1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 #include "opt_ipsec.h" 46 #include "opt_inet.h" 47 #include "opt_inet6.h" 48 #include "opt_ratelimit.h" 49 #include "opt_route.h" 50 #include "opt_rss.h" 51 52 #include <sys/param.h> 53 #include <sys/hash.h> 54 #include <sys/systm.h> 55 #include <sys/libkern.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mbuf.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_private.h> 83 #include <net/if_types.h> 84 #include <net/if_llatbl.h> 85 #include <net/route.h> 86 #include <net/rss_config.h> 87 #include <net/vnet.h> 88 89 #if defined(INET) || defined(INET6) 90 #include <netinet/in.h> 91 #include <netinet/in_pcb.h> 92 #include <netinet/in_pcb_var.h> 93 #include <netinet/tcp.h> 94 #ifdef INET 95 #include <netinet/in_var.h> 96 #include <netinet/in_fib.h> 97 #endif 98 #include <netinet/ip_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #include <net/route/nhop.h> 106 #endif 107 108 #include <netipsec/ipsec_support.h> 109 110 #include <security/mac/mac_framework.h> 111 112 #define INPCBLBGROUP_SIZMIN 8 113 #define INPCBLBGROUP_SIZMAX 256 114 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Enable random ephemeral port allocation by default. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; 137 138 #ifdef INET 139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 140 struct in_addr faddr, u_int fport_arg, 141 struct in_addr laddr, u_int lport_arg, 142 int lookupflags, uint8_t numa_domain); 143 144 #define RANGECHK(var, min, max) \ 145 if ((var) < (min)) { (var) = (min); } \ 146 else if ((var) > (max)) { (var) = (max); } 147 148 static int 149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 150 { 151 int error; 152 153 error = sysctl_handle_int(oidp, arg1, arg2, req); 154 if (error == 0) { 155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 161 } 162 return (error); 163 } 164 165 #undef RANGECHK 166 167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 174 ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 178 ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 182 ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 197 &VNET_NAME(ipport_reservedhigh), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 201 CTLFLAG_VNET | CTLFLAG_RW, 202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 203 204 #ifdef RATELIMIT 205 counter_u64_t rate_limit_new; 206 counter_u64_t rate_limit_chg; 207 counter_u64_t rate_limit_active; 208 counter_u64_t rate_limit_alloc_fail; 209 counter_u64_t rate_limit_set_ok; 210 211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 212 "IP Rate Limiting"); 213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 214 &rate_limit_active, "Active rate limited connections"); 215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 216 &rate_limit_alloc_fail, "Rate limited connection failures"); 217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 218 &rate_limit_set_ok, "Rate limited setting succeeded"); 219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 220 &rate_limit_new, "Total Rate limit new attempts"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 222 &rate_limit_chg, "Total Rate limited change attempts"); 223 224 #endif /* RATELIMIT */ 225 226 #endif /* INET */ 227 228 VNET_DEFINE(uint32_t, in_pcbhashseed); 229 static void 230 in_pcbhashseed_init(void) 231 { 232 233 V_in_pcbhashseed = arc4random(); 234 } 235 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 236 in_pcbhashseed_init, 0); 237 238 static void in_pcbremhash(struct inpcb *); 239 240 /* 241 * in_pcb.c: manage the Protocol Control Blocks. 242 * 243 * NOTE: It is assumed that most of these functions will be called with 244 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 245 * functions often modify hash chains or addresses in pcbs. 246 */ 247 248 static struct inpcblbgroup * 249 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, 250 u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, 251 uint8_t numa_domain) 252 { 253 struct inpcblbgroup *grp; 254 size_t bytes; 255 256 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 257 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 258 if (grp == NULL) 259 return (NULL); 260 grp->il_cred = crhold(cred); 261 grp->il_vflag = vflag; 262 grp->il_lport = port; 263 grp->il_numa_domain = numa_domain; 264 grp->il_dependladdr = *addr; 265 grp->il_inpsiz = size; 266 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 267 return (grp); 268 } 269 270 static void 271 in_pcblbgroup_free_deferred(epoch_context_t ctx) 272 { 273 struct inpcblbgroup *grp; 274 275 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 276 crfree(grp->il_cred); 277 free(grp, M_PCB); 278 } 279 280 static void 281 in_pcblbgroup_free(struct inpcblbgroup *grp) 282 { 283 284 CK_LIST_REMOVE(grp, il_list); 285 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 286 } 287 288 static struct inpcblbgroup * 289 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 290 struct inpcblbgroup *old_grp, int size) 291 { 292 struct inpcblbgroup *grp; 293 int i; 294 295 grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, 296 old_grp->il_lport, &old_grp->il_dependladdr, size, 297 old_grp->il_numa_domain); 298 if (grp == NULL) 299 return (NULL); 300 301 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 302 ("invalid new local group size %d and old local group count %d", 303 grp->il_inpsiz, old_grp->il_inpcnt)); 304 305 for (i = 0; i < old_grp->il_inpcnt; ++i) 306 grp->il_inp[i] = old_grp->il_inp[i]; 307 grp->il_inpcnt = old_grp->il_inpcnt; 308 in_pcblbgroup_free(old_grp); 309 return (grp); 310 } 311 312 /* 313 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 314 * and shrink group if possible. 315 */ 316 static void 317 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 318 int i) 319 { 320 struct inpcblbgroup *grp, *new_grp; 321 322 grp = *grpp; 323 for (; i + 1 < grp->il_inpcnt; ++i) 324 grp->il_inp[i] = grp->il_inp[i + 1]; 325 grp->il_inpcnt--; 326 327 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 328 grp->il_inpcnt <= grp->il_inpsiz / 4) { 329 /* Shrink this group. */ 330 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 331 if (new_grp != NULL) 332 *grpp = new_grp; 333 } 334 } 335 336 /* 337 * Add PCB to load balance group for SO_REUSEPORT_LB option. 338 */ 339 static int 340 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 341 { 342 const static struct timeval interval = { 60, 0 }; 343 static struct timeval lastprint; 344 struct inpcbinfo *pcbinfo; 345 struct inpcblbgrouphead *hdr; 346 struct inpcblbgroup *grp; 347 uint32_t idx; 348 349 pcbinfo = inp->inp_pcbinfo; 350 351 INP_WLOCK_ASSERT(inp); 352 INP_HASH_WLOCK_ASSERT(pcbinfo); 353 354 #ifdef INET6 355 /* 356 * Don't allow IPv4 mapped INET6 wild socket. 357 */ 358 if ((inp->inp_vflag & INP_IPV4) && 359 inp->inp_laddr.s_addr == INADDR_ANY && 360 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 361 return (0); 362 } 363 #endif 364 365 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 366 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 367 CK_LIST_FOREACH(grp, hdr, il_list) { 368 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 369 grp->il_vflag == inp->inp_vflag && 370 grp->il_lport == inp->inp_lport && 371 grp->il_numa_domain == numa_domain && 372 memcmp(&grp->il_dependladdr, 373 &inp->inp_inc.inc_ie.ie_dependladdr, 374 sizeof(grp->il_dependladdr)) == 0) { 375 break; 376 } 377 } 378 if (grp == NULL) { 379 /* Create new load balance group. */ 380 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, 381 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 382 INPCBLBGROUP_SIZMIN, numa_domain); 383 if (grp == NULL) 384 return (ENOBUFS); 385 } else if (grp->il_inpcnt == grp->il_inpsiz) { 386 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 387 if (ratecheck(&lastprint, &interval)) 388 printf("lb group port %d, limit reached\n", 389 ntohs(grp->il_lport)); 390 return (0); 391 } 392 393 /* Expand this local group. */ 394 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 395 if (grp == NULL) 396 return (ENOBUFS); 397 } 398 399 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 400 ("invalid local group size %d and count %d", grp->il_inpsiz, 401 grp->il_inpcnt)); 402 403 grp->il_inp[grp->il_inpcnt] = inp; 404 grp->il_inpcnt++; 405 return (0); 406 } 407 408 /* 409 * Remove PCB from load balance group. 410 */ 411 static void 412 in_pcbremlbgrouphash(struct inpcb *inp) 413 { 414 struct inpcbinfo *pcbinfo; 415 struct inpcblbgrouphead *hdr; 416 struct inpcblbgroup *grp; 417 int i; 418 419 pcbinfo = inp->inp_pcbinfo; 420 421 INP_WLOCK_ASSERT(inp); 422 INP_HASH_WLOCK_ASSERT(pcbinfo); 423 424 hdr = &pcbinfo->ipi_lbgrouphashbase[ 425 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 426 CK_LIST_FOREACH(grp, hdr, il_list) { 427 for (i = 0; i < grp->il_inpcnt; ++i) { 428 if (grp->il_inp[i] != inp) 429 continue; 430 431 if (grp->il_inpcnt == 1) { 432 /* We are the last, free this local group. */ 433 in_pcblbgroup_free(grp); 434 } else { 435 /* Pull up inpcbs, shrink group if possible. */ 436 in_pcblbgroup_reorder(hdr, &grp, i); 437 } 438 return; 439 } 440 } 441 } 442 443 int 444 in_pcblbgroup_numa(struct inpcb *inp, int arg) 445 { 446 struct inpcbinfo *pcbinfo; 447 struct inpcblbgrouphead *hdr; 448 struct inpcblbgroup *grp; 449 int err, i; 450 uint8_t numa_domain; 451 452 switch (arg) { 453 case TCP_REUSPORT_LB_NUMA_NODOM: 454 numa_domain = M_NODOM; 455 break; 456 case TCP_REUSPORT_LB_NUMA_CURDOM: 457 numa_domain = PCPU_GET(domain); 458 break; 459 default: 460 if (arg < 0 || arg >= vm_ndomains) 461 return (EINVAL); 462 numa_domain = arg; 463 } 464 465 err = 0; 466 pcbinfo = inp->inp_pcbinfo; 467 INP_WLOCK_ASSERT(inp); 468 INP_HASH_WLOCK(pcbinfo); 469 hdr = &pcbinfo->ipi_lbgrouphashbase[ 470 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 471 CK_LIST_FOREACH(grp, hdr, il_list) { 472 for (i = 0; i < grp->il_inpcnt; ++i) { 473 if (grp->il_inp[i] != inp) 474 continue; 475 476 if (grp->il_numa_domain == numa_domain) { 477 goto abort_with_hash_wlock; 478 } 479 480 /* Remove it from the old group. */ 481 in_pcbremlbgrouphash(inp); 482 483 /* Add it to the new group based on numa domain. */ 484 in_pcbinslbgrouphash(inp, numa_domain); 485 goto abort_with_hash_wlock; 486 } 487 } 488 err = ENOENT; 489 abort_with_hash_wlock: 490 INP_HASH_WUNLOCK(pcbinfo); 491 return (err); 492 } 493 494 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 495 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 496 497 /* 498 * Initialize an inpcbinfo - a per-VNET instance of connections db. 499 */ 500 void 501 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 502 u_int hash_nelements, u_int porthash_nelements) 503 { 504 505 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 506 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 507 NULL, MTX_DEF); 508 #ifdef VIMAGE 509 pcbinfo->ipi_vnet = curvnet; 510 #endif 511 CK_LIST_INIT(&pcbinfo->ipi_listhead); 512 pcbinfo->ipi_count = 0; 513 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 514 &pcbinfo->ipi_hashmask); 515 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 516 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 517 &pcbinfo->ipi_porthashmask); 518 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 519 &pcbinfo->ipi_lbgrouphashmask); 520 pcbinfo->ipi_zone = pcbstor->ips_zone; 521 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 522 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 523 } 524 525 /* 526 * Destroy an inpcbinfo. 527 */ 528 void 529 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 530 { 531 532 KASSERT(pcbinfo->ipi_count == 0, 533 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 534 535 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 536 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 537 pcbinfo->ipi_porthashmask); 538 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 539 pcbinfo->ipi_lbgrouphashmask); 540 mtx_destroy(&pcbinfo->ipi_hash_lock); 541 mtx_destroy(&pcbinfo->ipi_lock); 542 } 543 544 /* 545 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 546 */ 547 static void inpcb_dtor(void *, int, void *); 548 static void inpcb_fini(void *, int); 549 void 550 in_pcbstorage_init(void *arg) 551 { 552 struct inpcbstorage *pcbstor = arg; 553 554 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 555 pcbstor->ips_size, NULL, inpcb_dtor, pcbstor->ips_pcbinit, 556 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 557 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 558 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 559 uma_zone_set_smr(pcbstor->ips_portzone, 560 uma_zone_get_smr(pcbstor->ips_zone)); 561 } 562 563 /* 564 * Destroy a pcbstorage - used by unloadable protocols. 565 */ 566 void 567 in_pcbstorage_destroy(void *arg) 568 { 569 struct inpcbstorage *pcbstor = arg; 570 571 uma_zdestroy(pcbstor->ips_zone); 572 uma_zdestroy(pcbstor->ips_portzone); 573 } 574 575 /* 576 * Allocate a PCB and associate it with the socket. 577 * On success return with the PCB locked. 578 */ 579 int 580 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 581 { 582 struct inpcb *inp; 583 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 584 int error; 585 #endif 586 587 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 588 if (inp == NULL) 589 return (ENOBUFS); 590 bzero(&inp->inp_start_zero, inp_zero_size); 591 #ifdef NUMA 592 inp->inp_numa_domain = M_NODOM; 593 #endif 594 inp->inp_pcbinfo = pcbinfo; 595 inp->inp_socket = so; 596 inp->inp_cred = crhold(so->so_cred); 597 inp->inp_inc.inc_fibnum = so->so_fibnum; 598 #ifdef MAC 599 error = mac_inpcb_init(inp, M_NOWAIT); 600 if (error != 0) 601 goto out; 602 mac_inpcb_create(so, inp); 603 #endif 604 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 605 error = ipsec_init_pcbpolicy(inp); 606 if (error != 0) { 607 #ifdef MAC 608 mac_inpcb_destroy(inp); 609 #endif 610 goto out; 611 } 612 #endif /*IPSEC*/ 613 #ifdef INET6 614 if (INP_SOCKAF(so) == AF_INET6) { 615 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 616 if (V_ip6_v6only) 617 inp->inp_flags |= IN6P_IPV6_V6ONLY; 618 #ifdef INET 619 else 620 inp->inp_vflag |= INP_IPV4; 621 #endif 622 if (V_ip6_auto_flowlabel) 623 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 624 inp->in6p_hops = -1; /* use kernel default */ 625 } 626 #endif 627 #if defined(INET) && defined(INET6) 628 else 629 #endif 630 #ifdef INET 631 inp->inp_vflag |= INP_IPV4; 632 #endif 633 /* 634 * Routes in inpcb's can cache L2 as well; they are guaranteed 635 * to be cleaned up. 636 */ 637 inp->inp_route.ro_flags = RT_LLE_CACHE; 638 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 639 INP_WLOCK(inp); 640 INP_INFO_WLOCK(pcbinfo); 641 pcbinfo->ipi_count++; 642 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 643 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 644 INP_INFO_WUNLOCK(pcbinfo); 645 so->so_pcb = inp; 646 647 return (0); 648 649 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 650 out: 651 uma_zfree_smr(pcbinfo->ipi_zone, inp); 652 return (error); 653 #endif 654 } 655 656 #ifdef INET 657 int 658 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) 659 { 660 int anonport, error; 661 662 KASSERT(sin == NULL || sin->sin_family == AF_INET, 663 ("%s: invalid address family for %p", __func__, sin)); 664 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in), 665 ("%s: invalid address length for %p", __func__, sin)); 666 INP_WLOCK_ASSERT(inp); 667 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 668 669 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 670 return (EINVAL); 671 anonport = sin == NULL || sin->sin_port == 0; 672 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr, 673 &inp->inp_lport, cred); 674 if (error) 675 return (error); 676 if (in_pcbinshash(inp) != 0) { 677 inp->inp_laddr.s_addr = INADDR_ANY; 678 inp->inp_lport = 0; 679 return (EAGAIN); 680 } 681 if (anonport) 682 inp->inp_flags |= INP_ANONPORT; 683 return (0); 684 } 685 #endif 686 687 #if defined(INET) || defined(INET6) 688 /* 689 * Assign a local port like in_pcb_lport(), but also used with connect() 690 * and a foreign address and port. If fsa is non-NULL, choose a local port 691 * that is unused with those, otherwise one that is completely unused. 692 * lsa can be NULL for IPv6. 693 */ 694 int 695 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 696 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 697 { 698 struct inpcbinfo *pcbinfo; 699 struct inpcb *tmpinp; 700 unsigned short *lastport; 701 int count, error; 702 u_short aux, first, last, lport; 703 #ifdef INET 704 struct in_addr laddr, faddr; 705 #endif 706 #ifdef INET6 707 struct in6_addr *laddr6, *faddr6; 708 #endif 709 710 pcbinfo = inp->inp_pcbinfo; 711 712 /* 713 * Because no actual state changes occur here, a global write lock on 714 * the pcbinfo isn't required. 715 */ 716 INP_LOCK_ASSERT(inp); 717 INP_HASH_LOCK_ASSERT(pcbinfo); 718 719 if (inp->inp_flags & INP_HIGHPORT) { 720 first = V_ipport_hifirstauto; /* sysctl */ 721 last = V_ipport_hilastauto; 722 lastport = &pcbinfo->ipi_lasthi; 723 } else if (inp->inp_flags & INP_LOWPORT) { 724 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 725 if (error) 726 return (error); 727 first = V_ipport_lowfirstauto; /* 1023 */ 728 last = V_ipport_lowlastauto; /* 600 */ 729 lastport = &pcbinfo->ipi_lastlow; 730 } else { 731 first = V_ipport_firstauto; /* sysctl */ 732 last = V_ipport_lastauto; 733 lastport = &pcbinfo->ipi_lastport; 734 } 735 736 /* 737 * Instead of having two loops further down counting up or down 738 * make sure that first is always <= last and go with only one 739 * code path implementing all logic. 740 */ 741 if (first > last) { 742 aux = first; 743 first = last; 744 last = aux; 745 } 746 747 #ifdef INET 748 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 749 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 750 if (lsa != NULL) 751 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 752 if (fsa != NULL) 753 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 754 } 755 #endif 756 #ifdef INET6 757 laddr6 = NULL; 758 if ((inp->inp_vflag & INP_IPV6) != 0) { 759 if (lsa != NULL) 760 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 761 if (fsa != NULL) 762 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 763 } 764 #endif 765 766 tmpinp = NULL; 767 lport = *lportp; 768 769 if (V_ipport_randomized) 770 *lastport = first + (arc4random() % (last - first)); 771 772 count = last - first; 773 774 do { 775 if (count-- < 0) /* completely used? */ 776 return (EADDRNOTAVAIL); 777 ++*lastport; 778 if (*lastport < first || *lastport > last) 779 *lastport = first; 780 lport = htons(*lastport); 781 782 if (fsa != NULL) { 783 #ifdef INET 784 if (lsa->sa_family == AF_INET) { 785 tmpinp = in_pcblookup_hash_locked(pcbinfo, 786 faddr, fport, laddr, lport, lookupflags, 787 M_NODOM); 788 } 789 #endif 790 #ifdef INET6 791 if (lsa->sa_family == AF_INET6) { 792 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 793 faddr6, fport, laddr6, lport, lookupflags, 794 M_NODOM); 795 } 796 #endif 797 } else { 798 #ifdef INET6 799 if ((inp->inp_vflag & INP_IPV6) != 0) { 800 tmpinp = in6_pcblookup_local(pcbinfo, 801 &inp->in6p_laddr, lport, lookupflags, cred); 802 #ifdef INET 803 if (tmpinp == NULL && 804 (inp->inp_vflag & INP_IPV4)) 805 tmpinp = in_pcblookup_local(pcbinfo, 806 laddr, lport, lookupflags, cred); 807 #endif 808 } 809 #endif 810 #if defined(INET) && defined(INET6) 811 else 812 #endif 813 #ifdef INET 814 tmpinp = in_pcblookup_local(pcbinfo, laddr, 815 lport, lookupflags, cred); 816 #endif 817 } 818 } while (tmpinp != NULL); 819 820 *lportp = lport; 821 822 return (0); 823 } 824 825 /* 826 * Select a local port (number) to use. 827 */ 828 int 829 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 830 struct ucred *cred, int lookupflags) 831 { 832 struct sockaddr_in laddr; 833 834 if (laddrp) { 835 bzero(&laddr, sizeof(laddr)); 836 laddr.sin_family = AF_INET; 837 laddr.sin_addr = *laddrp; 838 } 839 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 840 NULL, lportp, NULL, 0, cred, lookupflags)); 841 } 842 843 /* 844 * Return cached socket options. 845 */ 846 int 847 inp_so_options(const struct inpcb *inp) 848 { 849 int so_options; 850 851 so_options = 0; 852 853 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 854 so_options |= SO_REUSEPORT_LB; 855 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 856 so_options |= SO_REUSEPORT; 857 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 858 so_options |= SO_REUSEADDR; 859 return (so_options); 860 } 861 #endif /* INET || INET6 */ 862 863 #ifdef INET 864 /* 865 * Set up a bind operation on a PCB, performing port allocation 866 * as required, but do not actually modify the PCB. Callers can 867 * either complete the bind by setting inp_laddr/inp_lport and 868 * calling in_pcbinshash(), or they can just use the resulting 869 * port and address to authorise the sending of a once-off packet. 870 * 871 * On error, the values of *laddrp and *lportp are not changed. 872 */ 873 int 874 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, 875 u_short *lportp, struct ucred *cred) 876 { 877 struct socket *so = inp->inp_socket; 878 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 879 struct in_addr laddr; 880 u_short lport = 0; 881 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 882 int error; 883 884 /* 885 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 886 * so that we don't have to add to the (already messy) code below. 887 */ 888 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 889 890 /* 891 * No state changes, so read locks are sufficient here. 892 */ 893 INP_LOCK_ASSERT(inp); 894 INP_HASH_LOCK_ASSERT(pcbinfo); 895 896 laddr.s_addr = *laddrp; 897 if (sin != NULL && laddr.s_addr != INADDR_ANY) 898 return (EINVAL); 899 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 900 lookupflags = INPLOOKUP_WILDCARD; 901 if (sin == NULL) { 902 if ((error = prison_local_ip4(cred, &laddr)) != 0) 903 return (error); 904 } else { 905 KASSERT(sin->sin_family == AF_INET, 906 ("%s: invalid family for address %p", __func__, sin)); 907 KASSERT(sin->sin_len == sizeof(*sin), 908 ("%s: invalid length for address %p", __func__, sin)); 909 910 error = prison_local_ip4(cred, &sin->sin_addr); 911 if (error) 912 return (error); 913 if (sin->sin_port != *lportp) { 914 /* Don't allow the port to change. */ 915 if (*lportp != 0) 916 return (EINVAL); 917 lport = sin->sin_port; 918 } 919 /* NB: lport is left as 0 if the port isn't being changed. */ 920 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 921 /* 922 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 923 * allow complete duplication of binding if 924 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 925 * and a multicast address is bound on both 926 * new and duplicated sockets. 927 */ 928 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 929 reuseport = SO_REUSEADDR|SO_REUSEPORT; 930 /* 931 * XXX: How to deal with SO_REUSEPORT_LB here? 932 * Treat same as SO_REUSEPORT for now. 933 */ 934 if ((so->so_options & 935 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 936 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 937 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 938 sin->sin_port = 0; /* yech... */ 939 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 940 /* 941 * Is the address a local IP address? 942 * If INP_BINDANY is set, then the socket may be bound 943 * to any endpoint address, local or not. 944 */ 945 if ((inp->inp_flags & INP_BINDANY) == 0 && 946 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 947 return (EADDRNOTAVAIL); 948 } 949 laddr = sin->sin_addr; 950 if (lport) { 951 struct inpcb *t; 952 953 /* GROSS */ 954 if (ntohs(lport) <= V_ipport_reservedhigh && 955 ntohs(lport) >= V_ipport_reservedlow && 956 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 957 return (EACCES); 958 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 959 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 960 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 961 lport, INPLOOKUP_WILDCARD, cred); 962 /* 963 * XXX 964 * This entire block sorely needs a rewrite. 965 */ 966 if (t != NULL && 967 (so->so_type != SOCK_STREAM || 968 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 969 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 970 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 971 (t->inp_flags2 & INP_REUSEPORT) || 972 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 973 (inp->inp_cred->cr_uid != 974 t->inp_cred->cr_uid)) 975 return (EADDRINUSE); 976 } 977 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 978 lport, lookupflags, cred); 979 if (t != NULL && (reuseport & inp_so_options(t)) == 0 && 980 (reuseport_lb & inp_so_options(t)) == 0) { 981 #ifdef INET6 982 if (ntohl(sin->sin_addr.s_addr) != 983 INADDR_ANY || 984 ntohl(t->inp_laddr.s_addr) != 985 INADDR_ANY || 986 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 987 (t->inp_vflag & INP_IPV6PROTO) == 0) 988 #endif 989 return (EADDRINUSE); 990 } 991 } 992 } 993 if (*lportp != 0) 994 lport = *lportp; 995 if (lport == 0) { 996 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 997 if (error != 0) 998 return (error); 999 } 1000 *laddrp = laddr.s_addr; 1001 *lportp = lport; 1002 return (0); 1003 } 1004 1005 /* 1006 * Connect from a socket to a specified address. 1007 * Both address and port must be specified in argument sin. 1008 * If don't have a local address for this socket yet, 1009 * then pick one. 1010 */ 1011 int 1012 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred, 1013 bool rehash) 1014 { 1015 u_short lport, fport; 1016 in_addr_t laddr, faddr; 1017 int anonport, error; 1018 1019 INP_WLOCK_ASSERT(inp); 1020 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1021 1022 lport = inp->inp_lport; 1023 laddr = inp->inp_laddr.s_addr; 1024 anonport = (lport == 0); 1025 error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport, 1026 cred); 1027 if (error) 1028 return (error); 1029 1030 /* Do the initial binding of the local address if required. */ 1031 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1032 KASSERT(rehash == true, 1033 ("Rehashing required for unbound inps")); 1034 inp->inp_lport = lport; 1035 inp->inp_laddr.s_addr = laddr; 1036 if (in_pcbinshash(inp) != 0) { 1037 inp->inp_laddr.s_addr = INADDR_ANY; 1038 inp->inp_lport = 0; 1039 return (EAGAIN); 1040 } 1041 } 1042 1043 /* Commit the remaining changes. */ 1044 inp->inp_lport = lport; 1045 inp->inp_laddr.s_addr = laddr; 1046 inp->inp_faddr.s_addr = faddr; 1047 inp->inp_fport = fport; 1048 if (rehash) { 1049 in_pcbrehash(inp); 1050 } else { 1051 in_pcbinshash(inp); 1052 } 1053 1054 if (anonport) 1055 inp->inp_flags |= INP_ANONPORT; 1056 return (0); 1057 } 1058 1059 /* 1060 * Do proper source address selection on an unbound socket in case 1061 * of connect. Take jails into account as well. 1062 */ 1063 int 1064 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1065 struct ucred *cred) 1066 { 1067 struct ifaddr *ifa; 1068 struct sockaddr *sa; 1069 struct sockaddr_in *sin, dst; 1070 struct nhop_object *nh; 1071 int error; 1072 1073 NET_EPOCH_ASSERT(); 1074 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1075 1076 /* 1077 * Bypass source address selection and use the primary jail IP 1078 * if requested. 1079 */ 1080 if (!prison_saddrsel_ip4(cred, laddr)) 1081 return (0); 1082 1083 error = 0; 1084 1085 nh = NULL; 1086 bzero(&dst, sizeof(dst)); 1087 sin = &dst; 1088 sin->sin_family = AF_INET; 1089 sin->sin_len = sizeof(struct sockaddr_in); 1090 sin->sin_addr.s_addr = faddr->s_addr; 1091 1092 /* 1093 * If route is known our src addr is taken from the i/f, 1094 * else punt. 1095 * 1096 * Find out route to destination. 1097 */ 1098 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1099 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1100 0, NHR_NONE, 0); 1101 1102 /* 1103 * If we found a route, use the address corresponding to 1104 * the outgoing interface. 1105 * 1106 * Otherwise assume faddr is reachable on a directly connected 1107 * network and try to find a corresponding interface to take 1108 * the source address from. 1109 */ 1110 if (nh == NULL || nh->nh_ifp == NULL) { 1111 struct in_ifaddr *ia; 1112 struct ifnet *ifp; 1113 1114 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1115 inp->inp_socket->so_fibnum)); 1116 if (ia == NULL) { 1117 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1118 inp->inp_socket->so_fibnum)); 1119 } 1120 if (ia == NULL) { 1121 error = ENETUNREACH; 1122 goto done; 1123 } 1124 1125 if (!prison_flag(cred, PR_IP4)) { 1126 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1127 goto done; 1128 } 1129 1130 ifp = ia->ia_ifp; 1131 ia = NULL; 1132 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1133 sa = ifa->ifa_addr; 1134 if (sa->sa_family != AF_INET) 1135 continue; 1136 sin = (struct sockaddr_in *)sa; 1137 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1138 ia = (struct in_ifaddr *)ifa; 1139 break; 1140 } 1141 } 1142 if (ia != NULL) { 1143 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1144 goto done; 1145 } 1146 1147 /* 3. As a last resort return the 'default' jail address. */ 1148 error = prison_get_ip4(cred, laddr); 1149 goto done; 1150 } 1151 1152 /* 1153 * If the outgoing interface on the route found is not 1154 * a loopback interface, use the address from that interface. 1155 * In case of jails do those three steps: 1156 * 1. check if the interface address belongs to the jail. If so use it. 1157 * 2. check if we have any address on the outgoing interface 1158 * belonging to this jail. If so use it. 1159 * 3. as a last resort return the 'default' jail address. 1160 */ 1161 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1162 struct in_ifaddr *ia; 1163 struct ifnet *ifp; 1164 1165 /* If not jailed, use the default returned. */ 1166 if (!prison_flag(cred, PR_IP4)) { 1167 ia = (struct in_ifaddr *)nh->nh_ifa; 1168 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1169 goto done; 1170 } 1171 1172 /* Jailed. */ 1173 /* 1. Check if the iface address belongs to the jail. */ 1174 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1175 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1176 ia = (struct in_ifaddr *)nh->nh_ifa; 1177 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1178 goto done; 1179 } 1180 1181 /* 1182 * 2. Check if we have any address on the outgoing interface 1183 * belonging to this jail. 1184 */ 1185 ia = NULL; 1186 ifp = nh->nh_ifp; 1187 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1188 sa = ifa->ifa_addr; 1189 if (sa->sa_family != AF_INET) 1190 continue; 1191 sin = (struct sockaddr_in *)sa; 1192 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1193 ia = (struct in_ifaddr *)ifa; 1194 break; 1195 } 1196 } 1197 if (ia != NULL) { 1198 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1199 goto done; 1200 } 1201 1202 /* 3. As a last resort return the 'default' jail address. */ 1203 error = prison_get_ip4(cred, laddr); 1204 goto done; 1205 } 1206 1207 /* 1208 * The outgoing interface is marked with 'loopback net', so a route 1209 * to ourselves is here. 1210 * Try to find the interface of the destination address and then 1211 * take the address from there. That interface is not necessarily 1212 * a loopback interface. 1213 * In case of jails, check that it is an address of the jail 1214 * and if we cannot find, fall back to the 'default' jail address. 1215 */ 1216 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1217 struct in_ifaddr *ia; 1218 1219 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1220 inp->inp_socket->so_fibnum)); 1221 if (ia == NULL) 1222 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1223 inp->inp_socket->so_fibnum)); 1224 if (ia == NULL) 1225 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1226 1227 if (!prison_flag(cred, PR_IP4)) { 1228 if (ia == NULL) { 1229 error = ENETUNREACH; 1230 goto done; 1231 } 1232 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1233 goto done; 1234 } 1235 1236 /* Jailed. */ 1237 if (ia != NULL) { 1238 struct ifnet *ifp; 1239 1240 ifp = ia->ia_ifp; 1241 ia = NULL; 1242 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1243 sa = ifa->ifa_addr; 1244 if (sa->sa_family != AF_INET) 1245 continue; 1246 sin = (struct sockaddr_in *)sa; 1247 if (prison_check_ip4(cred, 1248 &sin->sin_addr) == 0) { 1249 ia = (struct in_ifaddr *)ifa; 1250 break; 1251 } 1252 } 1253 if (ia != NULL) { 1254 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1255 goto done; 1256 } 1257 } 1258 1259 /* 3. As a last resort return the 'default' jail address. */ 1260 error = prison_get_ip4(cred, laddr); 1261 goto done; 1262 } 1263 1264 done: 1265 if (error == 0 && laddr->s_addr == INADDR_ANY) 1266 return (EHOSTUNREACH); 1267 return (error); 1268 } 1269 1270 /* 1271 * Set up for a connect from a socket to the specified address. 1272 * On entry, *laddrp and *lportp should contain the current local 1273 * address and port for the PCB; these are updated to the values 1274 * that should be placed in inp_laddr and inp_lport to complete 1275 * the connect. 1276 * 1277 * On success, *faddrp and *fportp will be set to the remote address 1278 * and port. These are not updated in the error case. 1279 */ 1280 int 1281 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin, 1282 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1283 struct ucred *cred) 1284 { 1285 struct in_ifaddr *ia; 1286 struct in_addr laddr, faddr; 1287 u_short lport, fport; 1288 int error; 1289 1290 KASSERT(sin->sin_family == AF_INET, 1291 ("%s: invalid address family for %p", __func__, sin)); 1292 KASSERT(sin->sin_len == sizeof(*sin), 1293 ("%s: invalid address length for %p", __func__, sin)); 1294 1295 /* 1296 * Because a global state change doesn't actually occur here, a read 1297 * lock is sufficient. 1298 */ 1299 NET_EPOCH_ASSERT(); 1300 INP_LOCK_ASSERT(inp); 1301 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1302 1303 if (sin->sin_port == 0) 1304 return (EADDRNOTAVAIL); 1305 laddr.s_addr = *laddrp; 1306 lport = *lportp; 1307 faddr = sin->sin_addr; 1308 fport = sin->sin_port; 1309 #ifdef ROUTE_MPATH 1310 if (CALC_FLOWID_OUTBOUND) { 1311 uint32_t hash_val, hash_type; 1312 1313 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1314 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1315 1316 inp->inp_flowid = hash_val; 1317 inp->inp_flowtype = hash_type; 1318 } 1319 #endif 1320 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1321 /* 1322 * If the destination address is INADDR_ANY, 1323 * use the primary local address. 1324 * If the supplied address is INADDR_BROADCAST, 1325 * and the primary interface supports broadcast, 1326 * choose the broadcast address for that interface. 1327 */ 1328 if (faddr.s_addr == INADDR_ANY) { 1329 faddr = 1330 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1331 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1332 return (error); 1333 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1334 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1335 IFF_BROADCAST) 1336 faddr = satosin(&CK_STAILQ_FIRST( 1337 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1338 } 1339 } 1340 if (laddr.s_addr == INADDR_ANY) { 1341 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1342 /* 1343 * If the destination address is multicast and an outgoing 1344 * interface has been set as a multicast option, prefer the 1345 * address of that interface as our source address. 1346 */ 1347 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1348 inp->inp_moptions != NULL) { 1349 struct ip_moptions *imo; 1350 struct ifnet *ifp; 1351 1352 imo = inp->inp_moptions; 1353 if (imo->imo_multicast_ifp != NULL) { 1354 ifp = imo->imo_multicast_ifp; 1355 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1356 if (ia->ia_ifp == ifp && 1357 prison_check_ip4(cred, 1358 &ia->ia_addr.sin_addr) == 0) 1359 break; 1360 } 1361 if (ia == NULL) 1362 error = EADDRNOTAVAIL; 1363 else { 1364 laddr = ia->ia_addr.sin_addr; 1365 error = 0; 1366 } 1367 } 1368 } 1369 if (error) 1370 return (error); 1371 } 1372 1373 if (lport != 0) { 1374 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1375 fport, laddr, lport, 0, M_NODOM) != NULL) 1376 return (EADDRINUSE); 1377 } else { 1378 struct sockaddr_in lsin, fsin; 1379 1380 bzero(&lsin, sizeof(lsin)); 1381 bzero(&fsin, sizeof(fsin)); 1382 lsin.sin_family = AF_INET; 1383 lsin.sin_addr = laddr; 1384 fsin.sin_family = AF_INET; 1385 fsin.sin_addr = faddr; 1386 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1387 &lport, (struct sockaddr *)& fsin, fport, cred, 1388 INPLOOKUP_WILDCARD); 1389 if (error) 1390 return (error); 1391 } 1392 *laddrp = laddr.s_addr; 1393 *lportp = lport; 1394 *faddrp = faddr.s_addr; 1395 *fportp = fport; 1396 return (0); 1397 } 1398 1399 void 1400 in_pcbdisconnect(struct inpcb *inp) 1401 { 1402 1403 INP_WLOCK_ASSERT(inp); 1404 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1405 1406 inp->inp_laddr.s_addr = INADDR_ANY; 1407 inp->inp_faddr.s_addr = INADDR_ANY; 1408 inp->inp_fport = 0; 1409 in_pcbrehash(inp); 1410 } 1411 #endif /* INET */ 1412 1413 /* 1414 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1415 * For most protocols, this will be invoked immediately prior to calling 1416 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1417 * socket, in which case in_pcbfree() is deferred. 1418 */ 1419 void 1420 in_pcbdetach(struct inpcb *inp) 1421 { 1422 1423 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1424 1425 #ifdef RATELIMIT 1426 if (inp->inp_snd_tag != NULL) 1427 in_pcbdetach_txrtlmt(inp); 1428 #endif 1429 inp->inp_socket->so_pcb = NULL; 1430 inp->inp_socket = NULL; 1431 } 1432 1433 /* 1434 * inpcb hash lookups are protected by SMR section. 1435 * 1436 * Once desired pcb has been found, switching from SMR section to a pcb 1437 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1438 * here because SMR is a critical section. 1439 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1440 */ 1441 static inline void 1442 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1443 { 1444 1445 lock == INPLOOKUP_RLOCKPCB ? 1446 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1447 } 1448 1449 static inline void 1450 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1451 { 1452 1453 lock == INPLOOKUP_RLOCKPCB ? 1454 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1455 } 1456 1457 static inline int 1458 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1459 { 1460 1461 return (lock == INPLOOKUP_RLOCKPCB ? 1462 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1463 } 1464 1465 static inline bool 1466 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1467 { 1468 1469 return (lock == INPLOOKUP_RLOCKPCB ? 1470 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1471 } 1472 1473 static inline bool 1474 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1475 { 1476 1477 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1478 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1479 1480 if (__predict_true(inp_trylock(inp, lock))) { 1481 if (__predict_false(inp->inp_flags & ignflags)) { 1482 smr_exit(inp->inp_pcbinfo->ipi_smr); 1483 inp_unlock(inp, lock); 1484 return (false); 1485 } 1486 smr_exit(inp->inp_pcbinfo->ipi_smr); 1487 return (true); 1488 } 1489 1490 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1491 smr_exit(inp->inp_pcbinfo->ipi_smr); 1492 inp_lock(inp, lock); 1493 if (__predict_false(in_pcbrele(inp, lock))) 1494 return (false); 1495 /* 1496 * inp acquired through refcount & lock for sure didn't went 1497 * through uma_zfree(). However, it may have already went 1498 * through in_pcbfree() and has another reference, that 1499 * prevented its release by our in_pcbrele(). 1500 */ 1501 if (__predict_false(inp->inp_flags & ignflags)) { 1502 inp_unlock(inp, lock); 1503 return (false); 1504 } 1505 return (true); 1506 } else { 1507 smr_exit(inp->inp_pcbinfo->ipi_smr); 1508 return (false); 1509 } 1510 } 1511 1512 bool 1513 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1514 { 1515 1516 /* 1517 * in_pcblookup() family of functions ignore not only freed entries, 1518 * that may be found due to lockless access to the hash, but dropped 1519 * entries, too. 1520 */ 1521 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1522 } 1523 1524 /* 1525 * inp_next() - inpcb hash/list traversal iterator 1526 * 1527 * Requires initialized struct inpcb_iterator for context. 1528 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1529 * 1530 * - Iterator can have either write-lock or read-lock semantics, that can not 1531 * be changed later. 1532 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1533 * a single hash slot. Note: only rip_input() does the latter. 1534 * - Iterator may have optional bool matching function. The matching function 1535 * will be executed for each inpcb in the SMR context, so it can not acquire 1536 * locks and can safely access only immutable fields of inpcb. 1537 * 1538 * A fresh initialized iterator has NULL inpcb in its context and that 1539 * means that inp_next() call would return the very first inpcb on the list 1540 * locked with desired semantic. In all following calls the context pointer 1541 * shall hold the current inpcb pointer. The KPI user is not supposed to 1542 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1543 * and write NULL to its context. After end of traversal an iterator can be 1544 * reused. 1545 * 1546 * List traversals have the following features/constraints: 1547 * - New entries won't be seen, as they are always added to the head of a list. 1548 * - Removed entries won't stop traversal as long as they are not added to 1549 * a different list. This is violated by in_pcbrehash(). 1550 */ 1551 #define II_LIST_FIRST(ipi, hash) \ 1552 (((hash) == INP_ALL_LIST) ? \ 1553 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1554 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1555 #define II_LIST_NEXT(inp, hash) \ 1556 (((hash) == INP_ALL_LIST) ? \ 1557 CK_LIST_NEXT((inp), inp_list) : \ 1558 CK_LIST_NEXT((inp), inp_hash)) 1559 #define II_LOCK_ASSERT(inp, lock) \ 1560 rw_assert(&(inp)->inp_lock, \ 1561 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1562 struct inpcb * 1563 inp_next(struct inpcb_iterator *ii) 1564 { 1565 const struct inpcbinfo *ipi = ii->ipi; 1566 inp_match_t *match = ii->match; 1567 void *ctx = ii->ctx; 1568 inp_lookup_t lock = ii->lock; 1569 int hash = ii->hash; 1570 struct inpcb *inp; 1571 1572 if (ii->inp == NULL) { /* First call. */ 1573 smr_enter(ipi->ipi_smr); 1574 /* This is unrolled CK_LIST_FOREACH(). */ 1575 for (inp = II_LIST_FIRST(ipi, hash); 1576 inp != NULL; 1577 inp = II_LIST_NEXT(inp, hash)) { 1578 if (match != NULL && (match)(inp, ctx) == false) 1579 continue; 1580 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1581 break; 1582 else { 1583 smr_enter(ipi->ipi_smr); 1584 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1585 inp = II_LIST_FIRST(ipi, hash); 1586 if (inp == NULL) 1587 break; 1588 } 1589 } 1590 1591 if (inp == NULL) 1592 smr_exit(ipi->ipi_smr); 1593 else 1594 ii->inp = inp; 1595 1596 return (inp); 1597 } 1598 1599 /* Not a first call. */ 1600 smr_enter(ipi->ipi_smr); 1601 restart: 1602 inp = ii->inp; 1603 II_LOCK_ASSERT(inp, lock); 1604 next: 1605 inp = II_LIST_NEXT(inp, hash); 1606 if (inp == NULL) { 1607 smr_exit(ipi->ipi_smr); 1608 goto found; 1609 } 1610 1611 if (match != NULL && (match)(inp, ctx) == false) 1612 goto next; 1613 1614 if (__predict_true(inp_trylock(inp, lock))) { 1615 if (__predict_false(inp->inp_flags & INP_FREED)) { 1616 /* 1617 * Entries are never inserted in middle of a list, thus 1618 * as long as we are in SMR, we can continue traversal. 1619 * Jump to 'restart' should yield in the same result, 1620 * but could produce unnecessary looping. Could this 1621 * looping be unbound? 1622 */ 1623 inp_unlock(inp, lock); 1624 goto next; 1625 } else { 1626 smr_exit(ipi->ipi_smr); 1627 goto found; 1628 } 1629 } 1630 1631 /* 1632 * Can't obtain lock immediately, thus going hard. Once we exit the 1633 * SMR section we can no longer jump to 'next', and our only stable 1634 * anchoring point is ii->inp, which we keep locked for this case, so 1635 * we jump to 'restart'. 1636 */ 1637 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1638 smr_exit(ipi->ipi_smr); 1639 inp_lock(inp, lock); 1640 if (__predict_false(in_pcbrele(inp, lock))) { 1641 smr_enter(ipi->ipi_smr); 1642 goto restart; 1643 } 1644 /* 1645 * See comment in inp_smr_lock(). 1646 */ 1647 if (__predict_false(inp->inp_flags & INP_FREED)) { 1648 inp_unlock(inp, lock); 1649 smr_enter(ipi->ipi_smr); 1650 goto restart; 1651 } 1652 } else 1653 goto next; 1654 1655 found: 1656 inp_unlock(ii->inp, lock); 1657 ii->inp = inp; 1658 1659 return (ii->inp); 1660 } 1661 1662 /* 1663 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1664 * stability of an inpcb pointer despite the inpcb lock being released or 1665 * SMR section exited. 1666 * 1667 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1668 */ 1669 void 1670 in_pcbref(struct inpcb *inp) 1671 { 1672 u_int old __diagused; 1673 1674 old = refcount_acquire(&inp->inp_refcount); 1675 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1676 } 1677 1678 /* 1679 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1680 * freeing the pcb, if the reference was very last. 1681 */ 1682 bool 1683 in_pcbrele_rlocked(struct inpcb *inp) 1684 { 1685 1686 INP_RLOCK_ASSERT(inp); 1687 1688 if (!refcount_release(&inp->inp_refcount)) 1689 return (false); 1690 1691 MPASS(inp->inp_flags & INP_FREED); 1692 MPASS(inp->inp_socket == NULL); 1693 MPASS(inp->inp_in_hpts == 0); 1694 INP_RUNLOCK(inp); 1695 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1696 return (true); 1697 } 1698 1699 bool 1700 in_pcbrele_wlocked(struct inpcb *inp) 1701 { 1702 1703 INP_WLOCK_ASSERT(inp); 1704 1705 if (!refcount_release(&inp->inp_refcount)) 1706 return (false); 1707 1708 MPASS(inp->inp_flags & INP_FREED); 1709 MPASS(inp->inp_socket == NULL); 1710 MPASS(inp->inp_in_hpts == 0); 1711 INP_WUNLOCK(inp); 1712 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1713 return (true); 1714 } 1715 1716 /* 1717 * Unconditionally schedule an inpcb to be freed by decrementing its 1718 * reference count, which should occur only after the inpcb has been detached 1719 * from its socket. If another thread holds a temporary reference (acquired 1720 * using in_pcbref()) then the free is deferred until that reference is 1721 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1722 * Almost all work, including removal from global lists, is done in this 1723 * context, where the pcbinfo lock is held. 1724 */ 1725 void 1726 in_pcbfree(struct inpcb *inp) 1727 { 1728 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1729 #ifdef INET 1730 struct ip_moptions *imo; 1731 #endif 1732 #ifdef INET6 1733 struct ip6_moptions *im6o; 1734 #endif 1735 1736 INP_WLOCK_ASSERT(inp); 1737 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1738 KASSERT((inp->inp_flags & INP_FREED) == 0, 1739 ("%s: called twice for pcb %p", __func__, inp)); 1740 1741 inp->inp_flags |= INP_FREED; 1742 INP_INFO_WLOCK(pcbinfo); 1743 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1744 pcbinfo->ipi_count--; 1745 CK_LIST_REMOVE(inp, inp_list); 1746 INP_INFO_WUNLOCK(pcbinfo); 1747 1748 if (inp->inp_flags & INP_INHASHLIST) 1749 in_pcbremhash(inp); 1750 1751 RO_INVALIDATE_CACHE(&inp->inp_route); 1752 #ifdef MAC 1753 mac_inpcb_destroy(inp); 1754 #endif 1755 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1756 if (inp->inp_sp != NULL) 1757 ipsec_delete_pcbpolicy(inp); 1758 #endif 1759 #ifdef INET 1760 if (inp->inp_options) 1761 (void)m_free(inp->inp_options); 1762 imo = inp->inp_moptions; 1763 #endif 1764 #ifdef INET6 1765 if (inp->inp_vflag & INP_IPV6PROTO) { 1766 ip6_freepcbopts(inp->in6p_outputopts); 1767 im6o = inp->in6p_moptions; 1768 } else 1769 im6o = NULL; 1770 #endif 1771 1772 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1773 INP_WUNLOCK(inp); 1774 } 1775 #ifdef INET6 1776 ip6_freemoptions(im6o); 1777 #endif 1778 #ifdef INET 1779 inp_freemoptions(imo); 1780 #endif 1781 /* Destruction is finalized in inpcb_dtor(). */ 1782 } 1783 1784 static void 1785 inpcb_dtor(void *mem, int size, void *arg) 1786 { 1787 struct inpcb *inp = mem; 1788 1789 crfree(inp->inp_cred); 1790 #ifdef INVARIANTS 1791 inp->inp_cred = NULL; 1792 #endif 1793 } 1794 1795 /* 1796 * Different protocols initialize their inpcbs differently - giving 1797 * different name to the lock. But they all are disposed the same. 1798 */ 1799 static void 1800 inpcb_fini(void *mem, int size) 1801 { 1802 struct inpcb *inp = mem; 1803 1804 INP_LOCK_DESTROY(inp); 1805 } 1806 1807 /* 1808 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1809 * port reservation, and preventing it from being returned by inpcb lookups. 1810 * 1811 * It is used by TCP to mark an inpcb as unused and avoid future packet 1812 * delivery or event notification when a socket remains open but TCP has 1813 * closed. This might occur as a result of a shutdown()-initiated TCP close 1814 * or a RST on the wire, and allows the port binding to be reused while still 1815 * maintaining the invariant that so_pcb always points to a valid inpcb until 1816 * in_pcbdetach(). 1817 * 1818 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1819 * in_pcbnotifyall() and in_pcbpurgeif0()? 1820 */ 1821 void 1822 in_pcbdrop(struct inpcb *inp) 1823 { 1824 1825 INP_WLOCK_ASSERT(inp); 1826 #ifdef INVARIANTS 1827 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1828 MPASS(inp->inp_refcount > 1); 1829 #endif 1830 1831 inp->inp_flags |= INP_DROPPED; 1832 if (inp->inp_flags & INP_INHASHLIST) 1833 in_pcbremhash(inp); 1834 } 1835 1836 #ifdef INET 1837 /* 1838 * Common routines to return the socket addresses associated with inpcbs. 1839 */ 1840 struct sockaddr * 1841 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1842 { 1843 struct sockaddr_in *sin; 1844 1845 sin = malloc(sizeof *sin, M_SONAME, 1846 M_WAITOK | M_ZERO); 1847 sin->sin_family = AF_INET; 1848 sin->sin_len = sizeof(*sin); 1849 sin->sin_addr = *addr_p; 1850 sin->sin_port = port; 1851 1852 return (struct sockaddr *)sin; 1853 } 1854 1855 int 1856 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1857 { 1858 struct inpcb *inp; 1859 struct in_addr addr; 1860 in_port_t port; 1861 1862 inp = sotoinpcb(so); 1863 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1864 1865 INP_RLOCK(inp); 1866 port = inp->inp_lport; 1867 addr = inp->inp_laddr; 1868 INP_RUNLOCK(inp); 1869 1870 *nam = in_sockaddr(port, &addr); 1871 return 0; 1872 } 1873 1874 int 1875 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1876 { 1877 struct inpcb *inp; 1878 struct in_addr addr; 1879 in_port_t port; 1880 1881 inp = sotoinpcb(so); 1882 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1883 1884 INP_RLOCK(inp); 1885 port = inp->inp_fport; 1886 addr = inp->inp_faddr; 1887 INP_RUNLOCK(inp); 1888 1889 *nam = in_sockaddr(port, &addr); 1890 return 0; 1891 } 1892 1893 void 1894 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1895 struct inpcb *(*notify)(struct inpcb *, int)) 1896 { 1897 struct inpcb *inp, *inp_temp; 1898 1899 INP_INFO_WLOCK(pcbinfo); 1900 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 1901 INP_WLOCK(inp); 1902 #ifdef INET6 1903 if ((inp->inp_vflag & INP_IPV4) == 0) { 1904 INP_WUNLOCK(inp); 1905 continue; 1906 } 1907 #endif 1908 if (inp->inp_faddr.s_addr != faddr.s_addr || 1909 inp->inp_socket == NULL) { 1910 INP_WUNLOCK(inp); 1911 continue; 1912 } 1913 if ((*notify)(inp, errno)) 1914 INP_WUNLOCK(inp); 1915 } 1916 INP_INFO_WUNLOCK(pcbinfo); 1917 } 1918 1919 static bool 1920 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1921 { 1922 1923 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1924 return (true); 1925 else 1926 return (false); 1927 } 1928 1929 void 1930 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1931 { 1932 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1933 inp_v4_multi_match, NULL); 1934 struct inpcb *inp; 1935 struct in_multi *inm; 1936 struct in_mfilter *imf; 1937 struct ip_moptions *imo; 1938 1939 IN_MULTI_LOCK_ASSERT(); 1940 1941 while ((inp = inp_next(&inpi)) != NULL) { 1942 INP_WLOCK_ASSERT(inp); 1943 1944 imo = inp->inp_moptions; 1945 /* 1946 * Unselect the outgoing interface if it is being 1947 * detached. 1948 */ 1949 if (imo->imo_multicast_ifp == ifp) 1950 imo->imo_multicast_ifp = NULL; 1951 1952 /* 1953 * Drop multicast group membership if we joined 1954 * through the interface being detached. 1955 * 1956 * XXX This can all be deferred to an epoch_call 1957 */ 1958 restart: 1959 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1960 if ((inm = imf->imf_inm) == NULL) 1961 continue; 1962 if (inm->inm_ifp != ifp) 1963 continue; 1964 ip_mfilter_remove(&imo->imo_head, imf); 1965 in_leavegroup_locked(inm, NULL); 1966 ip_mfilter_free(imf); 1967 goto restart; 1968 } 1969 } 1970 } 1971 1972 /* 1973 * Lookup a PCB based on the local address and port. Caller must hold the 1974 * hash lock. No inpcb locks or references are acquired. 1975 */ 1976 #define INP_LOOKUP_MAPPED_PCB_COST 3 1977 struct inpcb * 1978 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1979 u_short lport, int lookupflags, struct ucred *cred) 1980 { 1981 struct inpcb *inp; 1982 #ifdef INET6 1983 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1984 #else 1985 int matchwild = 3; 1986 #endif 1987 int wildcard; 1988 1989 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1990 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1991 INP_HASH_LOCK_ASSERT(pcbinfo); 1992 1993 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1994 struct inpcbhead *head; 1995 /* 1996 * Look for an unconnected (wildcard foreign addr) PCB that 1997 * matches the local address and port we're looking for. 1998 */ 1999 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2000 pcbinfo->ipi_hashmask)]; 2001 CK_LIST_FOREACH(inp, head, inp_hash) { 2002 #ifdef INET6 2003 /* XXX inp locking */ 2004 if ((inp->inp_vflag & INP_IPV4) == 0) 2005 continue; 2006 #endif 2007 if (inp->inp_faddr.s_addr == INADDR_ANY && 2008 inp->inp_laddr.s_addr == laddr.s_addr && 2009 inp->inp_lport == lport) { 2010 /* 2011 * Found? 2012 */ 2013 if (prison_equal_ip4(cred->cr_prison, 2014 inp->inp_cred->cr_prison)) 2015 return (inp); 2016 } 2017 } 2018 /* 2019 * Not found. 2020 */ 2021 return (NULL); 2022 } else { 2023 struct inpcbporthead *porthash; 2024 struct inpcbport *phd; 2025 struct inpcb *match = NULL; 2026 /* 2027 * Best fit PCB lookup. 2028 * 2029 * First see if this local port is in use by looking on the 2030 * port hash list. 2031 */ 2032 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2033 pcbinfo->ipi_porthashmask)]; 2034 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2035 if (phd->phd_port == lport) 2036 break; 2037 } 2038 if (phd != NULL) { 2039 /* 2040 * Port is in use by one or more PCBs. Look for best 2041 * fit. 2042 */ 2043 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2044 wildcard = 0; 2045 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2046 cred->cr_prison)) 2047 continue; 2048 #ifdef INET6 2049 /* XXX inp locking */ 2050 if ((inp->inp_vflag & INP_IPV4) == 0) 2051 continue; 2052 /* 2053 * We never select the PCB that has 2054 * INP_IPV6 flag and is bound to :: if 2055 * we have another PCB which is bound 2056 * to 0.0.0.0. If a PCB has the 2057 * INP_IPV6 flag, then we set its cost 2058 * higher than IPv4 only PCBs. 2059 * 2060 * Note that the case only happens 2061 * when a socket is bound to ::, under 2062 * the condition that the use of the 2063 * mapped address is allowed. 2064 */ 2065 if ((inp->inp_vflag & INP_IPV6) != 0) 2066 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2067 #endif 2068 if (inp->inp_faddr.s_addr != INADDR_ANY) 2069 wildcard++; 2070 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2071 if (laddr.s_addr == INADDR_ANY) 2072 wildcard++; 2073 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2074 continue; 2075 } else { 2076 if (laddr.s_addr != INADDR_ANY) 2077 wildcard++; 2078 } 2079 if (wildcard < matchwild) { 2080 match = inp; 2081 matchwild = wildcard; 2082 if (matchwild == 0) 2083 break; 2084 } 2085 } 2086 } 2087 return (match); 2088 } 2089 } 2090 #undef INP_LOOKUP_MAPPED_PCB_COST 2091 2092 static bool 2093 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) 2094 { 2095 return (domain == M_NODOM || domain == grp->il_numa_domain); 2096 } 2097 2098 static struct inpcb * 2099 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2100 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr, 2101 uint16_t lport, int domain) 2102 { 2103 const struct inpcblbgrouphead *hdr; 2104 struct inpcblbgroup *grp; 2105 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2106 2107 INP_HASH_LOCK_ASSERT(pcbinfo); 2108 2109 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2110 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2111 2112 /* 2113 * Search for an LB group match based on the following criteria: 2114 * - prefer jailed groups to non-jailed groups 2115 * - prefer exact source address matches to wildcard matches 2116 * - prefer groups bound to the specified NUMA domain 2117 */ 2118 jail_exact = jail_wild = local_exact = local_wild = NULL; 2119 CK_LIST_FOREACH(grp, hdr, il_list) { 2120 bool injail; 2121 2122 #ifdef INET6 2123 if (!(grp->il_vflag & INP_IPV4)) 2124 continue; 2125 #endif 2126 if (grp->il_lport != lport) 2127 continue; 2128 2129 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2130 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2131 laddr) != 0) 2132 continue; 2133 2134 if (grp->il_laddr.s_addr == laddr->s_addr) { 2135 if (injail) { 2136 jail_exact = grp; 2137 if (in_pcblookup_lb_numa_match(grp, domain)) 2138 /* This is a perfect match. */ 2139 goto out; 2140 } else if (local_exact == NULL || 2141 in_pcblookup_lb_numa_match(grp, domain)) { 2142 local_exact = grp; 2143 } 2144 } else if (grp->il_laddr.s_addr == INADDR_ANY) { 2145 if (injail) { 2146 if (jail_wild == NULL || 2147 in_pcblookup_lb_numa_match(grp, domain)) 2148 jail_wild = grp; 2149 } else if (local_wild == NULL || 2150 in_pcblookup_lb_numa_match(grp, domain)) { 2151 local_wild = grp; 2152 } 2153 } 2154 } 2155 2156 if (jail_exact != NULL) 2157 grp = jail_exact; 2158 else if (jail_wild != NULL) 2159 grp = jail_wild; 2160 else if (local_exact != NULL) 2161 grp = local_exact; 2162 else 2163 grp = local_wild; 2164 if (grp == NULL) 2165 return (NULL); 2166 out: 2167 return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2168 grp->il_inpcnt]); 2169 } 2170 2171 static struct inpcb * 2172 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2173 u_short fport, struct in_addr laddr, u_short lport) 2174 { 2175 struct inpcbhead *head; 2176 struct inpcb *inp, *match; 2177 2178 INP_HASH_LOCK_ASSERT(pcbinfo); 2179 2180 match = NULL; 2181 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2182 pcbinfo->ipi_hashmask)]; 2183 CK_LIST_FOREACH(inp, head, inp_hash) { 2184 #ifdef INET6 2185 /* XXX inp locking */ 2186 if ((inp->inp_vflag & INP_IPV4) == 0) 2187 continue; 2188 #endif 2189 if (inp->inp_faddr.s_addr == faddr.s_addr && 2190 inp->inp_laddr.s_addr == laddr.s_addr && 2191 inp->inp_fport == fport && 2192 inp->inp_lport == lport) 2193 return (inp); 2194 } 2195 return (match); 2196 } 2197 2198 static struct inpcb * 2199 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2200 u_short fport, struct in_addr laddr, u_short lport) 2201 { 2202 struct inpcbhead *head; 2203 struct inpcb *inp, *local_wild, *local_exact, *jail_wild; 2204 #ifdef INET6 2205 struct inpcb *local_wild_mapped; 2206 #endif 2207 2208 INP_HASH_LOCK_ASSERT(pcbinfo); 2209 2210 /* 2211 * Order of socket selection - we always prefer jails. 2212 * 1. jailed, non-wild. 2213 * 2. jailed, wild. 2214 * 3. non-jailed, non-wild. 2215 * 4. non-jailed, wild. 2216 */ 2217 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2218 pcbinfo->ipi_hashmask)]; 2219 local_wild = local_exact = jail_wild = NULL; 2220 #ifdef INET6 2221 local_wild_mapped = NULL; 2222 #endif 2223 CK_LIST_FOREACH(inp, head, inp_hash) { 2224 bool injail; 2225 2226 #ifdef INET6 2227 /* XXX inp locking */ 2228 if ((inp->inp_vflag & INP_IPV4) == 0) 2229 continue; 2230 #endif 2231 if (inp->inp_faddr.s_addr != INADDR_ANY || 2232 inp->inp_lport != lport) 2233 continue; 2234 2235 injail = prison_flag(inp->inp_cred, PR_IP4) != 0; 2236 if (injail) { 2237 if (prison_check_ip4_locked(inp->inp_cred->cr_prison, 2238 &laddr) != 0) 2239 continue; 2240 } else { 2241 if (local_exact != NULL) 2242 continue; 2243 } 2244 2245 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2246 if (injail) 2247 return (inp); 2248 local_exact = inp; 2249 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2250 #ifdef INET6 2251 /* XXX inp locking, NULL check */ 2252 if (inp->inp_vflag & INP_IPV6PROTO) 2253 local_wild_mapped = inp; 2254 else 2255 #endif 2256 if (injail) 2257 jail_wild = inp; 2258 else 2259 local_wild = inp; 2260 } 2261 } 2262 if (jail_wild != NULL) 2263 return (jail_wild); 2264 if (local_exact != NULL) 2265 return (local_exact); 2266 if (local_wild != NULL) 2267 return (local_wild); 2268 #ifdef INET6 2269 if (local_wild_mapped != NULL) 2270 return (local_wild_mapped); 2271 #endif 2272 return (NULL); 2273 } 2274 2275 /* 2276 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2277 * that the caller has either locked the hash list, which usually happens 2278 * for bind(2) operations, or is in SMR section, which happens when sorting 2279 * out incoming packets. 2280 */ 2281 static struct inpcb * 2282 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2283 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2284 uint8_t numa_domain) 2285 { 2286 struct inpcb *inp; 2287 const u_short fport = fport_arg, lport = lport_arg; 2288 2289 KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0, 2290 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2291 KASSERT(faddr.s_addr != INADDR_ANY, 2292 ("%s: invalid foreign address", __func__)); 2293 KASSERT(laddr.s_addr != INADDR_ANY, 2294 ("%s: invalid local address", __func__)); 2295 INP_HASH_LOCK_ASSERT(pcbinfo); 2296 2297 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2298 if (inp != NULL) 2299 return (inp); 2300 2301 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2302 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, &laddr, 2303 lport, numa_domain); 2304 if (inp == NULL) { 2305 inp = in_pcblookup_hash_wild_locked(pcbinfo, faddr, 2306 fport, laddr, lport); 2307 } 2308 } 2309 2310 return (inp); 2311 } 2312 2313 static struct inpcb * 2314 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2315 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2316 uint8_t numa_domain) 2317 { 2318 struct inpcb *inp; 2319 2320 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2321 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2322 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2323 ("%s: LOCKPCB not set", __func__)); 2324 2325 smr_enter(pcbinfo->ipi_smr); 2326 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2327 lookupflags & INPLOOKUP_WILDCARD, numa_domain); 2328 if (inp != NULL) { 2329 if (__predict_false(inp_smr_lock(inp, 2330 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2331 inp = NULL; 2332 } else 2333 smr_exit(pcbinfo->ipi_smr); 2334 2335 return (inp); 2336 } 2337 2338 /* 2339 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2340 * from which a pre-calculated hash value may be extracted. 2341 */ 2342 struct inpcb * 2343 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2344 struct in_addr laddr, u_int lport, int lookupflags, 2345 struct ifnet *ifp __unused) 2346 { 2347 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2348 lookupflags, M_NODOM)); 2349 } 2350 2351 struct inpcb * 2352 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2353 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2354 struct ifnet *ifp __unused, struct mbuf *m) 2355 { 2356 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2357 lookupflags, m->m_pkthdr.numa_domain)); 2358 } 2359 #endif /* INET */ 2360 2361 /* 2362 * Insert PCB onto various hash lists. 2363 */ 2364 int 2365 in_pcbinshash(struct inpcb *inp) 2366 { 2367 struct inpcbhead *pcbhash; 2368 struct inpcbporthead *pcbporthash; 2369 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2370 struct inpcbport *phd; 2371 2372 INP_WLOCK_ASSERT(inp); 2373 INP_HASH_WLOCK_ASSERT(pcbinfo); 2374 2375 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2376 ("in_pcbinshash: INP_INHASHLIST")); 2377 2378 #ifdef INET6 2379 if (inp->inp_vflag & INP_IPV6) 2380 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2381 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2382 else 2383 #endif 2384 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2385 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2386 2387 pcbporthash = &pcbinfo->ipi_porthashbase[ 2388 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2389 2390 /* 2391 * Add entry to load balance group. 2392 * Only do this if SO_REUSEPORT_LB is set. 2393 */ 2394 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) { 2395 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2396 if (error != 0) 2397 return (error); 2398 } 2399 2400 /* 2401 * Go through port list and look for a head for this lport. 2402 */ 2403 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2404 if (phd->phd_port == inp->inp_lport) 2405 break; 2406 } 2407 2408 /* 2409 * If none exists, malloc one and tack it on. 2410 */ 2411 if (phd == NULL) { 2412 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2413 if (phd == NULL) { 2414 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2415 in_pcbremlbgrouphash(inp); 2416 return (ENOMEM); 2417 } 2418 phd->phd_port = inp->inp_lport; 2419 CK_LIST_INIT(&phd->phd_pcblist); 2420 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2421 } 2422 inp->inp_phd = phd; 2423 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2424 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2425 inp->inp_flags |= INP_INHASHLIST; 2426 2427 return (0); 2428 } 2429 2430 static void 2431 in_pcbremhash(struct inpcb *inp) 2432 { 2433 struct inpcbport *phd = inp->inp_phd; 2434 2435 INP_WLOCK_ASSERT(inp); 2436 MPASS(inp->inp_flags & INP_INHASHLIST); 2437 2438 INP_HASH_WLOCK(inp->inp_pcbinfo); 2439 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2440 in_pcbremlbgrouphash(inp); 2441 CK_LIST_REMOVE(inp, inp_hash); 2442 CK_LIST_REMOVE(inp, inp_portlist); 2443 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2444 CK_LIST_REMOVE(phd, phd_hash); 2445 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2446 } 2447 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2448 inp->inp_flags &= ~INP_INHASHLIST; 2449 } 2450 2451 /* 2452 * Move PCB to the proper hash bucket when { faddr, fport } have been 2453 * changed. NOTE: This does not handle the case of the lport changing (the 2454 * hashed port list would have to be updated as well), so the lport must 2455 * not change after in_pcbinshash() has been called. 2456 * 2457 * XXXGL: a race between this function and SMR-protected hash iterator 2458 * will lead to iterator traversing a possibly wrong hash list. However, 2459 * this race should have been here since change from rwlock to epoch. 2460 */ 2461 void 2462 in_pcbrehash(struct inpcb *inp) 2463 { 2464 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2465 struct inpcbhead *head; 2466 2467 INP_WLOCK_ASSERT(inp); 2468 INP_HASH_WLOCK_ASSERT(pcbinfo); 2469 2470 KASSERT(inp->inp_flags & INP_INHASHLIST, 2471 ("in_pcbrehash: !INP_INHASHLIST")); 2472 2473 #ifdef INET6 2474 if (inp->inp_vflag & INP_IPV6) 2475 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2476 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2477 else 2478 #endif 2479 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2480 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2481 2482 CK_LIST_REMOVE(inp, inp_hash); 2483 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2484 } 2485 2486 /* 2487 * Check for alternatives when higher level complains 2488 * about service problems. For now, invalidate cached 2489 * routing information. If the route was created dynamically 2490 * (by a redirect), time to try a default gateway again. 2491 */ 2492 void 2493 in_losing(struct inpcb *inp) 2494 { 2495 2496 RO_INVALIDATE_CACHE(&inp->inp_route); 2497 return; 2498 } 2499 2500 /* 2501 * A set label operation has occurred at the socket layer, propagate the 2502 * label change into the in_pcb for the socket. 2503 */ 2504 void 2505 in_pcbsosetlabel(struct socket *so) 2506 { 2507 #ifdef MAC 2508 struct inpcb *inp; 2509 2510 inp = sotoinpcb(so); 2511 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2512 2513 INP_WLOCK(inp); 2514 SOCK_LOCK(so); 2515 mac_inpcb_sosetlabel(so, inp); 2516 SOCK_UNLOCK(so); 2517 INP_WUNLOCK(inp); 2518 #endif 2519 } 2520 2521 void 2522 inp_wlock(struct inpcb *inp) 2523 { 2524 2525 INP_WLOCK(inp); 2526 } 2527 2528 void 2529 inp_wunlock(struct inpcb *inp) 2530 { 2531 2532 INP_WUNLOCK(inp); 2533 } 2534 2535 void 2536 inp_rlock(struct inpcb *inp) 2537 { 2538 2539 INP_RLOCK(inp); 2540 } 2541 2542 void 2543 inp_runlock(struct inpcb *inp) 2544 { 2545 2546 INP_RUNLOCK(inp); 2547 } 2548 2549 #ifdef INVARIANT_SUPPORT 2550 void 2551 inp_lock_assert(struct inpcb *inp) 2552 { 2553 2554 INP_WLOCK_ASSERT(inp); 2555 } 2556 2557 void 2558 inp_unlock_assert(struct inpcb *inp) 2559 { 2560 2561 INP_UNLOCK_ASSERT(inp); 2562 } 2563 #endif 2564 2565 void 2566 inp_apply_all(struct inpcbinfo *pcbinfo, 2567 void (*func)(struct inpcb *, void *), void *arg) 2568 { 2569 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2570 INPLOOKUP_WLOCKPCB); 2571 struct inpcb *inp; 2572 2573 while ((inp = inp_next(&inpi)) != NULL) 2574 func(inp, arg); 2575 } 2576 2577 struct socket * 2578 inp_inpcbtosocket(struct inpcb *inp) 2579 { 2580 2581 INP_WLOCK_ASSERT(inp); 2582 return (inp->inp_socket); 2583 } 2584 2585 struct tcpcb * 2586 inp_inpcbtotcpcb(struct inpcb *inp) 2587 { 2588 2589 INP_WLOCK_ASSERT(inp); 2590 return ((struct tcpcb *)inp->inp_ppcb); 2591 } 2592 2593 int 2594 inp_ip_tos_get(const struct inpcb *inp) 2595 { 2596 2597 return (inp->inp_ip_tos); 2598 } 2599 2600 void 2601 inp_ip_tos_set(struct inpcb *inp, int val) 2602 { 2603 2604 inp->inp_ip_tos = val; 2605 } 2606 2607 void 2608 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2609 uint32_t *faddr, uint16_t *fp) 2610 { 2611 2612 INP_LOCK_ASSERT(inp); 2613 *laddr = inp->inp_laddr.s_addr; 2614 *faddr = inp->inp_faddr.s_addr; 2615 *lp = inp->inp_lport; 2616 *fp = inp->inp_fport; 2617 } 2618 2619 struct inpcb * 2620 so_sotoinpcb(struct socket *so) 2621 { 2622 2623 return (sotoinpcb(so)); 2624 } 2625 2626 /* 2627 * Create an external-format (``xinpcb'') structure using the information in 2628 * the kernel-format in_pcb structure pointed to by inp. This is done to 2629 * reduce the spew of irrelevant information over this interface, to isolate 2630 * user code from changes in the kernel structure, and potentially to provide 2631 * information-hiding if we decide that some of this information should be 2632 * hidden from users. 2633 */ 2634 void 2635 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2636 { 2637 2638 bzero(xi, sizeof(*xi)); 2639 xi->xi_len = sizeof(struct xinpcb); 2640 if (inp->inp_socket) 2641 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2642 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2643 xi->inp_gencnt = inp->inp_gencnt; 2644 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2645 xi->inp_flow = inp->inp_flow; 2646 xi->inp_flowid = inp->inp_flowid; 2647 xi->inp_flowtype = inp->inp_flowtype; 2648 xi->inp_flags = inp->inp_flags; 2649 xi->inp_flags2 = inp->inp_flags2; 2650 xi->in6p_cksum = inp->in6p_cksum; 2651 xi->in6p_hops = inp->in6p_hops; 2652 xi->inp_ip_tos = inp->inp_ip_tos; 2653 xi->inp_vflag = inp->inp_vflag; 2654 xi->inp_ip_ttl = inp->inp_ip_ttl; 2655 xi->inp_ip_p = inp->inp_ip_p; 2656 xi->inp_ip_minttl = inp->inp_ip_minttl; 2657 } 2658 2659 int 2660 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2661 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2662 { 2663 struct sockopt sopt; 2664 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2665 INPLOOKUP_WLOCKPCB); 2666 struct inpcb *inp; 2667 struct sockopt_parameters *params; 2668 struct socket *so; 2669 int error; 2670 char buf[1024]; 2671 2672 if (req->oldptr != NULL || req->oldlen != 0) 2673 return (EINVAL); 2674 if (req->newptr == NULL) 2675 return (EPERM); 2676 if (req->newlen > sizeof(buf)) 2677 return (ENOMEM); 2678 error = SYSCTL_IN(req, buf, req->newlen); 2679 if (error != 0) 2680 return (error); 2681 if (req->newlen < sizeof(struct sockopt_parameters)) 2682 return (EINVAL); 2683 params = (struct sockopt_parameters *)buf; 2684 sopt.sopt_level = params->sop_level; 2685 sopt.sopt_name = params->sop_optname; 2686 sopt.sopt_dir = SOPT_SET; 2687 sopt.sopt_val = params->sop_optval; 2688 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2689 sopt.sopt_td = NULL; 2690 #ifdef INET6 2691 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2692 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2693 params->sop_inc.inc6_laddr.s6_addr16[1] = 2694 htons(params->sop_inc.inc6_zoneid & 0xffff); 2695 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2696 params->sop_inc.inc6_faddr.s6_addr16[1] = 2697 htons(params->sop_inc.inc6_zoneid & 0xffff); 2698 } 2699 #endif 2700 if (params->sop_inc.inc_lport != htons(0)) { 2701 if (params->sop_inc.inc_fport == htons(0)) 2702 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2703 pcbinfo->ipi_hashmask); 2704 else 2705 #ifdef INET6 2706 if (params->sop_inc.inc_flags & INC_ISIPV6) 2707 inpi.hash = INP6_PCBHASH( 2708 ¶ms->sop_inc.inc6_faddr, 2709 params->sop_inc.inc_lport, 2710 params->sop_inc.inc_fport, 2711 pcbinfo->ipi_hashmask); 2712 else 2713 #endif 2714 inpi.hash = INP_PCBHASH( 2715 ¶ms->sop_inc.inc_faddr, 2716 params->sop_inc.inc_lport, 2717 params->sop_inc.inc_fport, 2718 pcbinfo->ipi_hashmask); 2719 } 2720 while ((inp = inp_next(&inpi)) != NULL) 2721 if (inp->inp_gencnt == params->sop_id) { 2722 if (inp->inp_flags & INP_DROPPED) { 2723 INP_WUNLOCK(inp); 2724 return (ECONNRESET); 2725 } 2726 so = inp->inp_socket; 2727 KASSERT(so != NULL, ("inp_socket == NULL")); 2728 soref(so); 2729 error = (*ctloutput_set)(inp, &sopt); 2730 sorele(so); 2731 break; 2732 } 2733 if (inp == NULL) 2734 error = ESRCH; 2735 return (error); 2736 } 2737 2738 #ifdef DDB 2739 static void 2740 db_print_indent(int indent) 2741 { 2742 int i; 2743 2744 for (i = 0; i < indent; i++) 2745 db_printf(" "); 2746 } 2747 2748 static void 2749 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2750 { 2751 char faddr_str[48], laddr_str[48]; 2752 2753 db_print_indent(indent); 2754 db_printf("%s at %p\n", name, inc); 2755 2756 indent += 2; 2757 2758 #ifdef INET6 2759 if (inc->inc_flags & INC_ISIPV6) { 2760 /* IPv6. */ 2761 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2762 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2763 } else 2764 #endif 2765 { 2766 /* IPv4. */ 2767 inet_ntoa_r(inc->inc_laddr, laddr_str); 2768 inet_ntoa_r(inc->inc_faddr, faddr_str); 2769 } 2770 db_print_indent(indent); 2771 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2772 ntohs(inc->inc_lport)); 2773 db_print_indent(indent); 2774 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2775 ntohs(inc->inc_fport)); 2776 } 2777 2778 static void 2779 db_print_inpflags(int inp_flags) 2780 { 2781 int comma; 2782 2783 comma = 0; 2784 if (inp_flags & INP_RECVOPTS) { 2785 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2786 comma = 1; 2787 } 2788 if (inp_flags & INP_RECVRETOPTS) { 2789 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2790 comma = 1; 2791 } 2792 if (inp_flags & INP_RECVDSTADDR) { 2793 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2794 comma = 1; 2795 } 2796 if (inp_flags & INP_ORIGDSTADDR) { 2797 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2798 comma = 1; 2799 } 2800 if (inp_flags & INP_HDRINCL) { 2801 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2802 comma = 1; 2803 } 2804 if (inp_flags & INP_HIGHPORT) { 2805 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2806 comma = 1; 2807 } 2808 if (inp_flags & INP_LOWPORT) { 2809 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2810 comma = 1; 2811 } 2812 if (inp_flags & INP_ANONPORT) { 2813 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2814 comma = 1; 2815 } 2816 if (inp_flags & INP_RECVIF) { 2817 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2818 comma = 1; 2819 } 2820 if (inp_flags & INP_MTUDISC) { 2821 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2822 comma = 1; 2823 } 2824 if (inp_flags & INP_RECVTTL) { 2825 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2826 comma = 1; 2827 } 2828 if (inp_flags & INP_DONTFRAG) { 2829 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2830 comma = 1; 2831 } 2832 if (inp_flags & INP_RECVTOS) { 2833 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2834 comma = 1; 2835 } 2836 if (inp_flags & IN6P_IPV6_V6ONLY) { 2837 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2838 comma = 1; 2839 } 2840 if (inp_flags & IN6P_PKTINFO) { 2841 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2842 comma = 1; 2843 } 2844 if (inp_flags & IN6P_HOPLIMIT) { 2845 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2846 comma = 1; 2847 } 2848 if (inp_flags & IN6P_HOPOPTS) { 2849 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2850 comma = 1; 2851 } 2852 if (inp_flags & IN6P_DSTOPTS) { 2853 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2854 comma = 1; 2855 } 2856 if (inp_flags & IN6P_RTHDR) { 2857 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2858 comma = 1; 2859 } 2860 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2861 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2862 comma = 1; 2863 } 2864 if (inp_flags & IN6P_TCLASS) { 2865 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2866 comma = 1; 2867 } 2868 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2869 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2870 comma = 1; 2871 } 2872 if (inp_flags & INP_ONESBCAST) { 2873 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2874 comma = 1; 2875 } 2876 if (inp_flags & INP_DROPPED) { 2877 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2878 comma = 1; 2879 } 2880 if (inp_flags & INP_SOCKREF) { 2881 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2882 comma = 1; 2883 } 2884 if (inp_flags & IN6P_RFC2292) { 2885 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2886 comma = 1; 2887 } 2888 if (inp_flags & IN6P_MTU) { 2889 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2890 comma = 1; 2891 } 2892 } 2893 2894 static void 2895 db_print_inpvflag(u_char inp_vflag) 2896 { 2897 int comma; 2898 2899 comma = 0; 2900 if (inp_vflag & INP_IPV4) { 2901 db_printf("%sINP_IPV4", comma ? ", " : ""); 2902 comma = 1; 2903 } 2904 if (inp_vflag & INP_IPV6) { 2905 db_printf("%sINP_IPV6", comma ? ", " : ""); 2906 comma = 1; 2907 } 2908 if (inp_vflag & INP_IPV6PROTO) { 2909 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2910 comma = 1; 2911 } 2912 } 2913 2914 static void 2915 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2916 { 2917 2918 db_print_indent(indent); 2919 db_printf("%s at %p\n", name, inp); 2920 2921 indent += 2; 2922 2923 db_print_indent(indent); 2924 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2925 2926 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2927 2928 db_print_indent(indent); 2929 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2930 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2931 2932 db_print_indent(indent); 2933 db_printf("inp_label: %p inp_flags: 0x%x (", 2934 inp->inp_label, inp->inp_flags); 2935 db_print_inpflags(inp->inp_flags); 2936 db_printf(")\n"); 2937 2938 db_print_indent(indent); 2939 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2940 inp->inp_vflag); 2941 db_print_inpvflag(inp->inp_vflag); 2942 db_printf(")\n"); 2943 2944 db_print_indent(indent); 2945 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2946 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2947 2948 db_print_indent(indent); 2949 #ifdef INET6 2950 if (inp->inp_vflag & INP_IPV6) { 2951 db_printf("in6p_options: %p in6p_outputopts: %p " 2952 "in6p_moptions: %p\n", inp->in6p_options, 2953 inp->in6p_outputopts, inp->in6p_moptions); 2954 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2955 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2956 inp->in6p_hops); 2957 } else 2958 #endif 2959 { 2960 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2961 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2962 inp->inp_options, inp->inp_moptions); 2963 } 2964 2965 db_print_indent(indent); 2966 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2967 (uintmax_t)inp->inp_gencnt); 2968 } 2969 2970 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2971 { 2972 struct inpcb *inp; 2973 2974 if (!have_addr) { 2975 db_printf("usage: show inpcb <addr>\n"); 2976 return; 2977 } 2978 inp = (struct inpcb *)addr; 2979 2980 db_print_inpcb(inp, "inpcb", 0); 2981 } 2982 #endif /* DDB */ 2983 2984 #ifdef RATELIMIT 2985 /* 2986 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2987 * if any. 2988 */ 2989 int 2990 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2991 { 2992 union if_snd_tag_modify_params params = { 2993 .rate_limit.max_rate = max_pacing_rate, 2994 .rate_limit.flags = M_NOWAIT, 2995 }; 2996 struct m_snd_tag *mst; 2997 int error; 2998 2999 mst = inp->inp_snd_tag; 3000 if (mst == NULL) 3001 return (EINVAL); 3002 3003 if (mst->sw->snd_tag_modify == NULL) { 3004 error = EOPNOTSUPP; 3005 } else { 3006 error = mst->sw->snd_tag_modify(mst, ¶ms); 3007 } 3008 return (error); 3009 } 3010 3011 /* 3012 * Query existing TX rate limit based on the existing 3013 * "inp->inp_snd_tag", if any. 3014 */ 3015 int 3016 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3017 { 3018 union if_snd_tag_query_params params = { }; 3019 struct m_snd_tag *mst; 3020 int error; 3021 3022 mst = inp->inp_snd_tag; 3023 if (mst == NULL) 3024 return (EINVAL); 3025 3026 if (mst->sw->snd_tag_query == NULL) { 3027 error = EOPNOTSUPP; 3028 } else { 3029 error = mst->sw->snd_tag_query(mst, ¶ms); 3030 if (error == 0 && p_max_pacing_rate != NULL) 3031 *p_max_pacing_rate = params.rate_limit.max_rate; 3032 } 3033 return (error); 3034 } 3035 3036 /* 3037 * Query existing TX queue level based on the existing 3038 * "inp->inp_snd_tag", if any. 3039 */ 3040 int 3041 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3042 { 3043 union if_snd_tag_query_params params = { }; 3044 struct m_snd_tag *mst; 3045 int error; 3046 3047 mst = inp->inp_snd_tag; 3048 if (mst == NULL) 3049 return (EINVAL); 3050 3051 if (mst->sw->snd_tag_query == NULL) 3052 return (EOPNOTSUPP); 3053 3054 error = mst->sw->snd_tag_query(mst, ¶ms); 3055 if (error == 0 && p_txqueue_level != NULL) 3056 *p_txqueue_level = params.rate_limit.queue_level; 3057 return (error); 3058 } 3059 3060 /* 3061 * Allocate a new TX rate limit send tag from the network interface 3062 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3063 */ 3064 int 3065 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3066 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3067 3068 { 3069 union if_snd_tag_alloc_params params = { 3070 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3071 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3072 .rate_limit.hdr.flowid = flowid, 3073 .rate_limit.hdr.flowtype = flowtype, 3074 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3075 .rate_limit.max_rate = max_pacing_rate, 3076 .rate_limit.flags = M_NOWAIT, 3077 }; 3078 int error; 3079 3080 INP_WLOCK_ASSERT(inp); 3081 3082 /* 3083 * If there is already a send tag, or the INP is being torn 3084 * down, allocating a new send tag is not allowed. Else send 3085 * tags may leak. 3086 */ 3087 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3088 return (EINVAL); 3089 3090 error = m_snd_tag_alloc(ifp, ¶ms, st); 3091 #ifdef INET 3092 if (error == 0) { 3093 counter_u64_add(rate_limit_set_ok, 1); 3094 counter_u64_add(rate_limit_active, 1); 3095 } else if (error != EOPNOTSUPP) 3096 counter_u64_add(rate_limit_alloc_fail, 1); 3097 #endif 3098 return (error); 3099 } 3100 3101 void 3102 in_pcbdetach_tag(struct m_snd_tag *mst) 3103 { 3104 3105 m_snd_tag_rele(mst); 3106 #ifdef INET 3107 counter_u64_add(rate_limit_active, -1); 3108 #endif 3109 } 3110 3111 /* 3112 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3113 * if any: 3114 */ 3115 void 3116 in_pcbdetach_txrtlmt(struct inpcb *inp) 3117 { 3118 struct m_snd_tag *mst; 3119 3120 INP_WLOCK_ASSERT(inp); 3121 3122 mst = inp->inp_snd_tag; 3123 inp->inp_snd_tag = NULL; 3124 3125 if (mst == NULL) 3126 return; 3127 3128 m_snd_tag_rele(mst); 3129 #ifdef INET 3130 counter_u64_add(rate_limit_active, -1); 3131 #endif 3132 } 3133 3134 int 3135 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3136 { 3137 int error; 3138 3139 /* 3140 * If the existing send tag is for the wrong interface due to 3141 * a route change, first drop the existing tag. Set the 3142 * CHANGED flag so that we will keep trying to allocate a new 3143 * tag if we fail to allocate one this time. 3144 */ 3145 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3146 in_pcbdetach_txrtlmt(inp); 3147 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3148 } 3149 3150 /* 3151 * NOTE: When attaching to a network interface a reference is 3152 * made to ensure the network interface doesn't go away until 3153 * all ratelimit connections are gone. The network interface 3154 * pointers compared below represent valid network interfaces, 3155 * except when comparing towards NULL. 3156 */ 3157 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3158 error = 0; 3159 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3160 if (inp->inp_snd_tag != NULL) 3161 in_pcbdetach_txrtlmt(inp); 3162 error = 0; 3163 } else if (inp->inp_snd_tag == NULL) { 3164 /* 3165 * In order to utilize packet pacing with RSS, we need 3166 * to wait until there is a valid RSS hash before we 3167 * can proceed: 3168 */ 3169 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3170 error = EAGAIN; 3171 } else { 3172 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3173 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3174 } 3175 } else { 3176 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3177 } 3178 if (error == 0 || error == EOPNOTSUPP) 3179 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3180 3181 return (error); 3182 } 3183 3184 /* 3185 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3186 * is set in the fast path and will attach/detach/modify the TX rate 3187 * limit send tag based on the socket's so_max_pacing_rate value. 3188 */ 3189 void 3190 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3191 { 3192 struct socket *socket; 3193 uint32_t max_pacing_rate; 3194 bool did_upgrade; 3195 3196 if (inp == NULL) 3197 return; 3198 3199 socket = inp->inp_socket; 3200 if (socket == NULL) 3201 return; 3202 3203 if (!INP_WLOCKED(inp)) { 3204 /* 3205 * NOTE: If the write locking fails, we need to bail 3206 * out and use the non-ratelimited ring for the 3207 * transmit until there is a new chance to get the 3208 * write lock. 3209 */ 3210 if (!INP_TRY_UPGRADE(inp)) 3211 return; 3212 did_upgrade = 1; 3213 } else { 3214 did_upgrade = 0; 3215 } 3216 3217 /* 3218 * NOTE: The so_max_pacing_rate value is read unlocked, 3219 * because atomic updates are not required since the variable 3220 * is checked at every mbuf we send. It is assumed that the 3221 * variable read itself will be atomic. 3222 */ 3223 max_pacing_rate = socket->so_max_pacing_rate; 3224 3225 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3226 3227 if (did_upgrade) 3228 INP_DOWNGRADE(inp); 3229 } 3230 3231 /* 3232 * Track route changes for TX rate limiting. 3233 */ 3234 void 3235 in_pcboutput_eagain(struct inpcb *inp) 3236 { 3237 bool did_upgrade; 3238 3239 if (inp == NULL) 3240 return; 3241 3242 if (inp->inp_snd_tag == NULL) 3243 return; 3244 3245 if (!INP_WLOCKED(inp)) { 3246 /* 3247 * NOTE: If the write locking fails, we need to bail 3248 * out and use the non-ratelimited ring for the 3249 * transmit until there is a new chance to get the 3250 * write lock. 3251 */ 3252 if (!INP_TRY_UPGRADE(inp)) 3253 return; 3254 did_upgrade = 1; 3255 } else { 3256 did_upgrade = 0; 3257 } 3258 3259 /* detach rate limiting */ 3260 in_pcbdetach_txrtlmt(inp); 3261 3262 /* make sure new mbuf send tag allocation is made */ 3263 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3264 3265 if (did_upgrade) 3266 INP_DOWNGRADE(inp); 3267 } 3268 3269 #ifdef INET 3270 static void 3271 rl_init(void *st) 3272 { 3273 rate_limit_new = counter_u64_alloc(M_WAITOK); 3274 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3275 rate_limit_active = counter_u64_alloc(M_WAITOK); 3276 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3277 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3278 } 3279 3280 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3281 #endif 3282 #endif /* RATELIMIT */ 3283