1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_route.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/hash.h> 53 #include <sys/systm.h> 54 #include <sys/libkern.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/callout.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_types.h> 83 #include <net/if_llatbl.h> 84 #include <net/route.h> 85 #include <net/rss_config.h> 86 #include <net/vnet.h> 87 88 #if defined(INET) || defined(INET6) 89 #include <netinet/in.h> 90 #include <netinet/in_pcb.h> 91 #include <netinet/in_pcb_var.h> 92 #ifdef INET 93 #include <netinet/in_var.h> 94 #include <netinet/in_fib.h> 95 #endif 96 #include <netinet/ip_var.h> 97 #include <netinet/tcp_var.h> 98 #ifdef TCPHPTS 99 #include <netinet/tcp_hpts.h> 100 #endif 101 #include <netinet/udp.h> 102 #include <netinet/udp_var.h> 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet6/in6_pcb.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet6/ip6_var.h> 108 #endif /* INET6 */ 109 #include <net/route/nhop.h> 110 #endif 111 112 #include <netipsec/ipsec_support.h> 113 114 #include <security/mac/mac_framework.h> 115 116 #define INPCBLBGROUP_SIZMIN 8 117 #define INPCBLBGROUP_SIZMAX 256 118 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 119 120 static struct callout ipport_tick_callout; 121 122 /* 123 * These configure the range of local port addresses assigned to 124 * "unspecified" outgoing connections/packets/whatever. 125 */ 126 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 127 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 128 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 129 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 130 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 131 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 132 133 /* 134 * Reserved ports accessible only to root. There are significant 135 * security considerations that must be accounted for when changing these, 136 * but the security benefits can be great. Please be careful. 137 */ 138 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 139 VNET_DEFINE(int, ipport_reservedlow); 140 141 /* Variables dealing with random ephemeral port allocation. */ 142 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 143 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 144 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 145 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 146 VNET_DEFINE(int, ipport_tcpallocs); 147 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 148 149 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 150 151 #ifdef INET 152 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 153 struct in_addr faddr, u_int fport_arg, 154 struct in_addr laddr, u_int lport_arg, 155 int lookupflags, struct ifnet *ifp, 156 uint8_t numa_domain); 157 158 #define RANGECHK(var, min, max) \ 159 if ((var) < (min)) { (var) = (min); } \ 160 else if ((var) > (max)) { (var) = (max); } 161 162 static int 163 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 164 { 165 int error; 166 167 error = sysctl_handle_int(oidp, arg1, arg2, req); 168 if (error == 0) { 169 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 170 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 171 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 172 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 173 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 174 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 175 } 176 return (error); 177 } 178 179 #undef RANGECHK 180 181 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 182 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 183 "IP Ports"); 184 185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 186 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 187 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 188 ""); 189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 190 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 191 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 192 ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 195 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 196 ""); 197 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 198 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 199 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 200 ""); 201 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 202 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 203 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 204 ""); 205 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 206 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 207 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 208 ""); 209 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 210 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 211 &VNET_NAME(ipport_reservedhigh), 0, ""); 212 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 213 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 214 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 215 CTLFLAG_VNET | CTLFLAG_RW, 216 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 217 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 218 CTLFLAG_VNET | CTLFLAG_RW, 219 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 220 "allocations before switching to a sequential one"); 221 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 222 CTLFLAG_VNET | CTLFLAG_RW, 223 &VNET_NAME(ipport_randomtime), 0, 224 "Minimum time to keep sequential port " 225 "allocation before switching to a random one"); 226 227 #ifdef RATELIMIT 228 counter_u64_t rate_limit_new; 229 counter_u64_t rate_limit_chg; 230 counter_u64_t rate_limit_active; 231 counter_u64_t rate_limit_alloc_fail; 232 counter_u64_t rate_limit_set_ok; 233 234 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 235 "IP Rate Limiting"); 236 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 237 &rate_limit_active, "Active rate limited connections"); 238 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 239 &rate_limit_alloc_fail, "Rate limited connection failures"); 240 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 241 &rate_limit_set_ok, "Rate limited setting succeeded"); 242 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 243 &rate_limit_new, "Total Rate limit new attempts"); 244 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 245 &rate_limit_chg, "Total Rate limited change attempts"); 246 247 #endif /* RATELIMIT */ 248 249 #endif /* INET */ 250 251 VNET_DEFINE(uint32_t, in_pcbhashseed); 252 static void 253 in_pcbhashseed_init(void) 254 { 255 256 V_in_pcbhashseed = arc4random(); 257 } 258 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 259 in_pcbhashseed_init, 0); 260 261 /* 262 * in_pcb.c: manage the Protocol Control Blocks. 263 * 264 * NOTE: It is assumed that most of these functions will be called with 265 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 266 * functions often modify hash chains or addresses in pcbs. 267 */ 268 269 static struct inpcblbgroup * 270 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 271 uint16_t port, const union in_dependaddr *addr, int size, 272 uint8_t numa_domain) 273 { 274 struct inpcblbgroup *grp; 275 size_t bytes; 276 277 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 278 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 279 if (!grp) 280 return (NULL); 281 grp->il_vflag = vflag; 282 grp->il_lport = port; 283 grp->il_numa_domain = numa_domain; 284 grp->il_dependladdr = *addr; 285 grp->il_inpsiz = size; 286 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 287 return (grp); 288 } 289 290 static void 291 in_pcblbgroup_free_deferred(epoch_context_t ctx) 292 { 293 struct inpcblbgroup *grp; 294 295 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 296 free(grp, M_PCB); 297 } 298 299 static void 300 in_pcblbgroup_free(struct inpcblbgroup *grp) 301 { 302 303 CK_LIST_REMOVE(grp, il_list); 304 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 305 } 306 307 static struct inpcblbgroup * 308 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 309 struct inpcblbgroup *old_grp, int size) 310 { 311 struct inpcblbgroup *grp; 312 int i; 313 314 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 315 old_grp->il_lport, &old_grp->il_dependladdr, size, 316 old_grp->il_numa_domain); 317 if (grp == NULL) 318 return (NULL); 319 320 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 321 ("invalid new local group size %d and old local group count %d", 322 grp->il_inpsiz, old_grp->il_inpcnt)); 323 324 for (i = 0; i < old_grp->il_inpcnt; ++i) 325 grp->il_inp[i] = old_grp->il_inp[i]; 326 grp->il_inpcnt = old_grp->il_inpcnt; 327 in_pcblbgroup_free(old_grp); 328 return (grp); 329 } 330 331 /* 332 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 333 * and shrink group if possible. 334 */ 335 static void 336 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 337 int i) 338 { 339 struct inpcblbgroup *grp, *new_grp; 340 341 grp = *grpp; 342 for (; i + 1 < grp->il_inpcnt; ++i) 343 grp->il_inp[i] = grp->il_inp[i + 1]; 344 grp->il_inpcnt--; 345 346 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 347 grp->il_inpcnt <= grp->il_inpsiz / 4) { 348 /* Shrink this group. */ 349 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 350 if (new_grp != NULL) 351 *grpp = new_grp; 352 } 353 } 354 355 /* 356 * Add PCB to load balance group for SO_REUSEPORT_LB option. 357 */ 358 static int 359 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 360 { 361 const static struct timeval interval = { 60, 0 }; 362 static struct timeval lastprint; 363 struct inpcbinfo *pcbinfo; 364 struct inpcblbgrouphead *hdr; 365 struct inpcblbgroup *grp; 366 uint32_t idx; 367 368 pcbinfo = inp->inp_pcbinfo; 369 370 INP_WLOCK_ASSERT(inp); 371 INP_HASH_WLOCK_ASSERT(pcbinfo); 372 373 /* 374 * Don't allow jailed socket to join local group. 375 */ 376 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 377 return (0); 378 379 #ifdef INET6 380 /* 381 * Don't allow IPv4 mapped INET6 wild socket. 382 */ 383 if ((inp->inp_vflag & INP_IPV4) && 384 inp->inp_laddr.s_addr == INADDR_ANY && 385 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 386 return (0); 387 } 388 #endif 389 390 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 391 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 392 CK_LIST_FOREACH(grp, hdr, il_list) { 393 if (grp->il_vflag == inp->inp_vflag && 394 grp->il_lport == inp->inp_lport && 395 grp->il_numa_domain == numa_domain && 396 memcmp(&grp->il_dependladdr, 397 &inp->inp_inc.inc_ie.ie_dependladdr, 398 sizeof(grp->il_dependladdr)) == 0) 399 break; 400 } 401 if (grp == NULL) { 402 /* Create new load balance group. */ 403 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 404 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 405 INPCBLBGROUP_SIZMIN, numa_domain); 406 if (grp == NULL) 407 return (ENOBUFS); 408 } else if (grp->il_inpcnt == grp->il_inpsiz) { 409 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 410 if (ratecheck(&lastprint, &interval)) 411 printf("lb group port %d, limit reached\n", 412 ntohs(grp->il_lport)); 413 return (0); 414 } 415 416 /* Expand this local group. */ 417 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 418 if (grp == NULL) 419 return (ENOBUFS); 420 } 421 422 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 423 ("invalid local group size %d and count %d", grp->il_inpsiz, 424 grp->il_inpcnt)); 425 426 grp->il_inp[grp->il_inpcnt] = inp; 427 grp->il_inpcnt++; 428 return (0); 429 } 430 431 /* 432 * Remove PCB from load balance group. 433 */ 434 static void 435 in_pcbremlbgrouphash(struct inpcb *inp) 436 { 437 struct inpcbinfo *pcbinfo; 438 struct inpcblbgrouphead *hdr; 439 struct inpcblbgroup *grp; 440 int i; 441 442 pcbinfo = inp->inp_pcbinfo; 443 444 INP_WLOCK_ASSERT(inp); 445 INP_HASH_WLOCK_ASSERT(pcbinfo); 446 447 hdr = &pcbinfo->ipi_lbgrouphashbase[ 448 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 449 CK_LIST_FOREACH(grp, hdr, il_list) { 450 for (i = 0; i < grp->il_inpcnt; ++i) { 451 if (grp->il_inp[i] != inp) 452 continue; 453 454 if (grp->il_inpcnt == 1) { 455 /* We are the last, free this local group. */ 456 in_pcblbgroup_free(grp); 457 } else { 458 /* Pull up inpcbs, shrink group if possible. */ 459 in_pcblbgroup_reorder(hdr, &grp, i); 460 } 461 return; 462 } 463 } 464 } 465 466 int 467 in_pcblbgroup_numa(struct inpcb *inp, int arg) 468 { 469 struct inpcbinfo *pcbinfo; 470 struct inpcblbgrouphead *hdr; 471 struct inpcblbgroup *grp; 472 int err, i; 473 uint8_t numa_domain; 474 475 switch (arg) { 476 case TCP_REUSPORT_LB_NUMA_NODOM: 477 numa_domain = M_NODOM; 478 break; 479 case TCP_REUSPORT_LB_NUMA_CURDOM: 480 numa_domain = PCPU_GET(domain); 481 break; 482 default: 483 if (arg < 0 || arg >= vm_ndomains) 484 return (EINVAL); 485 numa_domain = arg; 486 } 487 488 err = 0; 489 pcbinfo = inp->inp_pcbinfo; 490 INP_WLOCK_ASSERT(inp); 491 INP_HASH_WLOCK(pcbinfo); 492 hdr = &pcbinfo->ipi_lbgrouphashbase[ 493 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 494 CK_LIST_FOREACH(grp, hdr, il_list) { 495 for (i = 0; i < grp->il_inpcnt; ++i) { 496 if (grp->il_inp[i] != inp) 497 continue; 498 499 if (grp->il_numa_domain == numa_domain) { 500 goto abort_with_hash_wlock; 501 } 502 503 /* Remove it from the old group. */ 504 in_pcbremlbgrouphash(inp); 505 506 /* Add it to the new group based on numa domain. */ 507 in_pcbinslbgrouphash(inp, numa_domain); 508 goto abort_with_hash_wlock; 509 } 510 } 511 err = ENOENT; 512 abort_with_hash_wlock: 513 INP_HASH_WUNLOCK(pcbinfo); 514 return (err); 515 } 516 517 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 518 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 519 520 /* 521 * Initialize an inpcbinfo - a per-VNET instance of connections db. 522 */ 523 void 524 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 525 u_int hash_nelements, u_int porthash_nelements) 526 { 527 528 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 529 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 530 NULL, MTX_DEF); 531 #ifdef VIMAGE 532 pcbinfo->ipi_vnet = curvnet; 533 #endif 534 CK_LIST_INIT(&pcbinfo->ipi_listhead); 535 pcbinfo->ipi_count = 0; 536 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 537 &pcbinfo->ipi_hashmask); 538 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 539 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 540 &pcbinfo->ipi_porthashmask); 541 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 542 &pcbinfo->ipi_lbgrouphashmask); 543 pcbinfo->ipi_zone = pcbstor->ips_zone; 544 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 545 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 546 } 547 548 /* 549 * Destroy an inpcbinfo. 550 */ 551 void 552 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 553 { 554 555 KASSERT(pcbinfo->ipi_count == 0, 556 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 557 558 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 559 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 560 pcbinfo->ipi_porthashmask); 561 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 562 pcbinfo->ipi_lbgrouphashmask); 563 mtx_destroy(&pcbinfo->ipi_hash_lock); 564 mtx_destroy(&pcbinfo->ipi_lock); 565 } 566 567 /* 568 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 569 */ 570 static void inpcb_dtor(void *, int, void *); 571 static void inpcb_fini(void *, int); 572 void 573 in_pcbstorage_init(void *arg) 574 { 575 struct inpcbstorage *pcbstor = arg; 576 577 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 578 sizeof(struct inpcb), NULL, inpcb_dtor, pcbstor->ips_pcbinit, 579 inpcb_fini, UMA_ALIGN_PTR, UMA_ZONE_SMR); 580 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 581 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 582 uma_zone_set_smr(pcbstor->ips_portzone, 583 uma_zone_get_smr(pcbstor->ips_zone)); 584 } 585 586 /* 587 * Destroy a pcbstorage - used by unloadable protocols. 588 */ 589 void 590 in_pcbstorage_destroy(void *arg) 591 { 592 struct inpcbstorage *pcbstor = arg; 593 594 uma_zdestroy(pcbstor->ips_zone); 595 uma_zdestroy(pcbstor->ips_portzone); 596 } 597 598 /* 599 * Allocate a PCB and associate it with the socket. 600 * On success return with the PCB locked. 601 */ 602 int 603 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 604 { 605 struct inpcb *inp; 606 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 607 int error; 608 #endif 609 610 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 611 if (inp == NULL) 612 return (ENOBUFS); 613 bzero(&inp->inp_start_zero, inp_zero_size); 614 #ifdef NUMA 615 inp->inp_numa_domain = M_NODOM; 616 #endif 617 inp->inp_pcbinfo = pcbinfo; 618 inp->inp_socket = so; 619 inp->inp_cred = crhold(so->so_cred); 620 inp->inp_inc.inc_fibnum = so->so_fibnum; 621 #ifdef MAC 622 error = mac_inpcb_init(inp, M_NOWAIT); 623 if (error != 0) 624 goto out; 625 mac_inpcb_create(so, inp); 626 #endif 627 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 628 error = ipsec_init_pcbpolicy(inp); 629 if (error != 0) { 630 #ifdef MAC 631 mac_inpcb_destroy(inp); 632 #endif 633 goto out; 634 } 635 #endif /*IPSEC*/ 636 #ifdef INET6 637 if (INP_SOCKAF(so) == AF_INET6) { 638 inp->inp_vflag |= INP_IPV6PROTO; 639 if (V_ip6_v6only) 640 inp->inp_flags |= IN6P_IPV6_V6ONLY; 641 } 642 if (V_ip6_auto_flowlabel) 643 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 644 #endif 645 /* 646 * Routes in inpcb's can cache L2 as well; they are guaranteed 647 * to be cleaned up. 648 */ 649 inp->inp_route.ro_flags = RT_LLE_CACHE; 650 #ifdef TCPHPTS 651 /* 652 * If using hpts lets drop a random number in so 653 * not all new connections fall on the same CPU. 654 */ 655 inp->inp_hpts_cpu = hpts_random_cpu(inp); 656 #endif 657 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 658 INP_WLOCK(inp); 659 INP_INFO_WLOCK(pcbinfo); 660 pcbinfo->ipi_count++; 661 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 662 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 663 INP_INFO_WUNLOCK(pcbinfo); 664 so->so_pcb = inp; 665 666 return (0); 667 668 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 669 out: 670 uma_zfree_smr(pcbinfo->ipi_zone, inp); 671 return (error); 672 #endif 673 } 674 675 #ifdef INET 676 int 677 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 678 { 679 int anonport, error; 680 681 KASSERT(nam == NULL || nam->sa_family == AF_INET, 682 ("%s: invalid address family for %p", __func__, nam)); 683 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 684 ("%s: invalid address length for %p", __func__, nam)); 685 INP_WLOCK_ASSERT(inp); 686 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 687 688 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 689 return (EINVAL); 690 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 691 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 692 &inp->inp_lport, cred); 693 if (error) 694 return (error); 695 if (in_pcbinshash(inp) != 0) { 696 inp->inp_laddr.s_addr = INADDR_ANY; 697 inp->inp_lport = 0; 698 return (EAGAIN); 699 } 700 if (anonport) 701 inp->inp_flags |= INP_ANONPORT; 702 return (0); 703 } 704 #endif 705 706 #if defined(INET) || defined(INET6) 707 /* 708 * Assign a local port like in_pcb_lport(), but also used with connect() 709 * and a foreign address and port. If fsa is non-NULL, choose a local port 710 * that is unused with those, otherwise one that is completely unused. 711 * lsa can be NULL for IPv6. 712 */ 713 int 714 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 715 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 716 { 717 struct inpcbinfo *pcbinfo; 718 struct inpcb *tmpinp; 719 unsigned short *lastport; 720 int count, dorandom, error; 721 u_short aux, first, last, lport; 722 #ifdef INET 723 struct in_addr laddr, faddr; 724 #endif 725 #ifdef INET6 726 struct in6_addr *laddr6, *faddr6; 727 #endif 728 729 pcbinfo = inp->inp_pcbinfo; 730 731 /* 732 * Because no actual state changes occur here, a global write lock on 733 * the pcbinfo isn't required. 734 */ 735 INP_LOCK_ASSERT(inp); 736 INP_HASH_LOCK_ASSERT(pcbinfo); 737 738 if (inp->inp_flags & INP_HIGHPORT) { 739 first = V_ipport_hifirstauto; /* sysctl */ 740 last = V_ipport_hilastauto; 741 lastport = &pcbinfo->ipi_lasthi; 742 } else if (inp->inp_flags & INP_LOWPORT) { 743 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 744 if (error) 745 return (error); 746 first = V_ipport_lowfirstauto; /* 1023 */ 747 last = V_ipport_lowlastauto; /* 600 */ 748 lastport = &pcbinfo->ipi_lastlow; 749 } else { 750 first = V_ipport_firstauto; /* sysctl */ 751 last = V_ipport_lastauto; 752 lastport = &pcbinfo->ipi_lastport; 753 } 754 /* 755 * For UDP(-Lite), use random port allocation as long as the user 756 * allows it. For TCP (and as of yet unknown) connections, 757 * use random port allocation only if the user allows it AND 758 * ipport_tick() allows it. 759 */ 760 if (V_ipport_randomized && 761 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 762 pcbinfo == &V_ulitecbinfo)) 763 dorandom = 1; 764 else 765 dorandom = 0; 766 /* 767 * It makes no sense to do random port allocation if 768 * we have the only port available. 769 */ 770 if (first == last) 771 dorandom = 0; 772 /* Make sure to not include UDP(-Lite) packets in the count. */ 773 if (pcbinfo != &V_udbinfo && pcbinfo != &V_ulitecbinfo) 774 V_ipport_tcpallocs++; 775 /* 776 * Instead of having two loops further down counting up or down 777 * make sure that first is always <= last and go with only one 778 * code path implementing all logic. 779 */ 780 if (first > last) { 781 aux = first; 782 first = last; 783 last = aux; 784 } 785 786 #ifdef INET 787 laddr.s_addr = INADDR_ANY; 788 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 789 if (lsa != NULL) 790 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 791 if (fsa != NULL) 792 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 793 } 794 #endif 795 #ifdef INET6 796 laddr6 = NULL; 797 if ((inp->inp_vflag & INP_IPV6) != 0) { 798 if (lsa != NULL) 799 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 800 if (fsa != NULL) 801 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 802 } 803 #endif 804 805 tmpinp = NULL; 806 lport = *lportp; 807 808 if (dorandom) 809 *lastport = first + (arc4random() % (last - first)); 810 811 count = last - first; 812 813 do { 814 if (count-- < 0) /* completely used? */ 815 return (EADDRNOTAVAIL); 816 ++*lastport; 817 if (*lastport < first || *lastport > last) 818 *lastport = first; 819 lport = htons(*lastport); 820 821 if (fsa != NULL) { 822 #ifdef INET 823 if (lsa->sa_family == AF_INET) { 824 tmpinp = in_pcblookup_hash_locked(pcbinfo, 825 faddr, fport, laddr, lport, lookupflags, 826 NULL, M_NODOM); 827 } 828 #endif 829 #ifdef INET6 830 if (lsa->sa_family == AF_INET6) { 831 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 832 faddr6, fport, laddr6, lport, lookupflags, 833 NULL, M_NODOM); 834 } 835 #endif 836 } else { 837 #ifdef INET6 838 if ((inp->inp_vflag & INP_IPV6) != 0) 839 tmpinp = in6_pcblookup_local(pcbinfo, 840 &inp->in6p_laddr, lport, lookupflags, cred); 841 #endif 842 #if defined(INET) && defined(INET6) 843 else 844 #endif 845 #ifdef INET 846 tmpinp = in_pcblookup_local(pcbinfo, laddr, 847 lport, lookupflags, cred); 848 #endif 849 } 850 } while (tmpinp != NULL); 851 852 *lportp = lport; 853 854 return (0); 855 } 856 857 /* 858 * Select a local port (number) to use. 859 */ 860 int 861 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 862 struct ucred *cred, int lookupflags) 863 { 864 struct sockaddr_in laddr; 865 866 if (laddrp) { 867 bzero(&laddr, sizeof(laddr)); 868 laddr.sin_family = AF_INET; 869 laddr.sin_addr = *laddrp; 870 } 871 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 872 NULL, lportp, NULL, 0, cred, lookupflags)); 873 } 874 875 /* 876 * Return cached socket options. 877 */ 878 int 879 inp_so_options(const struct inpcb *inp) 880 { 881 int so_options; 882 883 so_options = 0; 884 885 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 886 so_options |= SO_REUSEPORT_LB; 887 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 888 so_options |= SO_REUSEPORT; 889 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 890 so_options |= SO_REUSEADDR; 891 return (so_options); 892 } 893 #endif /* INET || INET6 */ 894 895 /* 896 * Check if a new BINDMULTI socket is allowed to be created. 897 * 898 * ni points to the new inp. 899 * oi points to the existing inp. 900 * 901 * This checks whether the existing inp also has BINDMULTI and 902 * whether the credentials match. 903 */ 904 int 905 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 906 { 907 /* Check permissions match */ 908 if ((ni->inp_flags2 & INP_BINDMULTI) && 909 (ni->inp_cred->cr_uid != 910 oi->inp_cred->cr_uid)) 911 return (0); 912 913 /* Check the existing inp has BINDMULTI set */ 914 if ((ni->inp_flags2 & INP_BINDMULTI) && 915 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 916 return (0); 917 918 /* 919 * We're okay - either INP_BINDMULTI isn't set on ni, or 920 * it is and it matches the checks. 921 */ 922 return (1); 923 } 924 925 #ifdef INET 926 /* 927 * Set up a bind operation on a PCB, performing port allocation 928 * as required, but do not actually modify the PCB. Callers can 929 * either complete the bind by setting inp_laddr/inp_lport and 930 * calling in_pcbinshash(), or they can just use the resulting 931 * port and address to authorise the sending of a once-off packet. 932 * 933 * On error, the values of *laddrp and *lportp are not changed. 934 */ 935 int 936 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 937 u_short *lportp, struct ucred *cred) 938 { 939 struct socket *so = inp->inp_socket; 940 struct sockaddr_in *sin; 941 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 942 struct in_addr laddr; 943 u_short lport = 0; 944 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 945 int error; 946 947 /* 948 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 949 * so that we don't have to add to the (already messy) code below. 950 */ 951 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 952 953 /* 954 * No state changes, so read locks are sufficient here. 955 */ 956 INP_LOCK_ASSERT(inp); 957 INP_HASH_LOCK_ASSERT(pcbinfo); 958 959 laddr.s_addr = *laddrp; 960 if (nam != NULL && laddr.s_addr != INADDR_ANY) 961 return (EINVAL); 962 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 963 lookupflags = INPLOOKUP_WILDCARD; 964 if (nam == NULL) { 965 if ((error = prison_local_ip4(cred, &laddr)) != 0) 966 return (error); 967 } else { 968 sin = (struct sockaddr_in *)nam; 969 KASSERT(sin->sin_family == AF_INET, 970 ("%s: invalid family for address %p", __func__, sin)); 971 KASSERT(sin->sin_len == sizeof(*sin), 972 ("%s: invalid length for address %p", __func__, sin)); 973 974 error = prison_local_ip4(cred, &sin->sin_addr); 975 if (error) 976 return (error); 977 if (sin->sin_port != *lportp) { 978 /* Don't allow the port to change. */ 979 if (*lportp != 0) 980 return (EINVAL); 981 lport = sin->sin_port; 982 } 983 /* NB: lport is left as 0 if the port isn't being changed. */ 984 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 985 /* 986 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 987 * allow complete duplication of binding if 988 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 989 * and a multicast address is bound on both 990 * new and duplicated sockets. 991 */ 992 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 993 reuseport = SO_REUSEADDR|SO_REUSEPORT; 994 /* 995 * XXX: How to deal with SO_REUSEPORT_LB here? 996 * Treat same as SO_REUSEPORT for now. 997 */ 998 if ((so->so_options & 999 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 1000 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 1001 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 1002 sin->sin_port = 0; /* yech... */ 1003 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 1004 /* 1005 * Is the address a local IP address? 1006 * If INP_BINDANY is set, then the socket may be bound 1007 * to any endpoint address, local or not. 1008 */ 1009 if ((inp->inp_flags & INP_BINDANY) == 0 && 1010 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 1011 return (EADDRNOTAVAIL); 1012 } 1013 laddr = sin->sin_addr; 1014 if (lport) { 1015 struct inpcb *t; 1016 struct tcptw *tw; 1017 1018 /* GROSS */ 1019 if (ntohs(lport) <= V_ipport_reservedhigh && 1020 ntohs(lport) >= V_ipport_reservedlow && 1021 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 1022 return (EACCES); 1023 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 1024 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 1025 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1026 lport, INPLOOKUP_WILDCARD, cred); 1027 /* 1028 * XXX 1029 * This entire block sorely needs a rewrite. 1030 */ 1031 if (t && 1032 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1033 ((t->inp_flags & INP_TIMEWAIT) == 0) && 1034 (so->so_type != SOCK_STREAM || 1035 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1036 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1037 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1038 (t->inp_flags2 & INP_REUSEPORT) || 1039 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1040 (inp->inp_cred->cr_uid != 1041 t->inp_cred->cr_uid)) 1042 return (EADDRINUSE); 1043 1044 /* 1045 * If the socket is a BINDMULTI socket, then 1046 * the credentials need to match and the 1047 * original socket also has to have been bound 1048 * with BINDMULTI. 1049 */ 1050 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1051 return (EADDRINUSE); 1052 } 1053 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1054 lport, lookupflags, cred); 1055 if (t && (t->inp_flags & INP_TIMEWAIT)) { 1056 /* 1057 * XXXRW: If an incpb has had its timewait 1058 * state recycled, we treat the address as 1059 * being in use (for now). This is better 1060 * than a panic, but not desirable. 1061 */ 1062 tw = intotw(t); 1063 if (tw == NULL || 1064 ((reuseport & tw->tw_so_options) == 0 && 1065 (reuseport_lb & 1066 tw->tw_so_options) == 0)) { 1067 return (EADDRINUSE); 1068 } 1069 } else if (t && 1070 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1071 (reuseport & inp_so_options(t)) == 0 && 1072 (reuseport_lb & inp_so_options(t)) == 0) { 1073 #ifdef INET6 1074 if (ntohl(sin->sin_addr.s_addr) != 1075 INADDR_ANY || 1076 ntohl(t->inp_laddr.s_addr) != 1077 INADDR_ANY || 1078 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1079 (t->inp_vflag & INP_IPV6PROTO) == 0) 1080 #endif 1081 return (EADDRINUSE); 1082 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1083 return (EADDRINUSE); 1084 } 1085 } 1086 } 1087 if (*lportp != 0) 1088 lport = *lportp; 1089 if (lport == 0) { 1090 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1091 if (error != 0) 1092 return (error); 1093 } 1094 *laddrp = laddr.s_addr; 1095 *lportp = lport; 1096 return (0); 1097 } 1098 1099 /* 1100 * Connect from a socket to a specified address. 1101 * Both address and port must be specified in argument sin. 1102 * If don't have a local address for this socket yet, 1103 * then pick one. 1104 */ 1105 int 1106 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, 1107 bool rehash) 1108 { 1109 u_short lport, fport; 1110 in_addr_t laddr, faddr; 1111 int anonport, error; 1112 1113 INP_WLOCK_ASSERT(inp); 1114 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1115 1116 lport = inp->inp_lport; 1117 laddr = inp->inp_laddr.s_addr; 1118 anonport = (lport == 0); 1119 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1120 NULL, cred); 1121 if (error) 1122 return (error); 1123 1124 /* Do the initial binding of the local address if required. */ 1125 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1126 KASSERT(rehash == true, 1127 ("Rehashing required for unbound inps")); 1128 inp->inp_lport = lport; 1129 inp->inp_laddr.s_addr = laddr; 1130 if (in_pcbinshash(inp) != 0) { 1131 inp->inp_laddr.s_addr = INADDR_ANY; 1132 inp->inp_lport = 0; 1133 return (EAGAIN); 1134 } 1135 } 1136 1137 /* Commit the remaining changes. */ 1138 inp->inp_lport = lport; 1139 inp->inp_laddr.s_addr = laddr; 1140 inp->inp_faddr.s_addr = faddr; 1141 inp->inp_fport = fport; 1142 if (rehash) { 1143 in_pcbrehash(inp); 1144 } else { 1145 in_pcbinshash(inp); 1146 } 1147 1148 if (anonport) 1149 inp->inp_flags |= INP_ANONPORT; 1150 return (0); 1151 } 1152 1153 /* 1154 * Do proper source address selection on an unbound socket in case 1155 * of connect. Take jails into account as well. 1156 */ 1157 int 1158 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1159 struct ucred *cred) 1160 { 1161 struct ifaddr *ifa; 1162 struct sockaddr *sa; 1163 struct sockaddr_in *sin, dst; 1164 struct nhop_object *nh; 1165 int error; 1166 1167 NET_EPOCH_ASSERT(); 1168 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1169 /* 1170 * Bypass source address selection and use the primary jail IP 1171 * if requested. 1172 */ 1173 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1174 return (0); 1175 1176 error = 0; 1177 1178 nh = NULL; 1179 bzero(&dst, sizeof(dst)); 1180 sin = &dst; 1181 sin->sin_family = AF_INET; 1182 sin->sin_len = sizeof(struct sockaddr_in); 1183 sin->sin_addr.s_addr = faddr->s_addr; 1184 1185 /* 1186 * If route is known our src addr is taken from the i/f, 1187 * else punt. 1188 * 1189 * Find out route to destination. 1190 */ 1191 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1192 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1193 0, NHR_NONE, 0); 1194 1195 /* 1196 * If we found a route, use the address corresponding to 1197 * the outgoing interface. 1198 * 1199 * Otherwise assume faddr is reachable on a directly connected 1200 * network and try to find a corresponding interface to take 1201 * the source address from. 1202 */ 1203 if (nh == NULL || nh->nh_ifp == NULL) { 1204 struct in_ifaddr *ia; 1205 struct ifnet *ifp; 1206 1207 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1208 inp->inp_socket->so_fibnum)); 1209 if (ia == NULL) { 1210 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1211 inp->inp_socket->so_fibnum)); 1212 } 1213 if (ia == NULL) { 1214 error = ENETUNREACH; 1215 goto done; 1216 } 1217 1218 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1219 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1220 goto done; 1221 } 1222 1223 ifp = ia->ia_ifp; 1224 ia = NULL; 1225 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1226 sa = ifa->ifa_addr; 1227 if (sa->sa_family != AF_INET) 1228 continue; 1229 sin = (struct sockaddr_in *)sa; 1230 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1231 ia = (struct in_ifaddr *)ifa; 1232 break; 1233 } 1234 } 1235 if (ia != NULL) { 1236 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1237 goto done; 1238 } 1239 1240 /* 3. As a last resort return the 'default' jail address. */ 1241 error = prison_get_ip4(cred, laddr); 1242 goto done; 1243 } 1244 1245 /* 1246 * If the outgoing interface on the route found is not 1247 * a loopback interface, use the address from that interface. 1248 * In case of jails do those three steps: 1249 * 1. check if the interface address belongs to the jail. If so use it. 1250 * 2. check if we have any address on the outgoing interface 1251 * belonging to this jail. If so use it. 1252 * 3. as a last resort return the 'default' jail address. 1253 */ 1254 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1255 struct in_ifaddr *ia; 1256 struct ifnet *ifp; 1257 1258 /* If not jailed, use the default returned. */ 1259 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1260 ia = (struct in_ifaddr *)nh->nh_ifa; 1261 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1262 goto done; 1263 } 1264 1265 /* Jailed. */ 1266 /* 1. Check if the iface address belongs to the jail. */ 1267 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1268 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1269 ia = (struct in_ifaddr *)nh->nh_ifa; 1270 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1271 goto done; 1272 } 1273 1274 /* 1275 * 2. Check if we have any address on the outgoing interface 1276 * belonging to this jail. 1277 */ 1278 ia = NULL; 1279 ifp = nh->nh_ifp; 1280 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1281 sa = ifa->ifa_addr; 1282 if (sa->sa_family != AF_INET) 1283 continue; 1284 sin = (struct sockaddr_in *)sa; 1285 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1286 ia = (struct in_ifaddr *)ifa; 1287 break; 1288 } 1289 } 1290 if (ia != NULL) { 1291 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1292 goto done; 1293 } 1294 1295 /* 3. As a last resort return the 'default' jail address. */ 1296 error = prison_get_ip4(cred, laddr); 1297 goto done; 1298 } 1299 1300 /* 1301 * The outgoing interface is marked with 'loopback net', so a route 1302 * to ourselves is here. 1303 * Try to find the interface of the destination address and then 1304 * take the address from there. That interface is not necessarily 1305 * a loopback interface. 1306 * In case of jails, check that it is an address of the jail 1307 * and if we cannot find, fall back to the 'default' jail address. 1308 */ 1309 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1310 struct in_ifaddr *ia; 1311 1312 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1313 inp->inp_socket->so_fibnum)); 1314 if (ia == NULL) 1315 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1316 inp->inp_socket->so_fibnum)); 1317 if (ia == NULL) 1318 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1319 1320 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1321 if (ia == NULL) { 1322 error = ENETUNREACH; 1323 goto done; 1324 } 1325 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1326 goto done; 1327 } 1328 1329 /* Jailed. */ 1330 if (ia != NULL) { 1331 struct ifnet *ifp; 1332 1333 ifp = ia->ia_ifp; 1334 ia = NULL; 1335 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1336 sa = ifa->ifa_addr; 1337 if (sa->sa_family != AF_INET) 1338 continue; 1339 sin = (struct sockaddr_in *)sa; 1340 if (prison_check_ip4(cred, 1341 &sin->sin_addr) == 0) { 1342 ia = (struct in_ifaddr *)ifa; 1343 break; 1344 } 1345 } 1346 if (ia != NULL) { 1347 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1348 goto done; 1349 } 1350 } 1351 1352 /* 3. As a last resort return the 'default' jail address. */ 1353 error = prison_get_ip4(cred, laddr); 1354 goto done; 1355 } 1356 1357 done: 1358 return (error); 1359 } 1360 1361 /* 1362 * Set up for a connect from a socket to the specified address. 1363 * On entry, *laddrp and *lportp should contain the current local 1364 * address and port for the PCB; these are updated to the values 1365 * that should be placed in inp_laddr and inp_lport to complete 1366 * the connect. 1367 * 1368 * On success, *faddrp and *fportp will be set to the remote address 1369 * and port. These are not updated in the error case. 1370 * 1371 * If the operation fails because the connection already exists, 1372 * *oinpp will be set to the PCB of that connection so that the 1373 * caller can decide to override it. In all other cases, *oinpp 1374 * is set to NULL. 1375 */ 1376 int 1377 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1378 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1379 struct inpcb **oinpp, struct ucred *cred) 1380 { 1381 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1382 struct in_ifaddr *ia; 1383 struct inpcb *oinp; 1384 struct in_addr laddr, faddr; 1385 u_short lport, fport; 1386 int error; 1387 1388 KASSERT(sin->sin_family == AF_INET, 1389 ("%s: invalid address family for %p", __func__, sin)); 1390 KASSERT(sin->sin_len == sizeof(*sin), 1391 ("%s: invalid address length for %p", __func__, sin)); 1392 1393 /* 1394 * Because a global state change doesn't actually occur here, a read 1395 * lock is sufficient. 1396 */ 1397 NET_EPOCH_ASSERT(); 1398 INP_LOCK_ASSERT(inp); 1399 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1400 1401 if (oinpp != NULL) 1402 *oinpp = NULL; 1403 if (sin->sin_port == 0) 1404 return (EADDRNOTAVAIL); 1405 laddr.s_addr = *laddrp; 1406 lport = *lportp; 1407 faddr = sin->sin_addr; 1408 fport = sin->sin_port; 1409 #ifdef ROUTE_MPATH 1410 if (CALC_FLOWID_OUTBOUND) { 1411 uint32_t hash_val, hash_type; 1412 1413 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1414 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1415 1416 inp->inp_flowid = hash_val; 1417 inp->inp_flowtype = hash_type; 1418 } 1419 #endif 1420 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1421 /* 1422 * If the destination address is INADDR_ANY, 1423 * use the primary local address. 1424 * If the supplied address is INADDR_BROADCAST, 1425 * and the primary interface supports broadcast, 1426 * choose the broadcast address for that interface. 1427 */ 1428 if (faddr.s_addr == INADDR_ANY) { 1429 faddr = 1430 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1431 if (cred != NULL && 1432 (error = prison_get_ip4(cred, &faddr)) != 0) 1433 return (error); 1434 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1435 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1436 IFF_BROADCAST) 1437 faddr = satosin(&CK_STAILQ_FIRST( 1438 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1439 } 1440 } 1441 if (laddr.s_addr == INADDR_ANY) { 1442 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1443 /* 1444 * If the destination address is multicast and an outgoing 1445 * interface has been set as a multicast option, prefer the 1446 * address of that interface as our source address. 1447 */ 1448 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1449 inp->inp_moptions != NULL) { 1450 struct ip_moptions *imo; 1451 struct ifnet *ifp; 1452 1453 imo = inp->inp_moptions; 1454 if (imo->imo_multicast_ifp != NULL) { 1455 ifp = imo->imo_multicast_ifp; 1456 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1457 if ((ia->ia_ifp == ifp) && 1458 (cred == NULL || 1459 prison_check_ip4(cred, 1460 &ia->ia_addr.sin_addr) == 0)) 1461 break; 1462 } 1463 if (ia == NULL) 1464 error = EADDRNOTAVAIL; 1465 else { 1466 laddr = ia->ia_addr.sin_addr; 1467 error = 0; 1468 } 1469 } 1470 } 1471 if (error) 1472 return (error); 1473 } 1474 1475 if (lport != 0) { 1476 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1477 fport, laddr, lport, 0, NULL, M_NODOM); 1478 if (oinp != NULL) { 1479 if (oinpp != NULL) 1480 *oinpp = oinp; 1481 return (EADDRINUSE); 1482 } 1483 } else { 1484 struct sockaddr_in lsin, fsin; 1485 1486 bzero(&lsin, sizeof(lsin)); 1487 bzero(&fsin, sizeof(fsin)); 1488 lsin.sin_family = AF_INET; 1489 lsin.sin_addr = laddr; 1490 fsin.sin_family = AF_INET; 1491 fsin.sin_addr = faddr; 1492 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1493 &lport, (struct sockaddr *)& fsin, fport, cred, 1494 INPLOOKUP_WILDCARD); 1495 if (error) 1496 return (error); 1497 } 1498 *laddrp = laddr.s_addr; 1499 *lportp = lport; 1500 *faddrp = faddr.s_addr; 1501 *fportp = fport; 1502 return (0); 1503 } 1504 1505 void 1506 in_pcbdisconnect(struct inpcb *inp) 1507 { 1508 1509 INP_WLOCK_ASSERT(inp); 1510 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1511 1512 inp->inp_faddr.s_addr = INADDR_ANY; 1513 inp->inp_fport = 0; 1514 in_pcbrehash(inp); 1515 } 1516 #endif /* INET */ 1517 1518 /* 1519 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1520 * For most protocols, this will be invoked immediately prior to calling 1521 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1522 * socket, in which case in_pcbfree() is deferred. 1523 */ 1524 void 1525 in_pcbdetach(struct inpcb *inp) 1526 { 1527 1528 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1529 1530 #ifdef RATELIMIT 1531 if (inp->inp_snd_tag != NULL) 1532 in_pcbdetach_txrtlmt(inp); 1533 #endif 1534 inp->inp_socket->so_pcb = NULL; 1535 inp->inp_socket = NULL; 1536 } 1537 1538 /* 1539 * inpcb hash lookups are protected by SMR section. 1540 * 1541 * Once desired pcb has been found, switching from SMR section to a pcb 1542 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1543 * here because SMR is a critical section. 1544 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1545 */ 1546 static inline void 1547 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1548 { 1549 1550 lock == INPLOOKUP_RLOCKPCB ? 1551 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1552 } 1553 1554 static inline void 1555 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1556 { 1557 1558 lock == INPLOOKUP_RLOCKPCB ? 1559 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1560 } 1561 1562 static inline int 1563 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1564 { 1565 1566 return (lock == INPLOOKUP_RLOCKPCB ? 1567 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1568 } 1569 1570 static inline bool 1571 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1572 { 1573 1574 return (lock == INPLOOKUP_RLOCKPCB ? 1575 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1576 } 1577 1578 bool 1579 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1580 { 1581 1582 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1583 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1584 1585 if (__predict_true(inp_trylock(inp, lock))) { 1586 if (__predict_false(inp->inp_flags & INP_FREED)) { 1587 smr_exit(inp->inp_pcbinfo->ipi_smr); 1588 inp_unlock(inp, lock); 1589 return (false); 1590 } 1591 smr_exit(inp->inp_pcbinfo->ipi_smr); 1592 return (true); 1593 } 1594 1595 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1596 smr_exit(inp->inp_pcbinfo->ipi_smr); 1597 inp_lock(inp, lock); 1598 if (__predict_false(in_pcbrele(inp, lock))) 1599 return (false); 1600 /* 1601 * inp acquired through refcount & lock for sure didn't went 1602 * through uma_zfree(). However, it may have already went 1603 * through in_pcbfree() and has another reference, that 1604 * prevented its release by our in_pcbrele(). 1605 */ 1606 if (__predict_false(inp->inp_flags & INP_FREED)) { 1607 inp_unlock(inp, lock); 1608 return (false); 1609 } 1610 return (true); 1611 } else { 1612 smr_exit(inp->inp_pcbinfo->ipi_smr); 1613 return (false); 1614 } 1615 } 1616 1617 /* 1618 * inp_next() - inpcb hash/list traversal iterator 1619 * 1620 * Requires initialized struct inpcb_iterator for context. 1621 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1622 * 1623 * - Iterator can have either write-lock or read-lock semantics, that can not 1624 * be changed later. 1625 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1626 * a single hash slot. Note: only rip_input() does the latter. 1627 * - Iterator may have optional bool matching function. The matching function 1628 * will be executed for each inpcb in the SMR context, so it can not acquire 1629 * locks and can safely access only immutable fields of inpcb. 1630 * 1631 * A fresh initialized iterator has NULL inpcb in its context and that 1632 * means that inp_next() call would return the very first inpcb on the list 1633 * locked with desired semantic. In all following calls the context pointer 1634 * shall hold the current inpcb pointer. The KPI user is not supposed to 1635 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1636 * and write NULL to its context. After end of traversal an iterator can be 1637 * reused. 1638 * 1639 * List traversals have the following features/constraints: 1640 * - New entries won't be seen, as they are always added to the head of a list. 1641 * - Removed entries won't stop traversal as long as they are not added to 1642 * a different list. This is violated by in_pcbrehash(). 1643 */ 1644 #define II_LIST_FIRST(ipi, hash) \ 1645 (((hash) == INP_ALL_LIST) ? \ 1646 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1647 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1648 #define II_LIST_NEXT(inp, hash) \ 1649 (((hash) == INP_ALL_LIST) ? \ 1650 CK_LIST_NEXT((inp), inp_list) : \ 1651 CK_LIST_NEXT((inp), inp_hash)) 1652 #define II_LOCK_ASSERT(inp, lock) \ 1653 rw_assert(&(inp)->inp_lock, \ 1654 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1655 struct inpcb * 1656 inp_next(struct inpcb_iterator *ii) 1657 { 1658 const struct inpcbinfo *ipi = ii->ipi; 1659 inp_match_t *match = ii->match; 1660 void *ctx = ii->ctx; 1661 inp_lookup_t lock = ii->lock; 1662 int hash = ii->hash; 1663 struct inpcb *inp; 1664 1665 if (ii->inp == NULL) { /* First call. */ 1666 smr_enter(ipi->ipi_smr); 1667 /* This is unrolled CK_LIST_FOREACH(). */ 1668 for (inp = II_LIST_FIRST(ipi, hash); 1669 inp != NULL; 1670 inp = II_LIST_NEXT(inp, hash)) { 1671 if (match != NULL && (match)(inp, ctx) == false) 1672 continue; 1673 if (__predict_true(inp_smr_lock(inp, lock))) 1674 break; 1675 else { 1676 smr_enter(ipi->ipi_smr); 1677 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1678 inp = II_LIST_FIRST(ipi, hash); 1679 if (inp == NULL) 1680 break; 1681 } 1682 } 1683 1684 if (inp == NULL) 1685 smr_exit(ipi->ipi_smr); 1686 else 1687 ii->inp = inp; 1688 1689 return (inp); 1690 } 1691 1692 /* Not a first call. */ 1693 smr_enter(ipi->ipi_smr); 1694 restart: 1695 inp = ii->inp; 1696 II_LOCK_ASSERT(inp, lock); 1697 next: 1698 inp = II_LIST_NEXT(inp, hash); 1699 if (inp == NULL) { 1700 smr_exit(ipi->ipi_smr); 1701 goto found; 1702 } 1703 1704 if (match != NULL && (match)(inp, ctx) == false) 1705 goto next; 1706 1707 if (__predict_true(inp_trylock(inp, lock))) { 1708 if (__predict_false(inp->inp_flags & INP_FREED)) { 1709 /* 1710 * Entries are never inserted in middle of a list, thus 1711 * as long as we are in SMR, we can continue traversal. 1712 * Jump to 'restart' should yield in the same result, 1713 * but could produce unnecessary looping. Could this 1714 * looping be unbound? 1715 */ 1716 inp_unlock(inp, lock); 1717 goto next; 1718 } else { 1719 smr_exit(ipi->ipi_smr); 1720 goto found; 1721 } 1722 } 1723 1724 /* 1725 * Can't obtain lock immediately, thus going hard. Once we exit the 1726 * SMR section we can no longer jump to 'next', and our only stable 1727 * anchoring point is ii->inp, which we keep locked for this case, so 1728 * we jump to 'restart'. 1729 */ 1730 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1731 smr_exit(ipi->ipi_smr); 1732 inp_lock(inp, lock); 1733 if (__predict_false(in_pcbrele(inp, lock))) { 1734 smr_enter(ipi->ipi_smr); 1735 goto restart; 1736 } 1737 /* 1738 * See comment in inp_smr_lock(). 1739 */ 1740 if (__predict_false(inp->inp_flags & INP_FREED)) { 1741 inp_unlock(inp, lock); 1742 smr_enter(ipi->ipi_smr); 1743 goto restart; 1744 } 1745 } else 1746 goto next; 1747 1748 found: 1749 inp_unlock(ii->inp, lock); 1750 ii->inp = inp; 1751 1752 return (ii->inp); 1753 } 1754 1755 /* 1756 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1757 * stability of an inpcb pointer despite the inpcb lock being released or 1758 * SMR section exited. 1759 * 1760 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1761 */ 1762 void 1763 in_pcbref(struct inpcb *inp) 1764 { 1765 u_int old __diagused; 1766 1767 old = refcount_acquire(&inp->inp_refcount); 1768 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1769 } 1770 1771 /* 1772 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1773 * freeing the pcb, if the reference was very last. 1774 */ 1775 bool 1776 in_pcbrele_rlocked(struct inpcb *inp) 1777 { 1778 1779 INP_RLOCK_ASSERT(inp); 1780 1781 if (refcount_release(&inp->inp_refcount) == 0) 1782 return (false); 1783 1784 MPASS(inp->inp_flags & INP_FREED); 1785 MPASS(inp->inp_socket == NULL); 1786 MPASS(inp->inp_in_hpts == 0); 1787 INP_RUNLOCK(inp); 1788 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1789 return (true); 1790 } 1791 1792 bool 1793 in_pcbrele_wlocked(struct inpcb *inp) 1794 { 1795 1796 INP_WLOCK_ASSERT(inp); 1797 1798 if (refcount_release(&inp->inp_refcount) == 0) 1799 return (false); 1800 1801 MPASS(inp->inp_flags & INP_FREED); 1802 MPASS(inp->inp_socket == NULL); 1803 MPASS(inp->inp_in_hpts == 0); 1804 INP_WUNLOCK(inp); 1805 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1806 return (true); 1807 } 1808 1809 /* 1810 * Unconditionally schedule an inpcb to be freed by decrementing its 1811 * reference count, which should occur only after the inpcb has been detached 1812 * from its socket. If another thread holds a temporary reference (acquired 1813 * using in_pcbref()) then the free is deferred until that reference is 1814 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1815 * Almost all work, including removal from global lists, is done in this 1816 * context, where the pcbinfo lock is held. 1817 */ 1818 void 1819 in_pcbfree(struct inpcb *inp) 1820 { 1821 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1822 #ifdef INET 1823 struct ip_moptions *imo; 1824 #endif 1825 #ifdef INET6 1826 struct ip6_moptions *im6o; 1827 #endif 1828 1829 INP_WLOCK_ASSERT(inp); 1830 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1831 KASSERT((inp->inp_flags & INP_FREED) == 0, 1832 ("%s: called twice for pcb %p", __func__, inp)); 1833 1834 inp->inp_flags |= INP_FREED; 1835 INP_INFO_WLOCK(pcbinfo); 1836 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1837 pcbinfo->ipi_count--; 1838 CK_LIST_REMOVE(inp, inp_list); 1839 INP_INFO_WUNLOCK(pcbinfo); 1840 1841 if (inp->inp_flags & INP_INHASHLIST) { 1842 struct inpcbport *phd = inp->inp_phd; 1843 1844 INP_HASH_WLOCK(pcbinfo); 1845 /* XXX: Only do if SO_REUSEPORT_LB set? */ 1846 in_pcbremlbgrouphash(inp); 1847 1848 CK_LIST_REMOVE(inp, inp_hash); 1849 CK_LIST_REMOVE(inp, inp_portlist); 1850 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1851 CK_LIST_REMOVE(phd, phd_hash); 1852 uma_zfree_smr(pcbinfo->ipi_portzone, phd); 1853 } 1854 INP_HASH_WUNLOCK(pcbinfo); 1855 inp->inp_flags &= ~INP_INHASHLIST; 1856 } 1857 1858 RO_INVALIDATE_CACHE(&inp->inp_route); 1859 #ifdef MAC 1860 mac_inpcb_destroy(inp); 1861 #endif 1862 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1863 if (inp->inp_sp != NULL) 1864 ipsec_delete_pcbpolicy(inp); 1865 #endif 1866 #ifdef INET 1867 if (inp->inp_options) 1868 (void)m_free(inp->inp_options); 1869 imo = inp->inp_moptions; 1870 #endif 1871 #ifdef INET6 1872 if (inp->inp_vflag & INP_IPV6PROTO) { 1873 ip6_freepcbopts(inp->in6p_outputopts); 1874 im6o = inp->in6p_moptions; 1875 } else 1876 im6o = NULL; 1877 #endif 1878 1879 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1880 INP_WUNLOCK(inp); 1881 } 1882 #ifdef INET6 1883 ip6_freemoptions(im6o); 1884 #endif 1885 #ifdef INET 1886 inp_freemoptions(imo); 1887 #endif 1888 /* Destruction is finalized in inpcb_dtor(). */ 1889 } 1890 1891 static void 1892 inpcb_dtor(void *mem, int size, void *arg) 1893 { 1894 struct inpcb *inp = mem; 1895 1896 crfree(inp->inp_cred); 1897 #ifdef INVARIANTS 1898 inp->inp_cred = NULL; 1899 #endif 1900 } 1901 1902 /* 1903 * Different protocols initialize their inpcbs differently - giving 1904 * different name to the lock. But they all are disposed the same. 1905 */ 1906 static void 1907 inpcb_fini(void *mem, int size) 1908 { 1909 struct inpcb *inp = mem; 1910 1911 INP_LOCK_DESTROY(inp); 1912 } 1913 1914 /* 1915 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1916 * port reservation, and preventing it from being returned by inpcb lookups. 1917 * 1918 * It is used by TCP to mark an inpcb as unused and avoid future packet 1919 * delivery or event notification when a socket remains open but TCP has 1920 * closed. This might occur as a result of a shutdown()-initiated TCP close 1921 * or a RST on the wire, and allows the port binding to be reused while still 1922 * maintaining the invariant that so_pcb always points to a valid inpcb until 1923 * in_pcbdetach(). 1924 * 1925 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1926 * in_pcbnotifyall() and in_pcbpurgeif0()? 1927 */ 1928 void 1929 in_pcbdrop(struct inpcb *inp) 1930 { 1931 1932 INP_WLOCK_ASSERT(inp); 1933 #ifdef INVARIANTS 1934 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1935 MPASS(inp->inp_refcount > 1); 1936 #endif 1937 1938 /* 1939 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1940 * the hash lock...? 1941 */ 1942 inp->inp_flags |= INP_DROPPED; 1943 if (inp->inp_flags & INP_INHASHLIST) { 1944 struct inpcbport *phd = inp->inp_phd; 1945 1946 INP_HASH_WLOCK(inp->inp_pcbinfo); 1947 in_pcbremlbgrouphash(inp); 1948 CK_LIST_REMOVE(inp, inp_hash); 1949 CK_LIST_REMOVE(inp, inp_portlist); 1950 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1951 CK_LIST_REMOVE(phd, phd_hash); 1952 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 1953 } 1954 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1955 inp->inp_flags &= ~INP_INHASHLIST; 1956 } 1957 } 1958 1959 #ifdef INET 1960 /* 1961 * Common routines to return the socket addresses associated with inpcbs. 1962 */ 1963 struct sockaddr * 1964 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1965 { 1966 struct sockaddr_in *sin; 1967 1968 sin = malloc(sizeof *sin, M_SONAME, 1969 M_WAITOK | M_ZERO); 1970 sin->sin_family = AF_INET; 1971 sin->sin_len = sizeof(*sin); 1972 sin->sin_addr = *addr_p; 1973 sin->sin_port = port; 1974 1975 return (struct sockaddr *)sin; 1976 } 1977 1978 int 1979 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1980 { 1981 struct inpcb *inp; 1982 struct in_addr addr; 1983 in_port_t port; 1984 1985 inp = sotoinpcb(so); 1986 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1987 1988 INP_RLOCK(inp); 1989 port = inp->inp_lport; 1990 addr = inp->inp_laddr; 1991 INP_RUNLOCK(inp); 1992 1993 *nam = in_sockaddr(port, &addr); 1994 return 0; 1995 } 1996 1997 int 1998 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1999 { 2000 struct inpcb *inp; 2001 struct in_addr addr; 2002 in_port_t port; 2003 2004 inp = sotoinpcb(so); 2005 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 2006 2007 INP_RLOCK(inp); 2008 port = inp->inp_fport; 2009 addr = inp->inp_faddr; 2010 INP_RUNLOCK(inp); 2011 2012 *nam = in_sockaddr(port, &addr); 2013 return 0; 2014 } 2015 2016 void 2017 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 2018 struct inpcb *(*notify)(struct inpcb *, int)) 2019 { 2020 struct inpcb *inp, *inp_temp; 2021 2022 INP_INFO_WLOCK(pcbinfo); 2023 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 2024 INP_WLOCK(inp); 2025 #ifdef INET6 2026 if ((inp->inp_vflag & INP_IPV4) == 0) { 2027 INP_WUNLOCK(inp); 2028 continue; 2029 } 2030 #endif 2031 if (inp->inp_faddr.s_addr != faddr.s_addr || 2032 inp->inp_socket == NULL) { 2033 INP_WUNLOCK(inp); 2034 continue; 2035 } 2036 if ((*notify)(inp, errno)) 2037 INP_WUNLOCK(inp); 2038 } 2039 INP_INFO_WUNLOCK(pcbinfo); 2040 } 2041 2042 static bool 2043 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 2044 { 2045 2046 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 2047 return (true); 2048 else 2049 return (false); 2050 } 2051 2052 void 2053 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 2054 { 2055 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 2056 inp_v4_multi_match, NULL); 2057 struct inpcb *inp; 2058 struct in_multi *inm; 2059 struct in_mfilter *imf; 2060 struct ip_moptions *imo; 2061 2062 IN_MULTI_LOCK_ASSERT(); 2063 2064 while ((inp = inp_next(&inpi)) != NULL) { 2065 INP_WLOCK_ASSERT(inp); 2066 2067 imo = inp->inp_moptions; 2068 /* 2069 * Unselect the outgoing interface if it is being 2070 * detached. 2071 */ 2072 if (imo->imo_multicast_ifp == ifp) 2073 imo->imo_multicast_ifp = NULL; 2074 2075 /* 2076 * Drop multicast group membership if we joined 2077 * through the interface being detached. 2078 * 2079 * XXX This can all be deferred to an epoch_call 2080 */ 2081 restart: 2082 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2083 if ((inm = imf->imf_inm) == NULL) 2084 continue; 2085 if (inm->inm_ifp != ifp) 2086 continue; 2087 ip_mfilter_remove(&imo->imo_head, imf); 2088 in_leavegroup_locked(inm, NULL); 2089 ip_mfilter_free(imf); 2090 goto restart; 2091 } 2092 } 2093 } 2094 2095 /* 2096 * Lookup a PCB based on the local address and port. Caller must hold the 2097 * hash lock. No inpcb locks or references are acquired. 2098 */ 2099 #define INP_LOOKUP_MAPPED_PCB_COST 3 2100 struct inpcb * 2101 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2102 u_short lport, int lookupflags, struct ucred *cred) 2103 { 2104 struct inpcb *inp; 2105 #ifdef INET6 2106 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2107 #else 2108 int matchwild = 3; 2109 #endif 2110 int wildcard; 2111 2112 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2113 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2114 INP_HASH_LOCK_ASSERT(pcbinfo); 2115 2116 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2117 struct inpcbhead *head; 2118 /* 2119 * Look for an unconnected (wildcard foreign addr) PCB that 2120 * matches the local address and port we're looking for. 2121 */ 2122 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2123 pcbinfo->ipi_hashmask)]; 2124 CK_LIST_FOREACH(inp, head, inp_hash) { 2125 #ifdef INET6 2126 /* XXX inp locking */ 2127 if ((inp->inp_vflag & INP_IPV4) == 0) 2128 continue; 2129 #endif 2130 if (inp->inp_faddr.s_addr == INADDR_ANY && 2131 inp->inp_laddr.s_addr == laddr.s_addr && 2132 inp->inp_lport == lport) { 2133 /* 2134 * Found? 2135 */ 2136 if (cred == NULL || 2137 prison_equal_ip4(cred->cr_prison, 2138 inp->inp_cred->cr_prison)) 2139 return (inp); 2140 } 2141 } 2142 /* 2143 * Not found. 2144 */ 2145 return (NULL); 2146 } else { 2147 struct inpcbporthead *porthash; 2148 struct inpcbport *phd; 2149 struct inpcb *match = NULL; 2150 /* 2151 * Best fit PCB lookup. 2152 * 2153 * First see if this local port is in use by looking on the 2154 * port hash list. 2155 */ 2156 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2157 pcbinfo->ipi_porthashmask)]; 2158 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2159 if (phd->phd_port == lport) 2160 break; 2161 } 2162 if (phd != NULL) { 2163 /* 2164 * Port is in use by one or more PCBs. Look for best 2165 * fit. 2166 */ 2167 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2168 wildcard = 0; 2169 if (cred != NULL && 2170 !prison_equal_ip4(inp->inp_cred->cr_prison, 2171 cred->cr_prison)) 2172 continue; 2173 #ifdef INET6 2174 /* XXX inp locking */ 2175 if ((inp->inp_vflag & INP_IPV4) == 0) 2176 continue; 2177 /* 2178 * We never select the PCB that has 2179 * INP_IPV6 flag and is bound to :: if 2180 * we have another PCB which is bound 2181 * to 0.0.0.0. If a PCB has the 2182 * INP_IPV6 flag, then we set its cost 2183 * higher than IPv4 only PCBs. 2184 * 2185 * Note that the case only happens 2186 * when a socket is bound to ::, under 2187 * the condition that the use of the 2188 * mapped address is allowed. 2189 */ 2190 if ((inp->inp_vflag & INP_IPV6) != 0) 2191 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2192 #endif 2193 if (inp->inp_faddr.s_addr != INADDR_ANY) 2194 wildcard++; 2195 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2196 if (laddr.s_addr == INADDR_ANY) 2197 wildcard++; 2198 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2199 continue; 2200 } else { 2201 if (laddr.s_addr != INADDR_ANY) 2202 wildcard++; 2203 } 2204 if (wildcard < matchwild) { 2205 match = inp; 2206 matchwild = wildcard; 2207 if (matchwild == 0) 2208 break; 2209 } 2210 } 2211 } 2212 return (match); 2213 } 2214 } 2215 #undef INP_LOOKUP_MAPPED_PCB_COST 2216 2217 static struct inpcb * 2218 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2219 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2220 uint16_t fport, int lookupflags, int numa_domain) 2221 { 2222 struct inpcb *local_wild, *numa_wild; 2223 const struct inpcblbgrouphead *hdr; 2224 struct inpcblbgroup *grp; 2225 uint32_t idx; 2226 2227 INP_HASH_LOCK_ASSERT(pcbinfo); 2228 2229 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2230 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2231 2232 /* 2233 * Order of socket selection: 2234 * 1. non-wild. 2235 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2236 * 2237 * NOTE: 2238 * - Load balanced group does not contain jailed sockets 2239 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2240 */ 2241 local_wild = NULL; 2242 numa_wild = NULL; 2243 CK_LIST_FOREACH(grp, hdr, il_list) { 2244 #ifdef INET6 2245 if (!(grp->il_vflag & INP_IPV4)) 2246 continue; 2247 #endif 2248 if (grp->il_lport != lport) 2249 continue; 2250 2251 idx = INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2252 grp->il_inpcnt; 2253 if (grp->il_laddr.s_addr == laddr->s_addr) { 2254 if (numa_domain == M_NODOM || 2255 grp->il_numa_domain == numa_domain) { 2256 return (grp->il_inp[idx]); 2257 } else { 2258 numa_wild = grp->il_inp[idx]; 2259 } 2260 } 2261 if (grp->il_laddr.s_addr == INADDR_ANY && 2262 (lookupflags & INPLOOKUP_WILDCARD) != 0 && 2263 (local_wild == NULL || numa_domain == M_NODOM || 2264 grp->il_numa_domain == numa_domain)) { 2265 local_wild = grp->il_inp[idx]; 2266 } 2267 } 2268 if (numa_wild != NULL) 2269 return (numa_wild); 2270 2271 return (local_wild); 2272 } 2273 2274 /* 2275 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2276 * that the caller has either locked the hash list, which usually happens 2277 * for bind(2) operations, or is in SMR section, which happens when sorting 2278 * out incoming packets. 2279 */ 2280 static struct inpcb * 2281 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2282 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2283 struct ifnet *ifp, uint8_t numa_domain) 2284 { 2285 struct inpcbhead *head; 2286 struct inpcb *inp, *tmpinp; 2287 u_short fport = fport_arg, lport = lport_arg; 2288 2289 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2290 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2291 INP_HASH_LOCK_ASSERT(pcbinfo); 2292 2293 /* 2294 * First look for an exact match. 2295 */ 2296 tmpinp = NULL; 2297 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2298 pcbinfo->ipi_hashmask)]; 2299 CK_LIST_FOREACH(inp, head, inp_hash) { 2300 #ifdef INET6 2301 /* XXX inp locking */ 2302 if ((inp->inp_vflag & INP_IPV4) == 0) 2303 continue; 2304 #endif 2305 if (inp->inp_faddr.s_addr == faddr.s_addr && 2306 inp->inp_laddr.s_addr == laddr.s_addr && 2307 inp->inp_fport == fport && 2308 inp->inp_lport == lport) { 2309 /* 2310 * XXX We should be able to directly return 2311 * the inp here, without any checks. 2312 * Well unless both bound with SO_REUSEPORT? 2313 */ 2314 if (prison_flag(inp->inp_cred, PR_IP4)) 2315 return (inp); 2316 if (tmpinp == NULL) 2317 tmpinp = inp; 2318 } 2319 } 2320 if (tmpinp != NULL) 2321 return (tmpinp); 2322 2323 /* 2324 * Then look in lb group (for wildcard match). 2325 */ 2326 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2327 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2328 fport, lookupflags, numa_domain); 2329 if (inp != NULL) 2330 return (inp); 2331 } 2332 2333 /* 2334 * Then look for a wildcard match, if requested. 2335 */ 2336 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2337 struct inpcb *local_wild = NULL, *local_exact = NULL; 2338 #ifdef INET6 2339 struct inpcb *local_wild_mapped = NULL; 2340 #endif 2341 struct inpcb *jail_wild = NULL; 2342 int injail; 2343 2344 /* 2345 * Order of socket selection - we always prefer jails. 2346 * 1. jailed, non-wild. 2347 * 2. jailed, wild. 2348 * 3. non-jailed, non-wild. 2349 * 4. non-jailed, wild. 2350 */ 2351 2352 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2353 pcbinfo->ipi_hashmask)]; 2354 CK_LIST_FOREACH(inp, head, inp_hash) { 2355 #ifdef INET6 2356 /* XXX inp locking */ 2357 if ((inp->inp_vflag & INP_IPV4) == 0) 2358 continue; 2359 #endif 2360 if (inp->inp_faddr.s_addr != INADDR_ANY || 2361 inp->inp_lport != lport) 2362 continue; 2363 2364 injail = prison_flag(inp->inp_cred, PR_IP4); 2365 if (injail) { 2366 if (prison_check_ip4_locked( 2367 inp->inp_cred->cr_prison, &laddr) != 0) 2368 continue; 2369 } else { 2370 if (local_exact != NULL) 2371 continue; 2372 } 2373 2374 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2375 if (injail) 2376 return (inp); 2377 else 2378 local_exact = inp; 2379 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2380 #ifdef INET6 2381 /* XXX inp locking, NULL check */ 2382 if (inp->inp_vflag & INP_IPV6PROTO) 2383 local_wild_mapped = inp; 2384 else 2385 #endif 2386 if (injail) 2387 jail_wild = inp; 2388 else 2389 local_wild = inp; 2390 } 2391 } /* LIST_FOREACH */ 2392 if (jail_wild != NULL) 2393 return (jail_wild); 2394 if (local_exact != NULL) 2395 return (local_exact); 2396 if (local_wild != NULL) 2397 return (local_wild); 2398 #ifdef INET6 2399 if (local_wild_mapped != NULL) 2400 return (local_wild_mapped); 2401 #endif 2402 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2403 2404 return (NULL); 2405 } 2406 2407 /* 2408 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2409 * hash list lock, and will return the inpcb locked (i.e., requires 2410 * INPLOOKUP_LOCKPCB). 2411 */ 2412 static struct inpcb * 2413 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2414 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2415 struct ifnet *ifp, uint8_t numa_domain) 2416 { 2417 struct inpcb *inp; 2418 2419 smr_enter(pcbinfo->ipi_smr); 2420 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2421 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2422 if (inp != NULL) { 2423 if (__predict_false(inp_smr_lock(inp, 2424 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2425 inp = NULL; 2426 } else 2427 smr_exit(pcbinfo->ipi_smr); 2428 2429 return (inp); 2430 } 2431 2432 /* 2433 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2434 * from which a pre-calculated hash value may be extracted. 2435 */ 2436 struct inpcb * 2437 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2438 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2439 { 2440 2441 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2442 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2443 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2444 ("%s: LOCKPCB not set", __func__)); 2445 2446 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2447 lookupflags, ifp, M_NODOM)); 2448 } 2449 2450 struct inpcb * 2451 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2452 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2453 struct ifnet *ifp, struct mbuf *m) 2454 { 2455 2456 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2457 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2458 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2459 ("%s: LOCKPCB not set", __func__)); 2460 2461 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2462 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2463 } 2464 #endif /* INET */ 2465 2466 /* 2467 * Insert PCB onto various hash lists. 2468 */ 2469 int 2470 in_pcbinshash(struct inpcb *inp) 2471 { 2472 struct inpcbhead *pcbhash; 2473 struct inpcbporthead *pcbporthash; 2474 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2475 struct inpcbport *phd; 2476 int so_options; 2477 2478 INP_WLOCK_ASSERT(inp); 2479 INP_HASH_WLOCK_ASSERT(pcbinfo); 2480 2481 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2482 ("in_pcbinshash: INP_INHASHLIST")); 2483 2484 #ifdef INET6 2485 if (inp->inp_vflag & INP_IPV6) 2486 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2487 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2488 else 2489 #endif 2490 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2491 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2492 2493 pcbporthash = &pcbinfo->ipi_porthashbase[ 2494 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2495 2496 /* 2497 * Add entry to load balance group. 2498 * Only do this if SO_REUSEPORT_LB is set. 2499 */ 2500 so_options = inp_so_options(inp); 2501 if (so_options & SO_REUSEPORT_LB) { 2502 int ret = in_pcbinslbgrouphash(inp, M_NODOM); 2503 if (ret) { 2504 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2505 return (ret); 2506 } 2507 } 2508 2509 /* 2510 * Go through port list and look for a head for this lport. 2511 */ 2512 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2513 if (phd->phd_port == inp->inp_lport) 2514 break; 2515 } 2516 /* 2517 * If none exists, malloc one and tack it on. 2518 */ 2519 if (phd == NULL) { 2520 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2521 if (phd == NULL) { 2522 return (ENOBUFS); /* XXX */ 2523 } 2524 phd->phd_port = inp->inp_lport; 2525 CK_LIST_INIT(&phd->phd_pcblist); 2526 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2527 } 2528 inp->inp_phd = phd; 2529 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2530 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2531 inp->inp_flags |= INP_INHASHLIST; 2532 2533 return (0); 2534 } 2535 2536 /* 2537 * Move PCB to the proper hash bucket when { faddr, fport } have been 2538 * changed. NOTE: This does not handle the case of the lport changing (the 2539 * hashed port list would have to be updated as well), so the lport must 2540 * not change after in_pcbinshash() has been called. 2541 * 2542 * XXXGL: a race between this function and SMR-protected hash iterator 2543 * will lead to iterator traversing a possibly wrong hash list. However, 2544 * this race should have been here since change from rwlock to epoch. 2545 */ 2546 void 2547 in_pcbrehash(struct inpcb *inp) 2548 { 2549 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2550 struct inpcbhead *head; 2551 2552 INP_WLOCK_ASSERT(inp); 2553 INP_HASH_WLOCK_ASSERT(pcbinfo); 2554 2555 KASSERT(inp->inp_flags & INP_INHASHLIST, 2556 ("in_pcbrehash: !INP_INHASHLIST")); 2557 2558 #ifdef INET6 2559 if (inp->inp_vflag & INP_IPV6) 2560 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2561 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2562 else 2563 #endif 2564 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2565 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2566 2567 CK_LIST_REMOVE(inp, inp_hash); 2568 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2569 } 2570 2571 /* 2572 * Check for alternatives when higher level complains 2573 * about service problems. For now, invalidate cached 2574 * routing information. If the route was created dynamically 2575 * (by a redirect), time to try a default gateway again. 2576 */ 2577 void 2578 in_losing(struct inpcb *inp) 2579 { 2580 2581 RO_INVALIDATE_CACHE(&inp->inp_route); 2582 return; 2583 } 2584 2585 /* 2586 * A set label operation has occurred at the socket layer, propagate the 2587 * label change into the in_pcb for the socket. 2588 */ 2589 void 2590 in_pcbsosetlabel(struct socket *so) 2591 { 2592 #ifdef MAC 2593 struct inpcb *inp; 2594 2595 inp = sotoinpcb(so); 2596 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2597 2598 INP_WLOCK(inp); 2599 SOCK_LOCK(so); 2600 mac_inpcb_sosetlabel(so, inp); 2601 SOCK_UNLOCK(so); 2602 INP_WUNLOCK(inp); 2603 #endif 2604 } 2605 2606 /* 2607 * ipport_tick runs once per second, determining if random port allocation 2608 * should be continued. If more than ipport_randomcps ports have been 2609 * allocated in the last second, then we return to sequential port 2610 * allocation. We return to random allocation only once we drop below 2611 * ipport_randomcps for at least ipport_randomtime seconds. 2612 */ 2613 static void 2614 ipport_tick(void *xtp) 2615 { 2616 VNET_ITERATOR_DECL(vnet_iter); 2617 2618 VNET_LIST_RLOCK_NOSLEEP(); 2619 VNET_FOREACH(vnet_iter) { 2620 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2621 if (V_ipport_tcpallocs - V_ipport_tcplastcount <= 2622 V_ipport_randomcps) { 2623 if (V_ipport_stoprandom > 0) 2624 V_ipport_stoprandom--; 2625 } else 2626 V_ipport_stoprandom = V_ipport_randomtime; 2627 V_ipport_tcplastcount = V_ipport_tcpallocs; 2628 CURVNET_RESTORE(); 2629 } 2630 VNET_LIST_RUNLOCK_NOSLEEP(); 2631 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2632 } 2633 2634 static void 2635 ip_fini(void *xtp) 2636 { 2637 2638 callout_stop(&ipport_tick_callout); 2639 } 2640 2641 /* 2642 * The ipport_callout should start running at about the time we attach the 2643 * inet or inet6 domains. 2644 */ 2645 static void 2646 ipport_tick_init(const void *unused __unused) 2647 { 2648 2649 /* Start ipport_tick. */ 2650 callout_init(&ipport_tick_callout, 1); 2651 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2652 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2653 SHUTDOWN_PRI_DEFAULT); 2654 } 2655 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2656 ipport_tick_init, NULL); 2657 2658 void 2659 inp_wlock(struct inpcb *inp) 2660 { 2661 2662 INP_WLOCK(inp); 2663 } 2664 2665 void 2666 inp_wunlock(struct inpcb *inp) 2667 { 2668 2669 INP_WUNLOCK(inp); 2670 } 2671 2672 void 2673 inp_rlock(struct inpcb *inp) 2674 { 2675 2676 INP_RLOCK(inp); 2677 } 2678 2679 void 2680 inp_runlock(struct inpcb *inp) 2681 { 2682 2683 INP_RUNLOCK(inp); 2684 } 2685 2686 #ifdef INVARIANT_SUPPORT 2687 void 2688 inp_lock_assert(struct inpcb *inp) 2689 { 2690 2691 INP_WLOCK_ASSERT(inp); 2692 } 2693 2694 void 2695 inp_unlock_assert(struct inpcb *inp) 2696 { 2697 2698 INP_UNLOCK_ASSERT(inp); 2699 } 2700 #endif 2701 2702 void 2703 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2704 { 2705 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 2706 INPLOOKUP_WLOCKPCB); 2707 struct inpcb *inp; 2708 2709 while ((inp = inp_next(&inpi)) != NULL) 2710 func(inp, arg); 2711 } 2712 2713 struct socket * 2714 inp_inpcbtosocket(struct inpcb *inp) 2715 { 2716 2717 INP_WLOCK_ASSERT(inp); 2718 return (inp->inp_socket); 2719 } 2720 2721 struct tcpcb * 2722 inp_inpcbtotcpcb(struct inpcb *inp) 2723 { 2724 2725 INP_WLOCK_ASSERT(inp); 2726 return ((struct tcpcb *)inp->inp_ppcb); 2727 } 2728 2729 int 2730 inp_ip_tos_get(const struct inpcb *inp) 2731 { 2732 2733 return (inp->inp_ip_tos); 2734 } 2735 2736 void 2737 inp_ip_tos_set(struct inpcb *inp, int val) 2738 { 2739 2740 inp->inp_ip_tos = val; 2741 } 2742 2743 void 2744 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2745 uint32_t *faddr, uint16_t *fp) 2746 { 2747 2748 INP_LOCK_ASSERT(inp); 2749 *laddr = inp->inp_laddr.s_addr; 2750 *faddr = inp->inp_faddr.s_addr; 2751 *lp = inp->inp_lport; 2752 *fp = inp->inp_fport; 2753 } 2754 2755 struct inpcb * 2756 so_sotoinpcb(struct socket *so) 2757 { 2758 2759 return (sotoinpcb(so)); 2760 } 2761 2762 struct tcpcb * 2763 so_sototcpcb(struct socket *so) 2764 { 2765 2766 return (sototcpcb(so)); 2767 } 2768 2769 /* 2770 * Create an external-format (``xinpcb'') structure using the information in 2771 * the kernel-format in_pcb structure pointed to by inp. This is done to 2772 * reduce the spew of irrelevant information over this interface, to isolate 2773 * user code from changes in the kernel structure, and potentially to provide 2774 * information-hiding if we decide that some of this information should be 2775 * hidden from users. 2776 */ 2777 void 2778 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2779 { 2780 2781 bzero(xi, sizeof(*xi)); 2782 xi->xi_len = sizeof(struct xinpcb); 2783 if (inp->inp_socket) 2784 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2785 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2786 xi->inp_gencnt = inp->inp_gencnt; 2787 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2788 xi->inp_flow = inp->inp_flow; 2789 xi->inp_flowid = inp->inp_flowid; 2790 xi->inp_flowtype = inp->inp_flowtype; 2791 xi->inp_flags = inp->inp_flags; 2792 xi->inp_flags2 = inp->inp_flags2; 2793 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2794 xi->in6p_cksum = inp->in6p_cksum; 2795 xi->in6p_hops = inp->in6p_hops; 2796 xi->inp_ip_tos = inp->inp_ip_tos; 2797 xi->inp_vflag = inp->inp_vflag; 2798 xi->inp_ip_ttl = inp->inp_ip_ttl; 2799 xi->inp_ip_p = inp->inp_ip_p; 2800 xi->inp_ip_minttl = inp->inp_ip_minttl; 2801 } 2802 2803 int 2804 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2805 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2806 { 2807 struct sockopt sopt; 2808 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2809 INPLOOKUP_WLOCKPCB); 2810 struct inpcb *inp; 2811 struct sockopt_parameters *params; 2812 struct socket *so; 2813 int error; 2814 char buf[1024]; 2815 2816 if (req->oldptr != NULL || req->oldlen != 0) 2817 return (EINVAL); 2818 if (req->newptr == NULL) 2819 return (EPERM); 2820 if (req->newlen > sizeof(buf)) 2821 return (ENOMEM); 2822 error = SYSCTL_IN(req, buf, req->newlen); 2823 if (error != 0) 2824 return (error); 2825 if (req->newlen < sizeof(struct sockopt_parameters)) 2826 return (EINVAL); 2827 params = (struct sockopt_parameters *)buf; 2828 sopt.sopt_level = params->sop_level; 2829 sopt.sopt_name = params->sop_optname; 2830 sopt.sopt_dir = SOPT_SET; 2831 sopt.sopt_val = params->sop_optval; 2832 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2833 sopt.sopt_td = NULL; 2834 #ifdef INET6 2835 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2836 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2837 params->sop_inc.inc6_laddr.s6_addr16[1] = 2838 htons(params->sop_inc.inc6_zoneid & 0xffff); 2839 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2840 params->sop_inc.inc6_faddr.s6_addr16[1] = 2841 htons(params->sop_inc.inc6_zoneid & 0xffff); 2842 } 2843 #endif 2844 if (params->sop_inc.inc_lport != htons(0)) { 2845 if (params->sop_inc.inc_fport == htons(0)) 2846 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2847 pcbinfo->ipi_hashmask); 2848 else 2849 #ifdef INET6 2850 if (params->sop_inc.inc_flags & INC_ISIPV6) 2851 inpi.hash = INP6_PCBHASH( 2852 ¶ms->sop_inc.inc6_faddr, 2853 params->sop_inc.inc_lport, 2854 params->sop_inc.inc_fport, 2855 pcbinfo->ipi_hashmask); 2856 else 2857 #endif 2858 inpi.hash = INP_PCBHASH( 2859 ¶ms->sop_inc.inc_faddr, 2860 params->sop_inc.inc_lport, 2861 params->sop_inc.inc_fport, 2862 pcbinfo->ipi_hashmask); 2863 } 2864 while ((inp = inp_next(&inpi)) != NULL) 2865 if (inp->inp_gencnt == params->sop_id) { 2866 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2867 INP_WUNLOCK(inp); 2868 return (ECONNRESET); 2869 } 2870 so = inp->inp_socket; 2871 KASSERT(so != NULL, ("inp_socket == NULL")); 2872 soref(so); 2873 error = (*ctloutput_set)(inp, &sopt); 2874 sorele(so); 2875 break; 2876 } 2877 if (inp == NULL) 2878 error = ESRCH; 2879 return (error); 2880 } 2881 2882 #ifdef DDB 2883 static void 2884 db_print_indent(int indent) 2885 { 2886 int i; 2887 2888 for (i = 0; i < indent; i++) 2889 db_printf(" "); 2890 } 2891 2892 static void 2893 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2894 { 2895 char faddr_str[48], laddr_str[48]; 2896 2897 db_print_indent(indent); 2898 db_printf("%s at %p\n", name, inc); 2899 2900 indent += 2; 2901 2902 #ifdef INET6 2903 if (inc->inc_flags & INC_ISIPV6) { 2904 /* IPv6. */ 2905 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2906 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2907 } else 2908 #endif 2909 { 2910 /* IPv4. */ 2911 inet_ntoa_r(inc->inc_laddr, laddr_str); 2912 inet_ntoa_r(inc->inc_faddr, faddr_str); 2913 } 2914 db_print_indent(indent); 2915 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2916 ntohs(inc->inc_lport)); 2917 db_print_indent(indent); 2918 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2919 ntohs(inc->inc_fport)); 2920 } 2921 2922 static void 2923 db_print_inpflags(int inp_flags) 2924 { 2925 int comma; 2926 2927 comma = 0; 2928 if (inp_flags & INP_RECVOPTS) { 2929 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2930 comma = 1; 2931 } 2932 if (inp_flags & INP_RECVRETOPTS) { 2933 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2934 comma = 1; 2935 } 2936 if (inp_flags & INP_RECVDSTADDR) { 2937 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2938 comma = 1; 2939 } 2940 if (inp_flags & INP_ORIGDSTADDR) { 2941 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2942 comma = 1; 2943 } 2944 if (inp_flags & INP_HDRINCL) { 2945 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2946 comma = 1; 2947 } 2948 if (inp_flags & INP_HIGHPORT) { 2949 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2950 comma = 1; 2951 } 2952 if (inp_flags & INP_LOWPORT) { 2953 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2954 comma = 1; 2955 } 2956 if (inp_flags & INP_ANONPORT) { 2957 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2958 comma = 1; 2959 } 2960 if (inp_flags & INP_RECVIF) { 2961 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2962 comma = 1; 2963 } 2964 if (inp_flags & INP_MTUDISC) { 2965 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2966 comma = 1; 2967 } 2968 if (inp_flags & INP_RECVTTL) { 2969 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2970 comma = 1; 2971 } 2972 if (inp_flags & INP_DONTFRAG) { 2973 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2974 comma = 1; 2975 } 2976 if (inp_flags & INP_RECVTOS) { 2977 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2978 comma = 1; 2979 } 2980 if (inp_flags & IN6P_IPV6_V6ONLY) { 2981 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2982 comma = 1; 2983 } 2984 if (inp_flags & IN6P_PKTINFO) { 2985 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2986 comma = 1; 2987 } 2988 if (inp_flags & IN6P_HOPLIMIT) { 2989 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2990 comma = 1; 2991 } 2992 if (inp_flags & IN6P_HOPOPTS) { 2993 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2994 comma = 1; 2995 } 2996 if (inp_flags & IN6P_DSTOPTS) { 2997 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2998 comma = 1; 2999 } 3000 if (inp_flags & IN6P_RTHDR) { 3001 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3002 comma = 1; 3003 } 3004 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3005 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3006 comma = 1; 3007 } 3008 if (inp_flags & IN6P_TCLASS) { 3009 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3010 comma = 1; 3011 } 3012 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3013 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3014 comma = 1; 3015 } 3016 if (inp_flags & INP_TIMEWAIT) { 3017 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3018 comma = 1; 3019 } 3020 if (inp_flags & INP_ONESBCAST) { 3021 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3022 comma = 1; 3023 } 3024 if (inp_flags & INP_DROPPED) { 3025 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3026 comma = 1; 3027 } 3028 if (inp_flags & INP_SOCKREF) { 3029 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3030 comma = 1; 3031 } 3032 if (inp_flags & IN6P_RFC2292) { 3033 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3034 comma = 1; 3035 } 3036 if (inp_flags & IN6P_MTU) { 3037 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3038 comma = 1; 3039 } 3040 } 3041 3042 static void 3043 db_print_inpvflag(u_char inp_vflag) 3044 { 3045 int comma; 3046 3047 comma = 0; 3048 if (inp_vflag & INP_IPV4) { 3049 db_printf("%sINP_IPV4", comma ? ", " : ""); 3050 comma = 1; 3051 } 3052 if (inp_vflag & INP_IPV6) { 3053 db_printf("%sINP_IPV6", comma ? ", " : ""); 3054 comma = 1; 3055 } 3056 if (inp_vflag & INP_IPV6PROTO) { 3057 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3058 comma = 1; 3059 } 3060 } 3061 3062 static void 3063 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3064 { 3065 3066 db_print_indent(indent); 3067 db_printf("%s at %p\n", name, inp); 3068 3069 indent += 2; 3070 3071 db_print_indent(indent); 3072 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3073 3074 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3075 3076 db_print_indent(indent); 3077 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3078 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3079 3080 db_print_indent(indent); 3081 db_printf("inp_label: %p inp_flags: 0x%x (", 3082 inp->inp_label, inp->inp_flags); 3083 db_print_inpflags(inp->inp_flags); 3084 db_printf(")\n"); 3085 3086 db_print_indent(indent); 3087 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3088 inp->inp_vflag); 3089 db_print_inpvflag(inp->inp_vflag); 3090 db_printf(")\n"); 3091 3092 db_print_indent(indent); 3093 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3094 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3095 3096 db_print_indent(indent); 3097 #ifdef INET6 3098 if (inp->inp_vflag & INP_IPV6) { 3099 db_printf("in6p_options: %p in6p_outputopts: %p " 3100 "in6p_moptions: %p\n", inp->in6p_options, 3101 inp->in6p_outputopts, inp->in6p_moptions); 3102 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3103 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3104 inp->in6p_hops); 3105 } else 3106 #endif 3107 { 3108 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3109 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3110 inp->inp_options, inp->inp_moptions); 3111 } 3112 3113 db_print_indent(indent); 3114 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3115 (uintmax_t)inp->inp_gencnt); 3116 } 3117 3118 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3119 { 3120 struct inpcb *inp; 3121 3122 if (!have_addr) { 3123 db_printf("usage: show inpcb <addr>\n"); 3124 return; 3125 } 3126 inp = (struct inpcb *)addr; 3127 3128 db_print_inpcb(inp, "inpcb", 0); 3129 } 3130 #endif /* DDB */ 3131 3132 #ifdef RATELIMIT 3133 /* 3134 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3135 * if any. 3136 */ 3137 int 3138 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3139 { 3140 union if_snd_tag_modify_params params = { 3141 .rate_limit.max_rate = max_pacing_rate, 3142 .rate_limit.flags = M_NOWAIT, 3143 }; 3144 struct m_snd_tag *mst; 3145 int error; 3146 3147 mst = inp->inp_snd_tag; 3148 if (mst == NULL) 3149 return (EINVAL); 3150 3151 if (mst->sw->snd_tag_modify == NULL) { 3152 error = EOPNOTSUPP; 3153 } else { 3154 error = mst->sw->snd_tag_modify(mst, ¶ms); 3155 } 3156 return (error); 3157 } 3158 3159 /* 3160 * Query existing TX rate limit based on the existing 3161 * "inp->inp_snd_tag", if any. 3162 */ 3163 int 3164 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3165 { 3166 union if_snd_tag_query_params params = { }; 3167 struct m_snd_tag *mst; 3168 int error; 3169 3170 mst = inp->inp_snd_tag; 3171 if (mst == NULL) 3172 return (EINVAL); 3173 3174 if (mst->sw->snd_tag_query == NULL) { 3175 error = EOPNOTSUPP; 3176 } else { 3177 error = mst->sw->snd_tag_query(mst, ¶ms); 3178 if (error == 0 && p_max_pacing_rate != NULL) 3179 *p_max_pacing_rate = params.rate_limit.max_rate; 3180 } 3181 return (error); 3182 } 3183 3184 /* 3185 * Query existing TX queue level based on the existing 3186 * "inp->inp_snd_tag", if any. 3187 */ 3188 int 3189 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3190 { 3191 union if_snd_tag_query_params params = { }; 3192 struct m_snd_tag *mst; 3193 int error; 3194 3195 mst = inp->inp_snd_tag; 3196 if (mst == NULL) 3197 return (EINVAL); 3198 3199 if (mst->sw->snd_tag_query == NULL) 3200 return (EOPNOTSUPP); 3201 3202 error = mst->sw->snd_tag_query(mst, ¶ms); 3203 if (error == 0 && p_txqueue_level != NULL) 3204 *p_txqueue_level = params.rate_limit.queue_level; 3205 return (error); 3206 } 3207 3208 /* 3209 * Allocate a new TX rate limit send tag from the network interface 3210 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3211 */ 3212 int 3213 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3214 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3215 3216 { 3217 union if_snd_tag_alloc_params params = { 3218 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3219 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3220 .rate_limit.hdr.flowid = flowid, 3221 .rate_limit.hdr.flowtype = flowtype, 3222 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3223 .rate_limit.max_rate = max_pacing_rate, 3224 .rate_limit.flags = M_NOWAIT, 3225 }; 3226 int error; 3227 3228 INP_WLOCK_ASSERT(inp); 3229 3230 /* 3231 * If there is already a send tag, or the INP is being torn 3232 * down, allocating a new send tag is not allowed. Else send 3233 * tags may leak. 3234 */ 3235 if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0) 3236 return (EINVAL); 3237 3238 error = m_snd_tag_alloc(ifp, ¶ms, st); 3239 #ifdef INET 3240 if (error == 0) { 3241 counter_u64_add(rate_limit_set_ok, 1); 3242 counter_u64_add(rate_limit_active, 1); 3243 } else if (error != EOPNOTSUPP) 3244 counter_u64_add(rate_limit_alloc_fail, 1); 3245 #endif 3246 return (error); 3247 } 3248 3249 void 3250 in_pcbdetach_tag(struct m_snd_tag *mst) 3251 { 3252 3253 m_snd_tag_rele(mst); 3254 #ifdef INET 3255 counter_u64_add(rate_limit_active, -1); 3256 #endif 3257 } 3258 3259 /* 3260 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3261 * if any: 3262 */ 3263 void 3264 in_pcbdetach_txrtlmt(struct inpcb *inp) 3265 { 3266 struct m_snd_tag *mst; 3267 3268 INP_WLOCK_ASSERT(inp); 3269 3270 mst = inp->inp_snd_tag; 3271 inp->inp_snd_tag = NULL; 3272 3273 if (mst == NULL) 3274 return; 3275 3276 m_snd_tag_rele(mst); 3277 #ifdef INET 3278 counter_u64_add(rate_limit_active, -1); 3279 #endif 3280 } 3281 3282 int 3283 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3284 { 3285 int error; 3286 3287 /* 3288 * If the existing send tag is for the wrong interface due to 3289 * a route change, first drop the existing tag. Set the 3290 * CHANGED flag so that we will keep trying to allocate a new 3291 * tag if we fail to allocate one this time. 3292 */ 3293 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3294 in_pcbdetach_txrtlmt(inp); 3295 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3296 } 3297 3298 /* 3299 * NOTE: When attaching to a network interface a reference is 3300 * made to ensure the network interface doesn't go away until 3301 * all ratelimit connections are gone. The network interface 3302 * pointers compared below represent valid network interfaces, 3303 * except when comparing towards NULL. 3304 */ 3305 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3306 error = 0; 3307 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3308 if (inp->inp_snd_tag != NULL) 3309 in_pcbdetach_txrtlmt(inp); 3310 error = 0; 3311 } else if (inp->inp_snd_tag == NULL) { 3312 /* 3313 * In order to utilize packet pacing with RSS, we need 3314 * to wait until there is a valid RSS hash before we 3315 * can proceed: 3316 */ 3317 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3318 error = EAGAIN; 3319 } else { 3320 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3321 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3322 } 3323 } else { 3324 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3325 } 3326 if (error == 0 || error == EOPNOTSUPP) 3327 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3328 3329 return (error); 3330 } 3331 3332 /* 3333 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3334 * is set in the fast path and will attach/detach/modify the TX rate 3335 * limit send tag based on the socket's so_max_pacing_rate value. 3336 */ 3337 void 3338 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3339 { 3340 struct socket *socket; 3341 uint32_t max_pacing_rate; 3342 bool did_upgrade; 3343 3344 if (inp == NULL) 3345 return; 3346 3347 socket = inp->inp_socket; 3348 if (socket == NULL) 3349 return; 3350 3351 if (!INP_WLOCKED(inp)) { 3352 /* 3353 * NOTE: If the write locking fails, we need to bail 3354 * out and use the non-ratelimited ring for the 3355 * transmit until there is a new chance to get the 3356 * write lock. 3357 */ 3358 if (!INP_TRY_UPGRADE(inp)) 3359 return; 3360 did_upgrade = 1; 3361 } else { 3362 did_upgrade = 0; 3363 } 3364 3365 /* 3366 * NOTE: The so_max_pacing_rate value is read unlocked, 3367 * because atomic updates are not required since the variable 3368 * is checked at every mbuf we send. It is assumed that the 3369 * variable read itself will be atomic. 3370 */ 3371 max_pacing_rate = socket->so_max_pacing_rate; 3372 3373 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3374 3375 if (did_upgrade) 3376 INP_DOWNGRADE(inp); 3377 } 3378 3379 /* 3380 * Track route changes for TX rate limiting. 3381 */ 3382 void 3383 in_pcboutput_eagain(struct inpcb *inp) 3384 { 3385 bool did_upgrade; 3386 3387 if (inp == NULL) 3388 return; 3389 3390 if (inp->inp_snd_tag == NULL) 3391 return; 3392 3393 if (!INP_WLOCKED(inp)) { 3394 /* 3395 * NOTE: If the write locking fails, we need to bail 3396 * out and use the non-ratelimited ring for the 3397 * transmit until there is a new chance to get the 3398 * write lock. 3399 */ 3400 if (!INP_TRY_UPGRADE(inp)) 3401 return; 3402 did_upgrade = 1; 3403 } else { 3404 did_upgrade = 0; 3405 } 3406 3407 /* detach rate limiting */ 3408 in_pcbdetach_txrtlmt(inp); 3409 3410 /* make sure new mbuf send tag allocation is made */ 3411 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3412 3413 if (did_upgrade) 3414 INP_DOWNGRADE(inp); 3415 } 3416 3417 #ifdef INET 3418 static void 3419 rl_init(void *st) 3420 { 3421 rate_limit_new = counter_u64_alloc(M_WAITOK); 3422 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3423 rate_limit_active = counter_u64_alloc(M_WAITOK); 3424 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3425 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3426 } 3427 3428 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3429 #endif 3430 #endif /* RATELIMIT */ 3431