765 imo = inp->inp_moptions; 1766 #endif 1767 #ifdef INET6 1768 if (inp->inp_vflag & INP_IPV6PROTO) { 1769 ip6_freepcbopts(inp->in6p_outputopts); 1770 im6o = inp->in6p_moptions; 1771 } else 1772 im6o = NULL; 1773 #endif 1774 1775 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1776 INP_WUNLOCK(inp); 1777 } 1778 #ifdef INET6 1779 ip6_freemoptions(im6o); 1780 #endif 1781 #ifdef INET 1782 inp_freemoptions(imo); 1783 #endif 1784 } 1785 1786 /* 1787 * Different protocols initialize their inpcbs differently - giving 1788 * different name to the lock. But they all are disposed the same. 1789 */ 1790 static void 1791 inpcb_fini(void *mem, int size) 1792 { 1793 struct inpcb *inp = mem; 1794 1795 INP_LOCK_DESTROY(inp); 1796 } 1797 1798 /* 1799 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1800 * port reservation, and preventing it from being returned by inpcb lookups. 1801 * 1802 * It is used by TCP to mark an inpcb as unused and avoid future packet 1803 * delivery or event notification when a socket remains open but TCP has 1804 * closed. This might occur as a result of a shutdown()-initiated TCP close 1805 * or a RST on the wire, and allows the port binding to be reused while still 1806 * maintaining the invariant that so_pcb always points to a valid inpcb until 1807 * in_pcbdetach(). 1808 * 1809 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1810 * in_pcbnotifyall() and in_pcbpurgeif0()? 1811 */ 1812 void 1813 in_pcbdrop(struct inpcb *inp) 1814 { 1815 1816 INP_WLOCK_ASSERT(inp); 1817 #ifdef INVARIANTS 1818 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1819 MPASS(inp->inp_refcount > 1); 1820 #endif 1821 1822 inp->inp_flags |= INP_DROPPED; 1823 if (inp->inp_flags & INP_INHASHLIST) 1824 in_pcbremhash(inp); 1825 } 1826 1827 #ifdef INET 1828 /* 1829 * Common routines to return the socket addresses associated with inpcbs. 1830 */ 1831 struct sockaddr * 1832 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1833 { 1834 struct sockaddr_in *sin; 1835 1836 sin = malloc(sizeof *sin, M_SONAME, 1837 M_WAITOK | M_ZERO); 1838 sin->sin_family = AF_INET; 1839 sin->sin_len = sizeof(*sin); 1840 sin->sin_addr = *addr_p; 1841 sin->sin_port = port; 1842 1843 return (struct sockaddr *)sin; 1844 } 1845 1846 int 1847 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1848 { 1849 struct inpcb *inp; 1850 struct in_addr addr; 1851 in_port_t port; 1852 1853 inp = sotoinpcb(so); 1854 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1855 1856 INP_RLOCK(inp); 1857 port = inp->inp_lport; 1858 addr = inp->inp_laddr; 1859 INP_RUNLOCK(inp); 1860 1861 *nam = in_sockaddr(port, &addr); 1862 return 0; 1863 } 1864 1865 int 1866 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1867 { 1868 struct inpcb *inp; 1869 struct in_addr addr; 1870 in_port_t port; 1871 1872 inp = sotoinpcb(so); 1873 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1874 1875 INP_RLOCK(inp); 1876 port = inp->inp_fport; 1877 addr = inp->inp_faddr; 1878 INP_RUNLOCK(inp); 1879 1880 *nam = in_sockaddr(port, &addr); 1881 return 0; 1882 } 1883 1884 void 1885 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1886 struct inpcb *(*notify)(struct inpcb *, int)) 1887 { 1888 struct inpcb *inp, *inp_temp; 1889 1890 INP_INFO_WLOCK(pcbinfo); 1891 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 1892 INP_WLOCK(inp); 1893 #ifdef INET6 1894 if ((inp->inp_vflag & INP_IPV4) == 0) { 1895 INP_WUNLOCK(inp); 1896 continue; 1897 } 1898 #endif 1899 if (inp->inp_faddr.s_addr != faddr.s_addr || 1900 inp->inp_socket == NULL) { 1901 INP_WUNLOCK(inp); 1902 continue; 1903 } 1904 if ((*notify)(inp, errno)) 1905 INP_WUNLOCK(inp); 1906 } 1907 INP_INFO_WUNLOCK(pcbinfo); 1908 } 1909 1910 static bool 1911 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1912 { 1913 1914 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1915 return (true); 1916 else 1917 return (false); 1918 } 1919 1920 void 1921 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1922 { 1923 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1924 inp_v4_multi_match, NULL); 1925 struct inpcb *inp; 1926 struct in_multi *inm; 1927 struct in_mfilter *imf; 1928 struct ip_moptions *imo; 1929 1930 IN_MULTI_LOCK_ASSERT(); 1931 1932 while ((inp = inp_next(&inpi)) != NULL) { 1933 INP_WLOCK_ASSERT(inp); 1934 1935 imo = inp->inp_moptions; 1936 /* 1937 * Unselect the outgoing interface if it is being 1938 * detached. 1939 */ 1940 if (imo->imo_multicast_ifp == ifp) 1941 imo->imo_multicast_ifp = NULL; 1942 1943 /* 1944 * Drop multicast group membership if we joined 1945 * through the interface being detached. 1946 * 1947 * XXX This can all be deferred to an epoch_call 1948 */ 1949 restart: 1950 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1951 if ((inm = imf->imf_inm) == NULL) 1952 continue; 1953 if (inm->inm_ifp != ifp) 1954 continue; 1955 ip_mfilter_remove(&imo->imo_head, imf); 1956 in_leavegroup_locked(inm, NULL); 1957 ip_mfilter_free(imf); 1958 goto restart; 1959 } 1960 } 1961 } 1962 1963 /* 1964 * Lookup a PCB based on the local address and port. Caller must hold the 1965 * hash lock. No inpcb locks or references are acquired. 1966 */ 1967 #define INP_LOOKUP_MAPPED_PCB_COST 3 1968 struct inpcb * 1969 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1970 u_short lport, int lookupflags, struct ucred *cred) 1971 { 1972 struct inpcb *inp; 1973 #ifdef INET6 1974 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1975 #else 1976 int matchwild = 3; 1977 #endif 1978 int wildcard; 1979 1980 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1981 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1982 INP_HASH_LOCK_ASSERT(pcbinfo); 1983 1984 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1985 struct inpcbhead *head; 1986 /* 1987 * Look for an unconnected (wildcard foreign addr) PCB that 1988 * matches the local address and port we're looking for. 1989 */ 1990 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 1991 pcbinfo->ipi_hashmask)]; 1992 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 1993 #ifdef INET6 1994 /* XXX inp locking */ 1995 if ((inp->inp_vflag & INP_IPV4) == 0) 1996 continue; 1997 #endif 1998 if (inp->inp_faddr.s_addr == INADDR_ANY && 1999 inp->inp_laddr.s_addr == laddr.s_addr && 2000 inp->inp_lport == lport) { 2001 /* 2002 * Found? 2003 */ 2004 if (prison_equal_ip4(cred->cr_prison, 2005 inp->inp_cred->cr_prison)) 2006 return (inp); 2007 } 2008 } 2009 /* 2010 * Not found. 2011 */ 2012 return (NULL); 2013 } else { 2014 struct inpcbporthead *porthash; 2015 struct inpcbport *phd; 2016 struct inpcb *match = NULL; 2017 /* 2018 * Best fit PCB lookup. 2019 * 2020 * First see if this local port is in use by looking on the 2021 * port hash list. 2022 */ 2023 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2024 pcbinfo->ipi_porthashmask)]; 2025 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2026 if (phd->phd_port == lport) 2027 break; 2028 } 2029 if (phd != NULL) { 2030 /* 2031 * Port is in use by one or more PCBs. Look for best 2032 * fit. 2033 */ 2034 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2035 wildcard = 0; 2036 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2037 cred->cr_prison)) 2038 continue; 2039 #ifdef INET6 2040 /* XXX inp locking */ 2041 if ((inp->inp_vflag & INP_IPV4) == 0) 2042 continue; 2043 /* 2044 * We never select the PCB that has 2045 * INP_IPV6 flag and is bound to :: if 2046 * we have another PCB which is bound 2047 * to 0.0.0.0. If a PCB has the 2048 * INP_IPV6 flag, then we set its cost 2049 * higher than IPv4 only PCBs. 2050 * 2051 * Note that the case only happens 2052 * when a socket is bound to ::, under 2053 * the condition that the use of the 2054 * mapped address is allowed. 2055 */ 2056 if ((inp->inp_vflag & INP_IPV6) != 0) 2057 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2058 #endif 2059 if (inp->inp_faddr.s_addr != INADDR_ANY) 2060 wildcard++; 2061 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2062 if (laddr.s_addr == INADDR_ANY) 2063 wildcard++; 2064 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2065 continue; 2066 } else { 2067 if (laddr.s_addr != INADDR_ANY) 2068 wildcard++; 2069 } 2070 if (wildcard < matchwild) { 2071 match = inp; 2072 matchwild = wildcard; 2073 if (matchwild == 0) 2074 break; 2075 } 2076 } 2077 } 2078 return (match); 2079 } 2080 } 2081 #undef INP_LOOKUP_MAPPED_PCB_COST 2082 2083 static bool 2084 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) 2085 { 2086 return (domain == M_NODOM || domain == grp->il_numa_domain); 2087 } 2088 2089 static struct inpcb * 2090 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2091 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr, 2092 uint16_t lport, int domain) 2093 { 2094 const struct inpcblbgrouphead *hdr; 2095 struct inpcblbgroup *grp; 2096 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2097 2098 INP_HASH_LOCK_ASSERT(pcbinfo); 2099 2100 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2101 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2102 2103 /* 2104 * Search for an LB group match based on the following criteria: 2105 * - prefer jailed groups to non-jailed groups 2106 * - prefer exact source address matches to wildcard matches 2107 * - prefer groups bound to the specified NUMA domain 2108 */ 2109 jail_exact = jail_wild = local_exact = local_wild = NULL; 2110 CK_LIST_FOREACH(grp, hdr, il_list) { 2111 bool injail; 2112 2113 #ifdef INET6 2114 if (!(grp->il_vflag & INP_IPV4)) 2115 continue; 2116 #endif 2117 if (grp->il_lport != lport) 2118 continue; 2119 2120 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2121 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2122 laddr) != 0) 2123 continue; 2124 2125 if (grp->il_laddr.s_addr == laddr->s_addr) { 2126 if (injail) { 2127 jail_exact = grp; 2128 if (in_pcblookup_lb_numa_match(grp, domain)) 2129 /* This is a perfect match. */ 2130 goto out; 2131 } else if (local_exact == NULL || 2132 in_pcblookup_lb_numa_match(grp, domain)) { 2133 local_exact = grp; 2134 } 2135 } else if (grp->il_laddr.s_addr == INADDR_ANY) { 2136 if (injail) { 2137 if (jail_wild == NULL || 2138 in_pcblookup_lb_numa_match(grp, domain)) 2139 jail_wild = grp; 2140 } else if (local_wild == NULL || 2141 in_pcblookup_lb_numa_match(grp, domain)) { 2142 local_wild = grp; 2143 } 2144 } 2145 } 2146 2147 if (jail_exact != NULL) 2148 grp = jail_exact; 2149 else if (jail_wild != NULL) 2150 grp = jail_wild; 2151 else if (local_exact != NULL) 2152 grp = local_exact; 2153 else 2154 grp = local_wild; 2155 if (grp == NULL) 2156 return (NULL); 2157 out: 2158 return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2159 grp->il_inpcnt]); 2160 } 2161 2162 static bool 2163 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr, 2164 u_short fport, struct in_addr laddr, u_short lport) 2165 { 2166 #ifdef INET6 2167 /* XXX inp locking */ 2168 if ((inp->inp_vflag & INP_IPV4) == 0) 2169 return (false); 2170 #endif 2171 if (inp->inp_faddr.s_addr == faddr.s_addr && 2172 inp->inp_laddr.s_addr == laddr.s_addr && 2173 inp->inp_fport == fport && 2174 inp->inp_lport == lport) 2175 return (true); 2176 return (false); 2177 } 2178 2179 static struct inpcb * 2180 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2181 u_short fport, struct in_addr laddr, u_short lport) 2182 { 2183 struct inpcbhead *head; 2184 struct inpcb *inp; 2185 2186 INP_HASH_LOCK_ASSERT(pcbinfo); 2187 2188 head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport, 2189 pcbinfo->ipi_hashmask)]; 2190 CK_LIST_FOREACH(inp, head, inp_hash_exact) { 2191 if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport)) 2192 return (inp); 2193 } 2194 return (NULL); 2195 } 2196 2197 typedef enum { 2198 INPLOOKUP_MATCH_NONE = 0, 2199 INPLOOKUP_MATCH_WILD = 1, 2200 INPLOOKUP_MATCH_LADDR = 2, 2201 } inp_lookup_match_t; 2202 2203 static inp_lookup_match_t 2204 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr, 2205 u_short lport) 2206 { 2207 #ifdef INET6 2208 /* XXX inp locking */ 2209 if ((inp->inp_vflag & INP_IPV4) == 0) 2210 return (INPLOOKUP_MATCH_NONE); 2211 #endif 2212 if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) 2213 return (INPLOOKUP_MATCH_NONE); 2214 if (inp->inp_laddr.s_addr == INADDR_ANY) 2215 return (INPLOOKUP_MATCH_WILD); 2216 if (inp->inp_laddr.s_addr == laddr.s_addr) 2217 return (INPLOOKUP_MATCH_LADDR); 2218 return (INPLOOKUP_MATCH_NONE); 2219 } 2220 2221 #define INP_LOOKUP_AGAIN ((struct inpcb *)(uintptr_t)-1) 2222 2223 static struct inpcb * 2224 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2225 u_short fport, struct in_addr laddr, u_short lport, 2226 const inp_lookup_t lockflags) 2227 { 2228 struct inpcbhead *head; 2229 struct inpcb *inp; 2230 2231 KASSERT(SMR_ENTERED(pcbinfo->ipi_smr), 2232 ("%s: not in SMR read section", __func__)); 2233 2234 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2235 pcbinfo->ipi_hashmask)]; 2236 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2237 inp_lookup_match_t match; 2238 2239 match = in_pcblookup_wild_match(inp, laddr, lport); 2240 if (match == INPLOOKUP_MATCH_NONE) 2241 continue; 2242 2243 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2244 match = in_pcblookup_wild_match(inp, laddr, lport); 2245 if (match != INPLOOKUP_MATCH_NONE && 2246 prison_check_ip4_locked(inp->inp_cred->cr_prison, 2247 &laddr) == 0) 2248 return (inp); 2249 inp_unlock(inp, lockflags); 2250 } 2251 2252 /* 2253 * The matching socket disappeared out from under us. Fall back 2254 * to a serialized lookup. 2255 */ 2256 return (INP_LOOKUP_AGAIN); 2257 } 2258 return (NULL); 2259 } 2260 2261 static struct inpcb * 2262 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2263 u_short fport, struct in_addr laddr, u_short lport) 2264 { 2265 struct inpcbhead *head; 2266 struct inpcb *inp, *local_wild, *local_exact, *jail_wild; 2267 #ifdef INET6 2268 struct inpcb *local_wild_mapped; 2269 #endif 2270 2271 INP_HASH_LOCK_ASSERT(pcbinfo); 2272 2273 /* 2274 * Order of socket selection - we always prefer jails. 2275 * 1. jailed, non-wild. 2276 * 2. jailed, wild. 2277 * 3. non-jailed, non-wild. 2278 * 4. non-jailed, wild. 2279 */ 2280 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2281 pcbinfo->ipi_hashmask)]; 2282 local_wild = local_exact = jail_wild = NULL; 2283 #ifdef INET6 2284 local_wild_mapped = NULL; 2285 #endif 2286 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2287 inp_lookup_match_t match; 2288 bool injail; 2289 2290 match = in_pcblookup_wild_match(inp, laddr, lport); 2291 if (match == INPLOOKUP_MATCH_NONE) 2292 continue; 2293 2294 injail = prison_flag(inp->inp_cred, PR_IP4) != 0; 2295 if (injail) { 2296 if (prison_check_ip4_locked(inp->inp_cred->cr_prison, 2297 &laddr) != 0) 2298 continue; 2299 } else { 2300 if (local_exact != NULL) 2301 continue; 2302 } 2303 2304 if (match == INPLOOKUP_MATCH_LADDR) { 2305 if (injail) 2306 return (inp); 2307 local_exact = inp; 2308 } else { 2309 #ifdef INET6 2310 /* XXX inp locking, NULL check */ 2311 if (inp->inp_vflag & INP_IPV6PROTO) 2312 local_wild_mapped = inp; 2313 else 2314 #endif 2315 if (injail) 2316 jail_wild = inp; 2317 else 2318 local_wild = inp; 2319 } 2320 } 2321 if (jail_wild != NULL) 2322 return (jail_wild); 2323 if (local_exact != NULL) 2324 return (local_exact); 2325 if (local_wild != NULL) 2326 return (local_wild); 2327 #ifdef INET6 2328 if (local_wild_mapped != NULL) 2329 return (local_wild_mapped); 2330 #endif 2331 return (NULL); 2332 } 2333 2334 /* 2335 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2336 * that the caller has either locked the hash list, which usually happens 2337 * for bind(2) operations, or is in SMR section, which happens when sorting 2338 * out incoming packets. 2339 */ 2340 static struct inpcb * 2341 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2342 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2343 uint8_t numa_domain) 2344 { 2345 struct inpcb *inp; 2346 const u_short fport = fport_arg, lport = lport_arg; 2347 2348 KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0, 2349 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2350 KASSERT(faddr.s_addr != INADDR_ANY, 2351 ("%s: invalid foreign address", __func__)); 2352 KASSERT(laddr.s_addr != INADDR_ANY, 2353 ("%s: invalid local address", __func__)); 2354 INP_HASH_WLOCK_ASSERT(pcbinfo); 2355 2356 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2357 if (inp != NULL) 2358 return (inp); 2359 2360 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2361 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2362 &laddr, lport, numa_domain); 2363 if (inp == NULL) { 2364 inp = in_pcblookup_hash_wild_locked(pcbinfo, faddr, 2365 fport, laddr, lport); 2366 } 2367 } 2368 2369 return (inp); 2370 } 2371 2372 static struct inpcb * 2373 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2374 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2375 uint8_t numa_domain) 2376 { 2377 struct inpcb *inp; 2378 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2379 2380 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2381 ("%s: LOCKPCB not set", __func__)); 2382 2383 INP_HASH_WLOCK(pcbinfo); 2384 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2385 lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain); 2386 if (inp != NULL && !inp_trylock(inp, lockflags)) { 2387 in_pcbref(inp); 2388 INP_HASH_WUNLOCK(pcbinfo); 2389 inp_lock(inp, lockflags); 2390 if (in_pcbrele(inp, lockflags)) 2391 /* XXX-MJ or retry until we get a negative match? */ 2392 inp = NULL; 2393 } else { 2394 INP_HASH_WUNLOCK(pcbinfo); 2395 } 2396 return (inp); 2397 } 2398 2399 static struct inpcb * 2400 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2401 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2402 uint8_t numa_domain) 2403 { 2404 struct inpcb *inp; 2405 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2406 const u_short fport = fport_arg, lport = lport_arg; 2407 2408 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2409 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2410 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2411 ("%s: LOCKPCB not set", __func__)); 2412 2413 smr_enter(pcbinfo->ipi_smr); 2414 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2415 if (inp != NULL) { 2416 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2417 /* 2418 * Revalidate the 4-tuple, the socket could have been 2419 * disconnected. 2420 */ 2421 if (__predict_true(in_pcblookup_exact_match(inp, 2422 faddr, fport, laddr, lport))) 2423 return (inp); 2424 inp_unlock(inp, lockflags); 2425 } 2426 2427 /* 2428 * We failed to lock the inpcb, or its connection state changed 2429 * out from under us. Fall back to a precise search. 2430 */ 2431 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2432 lookupflags, numa_domain)); 2433 } 2434 2435 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2436 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2437 &laddr, lport, numa_domain); 2438 if (inp != NULL) { 2439 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2440 if (__predict_true(in_pcblookup_wild_match(inp, 2441 laddr, lport) != INPLOOKUP_MATCH_NONE)) 2442 return (inp); 2443 inp_unlock(inp, lockflags); 2444 } 2445 inp = INP_LOOKUP_AGAIN; 2446 } else { 2447 inp = in_pcblookup_hash_wild_smr(pcbinfo, faddr, fport, 2448 laddr, lport, lockflags); 2449 } 2450 if (inp == INP_LOOKUP_AGAIN) { 2451 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, 2452 lport, lookupflags, numa_domain)); 2453 } 2454 } 2455 2456 if (inp == NULL) 2457 smr_exit(pcbinfo->ipi_smr); 2458 2459 return (inp); 2460 } 2461 2462 /* 2463 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2464 * from which a pre-calculated hash value may be extracted. 2465 */ 2466 struct inpcb * 2467 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2468 struct in_addr laddr, u_int lport, int lookupflags, 2469 struct ifnet *ifp __unused) 2470 { 2471 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2472 lookupflags, M_NODOM)); 2473 } 2474 2475 struct inpcb * 2476 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2477 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2478 struct ifnet *ifp __unused, struct mbuf *m) 2479 { 2480 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2481 lookupflags, m->m_pkthdr.numa_domain)); 2482 } 2483 #endif /* INET */ 2484 2485 static bool 2486 in_pcbjailed(const struct inpcb *inp, unsigned int flag) 2487 { 2488 return (prison_flag(inp->inp_cred, flag) != 0); 2489 } 2490 2491 /* 2492 * Insert the PCB into a hash chain using ordering rules which ensure that 2493 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first. 2494 * 2495 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs 2496 * with exact local addresses ahead of wildcard PCBs. Unbound v4-mapped v6 PCBs 2497 * always appear last no matter whether they are jailed. 2498 */ 2499 static void 2500 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2501 { 2502 struct inpcb *last; 2503 bool bound, injail; 2504 2505 INP_LOCK_ASSERT(inp); 2506 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2507 2508 last = NULL; 2509 bound = inp->inp_laddr.s_addr != INADDR_ANY; 2510 if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) { 2511 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2512 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2513 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2514 return; 2515 } 2516 } 2517 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2518 return; 2519 } 2520 2521 injail = in_pcbjailed(inp, PR_IP4); 2522 if (!injail) { 2523 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2524 if (!in_pcbjailed(last, PR_IP4)) 2525 break; 2526 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2527 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2528 return; 2529 } 2530 } 2531 } else if (!CK_LIST_EMPTY(pcbhash) && 2532 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) { 2533 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2534 return; 2535 } 2536 if (!bound) { 2537 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2538 if (last->inp_laddr.s_addr == INADDR_ANY) 2539 break; 2540 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2541 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2542 return; 2543 } 2544 } 2545 } 2546 if (last == NULL) 2547 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2548 else 2549 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2550 } 2551 2552 #ifdef INET6 2553 /* 2554 * See the comment above _in_pcbinshash_wild(). 2555 */ 2556 static void 2557 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2558 { 2559 struct inpcb *last; 2560 bool bound, injail; 2561 2562 INP_LOCK_ASSERT(inp); 2563 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2564 2565 last = NULL; 2566 bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr); 2567 injail = in_pcbjailed(inp, PR_IP6); 2568 if (!injail) { 2569 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2570 if (!in_pcbjailed(last, PR_IP6)) 2571 break; 2572 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2573 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2574 return; 2575 } 2576 } 2577 } else if (!CK_LIST_EMPTY(pcbhash) && 2578 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) { 2579 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2580 return; 2581 } 2582 if (!bound) { 2583 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2584 if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr)) 2585 break; 2586 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2587 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2588 return; 2589 } 2590 } 2591 } 2592 if (last == NULL) 2593 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2594 else 2595 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2596 } 2597 #endif 2598 2599 /* 2600 * Insert PCB onto various hash lists. 2601 */ 2602 int 2603 in_pcbinshash(struct inpcb *inp) 2604 { 2605 struct inpcbhead *pcbhash; 2606 struct inpcbporthead *pcbporthash; 2607 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2608 struct inpcbport *phd; 2609 uint32_t hash; 2610 bool connected; 2611 2612 INP_WLOCK_ASSERT(inp); 2613 INP_HASH_WLOCK_ASSERT(pcbinfo); 2614 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2615 ("in_pcbinshash: INP_INHASHLIST")); 2616 2617 #ifdef INET6 2618 if (inp->inp_vflag & INP_IPV6) { 2619 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2620 inp->inp_fport, pcbinfo->ipi_hashmask); 2621 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2622 } else 2623 #endif 2624 { 2625 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2626 inp->inp_fport, pcbinfo->ipi_hashmask); 2627 connected = !in_nullhost(inp->inp_faddr); 2628 } 2629 2630 if (connected) 2631 pcbhash = &pcbinfo->ipi_hash_exact[hash]; 2632 else 2633 pcbhash = &pcbinfo->ipi_hash_wild[hash]; 2634 2635 pcbporthash = &pcbinfo->ipi_porthashbase[ 2636 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2637 2638 /* 2639 * Add entry to load balance group. 2640 * Only do this if SO_REUSEPORT_LB is set. 2641 */ 2642 if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) { 2643 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2644 if (error != 0) 2645 return (error); 2646 } 2647 2648 /* 2649 * Go through port list and look for a head for this lport. 2650 */ 2651 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2652 if (phd->phd_port == inp->inp_lport) 2653 break; 2654 } 2655 2656 /* 2657 * If none exists, malloc one and tack it on. 2658 */ 2659 if (phd == NULL) { 2660 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2661 if (phd == NULL) { 2662 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2663 in_pcbremlbgrouphash(inp); 2664 return (ENOMEM); 2665 } 2666 phd->phd_port = inp->inp_lport; 2667 CK_LIST_INIT(&phd->phd_pcblist); 2668 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2669 } 2670 inp->inp_phd = phd; 2671 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2672 2673 /* 2674 * The PCB may have been disconnected in the past. Before we can safely 2675 * make it visible in the hash table, we must wait for all readers which 2676 * may be traversing this PCB to finish. 2677 */ 2678 if (inp->inp_smr != SMR_SEQ_INVALID) { 2679 smr_wait(pcbinfo->ipi_smr, inp->inp_smr); 2680 inp->inp_smr = SMR_SEQ_INVALID; 2681 } 2682 2683 if (connected) 2684 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact); 2685 else { 2686 #ifdef INET6 2687 if ((inp->inp_vflag & INP_IPV6) != 0) 2688 _in6_pcbinshash_wild(pcbhash, inp); 2689 else 2690 #endif 2691 _in_pcbinshash_wild(pcbhash, inp); 2692 } 2693 inp->inp_flags |= INP_INHASHLIST; 2694 2695 return (0); 2696 } 2697 2698 void 2699 in_pcbremhash_locked(struct inpcb *inp) 2700 { 2701 struct inpcbport *phd = inp->inp_phd; 2702 2703 INP_WLOCK_ASSERT(inp); 2704 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2705 MPASS(inp->inp_flags & INP_INHASHLIST); 2706 2707 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2708 in_pcbremlbgrouphash(inp); 2709 #ifdef INET6 2710 if (inp->inp_vflag & INP_IPV6) { 2711 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) 2712 CK_LIST_REMOVE(inp, inp_hash_wild); 2713 else 2714 CK_LIST_REMOVE(inp, inp_hash_exact); 2715 } else 2716 #endif 2717 { 2718 if (in_nullhost(inp->inp_faddr)) 2719 CK_LIST_REMOVE(inp, inp_hash_wild); 2720 else 2721 CK_LIST_REMOVE(inp, inp_hash_exact); 2722 } 2723 CK_LIST_REMOVE(inp, inp_portlist); 2724 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2725 CK_LIST_REMOVE(phd, phd_hash); 2726 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2727 } 2728 inp->inp_flags &= ~INP_INHASHLIST; 2729 } 2730 2731 static void 2732 in_pcbremhash(struct inpcb *inp) 2733 { 2734 INP_HASH_WLOCK(inp->inp_pcbinfo); 2735 in_pcbremhash_locked(inp); 2736 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2737 } 2738 2739 /* 2740 * Move PCB to the proper hash bucket when { faddr, fport } have been 2741 * changed. NOTE: This does not handle the case of the lport changing (the 2742 * hashed port list would have to be updated as well), so the lport must 2743 * not change after in_pcbinshash() has been called. 2744 */ 2745 void 2746 in_pcbrehash(struct inpcb *inp) 2747 { 2748 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2749 struct inpcbhead *head; 2750 uint32_t hash; 2751 bool connected; 2752 2753 INP_WLOCK_ASSERT(inp); 2754 INP_HASH_WLOCK_ASSERT(pcbinfo); 2755 KASSERT(inp->inp_flags & INP_INHASHLIST, 2756 ("%s: !INP_INHASHLIST", __func__)); 2757 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 2758 ("%s: inp was disconnected", __func__)); 2759 2760 #ifdef INET6 2761 if (inp->inp_vflag & INP_IPV6) { 2762 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2763 inp->inp_fport, pcbinfo->ipi_hashmask); 2764 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2765 } else 2766 #endif 2767 { 2768 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2769 inp->inp_fport, pcbinfo->ipi_hashmask); 2770 connected = !in_nullhost(inp->inp_faddr); 2771 } 2772 2773 /* 2774 * When rehashing, the caller must ensure that either the new or the old 2775 * foreign address was unspecified. 2776 */ 2777 if (connected) 2778 CK_LIST_REMOVE(inp, inp_hash_wild); 2779 else 2780 CK_LIST_REMOVE(inp, inp_hash_exact); 2781 2782 if (connected) { 2783 head = &pcbinfo->ipi_hash_exact[hash]; 2784 CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact); 2785 } else { 2786 head = &pcbinfo->ipi_hash_wild[hash]; 2787 CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild); 2788 } 2789 } 2790 2791 /* 2792 * Check for alternatives when higher level complains 2793 * about service problems. For now, invalidate cached 2794 * routing information. If the route was created dynamically 2795 * (by a redirect), time to try a default gateway again. 2796 */ 2797 void 2798 in_losing(struct inpcb *inp) 2799 { 2800 2801 RO_INVALIDATE_CACHE(&inp->inp_route); 2802 return; 2803 } 2804 2805 /* 2806 * A set label operation has occurred at the socket layer, propagate the 2807 * label change into the in_pcb for the socket. 2808 */ 2809 void 2810 in_pcbsosetlabel(struct socket *so) 2811 { 2812 #ifdef MAC 2813 struct inpcb *inp; 2814 2815 inp = sotoinpcb(so); 2816 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2817 2818 INP_WLOCK(inp); 2819 SOCK_LOCK(so); 2820 mac_inpcb_sosetlabel(so, inp); 2821 SOCK_UNLOCK(so); 2822 INP_WUNLOCK(inp); 2823 #endif 2824 } 2825 2826 void 2827 inp_wlock(struct inpcb *inp) 2828 { 2829 2830 INP_WLOCK(inp); 2831 } 2832 2833 void 2834 inp_wunlock(struct inpcb *inp) 2835 { 2836 2837 INP_WUNLOCK(inp); 2838 } 2839 2840 void 2841 inp_rlock(struct inpcb *inp) 2842 { 2843 2844 INP_RLOCK(inp); 2845 } 2846 2847 void 2848 inp_runlock(struct inpcb *inp) 2849 { 2850 2851 INP_RUNLOCK(inp); 2852 } 2853 2854 #ifdef INVARIANT_SUPPORT 2855 void 2856 inp_lock_assert(struct inpcb *inp) 2857 { 2858 2859 INP_WLOCK_ASSERT(inp); 2860 } 2861 2862 void 2863 inp_unlock_assert(struct inpcb *inp) 2864 { 2865 2866 INP_UNLOCK_ASSERT(inp); 2867 } 2868 #endif 2869 2870 void 2871 inp_apply_all(struct inpcbinfo *pcbinfo, 2872 void (*func)(struct inpcb *, void *), void *arg) 2873 { 2874 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2875 INPLOOKUP_WLOCKPCB); 2876 struct inpcb *inp; 2877 2878 while ((inp = inp_next(&inpi)) != NULL) 2879 func(inp, arg); 2880 } 2881 2882 struct socket * 2883 inp_inpcbtosocket(struct inpcb *inp) 2884 { 2885 2886 INP_WLOCK_ASSERT(inp); 2887 return (inp->inp_socket); 2888 } 2889 2890 struct tcpcb * 2891 inp_inpcbtotcpcb(struct inpcb *inp) 2892 { 2893 2894 INP_WLOCK_ASSERT(inp); 2895 return ((struct tcpcb *)inp->inp_ppcb); 2896 } 2897 2898 int 2899 inp_ip_tos_get(const struct inpcb *inp) 2900 { 2901 2902 return (inp->inp_ip_tos); 2903 } 2904 2905 void 2906 inp_ip_tos_set(struct inpcb *inp, int val) 2907 { 2908 2909 inp->inp_ip_tos = val; 2910 } 2911 2912 void 2913 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2914 uint32_t *faddr, uint16_t *fp) 2915 { 2916 2917 INP_LOCK_ASSERT(inp); 2918 *laddr = inp->inp_laddr.s_addr; 2919 *faddr = inp->inp_faddr.s_addr; 2920 *lp = inp->inp_lport; 2921 *fp = inp->inp_fport; 2922 } 2923 2924 struct inpcb * 2925 so_sotoinpcb(struct socket *so) 2926 { 2927 2928 return (sotoinpcb(so)); 2929 } 2930 2931 /* 2932 * Create an external-format (``xinpcb'') structure using the information in 2933 * the kernel-format in_pcb structure pointed to by inp. This is done to 2934 * reduce the spew of irrelevant information over this interface, to isolate 2935 * user code from changes in the kernel structure, and potentially to provide 2936 * information-hiding if we decide that some of this information should be 2937 * hidden from users. 2938 */ 2939 void 2940 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2941 { 2942 2943 bzero(xi, sizeof(*xi)); 2944 xi->xi_len = sizeof(struct xinpcb); 2945 if (inp->inp_socket) 2946 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2947 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2948 xi->inp_gencnt = inp->inp_gencnt; 2949 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2950 xi->inp_flow = inp->inp_flow; 2951 xi->inp_flowid = inp->inp_flowid; 2952 xi->inp_flowtype = inp->inp_flowtype; 2953 xi->inp_flags = inp->inp_flags; 2954 xi->inp_flags2 = inp->inp_flags2; 2955 xi->in6p_cksum = inp->in6p_cksum; 2956 xi->in6p_hops = inp->in6p_hops; 2957 xi->inp_ip_tos = inp->inp_ip_tos; 2958 xi->inp_vflag = inp->inp_vflag; 2959 xi->inp_ip_ttl = inp->inp_ip_ttl; 2960 xi->inp_ip_p = inp->inp_ip_p; 2961 xi->inp_ip_minttl = inp->inp_ip_minttl; 2962 } 2963 2964 int 2965 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2966 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2967 { 2968 struct sockopt sopt; 2969 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2970 INPLOOKUP_WLOCKPCB); 2971 struct inpcb *inp; 2972 struct sockopt_parameters *params; 2973 struct socket *so; 2974 int error; 2975 char buf[1024]; 2976 2977 if (req->oldptr != NULL || req->oldlen != 0) 2978 return (EINVAL); 2979 if (req->newptr == NULL) 2980 return (EPERM); 2981 if (req->newlen > sizeof(buf)) 2982 return (ENOMEM); 2983 error = SYSCTL_IN(req, buf, req->newlen); 2984 if (error != 0) 2985 return (error); 2986 if (req->newlen < sizeof(struct sockopt_parameters)) 2987 return (EINVAL); 2988 params = (struct sockopt_parameters *)buf; 2989 sopt.sopt_level = params->sop_level; 2990 sopt.sopt_name = params->sop_optname; 2991 sopt.sopt_dir = SOPT_SET; 2992 sopt.sopt_val = params->sop_optval; 2993 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2994 sopt.sopt_td = NULL; 2995 #ifdef INET6 2996 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2997 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2998 params->sop_inc.inc6_laddr.s6_addr16[1] = 2999 htons(params->sop_inc.inc6_zoneid & 0xffff); 3000 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 3001 params->sop_inc.inc6_faddr.s6_addr16[1] = 3002 htons(params->sop_inc.inc6_zoneid & 0xffff); 3003 } 3004 #endif 3005 if (params->sop_inc.inc_lport != htons(0)) { 3006 if (params->sop_inc.inc_fport == htons(0)) 3007 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 3008 pcbinfo->ipi_hashmask); 3009 else 3010 #ifdef INET6 3011 if (params->sop_inc.inc_flags & INC_ISIPV6) 3012 inpi.hash = INP6_PCBHASH( 3013 ¶ms->sop_inc.inc6_faddr, 3014 params->sop_inc.inc_lport, 3015 params->sop_inc.inc_fport, 3016 pcbinfo->ipi_hashmask); 3017 else 3018 #endif 3019 inpi.hash = INP_PCBHASH( 3020 ¶ms->sop_inc.inc_faddr, 3021 params->sop_inc.inc_lport, 3022 params->sop_inc.inc_fport, 3023 pcbinfo->ipi_hashmask); 3024 } 3025 while ((inp = inp_next(&inpi)) != NULL) 3026 if (inp->inp_gencnt == params->sop_id) { 3027 if (inp->inp_flags & INP_DROPPED) { 3028 INP_WUNLOCK(inp); 3029 return (ECONNRESET); 3030 } 3031 so = inp->inp_socket; 3032 KASSERT(so != NULL, ("inp_socket == NULL")); 3033 soref(so); 3034 error = (*ctloutput_set)(inp, &sopt); 3035 sorele(so); 3036 break; 3037 } 3038 if (inp == NULL) 3039 error = ESRCH; 3040 return (error); 3041 } 3042 3043 #ifdef DDB 3044 static void 3045 db_print_indent(int indent) 3046 { 3047 int i; 3048 3049 for (i = 0; i < indent; i++) 3050 db_printf(" "); 3051 } 3052 3053 static void 3054 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 3055 { 3056 char faddr_str[48], laddr_str[48]; 3057 3058 db_print_indent(indent); 3059 db_printf("%s at %p\n", name, inc); 3060 3061 indent += 2; 3062 3063 #ifdef INET6 3064 if (inc->inc_flags & INC_ISIPV6) { 3065 /* IPv6. */ 3066 ip6_sprintf(laddr_str, &inc->inc6_laddr); 3067 ip6_sprintf(faddr_str, &inc->inc6_faddr); 3068 } else 3069 #endif 3070 { 3071 /* IPv4. */ 3072 inet_ntoa_r(inc->inc_laddr, laddr_str); 3073 inet_ntoa_r(inc->inc_faddr, faddr_str); 3074 } 3075 db_print_indent(indent); 3076 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 3077 ntohs(inc->inc_lport)); 3078 db_print_indent(indent); 3079 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 3080 ntohs(inc->inc_fport)); 3081 } 3082 3083 static void 3084 db_print_inpflags(int inp_flags) 3085 { 3086 int comma; 3087 3088 comma = 0; 3089 if (inp_flags & INP_RECVOPTS) { 3090 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 3091 comma = 1; 3092 } 3093 if (inp_flags & INP_RECVRETOPTS) { 3094 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 3095 comma = 1; 3096 } 3097 if (inp_flags & INP_RECVDSTADDR) { 3098 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 3099 comma = 1; 3100 } 3101 if (inp_flags & INP_ORIGDSTADDR) { 3102 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 3103 comma = 1; 3104 } 3105 if (inp_flags & INP_HDRINCL) { 3106 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 3107 comma = 1; 3108 } 3109 if (inp_flags & INP_HIGHPORT) { 3110 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3111 comma = 1; 3112 } 3113 if (inp_flags & INP_LOWPORT) { 3114 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3115 comma = 1; 3116 } 3117 if (inp_flags & INP_ANONPORT) { 3118 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3119 comma = 1; 3120 } 3121 if (inp_flags & INP_RECVIF) { 3122 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3123 comma = 1; 3124 } 3125 if (inp_flags & INP_MTUDISC) { 3126 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3127 comma = 1; 3128 } 3129 if (inp_flags & INP_RECVTTL) { 3130 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3131 comma = 1; 3132 } 3133 if (inp_flags & INP_DONTFRAG) { 3134 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3135 comma = 1; 3136 } 3137 if (inp_flags & INP_RECVTOS) { 3138 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3139 comma = 1; 3140 } 3141 if (inp_flags & IN6P_IPV6_V6ONLY) { 3142 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3143 comma = 1; 3144 } 3145 if (inp_flags & IN6P_PKTINFO) { 3146 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3147 comma = 1; 3148 } 3149 if (inp_flags & IN6P_HOPLIMIT) { 3150 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3151 comma = 1; 3152 } 3153 if (inp_flags & IN6P_HOPOPTS) { 3154 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3155 comma = 1; 3156 } 3157 if (inp_flags & IN6P_DSTOPTS) { 3158 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3159 comma = 1; 3160 } 3161 if (inp_flags & IN6P_RTHDR) { 3162 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3163 comma = 1; 3164 } 3165 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3166 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3167 comma = 1; 3168 } 3169 if (inp_flags & IN6P_TCLASS) { 3170 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3171 comma = 1; 3172 } 3173 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3174 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3175 comma = 1; 3176 } 3177 if (inp_flags & INP_ONESBCAST) { 3178 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3179 comma = 1; 3180 } 3181 if (inp_flags & INP_DROPPED) { 3182 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3183 comma = 1; 3184 } 3185 if (inp_flags & INP_SOCKREF) { 3186 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3187 comma = 1; 3188 } 3189 if (inp_flags & IN6P_RFC2292) { 3190 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3191 comma = 1; 3192 } 3193 if (inp_flags & IN6P_MTU) { 3194 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3195 comma = 1; 3196 } 3197 } 3198 3199 static void 3200 db_print_inpvflag(u_char inp_vflag) 3201 { 3202 int comma; 3203 3204 comma = 0; 3205 if (inp_vflag & INP_IPV4) { 3206 db_printf("%sINP_IPV4", comma ? ", " : ""); 3207 comma = 1; 3208 } 3209 if (inp_vflag & INP_IPV6) { 3210 db_printf("%sINP_IPV6", comma ? ", " : ""); 3211 comma = 1; 3212 } 3213 if (inp_vflag & INP_IPV6PROTO) { 3214 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3215 comma = 1; 3216 } 3217 } 3218 3219 static void 3220 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3221 { 3222 3223 db_print_indent(indent); 3224 db_printf("%s at %p\n", name, inp); 3225 3226 indent += 2; 3227 3228 db_print_indent(indent); 3229 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3230 3231 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3232 3233 db_print_indent(indent); 3234 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3235 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3236 3237 db_print_indent(indent); 3238 db_printf("inp_label: %p inp_flags: 0x%x (", 3239 inp->inp_label, inp->inp_flags); 3240 db_print_inpflags(inp->inp_flags); 3241 db_printf(")\n"); 3242 3243 db_print_indent(indent); 3244 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3245 inp->inp_vflag); 3246 db_print_inpvflag(inp->inp_vflag); 3247 db_printf(")\n"); 3248 3249 db_print_indent(indent); 3250 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3251 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3252 3253 db_print_indent(indent); 3254 #ifdef INET6 3255 if (inp->inp_vflag & INP_IPV6) { 3256 db_printf("in6p_options: %p in6p_outputopts: %p " 3257 "in6p_moptions: %p\n", inp->in6p_options, 3258 inp->in6p_outputopts, inp->in6p_moptions); 3259 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3260 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3261 inp->in6p_hops); 3262 } else 3263 #endif 3264 { 3265 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3266 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3267 inp->inp_options, inp->inp_moptions); 3268 } 3269 3270 db_print_indent(indent); 3271 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3272 (uintmax_t)inp->inp_gencnt); 3273 } 3274 3275 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3276 { 3277 struct inpcb *inp; 3278 3279 if (!have_addr) { 3280 db_printf("usage: show inpcb <addr>\n"); 3281 return; 3282 } 3283 inp = (struct inpcb *)addr; 3284 3285 db_print_inpcb(inp, "inpcb", 0); 3286 } 3287 #endif /* DDB */ 3288 3289 #ifdef RATELIMIT 3290 /* 3291 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3292 * if any. 3293 */ 3294 int 3295 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3296 { 3297 union if_snd_tag_modify_params params = { 3298 .rate_limit.max_rate = max_pacing_rate, 3299 .rate_limit.flags = M_NOWAIT, 3300 }; 3301 struct m_snd_tag *mst; 3302 int error; 3303 3304 mst = inp->inp_snd_tag; 3305 if (mst == NULL) 3306 return (EINVAL); 3307 3308 if (mst->sw->snd_tag_modify == NULL) { 3309 error = EOPNOTSUPP; 3310 } else { 3311 error = mst->sw->snd_tag_modify(mst, ¶ms); 3312 } 3313 return (error); 3314 } 3315 3316 /* 3317 * Query existing TX rate limit based on the existing 3318 * "inp->inp_snd_tag", if any. 3319 */ 3320 int 3321 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3322 { 3323 union if_snd_tag_query_params params = { }; 3324 struct m_snd_tag *mst; 3325 int error; 3326 3327 mst = inp->inp_snd_tag; 3328 if (mst == NULL) 3329 return (EINVAL); 3330 3331 if (mst->sw->snd_tag_query == NULL) { 3332 error = EOPNOTSUPP; 3333 } else { 3334 error = mst->sw->snd_tag_query(mst, ¶ms); 3335 if (error == 0 && p_max_pacing_rate != NULL) 3336 *p_max_pacing_rate = params.rate_limit.max_rate; 3337 } 3338 return (error); 3339 } 3340 3341 /* 3342 * Query existing TX queue level based on the existing 3343 * "inp->inp_snd_tag", if any. 3344 */ 3345 int 3346 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3347 { 3348 union if_snd_tag_query_params params = { }; 3349 struct m_snd_tag *mst; 3350 int error; 3351 3352 mst = inp->inp_snd_tag; 3353 if (mst == NULL) 3354 return (EINVAL); 3355 3356 if (mst->sw->snd_tag_query == NULL) 3357 return (EOPNOTSUPP); 3358 3359 error = mst->sw->snd_tag_query(mst, ¶ms); 3360 if (error == 0 && p_txqueue_level != NULL) 3361 *p_txqueue_level = params.rate_limit.queue_level; 3362 return (error); 3363 } 3364 3365 /* 3366 * Allocate a new TX rate limit send tag from the network interface 3367 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3368 */ 3369 int 3370 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3371 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3372 3373 { 3374 union if_snd_tag_alloc_params params = { 3375 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3376 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3377 .rate_limit.hdr.flowid = flowid, 3378 .rate_limit.hdr.flowtype = flowtype, 3379 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3380 .rate_limit.max_rate = max_pacing_rate, 3381 .rate_limit.flags = M_NOWAIT, 3382 }; 3383 int error; 3384 3385 INP_WLOCK_ASSERT(inp); 3386 3387 /* 3388 * If there is already a send tag, or the INP is being torn 3389 * down, allocating a new send tag is not allowed. Else send 3390 * tags may leak. 3391 */ 3392 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3393 return (EINVAL); 3394 3395 error = m_snd_tag_alloc(ifp, ¶ms, st); 3396 #ifdef INET 3397 if (error == 0) { 3398 counter_u64_add(rate_limit_set_ok, 1); 3399 counter_u64_add(rate_limit_active, 1); 3400 } else if (error != EOPNOTSUPP) 3401 counter_u64_add(rate_limit_alloc_fail, 1); 3402 #endif 3403 return (error); 3404 } 3405 3406 void 3407 in_pcbdetach_tag(struct m_snd_tag *mst) 3408 { 3409 3410 m_snd_tag_rele(mst); 3411 #ifdef INET 3412 counter_u64_add(rate_limit_active, -1); 3413 #endif 3414 } 3415 3416 /* 3417 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3418 * if any: 3419 */ 3420 void 3421 in_pcbdetach_txrtlmt(struct inpcb *inp) 3422 { 3423 struct m_snd_tag *mst; 3424 3425 INP_WLOCK_ASSERT(inp); 3426 3427 mst = inp->inp_snd_tag; 3428 inp->inp_snd_tag = NULL; 3429 3430 if (mst == NULL) 3431 return; 3432 3433 m_snd_tag_rele(mst); 3434 #ifdef INET 3435 counter_u64_add(rate_limit_active, -1); 3436 #endif 3437 } 3438 3439 int 3440 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3441 { 3442 int error; 3443 3444 /* 3445 * If the existing send tag is for the wrong interface due to 3446 * a route change, first drop the existing tag. Set the 3447 * CHANGED flag so that we will keep trying to allocate a new 3448 * tag if we fail to allocate one this time. 3449 */ 3450 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3451 in_pcbdetach_txrtlmt(inp); 3452 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3453 } 3454 3455 /* 3456 * NOTE: When attaching to a network interface a reference is 3457 * made to ensure the network interface doesn't go away until 3458 * all ratelimit connections are gone. The network interface 3459 * pointers compared below represent valid network interfaces, 3460 * except when comparing towards NULL. 3461 */ 3462 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3463 error = 0; 3464 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3465 if (inp->inp_snd_tag != NULL) 3466 in_pcbdetach_txrtlmt(inp); 3467 error = 0; 3468 } else if (inp->inp_snd_tag == NULL) { 3469 /* 3470 * In order to utilize packet pacing with RSS, we need 3471 * to wait until there is a valid RSS hash before we 3472 * can proceed: 3473 */ 3474 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3475 error = EAGAIN; 3476 } else { 3477 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3478 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3479 } 3480 } else { 3481 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3482 } 3483 if (error == 0 || error == EOPNOTSUPP) 3484 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3485 3486 return (error); 3487 } 3488 3489 /* 3490 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3491 * is set in the fast path and will attach/detach/modify the TX rate 3492 * limit send tag based on the socket's so_max_pacing_rate value. 3493 */ 3494 void 3495 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3496 { 3497 struct socket *socket; 3498 uint32_t max_pacing_rate; 3499 bool did_upgrade; 3500 3501 if (inp == NULL) 3502 return; 3503 3504 socket = inp->inp_socket; 3505 if (socket == NULL) 3506 return; 3507 3508 if (!INP_WLOCKED(inp)) { 3509 /* 3510 * NOTE: If the write locking fails, we need to bail 3511 * out and use the non-ratelimited ring for the 3512 * transmit until there is a new chance to get the 3513 * write lock. 3514 */ 3515 if (!INP_TRY_UPGRADE(inp)) 3516 return; 3517 did_upgrade = 1; 3518 } else { 3519 did_upgrade = 0; 3520 } 3521 3522 /* 3523 * NOTE: The so_max_pacing_rate value is read unlocked, 3524 * because atomic updates are not required since the variable 3525 * is checked at every mbuf we send. It is assumed that the 3526 * variable read itself will be atomic. 3527 */ 3528 max_pacing_rate = socket->so_max_pacing_rate; 3529 3530 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3531 3532 if (did_upgrade) 3533 INP_DOWNGRADE(inp); 3534 } 3535 3536 /* 3537 * Track route changes for TX rate limiting. 3538 */ 3539 void 3540 in_pcboutput_eagain(struct inpcb *inp) 3541 { 3542 bool did_upgrade; 3543 3544 if (inp == NULL) 3545 return; 3546 3547 if (inp->inp_snd_tag == NULL) 3548 return; 3549 3550 if (!INP_WLOCKED(inp)) { 3551 /* 3552 * NOTE: If the write locking fails, we need to bail 3553 * out and use the non-ratelimited ring for the 3554 * transmit until there is a new chance to get the 3555 * write lock. 3556 */ 3557 if (!INP_TRY_UPGRADE(inp)) 3558 return; 3559 did_upgrade = 1; 3560 } else { 3561 did_upgrade = 0; 3562 } 3563 3564 /* detach rate limiting */ 3565 in_pcbdetach_txrtlmt(inp); 3566 3567 /* make sure new mbuf send tag allocation is made */ 3568 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3569 3570 if (did_upgrade) 3571 INP_DOWNGRADE(inp); 3572 } 3573 3574 #ifdef INET 3575 static void 3576 rl_init(void *st) 3577 { 3578 rate_limit_new = counter_u64_alloc(M_WAITOK); 3579 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3580 rate_limit_active = counter_u64_alloc(M_WAITOK); 3581 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3582 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3583 } 3584 3585 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3586 #endif 3587 #endif /* RATELIMIT */ 3588