1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012-2021 Marko Zec 5 * Copyright (c) 2005, 2018 University of Zagreb 6 * Copyright (c) 2005 International Computer Science Institute 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * An implementation of DXR, a simple IPv4 LPM scheme with compact lookup 32 * structures and a trivial search procedure. More significant bits of 33 * the search key are used to directly index a two-stage trie, while the 34 * remaining bits are used for finding the next hop in a sorted array. 35 * More details in: 36 * 37 * M. Zec, L. Rizzo, M. Mikuc, DXR: towards a billion routing lookups per 38 * second in software, ACM SIGCOMM Computer Communication Review, September 39 * 2012 40 * 41 * M. Zec, M. Mikuc, Pushing the envelope: beyond two billion IP routing 42 * lookups per second on commodity CPUs, IEEE SoftCOM, September 2017, Split 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_inet.h" 49 50 #include <sys/param.h> 51 #include <sys/kernel.h> 52 #include <sys/epoch.h> 53 #include <sys/malloc.h> 54 #include <sys/module.h> 55 #include <sys/socket.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 59 #include <vm/uma.h> 60 61 #include <netinet/in.h> 62 #include <netinet/in_fib.h> 63 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/fib_algo.h> 67 68 #define DXR_TRIE_BITS 20 69 70 CTASSERT(DXR_TRIE_BITS >= 16 && DXR_TRIE_BITS <= 24); 71 72 /* DXR2: two-stage primary trie, instead of a single direct lookup table */ 73 #define DXR2 74 75 #if DXR_TRIE_BITS > 16 76 #define DXR_D 16 77 #else 78 #define DXR_D (DXR_TRIE_BITS - 1) 79 #endif 80 #define DXR_X (DXR_TRIE_BITS - DXR_D) 81 82 #define D_TBL_SIZE (1 << DXR_D) 83 #define DIRECT_TBL_SIZE (1 << DXR_TRIE_BITS) 84 #define DXR_RANGE_MASK (0xffffffffU >> DXR_TRIE_BITS) 85 #define DXR_RANGE_SHIFT (32 - DXR_TRIE_BITS) 86 87 #define DESC_BASE_BITS 22 88 #define DESC_FRAGMENTS_BITS (32 - DESC_BASE_BITS) 89 #define BASE_MAX ((1 << DESC_BASE_BITS) - 1) 90 #define RTBL_SIZE_INCR (BASE_MAX / 64) 91 92 #if DXR_TRIE_BITS < 24 93 #define FRAGS_MASK_SHORT ((1 << (23 - DXR_TRIE_BITS)) - 1) 94 #else 95 #define FRAGS_MASK_SHORT 0 96 #endif 97 #define FRAGS_PREF_SHORT (((1 << DESC_FRAGMENTS_BITS) - 1) & \ 98 ~FRAGS_MASK_SHORT) 99 #define FRAGS_MARK_XL (FRAGS_PREF_SHORT - 1) 100 #define FRAGS_MARK_HIT (FRAGS_PREF_SHORT - 2) 101 102 #define IS_SHORT_FORMAT(x) ((x & FRAGS_PREF_SHORT) == FRAGS_PREF_SHORT) 103 #define IS_LONG_FORMAT(x) ((x & FRAGS_PREF_SHORT) != FRAGS_PREF_SHORT) 104 #define IS_XL_FORMAT(x) (x == FRAGS_MARK_XL) 105 106 #define RE_SHORT_MAX_NH ((1 << (DXR_TRIE_BITS - 8)) - 1) 107 108 #define CHUNK_HASH_BITS 16 109 #define CHUNK_HASH_SIZE (1 << CHUNK_HASH_BITS) 110 #define CHUNK_HASH_MASK (CHUNK_HASH_SIZE - 1) 111 112 #define TRIE_HASH_BITS 16 113 #define TRIE_HASH_SIZE (1 << TRIE_HASH_BITS) 114 #define TRIE_HASH_MASK (TRIE_HASH_SIZE - 1) 115 116 #define XTBL_SIZE_INCR (DIRECT_TBL_SIZE / 16) 117 118 /* Lookup structure elements */ 119 120 struct direct_entry { 121 uint32_t fragments: DESC_FRAGMENTS_BITS, 122 base: DESC_BASE_BITS; 123 }; 124 125 struct range_entry_long { 126 uint32_t start: DXR_RANGE_SHIFT, 127 nexthop: DXR_TRIE_BITS; 128 }; 129 130 #if DXR_TRIE_BITS < 24 131 struct range_entry_short { 132 uint16_t start: DXR_RANGE_SHIFT - 8, 133 nexthop: DXR_TRIE_BITS - 8; 134 }; 135 #endif 136 137 /* Auxiliary structures */ 138 139 struct heap_entry { 140 uint32_t start; 141 uint32_t end; 142 uint32_t preflen; 143 uint32_t nexthop; 144 }; 145 146 struct chunk_desc { 147 LIST_ENTRY(chunk_desc) cd_all_le; 148 LIST_ENTRY(chunk_desc) cd_hash_le; 149 uint32_t cd_hash; 150 uint32_t cd_refcnt; 151 uint32_t cd_base; 152 uint32_t cd_cur_size; 153 uint32_t cd_max_size; 154 }; 155 156 struct trie_desc { 157 LIST_ENTRY(trie_desc) td_all_le; 158 LIST_ENTRY(trie_desc) td_hash_le; 159 uint32_t td_hash; 160 uint32_t td_index; 161 uint32_t td_refcnt; 162 }; 163 164 struct dxr_aux { 165 /* Glue to external state */ 166 struct fib_data *fd; 167 uint32_t fibnum; 168 int refcnt; 169 170 /* Auxiliary build-time tables */ 171 struct direct_entry direct_tbl[DIRECT_TBL_SIZE]; 172 uint16_t d_tbl[D_TBL_SIZE]; 173 struct direct_entry *x_tbl; 174 union { 175 struct range_entry_long re; 176 uint32_t fragments; 177 } *range_tbl; 178 179 /* Auxiliary internal state */ 180 uint32_t updates_mask[DIRECT_TBL_SIZE / 32]; 181 struct trie_desc *trietbl[D_TBL_SIZE]; 182 LIST_HEAD(, chunk_desc) chunk_hashtbl[CHUNK_HASH_SIZE]; 183 LIST_HEAD(, chunk_desc) all_chunks; 184 LIST_HEAD(, chunk_desc) unused_chunks; /* abuses hash link entry */ 185 LIST_HEAD(, trie_desc) trie_hashtbl[TRIE_HASH_SIZE]; 186 LIST_HEAD(, trie_desc) all_trie; 187 LIST_HEAD(, trie_desc) unused_trie; /* abuses hash link entry */ 188 struct sockaddr_in dst; 189 struct sockaddr_in mask; 190 struct heap_entry heap[33]; 191 uint32_t prefixes; 192 uint32_t updates_low; 193 uint32_t updates_high; 194 uint32_t all_chunks_cnt; 195 uint32_t unused_chunks_cnt; 196 uint32_t xtbl_size; 197 uint32_t all_trie_cnt; 198 uint32_t unused_trie_cnt; 199 uint32_t trie_rebuilt_prefixes; 200 uint32_t heap_index; 201 uint32_t d_bits; 202 uint32_t rtbl_size; 203 uint32_t rtbl_top; 204 uint32_t rtbl_work_frags; 205 uint32_t work_chunk; 206 }; 207 208 /* Main lookup structure container */ 209 210 struct dxr { 211 /* Lookup tables */ 212 uint16_t d_shift; 213 uint16_t x_shift; 214 uint32_t x_mask; 215 void *d; 216 void *x; 217 void *r; 218 struct nhop_object **nh_tbl; 219 220 /* Glue to external state */ 221 struct dxr_aux *aux; 222 struct fib_data *fd; 223 struct epoch_context epoch_ctx; 224 uint32_t fibnum; 225 }; 226 227 static MALLOC_DEFINE(M_DXRLPM, "dxr", "DXR LPM"); 228 static MALLOC_DEFINE(M_DXRAUX, "dxr aux", "DXR auxiliary"); 229 230 uma_zone_t chunk_zone; 231 uma_zone_t trie_zone; 232 233 SYSCTL_DECL(_net_route_algo); 234 SYSCTL_NODE(_net_route_algo, OID_AUTO, dxr, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 235 "DXR tunables"); 236 237 VNET_DEFINE_STATIC(int, max_trie_holes) = 8; 238 #define V_max_trie_holes VNET(max_trie_holes) 239 SYSCTL_INT(_net_route_algo_dxr, OID_AUTO, max_trie_holes, 240 CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(max_trie_holes), 0, 241 "Trie fragmentation threshold before triggering a full rebuild"); 242 243 VNET_DEFINE_STATIC(int, max_range_holes) = 16; 244 #define V_max_range_holes VNET(max_range_holes) 245 SYSCTL_INT(_net_route_algo_dxr, OID_AUTO, max_range_holes, 246 CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(max_range_holes), 0, 247 "Range table fragmentation threshold before triggering a full rebuild"); 248 249 /* Binary search for a matching address range */ 250 #define DXR_LOOKUP_STAGE \ 251 if (masked_dst < range[middle].start) { \ 252 upperbound = middle; \ 253 middle = (middle + lowerbound) / 2; \ 254 } else if (masked_dst < range[middle + 1].start) \ 255 return (range[middle].nexthop); \ 256 else { \ 257 lowerbound = middle + 1; \ 258 middle = (upperbound + middle + 1) / 2; \ 259 } \ 260 if (upperbound == lowerbound) \ 261 return (range[lowerbound].nexthop); 262 263 static int 264 dxr_lookup(struct dxr *dxr, uint32_t dst) 265 { 266 #ifdef DXR2 267 uint16_t *dt = dxr->d; 268 struct direct_entry *xt = dxr->x; 269 int xi; 270 #else 271 struct direct_entry *dt = dxr->d; 272 #endif 273 struct direct_entry de; 274 struct range_entry_long *rt; 275 uint32_t base; 276 uint32_t upperbound; 277 uint32_t middle; 278 uint32_t lowerbound; 279 uint32_t masked_dst; 280 281 #ifdef DXR2 282 xi = (dt[dst >> dxr->d_shift] << dxr->x_shift) + 283 ((dst >> DXR_RANGE_SHIFT) & dxr->x_mask); 284 de = xt[xi]; 285 #else 286 de = dt[dst >> DXR_RANGE_SHIFT]; 287 #endif 288 289 if (__predict_true(de.fragments == FRAGS_MARK_HIT)) 290 return (de.base); 291 292 rt = dxr->r; 293 base = de.base; 294 lowerbound = 0; 295 masked_dst = dst & DXR_RANGE_MASK; 296 297 #if DXR_TRIE_BITS < 24 298 if (__predict_true(IS_SHORT_FORMAT(de.fragments))) { 299 upperbound = de.fragments & FRAGS_MASK_SHORT; 300 struct range_entry_short *range = 301 (struct range_entry_short *) &rt[base]; 302 303 masked_dst >>= 8; 304 middle = upperbound; 305 upperbound = upperbound * 2 + 1; 306 307 for (;;) { 308 DXR_LOOKUP_STAGE 309 DXR_LOOKUP_STAGE 310 } 311 } 312 #endif 313 314 upperbound = de.fragments; 315 middle = upperbound / 2; 316 struct range_entry_long *range = &rt[base]; 317 if (__predict_false(IS_XL_FORMAT(de.fragments))) { 318 upperbound = *((uint32_t *) range); 319 range++; 320 middle = upperbound / 2; 321 } 322 323 for (;;) { 324 DXR_LOOKUP_STAGE 325 DXR_LOOKUP_STAGE 326 } 327 } 328 329 static void 330 initheap(struct dxr_aux *da, uint32_t dst_u32, uint32_t chunk) 331 { 332 struct heap_entry *fhp = &da->heap[0]; 333 struct rtentry *rt; 334 struct route_nhop_data rnd; 335 336 da->heap_index = 0; 337 da->dst.sin_addr.s_addr = htonl(dst_u32); 338 rt = fib4_lookup_rt(da->fibnum, da->dst.sin_addr, 0, NHR_UNLOCKED, 339 &rnd); 340 if (rt != NULL) { 341 struct in_addr addr; 342 uint32_t scopeid; 343 344 rt_get_inet_prefix_plen(rt, &addr, &fhp->preflen, &scopeid); 345 fhp->start = ntohl(addr.s_addr); 346 fhp->end = fhp->start; 347 if (fhp->preflen < 32) 348 fhp->end |= (0xffffffffU >> fhp->preflen); 349 fhp->nexthop = fib_get_nhop_idx(da->fd, rnd.rnd_nhop); 350 } else { 351 fhp->preflen = fhp->nexthop = fhp->start = 0; 352 fhp->end = 0xffffffffU; 353 } 354 } 355 356 static uint32_t 357 chunk_size(struct dxr_aux *da, struct direct_entry *fdesc) 358 { 359 360 if (IS_SHORT_FORMAT(fdesc->fragments)) 361 return ((fdesc->fragments & FRAGS_MASK_SHORT) + 1); 362 else if (IS_XL_FORMAT(fdesc->fragments)) 363 return (da->range_tbl[fdesc->base].fragments + 2); 364 else /* if (IS_LONG_FORMAT(fdesc->fragments)) */ 365 return (fdesc->fragments + 1); 366 } 367 368 static uint32_t 369 chunk_hash(struct dxr_aux *da, struct direct_entry *fdesc) 370 { 371 uint32_t size = chunk_size(da, fdesc); 372 uint32_t *p = (uint32_t *) &da->range_tbl[fdesc->base]; 373 uint32_t *l = (uint32_t *) &da->range_tbl[fdesc->base + size]; 374 uint32_t hash = fdesc->fragments; 375 376 for (; p < l; p++) 377 hash = (hash << 7) + (hash >> 13) + *p; 378 379 return (hash + (hash >> 16)); 380 } 381 382 static int 383 chunk_ref(struct dxr_aux *da, uint32_t chunk) 384 { 385 struct direct_entry *fdesc = &da->direct_tbl[chunk]; 386 struct chunk_desc *cdp, *empty_cdp; 387 uint32_t base = fdesc->base; 388 uint32_t size = chunk_size(da, fdesc); 389 uint32_t hash = chunk_hash(da, fdesc); 390 391 /* Find an existing descriptor */ 392 LIST_FOREACH(cdp, &da->chunk_hashtbl[hash & CHUNK_HASH_MASK], 393 cd_hash_le) { 394 if (cdp->cd_hash != hash || cdp->cd_cur_size != size || 395 memcmp(&da->range_tbl[base], &da->range_tbl[cdp->cd_base], 396 sizeof(struct range_entry_long) * size)) 397 continue; 398 da->rtbl_top = fdesc->base; 399 fdesc->base = cdp->cd_base; 400 cdp->cd_refcnt++; 401 return (0); 402 } 403 404 /* No matching chunks found. Recycle an empty or allocate a new one */ 405 cdp = NULL; 406 LIST_FOREACH(empty_cdp, &da->unused_chunks, cd_hash_le) 407 if (empty_cdp->cd_max_size >= size && (cdp == NULL || 408 empty_cdp->cd_max_size < cdp->cd_max_size)) { 409 cdp = empty_cdp; 410 if (empty_cdp->cd_max_size == size) 411 break; 412 } 413 414 if (cdp != NULL) { 415 /* Copy from heap into the recycled chunk */ 416 bcopy(&da->range_tbl[fdesc->base], &da->range_tbl[cdp->cd_base], 417 size * sizeof(struct range_entry_long)); 418 fdesc->base = cdp->cd_base; 419 da->rtbl_top -= size; 420 da->unused_chunks_cnt--; 421 if (cdp->cd_max_size > size + 1) { 422 /* Split the range in two, need a new descriptor */ 423 empty_cdp = uma_zalloc(chunk_zone, M_NOWAIT); 424 if (empty_cdp == NULL) 425 return (1); 426 empty_cdp->cd_max_size = cdp->cd_max_size - size; 427 empty_cdp->cd_base = cdp->cd_base + size; 428 LIST_INSERT_AFTER(cdp, empty_cdp, cd_all_le); 429 LIST_INSERT_AFTER(cdp, empty_cdp, cd_hash_le); 430 da->all_chunks_cnt++; 431 da->unused_chunks_cnt++; 432 cdp->cd_max_size = size; 433 } 434 LIST_REMOVE(cdp, cd_hash_le); 435 } else { 436 /* Alloc a new descriptor */ 437 cdp = uma_zalloc(chunk_zone, M_NOWAIT); 438 if (cdp == NULL) 439 return (1); 440 cdp->cd_max_size = size; 441 cdp->cd_base = fdesc->base; 442 LIST_INSERT_HEAD(&da->all_chunks, cdp, cd_all_le); 443 da->all_chunks_cnt++; 444 } 445 446 cdp->cd_hash = hash; 447 cdp->cd_refcnt = 1; 448 cdp->cd_cur_size = size; 449 LIST_INSERT_HEAD(&da->chunk_hashtbl[hash & CHUNK_HASH_MASK], cdp, 450 cd_hash_le); 451 if (da->rtbl_top >= da->rtbl_size) { 452 if (da->rtbl_top >= BASE_MAX) { 453 FIB_PRINTF(LOG_ERR, da->fd, 454 "structural limit exceeded at %d " 455 "range table elements", da->rtbl_top); 456 return (1); 457 } 458 da->rtbl_size += RTBL_SIZE_INCR; 459 if (da->rtbl_top >= BASE_MAX / 4) 460 FIB_PRINTF(LOG_WARNING, da->fd, "range table at %d%%", 461 da->rtbl_top * 100 / BASE_MAX); 462 da->range_tbl = realloc(da->range_tbl, 463 sizeof(*da->range_tbl) * da->rtbl_size + FRAGS_PREF_SHORT, 464 M_DXRAUX, M_NOWAIT); 465 if (da->range_tbl == NULL) 466 return (1); 467 } 468 469 return (0); 470 } 471 472 static void 473 chunk_unref(struct dxr_aux *da, uint32_t chunk) 474 { 475 struct direct_entry *fdesc = &da->direct_tbl[chunk]; 476 struct chunk_desc *cdp; 477 uint32_t base = fdesc->base; 478 uint32_t size = chunk_size(da, fdesc); 479 uint32_t hash = chunk_hash(da, fdesc); 480 481 /* Find an existing descriptor */ 482 LIST_FOREACH(cdp, &da->chunk_hashtbl[hash & CHUNK_HASH_MASK], 483 cd_hash_le) 484 if (cdp->cd_hash == hash && cdp->cd_cur_size == size && 485 memcmp(&da->range_tbl[base], &da->range_tbl[cdp->cd_base], 486 sizeof(struct range_entry_long) * size) == 0) 487 break; 488 489 KASSERT(cdp != NULL, ("dxr: dangling chunk")); 490 if (--cdp->cd_refcnt > 0) 491 return; 492 493 LIST_REMOVE(cdp, cd_hash_le); 494 da->unused_chunks_cnt++; 495 if (cdp->cd_base + cdp->cd_max_size != da->rtbl_top) { 496 LIST_INSERT_HEAD(&da->unused_chunks, cdp, cd_hash_le); 497 return; 498 } 499 500 do { 501 da->all_chunks_cnt--; 502 da->unused_chunks_cnt--; 503 da->rtbl_top -= cdp->cd_max_size; 504 LIST_REMOVE(cdp, cd_all_le); 505 uma_zfree(chunk_zone, cdp); 506 LIST_FOREACH(cdp, &da->unused_chunks, cd_hash_le) 507 if (cdp->cd_base + cdp->cd_max_size == da->rtbl_top) { 508 LIST_REMOVE(cdp, cd_hash_le); 509 break; 510 } 511 } while (cdp != NULL); 512 } 513 514 #ifdef DXR2 515 static uint32_t 516 trie_hash(struct dxr_aux *da, uint32_t dxr_x, uint32_t index) 517 { 518 uint32_t i, *val; 519 uint32_t hash = 0; 520 521 for (i = 0; i < (1 << dxr_x); i++) { 522 hash = (hash << 3) ^ (hash >> 3); 523 val = (uint32_t *) 524 (void *) &da->direct_tbl[(index << dxr_x) + i]; 525 hash += (*val << 5); 526 hash += (*val >> 5); 527 } 528 529 return (hash + (hash >> 16)); 530 } 531 532 static int 533 trie_ref(struct dxr_aux *da, uint32_t index) 534 { 535 struct trie_desc *tp; 536 uint32_t dxr_d = da->d_bits; 537 uint32_t dxr_x = DXR_TRIE_BITS - dxr_d; 538 uint32_t hash = trie_hash(da, dxr_x, index); 539 540 /* Find an existing descriptor */ 541 LIST_FOREACH(tp, &da->trie_hashtbl[hash & TRIE_HASH_MASK], td_hash_le) 542 if (tp->td_hash == hash && 543 memcmp(&da->direct_tbl[index << dxr_x], 544 &da->x_tbl[tp->td_index << dxr_x], 545 sizeof(*da->x_tbl) << dxr_x) == 0) { 546 tp->td_refcnt++; 547 da->trietbl[index] = tp; 548 return(tp->td_index); 549 } 550 551 tp = LIST_FIRST(&da->unused_trie); 552 if (tp != NULL) { 553 LIST_REMOVE(tp, td_hash_le); 554 da->unused_trie_cnt--; 555 } else { 556 tp = uma_zalloc(trie_zone, M_NOWAIT); 557 if (tp == NULL) 558 return (-1); 559 LIST_INSERT_HEAD(&da->all_trie, tp, td_all_le); 560 tp->td_index = da->all_trie_cnt++; 561 } 562 563 tp->td_hash = hash; 564 tp->td_refcnt = 1; 565 LIST_INSERT_HEAD(&da->trie_hashtbl[hash & TRIE_HASH_MASK], tp, 566 td_hash_le); 567 memcpy(&da->x_tbl[tp->td_index << dxr_x], 568 &da->direct_tbl[index << dxr_x], sizeof(*da->x_tbl) << dxr_x); 569 da->trietbl[index] = tp; 570 if (da->all_trie_cnt >= da->xtbl_size >> dxr_x) { 571 da->xtbl_size += XTBL_SIZE_INCR; 572 da->x_tbl = realloc(da->x_tbl, 573 sizeof(*da->x_tbl) * da->xtbl_size, M_DXRAUX, M_NOWAIT); 574 if (da->x_tbl == NULL) 575 return (-1); 576 } 577 return(tp->td_index); 578 } 579 580 static void 581 trie_unref(struct dxr_aux *da, uint32_t index) 582 { 583 struct trie_desc *tp = da->trietbl[index]; 584 585 if (tp == NULL) 586 return; 587 da->trietbl[index] = NULL; 588 if (--tp->td_refcnt > 0) 589 return; 590 591 LIST_REMOVE(tp, td_hash_le); 592 da->unused_trie_cnt++; 593 if (tp->td_index != da->all_trie_cnt - 1) { 594 LIST_INSERT_HEAD(&da->unused_trie, tp, td_hash_le); 595 return; 596 } 597 598 do { 599 da->all_trie_cnt--; 600 da->unused_trie_cnt--; 601 LIST_REMOVE(tp, td_all_le); 602 uma_zfree(trie_zone, tp); 603 LIST_FOREACH(tp, &da->unused_trie, td_hash_le) 604 if (tp->td_index == da->all_trie_cnt - 1) { 605 LIST_REMOVE(tp, td_hash_le); 606 break; 607 } 608 } while (tp != NULL); 609 } 610 #endif 611 612 static void 613 heap_inject(struct dxr_aux *da, uint32_t start, uint32_t end, uint32_t preflen, 614 uint32_t nh) 615 { 616 struct heap_entry *fhp; 617 int i; 618 619 for (i = da->heap_index; i >= 0; i--) { 620 if (preflen > da->heap[i].preflen) 621 break; 622 else if (preflen < da->heap[i].preflen) 623 da->heap[i + 1] = da->heap[i]; 624 else 625 return; 626 } 627 628 fhp = &da->heap[i + 1]; 629 fhp->preflen = preflen; 630 fhp->start = start; 631 fhp->end = end; 632 fhp->nexthop = nh; 633 da->heap_index++; 634 } 635 636 static int 637 dxr_walk(struct rtentry *rt, void *arg) 638 { 639 struct dxr_aux *da = arg; 640 uint32_t chunk = da->work_chunk; 641 uint32_t first = chunk << DXR_RANGE_SHIFT; 642 uint32_t last = first | DXR_RANGE_MASK; 643 struct range_entry_long *fp = 644 &da->range_tbl[da->rtbl_top + da->rtbl_work_frags].re; 645 struct heap_entry *fhp = &da->heap[da->heap_index]; 646 uint32_t preflen, nh, start, end, scopeid; 647 struct in_addr addr; 648 649 rt_get_inet_prefix_plen(rt, &addr, &preflen, &scopeid); 650 start = ntohl(addr.s_addr); 651 if (start > last) 652 return (-1); /* Beyond chunk boundaries, we are done */ 653 if (start < first) 654 return (0); /* Skip this route */ 655 656 end = start; 657 if (preflen < 32) 658 end |= (0xffffffffU >> preflen); 659 nh = fib_get_nhop_idx(da->fd, rt_get_raw_nhop(rt)); 660 661 if (start == fhp->start) 662 heap_inject(da, start, end, preflen, nh); 663 else { 664 /* start > fhp->start */ 665 while (start > fhp->end) { 666 uint32_t oend = fhp->end; 667 668 if (da->heap_index > 0) { 669 fhp--; 670 da->heap_index--; 671 } else 672 initheap(da, fhp->end + 1, chunk); 673 if (fhp->end > oend && fhp->nexthop != fp->nexthop) { 674 fp++; 675 da->rtbl_work_frags++; 676 fp->start = (oend + 1) & DXR_RANGE_MASK; 677 fp->nexthop = fhp->nexthop; 678 } 679 } 680 if (start > ((chunk << DXR_RANGE_SHIFT) | fp->start) && 681 nh != fp->nexthop) { 682 fp++; 683 da->rtbl_work_frags++; 684 fp->start = start & DXR_RANGE_MASK; 685 } else if (da->rtbl_work_frags) { 686 if ((--fp)->nexthop == nh) 687 da->rtbl_work_frags--; 688 else 689 fp++; 690 } 691 fp->nexthop = nh; 692 heap_inject(da, start, end, preflen, nh); 693 } 694 695 return (0); 696 } 697 698 static int 699 update_chunk(struct dxr_aux *da, uint32_t chunk) 700 { 701 struct range_entry_long *fp; 702 #if DXR_TRIE_BITS < 24 703 struct range_entry_short *fps; 704 uint32_t start, nh, i; 705 #endif 706 struct heap_entry *fhp; 707 uint32_t first = chunk << DXR_RANGE_SHIFT; 708 uint32_t last = first | DXR_RANGE_MASK; 709 710 if (da->direct_tbl[chunk].fragments != FRAGS_MARK_HIT) 711 chunk_unref(da, chunk); 712 713 initheap(da, first, chunk); 714 715 fp = &da->range_tbl[da->rtbl_top].re; 716 da->rtbl_work_frags = 0; 717 fp->start = first & DXR_RANGE_MASK; 718 fp->nexthop = da->heap[0].nexthop; 719 720 da->dst.sin_addr.s_addr = htonl(first); 721 da->mask.sin_addr.s_addr = htonl(~DXR_RANGE_MASK); 722 723 da->work_chunk = chunk; 724 rib_walk_from(da->fibnum, AF_INET, RIB_FLAG_LOCKED, 725 (struct sockaddr *) &da->dst, (struct sockaddr *) &da->mask, 726 dxr_walk, da); 727 728 /* Flush any remaining objects on the heap */ 729 fp = &da->range_tbl[da->rtbl_top + da->rtbl_work_frags].re; 730 fhp = &da->heap[da->heap_index]; 731 while (fhp->preflen > DXR_TRIE_BITS) { 732 uint32_t oend = fhp->end; 733 734 if (da->heap_index > 0) { 735 fhp--; 736 da->heap_index--; 737 } else 738 initheap(da, fhp->end + 1, chunk); 739 if (fhp->end > oend && fhp->nexthop != fp->nexthop) { 740 /* Have we crossed the upper chunk boundary? */ 741 if (oend >= last) 742 break; 743 fp++; 744 da->rtbl_work_frags++; 745 fp->start = (oend + 1) & DXR_RANGE_MASK; 746 fp->nexthop = fhp->nexthop; 747 } 748 } 749 750 /* Direct hit if the chunk contains only a single fragment */ 751 if (da->rtbl_work_frags == 0) { 752 da->direct_tbl[chunk].base = fp->nexthop; 753 da->direct_tbl[chunk].fragments = FRAGS_MARK_HIT; 754 return (0); 755 } 756 757 da->direct_tbl[chunk].base = da->rtbl_top; 758 da->direct_tbl[chunk].fragments = da->rtbl_work_frags; 759 760 #if DXR_TRIE_BITS < 24 761 /* Check whether the chunk can be more compactly encoded */ 762 fp = &da->range_tbl[da->rtbl_top].re; 763 for (i = 0; i <= da->rtbl_work_frags; i++, fp++) 764 if ((fp->start & 0xff) != 0 || fp->nexthop > RE_SHORT_MAX_NH) 765 break; 766 if (i == da->rtbl_work_frags + 1) { 767 fp = &da->range_tbl[da->rtbl_top].re; 768 fps = (void *) fp; 769 for (i = 0; i <= da->rtbl_work_frags; i++, fp++, fps++) { 770 start = fp->start; 771 nh = fp->nexthop; 772 fps->start = start >> 8; 773 fps->nexthop = nh; 774 } 775 fps->start = start >> 8; 776 fps->nexthop = nh; 777 da->rtbl_work_frags >>= 1; 778 da->direct_tbl[chunk].fragments = 779 da->rtbl_work_frags | FRAGS_PREF_SHORT; 780 } else 781 #endif 782 if (da->rtbl_work_frags >= FRAGS_MARK_HIT) { 783 da->direct_tbl[chunk].fragments = FRAGS_MARK_XL; 784 memmove(&da->range_tbl[da->rtbl_top + 1], 785 &da->range_tbl[da->rtbl_top], 786 (da->rtbl_work_frags + 1) * sizeof(*da->range_tbl)); 787 da->range_tbl[da->rtbl_top].fragments = da->rtbl_work_frags; 788 da->rtbl_work_frags++; 789 } 790 da->rtbl_top += (da->rtbl_work_frags + 1); 791 return (chunk_ref(da, chunk)); 792 } 793 794 static void 795 dxr_build(struct dxr *dxr) 796 { 797 struct dxr_aux *da = dxr->aux; 798 struct chunk_desc *cdp; 799 struct rib_rtable_info rinfo; 800 struct timeval t0, t1, t2, t3; 801 uint32_t r_size, dxr_tot_size; 802 uint32_t i, m, range_rebuild = 0; 803 #ifdef DXR2 804 struct trie_desc *tp; 805 uint32_t d_tbl_size, dxr_x, d_size, x_size; 806 uint32_t ti, trie_rebuild = 0, prev_size = 0; 807 #endif 808 809 KASSERT(dxr->d == NULL, ("dxr: d not free")); 810 811 if (da == NULL) { 812 da = malloc(sizeof(*dxr->aux), M_DXRAUX, M_NOWAIT); 813 if (da == NULL) 814 return; 815 dxr->aux = da; 816 da->fibnum = dxr->fibnum; 817 da->refcnt = 1; 818 LIST_INIT(&da->all_chunks); 819 LIST_INIT(&da->all_trie); 820 da->rtbl_size = RTBL_SIZE_INCR; 821 da->range_tbl = NULL; 822 da->xtbl_size = XTBL_SIZE_INCR; 823 da->x_tbl = NULL; 824 bzero(&da->dst, sizeof(da->dst)); 825 bzero(&da->mask, sizeof(da->mask)); 826 da->dst.sin_len = sizeof(da->dst); 827 da->mask.sin_len = sizeof(da->mask); 828 da->dst.sin_family = AF_INET; 829 da->mask.sin_family = AF_INET; 830 } 831 if (da->range_tbl == NULL) { 832 da->range_tbl = malloc(sizeof(*da->range_tbl) * da->rtbl_size 833 + FRAGS_PREF_SHORT, M_DXRAUX, M_NOWAIT); 834 if (da->range_tbl == NULL) 835 return; 836 range_rebuild = 1; 837 } 838 #ifdef DXR2 839 if (da->x_tbl == NULL) { 840 da->x_tbl = malloc(sizeof(*da->x_tbl) * da->xtbl_size, 841 M_DXRAUX, M_NOWAIT); 842 if (da->x_tbl == NULL) 843 return; 844 trie_rebuild = 1; 845 } 846 #endif 847 da->fd = dxr->fd; 848 849 microuptime(&t0); 850 851 dxr->nh_tbl = fib_get_nhop_array(da->fd); 852 fib_get_rtable_info(fib_get_rh(da->fd), &rinfo); 853 854 if (da->updates_low > da->updates_high || 855 da->unused_chunks_cnt > V_max_range_holes) 856 range_rebuild = 1; 857 if (range_rebuild) { 858 /* Bulk cleanup */ 859 bzero(da->chunk_hashtbl, sizeof(da->chunk_hashtbl)); 860 while ((cdp = LIST_FIRST(&da->all_chunks)) != NULL) { 861 LIST_REMOVE(cdp, cd_all_le); 862 uma_zfree(chunk_zone, cdp); 863 } 864 LIST_INIT(&da->unused_chunks); 865 da->all_chunks_cnt = da->unused_chunks_cnt = 0; 866 da->rtbl_top = 0; 867 da->updates_low = 0; 868 da->updates_high = DIRECT_TBL_SIZE - 1; 869 memset(da->updates_mask, 0xff, sizeof(da->updates_mask)); 870 for (i = 0; i < DIRECT_TBL_SIZE; i++) { 871 da->direct_tbl[i].fragments = FRAGS_MARK_HIT; 872 da->direct_tbl[i].base = 0; 873 } 874 } 875 da->prefixes = rinfo.num_prefixes; 876 877 /* DXR: construct direct & range table */ 878 for (i = da->updates_low; i <= da->updates_high; i++) { 879 m = da->updates_mask[i >> 5] >> (i & 0x1f); 880 if (m == 0) 881 i |= 0x1f; 882 else if (m & 1 && update_chunk(da, i) != 0) 883 return; 884 } 885 r_size = sizeof(*da->range_tbl) * da->rtbl_top; 886 microuptime(&t1); 887 888 #ifdef DXR2 889 if (range_rebuild || da->unused_trie_cnt > V_max_trie_holes || 890 abs(fls(da->prefixes) - fls(da->trie_rebuilt_prefixes)) > 1) 891 trie_rebuild = 1; 892 if (trie_rebuild) { 893 da->trie_rebuilt_prefixes = da->prefixes; 894 da->d_bits = DXR_D; 895 da->updates_low = 0; 896 da->updates_high = DIRECT_TBL_SIZE - 1; 897 } 898 899 dxr2_try_squeeze: 900 if (trie_rebuild) { 901 /* Bulk cleanup */ 902 bzero(da->trietbl, sizeof(da->trietbl)); 903 bzero(da->trie_hashtbl, sizeof(da->trie_hashtbl)); 904 while ((tp = LIST_FIRST(&da->all_trie)) != NULL) { 905 LIST_REMOVE(tp, td_all_le); 906 uma_zfree(trie_zone, tp); 907 } 908 LIST_INIT(&da->unused_trie); 909 da->all_trie_cnt = da->unused_trie_cnt = 0; 910 } 911 912 /* Populate d_tbl, x_tbl */ 913 dxr_x = DXR_TRIE_BITS - da->d_bits; 914 d_tbl_size = (1 << da->d_bits); 915 916 for (i = da->updates_low >> dxr_x; i <= da->updates_high >> dxr_x; 917 i++) { 918 trie_unref(da, i); 919 ti = trie_ref(da, i); 920 if (ti < 0) 921 return; 922 da->d_tbl[i] = ti; 923 } 924 925 d_size = sizeof(*da->d_tbl) * d_tbl_size; 926 x_size = sizeof(*da->x_tbl) * DIRECT_TBL_SIZE / d_tbl_size 927 * da->all_trie_cnt; 928 dxr_tot_size = d_size + x_size + r_size; 929 930 if (trie_rebuild == 1) { 931 /* Try to find a more compact D/X split */ 932 if (prev_size == 0 || dxr_tot_size <= prev_size) 933 da->d_bits--; 934 else { 935 da->d_bits++; 936 trie_rebuild = 2; 937 } 938 prev_size = dxr_tot_size; 939 goto dxr2_try_squeeze; 940 } 941 microuptime(&t2); 942 #else /* !DXR2 */ 943 dxr_tot_size = sizeof(da->direct_tbl) + r_size; 944 t2 = t1; 945 #endif 946 947 dxr->d = malloc(dxr_tot_size, M_DXRLPM, M_NOWAIT); 948 if (dxr->d == NULL) 949 return; 950 #ifdef DXR2 951 memcpy(dxr->d, da->d_tbl, d_size); 952 dxr->x = ((char *) dxr->d) + d_size; 953 memcpy(dxr->x, da->x_tbl, x_size); 954 dxr->r = ((char *) dxr->x) + x_size; 955 dxr->d_shift = 32 - da->d_bits; 956 dxr->x_shift = dxr_x; 957 dxr->x_mask = 0xffffffffU >> (32 - dxr_x); 958 #else /* !DXR2 */ 959 memcpy(dxr->d, da->direct_tbl, sizeof(da->direct_tbl)); 960 dxr->r = ((char *) dxr->d) + sizeof(da->direct_tbl); 961 #endif 962 memcpy(dxr->r, da->range_tbl, r_size); 963 964 if (da->updates_low <= da->updates_high) 965 bzero(&da->updates_mask[da->updates_low / 32], 966 (da->updates_high - da->updates_low) / 8 + 1); 967 da->updates_low = DIRECT_TBL_SIZE - 1; 968 da->updates_high = 0; 969 microuptime(&t3); 970 971 #ifdef DXR2 972 FIB_PRINTF(LOG_INFO, da->fd, "D%dX%dR, %d prefixes, %d nhops (max)", 973 da->d_bits, dxr_x, rinfo.num_prefixes, rinfo.num_nhops); 974 #else 975 FIB_PRINTF(LOG_INFO, da->fd, "D%dR, %d prefixes, %d nhops (max)", 976 DXR_D, rinfo.num_prefixes, rinfo.num_nhops); 977 #endif 978 i = dxr_tot_size * 100 / rinfo.num_prefixes; 979 FIB_PRINTF(LOG_INFO, da->fd, "%d.%02d KBytes, %d.%02d Bytes/prefix", 980 dxr_tot_size / 1024, dxr_tot_size * 100 / 1024 % 100, 981 i / 100, i % 100); 982 i = (t1.tv_sec - t0.tv_sec) * 1000000 + t1.tv_usec - t0.tv_usec; 983 FIB_PRINTF(LOG_INFO, da->fd, "range table %s in %u.%03u ms", 984 range_rebuild ? "rebuilt" : "updated", i / 1000, i % 1000); 985 #ifdef DXR2 986 i = (t2.tv_sec - t1.tv_sec) * 1000000 + t2.tv_usec - t1.tv_usec; 987 FIB_PRINTF(LOG_INFO, da->fd, "trie %s in %u.%03u ms", 988 trie_rebuild ? "rebuilt" : "updated", i / 1000, i % 1000); 989 #endif 990 i = (t3.tv_sec - t2.tv_sec) * 1000000 + t3.tv_usec - t2.tv_usec; 991 FIB_PRINTF(LOG_INFO, da->fd, "snapshot forked in %u.%03u ms", 992 i / 1000, i % 1000); 993 FIB_PRINTF(LOG_INFO, da->fd, "range table: %d%%, %d chunks, %d holes", 994 da->rtbl_top * 100 / BASE_MAX, da->all_chunks_cnt, 995 da->unused_chunks_cnt); 996 } 997 998 /* 999 * Glue functions for attaching to FreeBSD 13 fib_algo infrastructure. 1000 */ 1001 1002 static struct nhop_object * 1003 dxr_fib_lookup(void *algo_data, const struct flm_lookup_key key, 1004 uint32_t scopeid) 1005 { 1006 struct dxr *dxr = algo_data; 1007 uint32_t nh; 1008 1009 nh = dxr_lookup(dxr, ntohl(key.addr4.s_addr)); 1010 1011 return (dxr->nh_tbl[nh]); 1012 } 1013 1014 static enum flm_op_result 1015 dxr_init(uint32_t fibnum, struct fib_data *fd, void *old_data, void **data) 1016 { 1017 struct dxr *old_dxr = old_data; 1018 struct dxr_aux *da = NULL; 1019 struct dxr *dxr; 1020 1021 dxr = malloc(sizeof(*dxr), M_DXRAUX, M_NOWAIT); 1022 if (dxr == NULL) 1023 return (FLM_REBUILD); 1024 1025 /* Check whether we may reuse the old auxiliary structures */ 1026 if (old_dxr != NULL && old_dxr->aux != NULL) { 1027 da = old_dxr->aux; 1028 atomic_add_int(&da->refcnt, 1); 1029 } 1030 1031 dxr->aux = da; 1032 dxr->d = NULL; 1033 dxr->fd = fd; 1034 dxr->fibnum = fibnum; 1035 *data = dxr; 1036 1037 return (FLM_SUCCESS); 1038 } 1039 1040 static void 1041 dxr_destroy(void *data) 1042 { 1043 struct dxr *dxr = data; 1044 struct dxr_aux *da; 1045 struct chunk_desc *cdp; 1046 struct trie_desc *tp; 1047 1048 if (dxr->d != NULL) 1049 free(dxr->d, M_DXRLPM); 1050 1051 da = dxr->aux; 1052 free(dxr, M_DXRAUX); 1053 1054 if (da == NULL || atomic_fetchadd_int(&da->refcnt, -1) > 1) 1055 return; 1056 1057 /* Release auxiliary structures */ 1058 while ((cdp = LIST_FIRST(&da->all_chunks)) != NULL) { 1059 LIST_REMOVE(cdp, cd_all_le); 1060 uma_zfree(chunk_zone, cdp); 1061 } 1062 while ((tp = LIST_FIRST(&da->all_trie)) != NULL) { 1063 LIST_REMOVE(tp, td_all_le); 1064 uma_zfree(trie_zone, tp); 1065 } 1066 free(da->range_tbl, M_DXRAUX); 1067 free(da->x_tbl, M_DXRAUX); 1068 free(da, M_DXRAUX); 1069 } 1070 1071 static void 1072 epoch_dxr_destroy(epoch_context_t ctx) 1073 { 1074 struct dxr *dxr = __containerof(ctx, struct dxr, epoch_ctx); 1075 1076 dxr_destroy(dxr); 1077 } 1078 1079 static enum flm_op_result 1080 dxr_dump_end(void *data, struct fib_dp *dp) 1081 { 1082 struct dxr *dxr = data; 1083 struct dxr_aux *da; 1084 1085 dxr_build(dxr); 1086 1087 da = dxr->aux; 1088 if (da == NULL) 1089 return (FLM_REBUILD); 1090 1091 /* Structural limit exceeded, hard error */ 1092 if (da->rtbl_top >= BASE_MAX) 1093 return (FLM_ERROR); 1094 1095 /* A malloc(,, M_NOWAIT) failed somewhere, retry later */ 1096 if (dxr->d == NULL) 1097 return (FLM_REBUILD); 1098 1099 dp->f = dxr_fib_lookup; 1100 dp->arg = dxr; 1101 1102 return (FLM_SUCCESS); 1103 } 1104 1105 static enum flm_op_result 1106 dxr_dump_rib_item(struct rtentry *rt, void *data) 1107 { 1108 1109 return (FLM_SUCCESS); 1110 } 1111 1112 static enum flm_op_result 1113 dxr_change_rib_item(struct rib_head *rnh, struct rib_cmd_info *rc, 1114 void *data) 1115 { 1116 1117 return (FLM_BATCH); 1118 } 1119 1120 static enum flm_op_result 1121 dxr_change_rib_batch(struct rib_head *rnh, struct fib_change_queue *q, 1122 void *data) 1123 { 1124 struct dxr *dxr = data; 1125 struct dxr *new_dxr; 1126 struct dxr_aux *da; 1127 struct fib_dp new_dp; 1128 enum flm_op_result res; 1129 uint32_t ip, plen, hmask, start, end, i, ui; 1130 #ifdef INVARIANTS 1131 struct rib_rtable_info rinfo; 1132 int update_delta = 0; 1133 #endif 1134 1135 KASSERT(data != NULL, ("%s: NULL data", __FUNCTION__)); 1136 KASSERT(q != NULL, ("%s: NULL q", __FUNCTION__)); 1137 KASSERT(q->count < q->size, ("%s: q->count %d q->size %d", 1138 __FUNCTION__, q->count, q->size)); 1139 1140 da = dxr->aux; 1141 KASSERT(da != NULL, ("%s: NULL dxr->aux", __FUNCTION__)); 1142 1143 FIB_PRINTF(LOG_INFO, da->fd, "processing %d update(s)", q->count); 1144 for (ui = 0; ui < q->count; ui++) { 1145 #ifdef INVARIANTS 1146 if (q->entries[ui].nh_new != NULL) 1147 update_delta++; 1148 if (q->entries[ui].nh_old != NULL) 1149 update_delta--; 1150 #endif 1151 plen = q->entries[ui].plen; 1152 ip = ntohl(q->entries[ui].addr4.s_addr); 1153 hmask = 0xffffffffU >> plen; 1154 start = (ip & ~hmask) >> DXR_RANGE_SHIFT; 1155 end = (ip | hmask) >> DXR_RANGE_SHIFT; 1156 1157 if ((start & 0x1f) == 0 && (end & 0x1f) == 0x1f) 1158 for (i = start >> 5; i <= end >> 5; i++) 1159 da->updates_mask[i] = 0xffffffffU; 1160 else 1161 for (i = start; i <= end; i++) 1162 da->updates_mask[i >> 5] |= (1 << (i & 0x1f)); 1163 if (start < da->updates_low) 1164 da->updates_low = start; 1165 if (end > da->updates_high) 1166 da->updates_high = end; 1167 } 1168 1169 #ifdef INVARIANTS 1170 fib_get_rtable_info(fib_get_rh(da->fd), &rinfo); 1171 KASSERT(da->prefixes + update_delta == rinfo.num_prefixes, 1172 ("%s: update count mismatch", __FUNCTION__)); 1173 #endif 1174 1175 res = dxr_init(0, dxr->fd, data, (void **) &new_dxr); 1176 if (res != FLM_SUCCESS) 1177 return (res); 1178 1179 dxr_build(new_dxr); 1180 1181 /* Structural limit exceeded, hard error */ 1182 if (da->rtbl_top >= BASE_MAX) { 1183 dxr_destroy(new_dxr); 1184 return (FLM_ERROR); 1185 } 1186 1187 /* A malloc(,, M_NOWAIT) failed somewhere, retry later */ 1188 if (new_dxr->d == NULL) { 1189 dxr_destroy(new_dxr); 1190 return (FLM_REBUILD); 1191 } 1192 1193 new_dp.f = dxr_fib_lookup; 1194 new_dp.arg = new_dxr; 1195 if (fib_set_datapath_ptr(dxr->fd, &new_dp)) { 1196 fib_set_algo_ptr(dxr->fd, new_dxr); 1197 fib_epoch_call(epoch_dxr_destroy, &dxr->epoch_ctx); 1198 return (FLM_SUCCESS); 1199 } 1200 1201 dxr_destroy(new_dxr); 1202 return (FLM_REBUILD); 1203 } 1204 1205 static uint8_t 1206 dxr_get_pref(const struct rib_rtable_info *rinfo) 1207 { 1208 1209 /* Below bsearch4 up to 10 prefixes. Always supersedes dpdk_lpm4. */ 1210 return (251); 1211 } 1212 1213 static struct fib_lookup_module fib_dxr_mod = { 1214 .flm_name = "dxr", 1215 .flm_family = AF_INET, 1216 .flm_init_cb = dxr_init, 1217 .flm_destroy_cb = dxr_destroy, 1218 .flm_dump_rib_item_cb = dxr_dump_rib_item, 1219 .flm_dump_end_cb = dxr_dump_end, 1220 .flm_change_rib_item_cb = dxr_change_rib_item, 1221 .flm_change_rib_items_cb = dxr_change_rib_batch, 1222 .flm_get_pref = dxr_get_pref, 1223 }; 1224 1225 static int 1226 dxr_modevent(module_t mod, int type, void *unused) 1227 { 1228 int error; 1229 1230 switch (type) { 1231 case MOD_LOAD: 1232 chunk_zone = uma_zcreate("dxr chunk", sizeof(struct chunk_desc), 1233 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1234 trie_zone = uma_zcreate("dxr trie", sizeof(struct trie_desc), 1235 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1236 fib_module_register(&fib_dxr_mod); 1237 return(0); 1238 case MOD_UNLOAD: 1239 error = fib_module_unregister(&fib_dxr_mod); 1240 if (error) 1241 return (error); 1242 uma_zdestroy(chunk_zone); 1243 uma_zdestroy(trie_zone); 1244 return(0); 1245 default: 1246 return(EOPNOTSUPP); 1247 } 1248 } 1249 1250 static moduledata_t dxr_mod = {"fib_dxr", dxr_modevent, 0}; 1251 1252 DECLARE_MODULE(fib_dxr, dxr_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 1253 MODULE_VERSION(fib_dxr, 1); 1254