1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2007-2009 Bruce Simpson. 5 * Copyright (c) 2005 Robert N. M. Watson. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote 17 * products derived from this software without specific prior written 18 * permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * IPv4 multicast socket, group, and socket option processing module. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/protosw.h> 47 #include <sys/rmlock.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/protosw.h> 51 #include <sys/sysctl.h> 52 #include <sys/ktr.h> 53 #include <sys/taskqueue.h> 54 #include <sys/gtaskqueue.h> 55 #include <sys/tree.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <net/vnet.h> 62 63 #include <net/ethernet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/in_fib.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/in_var.h> 70 #include <netinet/ip_var.h> 71 #include <netinet/igmp_var.h> 72 73 #ifndef KTR_IGMPV3 74 #define KTR_IGMPV3 KTR_INET 75 #endif 76 77 #ifndef __SOCKUNION_DECLARED 78 union sockunion { 79 struct sockaddr_storage ss; 80 struct sockaddr sa; 81 struct sockaddr_dl sdl; 82 struct sockaddr_in sin; 83 }; 84 typedef union sockunion sockunion_t; 85 #define __SOCKUNION_DECLARED 86 #endif /* __SOCKUNION_DECLARED */ 87 88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", 89 "IPv4 multicast PCB-layer source filter"); 90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); 91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); 92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", 93 "IPv4 multicast IGMP-layer source filter"); 94 95 /* 96 * Locking: 97 * 98 * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK, 99 * IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK. 100 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however 101 * it can be taken by code in net/if.c also. 102 * - ip_moptions and in_mfilter are covered by the INP_WLOCK. 103 * 104 * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly 105 * any need for in_multi itself to be virtualized -- it is bound to an ifp 106 * anyway no matter what happens. 107 */ 108 struct mtx in_multi_list_mtx; 109 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF); 110 111 struct mtx in_multi_free_mtx; 112 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF); 113 114 struct sx in_multi_sx; 115 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx"); 116 117 int ifma_restart; 118 119 /* 120 * Functions with non-static linkage defined in this file should be 121 * declared in in_var.h: 122 * imo_multi_filter() 123 * in_addmulti() 124 * in_delmulti() 125 * in_joingroup() 126 * in_joingroup_locked() 127 * in_leavegroup() 128 * in_leavegroup_locked() 129 * and ip_var.h: 130 * inp_freemoptions() 131 * inp_getmoptions() 132 * inp_setmoptions() 133 * 134 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() 135 * and in_delmulti(). 136 */ 137 static void imf_commit(struct in_mfilter *); 138 static int imf_get_source(struct in_mfilter *imf, 139 const struct sockaddr_in *psin, 140 struct in_msource **); 141 static struct in_msource * 142 imf_graft(struct in_mfilter *, const uint8_t, 143 const struct sockaddr_in *); 144 static void imf_leave(struct in_mfilter *); 145 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); 146 static void imf_purge(struct in_mfilter *); 147 static void imf_rollback(struct in_mfilter *); 148 static void imf_reap(struct in_mfilter *); 149 static struct in_mfilter * 150 imo_match_group(const struct ip_moptions *, 151 const struct ifnet *, const struct sockaddr *); 152 static struct in_msource * 153 imo_match_source(struct in_mfilter *, const struct sockaddr *); 154 static void ims_merge(struct ip_msource *ims, 155 const struct in_msource *lims, const int rollback); 156 static int in_getmulti(struct ifnet *, const struct in_addr *, 157 struct in_multi **); 158 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, 159 const int noalloc, struct ip_msource **pims); 160 #ifdef KTR 161 static int inm_is_ifp_detached(const struct in_multi *); 162 #endif 163 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); 164 static void inm_purge(struct in_multi *); 165 static void inm_reap(struct in_multi *); 166 static void inm_release(struct in_multi *); 167 static struct ip_moptions * 168 inp_findmoptions(struct inpcb *); 169 static int inp_get_source_filters(struct inpcb *, struct sockopt *); 170 static int inp_join_group(struct inpcb *, struct sockopt *); 171 static int inp_leave_group(struct inpcb *, struct sockopt *); 172 static struct ifnet * 173 inp_lookup_mcast_ifp(const struct inpcb *, 174 const struct sockaddr_in *, const struct in_addr); 175 static int inp_block_unblock_source(struct inpcb *, struct sockopt *); 176 static int inp_set_multicast_if(struct inpcb *, struct sockopt *); 177 static int inp_set_source_filters(struct inpcb *, struct sockopt *); 178 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); 179 180 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, 181 "IPv4 multicast"); 182 183 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; 184 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, 185 CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0, 186 "Max source filters per group"); 187 188 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; 189 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, 190 CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0, 191 "Max source filters per socket"); 192 193 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; 194 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 195 &in_mcast_loop, 0, "Loopback multicast datagrams by default"); 196 197 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, 198 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, 199 "Per-interface stack-wide source filters"); 200 201 #ifdef KTR 202 /* 203 * Inline function which wraps assertions for a valid ifp. 204 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 205 * is detached. 206 */ 207 static int __inline 208 inm_is_ifp_detached(const struct in_multi *inm) 209 { 210 struct ifnet *ifp; 211 212 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); 213 ifp = inm->inm_ifma->ifma_ifp; 214 if (ifp != NULL) { 215 /* 216 * Sanity check that netinet's notion of ifp is the 217 * same as net's. 218 */ 219 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); 220 } 221 222 return (ifp == NULL); 223 } 224 #endif 225 226 static struct grouptask free_gtask; 227 static struct in_multi_head inm_free_list; 228 static void inm_release_task(void *arg __unused); 229 static void inm_init(void) 230 { 231 SLIST_INIT(&inm_free_list); 232 taskqgroup_config_gtask_init(NULL, &free_gtask, inm_release_task, "inm release task"); 233 } 234 235 #ifdef EARLY_AP_STARTUP 236 SYSINIT(inm_init, SI_SUB_SMP + 1, SI_ORDER_FIRST, 237 inm_init, NULL); 238 #else 239 SYSINIT(inm_init, SI_SUB_ROOT_CONF - 1, SI_ORDER_FIRST, 240 inm_init, NULL); 241 #endif 242 243 244 void 245 inm_release_list_deferred(struct in_multi_head *inmh) 246 { 247 248 if (SLIST_EMPTY(inmh)) 249 return; 250 mtx_lock(&in_multi_free_mtx); 251 SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele); 252 mtx_unlock(&in_multi_free_mtx); 253 GROUPTASK_ENQUEUE(&free_gtask); 254 } 255 256 void 257 inm_disconnect(struct in_multi *inm) 258 { 259 struct ifnet *ifp; 260 struct ifmultiaddr *ifma, *ll_ifma; 261 262 ifp = inm->inm_ifp; 263 IF_ADDR_WLOCK_ASSERT(ifp); 264 ifma = inm->inm_ifma; 265 266 if_ref(ifp); 267 if (ifma->ifma_flags & IFMA_F_ENQUEUED) { 268 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 269 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 270 } 271 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); 272 if ((ll_ifma = ifma->ifma_llifma) != NULL) { 273 MPASS(ifma != ll_ifma); 274 ifma->ifma_llifma = NULL; 275 MPASS(ll_ifma->ifma_llifma == NULL); 276 MPASS(ll_ifma->ifma_ifp == ifp); 277 if (--ll_ifma->ifma_refcount == 0) { 278 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 279 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); 280 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 281 } 282 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); 283 if_freemulti(ll_ifma); 284 ifma_restart = true; 285 } 286 } 287 } 288 289 void 290 inm_release_deferred(struct in_multi *inm) 291 { 292 struct in_multi_head tmp; 293 294 IN_MULTI_LIST_LOCK_ASSERT(); 295 MPASS(inm->inm_refcount > 0); 296 if (--inm->inm_refcount == 0) { 297 SLIST_INIT(&tmp); 298 inm_disconnect(inm); 299 inm->inm_ifma->ifma_protospec = NULL; 300 SLIST_INSERT_HEAD(&tmp, inm, inm_nrele); 301 inm_release_list_deferred(&tmp); 302 } 303 } 304 305 static void 306 inm_release_task(void *arg __unused) 307 { 308 struct in_multi_head inm_free_tmp; 309 struct in_multi *inm, *tinm; 310 311 SLIST_INIT(&inm_free_tmp); 312 mtx_lock(&in_multi_free_mtx); 313 SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele); 314 mtx_unlock(&in_multi_free_mtx); 315 IN_MULTI_LOCK(); 316 SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) { 317 SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele); 318 MPASS(inm); 319 inm_release(inm); 320 } 321 IN_MULTI_UNLOCK(); 322 } 323 324 /* 325 * Initialize an in_mfilter structure to a known state at t0, t1 326 * with an empty source filter list. 327 */ 328 static __inline void 329 imf_init(struct in_mfilter *imf, const int st0, const int st1) 330 { 331 memset(imf, 0, sizeof(struct in_mfilter)); 332 RB_INIT(&imf->imf_sources); 333 imf->imf_st[0] = st0; 334 imf->imf_st[1] = st1; 335 } 336 337 struct in_mfilter * 338 ip_mfilter_alloc(const int mflags, const int st0, const int st1) 339 { 340 struct in_mfilter *imf; 341 342 imf = malloc(sizeof(*imf), M_INMFILTER, mflags); 343 if (imf != NULL) 344 imf_init(imf, st0, st1); 345 346 return (imf); 347 } 348 349 void 350 ip_mfilter_free(struct in_mfilter *imf) 351 { 352 353 imf_purge(imf); 354 free(imf, M_INMFILTER); 355 } 356 357 /* 358 * Function for looking up an in_multi record for an IPv4 multicast address 359 * on a given interface. ifp must be valid. If no record found, return NULL. 360 * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held. 361 */ 362 struct in_multi * 363 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) 364 { 365 struct ifmultiaddr *ifma; 366 struct in_multi *inm; 367 368 IN_MULTI_LIST_LOCK_ASSERT(); 369 IF_ADDR_LOCK_ASSERT(ifp); 370 371 inm = NULL; 372 CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { 373 if (ifma->ifma_addr->sa_family != AF_INET || 374 ifma->ifma_protospec == NULL) 375 continue; 376 inm = (struct in_multi *)ifma->ifma_protospec; 377 if (inm->inm_addr.s_addr == ina.s_addr) 378 break; 379 inm = NULL; 380 } 381 return (inm); 382 } 383 384 /* 385 * Wrapper for inm_lookup_locked(). 386 * The IF_ADDR_LOCK will be taken on ifp and released on return. 387 */ 388 struct in_multi * 389 inm_lookup(struct ifnet *ifp, const struct in_addr ina) 390 { 391 struct epoch_tracker et; 392 struct in_multi *inm; 393 394 IN_MULTI_LIST_LOCK_ASSERT(); 395 NET_EPOCH_ENTER(et); 396 inm = inm_lookup_locked(ifp, ina); 397 NET_EPOCH_EXIT(et); 398 399 return (inm); 400 } 401 402 /* 403 * Find an IPv4 multicast group entry for this ip_moptions instance 404 * which matches the specified group, and optionally an interface. 405 * Return its index into the array, or -1 if not found. 406 */ 407 static struct in_mfilter * 408 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, 409 const struct sockaddr *group) 410 { 411 const struct sockaddr_in *gsin; 412 struct in_mfilter *imf; 413 struct in_multi *inm; 414 415 gsin = (const struct sockaddr_in *)group; 416 417 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 418 inm = imf->imf_inm; 419 if (inm == NULL) 420 continue; 421 if ((ifp == NULL || (inm->inm_ifp == ifp)) && 422 in_hosteq(inm->inm_addr, gsin->sin_addr)) { 423 break; 424 } 425 } 426 return (imf); 427 } 428 429 /* 430 * Find an IPv4 multicast source entry for this imo which matches 431 * the given group index for this socket, and source address. 432 * 433 * NOTE: This does not check if the entry is in-mode, merely if 434 * it exists, which may not be the desired behaviour. 435 */ 436 static struct in_msource * 437 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src) 438 { 439 struct ip_msource find; 440 struct ip_msource *ims; 441 const sockunion_t *psa; 442 443 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); 444 445 /* Source trees are keyed in host byte order. */ 446 psa = (const sockunion_t *)src; 447 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); 448 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 449 450 return ((struct in_msource *)ims); 451 } 452 453 /* 454 * Perform filtering for multicast datagrams on a socket by group and source. 455 * 456 * Returns 0 if a datagram should be allowed through, or various error codes 457 * if the socket was not a member of the group, or the source was muted, etc. 458 */ 459 int 460 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, 461 const struct sockaddr *group, const struct sockaddr *src) 462 { 463 struct in_mfilter *imf; 464 struct in_msource *ims; 465 int mode; 466 467 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 468 469 imf = imo_match_group(imo, ifp, group); 470 if (imf == NULL) 471 return (MCAST_NOTGMEMBER); 472 473 /* 474 * Check if the source was included in an (S,G) join. 475 * Allow reception on exclusive memberships by default, 476 * reject reception on inclusive memberships by default. 477 * Exclude source only if an in-mode exclude filter exists. 478 * Include source only if an in-mode include filter exists. 479 * NOTE: We are comparing group state here at IGMP t1 (now) 480 * with socket-layer t0 (since last downcall). 481 */ 482 mode = imf->imf_st[1]; 483 ims = imo_match_source(imf, src); 484 485 if ((ims == NULL && mode == MCAST_INCLUDE) || 486 (ims != NULL && ims->imsl_st[0] != mode)) 487 return (MCAST_NOTSMEMBER); 488 489 return (MCAST_PASS); 490 } 491 492 /* 493 * Find and return a reference to an in_multi record for (ifp, group), 494 * and bump its reference count. 495 * If one does not exist, try to allocate it, and update link-layer multicast 496 * filters on ifp to listen for group. 497 * Assumes the IN_MULTI lock is held across the call. 498 * Return 0 if successful, otherwise return an appropriate error code. 499 */ 500 static int 501 in_getmulti(struct ifnet *ifp, const struct in_addr *group, 502 struct in_multi **pinm) 503 { 504 struct sockaddr_in gsin; 505 struct ifmultiaddr *ifma; 506 struct in_ifinfo *ii; 507 struct in_multi *inm; 508 int error; 509 510 IN_MULTI_LOCK_ASSERT(); 511 512 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; 513 IN_MULTI_LIST_LOCK(); 514 inm = inm_lookup(ifp, *group); 515 if (inm != NULL) { 516 /* 517 * If we already joined this group, just bump the 518 * refcount and return it. 519 */ 520 KASSERT(inm->inm_refcount >= 1, 521 ("%s: bad refcount %d", __func__, inm->inm_refcount)); 522 inm_acquire_locked(inm); 523 *pinm = inm; 524 } 525 IN_MULTI_LIST_UNLOCK(); 526 if (inm != NULL) 527 return (0); 528 529 memset(&gsin, 0, sizeof(gsin)); 530 gsin.sin_family = AF_INET; 531 gsin.sin_len = sizeof(struct sockaddr_in); 532 gsin.sin_addr = *group; 533 534 /* 535 * Check if a link-layer group is already associated 536 * with this network-layer group on the given ifnet. 537 */ 538 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); 539 if (error != 0) 540 return (error); 541 542 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ 543 IN_MULTI_LIST_LOCK(); 544 IF_ADDR_WLOCK(ifp); 545 546 /* 547 * If something other than netinet is occupying the link-layer 548 * group, print a meaningful error message and back out of 549 * the allocation. 550 * Otherwise, bump the refcount on the existing network-layer 551 * group association and return it. 552 */ 553 if (ifma->ifma_protospec != NULL) { 554 inm = (struct in_multi *)ifma->ifma_protospec; 555 #ifdef INVARIANTS 556 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 557 __func__)); 558 KASSERT(ifma->ifma_addr->sa_family == AF_INET, 559 ("%s: ifma not AF_INET", __func__)); 560 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 561 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || 562 !in_hosteq(inm->inm_addr, *group)) { 563 char addrbuf[INET_ADDRSTRLEN]; 564 565 panic("%s: ifma %p is inconsistent with %p (%s)", 566 __func__, ifma, inm, inet_ntoa_r(*group, addrbuf)); 567 } 568 #endif 569 inm_acquire_locked(inm); 570 *pinm = inm; 571 goto out_locked; 572 } 573 574 IF_ADDR_WLOCK_ASSERT(ifp); 575 576 /* 577 * A new in_multi record is needed; allocate and initialize it. 578 * We DO NOT perform an IGMP join as the in_ layer may need to 579 * push an initial source list down to IGMP to support SSM. 580 * 581 * The initial source filter state is INCLUDE, {} as per the RFC. 582 */ 583 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); 584 if (inm == NULL) { 585 IF_ADDR_WUNLOCK(ifp); 586 IN_MULTI_LIST_UNLOCK(); 587 if_delmulti_ifma(ifma); 588 return (ENOMEM); 589 } 590 inm->inm_addr = *group; 591 inm->inm_ifp = ifp; 592 inm->inm_igi = ii->ii_igmp; 593 inm->inm_ifma = ifma; 594 inm->inm_refcount = 1; 595 inm->inm_state = IGMP_NOT_MEMBER; 596 mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); 597 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; 598 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 599 RB_INIT(&inm->inm_srcs); 600 601 ifma->ifma_protospec = inm; 602 603 *pinm = inm; 604 out_locked: 605 IF_ADDR_WUNLOCK(ifp); 606 IN_MULTI_LIST_UNLOCK(); 607 return (0); 608 } 609 610 /* 611 * Drop a reference to an in_multi record. 612 * 613 * If the refcount drops to 0, free the in_multi record and 614 * delete the underlying link-layer membership. 615 */ 616 static void 617 inm_release(struct in_multi *inm) 618 { 619 struct ifmultiaddr *ifma; 620 struct ifnet *ifp; 621 622 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); 623 MPASS(inm->inm_refcount == 0); 624 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); 625 626 ifma = inm->inm_ifma; 627 ifp = inm->inm_ifp; 628 629 /* XXX this access is not covered by IF_ADDR_LOCK */ 630 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); 631 if (ifp != NULL) { 632 CURVNET_SET(ifp->if_vnet); 633 inm_purge(inm); 634 free(inm, M_IPMADDR); 635 if_delmulti_ifma_flags(ifma, 1); 636 CURVNET_RESTORE(); 637 if_rele(ifp); 638 } else { 639 inm_purge(inm); 640 free(inm, M_IPMADDR); 641 if_delmulti_ifma_flags(ifma, 1); 642 } 643 } 644 645 /* 646 * Clear recorded source entries for a group. 647 * Used by the IGMP code. Caller must hold the IN_MULTI lock. 648 * FIXME: Should reap. 649 */ 650 void 651 inm_clear_recorded(struct in_multi *inm) 652 { 653 struct ip_msource *ims; 654 655 IN_MULTI_LIST_LOCK_ASSERT(); 656 657 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 658 if (ims->ims_stp) { 659 ims->ims_stp = 0; 660 --inm->inm_st[1].iss_rec; 661 } 662 } 663 KASSERT(inm->inm_st[1].iss_rec == 0, 664 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); 665 } 666 667 /* 668 * Record a source as pending for a Source-Group IGMPv3 query. 669 * This lives here as it modifies the shared tree. 670 * 671 * inm is the group descriptor. 672 * naddr is the address of the source to record in network-byte order. 673 * 674 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will 675 * lazy-allocate a source node in response to an SG query. 676 * Otherwise, no allocation is performed. This saves some memory 677 * with the trade-off that the source will not be reported to the 678 * router if joined in the window between the query response and 679 * the group actually being joined on the local host. 680 * 681 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. 682 * This turns off the allocation of a recorded source entry if 683 * the group has not been joined. 684 * 685 * Return 0 if the source didn't exist or was already marked as recorded. 686 * Return 1 if the source was marked as recorded by this function. 687 * Return <0 if any error occurred (negated errno code). 688 */ 689 int 690 inm_record_source(struct in_multi *inm, const in_addr_t naddr) 691 { 692 struct ip_msource find; 693 struct ip_msource *ims, *nims; 694 695 IN_MULTI_LIST_LOCK_ASSERT(); 696 697 find.ims_haddr = ntohl(naddr); 698 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 699 if (ims && ims->ims_stp) 700 return (0); 701 if (ims == NULL) { 702 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 703 return (-ENOSPC); 704 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 705 M_NOWAIT | M_ZERO); 706 if (nims == NULL) 707 return (-ENOMEM); 708 nims->ims_haddr = find.ims_haddr; 709 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 710 ++inm->inm_nsrc; 711 ims = nims; 712 } 713 714 /* 715 * Mark the source as recorded and update the recorded 716 * source count. 717 */ 718 ++ims->ims_stp; 719 ++inm->inm_st[1].iss_rec; 720 721 return (1); 722 } 723 724 /* 725 * Return a pointer to an in_msource owned by an in_mfilter, 726 * given its source address. 727 * Lazy-allocate if needed. If this is a new entry its filter state is 728 * undefined at t0. 729 * 730 * imf is the filter set being modified. 731 * haddr is the source address in *host* byte-order. 732 * 733 * SMPng: May be called with locks held; malloc must not block. 734 */ 735 static int 736 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, 737 struct in_msource **plims) 738 { 739 struct ip_msource find; 740 struct ip_msource *ims, *nims; 741 struct in_msource *lims; 742 int error; 743 744 error = 0; 745 ims = NULL; 746 lims = NULL; 747 748 /* key is host byte order */ 749 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 750 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 751 lims = (struct in_msource *)ims; 752 if (lims == NULL) { 753 if (imf->imf_nsrc == in_mcast_maxsocksrc) 754 return (ENOSPC); 755 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 756 M_NOWAIT | M_ZERO); 757 if (nims == NULL) 758 return (ENOMEM); 759 lims = (struct in_msource *)nims; 760 lims->ims_haddr = find.ims_haddr; 761 lims->imsl_st[0] = MCAST_UNDEFINED; 762 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 763 ++imf->imf_nsrc; 764 } 765 766 *plims = lims; 767 768 return (error); 769 } 770 771 /* 772 * Graft a source entry into an existing socket-layer filter set, 773 * maintaining any required invariants and checking allocations. 774 * 775 * The source is marked as being in the new filter mode at t1. 776 * 777 * Return the pointer to the new node, otherwise return NULL. 778 */ 779 static struct in_msource * 780 imf_graft(struct in_mfilter *imf, const uint8_t st1, 781 const struct sockaddr_in *psin) 782 { 783 struct ip_msource *nims; 784 struct in_msource *lims; 785 786 nims = malloc(sizeof(struct in_msource), M_INMFILTER, 787 M_NOWAIT | M_ZERO); 788 if (nims == NULL) 789 return (NULL); 790 lims = (struct in_msource *)nims; 791 lims->ims_haddr = ntohl(psin->sin_addr.s_addr); 792 lims->imsl_st[0] = MCAST_UNDEFINED; 793 lims->imsl_st[1] = st1; 794 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); 795 ++imf->imf_nsrc; 796 797 return (lims); 798 } 799 800 /* 801 * Prune a source entry from an existing socket-layer filter set, 802 * maintaining any required invariants and checking allocations. 803 * 804 * The source is marked as being left at t1, it is not freed. 805 * 806 * Return 0 if no error occurred, otherwise return an errno value. 807 */ 808 static int 809 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) 810 { 811 struct ip_msource find; 812 struct ip_msource *ims; 813 struct in_msource *lims; 814 815 /* key is host byte order */ 816 find.ims_haddr = ntohl(psin->sin_addr.s_addr); 817 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); 818 if (ims == NULL) 819 return (ENOENT); 820 lims = (struct in_msource *)ims; 821 lims->imsl_st[1] = MCAST_UNDEFINED; 822 return (0); 823 } 824 825 /* 826 * Revert socket-layer filter set deltas at t1 to t0 state. 827 */ 828 static void 829 imf_rollback(struct in_mfilter *imf) 830 { 831 struct ip_msource *ims, *tims; 832 struct in_msource *lims; 833 834 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 835 lims = (struct in_msource *)ims; 836 if (lims->imsl_st[0] == lims->imsl_st[1]) { 837 /* no change at t1 */ 838 continue; 839 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { 840 /* revert change to existing source at t1 */ 841 lims->imsl_st[1] = lims->imsl_st[0]; 842 } else { 843 /* revert source added t1 */ 844 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 845 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 846 free(ims, M_INMFILTER); 847 imf->imf_nsrc--; 848 } 849 } 850 imf->imf_st[1] = imf->imf_st[0]; 851 } 852 853 /* 854 * Mark socket-layer filter set as INCLUDE {} at t1. 855 */ 856 static void 857 imf_leave(struct in_mfilter *imf) 858 { 859 struct ip_msource *ims; 860 struct in_msource *lims; 861 862 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 863 lims = (struct in_msource *)ims; 864 lims->imsl_st[1] = MCAST_UNDEFINED; 865 } 866 imf->imf_st[1] = MCAST_INCLUDE; 867 } 868 869 /* 870 * Mark socket-layer filter set deltas as committed. 871 */ 872 static void 873 imf_commit(struct in_mfilter *imf) 874 { 875 struct ip_msource *ims; 876 struct in_msource *lims; 877 878 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 879 lims = (struct in_msource *)ims; 880 lims->imsl_st[0] = lims->imsl_st[1]; 881 } 882 imf->imf_st[0] = imf->imf_st[1]; 883 } 884 885 /* 886 * Reap unreferenced sources from socket-layer filter set. 887 */ 888 static void 889 imf_reap(struct in_mfilter *imf) 890 { 891 struct ip_msource *ims, *tims; 892 struct in_msource *lims; 893 894 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 895 lims = (struct in_msource *)ims; 896 if ((lims->imsl_st[0] == MCAST_UNDEFINED) && 897 (lims->imsl_st[1] == MCAST_UNDEFINED)) { 898 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); 899 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 900 free(ims, M_INMFILTER); 901 imf->imf_nsrc--; 902 } 903 } 904 } 905 906 /* 907 * Purge socket-layer filter set. 908 */ 909 static void 910 imf_purge(struct in_mfilter *imf) 911 { 912 struct ip_msource *ims, *tims; 913 914 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { 915 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 916 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); 917 free(ims, M_INMFILTER); 918 imf->imf_nsrc--; 919 } 920 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; 921 KASSERT(RB_EMPTY(&imf->imf_sources), 922 ("%s: imf_sources not empty", __func__)); 923 } 924 925 /* 926 * Look up a source filter entry for a multicast group. 927 * 928 * inm is the group descriptor to work with. 929 * haddr is the host-byte-order IPv4 address to look up. 930 * noalloc may be non-zero to suppress allocation of sources. 931 * *pims will be set to the address of the retrieved or allocated source. 932 * 933 * SMPng: NOTE: may be called with locks held. 934 * Return 0 if successful, otherwise return a non-zero error code. 935 */ 936 static int 937 inm_get_source(struct in_multi *inm, const in_addr_t haddr, 938 const int noalloc, struct ip_msource **pims) 939 { 940 struct ip_msource find; 941 struct ip_msource *ims, *nims; 942 943 find.ims_haddr = haddr; 944 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); 945 if (ims == NULL && !noalloc) { 946 if (inm->inm_nsrc == in_mcast_maxgrpsrc) 947 return (ENOSPC); 948 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, 949 M_NOWAIT | M_ZERO); 950 if (nims == NULL) 951 return (ENOMEM); 952 nims->ims_haddr = haddr; 953 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); 954 ++inm->inm_nsrc; 955 ims = nims; 956 #ifdef KTR 957 CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__, 958 haddr, ims); 959 #endif 960 } 961 962 *pims = ims; 963 return (0); 964 } 965 966 /* 967 * Merge socket-layer source into IGMP-layer source. 968 * If rollback is non-zero, perform the inverse of the merge. 969 */ 970 static void 971 ims_merge(struct ip_msource *ims, const struct in_msource *lims, 972 const int rollback) 973 { 974 int n = rollback ? -1 : 1; 975 976 if (lims->imsl_st[0] == MCAST_EXCLUDE) { 977 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x", 978 __func__, n, ims->ims_haddr); 979 ims->ims_st[1].ex -= n; 980 } else if (lims->imsl_st[0] == MCAST_INCLUDE) { 981 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x", 982 __func__, n, ims->ims_haddr); 983 ims->ims_st[1].in -= n; 984 } 985 986 if (lims->imsl_st[1] == MCAST_EXCLUDE) { 987 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x", 988 __func__, n, ims->ims_haddr); 989 ims->ims_st[1].ex += n; 990 } else if (lims->imsl_st[1] == MCAST_INCLUDE) { 991 CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x", 992 __func__, n, ims->ims_haddr); 993 ims->ims_st[1].in += n; 994 } 995 } 996 997 /* 998 * Atomically update the global in_multi state, when a membership's 999 * filter list is being updated in any way. 1000 * 1001 * imf is the per-inpcb-membership group filter pointer. 1002 * A fake imf may be passed for in-kernel consumers. 1003 * 1004 * XXX This is a candidate for a set-symmetric-difference style loop 1005 * which would eliminate the repeated lookup from root of ims nodes, 1006 * as they share the same key space. 1007 * 1008 * If any error occurred this function will back out of refcounts 1009 * and return a non-zero value. 1010 */ 1011 static int 1012 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1013 { 1014 struct ip_msource *ims, *nims; 1015 struct in_msource *lims; 1016 int schanged, error; 1017 int nsrc0, nsrc1; 1018 1019 schanged = 0; 1020 error = 0; 1021 nsrc1 = nsrc0 = 0; 1022 IN_MULTI_LIST_LOCK_ASSERT(); 1023 1024 /* 1025 * Update the source filters first, as this may fail. 1026 * Maintain count of in-mode filters at t0, t1. These are 1027 * used to work out if we transition into ASM mode or not. 1028 * Maintain a count of source filters whose state was 1029 * actually modified by this operation. 1030 */ 1031 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1032 lims = (struct in_msource *)ims; 1033 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; 1034 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; 1035 if (lims->imsl_st[0] == lims->imsl_st[1]) continue; 1036 error = inm_get_source(inm, lims->ims_haddr, 0, &nims); 1037 ++schanged; 1038 if (error) 1039 break; 1040 ims_merge(nims, lims, 0); 1041 } 1042 if (error) { 1043 struct ip_msource *bims; 1044 1045 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { 1046 lims = (struct in_msource *)ims; 1047 if (lims->imsl_st[0] == lims->imsl_st[1]) 1048 continue; 1049 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); 1050 if (bims == NULL) 1051 continue; 1052 ims_merge(bims, lims, 1); 1053 } 1054 goto out_reap; 1055 } 1056 1057 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", 1058 __func__, nsrc0, nsrc1); 1059 1060 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1061 if (imf->imf_st[0] == imf->imf_st[1] && 1062 imf->imf_st[1] == MCAST_INCLUDE) { 1063 if (nsrc1 == 0) { 1064 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1065 --inm->inm_st[1].iss_in; 1066 } 1067 } 1068 1069 /* Handle filter mode transition on socket. */ 1070 if (imf->imf_st[0] != imf->imf_st[1]) { 1071 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", 1072 __func__, imf->imf_st[0], imf->imf_st[1]); 1073 1074 if (imf->imf_st[0] == MCAST_EXCLUDE) { 1075 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); 1076 --inm->inm_st[1].iss_ex; 1077 } else if (imf->imf_st[0] == MCAST_INCLUDE) { 1078 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); 1079 --inm->inm_st[1].iss_in; 1080 } 1081 1082 if (imf->imf_st[1] == MCAST_EXCLUDE) { 1083 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); 1084 inm->inm_st[1].iss_ex++; 1085 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1086 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); 1087 inm->inm_st[1].iss_in++; 1088 } 1089 } 1090 1091 /* 1092 * Track inm filter state in terms of listener counts. 1093 * If there are any exclusive listeners, stack-wide 1094 * membership is exclusive. 1095 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1096 * If no listeners remain, state is undefined at t1, 1097 * and the IGMP lifecycle for this group should finish. 1098 */ 1099 if (inm->inm_st[1].iss_ex > 0) { 1100 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); 1101 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; 1102 } else if (inm->inm_st[1].iss_in > 0) { 1103 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); 1104 inm->inm_st[1].iss_fmode = MCAST_INCLUDE; 1105 } else { 1106 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); 1107 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; 1108 } 1109 1110 /* Decrement ASM listener count on transition out of ASM mode. */ 1111 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1112 if ((imf->imf_st[1] != MCAST_EXCLUDE) || 1113 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1114 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); 1115 --inm->inm_st[1].iss_asm; 1116 } 1117 } 1118 1119 /* Increment ASM listener count on transition to ASM mode. */ 1120 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1121 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); 1122 inm->inm_st[1].iss_asm++; 1123 } 1124 1125 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); 1126 inm_print(inm); 1127 1128 out_reap: 1129 if (schanged > 0) { 1130 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); 1131 inm_reap(inm); 1132 } 1133 return (error); 1134 } 1135 1136 /* 1137 * Mark an in_multi's filter set deltas as committed. 1138 * Called by IGMP after a state change has been enqueued. 1139 */ 1140 void 1141 inm_commit(struct in_multi *inm) 1142 { 1143 struct ip_msource *ims; 1144 1145 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); 1146 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); 1147 inm_print(inm); 1148 1149 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 1150 ims->ims_st[0] = ims->ims_st[1]; 1151 } 1152 inm->inm_st[0] = inm->inm_st[1]; 1153 } 1154 1155 /* 1156 * Reap unreferenced nodes from an in_multi's filter set. 1157 */ 1158 static void 1159 inm_reap(struct in_multi *inm) 1160 { 1161 struct ip_msource *ims, *tims; 1162 1163 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1164 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || 1165 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || 1166 ims->ims_stp != 0) 1167 continue; 1168 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1169 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1170 free(ims, M_IPMSOURCE); 1171 inm->inm_nsrc--; 1172 } 1173 } 1174 1175 /* 1176 * Purge all source nodes from an in_multi's filter set. 1177 */ 1178 static void 1179 inm_purge(struct in_multi *inm) 1180 { 1181 struct ip_msource *ims, *tims; 1182 1183 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { 1184 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); 1185 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); 1186 free(ims, M_IPMSOURCE); 1187 inm->inm_nsrc--; 1188 } 1189 } 1190 1191 /* 1192 * Join a multicast group; unlocked entry point. 1193 * 1194 * SMPng: XXX: in_joingroup() is called from in_control() when Giant 1195 * is not held. Fortunately, ifp is unlikely to have been detached 1196 * at this point, so we assume it's OK to recurse. 1197 */ 1198 int 1199 in_joingroup(struct ifnet *ifp, const struct in_addr *gina, 1200 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1201 { 1202 int error; 1203 1204 IN_MULTI_LOCK(); 1205 error = in_joingroup_locked(ifp, gina, imf, pinm); 1206 IN_MULTI_UNLOCK(); 1207 1208 return (error); 1209 } 1210 1211 /* 1212 * Join a multicast group; real entry point. 1213 * 1214 * Only preserves atomicity at inm level. 1215 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1216 * 1217 * If the IGMP downcall fails, the group is not joined, and an error 1218 * code is returned. 1219 */ 1220 int 1221 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, 1222 /*const*/ struct in_mfilter *imf, struct in_multi **pinm) 1223 { 1224 struct in_mfilter timf; 1225 struct in_multi *inm; 1226 int error; 1227 1228 IN_MULTI_LOCK_ASSERT(); 1229 IN_MULTI_LIST_UNLOCK_ASSERT(); 1230 1231 CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__, 1232 ntohl(gina->s_addr), ifp, ifp->if_xname); 1233 1234 error = 0; 1235 inm = NULL; 1236 1237 /* 1238 * If no imf was specified (i.e. kernel consumer), 1239 * fake one up and assume it is an ASM join. 1240 */ 1241 if (imf == NULL) { 1242 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1243 imf = &timf; 1244 } 1245 1246 error = in_getmulti(ifp, gina, &inm); 1247 if (error) { 1248 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); 1249 return (error); 1250 } 1251 IN_MULTI_LIST_LOCK(); 1252 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1253 error = inm_merge(inm, imf); 1254 if (error) { 1255 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1256 goto out_inm_release; 1257 } 1258 1259 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1260 error = igmp_change_state(inm); 1261 if (error) { 1262 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); 1263 goto out_inm_release; 1264 } 1265 1266 out_inm_release: 1267 if (error) { 1268 1269 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1270 inm_release_deferred(inm); 1271 } else { 1272 *pinm = inm; 1273 } 1274 IN_MULTI_LIST_UNLOCK(); 1275 1276 return (error); 1277 } 1278 1279 /* 1280 * Leave a multicast group; unlocked entry point. 1281 */ 1282 int 1283 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1284 { 1285 int error; 1286 1287 IN_MULTI_LOCK(); 1288 error = in_leavegroup_locked(inm, imf); 1289 IN_MULTI_UNLOCK(); 1290 1291 return (error); 1292 } 1293 1294 /* 1295 * Leave a multicast group; real entry point. 1296 * All source filters will be expunged. 1297 * 1298 * Only preserves atomicity at inm level. 1299 * 1300 * Holding the write lock for the INP which contains imf 1301 * is highly advisable. We can't assert for it as imf does not 1302 * contain a back-pointer to the owning inp. 1303 * 1304 * Note: This is not the same as inm_release(*) as this function also 1305 * makes a state change downcall into IGMP. 1306 */ 1307 int 1308 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) 1309 { 1310 struct in_mfilter timf; 1311 int error; 1312 1313 error = 0; 1314 1315 IN_MULTI_LOCK_ASSERT(); 1316 IN_MULTI_LIST_UNLOCK_ASSERT(); 1317 1318 CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__, 1319 inm, ntohl(inm->inm_addr.s_addr), 1320 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), 1321 imf); 1322 1323 /* 1324 * If no imf was specified (i.e. kernel consumer), 1325 * fake one up and assume it is an ASM join. 1326 */ 1327 if (imf == NULL) { 1328 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1329 imf = &timf; 1330 } 1331 1332 /* 1333 * Begin state merge transaction at IGMP layer. 1334 * 1335 * As this particular invocation should not cause any memory 1336 * to be allocated, and there is no opportunity to roll back 1337 * the transaction, it MUST NOT fail. 1338 */ 1339 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1340 IN_MULTI_LIST_LOCK(); 1341 error = inm_merge(inm, imf); 1342 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1343 1344 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1345 CURVNET_SET(inm->inm_ifp->if_vnet); 1346 error = igmp_change_state(inm); 1347 IF_ADDR_WLOCK(inm->inm_ifp); 1348 inm_release_deferred(inm); 1349 IF_ADDR_WUNLOCK(inm->inm_ifp); 1350 IN_MULTI_LIST_UNLOCK(); 1351 CURVNET_RESTORE(); 1352 if (error) 1353 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1354 1355 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); 1356 1357 return (error); 1358 } 1359 1360 /*#ifndef BURN_BRIDGES*/ 1361 /* 1362 * Join an IPv4 multicast group in (*,G) exclusive mode. 1363 * The group must be a 224.0.0.0/24 link-scope group. 1364 * This KPI is for legacy kernel consumers only. 1365 */ 1366 struct in_multi * 1367 in_addmulti(struct in_addr *ap, struct ifnet *ifp) 1368 { 1369 struct in_multi *pinm; 1370 int error; 1371 #ifdef INVARIANTS 1372 char addrbuf[INET_ADDRSTRLEN]; 1373 #endif 1374 1375 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), 1376 ("%s: %s not in 224.0.0.0/24", __func__, 1377 inet_ntoa_r(*ap, addrbuf))); 1378 1379 error = in_joingroup(ifp, ap, NULL, &pinm); 1380 if (error != 0) 1381 pinm = NULL; 1382 1383 return (pinm); 1384 } 1385 1386 /* 1387 * Block or unblock an ASM multicast source on an inpcb. 1388 * This implements the delta-based API described in RFC 3678. 1389 * 1390 * The delta-based API applies only to exclusive-mode memberships. 1391 * An IGMP downcall will be performed. 1392 * 1393 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1394 * 1395 * Return 0 if successful, otherwise return an appropriate error code. 1396 */ 1397 static int 1398 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1399 { 1400 struct group_source_req gsr; 1401 struct rm_priotracker in_ifa_tracker; 1402 sockunion_t *gsa, *ssa; 1403 struct ifnet *ifp; 1404 struct in_mfilter *imf; 1405 struct ip_moptions *imo; 1406 struct in_msource *ims; 1407 struct in_multi *inm; 1408 uint16_t fmode; 1409 int error, doblock; 1410 1411 ifp = NULL; 1412 error = 0; 1413 doblock = 0; 1414 1415 memset(&gsr, 0, sizeof(struct group_source_req)); 1416 gsa = (sockunion_t *)&gsr.gsr_group; 1417 ssa = (sockunion_t *)&gsr.gsr_source; 1418 1419 switch (sopt->sopt_name) { 1420 case IP_BLOCK_SOURCE: 1421 case IP_UNBLOCK_SOURCE: { 1422 struct ip_mreq_source mreqs; 1423 1424 error = sooptcopyin(sopt, &mreqs, 1425 sizeof(struct ip_mreq_source), 1426 sizeof(struct ip_mreq_source)); 1427 if (error) 1428 return (error); 1429 1430 gsa->sin.sin_family = AF_INET; 1431 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1432 gsa->sin.sin_addr = mreqs.imr_multiaddr; 1433 1434 ssa->sin.sin_family = AF_INET; 1435 ssa->sin.sin_len = sizeof(struct sockaddr_in); 1436 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 1437 1438 if (!in_nullhost(mreqs.imr_interface)) { 1439 IN_IFADDR_RLOCK(&in_ifa_tracker); 1440 INADDR_TO_IFP(mreqs.imr_interface, ifp); 1441 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1442 } 1443 if (sopt->sopt_name == IP_BLOCK_SOURCE) 1444 doblock = 1; 1445 1446 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 1447 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 1448 break; 1449 } 1450 1451 case MCAST_BLOCK_SOURCE: 1452 case MCAST_UNBLOCK_SOURCE: 1453 error = sooptcopyin(sopt, &gsr, 1454 sizeof(struct group_source_req), 1455 sizeof(struct group_source_req)); 1456 if (error) 1457 return (error); 1458 1459 if (gsa->sin.sin_family != AF_INET || 1460 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 1461 return (EINVAL); 1462 1463 if (ssa->sin.sin_family != AF_INET || 1464 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 1465 return (EINVAL); 1466 1467 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1468 return (EADDRNOTAVAIL); 1469 1470 ifp = ifnet_byindex(gsr.gsr_interface); 1471 1472 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1473 doblock = 1; 1474 break; 1475 1476 default: 1477 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 1478 __func__, sopt->sopt_name); 1479 return (EOPNOTSUPP); 1480 break; 1481 } 1482 1483 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1484 return (EINVAL); 1485 1486 IN_MULTI_LOCK(); 1487 1488 /* 1489 * Check if we are actually a member of this group. 1490 */ 1491 imo = inp_findmoptions(inp); 1492 imf = imo_match_group(imo, ifp, &gsa->sa); 1493 if (imf == NULL) { 1494 error = EADDRNOTAVAIL; 1495 goto out_inp_locked; 1496 } 1497 inm = imf->imf_inm; 1498 1499 /* 1500 * Attempting to use the delta-based API on an 1501 * non exclusive-mode membership is an error. 1502 */ 1503 fmode = imf->imf_st[0]; 1504 if (fmode != MCAST_EXCLUDE) { 1505 error = EINVAL; 1506 goto out_inp_locked; 1507 } 1508 1509 /* 1510 * Deal with error cases up-front: 1511 * Asked to block, but already blocked; or 1512 * Asked to unblock, but nothing to unblock. 1513 * If adding a new block entry, allocate it. 1514 */ 1515 ims = imo_match_source(imf, &ssa->sa); 1516 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1517 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, 1518 ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not "); 1519 error = EADDRNOTAVAIL; 1520 goto out_inp_locked; 1521 } 1522 1523 INP_WLOCK_ASSERT(inp); 1524 1525 /* 1526 * Begin state merge transaction at socket layer. 1527 */ 1528 if (doblock) { 1529 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 1530 ims = imf_graft(imf, fmode, &ssa->sin); 1531 if (ims == NULL) 1532 error = ENOMEM; 1533 } else { 1534 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 1535 error = imf_prune(imf, &ssa->sin); 1536 } 1537 1538 if (error) { 1539 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); 1540 goto out_imf_rollback; 1541 } 1542 1543 /* 1544 * Begin state merge transaction at IGMP layer. 1545 */ 1546 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 1547 IN_MULTI_LIST_LOCK(); 1548 error = inm_merge(inm, imf); 1549 if (error) { 1550 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 1551 IN_MULTI_LIST_UNLOCK(); 1552 goto out_imf_rollback; 1553 } 1554 1555 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 1556 error = igmp_change_state(inm); 1557 IN_MULTI_LIST_UNLOCK(); 1558 if (error) 1559 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 1560 1561 out_imf_rollback: 1562 if (error) 1563 imf_rollback(imf); 1564 else 1565 imf_commit(imf); 1566 1567 imf_reap(imf); 1568 1569 out_inp_locked: 1570 INP_WUNLOCK(inp); 1571 IN_MULTI_UNLOCK(); 1572 return (error); 1573 } 1574 1575 /* 1576 * Given an inpcb, return its multicast options structure pointer. Accepts 1577 * an unlocked inpcb pointer, but will return it locked. May sleep. 1578 * 1579 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1580 * SMPng: NOTE: Returns with the INP write lock held. 1581 */ 1582 static struct ip_moptions * 1583 inp_findmoptions(struct inpcb *inp) 1584 { 1585 struct ip_moptions *imo; 1586 1587 INP_WLOCK(inp); 1588 if (inp->inp_moptions != NULL) 1589 return (inp->inp_moptions); 1590 1591 INP_WUNLOCK(inp); 1592 1593 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1594 1595 imo->imo_multicast_ifp = NULL; 1596 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1597 imo->imo_multicast_vif = -1; 1598 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1599 imo->imo_multicast_loop = in_mcast_loop; 1600 STAILQ_INIT(&imo->imo_head); 1601 1602 INP_WLOCK(inp); 1603 if (inp->inp_moptions != NULL) { 1604 free(imo, M_IPMOPTS); 1605 return (inp->inp_moptions); 1606 } 1607 inp->inp_moptions = imo; 1608 return (imo); 1609 } 1610 1611 static void 1612 inp_gcmoptions(struct ip_moptions *imo) 1613 { 1614 struct in_mfilter *imf; 1615 struct in_multi *inm; 1616 struct ifnet *ifp; 1617 1618 while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) { 1619 ip_mfilter_remove(&imo->imo_head, imf); 1620 1621 imf_leave(imf); 1622 if ((inm = imf->imf_inm) != NULL) { 1623 if ((ifp = inm->inm_ifp) != NULL) { 1624 CURVNET_SET(ifp->if_vnet); 1625 (void)in_leavegroup(inm, imf); 1626 CURVNET_RESTORE(); 1627 } else { 1628 (void)in_leavegroup(inm, imf); 1629 } 1630 } 1631 ip_mfilter_free(imf); 1632 } 1633 free(imo, M_IPMOPTS); 1634 } 1635 1636 /* 1637 * Discard the IP multicast options (and source filters). To minimize 1638 * the amount of work done while holding locks such as the INP's 1639 * pcbinfo lock (which is used in the receive path), the free 1640 * operation is deferred to the epoch callback task. 1641 */ 1642 void 1643 inp_freemoptions(struct ip_moptions *imo) 1644 { 1645 if (imo == NULL) 1646 return; 1647 inp_gcmoptions(imo); 1648 } 1649 1650 /* 1651 * Atomically get source filters on a socket for an IPv4 multicast group. 1652 * Called with INP lock held; returns with lock released. 1653 */ 1654 static int 1655 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1656 { 1657 struct __msfilterreq msfr; 1658 sockunion_t *gsa; 1659 struct ifnet *ifp; 1660 struct ip_moptions *imo; 1661 struct in_mfilter *imf; 1662 struct ip_msource *ims; 1663 struct in_msource *lims; 1664 struct sockaddr_in *psin; 1665 struct sockaddr_storage *ptss; 1666 struct sockaddr_storage *tss; 1667 int error; 1668 size_t nsrcs, ncsrcs; 1669 1670 INP_WLOCK_ASSERT(inp); 1671 1672 imo = inp->inp_moptions; 1673 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); 1674 1675 INP_WUNLOCK(inp); 1676 1677 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1678 sizeof(struct __msfilterreq)); 1679 if (error) 1680 return (error); 1681 1682 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1683 return (EINVAL); 1684 1685 ifp = ifnet_byindex(msfr.msfr_ifindex); 1686 if (ifp == NULL) 1687 return (EINVAL); 1688 1689 INP_WLOCK(inp); 1690 1691 /* 1692 * Lookup group on the socket. 1693 */ 1694 gsa = (sockunion_t *)&msfr.msfr_group; 1695 imf = imo_match_group(imo, ifp, &gsa->sa); 1696 if (imf == NULL) { 1697 INP_WUNLOCK(inp); 1698 return (EADDRNOTAVAIL); 1699 } 1700 1701 /* 1702 * Ignore memberships which are in limbo. 1703 */ 1704 if (imf->imf_st[1] == MCAST_UNDEFINED) { 1705 INP_WUNLOCK(inp); 1706 return (EAGAIN); 1707 } 1708 msfr.msfr_fmode = imf->imf_st[1]; 1709 1710 /* 1711 * If the user specified a buffer, copy out the source filter 1712 * entries to userland gracefully. 1713 * We only copy out the number of entries which userland 1714 * has asked for, but we always tell userland how big the 1715 * buffer really needs to be. 1716 */ 1717 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 1718 msfr.msfr_nsrcs = in_mcast_maxsocksrc; 1719 tss = NULL; 1720 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1721 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1722 M_TEMP, M_NOWAIT | M_ZERO); 1723 if (tss == NULL) { 1724 INP_WUNLOCK(inp); 1725 return (ENOBUFS); 1726 } 1727 } 1728 1729 /* 1730 * Count number of sources in-mode at t0. 1731 * If buffer space exists and remains, copy out source entries. 1732 */ 1733 nsrcs = msfr.msfr_nsrcs; 1734 ncsrcs = 0; 1735 ptss = tss; 1736 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { 1737 lims = (struct in_msource *)ims; 1738 if (lims->imsl_st[0] == MCAST_UNDEFINED || 1739 lims->imsl_st[0] != imf->imf_st[0]) 1740 continue; 1741 ++ncsrcs; 1742 if (tss != NULL && nsrcs > 0) { 1743 psin = (struct sockaddr_in *)ptss; 1744 psin->sin_family = AF_INET; 1745 psin->sin_len = sizeof(struct sockaddr_in); 1746 psin->sin_addr.s_addr = htonl(lims->ims_haddr); 1747 psin->sin_port = 0; 1748 ++ptss; 1749 --nsrcs; 1750 } 1751 } 1752 1753 INP_WUNLOCK(inp); 1754 1755 if (tss != NULL) { 1756 error = copyout(tss, msfr.msfr_srcs, 1757 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1758 free(tss, M_TEMP); 1759 if (error) 1760 return (error); 1761 } 1762 1763 msfr.msfr_nsrcs = ncsrcs; 1764 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1765 1766 return (error); 1767 } 1768 1769 /* 1770 * Return the IP multicast options in response to user getsockopt(). 1771 */ 1772 int 1773 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1774 { 1775 struct rm_priotracker in_ifa_tracker; 1776 struct ip_mreqn mreqn; 1777 struct ip_moptions *imo; 1778 struct ifnet *ifp; 1779 struct in_ifaddr *ia; 1780 int error, optval; 1781 u_char coptval; 1782 1783 INP_WLOCK(inp); 1784 imo = inp->inp_moptions; 1785 /* 1786 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1787 * or is a divert socket, reject it. 1788 */ 1789 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1790 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1791 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1792 INP_WUNLOCK(inp); 1793 return (EOPNOTSUPP); 1794 } 1795 1796 error = 0; 1797 switch (sopt->sopt_name) { 1798 case IP_MULTICAST_VIF: 1799 if (imo != NULL) 1800 optval = imo->imo_multicast_vif; 1801 else 1802 optval = -1; 1803 INP_WUNLOCK(inp); 1804 error = sooptcopyout(sopt, &optval, sizeof(int)); 1805 break; 1806 1807 case IP_MULTICAST_IF: 1808 memset(&mreqn, 0, sizeof(struct ip_mreqn)); 1809 if (imo != NULL) { 1810 ifp = imo->imo_multicast_ifp; 1811 if (!in_nullhost(imo->imo_multicast_addr)) { 1812 mreqn.imr_address = imo->imo_multicast_addr; 1813 } else if (ifp != NULL) { 1814 struct epoch_tracker et; 1815 1816 mreqn.imr_ifindex = ifp->if_index; 1817 NET_EPOCH_ENTER(et); 1818 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 1819 if (ia != NULL) 1820 mreqn.imr_address = 1821 IA_SIN(ia)->sin_addr; 1822 NET_EPOCH_EXIT(et); 1823 } 1824 } 1825 INP_WUNLOCK(inp); 1826 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 1827 error = sooptcopyout(sopt, &mreqn, 1828 sizeof(struct ip_mreqn)); 1829 } else { 1830 error = sooptcopyout(sopt, &mreqn.imr_address, 1831 sizeof(struct in_addr)); 1832 } 1833 break; 1834 1835 case IP_MULTICAST_TTL: 1836 if (imo == NULL) 1837 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1838 else 1839 optval = coptval = imo->imo_multicast_ttl; 1840 INP_WUNLOCK(inp); 1841 if (sopt->sopt_valsize == sizeof(u_char)) 1842 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1843 else 1844 error = sooptcopyout(sopt, &optval, sizeof(int)); 1845 break; 1846 1847 case IP_MULTICAST_LOOP: 1848 if (imo == NULL) 1849 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1850 else 1851 optval = coptval = imo->imo_multicast_loop; 1852 INP_WUNLOCK(inp); 1853 if (sopt->sopt_valsize == sizeof(u_char)) 1854 error = sooptcopyout(sopt, &coptval, sizeof(u_char)); 1855 else 1856 error = sooptcopyout(sopt, &optval, sizeof(int)); 1857 break; 1858 1859 case IP_MSFILTER: 1860 if (imo == NULL) { 1861 error = EADDRNOTAVAIL; 1862 INP_WUNLOCK(inp); 1863 } else { 1864 error = inp_get_source_filters(inp, sopt); 1865 } 1866 break; 1867 1868 default: 1869 INP_WUNLOCK(inp); 1870 error = ENOPROTOOPT; 1871 break; 1872 } 1873 1874 INP_UNLOCK_ASSERT(inp); 1875 1876 return (error); 1877 } 1878 1879 /* 1880 * Look up the ifnet to use for a multicast group membership, 1881 * given the IPv4 address of an interface, and the IPv4 group address. 1882 * 1883 * This routine exists to support legacy multicast applications 1884 * which do not understand that multicast memberships are scoped to 1885 * specific physical links in the networking stack, or which need 1886 * to join link-scope groups before IPv4 addresses are configured. 1887 * 1888 * If inp is non-NULL, use this socket's current FIB number for any 1889 * required FIB lookup. 1890 * If ina is INADDR_ANY, look up the group address in the unicast FIB, 1891 * and use its ifp; usually, this points to the default next-hop. 1892 * 1893 * If the FIB lookup fails, attempt to use the first non-loopback 1894 * interface with multicast capability in the system as a 1895 * last resort. The legacy IPv4 ASM API requires that we do 1896 * this in order to allow groups to be joined when the routing 1897 * table has not yet been populated during boot. 1898 * 1899 * Returns NULL if no ifp could be found. 1900 * 1901 * FUTURE: Implement IPv4 source-address selection. 1902 */ 1903 static struct ifnet * 1904 inp_lookup_mcast_ifp(const struct inpcb *inp, 1905 const struct sockaddr_in *gsin, const struct in_addr ina) 1906 { 1907 struct rm_priotracker in_ifa_tracker; 1908 struct ifnet *ifp; 1909 struct nhop4_basic nh4; 1910 uint32_t fibnum; 1911 1912 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); 1913 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), 1914 ("%s: not multicast", __func__)); 1915 1916 ifp = NULL; 1917 if (!in_nullhost(ina)) { 1918 IN_IFADDR_RLOCK(&in_ifa_tracker); 1919 INADDR_TO_IFP(ina, ifp); 1920 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1921 } else { 1922 fibnum = inp ? inp->inp_inc.inc_fibnum : 0; 1923 if (fib4_lookup_nh_basic(fibnum, gsin->sin_addr, 0, 0, &nh4)==0) 1924 ifp = nh4.nh_ifp; 1925 else { 1926 struct in_ifaddr *ia; 1927 struct ifnet *mifp; 1928 1929 mifp = NULL; 1930 IN_IFADDR_RLOCK(&in_ifa_tracker); 1931 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1932 mifp = ia->ia_ifp; 1933 if (!(mifp->if_flags & IFF_LOOPBACK) && 1934 (mifp->if_flags & IFF_MULTICAST)) { 1935 ifp = mifp; 1936 break; 1937 } 1938 } 1939 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1940 } 1941 } 1942 1943 return (ifp); 1944 } 1945 1946 /* 1947 * Join an IPv4 multicast group, possibly with a source. 1948 */ 1949 static int 1950 inp_join_group(struct inpcb *inp, struct sockopt *sopt) 1951 { 1952 struct group_source_req gsr; 1953 sockunion_t *gsa, *ssa; 1954 struct ifnet *ifp; 1955 struct in_mfilter *imf; 1956 struct ip_moptions *imo; 1957 struct in_multi *inm; 1958 struct in_msource *lims; 1959 int error, is_new; 1960 1961 ifp = NULL; 1962 lims = NULL; 1963 error = 0; 1964 1965 memset(&gsr, 0, sizeof(struct group_source_req)); 1966 gsa = (sockunion_t *)&gsr.gsr_group; 1967 gsa->ss.ss_family = AF_UNSPEC; 1968 ssa = (sockunion_t *)&gsr.gsr_source; 1969 ssa->ss.ss_family = AF_UNSPEC; 1970 1971 switch (sopt->sopt_name) { 1972 case IP_ADD_MEMBERSHIP: { 1973 struct ip_mreqn mreqn; 1974 1975 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) 1976 error = sooptcopyin(sopt, &mreqn, 1977 sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); 1978 else 1979 error = sooptcopyin(sopt, &mreqn, 1980 sizeof(struct ip_mreq), sizeof(struct ip_mreq)); 1981 if (error) 1982 return (error); 1983 1984 gsa->sin.sin_family = AF_INET; 1985 gsa->sin.sin_len = sizeof(struct sockaddr_in); 1986 gsa->sin.sin_addr = mreqn.imr_multiaddr; 1987 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 1988 return (EINVAL); 1989 1990 if (sopt->sopt_valsize == sizeof(struct ip_mreqn) && 1991 mreqn.imr_ifindex != 0) 1992 ifp = ifnet_byindex(mreqn.imr_ifindex); 1993 else 1994 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 1995 mreqn.imr_address); 1996 break; 1997 } 1998 case IP_ADD_SOURCE_MEMBERSHIP: { 1999 struct ip_mreq_source mreqs; 2000 2001 error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), 2002 sizeof(struct ip_mreq_source)); 2003 if (error) 2004 return (error); 2005 2006 gsa->sin.sin_family = ssa->sin.sin_family = AF_INET; 2007 gsa->sin.sin_len = ssa->sin.sin_len = 2008 sizeof(struct sockaddr_in); 2009 2010 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2011 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2012 return (EINVAL); 2013 2014 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2015 2016 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, 2017 mreqs.imr_interface); 2018 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 2019 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 2020 break; 2021 } 2022 2023 case MCAST_JOIN_GROUP: 2024 case MCAST_JOIN_SOURCE_GROUP: 2025 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 2026 error = sooptcopyin(sopt, &gsr, 2027 sizeof(struct group_req), 2028 sizeof(struct group_req)); 2029 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2030 error = sooptcopyin(sopt, &gsr, 2031 sizeof(struct group_source_req), 2032 sizeof(struct group_source_req)); 2033 } 2034 if (error) 2035 return (error); 2036 2037 if (gsa->sin.sin_family != AF_INET || 2038 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2039 return (EINVAL); 2040 2041 /* 2042 * Overwrite the port field if present, as the sockaddr 2043 * being copied in may be matched with a binary comparison. 2044 */ 2045 gsa->sin.sin_port = 0; 2046 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 2047 if (ssa->sin.sin_family != AF_INET || 2048 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2049 return (EINVAL); 2050 ssa->sin.sin_port = 0; 2051 } 2052 2053 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2054 return (EINVAL); 2055 2056 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2057 return (EADDRNOTAVAIL); 2058 ifp = ifnet_byindex(gsr.gsr_interface); 2059 break; 2060 2061 default: 2062 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2063 __func__, sopt->sopt_name); 2064 return (EOPNOTSUPP); 2065 break; 2066 } 2067 2068 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2069 return (EADDRNOTAVAIL); 2070 2071 IN_MULTI_LOCK(); 2072 2073 /* 2074 * Find the membership in the membership list. 2075 */ 2076 imo = inp_findmoptions(inp); 2077 imf = imo_match_group(imo, ifp, &gsa->sa); 2078 if (imf == NULL) { 2079 is_new = 1; 2080 inm = NULL; 2081 2082 if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) { 2083 error = ENOMEM; 2084 goto out_inp_locked; 2085 } 2086 } else { 2087 is_new = 0; 2088 inm = imf->imf_inm; 2089 2090 if (ssa->ss.ss_family != AF_UNSPEC) { 2091 /* 2092 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2093 * is an error. On an existing inclusive membership, 2094 * it just adds the source to the filter list. 2095 */ 2096 if (imf->imf_st[1] != MCAST_INCLUDE) { 2097 error = EINVAL; 2098 goto out_inp_locked; 2099 } 2100 /* 2101 * Throw out duplicates. 2102 * 2103 * XXX FIXME: This makes a naive assumption that 2104 * even if entries exist for *ssa in this imf, 2105 * they will be rejected as dupes, even if they 2106 * are not valid in the current mode (in-mode). 2107 * 2108 * in_msource is transactioned just as for anything 2109 * else in SSM -- but note naive use of inm_graft() 2110 * below for allocating new filter entries. 2111 * 2112 * This is only an issue if someone mixes the 2113 * full-state SSM API with the delta-based API, 2114 * which is discouraged in the relevant RFCs. 2115 */ 2116 lims = imo_match_source(imf, &ssa->sa); 2117 if (lims != NULL /*&& 2118 lims->imsl_st[1] == MCAST_INCLUDE*/) { 2119 error = EADDRNOTAVAIL; 2120 goto out_inp_locked; 2121 } 2122 } else { 2123 /* 2124 * MCAST_JOIN_GROUP on an existing exclusive 2125 * membership is an error; return EADDRINUSE 2126 * to preserve 4.4BSD API idempotence, and 2127 * avoid tedious detour to code below. 2128 * NOTE: This is bending RFC 3678 a bit. 2129 * 2130 * On an existing inclusive membership, this is also 2131 * an error; if you want to change filter mode, 2132 * you must use the userland API setsourcefilter(). 2133 * XXX We don't reject this for imf in UNDEFINED 2134 * state at t1, because allocation of a filter 2135 * is atomic with allocation of a membership. 2136 */ 2137 error = EINVAL; 2138 if (imf->imf_st[1] == MCAST_EXCLUDE) 2139 error = EADDRINUSE; 2140 goto out_inp_locked; 2141 } 2142 } 2143 2144 /* 2145 * Begin state merge transaction at socket layer. 2146 */ 2147 INP_WLOCK_ASSERT(inp); 2148 2149 /* 2150 * Graft new source into filter list for this inpcb's 2151 * membership of the group. The in_multi may not have 2152 * been allocated yet if this is a new membership, however, 2153 * the in_mfilter slot will be allocated and must be initialized. 2154 * 2155 * Note: Grafting of exclusive mode filters doesn't happen 2156 * in this path. 2157 * XXX: Should check for non-NULL lims (node exists but may 2158 * not be in-mode) for interop with full-state API. 2159 */ 2160 if (ssa->ss.ss_family != AF_UNSPEC) { 2161 /* Membership starts in IN mode */ 2162 if (is_new) { 2163 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); 2164 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); 2165 if (imf == NULL) { 2166 error = ENOMEM; 2167 goto out_inp_locked; 2168 } 2169 } else { 2170 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); 2171 } 2172 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); 2173 if (lims == NULL) { 2174 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2175 __func__); 2176 error = ENOMEM; 2177 goto out_inp_locked; 2178 } 2179 } else { 2180 /* No address specified; Membership starts in EX mode */ 2181 if (is_new) { 2182 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); 2183 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); 2184 if (imf == NULL) { 2185 error = ENOMEM; 2186 goto out_inp_locked; 2187 } 2188 } 2189 } 2190 2191 /* 2192 * Begin state merge transaction at IGMP layer. 2193 */ 2194 if (is_new) { 2195 in_pcbref(inp); 2196 INP_WUNLOCK(inp); 2197 2198 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, 2199 &imf->imf_inm); 2200 2201 INP_WLOCK(inp); 2202 if (in_pcbrele_wlocked(inp)) { 2203 error = ENXIO; 2204 goto out_inp_unlocked; 2205 } 2206 if (error) { 2207 CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", 2208 __func__); 2209 goto out_inp_locked; 2210 } 2211 inm_acquire(imf->imf_inm); 2212 } else { 2213 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2214 IN_MULTI_LIST_LOCK(); 2215 error = inm_merge(inm, imf); 2216 if (error) { 2217 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2218 __func__); 2219 IN_MULTI_LIST_UNLOCK(); 2220 imf_rollback(imf); 2221 imf_reap(imf); 2222 goto out_inp_locked; 2223 } 2224 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2225 error = igmp_change_state(inm); 2226 IN_MULTI_LIST_UNLOCK(); 2227 if (error) { 2228 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2229 __func__); 2230 imf_rollback(imf); 2231 imf_reap(imf); 2232 goto out_inp_locked; 2233 } 2234 } 2235 if (is_new) 2236 ip_mfilter_insert(&imo->imo_head, imf); 2237 2238 imf_commit(imf); 2239 imf = NULL; 2240 2241 out_inp_locked: 2242 INP_WUNLOCK(inp); 2243 out_inp_unlocked: 2244 IN_MULTI_UNLOCK(); 2245 2246 if (is_new && imf) { 2247 if (imf->imf_inm != NULL) { 2248 IN_MULTI_LIST_LOCK(); 2249 inm_release_deferred(imf->imf_inm); 2250 IN_MULTI_LIST_UNLOCK(); 2251 } 2252 ip_mfilter_free(imf); 2253 } 2254 return (error); 2255 } 2256 2257 /* 2258 * Leave an IPv4 multicast group on an inpcb, possibly with a source. 2259 */ 2260 static int 2261 inp_leave_group(struct inpcb *inp, struct sockopt *sopt) 2262 { 2263 struct group_source_req gsr; 2264 struct ip_mreq_source mreqs; 2265 struct rm_priotracker in_ifa_tracker; 2266 sockunion_t *gsa, *ssa; 2267 struct ifnet *ifp; 2268 struct in_mfilter *imf; 2269 struct ip_moptions *imo; 2270 struct in_msource *ims; 2271 struct in_multi *inm; 2272 int error; 2273 bool is_final; 2274 2275 ifp = NULL; 2276 error = 0; 2277 is_final = true; 2278 2279 memset(&gsr, 0, sizeof(struct group_source_req)); 2280 gsa = (sockunion_t *)&gsr.gsr_group; 2281 gsa->ss.ss_family = AF_UNSPEC; 2282 ssa = (sockunion_t *)&gsr.gsr_source; 2283 ssa->ss.ss_family = AF_UNSPEC; 2284 2285 switch (sopt->sopt_name) { 2286 case IP_DROP_MEMBERSHIP: 2287 case IP_DROP_SOURCE_MEMBERSHIP: 2288 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { 2289 error = sooptcopyin(sopt, &mreqs, 2290 sizeof(struct ip_mreq), 2291 sizeof(struct ip_mreq)); 2292 /* 2293 * Swap interface and sourceaddr arguments, 2294 * as ip_mreq and ip_mreq_source are laid 2295 * out differently. 2296 */ 2297 mreqs.imr_interface = mreqs.imr_sourceaddr; 2298 mreqs.imr_sourceaddr.s_addr = INADDR_ANY; 2299 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2300 error = sooptcopyin(sopt, &mreqs, 2301 sizeof(struct ip_mreq_source), 2302 sizeof(struct ip_mreq_source)); 2303 } 2304 if (error) 2305 return (error); 2306 2307 gsa->sin.sin_family = AF_INET; 2308 gsa->sin.sin_len = sizeof(struct sockaddr_in); 2309 gsa->sin.sin_addr = mreqs.imr_multiaddr; 2310 2311 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { 2312 ssa->sin.sin_family = AF_INET; 2313 ssa->sin.sin_len = sizeof(struct sockaddr_in); 2314 ssa->sin.sin_addr = mreqs.imr_sourceaddr; 2315 } 2316 2317 /* 2318 * Attempt to look up hinted ifp from interface address. 2319 * Fallthrough with null ifp iff lookup fails, to 2320 * preserve 4.4BSD mcast API idempotence. 2321 * XXX NOTE WELL: The RFC 3678 API is preferred because 2322 * using an IPv4 address as a key is racy. 2323 */ 2324 if (!in_nullhost(mreqs.imr_interface)) { 2325 IN_IFADDR_RLOCK(&in_ifa_tracker); 2326 INADDR_TO_IFP(mreqs.imr_interface, ifp); 2327 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 2328 } 2329 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", 2330 __func__, ntohl(mreqs.imr_interface.s_addr), ifp); 2331 2332 break; 2333 2334 case MCAST_LEAVE_GROUP: 2335 case MCAST_LEAVE_SOURCE_GROUP: 2336 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2337 error = sooptcopyin(sopt, &gsr, 2338 sizeof(struct group_req), 2339 sizeof(struct group_req)); 2340 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2341 error = sooptcopyin(sopt, &gsr, 2342 sizeof(struct group_source_req), 2343 sizeof(struct group_source_req)); 2344 } 2345 if (error) 2346 return (error); 2347 2348 if (gsa->sin.sin_family != AF_INET || 2349 gsa->sin.sin_len != sizeof(struct sockaddr_in)) 2350 return (EINVAL); 2351 2352 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2353 if (ssa->sin.sin_family != AF_INET || 2354 ssa->sin.sin_len != sizeof(struct sockaddr_in)) 2355 return (EINVAL); 2356 } 2357 2358 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2359 return (EADDRNOTAVAIL); 2360 2361 ifp = ifnet_byindex(gsr.gsr_interface); 2362 2363 if (ifp == NULL) 2364 return (EADDRNOTAVAIL); 2365 break; 2366 2367 default: 2368 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", 2369 __func__, sopt->sopt_name); 2370 return (EOPNOTSUPP); 2371 break; 2372 } 2373 2374 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2375 return (EINVAL); 2376 2377 IN_MULTI_LOCK(); 2378 2379 /* 2380 * Find the membership in the membership list. 2381 */ 2382 imo = inp_findmoptions(inp); 2383 imf = imo_match_group(imo, ifp, &gsa->sa); 2384 if (imf == NULL) { 2385 error = EADDRNOTAVAIL; 2386 goto out_inp_locked; 2387 } 2388 inm = imf->imf_inm; 2389 2390 if (ssa->ss.ss_family != AF_UNSPEC) 2391 is_final = false; 2392 2393 /* 2394 * Begin state merge transaction at socket layer. 2395 */ 2396 INP_WLOCK_ASSERT(inp); 2397 2398 /* 2399 * If we were instructed only to leave a given source, do so. 2400 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2401 */ 2402 if (is_final) { 2403 ip_mfilter_remove(&imo->imo_head, imf); 2404 imf_leave(imf); 2405 } else { 2406 if (imf->imf_st[0] == MCAST_EXCLUDE) { 2407 error = EADDRNOTAVAIL; 2408 goto out_inp_locked; 2409 } 2410 ims = imo_match_source(imf, &ssa->sa); 2411 if (ims == NULL) { 2412 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", 2413 __func__, ntohl(ssa->sin.sin_addr.s_addr), "not "); 2414 error = EADDRNOTAVAIL; 2415 goto out_inp_locked; 2416 } 2417 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); 2418 error = imf_prune(imf, &ssa->sin); 2419 if (error) { 2420 CTR1(KTR_IGMPV3, "%s: merge imf state failed", 2421 __func__); 2422 goto out_inp_locked; 2423 } 2424 } 2425 2426 /* 2427 * Begin state merge transaction at IGMP layer. 2428 */ 2429 if (!is_final) { 2430 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2431 IN_MULTI_LIST_LOCK(); 2432 error = inm_merge(inm, imf); 2433 if (error) { 2434 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", 2435 __func__); 2436 IN_MULTI_LIST_UNLOCK(); 2437 imf_rollback(imf); 2438 imf_reap(imf); 2439 goto out_inp_locked; 2440 } 2441 2442 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2443 error = igmp_change_state(inm); 2444 IN_MULTI_LIST_UNLOCK(); 2445 if (error) { 2446 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", 2447 __func__); 2448 imf_rollback(imf); 2449 imf_reap(imf); 2450 goto out_inp_locked; 2451 } 2452 } 2453 imf_commit(imf); 2454 imf_reap(imf); 2455 2456 out_inp_locked: 2457 INP_WUNLOCK(inp); 2458 2459 if (is_final && imf) { 2460 /* 2461 * Give up the multicast address record to which 2462 * the membership points. 2463 */ 2464 (void) in_leavegroup_locked(imf->imf_inm, imf); 2465 ip_mfilter_free(imf); 2466 } 2467 2468 IN_MULTI_UNLOCK(); 2469 return (error); 2470 } 2471 2472 /* 2473 * Select the interface for transmitting IPv4 multicast datagrams. 2474 * 2475 * Either an instance of struct in_addr or an instance of struct ip_mreqn 2476 * may be passed to this socket option. An address of INADDR_ANY or an 2477 * interface index of 0 is used to remove a previous selection. 2478 * When no interface is selected, one is chosen for every send. 2479 */ 2480 static int 2481 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2482 { 2483 struct rm_priotracker in_ifa_tracker; 2484 struct in_addr addr; 2485 struct ip_mreqn mreqn; 2486 struct ifnet *ifp; 2487 struct ip_moptions *imo; 2488 int error; 2489 2490 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { 2491 /* 2492 * An interface index was specified using the 2493 * Linux-derived ip_mreqn structure. 2494 */ 2495 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), 2496 sizeof(struct ip_mreqn)); 2497 if (error) 2498 return (error); 2499 2500 if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) 2501 return (EINVAL); 2502 2503 if (mreqn.imr_ifindex == 0) { 2504 ifp = NULL; 2505 } else { 2506 ifp = ifnet_byindex(mreqn.imr_ifindex); 2507 if (ifp == NULL) 2508 return (EADDRNOTAVAIL); 2509 } 2510 } else { 2511 /* 2512 * An interface was specified by IPv4 address. 2513 * This is the traditional BSD usage. 2514 */ 2515 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), 2516 sizeof(struct in_addr)); 2517 if (error) 2518 return (error); 2519 if (in_nullhost(addr)) { 2520 ifp = NULL; 2521 } else { 2522 IN_IFADDR_RLOCK(&in_ifa_tracker); 2523 INADDR_TO_IFP(addr, ifp); 2524 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 2525 if (ifp == NULL) 2526 return (EADDRNOTAVAIL); 2527 } 2528 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp, 2529 ntohl(addr.s_addr)); 2530 } 2531 2532 /* Reject interfaces which do not support multicast. */ 2533 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) 2534 return (EOPNOTSUPP); 2535 2536 imo = inp_findmoptions(inp); 2537 imo->imo_multicast_ifp = ifp; 2538 imo->imo_multicast_addr.s_addr = INADDR_ANY; 2539 INP_WUNLOCK(inp); 2540 2541 return (0); 2542 } 2543 2544 /* 2545 * Atomically set source filters on a socket for an IPv4 multicast group. 2546 * 2547 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2548 */ 2549 static int 2550 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2551 { 2552 struct __msfilterreq msfr; 2553 sockunion_t *gsa; 2554 struct ifnet *ifp; 2555 struct in_mfilter *imf; 2556 struct ip_moptions *imo; 2557 struct in_multi *inm; 2558 int error; 2559 2560 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2561 sizeof(struct __msfilterreq)); 2562 if (error) 2563 return (error); 2564 2565 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) 2566 return (ENOBUFS); 2567 2568 if ((msfr.msfr_fmode != MCAST_EXCLUDE && 2569 msfr.msfr_fmode != MCAST_INCLUDE)) 2570 return (EINVAL); 2571 2572 if (msfr.msfr_group.ss_family != AF_INET || 2573 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) 2574 return (EINVAL); 2575 2576 gsa = (sockunion_t *)&msfr.msfr_group; 2577 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) 2578 return (EINVAL); 2579 2580 gsa->sin.sin_port = 0; /* ignore port */ 2581 2582 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2583 return (EADDRNOTAVAIL); 2584 2585 ifp = ifnet_byindex(msfr.msfr_ifindex); 2586 if (ifp == NULL) 2587 return (EADDRNOTAVAIL); 2588 2589 IN_MULTI_LOCK(); 2590 2591 /* 2592 * Take the INP write lock. 2593 * Check if this socket is a member of this group. 2594 */ 2595 imo = inp_findmoptions(inp); 2596 imf = imo_match_group(imo, ifp, &gsa->sa); 2597 if (imf == NULL) { 2598 error = EADDRNOTAVAIL; 2599 goto out_inp_locked; 2600 } 2601 inm = imf->imf_inm; 2602 2603 /* 2604 * Begin state merge transaction at socket layer. 2605 */ 2606 INP_WLOCK_ASSERT(inp); 2607 2608 imf->imf_st[1] = msfr.msfr_fmode; 2609 2610 /* 2611 * Apply any new source filters, if present. 2612 * Make a copy of the user-space source vector so 2613 * that we may copy them with a single copyin. This 2614 * allows us to deal with page faults up-front. 2615 */ 2616 if (msfr.msfr_nsrcs > 0) { 2617 struct in_msource *lims; 2618 struct sockaddr_in *psin; 2619 struct sockaddr_storage *kss, *pkss; 2620 int i; 2621 2622 INP_WUNLOCK(inp); 2623 2624 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", 2625 __func__, (unsigned long)msfr.msfr_nsrcs); 2626 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2627 M_TEMP, M_WAITOK); 2628 error = copyin(msfr.msfr_srcs, kss, 2629 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2630 if (error) { 2631 free(kss, M_TEMP); 2632 return (error); 2633 } 2634 2635 INP_WLOCK(inp); 2636 2637 /* 2638 * Mark all source filters as UNDEFINED at t1. 2639 * Restore new group filter mode, as imf_leave() 2640 * will set it to INCLUDE. 2641 */ 2642 imf_leave(imf); 2643 imf->imf_st[1] = msfr.msfr_fmode; 2644 2645 /* 2646 * Update socket layer filters at t1, lazy-allocating 2647 * new entries. This saves a bunch of memory at the 2648 * cost of one RB_FIND() per source entry; duplicate 2649 * entries in the msfr_nsrcs vector are ignored. 2650 * If we encounter an error, rollback transaction. 2651 * 2652 * XXX This too could be replaced with a set-symmetric 2653 * difference like loop to avoid walking from root 2654 * every time, as the key space is common. 2655 */ 2656 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2657 psin = (struct sockaddr_in *)pkss; 2658 if (psin->sin_family != AF_INET) { 2659 error = EAFNOSUPPORT; 2660 break; 2661 } 2662 if (psin->sin_len != sizeof(struct sockaddr_in)) { 2663 error = EINVAL; 2664 break; 2665 } 2666 error = imf_get_source(imf, psin, &lims); 2667 if (error) 2668 break; 2669 lims->imsl_st[1] = imf->imf_st[1]; 2670 } 2671 free(kss, M_TEMP); 2672 } 2673 2674 if (error) 2675 goto out_imf_rollback; 2676 2677 INP_WLOCK_ASSERT(inp); 2678 2679 /* 2680 * Begin state merge transaction at IGMP layer. 2681 */ 2682 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); 2683 IN_MULTI_LIST_LOCK(); 2684 error = inm_merge(inm, imf); 2685 if (error) { 2686 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); 2687 IN_MULTI_LIST_UNLOCK(); 2688 goto out_imf_rollback; 2689 } 2690 2691 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); 2692 error = igmp_change_state(inm); 2693 IN_MULTI_LIST_UNLOCK(); 2694 if (error) 2695 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); 2696 2697 out_imf_rollback: 2698 if (error) 2699 imf_rollback(imf); 2700 else 2701 imf_commit(imf); 2702 2703 imf_reap(imf); 2704 2705 out_inp_locked: 2706 INP_WUNLOCK(inp); 2707 IN_MULTI_UNLOCK(); 2708 return (error); 2709 } 2710 2711 /* 2712 * Set the IP multicast options in response to user setsockopt(). 2713 * 2714 * Many of the socket options handled in this function duplicate the 2715 * functionality of socket options in the regular unicast API. However, 2716 * it is not possible to merge the duplicate code, because the idempotence 2717 * of the IPv4 multicast part of the BSD Sockets API must be preserved; 2718 * the effects of these options must be treated as separate and distinct. 2719 * 2720 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2721 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING 2722 * is refactored to no longer use vifs. 2723 */ 2724 int 2725 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2726 { 2727 struct ip_moptions *imo; 2728 int error; 2729 2730 error = 0; 2731 2732 /* 2733 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2734 * or is a divert socket, reject it. 2735 */ 2736 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2737 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2738 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2739 return (EOPNOTSUPP); 2740 2741 switch (sopt->sopt_name) { 2742 case IP_MULTICAST_VIF: { 2743 int vifi; 2744 /* 2745 * Select a multicast VIF for transmission. 2746 * Only useful if multicast forwarding is active. 2747 */ 2748 if (legal_vif_num == NULL) { 2749 error = EOPNOTSUPP; 2750 break; 2751 } 2752 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); 2753 if (error) 2754 break; 2755 if (!legal_vif_num(vifi) && (vifi != -1)) { 2756 error = EINVAL; 2757 break; 2758 } 2759 imo = inp_findmoptions(inp); 2760 imo->imo_multicast_vif = vifi; 2761 INP_WUNLOCK(inp); 2762 break; 2763 } 2764 2765 case IP_MULTICAST_IF: 2766 error = inp_set_multicast_if(inp, sopt); 2767 break; 2768 2769 case IP_MULTICAST_TTL: { 2770 u_char ttl; 2771 2772 /* 2773 * Set the IP time-to-live for outgoing multicast packets. 2774 * The original multicast API required a char argument, 2775 * which is inconsistent with the rest of the socket API. 2776 * We allow either a char or an int. 2777 */ 2778 if (sopt->sopt_valsize == sizeof(u_char)) { 2779 error = sooptcopyin(sopt, &ttl, sizeof(u_char), 2780 sizeof(u_char)); 2781 if (error) 2782 break; 2783 } else { 2784 u_int ittl; 2785 2786 error = sooptcopyin(sopt, &ittl, sizeof(u_int), 2787 sizeof(u_int)); 2788 if (error) 2789 break; 2790 if (ittl > 255) { 2791 error = EINVAL; 2792 break; 2793 } 2794 ttl = (u_char)ittl; 2795 } 2796 imo = inp_findmoptions(inp); 2797 imo->imo_multicast_ttl = ttl; 2798 INP_WUNLOCK(inp); 2799 break; 2800 } 2801 2802 case IP_MULTICAST_LOOP: { 2803 u_char loop; 2804 2805 /* 2806 * Set the loopback flag for outgoing multicast packets. 2807 * Must be zero or one. The original multicast API required a 2808 * char argument, which is inconsistent with the rest 2809 * of the socket API. We allow either a char or an int. 2810 */ 2811 if (sopt->sopt_valsize == sizeof(u_char)) { 2812 error = sooptcopyin(sopt, &loop, sizeof(u_char), 2813 sizeof(u_char)); 2814 if (error) 2815 break; 2816 } else { 2817 u_int iloop; 2818 2819 error = sooptcopyin(sopt, &iloop, sizeof(u_int), 2820 sizeof(u_int)); 2821 if (error) 2822 break; 2823 loop = (u_char)iloop; 2824 } 2825 imo = inp_findmoptions(inp); 2826 imo->imo_multicast_loop = !!loop; 2827 INP_WUNLOCK(inp); 2828 break; 2829 } 2830 2831 case IP_ADD_MEMBERSHIP: 2832 case IP_ADD_SOURCE_MEMBERSHIP: 2833 case MCAST_JOIN_GROUP: 2834 case MCAST_JOIN_SOURCE_GROUP: 2835 error = inp_join_group(inp, sopt); 2836 break; 2837 2838 case IP_DROP_MEMBERSHIP: 2839 case IP_DROP_SOURCE_MEMBERSHIP: 2840 case MCAST_LEAVE_GROUP: 2841 case MCAST_LEAVE_SOURCE_GROUP: 2842 error = inp_leave_group(inp, sopt); 2843 break; 2844 2845 case IP_BLOCK_SOURCE: 2846 case IP_UNBLOCK_SOURCE: 2847 case MCAST_BLOCK_SOURCE: 2848 case MCAST_UNBLOCK_SOURCE: 2849 error = inp_block_unblock_source(inp, sopt); 2850 break; 2851 2852 case IP_MSFILTER: 2853 error = inp_set_source_filters(inp, sopt); 2854 break; 2855 2856 default: 2857 error = EOPNOTSUPP; 2858 break; 2859 } 2860 2861 INP_UNLOCK_ASSERT(inp); 2862 2863 return (error); 2864 } 2865 2866 /* 2867 * Expose IGMP's multicast filter mode and source list(s) to userland, 2868 * keyed by (ifindex, group). 2869 * The filter mode is written out as a uint32_t, followed by 2870 * 0..n of struct in_addr. 2871 * For use by ifmcstat(8). 2872 * SMPng: NOTE: unlocked read of ifindex space. 2873 */ 2874 static int 2875 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) 2876 { 2877 struct in_addr src, group; 2878 struct epoch_tracker et; 2879 struct ifnet *ifp; 2880 struct ifmultiaddr *ifma; 2881 struct in_multi *inm; 2882 struct ip_msource *ims; 2883 int *name; 2884 int retval; 2885 u_int namelen; 2886 uint32_t fmode, ifindex; 2887 2888 name = (int *)arg1; 2889 namelen = arg2; 2890 2891 if (req->newptr != NULL) 2892 return (EPERM); 2893 2894 if (namelen != 2) 2895 return (EINVAL); 2896 2897 ifindex = name[0]; 2898 if (ifindex <= 0 || ifindex > V_if_index) { 2899 CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", 2900 __func__, ifindex); 2901 return (ENOENT); 2902 } 2903 2904 group.s_addr = name[1]; 2905 if (!IN_MULTICAST(ntohl(group.s_addr))) { 2906 CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast", 2907 __func__, ntohl(group.s_addr)); 2908 return (EINVAL); 2909 } 2910 2911 ifp = ifnet_byindex(ifindex); 2912 if (ifp == NULL) { 2913 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", 2914 __func__, ifindex); 2915 return (ENOENT); 2916 } 2917 2918 retval = sysctl_wire_old_buffer(req, 2919 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); 2920 if (retval) 2921 return (retval); 2922 2923 IN_MULTI_LIST_LOCK(); 2924 2925 NET_EPOCH_ENTER(et); 2926 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2927 if (ifma->ifma_addr->sa_family != AF_INET || 2928 ifma->ifma_protospec == NULL) 2929 continue; 2930 inm = (struct in_multi *)ifma->ifma_protospec; 2931 if (!in_hosteq(inm->inm_addr, group)) 2932 continue; 2933 fmode = inm->inm_st[1].iss_fmode; 2934 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2935 if (retval != 0) 2936 break; 2937 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { 2938 CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, 2939 ims->ims_haddr); 2940 /* 2941 * Only copy-out sources which are in-mode. 2942 */ 2943 if (fmode != ims_get_mode(inm, ims, 1)) { 2944 CTR1(KTR_IGMPV3, "%s: skip non-in-mode", 2945 __func__); 2946 continue; 2947 } 2948 src.s_addr = htonl(ims->ims_haddr); 2949 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); 2950 if (retval != 0) 2951 break; 2952 } 2953 } 2954 NET_EPOCH_EXIT(et); 2955 2956 IN_MULTI_LIST_UNLOCK(); 2957 2958 return (retval); 2959 } 2960 2961 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3) 2962 2963 static const char *inm_modestrs[] = { 2964 [MCAST_UNDEFINED] = "un", 2965 [MCAST_INCLUDE] = "in", 2966 [MCAST_EXCLUDE] = "ex", 2967 }; 2968 _Static_assert(MCAST_UNDEFINED == 0 && 2969 MCAST_EXCLUDE + 1 == nitems(inm_modestrs), 2970 "inm_modestrs: no longer matches #defines"); 2971 2972 static const char * 2973 inm_mode_str(const int mode) 2974 { 2975 2976 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2977 return (inm_modestrs[mode]); 2978 return ("??"); 2979 } 2980 2981 static const char *inm_statestrs[] = { 2982 [IGMP_NOT_MEMBER] = "not-member", 2983 [IGMP_SILENT_MEMBER] = "silent", 2984 [IGMP_REPORTING_MEMBER] = "reporting", 2985 [IGMP_IDLE_MEMBER] = "idle", 2986 [IGMP_LAZY_MEMBER] = "lazy", 2987 [IGMP_SLEEPING_MEMBER] = "sleeping", 2988 [IGMP_AWAKENING_MEMBER] = "awakening", 2989 [IGMP_G_QUERY_PENDING_MEMBER] = "query-pending", 2990 [IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending", 2991 [IGMP_LEAVING_MEMBER] = "leaving", 2992 }; 2993 _Static_assert(IGMP_NOT_MEMBER == 0 && 2994 IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs), 2995 "inm_statetrs: no longer matches #defines"); 2996 2997 static const char * 2998 inm_state_str(const int state) 2999 { 3000 3001 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) 3002 return (inm_statestrs[state]); 3003 return ("??"); 3004 } 3005 3006 /* 3007 * Dump an in_multi structure to the console. 3008 */ 3009 void 3010 inm_print(const struct in_multi *inm) 3011 { 3012 int t; 3013 char addrbuf[INET_ADDRSTRLEN]; 3014 3015 if ((ktr_mask & KTR_IGMPV3) == 0) 3016 return; 3017 3018 printf("%s: --- begin inm %p ---\n", __func__, inm); 3019 printf("addr %s ifp %p(%s) ifma %p\n", 3020 inet_ntoa_r(inm->inm_addr, addrbuf), 3021 inm->inm_ifp, 3022 inm->inm_ifp->if_xname, 3023 inm->inm_ifma); 3024 printf("timer %u state %s refcount %u scq.len %u\n", 3025 inm->inm_timer, 3026 inm_state_str(inm->inm_state), 3027 inm->inm_refcount, 3028 inm->inm_scq.mq_len); 3029 printf("igi %p nsrc %lu sctimer %u scrv %u\n", 3030 inm->inm_igi, 3031 inm->inm_nsrc, 3032 inm->inm_sctimer, 3033 inm->inm_scrv); 3034 for (t = 0; t < 2; t++) { 3035 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 3036 inm_mode_str(inm->inm_st[t].iss_fmode), 3037 inm->inm_st[t].iss_asm, 3038 inm->inm_st[t].iss_ex, 3039 inm->inm_st[t].iss_in, 3040 inm->inm_st[t].iss_rec); 3041 } 3042 printf("%s: --- end inm %p ---\n", __func__, inm); 3043 } 3044 3045 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */ 3046 3047 void 3048 inm_print(const struct in_multi *inm) 3049 { 3050 3051 } 3052 3053 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */ 3054 3055 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); 3056