1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 #include "opt_ddb.h" 41 #include "opt_ipsec.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_ratelimit.h" 45 #include "opt_route.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/hash.h> 50 #include <sys/systm.h> 51 #include <sys/libkern.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/mbuf.h> 55 #include <sys/eventhandler.h> 56 #include <sys/domain.h> 57 #include <sys/proc.h> 58 #include <sys/protosw.h> 59 #include <sys/smp.h> 60 #include <sys/smr.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sockio.h> 64 #include <sys/priv.h> 65 #include <sys/proc.h> 66 #include <sys/refcount.h> 67 #include <sys/jail.h> 68 #include <sys/kernel.h> 69 #include <sys/sysctl.h> 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <vm/uma.h> 76 #include <vm/vm.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_private.h> 81 #include <net/if_types.h> 82 #include <net/if_llatbl.h> 83 #include <net/route.h> 84 #include <net/rss_config.h> 85 #include <net/vnet.h> 86 87 #if defined(INET) || defined(INET6) 88 #include <netinet/in.h> 89 #include <netinet/in_pcb.h> 90 #include <netinet/in_pcb_var.h> 91 #include <netinet/tcp.h> 92 #ifdef INET 93 #include <netinet/in_var.h> 94 #include <netinet/in_fib.h> 95 #endif 96 #include <netinet/ip_var.h> 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet6/in6_pcb.h> 100 #include <netinet6/in6_var.h> 101 #include <netinet6/ip6_var.h> 102 #endif /* INET6 */ 103 #include <net/route/nhop.h> 104 #endif 105 106 #include <netipsec/ipsec_support.h> 107 108 #include <security/mac/mac_framework.h> 109 110 #define INPCBLBGROUP_SIZMIN 8 111 #define INPCBLBGROUP_SIZMAX 256 112 113 #define INP_FREED 0x00000200 /* Went through in_pcbfree(). */ 114 #define INP_INLBGROUP 0x01000000 /* Inserted into inpcblbgroup. */ 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Enable random ephemeral port allocation by default. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; 137 138 #ifdef INET 139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 140 struct in_addr faddr, u_int fport_arg, 141 struct in_addr laddr, u_int lport_arg, 142 int lookupflags, uint8_t numa_domain); 143 144 #define RANGECHK(var, min, max) \ 145 if ((var) < (min)) { (var) = (min); } \ 146 else if ((var) > (max)) { (var) = (max); } 147 148 static int 149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 150 { 151 int error; 152 153 error = sysctl_handle_int(oidp, arg1, arg2, req); 154 if (error == 0) { 155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 161 } 162 return (error); 163 } 164 165 #undef RANGECHK 166 167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 174 ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 178 ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 182 ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 197 &VNET_NAME(ipport_reservedhigh), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 201 CTLFLAG_VNET | CTLFLAG_RW, 202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 203 204 #ifdef RATELIMIT 205 counter_u64_t rate_limit_new; 206 counter_u64_t rate_limit_chg; 207 counter_u64_t rate_limit_active; 208 counter_u64_t rate_limit_alloc_fail; 209 counter_u64_t rate_limit_set_ok; 210 211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 212 "IP Rate Limiting"); 213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 214 &rate_limit_active, "Active rate limited connections"); 215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 216 &rate_limit_alloc_fail, "Rate limited connection failures"); 217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 218 &rate_limit_set_ok, "Rate limited setting succeeded"); 219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 220 &rate_limit_new, "Total Rate limit new attempts"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 222 &rate_limit_chg, "Total Rate limited change attempts"); 223 #endif /* RATELIMIT */ 224 225 #endif /* INET */ 226 227 VNET_DEFINE(uint32_t, in_pcbhashseed); 228 static void 229 in_pcbhashseed_init(void) 230 { 231 232 V_in_pcbhashseed = arc4random(); 233 } 234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 235 in_pcbhashseed_init, 0); 236 237 static void in_pcbremhash(struct inpcb *); 238 239 /* 240 * in_pcb.c: manage the Protocol Control Blocks. 241 * 242 * NOTE: It is assumed that most of these functions will be called with 243 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 244 * functions often modify hash chains or addresses in pcbs. 245 */ 246 247 static struct inpcblbgroup * 248 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, 249 u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, 250 uint8_t numa_domain) 251 { 252 struct inpcblbgroup *grp; 253 size_t bytes; 254 255 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 256 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 257 if (grp == NULL) 258 return (NULL); 259 grp->il_cred = crhold(cred); 260 grp->il_vflag = vflag; 261 grp->il_lport = port; 262 grp->il_numa_domain = numa_domain; 263 grp->il_dependladdr = *addr; 264 grp->il_inpsiz = size; 265 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 266 return (grp); 267 } 268 269 static void 270 in_pcblbgroup_free_deferred(epoch_context_t ctx) 271 { 272 struct inpcblbgroup *grp; 273 274 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 275 crfree(grp->il_cred); 276 free(grp, M_PCB); 277 } 278 279 static void 280 in_pcblbgroup_free(struct inpcblbgroup *grp) 281 { 282 283 CK_LIST_REMOVE(grp, il_list); 284 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 285 } 286 287 static struct inpcblbgroup * 288 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 289 struct inpcblbgroup *old_grp, int size) 290 { 291 struct inpcblbgroup *grp; 292 int i; 293 294 grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, 295 old_grp->il_lport, &old_grp->il_dependladdr, size, 296 old_grp->il_numa_domain); 297 if (grp == NULL) 298 return (NULL); 299 300 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 301 ("invalid new local group size %d and old local group count %d", 302 grp->il_inpsiz, old_grp->il_inpcnt)); 303 304 for (i = 0; i < old_grp->il_inpcnt; ++i) 305 grp->il_inp[i] = old_grp->il_inp[i]; 306 grp->il_inpcnt = old_grp->il_inpcnt; 307 in_pcblbgroup_free(old_grp); 308 return (grp); 309 } 310 311 /* 312 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 313 * and shrink group if possible. 314 */ 315 static void 316 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 317 int i) 318 { 319 struct inpcblbgroup *grp, *new_grp; 320 321 grp = *grpp; 322 for (; i + 1 < grp->il_inpcnt; ++i) 323 grp->il_inp[i] = grp->il_inp[i + 1]; 324 grp->il_inpcnt--; 325 326 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 327 grp->il_inpcnt <= grp->il_inpsiz / 4) { 328 /* Shrink this group. */ 329 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 330 if (new_grp != NULL) 331 *grpp = new_grp; 332 } 333 } 334 335 /* 336 * Add PCB to load balance group for SO_REUSEPORT_LB option. 337 */ 338 static int 339 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 340 { 341 const static struct timeval interval = { 60, 0 }; 342 static struct timeval lastprint; 343 struct inpcbinfo *pcbinfo; 344 struct inpcblbgrouphead *hdr; 345 struct inpcblbgroup *grp; 346 uint32_t idx; 347 348 pcbinfo = inp->inp_pcbinfo; 349 350 INP_WLOCK_ASSERT(inp); 351 INP_HASH_WLOCK_ASSERT(pcbinfo); 352 353 #ifdef INET6 354 /* 355 * Don't allow IPv4 mapped INET6 wild socket. 356 */ 357 if ((inp->inp_vflag & INP_IPV4) && 358 inp->inp_laddr.s_addr == INADDR_ANY && 359 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 360 return (0); 361 } 362 #endif 363 364 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 365 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 366 CK_LIST_FOREACH(grp, hdr, il_list) { 367 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 368 grp->il_vflag == inp->inp_vflag && 369 grp->il_lport == inp->inp_lport && 370 grp->il_numa_domain == numa_domain && 371 memcmp(&grp->il_dependladdr, 372 &inp->inp_inc.inc_ie.ie_dependladdr, 373 sizeof(grp->il_dependladdr)) == 0) { 374 break; 375 } 376 } 377 if (grp == NULL) { 378 /* Create new load balance group. */ 379 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, 380 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 381 INPCBLBGROUP_SIZMIN, numa_domain); 382 if (grp == NULL) 383 return (ENOBUFS); 384 } else if (grp->il_inpcnt == grp->il_inpsiz) { 385 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 386 if (ratecheck(&lastprint, &interval)) 387 printf("lb group port %d, limit reached\n", 388 ntohs(grp->il_lport)); 389 return (0); 390 } 391 392 /* Expand this local group. */ 393 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 394 if (grp == NULL) 395 return (ENOBUFS); 396 } 397 398 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 399 ("invalid local group size %d and count %d", grp->il_inpsiz, 400 grp->il_inpcnt)); 401 402 grp->il_inp[grp->il_inpcnt] = inp; 403 grp->il_inpcnt++; 404 inp->inp_flags |= INP_INLBGROUP; 405 return (0); 406 } 407 408 /* 409 * Remove PCB from load balance group. 410 */ 411 static void 412 in_pcbremlbgrouphash(struct inpcb *inp) 413 { 414 struct inpcbinfo *pcbinfo; 415 struct inpcblbgrouphead *hdr; 416 struct inpcblbgroup *grp; 417 int i; 418 419 pcbinfo = inp->inp_pcbinfo; 420 421 INP_WLOCK_ASSERT(inp); 422 MPASS(inp->inp_flags & INP_INLBGROUP); 423 INP_HASH_WLOCK_ASSERT(pcbinfo); 424 425 hdr = &pcbinfo->ipi_lbgrouphashbase[ 426 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 427 CK_LIST_FOREACH(grp, hdr, il_list) { 428 for (i = 0; i < grp->il_inpcnt; ++i) { 429 if (grp->il_inp[i] != inp) 430 continue; 431 432 if (grp->il_inpcnt == 1) { 433 /* We are the last, free this local group. */ 434 in_pcblbgroup_free(grp); 435 } else { 436 /* Pull up inpcbs, shrink group if possible. */ 437 in_pcblbgroup_reorder(hdr, &grp, i); 438 } 439 inp->inp_flags &= ~INP_INLBGROUP; 440 return; 441 } 442 } 443 KASSERT(0, ("%s: did not find %p", __func__, inp)); 444 } 445 446 int 447 in_pcblbgroup_numa(struct inpcb *inp, int arg) 448 { 449 struct inpcbinfo *pcbinfo; 450 struct inpcblbgrouphead *hdr; 451 struct inpcblbgroup *grp; 452 int err, i; 453 uint8_t numa_domain; 454 455 switch (arg) { 456 case TCP_REUSPORT_LB_NUMA_NODOM: 457 numa_domain = M_NODOM; 458 break; 459 case TCP_REUSPORT_LB_NUMA_CURDOM: 460 numa_domain = PCPU_GET(domain); 461 break; 462 default: 463 if (arg < 0 || arg >= vm_ndomains) 464 return (EINVAL); 465 numa_domain = arg; 466 } 467 468 err = 0; 469 pcbinfo = inp->inp_pcbinfo; 470 INP_WLOCK_ASSERT(inp); 471 INP_HASH_WLOCK(pcbinfo); 472 hdr = &pcbinfo->ipi_lbgrouphashbase[ 473 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 474 CK_LIST_FOREACH(grp, hdr, il_list) { 475 for (i = 0; i < grp->il_inpcnt; ++i) { 476 if (grp->il_inp[i] != inp) 477 continue; 478 479 if (grp->il_numa_domain == numa_domain) { 480 goto abort_with_hash_wlock; 481 } 482 483 /* Remove it from the old group. */ 484 in_pcbremlbgrouphash(inp); 485 486 /* Add it to the new group based on numa domain. */ 487 in_pcbinslbgrouphash(inp, numa_domain); 488 goto abort_with_hash_wlock; 489 } 490 } 491 err = ENOENT; 492 abort_with_hash_wlock: 493 INP_HASH_WUNLOCK(pcbinfo); 494 return (err); 495 } 496 497 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 498 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 499 500 /* 501 * Initialize an inpcbinfo - a per-VNET instance of connections db. 502 */ 503 void 504 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 505 u_int hash_nelements, u_int porthash_nelements) 506 { 507 508 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 509 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 510 NULL, MTX_DEF); 511 #ifdef VIMAGE 512 pcbinfo->ipi_vnet = curvnet; 513 #endif 514 CK_LIST_INIT(&pcbinfo->ipi_listhead); 515 pcbinfo->ipi_count = 0; 516 pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB, 517 &pcbinfo->ipi_hashmask); 518 pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB, 519 &pcbinfo->ipi_hashmask); 520 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 521 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 522 &pcbinfo->ipi_porthashmask); 523 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 524 &pcbinfo->ipi_lbgrouphashmask); 525 pcbinfo->ipi_zone = pcbstor->ips_zone; 526 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 527 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 528 } 529 530 /* 531 * Destroy an inpcbinfo. 532 */ 533 void 534 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 535 { 536 537 KASSERT(pcbinfo->ipi_count == 0, 538 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 539 540 hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask); 541 hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask); 542 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 543 pcbinfo->ipi_porthashmask); 544 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 545 pcbinfo->ipi_lbgrouphashmask); 546 mtx_destroy(&pcbinfo->ipi_hash_lock); 547 mtx_destroy(&pcbinfo->ipi_lock); 548 } 549 550 /* 551 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 552 */ 553 static void inpcb_fini(void *, int); 554 void 555 in_pcbstorage_init(void *arg) 556 { 557 struct inpcbstorage *pcbstor = arg; 558 559 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 560 pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit, 561 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 562 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 563 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 564 uma_zone_set_smr(pcbstor->ips_portzone, 565 uma_zone_get_smr(pcbstor->ips_zone)); 566 } 567 568 /* 569 * Destroy a pcbstorage - used by unloadable protocols. 570 */ 571 void 572 in_pcbstorage_destroy(void *arg) 573 { 574 struct inpcbstorage *pcbstor = arg; 575 576 uma_zdestroy(pcbstor->ips_zone); 577 uma_zdestroy(pcbstor->ips_portzone); 578 } 579 580 /* 581 * Allocate a PCB and associate it with the socket. 582 * On success return with the PCB locked. 583 */ 584 int 585 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 586 { 587 struct inpcb *inp; 588 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 589 int error; 590 #endif 591 592 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 593 if (inp == NULL) 594 return (ENOBUFS); 595 bzero(&inp->inp_start_zero, inp_zero_size); 596 #ifdef NUMA 597 inp->inp_numa_domain = M_NODOM; 598 #endif 599 inp->inp_pcbinfo = pcbinfo; 600 inp->inp_socket = so; 601 inp->inp_cred = crhold(so->so_cred); 602 inp->inp_inc.inc_fibnum = so->so_fibnum; 603 #ifdef MAC 604 error = mac_inpcb_init(inp, M_NOWAIT); 605 if (error != 0) 606 goto out; 607 mac_inpcb_create(so, inp); 608 #endif 609 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 610 error = ipsec_init_pcbpolicy(inp); 611 if (error != 0) { 612 #ifdef MAC 613 mac_inpcb_destroy(inp); 614 #endif 615 goto out; 616 } 617 #endif /*IPSEC*/ 618 #ifdef INET6 619 if (INP_SOCKAF(so) == AF_INET6) { 620 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 621 if (V_ip6_v6only) 622 inp->inp_flags |= IN6P_IPV6_V6ONLY; 623 #ifdef INET 624 else 625 inp->inp_vflag |= INP_IPV4; 626 #endif 627 if (V_ip6_auto_flowlabel) 628 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 629 inp->in6p_hops = -1; /* use kernel default */ 630 } 631 #endif 632 #if defined(INET) && defined(INET6) 633 else 634 #endif 635 #ifdef INET 636 inp->inp_vflag |= INP_IPV4; 637 #endif 638 inp->inp_smr = SMR_SEQ_INVALID; 639 640 /* 641 * Routes in inpcb's can cache L2 as well; they are guaranteed 642 * to be cleaned up. 643 */ 644 inp->inp_route.ro_flags = RT_LLE_CACHE; 645 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 646 INP_WLOCK(inp); 647 INP_INFO_WLOCK(pcbinfo); 648 pcbinfo->ipi_count++; 649 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 650 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 651 INP_INFO_WUNLOCK(pcbinfo); 652 so->so_pcb = inp; 653 654 return (0); 655 656 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 657 out: 658 crfree(inp->inp_cred); 659 #ifdef INVARIANTS 660 inp->inp_cred = NULL; 661 #endif 662 uma_zfree_smr(pcbinfo->ipi_zone, inp); 663 return (error); 664 #endif 665 } 666 667 #ifdef INET 668 int 669 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) 670 { 671 int anonport, error; 672 673 KASSERT(sin == NULL || sin->sin_family == AF_INET, 674 ("%s: invalid address family for %p", __func__, sin)); 675 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in), 676 ("%s: invalid address length for %p", __func__, sin)); 677 INP_WLOCK_ASSERT(inp); 678 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 679 680 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 681 return (EINVAL); 682 anonport = sin == NULL || sin->sin_port == 0; 683 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr, 684 &inp->inp_lport, cred); 685 if (error) 686 return (error); 687 if (in_pcbinshash(inp) != 0) { 688 inp->inp_laddr.s_addr = INADDR_ANY; 689 inp->inp_lport = 0; 690 return (EAGAIN); 691 } 692 if (anonport) 693 inp->inp_flags |= INP_ANONPORT; 694 return (0); 695 } 696 #endif 697 698 #if defined(INET) || defined(INET6) 699 /* 700 * Assign a local port like in_pcb_lport(), but also used with connect() 701 * and a foreign address and port. If fsa is non-NULL, choose a local port 702 * that is unused with those, otherwise one that is completely unused. 703 * lsa can be NULL for IPv6. 704 */ 705 int 706 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 707 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 708 { 709 struct inpcbinfo *pcbinfo; 710 struct inpcb *tmpinp; 711 unsigned short *lastport; 712 int count, error; 713 u_short aux, first, last, lport; 714 #ifdef INET 715 struct in_addr laddr, faddr; 716 #endif 717 #ifdef INET6 718 struct in6_addr *laddr6, *faddr6; 719 #endif 720 721 pcbinfo = inp->inp_pcbinfo; 722 723 /* 724 * Because no actual state changes occur here, a global write lock on 725 * the pcbinfo isn't required. 726 */ 727 INP_LOCK_ASSERT(inp); 728 INP_HASH_LOCK_ASSERT(pcbinfo); 729 730 if (inp->inp_flags & INP_HIGHPORT) { 731 first = V_ipport_hifirstauto; /* sysctl */ 732 last = V_ipport_hilastauto; 733 lastport = &pcbinfo->ipi_lasthi; 734 } else if (inp->inp_flags & INP_LOWPORT) { 735 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 736 if (error) 737 return (error); 738 first = V_ipport_lowfirstauto; /* 1023 */ 739 last = V_ipport_lowlastauto; /* 600 */ 740 lastport = &pcbinfo->ipi_lastlow; 741 } else { 742 first = V_ipport_firstauto; /* sysctl */ 743 last = V_ipport_lastauto; 744 lastport = &pcbinfo->ipi_lastport; 745 } 746 747 /* 748 * Instead of having two loops further down counting up or down 749 * make sure that first is always <= last and go with only one 750 * code path implementing all logic. 751 */ 752 if (first > last) { 753 aux = first; 754 first = last; 755 last = aux; 756 } 757 758 #ifdef INET 759 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 760 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 761 if (lsa != NULL) 762 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 763 if (fsa != NULL) 764 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 765 } 766 #endif 767 #ifdef INET6 768 laddr6 = NULL; 769 if ((inp->inp_vflag & INP_IPV6) != 0) { 770 if (lsa != NULL) 771 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 772 if (fsa != NULL) 773 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 774 } 775 #endif 776 777 tmpinp = NULL; 778 lport = *lportp; 779 780 if (V_ipport_randomized) 781 *lastport = first + (arc4random() % (last - first)); 782 783 count = last - first; 784 785 do { 786 if (count-- < 0) /* completely used? */ 787 return (EADDRNOTAVAIL); 788 ++*lastport; 789 if (*lastport < first || *lastport > last) 790 *lastport = first; 791 lport = htons(*lastport); 792 793 if (fsa != NULL) { 794 #ifdef INET 795 if (lsa->sa_family == AF_INET) { 796 tmpinp = in_pcblookup_hash_locked(pcbinfo, 797 faddr, fport, laddr, lport, lookupflags, 798 M_NODOM); 799 } 800 #endif 801 #ifdef INET6 802 if (lsa->sa_family == AF_INET6) { 803 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 804 faddr6, fport, laddr6, lport, lookupflags, 805 M_NODOM); 806 } 807 #endif 808 } else { 809 #ifdef INET6 810 if ((inp->inp_vflag & INP_IPV6) != 0) { 811 tmpinp = in6_pcblookup_local(pcbinfo, 812 &inp->in6p_laddr, lport, lookupflags, cred); 813 #ifdef INET 814 if (tmpinp == NULL && 815 (inp->inp_vflag & INP_IPV4)) 816 tmpinp = in_pcblookup_local(pcbinfo, 817 laddr, lport, lookupflags, cred); 818 #endif 819 } 820 #endif 821 #if defined(INET) && defined(INET6) 822 else 823 #endif 824 #ifdef INET 825 tmpinp = in_pcblookup_local(pcbinfo, laddr, 826 lport, lookupflags, cred); 827 #endif 828 } 829 } while (tmpinp != NULL); 830 831 *lportp = lport; 832 833 return (0); 834 } 835 836 /* 837 * Select a local port (number) to use. 838 */ 839 int 840 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 841 struct ucred *cred, int lookupflags) 842 { 843 struct sockaddr_in laddr; 844 845 if (laddrp) { 846 bzero(&laddr, sizeof(laddr)); 847 laddr.sin_family = AF_INET; 848 laddr.sin_addr = *laddrp; 849 } 850 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 851 NULL, lportp, NULL, 0, cred, lookupflags)); 852 } 853 #endif /* INET || INET6 */ 854 855 #ifdef INET 856 /* 857 * Set up a bind operation on a PCB, performing port allocation 858 * as required, but do not actually modify the PCB. Callers can 859 * either complete the bind by setting inp_laddr/inp_lport and 860 * calling in_pcbinshash(), or they can just use the resulting 861 * port and address to authorise the sending of a once-off packet. 862 * 863 * On error, the values of *laddrp and *lportp are not changed. 864 */ 865 int 866 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, 867 u_short *lportp, struct ucred *cred) 868 { 869 struct socket *so = inp->inp_socket; 870 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 871 struct in_addr laddr; 872 u_short lport = 0; 873 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 874 int error; 875 876 /* 877 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 878 * so that we don't have to add to the (already messy) code below. 879 */ 880 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 881 882 /* 883 * No state changes, so read locks are sufficient here. 884 */ 885 INP_LOCK_ASSERT(inp); 886 INP_HASH_LOCK_ASSERT(pcbinfo); 887 888 laddr.s_addr = *laddrp; 889 if (sin != NULL && laddr.s_addr != INADDR_ANY) 890 return (EINVAL); 891 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 892 lookupflags = INPLOOKUP_WILDCARD; 893 if (sin == NULL) { 894 if ((error = prison_local_ip4(cred, &laddr)) != 0) 895 return (error); 896 } else { 897 KASSERT(sin->sin_family == AF_INET, 898 ("%s: invalid family for address %p", __func__, sin)); 899 KASSERT(sin->sin_len == sizeof(*sin), 900 ("%s: invalid length for address %p", __func__, sin)); 901 902 error = prison_local_ip4(cred, &sin->sin_addr); 903 if (error) 904 return (error); 905 if (sin->sin_port != *lportp) { 906 /* Don't allow the port to change. */ 907 if (*lportp != 0) 908 return (EINVAL); 909 lport = sin->sin_port; 910 } 911 /* NB: lport is left as 0 if the port isn't being changed. */ 912 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 913 /* 914 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 915 * allow complete duplication of binding if 916 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 917 * and a multicast address is bound on both 918 * new and duplicated sockets. 919 */ 920 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 921 reuseport = SO_REUSEADDR|SO_REUSEPORT; 922 /* 923 * XXX: How to deal with SO_REUSEPORT_LB here? 924 * Treat same as SO_REUSEPORT for now. 925 */ 926 if ((so->so_options & 927 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 928 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 929 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 930 sin->sin_port = 0; /* yech... */ 931 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 932 /* 933 * Is the address a local IP address? 934 * If INP_BINDANY is set, then the socket may be bound 935 * to any endpoint address, local or not. 936 */ 937 if ((inp->inp_flags & INP_BINDANY) == 0 && 938 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 939 return (EADDRNOTAVAIL); 940 } 941 laddr = sin->sin_addr; 942 if (lport) { 943 struct inpcb *t; 944 945 /* GROSS */ 946 if (ntohs(lport) <= V_ipport_reservedhigh && 947 ntohs(lport) >= V_ipport_reservedlow && 948 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 949 return (EACCES); 950 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 951 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 952 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 953 lport, INPLOOKUP_WILDCARD, cred); 954 /* 955 * XXX 956 * This entire block sorely needs a rewrite. 957 */ 958 if (t != NULL && 959 (so->so_type != SOCK_STREAM || 960 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 961 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 962 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 963 (t->inp_socket->so_options & SO_REUSEPORT) || 964 (t->inp_socket->so_options & SO_REUSEPORT_LB) == 0) && 965 (inp->inp_cred->cr_uid != 966 t->inp_cred->cr_uid)) 967 return (EADDRINUSE); 968 } 969 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 970 lport, lookupflags, cred); 971 if (t != NULL && (reuseport & t->inp_socket->so_options) == 0 && 972 (reuseport_lb & t->inp_socket->so_options) == 0) { 973 #ifdef INET6 974 if (ntohl(sin->sin_addr.s_addr) != 975 INADDR_ANY || 976 ntohl(t->inp_laddr.s_addr) != 977 INADDR_ANY || 978 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 979 (t->inp_vflag & INP_IPV6PROTO) == 0) 980 #endif 981 return (EADDRINUSE); 982 } 983 } 984 } 985 if (*lportp != 0) 986 lport = *lportp; 987 if (lport == 0) { 988 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 989 if (error != 0) 990 return (error); 991 } 992 *laddrp = laddr.s_addr; 993 *lportp = lport; 994 return (0); 995 } 996 997 /* 998 * Connect from a socket to a specified address. 999 * Both address and port must be specified in argument sin. 1000 * If don't have a local address for this socket yet, 1001 * then pick one. 1002 */ 1003 int 1004 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred, 1005 bool rehash __unused) 1006 { 1007 u_short lport, fport; 1008 in_addr_t laddr, faddr; 1009 int anonport, error; 1010 1011 INP_WLOCK_ASSERT(inp); 1012 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1013 KASSERT(in_nullhost(inp->inp_faddr), 1014 ("%s: inp is already connected", __func__)); 1015 1016 lport = inp->inp_lport; 1017 laddr = inp->inp_laddr.s_addr; 1018 anonport = (lport == 0); 1019 error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport, 1020 cred); 1021 if (error) 1022 return (error); 1023 1024 inp->inp_faddr.s_addr = faddr; 1025 inp->inp_fport = fport; 1026 1027 /* Do the initial binding of the local address if required. */ 1028 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1029 inp->inp_lport = lport; 1030 inp->inp_laddr.s_addr = laddr; 1031 if (in_pcbinshash(inp) != 0) { 1032 inp->inp_laddr.s_addr = inp->inp_faddr.s_addr = 1033 INADDR_ANY; 1034 inp->inp_lport = inp->inp_fport = 0; 1035 return (EAGAIN); 1036 } 1037 } else { 1038 inp->inp_lport = lport; 1039 inp->inp_laddr.s_addr = laddr; 1040 if ((inp->inp_flags & INP_INHASHLIST) != 0) 1041 in_pcbrehash(inp); 1042 else 1043 in_pcbinshash(inp); 1044 } 1045 1046 if (anonport) 1047 inp->inp_flags |= INP_ANONPORT; 1048 return (0); 1049 } 1050 1051 /* 1052 * Do proper source address selection on an unbound socket in case 1053 * of connect. Take jails into account as well. 1054 */ 1055 int 1056 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1057 struct ucred *cred) 1058 { 1059 struct ifaddr *ifa; 1060 struct sockaddr *sa; 1061 struct sockaddr_in *sin, dst; 1062 struct nhop_object *nh; 1063 int error; 1064 1065 NET_EPOCH_ASSERT(); 1066 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1067 1068 /* 1069 * Bypass source address selection and use the primary jail IP 1070 * if requested. 1071 */ 1072 if (!prison_saddrsel_ip4(cred, laddr)) 1073 return (0); 1074 1075 error = 0; 1076 1077 nh = NULL; 1078 bzero(&dst, sizeof(dst)); 1079 sin = &dst; 1080 sin->sin_family = AF_INET; 1081 sin->sin_len = sizeof(struct sockaddr_in); 1082 sin->sin_addr.s_addr = faddr->s_addr; 1083 1084 /* 1085 * If route is known our src addr is taken from the i/f, 1086 * else punt. 1087 * 1088 * Find out route to destination. 1089 */ 1090 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1091 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1092 0, NHR_NONE, 0); 1093 1094 /* 1095 * If we found a route, use the address corresponding to 1096 * the outgoing interface. 1097 * 1098 * Otherwise assume faddr is reachable on a directly connected 1099 * network and try to find a corresponding interface to take 1100 * the source address from. 1101 */ 1102 if (nh == NULL || nh->nh_ifp == NULL) { 1103 struct in_ifaddr *ia; 1104 struct ifnet *ifp; 1105 1106 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1107 inp->inp_socket->so_fibnum)); 1108 if (ia == NULL) { 1109 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1110 inp->inp_socket->so_fibnum)); 1111 } 1112 if (ia == NULL) { 1113 error = ENETUNREACH; 1114 goto done; 1115 } 1116 1117 if (!prison_flag(cred, PR_IP4)) { 1118 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1119 goto done; 1120 } 1121 1122 ifp = ia->ia_ifp; 1123 ia = NULL; 1124 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1125 sa = ifa->ifa_addr; 1126 if (sa->sa_family != AF_INET) 1127 continue; 1128 sin = (struct sockaddr_in *)sa; 1129 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1130 ia = (struct in_ifaddr *)ifa; 1131 break; 1132 } 1133 } 1134 if (ia != NULL) { 1135 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1136 goto done; 1137 } 1138 1139 /* 3. As a last resort return the 'default' jail address. */ 1140 error = prison_get_ip4(cred, laddr); 1141 goto done; 1142 } 1143 1144 /* 1145 * If the outgoing interface on the route found is not 1146 * a loopback interface, use the address from that interface. 1147 * In case of jails do those three steps: 1148 * 1. check if the interface address belongs to the jail. If so use it. 1149 * 2. check if we have any address on the outgoing interface 1150 * belonging to this jail. If so use it. 1151 * 3. as a last resort return the 'default' jail address. 1152 */ 1153 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1154 struct in_ifaddr *ia; 1155 struct ifnet *ifp; 1156 1157 /* If not jailed, use the default returned. */ 1158 if (!prison_flag(cred, PR_IP4)) { 1159 ia = (struct in_ifaddr *)nh->nh_ifa; 1160 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1161 goto done; 1162 } 1163 1164 /* Jailed. */ 1165 /* 1. Check if the iface address belongs to the jail. */ 1166 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1167 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1168 ia = (struct in_ifaddr *)nh->nh_ifa; 1169 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1170 goto done; 1171 } 1172 1173 /* 1174 * 2. Check if we have any address on the outgoing interface 1175 * belonging to this jail. 1176 */ 1177 ia = NULL; 1178 ifp = nh->nh_ifp; 1179 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1180 sa = ifa->ifa_addr; 1181 if (sa->sa_family != AF_INET) 1182 continue; 1183 sin = (struct sockaddr_in *)sa; 1184 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1185 ia = (struct in_ifaddr *)ifa; 1186 break; 1187 } 1188 } 1189 if (ia != NULL) { 1190 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1191 goto done; 1192 } 1193 1194 /* 3. As a last resort return the 'default' jail address. */ 1195 error = prison_get_ip4(cred, laddr); 1196 goto done; 1197 } 1198 1199 /* 1200 * The outgoing interface is marked with 'loopback net', so a route 1201 * to ourselves is here. 1202 * Try to find the interface of the destination address and then 1203 * take the address from there. That interface is not necessarily 1204 * a loopback interface. 1205 * In case of jails, check that it is an address of the jail 1206 * and if we cannot find, fall back to the 'default' jail address. 1207 */ 1208 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1209 struct in_ifaddr *ia; 1210 1211 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1212 inp->inp_socket->so_fibnum)); 1213 if (ia == NULL) 1214 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1215 inp->inp_socket->so_fibnum)); 1216 if (ia == NULL) 1217 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1218 1219 if (!prison_flag(cred, PR_IP4)) { 1220 if (ia == NULL) { 1221 error = ENETUNREACH; 1222 goto done; 1223 } 1224 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1225 goto done; 1226 } 1227 1228 /* Jailed. */ 1229 if (ia != NULL) { 1230 struct ifnet *ifp; 1231 1232 ifp = ia->ia_ifp; 1233 ia = NULL; 1234 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1235 sa = ifa->ifa_addr; 1236 if (sa->sa_family != AF_INET) 1237 continue; 1238 sin = (struct sockaddr_in *)sa; 1239 if (prison_check_ip4(cred, 1240 &sin->sin_addr) == 0) { 1241 ia = (struct in_ifaddr *)ifa; 1242 break; 1243 } 1244 } 1245 if (ia != NULL) { 1246 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1247 goto done; 1248 } 1249 } 1250 1251 /* 3. As a last resort return the 'default' jail address. */ 1252 error = prison_get_ip4(cred, laddr); 1253 goto done; 1254 } 1255 1256 done: 1257 if (error == 0 && laddr->s_addr == INADDR_ANY) 1258 return (EHOSTUNREACH); 1259 return (error); 1260 } 1261 1262 /* 1263 * Set up for a connect from a socket to the specified address. 1264 * On entry, *laddrp and *lportp should contain the current local 1265 * address and port for the PCB; these are updated to the values 1266 * that should be placed in inp_laddr and inp_lport to complete 1267 * the connect. 1268 * 1269 * On success, *faddrp and *fportp will be set to the remote address 1270 * and port. These are not updated in the error case. 1271 */ 1272 int 1273 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin, 1274 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1275 struct ucred *cred) 1276 { 1277 struct in_ifaddr *ia; 1278 struct in_addr laddr, faddr; 1279 u_short lport, fport; 1280 int error; 1281 1282 KASSERT(sin->sin_family == AF_INET, 1283 ("%s: invalid address family for %p", __func__, sin)); 1284 KASSERT(sin->sin_len == sizeof(*sin), 1285 ("%s: invalid address length for %p", __func__, sin)); 1286 1287 /* 1288 * Because a global state change doesn't actually occur here, a read 1289 * lock is sufficient. 1290 */ 1291 NET_EPOCH_ASSERT(); 1292 INP_LOCK_ASSERT(inp); 1293 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1294 1295 if (sin->sin_port == 0) 1296 return (EADDRNOTAVAIL); 1297 laddr.s_addr = *laddrp; 1298 lport = *lportp; 1299 faddr = sin->sin_addr; 1300 fport = sin->sin_port; 1301 #ifdef ROUTE_MPATH 1302 if (CALC_FLOWID_OUTBOUND) { 1303 uint32_t hash_val, hash_type; 1304 1305 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1306 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1307 1308 inp->inp_flowid = hash_val; 1309 inp->inp_flowtype = hash_type; 1310 } 1311 #endif 1312 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1313 /* 1314 * If the destination address is INADDR_ANY, 1315 * use the primary local address. 1316 * If the supplied address is INADDR_BROADCAST, 1317 * and the primary interface supports broadcast, 1318 * choose the broadcast address for that interface. 1319 */ 1320 if (faddr.s_addr == INADDR_ANY) { 1321 faddr = 1322 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1323 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1324 return (error); 1325 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1326 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1327 IFF_BROADCAST) 1328 faddr = satosin(&CK_STAILQ_FIRST( 1329 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1330 } 1331 } 1332 if (laddr.s_addr == INADDR_ANY) { 1333 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1334 /* 1335 * If the destination address is multicast and an outgoing 1336 * interface has been set as a multicast option, prefer the 1337 * address of that interface as our source address. 1338 */ 1339 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1340 inp->inp_moptions != NULL) { 1341 struct ip_moptions *imo; 1342 struct ifnet *ifp; 1343 1344 imo = inp->inp_moptions; 1345 if (imo->imo_multicast_ifp != NULL) { 1346 ifp = imo->imo_multicast_ifp; 1347 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1348 if (ia->ia_ifp == ifp && 1349 prison_check_ip4(cred, 1350 &ia->ia_addr.sin_addr) == 0) 1351 break; 1352 } 1353 if (ia == NULL) 1354 error = EADDRNOTAVAIL; 1355 else { 1356 laddr = ia->ia_addr.sin_addr; 1357 error = 0; 1358 } 1359 } 1360 } 1361 if (error) 1362 return (error); 1363 } 1364 1365 if (lport != 0) { 1366 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1367 fport, laddr, lport, 0, M_NODOM) != NULL) 1368 return (EADDRINUSE); 1369 } else { 1370 struct sockaddr_in lsin, fsin; 1371 1372 bzero(&lsin, sizeof(lsin)); 1373 bzero(&fsin, sizeof(fsin)); 1374 lsin.sin_family = AF_INET; 1375 lsin.sin_addr = laddr; 1376 fsin.sin_family = AF_INET; 1377 fsin.sin_addr = faddr; 1378 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1379 &lport, (struct sockaddr *)& fsin, fport, cred, 1380 INPLOOKUP_WILDCARD); 1381 if (error) 1382 return (error); 1383 } 1384 *laddrp = laddr.s_addr; 1385 *lportp = lport; 1386 *faddrp = faddr.s_addr; 1387 *fportp = fport; 1388 return (0); 1389 } 1390 1391 void 1392 in_pcbdisconnect(struct inpcb *inp) 1393 { 1394 1395 INP_WLOCK_ASSERT(inp); 1396 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1397 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 1398 ("%s: inp %p was already disconnected", __func__, inp)); 1399 1400 in_pcbremhash_locked(inp); 1401 1402 /* See the comment in in_pcbinshash(). */ 1403 inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr); 1404 inp->inp_laddr.s_addr = INADDR_ANY; 1405 inp->inp_faddr.s_addr = INADDR_ANY; 1406 inp->inp_fport = 0; 1407 } 1408 #endif /* INET */ 1409 1410 /* 1411 * inpcb hash lookups are protected by SMR section. 1412 * 1413 * Once desired pcb has been found, switching from SMR section to a pcb 1414 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1415 * here because SMR is a critical section. 1416 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1417 */ 1418 void 1419 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1420 { 1421 1422 lock == INPLOOKUP_RLOCKPCB ? 1423 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1424 } 1425 1426 void 1427 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1428 { 1429 1430 lock == INPLOOKUP_RLOCKPCB ? 1431 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1432 } 1433 1434 int 1435 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1436 { 1437 1438 return (lock == INPLOOKUP_RLOCKPCB ? 1439 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1440 } 1441 1442 static inline bool 1443 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1444 { 1445 1446 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1447 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1448 1449 if (__predict_true(inp_trylock(inp, lock))) { 1450 if (__predict_false(inp->inp_flags & ignflags)) { 1451 smr_exit(inp->inp_pcbinfo->ipi_smr); 1452 inp_unlock(inp, lock); 1453 return (false); 1454 } 1455 smr_exit(inp->inp_pcbinfo->ipi_smr); 1456 return (true); 1457 } 1458 1459 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1460 smr_exit(inp->inp_pcbinfo->ipi_smr); 1461 inp_lock(inp, lock); 1462 if (__predict_false(in_pcbrele(inp, lock))) 1463 return (false); 1464 /* 1465 * inp acquired through refcount & lock for sure didn't went 1466 * through uma_zfree(). However, it may have already went 1467 * through in_pcbfree() and has another reference, that 1468 * prevented its release by our in_pcbrele(). 1469 */ 1470 if (__predict_false(inp->inp_flags & ignflags)) { 1471 inp_unlock(inp, lock); 1472 return (false); 1473 } 1474 return (true); 1475 } else { 1476 smr_exit(inp->inp_pcbinfo->ipi_smr); 1477 return (false); 1478 } 1479 } 1480 1481 bool 1482 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1483 { 1484 1485 /* 1486 * in_pcblookup() family of functions ignore not only freed entries, 1487 * that may be found due to lockless access to the hash, but dropped 1488 * entries, too. 1489 */ 1490 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1491 } 1492 1493 /* 1494 * inp_next() - inpcb hash/list traversal iterator 1495 * 1496 * Requires initialized struct inpcb_iterator for context. 1497 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1498 * 1499 * - Iterator can have either write-lock or read-lock semantics, that can not 1500 * be changed later. 1501 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1502 * a single hash slot. Note: only rip_input() does the latter. 1503 * - Iterator may have optional bool matching function. The matching function 1504 * will be executed for each inpcb in the SMR context, so it can not acquire 1505 * locks and can safely access only immutable fields of inpcb. 1506 * 1507 * A fresh initialized iterator has NULL inpcb in its context and that 1508 * means that inp_next() call would return the very first inpcb on the list 1509 * locked with desired semantic. In all following calls the context pointer 1510 * shall hold the current inpcb pointer. The KPI user is not supposed to 1511 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1512 * and write NULL to its context. After end of traversal an iterator can be 1513 * reused. 1514 * 1515 * List traversals have the following features/constraints: 1516 * - New entries won't be seen, as they are always added to the head of a list. 1517 * - Removed entries won't stop traversal as long as they are not added to 1518 * a different list. This is violated by in_pcbrehash(). 1519 */ 1520 #define II_LIST_FIRST(ipi, hash) \ 1521 (((hash) == INP_ALL_LIST) ? \ 1522 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1523 CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)])) 1524 #define II_LIST_NEXT(inp, hash) \ 1525 (((hash) == INP_ALL_LIST) ? \ 1526 CK_LIST_NEXT((inp), inp_list) : \ 1527 CK_LIST_NEXT((inp), inp_hash_exact)) 1528 #define II_LOCK_ASSERT(inp, lock) \ 1529 rw_assert(&(inp)->inp_lock, \ 1530 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1531 struct inpcb * 1532 inp_next(struct inpcb_iterator *ii) 1533 { 1534 const struct inpcbinfo *ipi = ii->ipi; 1535 inp_match_t *match = ii->match; 1536 void *ctx = ii->ctx; 1537 inp_lookup_t lock = ii->lock; 1538 int hash = ii->hash; 1539 struct inpcb *inp; 1540 1541 if (ii->inp == NULL) { /* First call. */ 1542 smr_enter(ipi->ipi_smr); 1543 /* This is unrolled CK_LIST_FOREACH(). */ 1544 for (inp = II_LIST_FIRST(ipi, hash); 1545 inp != NULL; 1546 inp = II_LIST_NEXT(inp, hash)) { 1547 if (match != NULL && (match)(inp, ctx) == false) 1548 continue; 1549 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1550 break; 1551 else { 1552 smr_enter(ipi->ipi_smr); 1553 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1554 inp = II_LIST_FIRST(ipi, hash); 1555 if (inp == NULL) 1556 break; 1557 } 1558 } 1559 1560 if (inp == NULL) 1561 smr_exit(ipi->ipi_smr); 1562 else 1563 ii->inp = inp; 1564 1565 return (inp); 1566 } 1567 1568 /* Not a first call. */ 1569 smr_enter(ipi->ipi_smr); 1570 restart: 1571 inp = ii->inp; 1572 II_LOCK_ASSERT(inp, lock); 1573 next: 1574 inp = II_LIST_NEXT(inp, hash); 1575 if (inp == NULL) { 1576 smr_exit(ipi->ipi_smr); 1577 goto found; 1578 } 1579 1580 if (match != NULL && (match)(inp, ctx) == false) 1581 goto next; 1582 1583 if (__predict_true(inp_trylock(inp, lock))) { 1584 if (__predict_false(inp->inp_flags & INP_FREED)) { 1585 /* 1586 * Entries are never inserted in middle of a list, thus 1587 * as long as we are in SMR, we can continue traversal. 1588 * Jump to 'restart' should yield in the same result, 1589 * but could produce unnecessary looping. Could this 1590 * looping be unbound? 1591 */ 1592 inp_unlock(inp, lock); 1593 goto next; 1594 } else { 1595 smr_exit(ipi->ipi_smr); 1596 goto found; 1597 } 1598 } 1599 1600 /* 1601 * Can't obtain lock immediately, thus going hard. Once we exit the 1602 * SMR section we can no longer jump to 'next', and our only stable 1603 * anchoring point is ii->inp, which we keep locked for this case, so 1604 * we jump to 'restart'. 1605 */ 1606 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1607 smr_exit(ipi->ipi_smr); 1608 inp_lock(inp, lock); 1609 if (__predict_false(in_pcbrele(inp, lock))) { 1610 smr_enter(ipi->ipi_smr); 1611 goto restart; 1612 } 1613 /* 1614 * See comment in inp_smr_lock(). 1615 */ 1616 if (__predict_false(inp->inp_flags & INP_FREED)) { 1617 inp_unlock(inp, lock); 1618 smr_enter(ipi->ipi_smr); 1619 goto restart; 1620 } 1621 } else 1622 goto next; 1623 1624 found: 1625 inp_unlock(ii->inp, lock); 1626 ii->inp = inp; 1627 1628 return (ii->inp); 1629 } 1630 1631 /* 1632 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1633 * stability of an inpcb pointer despite the inpcb lock being released or 1634 * SMR section exited. 1635 * 1636 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1637 */ 1638 void 1639 in_pcbref(struct inpcb *inp) 1640 { 1641 u_int old __diagused; 1642 1643 old = refcount_acquire(&inp->inp_refcount); 1644 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1645 } 1646 1647 /* 1648 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1649 * freeing the pcb, if the reference was very last. 1650 */ 1651 bool 1652 in_pcbrele_rlocked(struct inpcb *inp) 1653 { 1654 1655 INP_RLOCK_ASSERT(inp); 1656 1657 if (!refcount_release(&inp->inp_refcount)) 1658 return (false); 1659 1660 MPASS(inp->inp_flags & INP_FREED); 1661 MPASS(inp->inp_socket == NULL); 1662 crfree(inp->inp_cred); 1663 #ifdef INVARIANTS 1664 inp->inp_cred = NULL; 1665 #endif 1666 INP_RUNLOCK(inp); 1667 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1668 return (true); 1669 } 1670 1671 bool 1672 in_pcbrele_wlocked(struct inpcb *inp) 1673 { 1674 1675 INP_WLOCK_ASSERT(inp); 1676 1677 if (!refcount_release(&inp->inp_refcount)) 1678 return (false); 1679 1680 MPASS(inp->inp_flags & INP_FREED); 1681 MPASS(inp->inp_socket == NULL); 1682 crfree(inp->inp_cred); 1683 #ifdef INVARIANTS 1684 inp->inp_cred = NULL; 1685 #endif 1686 INP_WUNLOCK(inp); 1687 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1688 return (true); 1689 } 1690 1691 bool 1692 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1693 { 1694 1695 return (lock == INPLOOKUP_RLOCKPCB ? 1696 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1697 } 1698 1699 /* 1700 * Unconditionally schedule an inpcb to be freed by decrementing its 1701 * reference count, which should occur only after the inpcb has been detached 1702 * from its socket. If another thread holds a temporary reference (acquired 1703 * using in_pcbref()) then the free is deferred until that reference is 1704 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1705 * Almost all work, including removal from global lists, is done in this 1706 * context, where the pcbinfo lock is held. 1707 */ 1708 void 1709 in_pcbfree(struct inpcb *inp) 1710 { 1711 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1712 #ifdef INET 1713 struct ip_moptions *imo; 1714 #endif 1715 #ifdef INET6 1716 struct ip6_moptions *im6o; 1717 #endif 1718 1719 INP_WLOCK_ASSERT(inp); 1720 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1721 KASSERT((inp->inp_flags & INP_FREED) == 0, 1722 ("%s: called twice for pcb %p", __func__, inp)); 1723 1724 /* 1725 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb 1726 * from the hash without acquiring inpcb lock, they rely on the hash 1727 * lock, thus in_pcbremhash() should be the first action. 1728 */ 1729 if (inp->inp_flags & INP_INHASHLIST) 1730 in_pcbremhash(inp); 1731 INP_INFO_WLOCK(pcbinfo); 1732 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1733 pcbinfo->ipi_count--; 1734 CK_LIST_REMOVE(inp, inp_list); 1735 INP_INFO_WUNLOCK(pcbinfo); 1736 1737 #ifdef RATELIMIT 1738 if (inp->inp_snd_tag != NULL) 1739 in_pcbdetach_txrtlmt(inp); 1740 #endif 1741 inp->inp_flags |= INP_FREED; 1742 inp->inp_socket->so_pcb = NULL; 1743 inp->inp_socket = NULL; 1744 1745 RO_INVALIDATE_CACHE(&inp->inp_route); 1746 #ifdef MAC 1747 mac_inpcb_destroy(inp); 1748 #endif 1749 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1750 if (inp->inp_sp != NULL) 1751 ipsec_delete_pcbpolicy(inp); 1752 #endif 1753 #ifdef INET 1754 if (inp->inp_options) 1755 (void)m_free(inp->inp_options); 1756 DEBUG_POISON_POINTER(inp->inp_options); 1757 imo = inp->inp_moptions; 1758 DEBUG_POISON_POINTER(inp->inp_moptions); 1759 #endif 1760 #ifdef INET6 1761 if (inp->inp_vflag & INP_IPV6PROTO) { 1762 ip6_freepcbopts(inp->in6p_outputopts); 1763 DEBUG_POISON_POINTER(inp->in6p_outputopts); 1764 im6o = inp->in6p_moptions; 1765 DEBUG_POISON_POINTER(inp->in6p_moptions); 1766 } else 1767 im6o = NULL; 1768 #endif 1769 1770 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1771 INP_WUNLOCK(inp); 1772 } 1773 #ifdef INET6 1774 ip6_freemoptions(im6o); 1775 #endif 1776 #ifdef INET 1777 inp_freemoptions(imo); 1778 #endif 1779 } 1780 1781 /* 1782 * Different protocols initialize their inpcbs differently - giving 1783 * different name to the lock. But they all are disposed the same. 1784 */ 1785 static void 1786 inpcb_fini(void *mem, int size) 1787 { 1788 struct inpcb *inp = mem; 1789 1790 INP_LOCK_DESTROY(inp); 1791 } 1792 1793 /* 1794 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1795 * port reservation, and preventing it from being returned by inpcb lookups. 1796 * 1797 * It is used by TCP to mark an inpcb as unused and avoid future packet 1798 * delivery or event notification when a socket remains open but TCP has 1799 * closed. This might occur as a result of a shutdown()-initiated TCP close 1800 * or a RST on the wire, and allows the port binding to be reused while still 1801 * maintaining the invariant that so_pcb always points to a valid inpcb until 1802 * in_pcbdetach(). 1803 * 1804 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1805 * in_pcbpurgeif0()? 1806 */ 1807 void 1808 in_pcbdrop(struct inpcb *inp) 1809 { 1810 1811 INP_WLOCK_ASSERT(inp); 1812 1813 inp->inp_flags |= INP_DROPPED; 1814 if (inp->inp_flags & INP_INHASHLIST) 1815 in_pcbremhash(inp); 1816 } 1817 1818 #ifdef INET 1819 /* 1820 * Common routines to return the socket addresses associated with inpcbs. 1821 */ 1822 int 1823 in_getsockaddr(struct socket *so, struct sockaddr *sa) 1824 { 1825 struct inpcb *inp; 1826 1827 inp = sotoinpcb(so); 1828 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1829 1830 *(struct sockaddr_in *)sa = (struct sockaddr_in ){ 1831 .sin_len = sizeof(struct sockaddr_in), 1832 .sin_family = AF_INET, 1833 .sin_port = inp->inp_lport, 1834 .sin_addr = inp->inp_laddr, 1835 }; 1836 1837 return (0); 1838 } 1839 1840 int 1841 in_getpeeraddr(struct socket *so, struct sockaddr *sa) 1842 { 1843 struct inpcb *inp; 1844 1845 inp = sotoinpcb(so); 1846 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1847 1848 *(struct sockaddr_in *)sa = (struct sockaddr_in ){ 1849 .sin_len = sizeof(struct sockaddr_in), 1850 .sin_family = AF_INET, 1851 .sin_port = inp->inp_fport, 1852 .sin_addr = inp->inp_faddr, 1853 }; 1854 1855 return (0); 1856 } 1857 1858 static bool 1859 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1860 { 1861 1862 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1863 return (true); 1864 else 1865 return (false); 1866 } 1867 1868 void 1869 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1870 { 1871 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1872 inp_v4_multi_match, NULL); 1873 struct inpcb *inp; 1874 struct in_multi *inm; 1875 struct in_mfilter *imf; 1876 struct ip_moptions *imo; 1877 1878 IN_MULTI_LOCK_ASSERT(); 1879 1880 while ((inp = inp_next(&inpi)) != NULL) { 1881 INP_WLOCK_ASSERT(inp); 1882 1883 imo = inp->inp_moptions; 1884 /* 1885 * Unselect the outgoing interface if it is being 1886 * detached. 1887 */ 1888 if (imo->imo_multicast_ifp == ifp) 1889 imo->imo_multicast_ifp = NULL; 1890 1891 /* 1892 * Drop multicast group membership if we joined 1893 * through the interface being detached. 1894 * 1895 * XXX This can all be deferred to an epoch_call 1896 */ 1897 restart: 1898 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1899 if ((inm = imf->imf_inm) == NULL) 1900 continue; 1901 if (inm->inm_ifp != ifp) 1902 continue; 1903 ip_mfilter_remove(&imo->imo_head, imf); 1904 in_leavegroup_locked(inm, NULL); 1905 ip_mfilter_free(imf); 1906 goto restart; 1907 } 1908 } 1909 } 1910 1911 /* 1912 * Lookup a PCB based on the local address and port. Caller must hold the 1913 * hash lock. No inpcb locks or references are acquired. 1914 */ 1915 #define INP_LOOKUP_MAPPED_PCB_COST 3 1916 struct inpcb * 1917 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1918 u_short lport, int lookupflags, struct ucred *cred) 1919 { 1920 struct inpcb *inp; 1921 #ifdef INET6 1922 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1923 #else 1924 int matchwild = 3; 1925 #endif 1926 int wildcard; 1927 1928 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1929 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1930 INP_HASH_LOCK_ASSERT(pcbinfo); 1931 1932 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1933 struct inpcbhead *head; 1934 /* 1935 * Look for an unconnected (wildcard foreign addr) PCB that 1936 * matches the local address and port we're looking for. 1937 */ 1938 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 1939 pcbinfo->ipi_hashmask)]; 1940 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 1941 #ifdef INET6 1942 /* XXX inp locking */ 1943 if ((inp->inp_vflag & INP_IPV4) == 0) 1944 continue; 1945 #endif 1946 if (inp->inp_faddr.s_addr == INADDR_ANY && 1947 inp->inp_laddr.s_addr == laddr.s_addr && 1948 inp->inp_lport == lport) { 1949 /* 1950 * Found? 1951 */ 1952 if (prison_equal_ip4(cred->cr_prison, 1953 inp->inp_cred->cr_prison)) 1954 return (inp); 1955 } 1956 } 1957 /* 1958 * Not found. 1959 */ 1960 return (NULL); 1961 } else { 1962 struct inpcbporthead *porthash; 1963 struct inpcbport *phd; 1964 struct inpcb *match = NULL; 1965 /* 1966 * Best fit PCB lookup. 1967 * 1968 * First see if this local port is in use by looking on the 1969 * port hash list. 1970 */ 1971 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1972 pcbinfo->ipi_porthashmask)]; 1973 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1974 if (phd->phd_port == lport) 1975 break; 1976 } 1977 if (phd != NULL) { 1978 /* 1979 * Port is in use by one or more PCBs. Look for best 1980 * fit. 1981 */ 1982 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1983 wildcard = 0; 1984 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 1985 cred->cr_prison)) 1986 continue; 1987 #ifdef INET6 1988 /* XXX inp locking */ 1989 if ((inp->inp_vflag & INP_IPV4) == 0) 1990 continue; 1991 /* 1992 * We never select the PCB that has 1993 * INP_IPV6 flag and is bound to :: if 1994 * we have another PCB which is bound 1995 * to 0.0.0.0. If a PCB has the 1996 * INP_IPV6 flag, then we set its cost 1997 * higher than IPv4 only PCBs. 1998 * 1999 * Note that the case only happens 2000 * when a socket is bound to ::, under 2001 * the condition that the use of the 2002 * mapped address is allowed. 2003 */ 2004 if ((inp->inp_vflag & INP_IPV6) != 0) 2005 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2006 #endif 2007 if (inp->inp_faddr.s_addr != INADDR_ANY) 2008 wildcard++; 2009 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2010 if (laddr.s_addr == INADDR_ANY) 2011 wildcard++; 2012 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2013 continue; 2014 } else { 2015 if (laddr.s_addr != INADDR_ANY) 2016 wildcard++; 2017 } 2018 if (wildcard < matchwild) { 2019 match = inp; 2020 matchwild = wildcard; 2021 if (matchwild == 0) 2022 break; 2023 } 2024 } 2025 } 2026 return (match); 2027 } 2028 } 2029 #undef INP_LOOKUP_MAPPED_PCB_COST 2030 2031 static bool 2032 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) 2033 { 2034 return (domain == M_NODOM || domain == grp->il_numa_domain); 2035 } 2036 2037 static struct inpcb * 2038 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2039 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr, 2040 uint16_t lport, int domain) 2041 { 2042 const struct inpcblbgrouphead *hdr; 2043 struct inpcblbgroup *grp; 2044 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2045 2046 INP_HASH_LOCK_ASSERT(pcbinfo); 2047 2048 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2049 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2050 2051 /* 2052 * Search for an LB group match based on the following criteria: 2053 * - prefer jailed groups to non-jailed groups 2054 * - prefer exact source address matches to wildcard matches 2055 * - prefer groups bound to the specified NUMA domain 2056 */ 2057 jail_exact = jail_wild = local_exact = local_wild = NULL; 2058 CK_LIST_FOREACH(grp, hdr, il_list) { 2059 bool injail; 2060 2061 #ifdef INET6 2062 if (!(grp->il_vflag & INP_IPV4)) 2063 continue; 2064 #endif 2065 if (grp->il_lport != lport) 2066 continue; 2067 2068 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2069 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2070 laddr) != 0) 2071 continue; 2072 2073 if (grp->il_laddr.s_addr == laddr->s_addr) { 2074 if (injail) { 2075 jail_exact = grp; 2076 if (in_pcblookup_lb_numa_match(grp, domain)) 2077 /* This is a perfect match. */ 2078 goto out; 2079 } else if (local_exact == NULL || 2080 in_pcblookup_lb_numa_match(grp, domain)) { 2081 local_exact = grp; 2082 } 2083 } else if (grp->il_laddr.s_addr == INADDR_ANY) { 2084 if (injail) { 2085 if (jail_wild == NULL || 2086 in_pcblookup_lb_numa_match(grp, domain)) 2087 jail_wild = grp; 2088 } else if (local_wild == NULL || 2089 in_pcblookup_lb_numa_match(grp, domain)) { 2090 local_wild = grp; 2091 } 2092 } 2093 } 2094 2095 if (jail_exact != NULL) 2096 grp = jail_exact; 2097 else if (jail_wild != NULL) 2098 grp = jail_wild; 2099 else if (local_exact != NULL) 2100 grp = local_exact; 2101 else 2102 grp = local_wild; 2103 if (grp == NULL) 2104 return (NULL); 2105 out: 2106 return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2107 grp->il_inpcnt]); 2108 } 2109 2110 static bool 2111 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr, 2112 u_short fport, struct in_addr laddr, u_short lport) 2113 { 2114 #ifdef INET6 2115 /* XXX inp locking */ 2116 if ((inp->inp_vflag & INP_IPV4) == 0) 2117 return (false); 2118 #endif 2119 if (inp->inp_faddr.s_addr == faddr.s_addr && 2120 inp->inp_laddr.s_addr == laddr.s_addr && 2121 inp->inp_fport == fport && 2122 inp->inp_lport == lport) 2123 return (true); 2124 return (false); 2125 } 2126 2127 static struct inpcb * 2128 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2129 u_short fport, struct in_addr laddr, u_short lport) 2130 { 2131 struct inpcbhead *head; 2132 struct inpcb *inp; 2133 2134 INP_HASH_LOCK_ASSERT(pcbinfo); 2135 2136 head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport, 2137 pcbinfo->ipi_hashmask)]; 2138 CK_LIST_FOREACH(inp, head, inp_hash_exact) { 2139 if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport)) 2140 return (inp); 2141 } 2142 return (NULL); 2143 } 2144 2145 typedef enum { 2146 INPLOOKUP_MATCH_NONE = 0, 2147 INPLOOKUP_MATCH_WILD = 1, 2148 INPLOOKUP_MATCH_LADDR = 2, 2149 } inp_lookup_match_t; 2150 2151 static inp_lookup_match_t 2152 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr, 2153 u_short lport) 2154 { 2155 #ifdef INET6 2156 /* XXX inp locking */ 2157 if ((inp->inp_vflag & INP_IPV4) == 0) 2158 return (INPLOOKUP_MATCH_NONE); 2159 #endif 2160 if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) 2161 return (INPLOOKUP_MATCH_NONE); 2162 if (inp->inp_laddr.s_addr == INADDR_ANY) 2163 return (INPLOOKUP_MATCH_WILD); 2164 if (inp->inp_laddr.s_addr == laddr.s_addr) 2165 return (INPLOOKUP_MATCH_LADDR); 2166 return (INPLOOKUP_MATCH_NONE); 2167 } 2168 2169 #define INP_LOOKUP_AGAIN ((struct inpcb *)(uintptr_t)-1) 2170 2171 static struct inpcb * 2172 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2173 u_short fport, struct in_addr laddr, u_short lport, 2174 const inp_lookup_t lockflags) 2175 { 2176 struct inpcbhead *head; 2177 struct inpcb *inp; 2178 2179 KASSERT(SMR_ENTERED(pcbinfo->ipi_smr), 2180 ("%s: not in SMR read section", __func__)); 2181 2182 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2183 pcbinfo->ipi_hashmask)]; 2184 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2185 inp_lookup_match_t match; 2186 2187 match = in_pcblookup_wild_match(inp, laddr, lport); 2188 if (match == INPLOOKUP_MATCH_NONE) 2189 continue; 2190 2191 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2192 match = in_pcblookup_wild_match(inp, laddr, lport); 2193 if (match != INPLOOKUP_MATCH_NONE && 2194 prison_check_ip4_locked(inp->inp_cred->cr_prison, 2195 &laddr) == 0) 2196 return (inp); 2197 inp_unlock(inp, lockflags); 2198 } 2199 2200 /* 2201 * The matching socket disappeared out from under us. Fall back 2202 * to a serialized lookup. 2203 */ 2204 return (INP_LOOKUP_AGAIN); 2205 } 2206 return (NULL); 2207 } 2208 2209 static struct inpcb * 2210 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2211 u_short fport, struct in_addr laddr, u_short lport) 2212 { 2213 struct inpcbhead *head; 2214 struct inpcb *inp, *local_wild, *local_exact, *jail_wild; 2215 #ifdef INET6 2216 struct inpcb *local_wild_mapped; 2217 #endif 2218 2219 INP_HASH_LOCK_ASSERT(pcbinfo); 2220 2221 /* 2222 * Order of socket selection - we always prefer jails. 2223 * 1. jailed, non-wild. 2224 * 2. jailed, wild. 2225 * 3. non-jailed, non-wild. 2226 * 4. non-jailed, wild. 2227 */ 2228 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2229 pcbinfo->ipi_hashmask)]; 2230 local_wild = local_exact = jail_wild = NULL; 2231 #ifdef INET6 2232 local_wild_mapped = NULL; 2233 #endif 2234 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2235 inp_lookup_match_t match; 2236 bool injail; 2237 2238 match = in_pcblookup_wild_match(inp, laddr, lport); 2239 if (match == INPLOOKUP_MATCH_NONE) 2240 continue; 2241 2242 injail = prison_flag(inp->inp_cred, PR_IP4) != 0; 2243 if (injail) { 2244 if (prison_check_ip4_locked(inp->inp_cred->cr_prison, 2245 &laddr) != 0) 2246 continue; 2247 } else { 2248 if (local_exact != NULL) 2249 continue; 2250 } 2251 2252 if (match == INPLOOKUP_MATCH_LADDR) { 2253 if (injail) 2254 return (inp); 2255 local_exact = inp; 2256 } else { 2257 #ifdef INET6 2258 /* XXX inp locking, NULL check */ 2259 if (inp->inp_vflag & INP_IPV6PROTO) 2260 local_wild_mapped = inp; 2261 else 2262 #endif 2263 if (injail) 2264 jail_wild = inp; 2265 else 2266 local_wild = inp; 2267 } 2268 } 2269 if (jail_wild != NULL) 2270 return (jail_wild); 2271 if (local_exact != NULL) 2272 return (local_exact); 2273 if (local_wild != NULL) 2274 return (local_wild); 2275 #ifdef INET6 2276 if (local_wild_mapped != NULL) 2277 return (local_wild_mapped); 2278 #endif 2279 return (NULL); 2280 } 2281 2282 /* 2283 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2284 * that the caller has either locked the hash list, which usually happens 2285 * for bind(2) operations, or is in SMR section, which happens when sorting 2286 * out incoming packets. 2287 */ 2288 static struct inpcb * 2289 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2290 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2291 uint8_t numa_domain) 2292 { 2293 struct inpcb *inp; 2294 const u_short fport = fport_arg, lport = lport_arg; 2295 2296 KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0, 2297 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2298 KASSERT(faddr.s_addr != INADDR_ANY, 2299 ("%s: invalid foreign address", __func__)); 2300 KASSERT(laddr.s_addr != INADDR_ANY, 2301 ("%s: invalid local address", __func__)); 2302 INP_HASH_WLOCK_ASSERT(pcbinfo); 2303 2304 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2305 if (inp != NULL) 2306 return (inp); 2307 2308 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2309 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2310 &laddr, lport, numa_domain); 2311 if (inp == NULL) { 2312 inp = in_pcblookup_hash_wild_locked(pcbinfo, faddr, 2313 fport, laddr, lport); 2314 } 2315 } 2316 2317 return (inp); 2318 } 2319 2320 static struct inpcb * 2321 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2322 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2323 uint8_t numa_domain) 2324 { 2325 struct inpcb *inp; 2326 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2327 2328 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2329 ("%s: LOCKPCB not set", __func__)); 2330 2331 INP_HASH_WLOCK(pcbinfo); 2332 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2333 lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain); 2334 if (inp != NULL && !inp_trylock(inp, lockflags)) { 2335 in_pcbref(inp); 2336 INP_HASH_WUNLOCK(pcbinfo); 2337 inp_lock(inp, lockflags); 2338 if (in_pcbrele(inp, lockflags)) 2339 /* XXX-MJ or retry until we get a negative match? */ 2340 inp = NULL; 2341 } else { 2342 INP_HASH_WUNLOCK(pcbinfo); 2343 } 2344 return (inp); 2345 } 2346 2347 static struct inpcb * 2348 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2349 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2350 uint8_t numa_domain) 2351 { 2352 struct inpcb *inp; 2353 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2354 const u_short fport = fport_arg, lport = lport_arg; 2355 2356 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2357 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2358 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2359 ("%s: LOCKPCB not set", __func__)); 2360 2361 smr_enter(pcbinfo->ipi_smr); 2362 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2363 if (inp != NULL) { 2364 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2365 /* 2366 * Revalidate the 4-tuple, the socket could have been 2367 * disconnected. 2368 */ 2369 if (__predict_true(in_pcblookup_exact_match(inp, 2370 faddr, fport, laddr, lport))) 2371 return (inp); 2372 inp_unlock(inp, lockflags); 2373 } 2374 2375 /* 2376 * We failed to lock the inpcb, or its connection state changed 2377 * out from under us. Fall back to a precise search. 2378 */ 2379 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2380 lookupflags, numa_domain)); 2381 } 2382 2383 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2384 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2385 &laddr, lport, numa_domain); 2386 if (inp != NULL) { 2387 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2388 if (__predict_true(in_pcblookup_wild_match(inp, 2389 laddr, lport) != INPLOOKUP_MATCH_NONE)) 2390 return (inp); 2391 inp_unlock(inp, lockflags); 2392 } 2393 inp = INP_LOOKUP_AGAIN; 2394 } else { 2395 inp = in_pcblookup_hash_wild_smr(pcbinfo, faddr, fport, 2396 laddr, lport, lockflags); 2397 } 2398 if (inp == INP_LOOKUP_AGAIN) { 2399 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, 2400 lport, lookupflags, numa_domain)); 2401 } 2402 } 2403 2404 if (inp == NULL) 2405 smr_exit(pcbinfo->ipi_smr); 2406 2407 return (inp); 2408 } 2409 2410 /* 2411 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2412 * from which a pre-calculated hash value may be extracted. 2413 */ 2414 struct inpcb * 2415 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2416 struct in_addr laddr, u_int lport, int lookupflags, 2417 struct ifnet *ifp __unused) 2418 { 2419 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2420 lookupflags, M_NODOM)); 2421 } 2422 2423 struct inpcb * 2424 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2425 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2426 struct ifnet *ifp __unused, struct mbuf *m) 2427 { 2428 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2429 lookupflags, m->m_pkthdr.numa_domain)); 2430 } 2431 #endif /* INET */ 2432 2433 static bool 2434 in_pcbjailed(const struct inpcb *inp, unsigned int flag) 2435 { 2436 return (prison_flag(inp->inp_cred, flag) != 0); 2437 } 2438 2439 /* 2440 * Insert the PCB into a hash chain using ordering rules which ensure that 2441 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first. 2442 * 2443 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs 2444 * with exact local addresses ahead of wildcard PCBs. Unbound v4-mapped v6 PCBs 2445 * always appear last no matter whether they are jailed. 2446 */ 2447 static void 2448 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2449 { 2450 struct inpcb *last; 2451 bool bound, injail; 2452 2453 INP_LOCK_ASSERT(inp); 2454 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2455 2456 last = NULL; 2457 bound = inp->inp_laddr.s_addr != INADDR_ANY; 2458 if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) { 2459 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2460 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2461 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2462 return; 2463 } 2464 } 2465 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2466 return; 2467 } 2468 2469 injail = in_pcbjailed(inp, PR_IP4); 2470 if (!injail) { 2471 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2472 if (!in_pcbjailed(last, PR_IP4)) 2473 break; 2474 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2475 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2476 return; 2477 } 2478 } 2479 } else if (!CK_LIST_EMPTY(pcbhash) && 2480 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) { 2481 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2482 return; 2483 } 2484 if (!bound) { 2485 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2486 if (last->inp_laddr.s_addr == INADDR_ANY) 2487 break; 2488 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2489 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2490 return; 2491 } 2492 } 2493 } 2494 if (last == NULL) 2495 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2496 else 2497 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2498 } 2499 2500 #ifdef INET6 2501 /* 2502 * See the comment above _in_pcbinshash_wild(). 2503 */ 2504 static void 2505 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2506 { 2507 struct inpcb *last; 2508 bool bound, injail; 2509 2510 INP_LOCK_ASSERT(inp); 2511 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2512 2513 last = NULL; 2514 bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr); 2515 injail = in_pcbjailed(inp, PR_IP6); 2516 if (!injail) { 2517 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2518 if (!in_pcbjailed(last, PR_IP6)) 2519 break; 2520 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2521 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2522 return; 2523 } 2524 } 2525 } else if (!CK_LIST_EMPTY(pcbhash) && 2526 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) { 2527 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2528 return; 2529 } 2530 if (!bound) { 2531 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2532 if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr)) 2533 break; 2534 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2535 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2536 return; 2537 } 2538 } 2539 } 2540 if (last == NULL) 2541 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2542 else 2543 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2544 } 2545 #endif 2546 2547 /* 2548 * Insert PCB onto various hash lists. 2549 */ 2550 int 2551 in_pcbinshash(struct inpcb *inp) 2552 { 2553 struct inpcbhead *pcbhash; 2554 struct inpcbporthead *pcbporthash; 2555 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2556 struct inpcbport *phd; 2557 uint32_t hash; 2558 bool connected; 2559 2560 INP_WLOCK_ASSERT(inp); 2561 INP_HASH_WLOCK_ASSERT(pcbinfo); 2562 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2563 ("in_pcbinshash: INP_INHASHLIST")); 2564 2565 #ifdef INET6 2566 if (inp->inp_vflag & INP_IPV6) { 2567 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2568 inp->inp_fport, pcbinfo->ipi_hashmask); 2569 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2570 } else 2571 #endif 2572 { 2573 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2574 inp->inp_fport, pcbinfo->ipi_hashmask); 2575 connected = !in_nullhost(inp->inp_faddr); 2576 } 2577 2578 if (connected) 2579 pcbhash = &pcbinfo->ipi_hash_exact[hash]; 2580 else 2581 pcbhash = &pcbinfo->ipi_hash_wild[hash]; 2582 2583 pcbporthash = &pcbinfo->ipi_porthashbase[ 2584 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2585 2586 /* 2587 * Add entry to load balance group. 2588 * Only do this if SO_REUSEPORT_LB is set. 2589 */ 2590 if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) { 2591 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2592 if (error != 0) 2593 return (error); 2594 } 2595 2596 /* 2597 * Go through port list and look for a head for this lport. 2598 */ 2599 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2600 if (phd->phd_port == inp->inp_lport) 2601 break; 2602 } 2603 2604 /* 2605 * If none exists, malloc one and tack it on. 2606 */ 2607 if (phd == NULL) { 2608 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2609 if (phd == NULL) { 2610 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2611 in_pcbremlbgrouphash(inp); 2612 return (ENOMEM); 2613 } 2614 phd->phd_port = inp->inp_lport; 2615 CK_LIST_INIT(&phd->phd_pcblist); 2616 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2617 } 2618 inp->inp_phd = phd; 2619 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2620 2621 /* 2622 * The PCB may have been disconnected in the past. Before we can safely 2623 * make it visible in the hash table, we must wait for all readers which 2624 * may be traversing this PCB to finish. 2625 */ 2626 if (inp->inp_smr != SMR_SEQ_INVALID) { 2627 smr_wait(pcbinfo->ipi_smr, inp->inp_smr); 2628 inp->inp_smr = SMR_SEQ_INVALID; 2629 } 2630 2631 if (connected) 2632 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact); 2633 else { 2634 #ifdef INET6 2635 if ((inp->inp_vflag & INP_IPV6) != 0) 2636 _in6_pcbinshash_wild(pcbhash, inp); 2637 else 2638 #endif 2639 _in_pcbinshash_wild(pcbhash, inp); 2640 } 2641 inp->inp_flags |= INP_INHASHLIST; 2642 2643 return (0); 2644 } 2645 2646 void 2647 in_pcbremhash_locked(struct inpcb *inp) 2648 { 2649 struct inpcbport *phd = inp->inp_phd; 2650 2651 INP_WLOCK_ASSERT(inp); 2652 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2653 MPASS(inp->inp_flags & INP_INHASHLIST); 2654 2655 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2656 in_pcbremlbgrouphash(inp); 2657 #ifdef INET6 2658 if (inp->inp_vflag & INP_IPV6) { 2659 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) 2660 CK_LIST_REMOVE(inp, inp_hash_wild); 2661 else 2662 CK_LIST_REMOVE(inp, inp_hash_exact); 2663 } else 2664 #endif 2665 { 2666 if (in_nullhost(inp->inp_faddr)) 2667 CK_LIST_REMOVE(inp, inp_hash_wild); 2668 else 2669 CK_LIST_REMOVE(inp, inp_hash_exact); 2670 } 2671 CK_LIST_REMOVE(inp, inp_portlist); 2672 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2673 CK_LIST_REMOVE(phd, phd_hash); 2674 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2675 } 2676 inp->inp_flags &= ~INP_INHASHLIST; 2677 } 2678 2679 static void 2680 in_pcbremhash(struct inpcb *inp) 2681 { 2682 INP_HASH_WLOCK(inp->inp_pcbinfo); 2683 in_pcbremhash_locked(inp); 2684 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2685 } 2686 2687 /* 2688 * Move PCB to the proper hash bucket when { faddr, fport } have been 2689 * changed. NOTE: This does not handle the case of the lport changing (the 2690 * hashed port list would have to be updated as well), so the lport must 2691 * not change after in_pcbinshash() has been called. 2692 */ 2693 void 2694 in_pcbrehash(struct inpcb *inp) 2695 { 2696 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2697 struct inpcbhead *head; 2698 uint32_t hash; 2699 bool connected; 2700 2701 INP_WLOCK_ASSERT(inp); 2702 INP_HASH_WLOCK_ASSERT(pcbinfo); 2703 KASSERT(inp->inp_flags & INP_INHASHLIST, 2704 ("%s: !INP_INHASHLIST", __func__)); 2705 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 2706 ("%s: inp was disconnected", __func__)); 2707 2708 #ifdef INET6 2709 if (inp->inp_vflag & INP_IPV6) { 2710 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2711 inp->inp_fport, pcbinfo->ipi_hashmask); 2712 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2713 } else 2714 #endif 2715 { 2716 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2717 inp->inp_fport, pcbinfo->ipi_hashmask); 2718 connected = !in_nullhost(inp->inp_faddr); 2719 } 2720 2721 /* 2722 * When rehashing, the caller must ensure that either the new or the old 2723 * foreign address was unspecified. 2724 */ 2725 if (connected) 2726 CK_LIST_REMOVE(inp, inp_hash_wild); 2727 else 2728 CK_LIST_REMOVE(inp, inp_hash_exact); 2729 2730 if (connected) { 2731 head = &pcbinfo->ipi_hash_exact[hash]; 2732 CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact); 2733 } else { 2734 head = &pcbinfo->ipi_hash_wild[hash]; 2735 CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild); 2736 } 2737 } 2738 2739 /* 2740 * Check for alternatives when higher level complains 2741 * about service problems. For now, invalidate cached 2742 * routing information. If the route was created dynamically 2743 * (by a redirect), time to try a default gateway again. 2744 */ 2745 void 2746 in_losing(struct inpcb *inp) 2747 { 2748 2749 RO_INVALIDATE_CACHE(&inp->inp_route); 2750 return; 2751 } 2752 2753 /* 2754 * A set label operation has occurred at the socket layer, propagate the 2755 * label change into the in_pcb for the socket. 2756 */ 2757 void 2758 in_pcbsosetlabel(struct socket *so) 2759 { 2760 #ifdef MAC 2761 struct inpcb *inp; 2762 2763 inp = sotoinpcb(so); 2764 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2765 2766 INP_WLOCK(inp); 2767 SOCK_LOCK(so); 2768 mac_inpcb_sosetlabel(so, inp); 2769 SOCK_UNLOCK(so); 2770 INP_WUNLOCK(inp); 2771 #endif 2772 } 2773 2774 void 2775 inp_wlock(struct inpcb *inp) 2776 { 2777 2778 INP_WLOCK(inp); 2779 } 2780 2781 void 2782 inp_wunlock(struct inpcb *inp) 2783 { 2784 2785 INP_WUNLOCK(inp); 2786 } 2787 2788 void 2789 inp_rlock(struct inpcb *inp) 2790 { 2791 2792 INP_RLOCK(inp); 2793 } 2794 2795 void 2796 inp_runlock(struct inpcb *inp) 2797 { 2798 2799 INP_RUNLOCK(inp); 2800 } 2801 2802 #ifdef INVARIANT_SUPPORT 2803 void 2804 inp_lock_assert(struct inpcb *inp) 2805 { 2806 2807 INP_WLOCK_ASSERT(inp); 2808 } 2809 2810 void 2811 inp_unlock_assert(struct inpcb *inp) 2812 { 2813 2814 INP_UNLOCK_ASSERT(inp); 2815 } 2816 #endif 2817 2818 void 2819 inp_apply_all(struct inpcbinfo *pcbinfo, 2820 void (*func)(struct inpcb *, void *), void *arg) 2821 { 2822 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2823 INPLOOKUP_WLOCKPCB); 2824 struct inpcb *inp; 2825 2826 while ((inp = inp_next(&inpi)) != NULL) 2827 func(inp, arg); 2828 } 2829 2830 struct socket * 2831 inp_inpcbtosocket(struct inpcb *inp) 2832 { 2833 2834 INP_WLOCK_ASSERT(inp); 2835 return (inp->inp_socket); 2836 } 2837 2838 void 2839 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2840 uint32_t *faddr, uint16_t *fp) 2841 { 2842 2843 INP_LOCK_ASSERT(inp); 2844 *laddr = inp->inp_laddr.s_addr; 2845 *faddr = inp->inp_faddr.s_addr; 2846 *lp = inp->inp_lport; 2847 *fp = inp->inp_fport; 2848 } 2849 2850 /* 2851 * Create an external-format (``xinpcb'') structure using the information in 2852 * the kernel-format in_pcb structure pointed to by inp. This is done to 2853 * reduce the spew of irrelevant information over this interface, to isolate 2854 * user code from changes in the kernel structure, and potentially to provide 2855 * information-hiding if we decide that some of this information should be 2856 * hidden from users. 2857 */ 2858 void 2859 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2860 { 2861 2862 bzero(xi, sizeof(*xi)); 2863 xi->xi_len = sizeof(struct xinpcb); 2864 if (inp->inp_socket) 2865 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2866 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2867 xi->inp_gencnt = inp->inp_gencnt; 2868 xi->inp_flow = inp->inp_flow; 2869 xi->inp_flowid = inp->inp_flowid; 2870 xi->inp_flowtype = inp->inp_flowtype; 2871 xi->inp_flags = inp->inp_flags; 2872 xi->inp_flags2 = inp->inp_flags2; 2873 xi->in6p_cksum = inp->in6p_cksum; 2874 xi->in6p_hops = inp->in6p_hops; 2875 xi->inp_ip_tos = inp->inp_ip_tos; 2876 xi->inp_vflag = inp->inp_vflag; 2877 xi->inp_ip_ttl = inp->inp_ip_ttl; 2878 xi->inp_ip_p = inp->inp_ip_p; 2879 xi->inp_ip_minttl = inp->inp_ip_minttl; 2880 } 2881 2882 int 2883 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2884 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2885 { 2886 struct sockopt sopt; 2887 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2888 INPLOOKUP_WLOCKPCB); 2889 struct inpcb *inp; 2890 struct sockopt_parameters *params; 2891 struct socket *so; 2892 int error; 2893 char buf[1024]; 2894 2895 if (req->oldptr != NULL || req->oldlen != 0) 2896 return (EINVAL); 2897 if (req->newptr == NULL) 2898 return (EPERM); 2899 if (req->newlen > sizeof(buf)) 2900 return (ENOMEM); 2901 error = SYSCTL_IN(req, buf, req->newlen); 2902 if (error != 0) 2903 return (error); 2904 if (req->newlen < sizeof(struct sockopt_parameters)) 2905 return (EINVAL); 2906 params = (struct sockopt_parameters *)buf; 2907 sopt.sopt_level = params->sop_level; 2908 sopt.sopt_name = params->sop_optname; 2909 sopt.sopt_dir = SOPT_SET; 2910 sopt.sopt_val = params->sop_optval; 2911 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2912 sopt.sopt_td = NULL; 2913 #ifdef INET6 2914 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2915 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2916 params->sop_inc.inc6_laddr.s6_addr16[1] = 2917 htons(params->sop_inc.inc6_zoneid & 0xffff); 2918 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2919 params->sop_inc.inc6_faddr.s6_addr16[1] = 2920 htons(params->sop_inc.inc6_zoneid & 0xffff); 2921 } 2922 #endif 2923 if (params->sop_inc.inc_lport != htons(0) && 2924 params->sop_inc.inc_fport != htons(0)) { 2925 #ifdef INET6 2926 if (params->sop_inc.inc_flags & INC_ISIPV6) 2927 inpi.hash = INP6_PCBHASH( 2928 ¶ms->sop_inc.inc6_faddr, 2929 params->sop_inc.inc_lport, 2930 params->sop_inc.inc_fport, 2931 pcbinfo->ipi_hashmask); 2932 else 2933 #endif 2934 inpi.hash = INP_PCBHASH( 2935 ¶ms->sop_inc.inc_faddr, 2936 params->sop_inc.inc_lport, 2937 params->sop_inc.inc_fport, 2938 pcbinfo->ipi_hashmask); 2939 } 2940 while ((inp = inp_next(&inpi)) != NULL) 2941 if (inp->inp_gencnt == params->sop_id) { 2942 if (inp->inp_flags & INP_DROPPED) { 2943 INP_WUNLOCK(inp); 2944 return (ECONNRESET); 2945 } 2946 so = inp->inp_socket; 2947 KASSERT(so != NULL, ("inp_socket == NULL")); 2948 soref(so); 2949 if (params->sop_level == SOL_SOCKET) { 2950 INP_WUNLOCK(inp); 2951 error = sosetopt(so, &sopt); 2952 } else 2953 error = (*ctloutput_set)(inp, &sopt); 2954 sorele(so); 2955 break; 2956 } 2957 if (inp == NULL) 2958 error = ESRCH; 2959 return (error); 2960 } 2961 2962 #ifdef DDB 2963 static void 2964 db_print_indent(int indent) 2965 { 2966 int i; 2967 2968 for (i = 0; i < indent; i++) 2969 db_printf(" "); 2970 } 2971 2972 static void 2973 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2974 { 2975 char faddr_str[48], laddr_str[48]; 2976 2977 db_print_indent(indent); 2978 db_printf("%s at %p\n", name, inc); 2979 2980 indent += 2; 2981 2982 #ifdef INET6 2983 if (inc->inc_flags & INC_ISIPV6) { 2984 /* IPv6. */ 2985 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2986 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2987 } else 2988 #endif 2989 { 2990 /* IPv4. */ 2991 inet_ntoa_r(inc->inc_laddr, laddr_str); 2992 inet_ntoa_r(inc->inc_faddr, faddr_str); 2993 } 2994 db_print_indent(indent); 2995 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2996 ntohs(inc->inc_lport)); 2997 db_print_indent(indent); 2998 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2999 ntohs(inc->inc_fport)); 3000 } 3001 3002 static void 3003 db_print_inpflags(int inp_flags) 3004 { 3005 int comma; 3006 3007 comma = 0; 3008 if (inp_flags & INP_RECVOPTS) { 3009 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 3010 comma = 1; 3011 } 3012 if (inp_flags & INP_RECVRETOPTS) { 3013 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 3014 comma = 1; 3015 } 3016 if (inp_flags & INP_RECVDSTADDR) { 3017 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 3018 comma = 1; 3019 } 3020 if (inp_flags & INP_ORIGDSTADDR) { 3021 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 3022 comma = 1; 3023 } 3024 if (inp_flags & INP_HDRINCL) { 3025 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 3026 comma = 1; 3027 } 3028 if (inp_flags & INP_HIGHPORT) { 3029 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3030 comma = 1; 3031 } 3032 if (inp_flags & INP_LOWPORT) { 3033 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3034 comma = 1; 3035 } 3036 if (inp_flags & INP_ANONPORT) { 3037 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3038 comma = 1; 3039 } 3040 if (inp_flags & INP_RECVIF) { 3041 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3042 comma = 1; 3043 } 3044 if (inp_flags & INP_MTUDISC) { 3045 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3046 comma = 1; 3047 } 3048 if (inp_flags & INP_RECVTTL) { 3049 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3050 comma = 1; 3051 } 3052 if (inp_flags & INP_DONTFRAG) { 3053 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3054 comma = 1; 3055 } 3056 if (inp_flags & INP_RECVTOS) { 3057 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3058 comma = 1; 3059 } 3060 if (inp_flags & IN6P_IPV6_V6ONLY) { 3061 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3062 comma = 1; 3063 } 3064 if (inp_flags & IN6P_PKTINFO) { 3065 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3066 comma = 1; 3067 } 3068 if (inp_flags & IN6P_HOPLIMIT) { 3069 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3070 comma = 1; 3071 } 3072 if (inp_flags & IN6P_HOPOPTS) { 3073 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3074 comma = 1; 3075 } 3076 if (inp_flags & IN6P_DSTOPTS) { 3077 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3078 comma = 1; 3079 } 3080 if (inp_flags & IN6P_RTHDR) { 3081 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3082 comma = 1; 3083 } 3084 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3085 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3086 comma = 1; 3087 } 3088 if (inp_flags & IN6P_TCLASS) { 3089 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3090 comma = 1; 3091 } 3092 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3093 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3094 comma = 1; 3095 } 3096 if (inp_flags & INP_ONESBCAST) { 3097 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3098 comma = 1; 3099 } 3100 if (inp_flags & INP_DROPPED) { 3101 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3102 comma = 1; 3103 } 3104 if (inp_flags & INP_SOCKREF) { 3105 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3106 comma = 1; 3107 } 3108 if (inp_flags & IN6P_RFC2292) { 3109 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3110 comma = 1; 3111 } 3112 if (inp_flags & IN6P_MTU) { 3113 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3114 comma = 1; 3115 } 3116 } 3117 3118 static void 3119 db_print_inpvflag(u_char inp_vflag) 3120 { 3121 int comma; 3122 3123 comma = 0; 3124 if (inp_vflag & INP_IPV4) { 3125 db_printf("%sINP_IPV4", comma ? ", " : ""); 3126 comma = 1; 3127 } 3128 if (inp_vflag & INP_IPV6) { 3129 db_printf("%sINP_IPV6", comma ? ", " : ""); 3130 comma = 1; 3131 } 3132 if (inp_vflag & INP_IPV6PROTO) { 3133 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3134 comma = 1; 3135 } 3136 } 3137 3138 static void 3139 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3140 { 3141 3142 db_print_indent(indent); 3143 db_printf("%s at %p\n", name, inp); 3144 3145 indent += 2; 3146 3147 db_print_indent(indent); 3148 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3149 3150 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3151 3152 db_print_indent(indent); 3153 db_printf("inp_label: %p inp_flags: 0x%x (", 3154 inp->inp_label, inp->inp_flags); 3155 db_print_inpflags(inp->inp_flags); 3156 db_printf(")\n"); 3157 3158 db_print_indent(indent); 3159 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3160 inp->inp_vflag); 3161 db_print_inpvflag(inp->inp_vflag); 3162 db_printf(")\n"); 3163 3164 db_print_indent(indent); 3165 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3166 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3167 3168 db_print_indent(indent); 3169 #ifdef INET6 3170 if (inp->inp_vflag & INP_IPV6) { 3171 db_printf("in6p_options: %p in6p_outputopts: %p " 3172 "in6p_moptions: %p\n", inp->in6p_options, 3173 inp->in6p_outputopts, inp->in6p_moptions); 3174 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3175 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3176 inp->in6p_hops); 3177 } else 3178 #endif 3179 { 3180 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3181 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3182 inp->inp_options, inp->inp_moptions); 3183 } 3184 3185 db_print_indent(indent); 3186 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3187 (uintmax_t)inp->inp_gencnt); 3188 } 3189 3190 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3191 { 3192 struct inpcb *inp; 3193 3194 if (!have_addr) { 3195 db_printf("usage: show inpcb <addr>\n"); 3196 return; 3197 } 3198 inp = (struct inpcb *)addr; 3199 3200 db_print_inpcb(inp, "inpcb", 0); 3201 } 3202 #endif /* DDB */ 3203 3204 #ifdef RATELIMIT 3205 /* 3206 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3207 * if any. 3208 */ 3209 int 3210 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3211 { 3212 union if_snd_tag_modify_params params = { 3213 .rate_limit.max_rate = max_pacing_rate, 3214 .rate_limit.flags = M_NOWAIT, 3215 }; 3216 struct m_snd_tag *mst; 3217 int error; 3218 3219 mst = inp->inp_snd_tag; 3220 if (mst == NULL) 3221 return (EINVAL); 3222 3223 if (mst->sw->snd_tag_modify == NULL) { 3224 error = EOPNOTSUPP; 3225 } else { 3226 error = mst->sw->snd_tag_modify(mst, ¶ms); 3227 } 3228 return (error); 3229 } 3230 3231 /* 3232 * Query existing TX rate limit based on the existing 3233 * "inp->inp_snd_tag", if any. 3234 */ 3235 int 3236 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3237 { 3238 union if_snd_tag_query_params params = { }; 3239 struct m_snd_tag *mst; 3240 int error; 3241 3242 mst = inp->inp_snd_tag; 3243 if (mst == NULL) 3244 return (EINVAL); 3245 3246 if (mst->sw->snd_tag_query == NULL) { 3247 error = EOPNOTSUPP; 3248 } else { 3249 error = mst->sw->snd_tag_query(mst, ¶ms); 3250 if (error == 0 && p_max_pacing_rate != NULL) 3251 *p_max_pacing_rate = params.rate_limit.max_rate; 3252 } 3253 return (error); 3254 } 3255 3256 /* 3257 * Query existing TX queue level based on the existing 3258 * "inp->inp_snd_tag", if any. 3259 */ 3260 int 3261 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3262 { 3263 union if_snd_tag_query_params params = { }; 3264 struct m_snd_tag *mst; 3265 int error; 3266 3267 mst = inp->inp_snd_tag; 3268 if (mst == NULL) 3269 return (EINVAL); 3270 3271 if (mst->sw->snd_tag_query == NULL) 3272 return (EOPNOTSUPP); 3273 3274 error = mst->sw->snd_tag_query(mst, ¶ms); 3275 if (error == 0 && p_txqueue_level != NULL) 3276 *p_txqueue_level = params.rate_limit.queue_level; 3277 return (error); 3278 } 3279 3280 /* 3281 * Allocate a new TX rate limit send tag from the network interface 3282 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3283 */ 3284 int 3285 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3286 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3287 3288 { 3289 union if_snd_tag_alloc_params params = { 3290 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3291 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3292 .rate_limit.hdr.flowid = flowid, 3293 .rate_limit.hdr.flowtype = flowtype, 3294 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3295 .rate_limit.max_rate = max_pacing_rate, 3296 .rate_limit.flags = M_NOWAIT, 3297 }; 3298 int error; 3299 3300 INP_WLOCK_ASSERT(inp); 3301 3302 /* 3303 * If there is already a send tag, or the INP is being torn 3304 * down, allocating a new send tag is not allowed. Else send 3305 * tags may leak. 3306 */ 3307 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3308 return (EINVAL); 3309 3310 error = m_snd_tag_alloc(ifp, ¶ms, st); 3311 #ifdef INET 3312 if (error == 0) { 3313 counter_u64_add(rate_limit_set_ok, 1); 3314 counter_u64_add(rate_limit_active, 1); 3315 } else if (error != EOPNOTSUPP) 3316 counter_u64_add(rate_limit_alloc_fail, 1); 3317 #endif 3318 return (error); 3319 } 3320 3321 void 3322 in_pcbdetach_tag(struct m_snd_tag *mst) 3323 { 3324 3325 m_snd_tag_rele(mst); 3326 #ifdef INET 3327 counter_u64_add(rate_limit_active, -1); 3328 #endif 3329 } 3330 3331 /* 3332 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3333 * if any: 3334 */ 3335 void 3336 in_pcbdetach_txrtlmt(struct inpcb *inp) 3337 { 3338 struct m_snd_tag *mst; 3339 3340 INP_WLOCK_ASSERT(inp); 3341 3342 mst = inp->inp_snd_tag; 3343 inp->inp_snd_tag = NULL; 3344 3345 if (mst == NULL) 3346 return; 3347 3348 m_snd_tag_rele(mst); 3349 #ifdef INET 3350 counter_u64_add(rate_limit_active, -1); 3351 #endif 3352 } 3353 3354 int 3355 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3356 { 3357 int error; 3358 3359 /* 3360 * If the existing send tag is for the wrong interface due to 3361 * a route change, first drop the existing tag. Set the 3362 * CHANGED flag so that we will keep trying to allocate a new 3363 * tag if we fail to allocate one this time. 3364 */ 3365 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3366 in_pcbdetach_txrtlmt(inp); 3367 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3368 } 3369 3370 /* 3371 * NOTE: When attaching to a network interface a reference is 3372 * made to ensure the network interface doesn't go away until 3373 * all ratelimit connections are gone. The network interface 3374 * pointers compared below represent valid network interfaces, 3375 * except when comparing towards NULL. 3376 */ 3377 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3378 error = 0; 3379 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3380 if (inp->inp_snd_tag != NULL) 3381 in_pcbdetach_txrtlmt(inp); 3382 error = 0; 3383 } else if (inp->inp_snd_tag == NULL) { 3384 /* 3385 * In order to utilize packet pacing with RSS, we need 3386 * to wait until there is a valid RSS hash before we 3387 * can proceed: 3388 */ 3389 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3390 error = EAGAIN; 3391 } else { 3392 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3393 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3394 } 3395 } else { 3396 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3397 } 3398 if (error == 0 || error == EOPNOTSUPP) 3399 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3400 3401 return (error); 3402 } 3403 3404 /* 3405 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3406 * is set in the fast path and will attach/detach/modify the TX rate 3407 * limit send tag based on the socket's so_max_pacing_rate value. 3408 */ 3409 void 3410 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3411 { 3412 struct socket *socket; 3413 uint32_t max_pacing_rate; 3414 bool did_upgrade; 3415 3416 if (inp == NULL) 3417 return; 3418 3419 socket = inp->inp_socket; 3420 if (socket == NULL) 3421 return; 3422 3423 if (!INP_WLOCKED(inp)) { 3424 /* 3425 * NOTE: If the write locking fails, we need to bail 3426 * out and use the non-ratelimited ring for the 3427 * transmit until there is a new chance to get the 3428 * write lock. 3429 */ 3430 if (!INP_TRY_UPGRADE(inp)) 3431 return; 3432 did_upgrade = 1; 3433 } else { 3434 did_upgrade = 0; 3435 } 3436 3437 /* 3438 * NOTE: The so_max_pacing_rate value is read unlocked, 3439 * because atomic updates are not required since the variable 3440 * is checked at every mbuf we send. It is assumed that the 3441 * variable read itself will be atomic. 3442 */ 3443 max_pacing_rate = socket->so_max_pacing_rate; 3444 3445 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3446 3447 if (did_upgrade) 3448 INP_DOWNGRADE(inp); 3449 } 3450 3451 /* 3452 * Track route changes for TX rate limiting. 3453 */ 3454 void 3455 in_pcboutput_eagain(struct inpcb *inp) 3456 { 3457 bool did_upgrade; 3458 3459 if (inp == NULL) 3460 return; 3461 3462 if (inp->inp_snd_tag == NULL) 3463 return; 3464 3465 if (!INP_WLOCKED(inp)) { 3466 /* 3467 * NOTE: If the write locking fails, we need to bail 3468 * out and use the non-ratelimited ring for the 3469 * transmit until there is a new chance to get the 3470 * write lock. 3471 */ 3472 if (!INP_TRY_UPGRADE(inp)) 3473 return; 3474 did_upgrade = 1; 3475 } else { 3476 did_upgrade = 0; 3477 } 3478 3479 /* detach rate limiting */ 3480 in_pcbdetach_txrtlmt(inp); 3481 3482 /* make sure new mbuf send tag allocation is made */ 3483 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3484 3485 if (did_upgrade) 3486 INP_DOWNGRADE(inp); 3487 } 3488 3489 #ifdef INET 3490 static void 3491 rl_init(void *st) 3492 { 3493 rate_limit_new = counter_u64_alloc(M_WAITOK); 3494 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3495 rate_limit_active = counter_u64_alloc(M_WAITOK); 3496 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3497 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3498 } 3499 3500 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3501 #endif 3502 #endif /* RATELIMIT */ 3503