1 /*- 2 * Copyright (c) 1996-2000 Whistle Communications, Inc. 3 * All rights reserved. 4 * 5 * Subject to the following obligations and disclaimer of warranty, use and 6 * redistribution of this software, in source or object code forms, with or 7 * without modifications are expressly permitted by Whistle Communications; 8 * provided, however, that: 9 * 1. Any and all reproductions of the source or object code must include the 10 * copyright notice above and the following disclaimer of warranties; and 11 * 2. No rights are granted, in any manner or form, to use Whistle 12 * Communications, Inc. trademarks, including the mark "WHISTLE 13 * COMMUNICATIONS" on advertising, endorsements, or otherwise except as 14 * such appears in the above copyright notice or in the software. 15 * 16 * THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND 17 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO 18 * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE, 19 * INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 21 * WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 22 * REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS 23 * SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. 24 * IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES 25 * RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING 26 * WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 27 * PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR 28 * SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY 32 * OF SUCH DAMAGE. 33 * 34 * Copyright (c) 2007 Alexander Motin <mav@alkar.net> 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice unmodified, this list of conditions, and the following 42 * disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Authors: Archie Cobbs <archie@freebsd.org>, Alexander Motin <mav@alkar.net> 60 * 61 * $FreeBSD$ 62 * $Whistle: ng_ppp.c,v 1.24 1999/11/01 09:24:52 julian Exp $ 63 */ 64 65 /* 66 * PPP node type data-flow. 67 * 68 * hook xmit layer recv hook 69 * ------------------------------------ 70 * inet -> -> inet 71 * ipv6 -> -> ipv6 72 * ipx -> proto -> ipx 73 * atalk -> -> atalk 74 * bypass -> -> bypass 75 * -hcomp_xmit()----------proto_recv()- 76 * vjc_ip <- <- vjc_ip 77 * vjc_comp -> header compression -> vjc_comp 78 * vjc_uncomp -> -> vjc_uncomp 79 * vjc_vjip -> 80 * -comp_xmit()-----------hcomp_recv()- 81 * compress <- compression <- decompress 82 * compress -> -> decompress 83 * -crypt_xmit()-----------comp_recv()- 84 * encrypt <- encryption <- decrypt 85 * encrypt -> -> decrypt 86 * -ml_xmit()-------------crypt_recv()- 87 * multilink 88 * -link_xmit()--------------ml_recv()- 89 * linkX <- link <- linkX 90 * 91 */ 92 93 #include <sys/param.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/limits.h> 97 #include <sys/time.h> 98 #include <sys/mbuf.h> 99 #include <sys/malloc.h> 100 #include <sys/errno.h> 101 #include <sys/ctype.h> 102 103 #include <netgraph/ng_message.h> 104 #include <netgraph/netgraph.h> 105 #include <netgraph/ng_parse.h> 106 #include <netgraph/ng_ppp.h> 107 #include <netgraph/ng_vjc.h> 108 109 #ifdef NG_SEPARATE_MALLOC 110 MALLOC_DEFINE(M_NETGRAPH_PPP, "netgraph_ppp", "netgraph ppp node"); 111 #else 112 #define M_NETGRAPH_PPP M_NETGRAPH 113 #endif 114 115 #define PROT_VALID(p) (((p) & 0x0101) == 0x0001) 116 #define PROT_COMPRESSABLE(p) (((p) & 0xff00) == 0x0000) 117 118 /* Some PPP protocol numbers we're interested in */ 119 #define PROT_ATALK 0x0029 120 #define PROT_COMPD 0x00fd 121 #define PROT_CRYPTD 0x0053 122 #define PROT_IP 0x0021 123 #define PROT_IPV6 0x0057 124 #define PROT_IPX 0x002b 125 #define PROT_LCP 0xc021 126 #define PROT_MP 0x003d 127 #define PROT_VJCOMP 0x002d 128 #define PROT_VJUNCOMP 0x002f 129 130 /* Multilink PPP definitions */ 131 #define MP_INITIAL_SEQ 0 /* per RFC 1990 */ 132 #define MP_MIN_LINK_MRU 32 133 134 #define MP_SHORT_SEQ_MASK 0x00000fff /* short seq # mask */ 135 #define MP_SHORT_SEQ_HIBIT 0x00000800 /* short seq # high bit */ 136 #define MP_SHORT_FIRST_FLAG 0x00008000 /* first fragment in frame */ 137 #define MP_SHORT_LAST_FLAG 0x00004000 /* last fragment in frame */ 138 139 #define MP_LONG_SEQ_MASK 0x00ffffff /* long seq # mask */ 140 #define MP_LONG_SEQ_HIBIT 0x00800000 /* long seq # high bit */ 141 #define MP_LONG_FIRST_FLAG 0x80000000 /* first fragment in frame */ 142 #define MP_LONG_LAST_FLAG 0x40000000 /* last fragment in frame */ 143 144 #define MP_NOSEQ 0x7fffffff /* impossible sequence number */ 145 146 /* Sign extension of MP sequence numbers */ 147 #define MP_SHORT_EXTEND(s) (((s) & MP_SHORT_SEQ_HIBIT) ? \ 148 ((s) | ~MP_SHORT_SEQ_MASK) \ 149 : ((s) & MP_SHORT_SEQ_MASK)) 150 #define MP_LONG_EXTEND(s) (((s) & MP_LONG_SEQ_HIBIT) ? \ 151 ((s) | ~MP_LONG_SEQ_MASK) \ 152 : ((s) & MP_LONG_SEQ_MASK)) 153 154 /* Comparision of MP sequence numbers. Note: all sequence numbers 155 except priv->xseq are stored with the sign bit extended. */ 156 #define MP_SHORT_SEQ_DIFF(x,y) MP_SHORT_EXTEND((x) - (y)) 157 #define MP_LONG_SEQ_DIFF(x,y) MP_LONG_EXTEND((x) - (y)) 158 159 #define MP_RECV_SEQ_DIFF(priv,x,y) \ 160 ((priv)->conf.recvShortSeq ? \ 161 MP_SHORT_SEQ_DIFF((x), (y)) : \ 162 MP_LONG_SEQ_DIFF((x), (y))) 163 164 /* Increment receive sequence number */ 165 #define MP_NEXT_RECV_SEQ(priv,seq) \ 166 ((priv)->conf.recvShortSeq ? \ 167 MP_SHORT_EXTEND((seq) + 1) : \ 168 MP_LONG_EXTEND((seq) + 1)) 169 170 /* Don't fragment transmitted packets to parts smaller than this */ 171 #define MP_MIN_FRAG_LEN 32 172 173 /* Maximum fragment reasssembly queue length */ 174 #define MP_MAX_QUEUE_LEN 128 175 176 /* Fragment queue scanner period */ 177 #define MP_FRAGTIMER_INTERVAL (hz/2) 178 179 /* Average link overhead. XXX: Should be given by user-level */ 180 #define MP_AVERAGE_LINK_OVERHEAD 16 181 182 /* Keep this equal to ng_ppp_hook_names lower! */ 183 #define HOOK_INDEX_MAX 13 184 185 /* We store incoming fragments this way */ 186 struct ng_ppp_frag { 187 int seq; /* fragment seq# */ 188 uint8_t first; /* First in packet? */ 189 uint8_t last; /* Last in packet? */ 190 struct timeval timestamp; /* time of reception */ 191 struct mbuf *data; /* Fragment data */ 192 TAILQ_ENTRY(ng_ppp_frag) f_qent; /* Fragment queue */ 193 }; 194 195 /* Per-link private information */ 196 struct ng_ppp_link { 197 struct ng_ppp_link_conf conf; /* link configuration */ 198 struct ng_ppp_link_stat64 stats; /* link stats */ 199 hook_p hook; /* connection to link data */ 200 int32_t seq; /* highest rec'd seq# - MSEQ */ 201 uint32_t latency; /* calculated link latency */ 202 struct timeval lastWrite; /* time of last write for MP */ 203 int bytesInQueue; /* bytes in the output queue for MP */ 204 }; 205 206 /* Total per-node private information */ 207 struct ng_ppp_private { 208 struct ng_ppp_bund_conf conf; /* bundle config */ 209 struct ng_ppp_link_stat64 bundleStats; /* bundle stats */ 210 struct ng_ppp_link links[NG_PPP_MAX_LINKS];/* per-link info */ 211 int32_t xseq; /* next out MP seq # */ 212 int32_t mseq; /* min links[i].seq */ 213 uint16_t activeLinks[NG_PPP_MAX_LINKS]; /* indicies */ 214 uint16_t numActiveLinks; /* how many links up */ 215 uint16_t lastLink; /* for round robin */ 216 uint8_t vjCompHooked; /* VJ comp hooked up? */ 217 uint8_t allLinksEqual; /* all xmit the same? */ 218 hook_p hooks[HOOK_INDEX_MAX]; /* non-link hooks */ 219 struct ng_ppp_frag fragsmem[MP_MAX_QUEUE_LEN]; /* fragments storage */ 220 TAILQ_HEAD(ng_ppp_fraglist, ng_ppp_frag) /* fragment queue */ 221 frags; 222 TAILQ_HEAD(ng_ppp_fragfreelist, ng_ppp_frag) /* free fragment queue */ 223 fragsfree; 224 struct callout fragTimer; /* fraq queue check */ 225 struct mtx rmtx; /* recv mutex */ 226 struct mtx xmtx; /* xmit mutex */ 227 }; 228 typedef struct ng_ppp_private *priv_p; 229 230 /* Netgraph node methods */ 231 static ng_constructor_t ng_ppp_constructor; 232 static ng_rcvmsg_t ng_ppp_rcvmsg; 233 static ng_shutdown_t ng_ppp_shutdown; 234 static ng_newhook_t ng_ppp_newhook; 235 static ng_rcvdata_t ng_ppp_rcvdata; 236 static ng_disconnect_t ng_ppp_disconnect; 237 238 static ng_rcvdata_t ng_ppp_rcvdata_inet; 239 static ng_rcvdata_t ng_ppp_rcvdata_ipv6; 240 static ng_rcvdata_t ng_ppp_rcvdata_ipx; 241 static ng_rcvdata_t ng_ppp_rcvdata_atalk; 242 static ng_rcvdata_t ng_ppp_rcvdata_bypass; 243 244 static ng_rcvdata_t ng_ppp_rcvdata_vjc_ip; 245 static ng_rcvdata_t ng_ppp_rcvdata_vjc_comp; 246 static ng_rcvdata_t ng_ppp_rcvdata_vjc_uncomp; 247 static ng_rcvdata_t ng_ppp_rcvdata_vjc_vjip; 248 249 static ng_rcvdata_t ng_ppp_rcvdata_compress; 250 static ng_rcvdata_t ng_ppp_rcvdata_decompress; 251 252 static ng_rcvdata_t ng_ppp_rcvdata_encrypt; 253 static ng_rcvdata_t ng_ppp_rcvdata_decrypt; 254 255 /* We use integer indicies to refer to the non-link hooks. */ 256 static const struct { 257 char *const name; 258 ng_rcvdata_t *fn; 259 } ng_ppp_hook_names[] = { 260 #define HOOK_INDEX_ATALK 0 261 { NG_PPP_HOOK_ATALK, ng_ppp_rcvdata_atalk }, 262 #define HOOK_INDEX_BYPASS 1 263 { NG_PPP_HOOK_BYPASS, ng_ppp_rcvdata_bypass }, 264 #define HOOK_INDEX_COMPRESS 2 265 { NG_PPP_HOOK_COMPRESS, ng_ppp_rcvdata_compress }, 266 #define HOOK_INDEX_ENCRYPT 3 267 { NG_PPP_HOOK_ENCRYPT, ng_ppp_rcvdata_encrypt }, 268 #define HOOK_INDEX_DECOMPRESS 4 269 { NG_PPP_HOOK_DECOMPRESS, ng_ppp_rcvdata_decompress }, 270 #define HOOK_INDEX_DECRYPT 5 271 { NG_PPP_HOOK_DECRYPT, ng_ppp_rcvdata_decrypt }, 272 #define HOOK_INDEX_INET 6 273 { NG_PPP_HOOK_INET, ng_ppp_rcvdata_inet }, 274 #define HOOK_INDEX_IPX 7 275 { NG_PPP_HOOK_IPX, ng_ppp_rcvdata_ipx }, 276 #define HOOK_INDEX_VJC_COMP 8 277 { NG_PPP_HOOK_VJC_COMP, ng_ppp_rcvdata_vjc_comp }, 278 #define HOOK_INDEX_VJC_IP 9 279 { NG_PPP_HOOK_VJC_IP, ng_ppp_rcvdata_vjc_ip }, 280 #define HOOK_INDEX_VJC_UNCOMP 10 281 { NG_PPP_HOOK_VJC_UNCOMP, ng_ppp_rcvdata_vjc_uncomp }, 282 #define HOOK_INDEX_VJC_VJIP 11 283 { NG_PPP_HOOK_VJC_VJIP, ng_ppp_rcvdata_vjc_vjip }, 284 #define HOOK_INDEX_IPV6 12 285 { NG_PPP_HOOK_IPV6, ng_ppp_rcvdata_ipv6 }, 286 { NULL, NULL } 287 }; 288 289 /* Helper functions */ 290 static int ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, 291 uint16_t linkNum); 292 static int ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto); 293 static int ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, 294 uint16_t linkNum); 295 static int ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto); 296 static int ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, 297 uint16_t linkNum); 298 static int ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto); 299 static int ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, 300 uint16_t linkNum); 301 static int ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto); 302 static int ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, 303 uint16_t linkNum); 304 static int ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, 305 uint16_t linkNum, int plen); 306 307 static int ng_ppp_bypass(node_p node, item_p item, uint16_t proto, 308 uint16_t linkNum); 309 310 static void ng_ppp_bump_mseq(node_p node, int32_t new_mseq); 311 static int ng_ppp_frag_drop(node_p node); 312 static int ng_ppp_check_packet(node_p node); 313 static void ng_ppp_get_packet(node_p node, struct mbuf **mp); 314 static int ng_ppp_frag_process(node_p node, item_p oitem); 315 static int ng_ppp_frag_trim(node_p node); 316 static void ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, 317 int arg2); 318 static void ng_ppp_frag_checkstale(node_p node); 319 static void ng_ppp_frag_reset(node_p node); 320 static void ng_ppp_mp_strategy(node_p node, int len, int *distrib); 321 static int ng_ppp_intcmp(void *latency, const void *v1, const void *v2); 322 static struct mbuf *ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK); 323 static struct mbuf *ng_ppp_cutproto(struct mbuf *m, uint16_t *proto); 324 static struct mbuf *ng_ppp_prepend(struct mbuf *m, const void *buf, int len); 325 static int ng_ppp_config_valid(node_p node, 326 const struct ng_ppp_node_conf *newConf); 327 static void ng_ppp_update(node_p node, int newConf); 328 static void ng_ppp_start_frag_timer(node_p node); 329 static void ng_ppp_stop_frag_timer(node_p node); 330 331 /* Parse type for struct ng_ppp_mp_state_type */ 332 static const struct ng_parse_fixedarray_info ng_ppp_rseq_array_info = { 333 &ng_parse_hint32_type, 334 NG_PPP_MAX_LINKS 335 }; 336 static const struct ng_parse_type ng_ppp_rseq_array_type = { 337 &ng_parse_fixedarray_type, 338 &ng_ppp_rseq_array_info, 339 }; 340 static const struct ng_parse_struct_field ng_ppp_mp_state_type_fields[] 341 = NG_PPP_MP_STATE_TYPE_INFO(&ng_ppp_rseq_array_type); 342 static const struct ng_parse_type ng_ppp_mp_state_type = { 343 &ng_parse_struct_type, 344 &ng_ppp_mp_state_type_fields 345 }; 346 347 /* Parse type for struct ng_ppp_link_conf */ 348 static const struct ng_parse_struct_field ng_ppp_link_type_fields[] 349 = NG_PPP_LINK_TYPE_INFO; 350 static const struct ng_parse_type ng_ppp_link_type = { 351 &ng_parse_struct_type, 352 &ng_ppp_link_type_fields 353 }; 354 355 /* Parse type for struct ng_ppp_bund_conf */ 356 static const struct ng_parse_struct_field ng_ppp_bund_type_fields[] 357 = NG_PPP_BUND_TYPE_INFO; 358 static const struct ng_parse_type ng_ppp_bund_type = { 359 &ng_parse_struct_type, 360 &ng_ppp_bund_type_fields 361 }; 362 363 /* Parse type for struct ng_ppp_node_conf */ 364 static const struct ng_parse_fixedarray_info ng_ppp_array_info = { 365 &ng_ppp_link_type, 366 NG_PPP_MAX_LINKS 367 }; 368 static const struct ng_parse_type ng_ppp_link_array_type = { 369 &ng_parse_fixedarray_type, 370 &ng_ppp_array_info, 371 }; 372 static const struct ng_parse_struct_field ng_ppp_conf_type_fields[] 373 = NG_PPP_CONFIG_TYPE_INFO(&ng_ppp_bund_type, &ng_ppp_link_array_type); 374 static const struct ng_parse_type ng_ppp_conf_type = { 375 &ng_parse_struct_type, 376 &ng_ppp_conf_type_fields 377 }; 378 379 /* Parse type for struct ng_ppp_link_stat */ 380 static const struct ng_parse_struct_field ng_ppp_stats_type_fields[] 381 = NG_PPP_STATS_TYPE_INFO; 382 static const struct ng_parse_type ng_ppp_stats_type = { 383 &ng_parse_struct_type, 384 &ng_ppp_stats_type_fields 385 }; 386 387 /* Parse type for struct ng_ppp_link_stat64 */ 388 static const struct ng_parse_struct_field ng_ppp_stats64_type_fields[] 389 = NG_PPP_STATS64_TYPE_INFO; 390 static const struct ng_parse_type ng_ppp_stats64_type = { 391 &ng_parse_struct_type, 392 &ng_ppp_stats64_type_fields 393 }; 394 395 /* List of commands and how to convert arguments to/from ASCII */ 396 static const struct ng_cmdlist ng_ppp_cmds[] = { 397 { 398 NGM_PPP_COOKIE, 399 NGM_PPP_SET_CONFIG, 400 "setconfig", 401 &ng_ppp_conf_type, 402 NULL 403 }, 404 { 405 NGM_PPP_COOKIE, 406 NGM_PPP_GET_CONFIG, 407 "getconfig", 408 NULL, 409 &ng_ppp_conf_type 410 }, 411 { 412 NGM_PPP_COOKIE, 413 NGM_PPP_GET_MP_STATE, 414 "getmpstate", 415 NULL, 416 &ng_ppp_mp_state_type 417 }, 418 { 419 NGM_PPP_COOKIE, 420 NGM_PPP_GET_LINK_STATS, 421 "getstats", 422 &ng_parse_int16_type, 423 &ng_ppp_stats_type 424 }, 425 { 426 NGM_PPP_COOKIE, 427 NGM_PPP_CLR_LINK_STATS, 428 "clrstats", 429 &ng_parse_int16_type, 430 NULL 431 }, 432 { 433 NGM_PPP_COOKIE, 434 NGM_PPP_GETCLR_LINK_STATS, 435 "getclrstats", 436 &ng_parse_int16_type, 437 &ng_ppp_stats_type 438 }, 439 { 440 NGM_PPP_COOKIE, 441 NGM_PPP_GET_LINK_STATS64, 442 "getstats64", 443 &ng_parse_int16_type, 444 &ng_ppp_stats64_type 445 }, 446 { 447 NGM_PPP_COOKIE, 448 NGM_PPP_GETCLR_LINK_STATS64, 449 "getclrstats64", 450 &ng_parse_int16_type, 451 &ng_ppp_stats64_type 452 }, 453 { 0 } 454 }; 455 456 /* Node type descriptor */ 457 static struct ng_type ng_ppp_typestruct = { 458 .version = NG_ABI_VERSION, 459 .name = NG_PPP_NODE_TYPE, 460 .constructor = ng_ppp_constructor, 461 .rcvmsg = ng_ppp_rcvmsg, 462 .shutdown = ng_ppp_shutdown, 463 .newhook = ng_ppp_newhook, 464 .rcvdata = ng_ppp_rcvdata, 465 .disconnect = ng_ppp_disconnect, 466 .cmdlist = ng_ppp_cmds, 467 }; 468 NETGRAPH_INIT(ppp, &ng_ppp_typestruct); 469 470 /* Address and control field header */ 471 static const uint8_t ng_ppp_acf[2] = { 0xff, 0x03 }; 472 473 /* Maximum time we'll let a complete incoming packet sit in the queue */ 474 static const struct timeval ng_ppp_max_staleness = { 2, 0 }; /* 2 seconds */ 475 476 #define ERROUT(x) do { error = (x); goto done; } while (0) 477 478 /************************************************************************ 479 NETGRAPH NODE STUFF 480 ************************************************************************/ 481 482 /* 483 * Node type constructor 484 */ 485 static int 486 ng_ppp_constructor(node_p node) 487 { 488 priv_p priv; 489 int i; 490 491 /* Allocate private structure */ 492 priv = malloc(sizeof(*priv), M_NETGRAPH_PPP, M_NOWAIT | M_ZERO); 493 if (priv == NULL) 494 return (ENOMEM); 495 496 NG_NODE_SET_PRIVATE(node, priv); 497 498 /* Initialize state */ 499 TAILQ_INIT(&priv->frags); 500 TAILQ_INIT(&priv->fragsfree); 501 for (i = 0; i < MP_MAX_QUEUE_LEN; i++) 502 TAILQ_INSERT_TAIL(&priv->fragsfree, &priv->fragsmem[i], f_qent); 503 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 504 priv->links[i].seq = MP_NOSEQ; 505 ng_callout_init(&priv->fragTimer); 506 507 mtx_init(&priv->rmtx, "ng_ppp_recv", NULL, MTX_DEF); 508 mtx_init(&priv->xmtx, "ng_ppp_xmit", NULL, MTX_DEF); 509 510 /* Done */ 511 return (0); 512 } 513 514 /* 515 * Give our OK for a hook to be added 516 */ 517 static int 518 ng_ppp_newhook(node_p node, hook_p hook, const char *name) 519 { 520 const priv_p priv = NG_NODE_PRIVATE(node); 521 hook_p *hookPtr = NULL; 522 int linkNum = -1; 523 int hookIndex = -1; 524 525 /* Figure out which hook it is */ 526 if (strncmp(name, NG_PPP_HOOK_LINK_PREFIX, /* a link hook? */ 527 strlen(NG_PPP_HOOK_LINK_PREFIX)) == 0) { 528 const char *cp; 529 char *eptr; 530 531 cp = name + strlen(NG_PPP_HOOK_LINK_PREFIX); 532 if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0')) 533 return (EINVAL); 534 linkNum = (int)strtoul(cp, &eptr, 10); 535 if (*eptr != '\0' || linkNum < 0 || linkNum >= NG_PPP_MAX_LINKS) 536 return (EINVAL); 537 hookPtr = &priv->links[linkNum].hook; 538 hookIndex = ~linkNum; 539 540 /* See if hook is already connected. */ 541 if (*hookPtr != NULL) 542 return (EISCONN); 543 544 /* Disallow more than one link unless multilink is enabled. */ 545 if (priv->links[linkNum].conf.enableLink && 546 !priv->conf.enableMultilink && priv->numActiveLinks >= 1) 547 return (ENODEV); 548 549 } else { /* must be a non-link hook */ 550 int i; 551 552 for (i = 0; ng_ppp_hook_names[i].name != NULL; i++) { 553 if (strcmp(name, ng_ppp_hook_names[i].name) == 0) { 554 hookPtr = &priv->hooks[i]; 555 hookIndex = i; 556 break; 557 } 558 } 559 if (ng_ppp_hook_names[i].name == NULL) 560 return (EINVAL); /* no such hook */ 561 562 /* See if hook is already connected */ 563 if (*hookPtr != NULL) 564 return (EISCONN); 565 566 /* Every non-linkX hook have it's own function. */ 567 NG_HOOK_SET_RCVDATA(hook, ng_ppp_hook_names[i].fn); 568 } 569 570 /* OK */ 571 *hookPtr = hook; 572 NG_HOOK_SET_PRIVATE(hook, (void *)(intptr_t)hookIndex); 573 ng_ppp_update(node, 0); 574 return (0); 575 } 576 577 /* 578 * Receive a control message 579 */ 580 static int 581 ng_ppp_rcvmsg(node_p node, item_p item, hook_p lasthook) 582 { 583 const priv_p priv = NG_NODE_PRIVATE(node); 584 struct ng_mesg *resp = NULL; 585 int error = 0; 586 struct ng_mesg *msg; 587 588 NGI_GET_MSG(item, msg); 589 switch (msg->header.typecookie) { 590 case NGM_PPP_COOKIE: 591 switch (msg->header.cmd) { 592 case NGM_PPP_SET_CONFIG: 593 { 594 struct ng_ppp_node_conf *const conf = 595 (struct ng_ppp_node_conf *)msg->data; 596 int i; 597 598 /* Check for invalid or illegal config */ 599 if (msg->header.arglen != sizeof(*conf)) 600 ERROUT(EINVAL); 601 if (!ng_ppp_config_valid(node, conf)) 602 ERROUT(EINVAL); 603 604 /* Copy config */ 605 priv->conf = conf->bund; 606 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 607 priv->links[i].conf = conf->links[i]; 608 ng_ppp_update(node, 1); 609 break; 610 } 611 case NGM_PPP_GET_CONFIG: 612 { 613 struct ng_ppp_node_conf *conf; 614 int i; 615 616 NG_MKRESPONSE(resp, msg, sizeof(*conf), M_NOWAIT); 617 if (resp == NULL) 618 ERROUT(ENOMEM); 619 conf = (struct ng_ppp_node_conf *)resp->data; 620 conf->bund = priv->conf; 621 for (i = 0; i < NG_PPP_MAX_LINKS; i++) 622 conf->links[i] = priv->links[i].conf; 623 break; 624 } 625 case NGM_PPP_GET_MP_STATE: 626 { 627 struct ng_ppp_mp_state *info; 628 int i; 629 630 NG_MKRESPONSE(resp, msg, sizeof(*info), M_NOWAIT); 631 if (resp == NULL) 632 ERROUT(ENOMEM); 633 info = (struct ng_ppp_mp_state *)resp->data; 634 bzero(info, sizeof(*info)); 635 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 636 if (priv->links[i].seq != MP_NOSEQ) 637 info->rseq[i] = priv->links[i].seq; 638 } 639 info->mseq = priv->mseq; 640 info->xseq = priv->xseq; 641 break; 642 } 643 case NGM_PPP_GET_LINK_STATS: 644 case NGM_PPP_CLR_LINK_STATS: 645 case NGM_PPP_GETCLR_LINK_STATS: 646 case NGM_PPP_GET_LINK_STATS64: 647 case NGM_PPP_GETCLR_LINK_STATS64: 648 { 649 struct ng_ppp_link_stat64 *stats; 650 uint16_t linkNum; 651 652 /* Process request. */ 653 if (msg->header.arglen != sizeof(uint16_t)) 654 ERROUT(EINVAL); 655 linkNum = *((uint16_t *) msg->data); 656 if (linkNum >= NG_PPP_MAX_LINKS 657 && linkNum != NG_PPP_BUNDLE_LINKNUM) 658 ERROUT(EINVAL); 659 stats = (linkNum == NG_PPP_BUNDLE_LINKNUM) ? 660 &priv->bundleStats : &priv->links[linkNum].stats; 661 662 /* Make 64bit reply. */ 663 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS64 || 664 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS64) { 665 NG_MKRESPONSE(resp, msg, 666 sizeof(struct ng_ppp_link_stat64), M_NOWAIT); 667 if (resp == NULL) 668 ERROUT(ENOMEM); 669 bcopy(stats, resp->data, sizeof(*stats)); 670 } else 671 /* Make 32bit reply. */ 672 if (msg->header.cmd == NGM_PPP_GET_LINK_STATS || 673 msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS) { 674 struct ng_ppp_link_stat *rs; 675 NG_MKRESPONSE(resp, msg, 676 sizeof(struct ng_ppp_link_stat), M_NOWAIT); 677 if (resp == NULL) 678 ERROUT(ENOMEM); 679 rs = (struct ng_ppp_link_stat *)resp->data; 680 /* Truncate 64->32 bits. */ 681 rs->xmitFrames = stats->xmitFrames; 682 rs->xmitOctets = stats->xmitOctets; 683 rs->recvFrames = stats->recvFrames; 684 rs->recvOctets = stats->recvOctets; 685 rs->badProtos = stats->badProtos; 686 rs->runts = stats->runts; 687 rs->dupFragments = stats->dupFragments; 688 rs->dropFragments = stats->dropFragments; 689 } 690 /* Clear stats. */ 691 if (msg->header.cmd != NGM_PPP_GET_LINK_STATS && 692 msg->header.cmd != NGM_PPP_GET_LINK_STATS64) 693 bzero(stats, sizeof(*stats)); 694 break; 695 } 696 default: 697 error = EINVAL; 698 break; 699 } 700 break; 701 case NGM_VJC_COOKIE: 702 { 703 /* 704 * Forward it to the vjc node. leave the 705 * old return address alone. 706 * If we have no hook, let NG_RESPOND_MSG 707 * clean up any remaining resources. 708 * Because we have no resp, the item will be freed 709 * along with anything it references. Don't 710 * let msg be freed twice. 711 */ 712 NGI_MSG(item) = msg; /* put it back in the item */ 713 msg = NULL; 714 if ((lasthook = priv->hooks[HOOK_INDEX_VJC_IP])) { 715 NG_FWD_ITEM_HOOK(error, item, lasthook); 716 } 717 return (error); 718 } 719 default: 720 error = EINVAL; 721 break; 722 } 723 done: 724 NG_RESPOND_MSG(error, node, item, resp); 725 NG_FREE_MSG(msg); 726 return (error); 727 } 728 729 /* 730 * Destroy node 731 */ 732 static int 733 ng_ppp_shutdown(node_p node) 734 { 735 const priv_p priv = NG_NODE_PRIVATE(node); 736 737 /* Stop fragment queue timer */ 738 ng_ppp_stop_frag_timer(node); 739 740 /* Take down netgraph node */ 741 ng_ppp_frag_reset(node); 742 mtx_destroy(&priv->rmtx); 743 mtx_destroy(&priv->xmtx); 744 bzero(priv, sizeof(*priv)); 745 free(priv, M_NETGRAPH_PPP); 746 NG_NODE_SET_PRIVATE(node, NULL); 747 NG_NODE_UNREF(node); /* let the node escape */ 748 return (0); 749 } 750 751 /* 752 * Hook disconnection 753 */ 754 static int 755 ng_ppp_disconnect(hook_p hook) 756 { 757 const node_p node = NG_HOOK_NODE(hook); 758 const priv_p priv = NG_NODE_PRIVATE(node); 759 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 760 761 /* Zero out hook pointer */ 762 if (index < 0) 763 priv->links[~index].hook = NULL; 764 else 765 priv->hooks[index] = NULL; 766 767 /* Update derived info (or go away if no hooks left). */ 768 if (NG_NODE_NUMHOOKS(node) > 0) 769 ng_ppp_update(node, 0); 770 else if (NG_NODE_IS_VALID(node)) 771 ng_rmnode_self(node); 772 773 return (0); 774 } 775 776 /* 777 * Proto layer 778 */ 779 780 /* 781 * Receive data on a hook inet. 782 */ 783 static int 784 ng_ppp_rcvdata_inet(hook_p hook, item_p item) 785 { 786 const node_p node = NG_HOOK_NODE(hook); 787 const priv_p priv = NG_NODE_PRIVATE(node); 788 789 if (!priv->conf.enableIP) { 790 NG_FREE_ITEM(item); 791 return (ENXIO); 792 } 793 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IP)); 794 } 795 796 /* 797 * Receive data on a hook ipv6. 798 */ 799 static int 800 ng_ppp_rcvdata_ipv6(hook_p hook, item_p item) 801 { 802 const node_p node = NG_HOOK_NODE(hook); 803 const priv_p priv = NG_NODE_PRIVATE(node); 804 805 if (!priv->conf.enableIPv6) { 806 NG_FREE_ITEM(item); 807 return (ENXIO); 808 } 809 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPV6)); 810 } 811 812 /* 813 * Receive data on a hook atalk. 814 */ 815 static int 816 ng_ppp_rcvdata_atalk(hook_p hook, item_p item) 817 { 818 const node_p node = NG_HOOK_NODE(hook); 819 const priv_p priv = NG_NODE_PRIVATE(node); 820 821 if (!priv->conf.enableAtalk) { 822 NG_FREE_ITEM(item); 823 return (ENXIO); 824 } 825 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_ATALK)); 826 } 827 828 /* 829 * Receive data on a hook ipx 830 */ 831 static int 832 ng_ppp_rcvdata_ipx(hook_p hook, item_p item) 833 { 834 const node_p node = NG_HOOK_NODE(hook); 835 const priv_p priv = NG_NODE_PRIVATE(node); 836 837 if (!priv->conf.enableIPX) { 838 NG_FREE_ITEM(item); 839 return (ENXIO); 840 } 841 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPX)); 842 } 843 844 /* 845 * Receive data on a hook bypass 846 */ 847 static int 848 ng_ppp_rcvdata_bypass(hook_p hook, item_p item) 849 { 850 uint16_t linkNum; 851 uint16_t proto; 852 struct mbuf *m; 853 854 NGI_GET_M(item, m); 855 if (m->m_pkthdr.len < 4) { 856 NG_FREE_ITEM(item); 857 return (EINVAL); 858 } 859 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) { 860 NG_FREE_ITEM(item); 861 return (ENOBUFS); 862 } 863 linkNum = ntohs(mtod(m, uint16_t *)[0]); 864 proto = ntohs(mtod(m, uint16_t *)[1]); 865 m_adj(m, 4); 866 NGI_M(item) = m; 867 868 if (linkNum == NG_PPP_BUNDLE_LINKNUM) 869 return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, proto)); 870 else 871 return (ng_ppp_link_xmit(NG_HOOK_NODE(hook), item, proto, 872 linkNum, 0)); 873 } 874 875 static int 876 ng_ppp_bypass(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 877 { 878 const priv_p priv = NG_NODE_PRIVATE(node); 879 uint16_t hdr[2]; 880 struct mbuf *m; 881 int error; 882 883 if (priv->hooks[HOOK_INDEX_BYPASS] == NULL) { 884 NG_FREE_ITEM(item); 885 return (ENXIO); 886 } 887 888 /* Add 4-byte bypass header. */ 889 hdr[0] = htons(linkNum); 890 hdr[1] = htons(proto); 891 892 NGI_GET_M(item, m); 893 if ((m = ng_ppp_prepend(m, &hdr, 4)) == NULL) { 894 NG_FREE_ITEM(item); 895 return (ENOBUFS); 896 } 897 NGI_M(item) = m; 898 899 /* Send packet out hook. */ 900 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_BYPASS]); 901 return (error); 902 } 903 904 static int 905 ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 906 { 907 const priv_p priv = NG_NODE_PRIVATE(node); 908 hook_p outHook = NULL; 909 int error; 910 911 switch (proto) { 912 case PROT_IP: 913 if (priv->conf.enableIP) 914 outHook = priv->hooks[HOOK_INDEX_INET]; 915 break; 916 case PROT_IPV6: 917 if (priv->conf.enableIPv6) 918 outHook = priv->hooks[HOOK_INDEX_IPV6]; 919 break; 920 case PROT_ATALK: 921 if (priv->conf.enableAtalk) 922 outHook = priv->hooks[HOOK_INDEX_ATALK]; 923 break; 924 case PROT_IPX: 925 if (priv->conf.enableIPX) 926 outHook = priv->hooks[HOOK_INDEX_IPX]; 927 break; 928 } 929 930 if (outHook == NULL) 931 return (ng_ppp_bypass(node, item, proto, linkNum)); 932 933 /* Send packet out hook. */ 934 NG_FWD_ITEM_HOOK(error, item, outHook); 935 return (error); 936 } 937 938 /* 939 * Header compression layer 940 */ 941 942 static int 943 ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto) 944 { 945 const priv_p priv = NG_NODE_PRIVATE(node); 946 947 if (proto == PROT_IP && 948 priv->conf.enableVJCompression && 949 priv->vjCompHooked) { 950 int error; 951 952 /* Send packet out hook. */ 953 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_VJC_IP]); 954 return (error); 955 } 956 957 return (ng_ppp_comp_xmit(node, item, proto)); 958 } 959 960 /* 961 * Receive data on a hook vjc_comp. 962 */ 963 static int 964 ng_ppp_rcvdata_vjc_comp(hook_p hook, item_p item) 965 { 966 const node_p node = NG_HOOK_NODE(hook); 967 const priv_p priv = NG_NODE_PRIVATE(node); 968 969 if (!priv->conf.enableVJCompression) { 970 NG_FREE_ITEM(item); 971 return (ENXIO); 972 } 973 return (ng_ppp_comp_xmit(node, item, PROT_VJCOMP)); 974 } 975 976 /* 977 * Receive data on a hook vjc_uncomp. 978 */ 979 static int 980 ng_ppp_rcvdata_vjc_uncomp(hook_p hook, item_p item) 981 { 982 const node_p node = NG_HOOK_NODE(hook); 983 const priv_p priv = NG_NODE_PRIVATE(node); 984 985 if (!priv->conf.enableVJCompression) { 986 NG_FREE_ITEM(item); 987 return (ENXIO); 988 } 989 return (ng_ppp_comp_xmit(node, item, PROT_VJUNCOMP)); 990 } 991 992 /* 993 * Receive data on a hook vjc_vjip. 994 */ 995 static int 996 ng_ppp_rcvdata_vjc_vjip(hook_p hook, item_p item) 997 { 998 const node_p node = NG_HOOK_NODE(hook); 999 const priv_p priv = NG_NODE_PRIVATE(node); 1000 1001 if (!priv->conf.enableVJCompression) { 1002 NG_FREE_ITEM(item); 1003 return (ENXIO); 1004 } 1005 return (ng_ppp_comp_xmit(node, item, PROT_IP)); 1006 } 1007 1008 static int 1009 ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1010 { 1011 const priv_p priv = NG_NODE_PRIVATE(node); 1012 1013 if (priv->conf.enableVJDecompression && priv->vjCompHooked) { 1014 hook_p outHook = NULL; 1015 1016 switch (proto) { 1017 case PROT_VJCOMP: 1018 outHook = priv->hooks[HOOK_INDEX_VJC_COMP]; 1019 break; 1020 case PROT_VJUNCOMP: 1021 outHook = priv->hooks[HOOK_INDEX_VJC_UNCOMP]; 1022 break; 1023 } 1024 1025 if (outHook) { 1026 int error; 1027 1028 /* Send packet out hook. */ 1029 NG_FWD_ITEM_HOOK(error, item, outHook); 1030 return (error); 1031 } 1032 } 1033 1034 return (ng_ppp_proto_recv(node, item, proto, linkNum)); 1035 } 1036 1037 /* 1038 * Receive data on a hook vjc_ip. 1039 */ 1040 static int 1041 ng_ppp_rcvdata_vjc_ip(hook_p hook, item_p item) 1042 { 1043 const node_p node = NG_HOOK_NODE(hook); 1044 const priv_p priv = NG_NODE_PRIVATE(node); 1045 1046 if (!priv->conf.enableVJDecompression) { 1047 NG_FREE_ITEM(item); 1048 return (ENXIO); 1049 } 1050 return (ng_ppp_proto_recv(node, item, PROT_IP, NG_PPP_BUNDLE_LINKNUM)); 1051 } 1052 1053 /* 1054 * Compression layer 1055 */ 1056 1057 static int 1058 ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto) 1059 { 1060 const priv_p priv = NG_NODE_PRIVATE(node); 1061 1062 if (priv->conf.enableCompression && 1063 proto < 0x4000 && 1064 proto != PROT_COMPD && 1065 proto != PROT_CRYPTD && 1066 priv->hooks[HOOK_INDEX_COMPRESS] != NULL) { 1067 struct mbuf *m; 1068 int error; 1069 1070 NGI_GET_M(item, m); 1071 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1072 NG_FREE_ITEM(item); 1073 return (ENOBUFS); 1074 } 1075 NGI_M(item) = m; 1076 1077 /* Send packet out hook. */ 1078 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_COMPRESS]); 1079 return (error); 1080 } 1081 1082 return (ng_ppp_crypt_xmit(node, item, proto)); 1083 } 1084 1085 /* 1086 * Receive data on a hook compress. 1087 */ 1088 static int 1089 ng_ppp_rcvdata_compress(hook_p hook, item_p item) 1090 { 1091 const node_p node = NG_HOOK_NODE(hook); 1092 const priv_p priv = NG_NODE_PRIVATE(node); 1093 uint16_t proto; 1094 1095 switch (priv->conf.enableCompression) { 1096 case NG_PPP_COMPRESS_NONE: 1097 NG_FREE_ITEM(item); 1098 return (ENXIO); 1099 case NG_PPP_COMPRESS_FULL: 1100 { 1101 struct mbuf *m; 1102 1103 NGI_GET_M(item, m); 1104 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1105 NG_FREE_ITEM(item); 1106 return (EIO); 1107 } 1108 NGI_M(item) = m; 1109 if (!PROT_VALID(proto)) { 1110 NG_FREE_ITEM(item); 1111 return (EIO); 1112 } 1113 } 1114 break; 1115 default: 1116 proto = PROT_COMPD; 1117 break; 1118 } 1119 return (ng_ppp_crypt_xmit(node, item, proto)); 1120 } 1121 1122 static int 1123 ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1124 { 1125 const priv_p priv = NG_NODE_PRIVATE(node); 1126 1127 if (proto < 0x4000 && 1128 ((proto == PROT_COMPD && priv->conf.enableDecompression) || 1129 priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) && 1130 priv->hooks[HOOK_INDEX_DECOMPRESS] != NULL) { 1131 int error; 1132 1133 if (priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) { 1134 struct mbuf *m; 1135 NGI_GET_M(item, m); 1136 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1137 NG_FREE_ITEM(item); 1138 return (EIO); 1139 } 1140 NGI_M(item) = m; 1141 } 1142 1143 /* Send packet out hook. */ 1144 NG_FWD_ITEM_HOOK(error, item, 1145 priv->hooks[HOOK_INDEX_DECOMPRESS]); 1146 return (error); 1147 } else if (proto == PROT_COMPD) { 1148 /* Disabled protos MUST be silently discarded, but 1149 * unsupported MUST not. Let user-level decide this. */ 1150 return (ng_ppp_bypass(node, item, proto, linkNum)); 1151 } 1152 1153 return (ng_ppp_hcomp_recv(node, item, proto, linkNum)); 1154 } 1155 1156 /* 1157 * Receive data on a hook decompress. 1158 */ 1159 static int 1160 ng_ppp_rcvdata_decompress(hook_p hook, item_p item) 1161 { 1162 const node_p node = NG_HOOK_NODE(hook); 1163 const priv_p priv = NG_NODE_PRIVATE(node); 1164 uint16_t proto; 1165 struct mbuf *m; 1166 1167 if (!priv->conf.enableDecompression) { 1168 NG_FREE_ITEM(item); 1169 return (ENXIO); 1170 } 1171 NGI_GET_M(item, m); 1172 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1173 NG_FREE_ITEM(item); 1174 return (EIO); 1175 } 1176 NGI_M(item) = m; 1177 if (!PROT_VALID(proto)) { 1178 priv->bundleStats.badProtos++; 1179 NG_FREE_ITEM(item); 1180 return (EIO); 1181 } 1182 return (ng_ppp_hcomp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1183 } 1184 1185 /* 1186 * Encryption layer 1187 */ 1188 1189 static int 1190 ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto) 1191 { 1192 const priv_p priv = NG_NODE_PRIVATE(node); 1193 1194 if (priv->conf.enableEncryption && 1195 proto < 0x4000 && 1196 proto != PROT_CRYPTD && 1197 priv->hooks[HOOK_INDEX_ENCRYPT] != NULL) { 1198 struct mbuf *m; 1199 int error; 1200 1201 NGI_GET_M(item, m); 1202 if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) { 1203 NG_FREE_ITEM(item); 1204 return (ENOBUFS); 1205 } 1206 NGI_M(item) = m; 1207 1208 /* Send packet out hook. */ 1209 NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_ENCRYPT]); 1210 return (error); 1211 } 1212 1213 return (ng_ppp_mp_xmit(node, item, proto)); 1214 } 1215 1216 /* 1217 * Receive data on a hook encrypt. 1218 */ 1219 static int 1220 ng_ppp_rcvdata_encrypt(hook_p hook, item_p item) 1221 { 1222 const node_p node = NG_HOOK_NODE(hook); 1223 const priv_p priv = NG_NODE_PRIVATE(node); 1224 1225 if (!priv->conf.enableEncryption) { 1226 NG_FREE_ITEM(item); 1227 return (ENXIO); 1228 } 1229 return (ng_ppp_mp_xmit(node, item, PROT_CRYPTD)); 1230 } 1231 1232 static int 1233 ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1234 { 1235 const priv_p priv = NG_NODE_PRIVATE(node); 1236 1237 if (proto == PROT_CRYPTD) { 1238 if (priv->conf.enableDecryption && 1239 priv->hooks[HOOK_INDEX_DECRYPT] != NULL) { 1240 int error; 1241 1242 /* Send packet out hook. */ 1243 NG_FWD_ITEM_HOOK(error, item, 1244 priv->hooks[HOOK_INDEX_DECRYPT]); 1245 return (error); 1246 } else { 1247 /* Disabled protos MUST be silently discarded, but 1248 * unsupported MUST not. Let user-level decide this. */ 1249 return (ng_ppp_bypass(node, item, proto, linkNum)); 1250 } 1251 } 1252 1253 return (ng_ppp_comp_recv(node, item, proto, linkNum)); 1254 } 1255 1256 /* 1257 * Receive data on a hook decrypt. 1258 */ 1259 static int 1260 ng_ppp_rcvdata_decrypt(hook_p hook, item_p item) 1261 { 1262 const node_p node = NG_HOOK_NODE(hook); 1263 const priv_p priv = NG_NODE_PRIVATE(node); 1264 uint16_t proto; 1265 struct mbuf *m; 1266 1267 if (!priv->conf.enableDecryption) { 1268 NG_FREE_ITEM(item); 1269 return (ENXIO); 1270 } 1271 NGI_GET_M(item, m); 1272 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) { 1273 NG_FREE_ITEM(item); 1274 return (EIO); 1275 } 1276 NGI_M(item) = m; 1277 if (!PROT_VALID(proto)) { 1278 priv->bundleStats.badProtos++; 1279 NG_FREE_ITEM(item); 1280 return (EIO); 1281 } 1282 return (ng_ppp_comp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM)); 1283 } 1284 1285 /* 1286 * Link layer 1287 */ 1288 1289 static int 1290 ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, uint16_t linkNum, int plen) 1291 { 1292 const priv_p priv = NG_NODE_PRIVATE(node); 1293 struct ng_ppp_link *link; 1294 int len, error; 1295 struct mbuf *m; 1296 uint16_t mru; 1297 1298 /* Check if link correct. */ 1299 if (linkNum >= NG_PPP_MAX_LINKS) { 1300 ERROUT(ENETDOWN); 1301 } 1302 1303 /* Get link pointer (optimization). */ 1304 link = &priv->links[linkNum]; 1305 1306 /* Check link status (if real). */ 1307 if (link->hook == NULL) { 1308 ERROUT(ENETDOWN); 1309 } 1310 1311 /* Extract mbuf. */ 1312 NGI_GET_M(item, m); 1313 1314 /* Check peer's MRU for this link. */ 1315 mru = link->conf.mru; 1316 if (mru != 0 && m->m_pkthdr.len > mru) { 1317 NG_FREE_M(m); 1318 ERROUT(EMSGSIZE); 1319 } 1320 1321 /* Prepend protocol number, possibly compressed. */ 1322 if ((m = ng_ppp_addproto(m, proto, link->conf.enableProtoComp)) == 1323 NULL) { 1324 ERROUT(ENOBUFS); 1325 } 1326 1327 /* Prepend address and control field (unless compressed). */ 1328 if (proto == PROT_LCP || !link->conf.enableACFComp) { 1329 if ((m = ng_ppp_prepend(m, &ng_ppp_acf, 2)) == NULL) 1330 ERROUT(ENOBUFS); 1331 } 1332 1333 /* Deliver frame. */ 1334 len = m->m_pkthdr.len; 1335 NG_FWD_NEW_DATA(error, item, link->hook, m); 1336 1337 mtx_lock(&priv->xmtx); 1338 1339 /* Update link stats. */ 1340 link->stats.xmitFrames++; 1341 link->stats.xmitOctets += len; 1342 1343 /* Update bundle stats. */ 1344 if (plen > 0) { 1345 priv->bundleStats.xmitFrames++; 1346 priv->bundleStats.xmitOctets += plen; 1347 } 1348 1349 /* Update 'bytes in queue' counter. */ 1350 if (error == 0) { 1351 /* bytesInQueue and lastWrite required only for mp_strategy. */ 1352 if (priv->conf.enableMultilink && !priv->allLinksEqual && 1353 !priv->conf.enableRoundRobin) { 1354 /* If queue was empty, then mark this time. */ 1355 if (link->bytesInQueue == 0) 1356 getmicrouptime(&link->lastWrite); 1357 link->bytesInQueue += len + MP_AVERAGE_LINK_OVERHEAD; 1358 /* Limit max queue length to 50 pkts. BW can be defined 1359 incorrectly and link may not signal overload. */ 1360 if (link->bytesInQueue > 50 * 1600) 1361 link->bytesInQueue = 50 * 1600; 1362 } 1363 } 1364 mtx_unlock(&priv->xmtx); 1365 return (error); 1366 1367 done: 1368 NG_FREE_ITEM(item); 1369 return (error); 1370 } 1371 1372 /* 1373 * Receive data on a hook linkX. 1374 */ 1375 static int 1376 ng_ppp_rcvdata(hook_p hook, item_p item) 1377 { 1378 const node_p node = NG_HOOK_NODE(hook); 1379 const priv_p priv = NG_NODE_PRIVATE(node); 1380 const int index = (intptr_t)NG_HOOK_PRIVATE(hook); 1381 const uint16_t linkNum = (uint16_t)~index; 1382 struct ng_ppp_link * const link = &priv->links[linkNum]; 1383 uint16_t proto; 1384 struct mbuf *m; 1385 int error = 0; 1386 1387 KASSERT(linkNum < NG_PPP_MAX_LINKS, 1388 ("%s: bogus index 0x%x", __func__, index)); 1389 1390 NGI_GET_M(item, m); 1391 1392 mtx_lock(&priv->rmtx); 1393 1394 /* Stats */ 1395 link->stats.recvFrames++; 1396 link->stats.recvOctets += m->m_pkthdr.len; 1397 1398 /* Strip address and control fields, if present. */ 1399 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1400 ERROUT(ENOBUFS); 1401 if (mtod(m, uint8_t *)[0] == 0xff && 1402 mtod(m, uint8_t *)[1] == 0x03) 1403 m_adj(m, 2); 1404 1405 /* Get protocol number */ 1406 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1407 ERROUT(ENOBUFS); 1408 NGI_M(item) = m; /* Put changed m back into item. */ 1409 1410 if (!PROT_VALID(proto)) { 1411 link->stats.badProtos++; 1412 ERROUT(EIO); 1413 } 1414 1415 /* LCP packets must go directly to bypass. */ 1416 if (proto >= 0xB000) { 1417 mtx_unlock(&priv->rmtx); 1418 return (ng_ppp_bypass(node, item, proto, linkNum)); 1419 } 1420 1421 /* Other packets are denied on a disabled link. */ 1422 if (!link->conf.enableLink) 1423 ERROUT(ENXIO); 1424 1425 /* Proceed to multilink layer. Mutex will be unlocked inside. */ 1426 error = ng_ppp_mp_recv(node, item, proto, linkNum); 1427 mtx_assert(&priv->rmtx, MA_NOTOWNED); 1428 return (error); 1429 1430 done: 1431 mtx_unlock(&priv->rmtx); 1432 NG_FREE_ITEM(item); 1433 return (error); 1434 } 1435 1436 /* 1437 * Multilink layer 1438 */ 1439 1440 /* 1441 * Handle an incoming multi-link fragment 1442 * 1443 * The fragment reassembly algorithm is somewhat complex. This is mainly 1444 * because we are required not to reorder the reconstructed packets, yet 1445 * fragments are only guaranteed to arrive in order on a per-link basis. 1446 * In other words, when we have a complete packet ready, but the previous 1447 * packet is still incomplete, we have to decide between delivering the 1448 * complete packet and throwing away the incomplete one, or waiting to 1449 * see if the remainder of the incomplete one arrives, at which time we 1450 * can deliver both packets, in order. 1451 * 1452 * This problem is exacerbated by "sequence number slew", which is when 1453 * the sequence numbers coming in from different links are far apart from 1454 * each other. In particular, certain unnamed equipment (*cough* Ascend) 1455 * has been seen to generate sequence number slew of up to 10 on an ISDN 1456 * 2B-channel MP link. There is nothing invalid about sequence number slew 1457 * but it makes the reasssembly process have to work harder. 1458 * 1459 * However, the peer is required to transmit fragments in order on each 1460 * link. That means if we define MSEQ as the minimum over all links of 1461 * the highest sequence number received on that link, then we can always 1462 * give up any hope of receiving a fragment with sequence number < MSEQ in 1463 * the future (all of this using 'wraparound' sequence number space). 1464 * Therefore we can always immediately throw away incomplete packets 1465 * missing fragments with sequence numbers < MSEQ. 1466 * 1467 * Here is an overview of our algorithm: 1468 * 1469 * o Received fragments are inserted into a queue, for which we 1470 * maintain these invariants between calls to this function: 1471 * 1472 * - Fragments are ordered in the queue by sequence number 1473 * - If a complete packet is at the head of the queue, then 1474 * the first fragment in the packet has seq# > MSEQ + 1 1475 * (otherwise, we could deliver it immediately) 1476 * - If any fragments have seq# < MSEQ, then they are necessarily 1477 * part of a packet whose missing seq#'s are all > MSEQ (otherwise, 1478 * we can throw them away because they'll never be completed) 1479 * - The queue contains at most MP_MAX_QUEUE_LEN fragments 1480 * 1481 * o We have a periodic timer that checks the queue for the first 1482 * complete packet that has been sitting in the queue "too long". 1483 * When one is detected, all previous (incomplete) fragments are 1484 * discarded, their missing fragments are declared lost and MSEQ 1485 * is increased. 1486 * 1487 * o If we recieve a fragment with seq# < MSEQ, we throw it away 1488 * because we've already delcared it lost. 1489 * 1490 * This assumes linkNum != NG_PPP_BUNDLE_LINKNUM. 1491 */ 1492 static int 1493 ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum) 1494 { 1495 const priv_p priv = NG_NODE_PRIVATE(node); 1496 struct ng_ppp_link *const link = &priv->links[linkNum]; 1497 struct ng_ppp_frag *frag; 1498 struct ng_ppp_frag *qent; 1499 int i, diff, inserted; 1500 struct mbuf *m; 1501 int error = 0; 1502 1503 if ((!priv->conf.enableMultilink) || proto != PROT_MP) { 1504 /* Stats */ 1505 priv->bundleStats.recvFrames++; 1506 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1507 1508 mtx_unlock(&priv->rmtx); 1509 return (ng_ppp_crypt_recv(node, item, proto, linkNum)); 1510 } 1511 1512 NGI_GET_M(item, m); 1513 1514 /* Get a new frag struct from the free queue */ 1515 if ((frag = TAILQ_FIRST(&priv->fragsfree)) == NULL) { 1516 printf("No free fragments headers in ng_ppp!\n"); 1517 NG_FREE_M(m); 1518 goto process; 1519 } 1520 1521 /* Extract fragment information from MP header */ 1522 if (priv->conf.recvShortSeq) { 1523 uint16_t shdr; 1524 1525 if (m->m_pkthdr.len < 2) { 1526 link->stats.runts++; 1527 NG_FREE_M(m); 1528 ERROUT(EINVAL); 1529 } 1530 if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) 1531 ERROUT(ENOBUFS); 1532 1533 shdr = ntohs(*mtod(m, uint16_t *)); 1534 frag->seq = MP_SHORT_EXTEND(shdr); 1535 frag->first = (shdr & MP_SHORT_FIRST_FLAG) != 0; 1536 frag->last = (shdr & MP_SHORT_LAST_FLAG) != 0; 1537 diff = MP_SHORT_SEQ_DIFF(frag->seq, priv->mseq); 1538 m_adj(m, 2); 1539 } else { 1540 uint32_t lhdr; 1541 1542 if (m->m_pkthdr.len < 4) { 1543 link->stats.runts++; 1544 NG_FREE_M(m); 1545 ERROUT(EINVAL); 1546 } 1547 if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) 1548 ERROUT(ENOBUFS); 1549 1550 lhdr = ntohl(*mtod(m, uint32_t *)); 1551 frag->seq = MP_LONG_EXTEND(lhdr); 1552 frag->first = (lhdr & MP_LONG_FIRST_FLAG) != 0; 1553 frag->last = (lhdr & MP_LONG_LAST_FLAG) != 0; 1554 diff = MP_LONG_SEQ_DIFF(frag->seq, priv->mseq); 1555 m_adj(m, 4); 1556 } 1557 frag->data = m; 1558 getmicrouptime(&frag->timestamp); 1559 1560 /* If sequence number is < MSEQ, we've already declared this 1561 fragment as lost, so we have no choice now but to drop it */ 1562 if (diff < 0) { 1563 link->stats.dropFragments++; 1564 NG_FREE_M(m); 1565 ERROUT(0); 1566 } 1567 1568 /* Update highest received sequence number on this link and MSEQ */ 1569 priv->mseq = link->seq = frag->seq; 1570 for (i = 0; i < priv->numActiveLinks; i++) { 1571 struct ng_ppp_link *const alink = 1572 &priv->links[priv->activeLinks[i]]; 1573 1574 if (MP_RECV_SEQ_DIFF(priv, alink->seq, priv->mseq) < 0) 1575 priv->mseq = alink->seq; 1576 } 1577 1578 /* Remove frag struct from free queue. */ 1579 TAILQ_REMOVE(&priv->fragsfree, frag, f_qent); 1580 1581 /* Add fragment to queue, which is sorted by sequence number */ 1582 inserted = 0; 1583 TAILQ_FOREACH_REVERSE(qent, &priv->frags, ng_ppp_fraglist, f_qent) { 1584 diff = MP_RECV_SEQ_DIFF(priv, frag->seq, qent->seq); 1585 if (diff > 0) { 1586 TAILQ_INSERT_AFTER(&priv->frags, qent, frag, f_qent); 1587 inserted = 1; 1588 break; 1589 } else if (diff == 0) { /* should never happen! */ 1590 link->stats.dupFragments++; 1591 NG_FREE_M(frag->data); 1592 TAILQ_INSERT_HEAD(&priv->fragsfree, frag, f_qent); 1593 ERROUT(EINVAL); 1594 } 1595 } 1596 if (!inserted) 1597 TAILQ_INSERT_HEAD(&priv->frags, frag, f_qent); 1598 1599 process: 1600 /* Process the queue */ 1601 /* NOTE: rmtx will be unlocked for sending time! */ 1602 error = ng_ppp_frag_process(node, item); 1603 mtx_unlock(&priv->rmtx); 1604 return (error); 1605 1606 done: 1607 mtx_unlock(&priv->rmtx); 1608 NG_FREE_ITEM(item); 1609 return (error); 1610 } 1611 1612 /************************************************************************ 1613 HELPER STUFF 1614 ************************************************************************/ 1615 1616 /* 1617 * If new mseq > current then set it and update all active links 1618 */ 1619 static void 1620 ng_ppp_bump_mseq(node_p node, int32_t new_mseq) 1621 { 1622 const priv_p priv = NG_NODE_PRIVATE(node); 1623 int i; 1624 1625 if (MP_RECV_SEQ_DIFF(priv, priv->mseq, new_mseq) < 0) { 1626 priv->mseq = new_mseq; 1627 for (i = 0; i < priv->numActiveLinks; i++) { 1628 struct ng_ppp_link *const alink = 1629 &priv->links[priv->activeLinks[i]]; 1630 1631 if (MP_RECV_SEQ_DIFF(priv, 1632 alink->seq, new_mseq) < 0) 1633 alink->seq = new_mseq; 1634 } 1635 } 1636 } 1637 1638 /* 1639 * Examine our list of fragments, and determine if there is a 1640 * complete and deliverable packet at the head of the list. 1641 * Return 1 if so, zero otherwise. 1642 */ 1643 static int 1644 ng_ppp_check_packet(node_p node) 1645 { 1646 const priv_p priv = NG_NODE_PRIVATE(node); 1647 struct ng_ppp_frag *qent, *qnext; 1648 1649 /* Check for empty queue */ 1650 if (TAILQ_EMPTY(&priv->frags)) 1651 return (0); 1652 1653 /* Check first fragment is the start of a deliverable packet */ 1654 qent = TAILQ_FIRST(&priv->frags); 1655 if (!qent->first || MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) > 1) 1656 return (0); 1657 1658 /* Check that all the fragments are there */ 1659 while (!qent->last) { 1660 qnext = TAILQ_NEXT(qent, f_qent); 1661 if (qnext == NULL) /* end of queue */ 1662 return (0); 1663 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq)) 1664 return (0); 1665 qent = qnext; 1666 } 1667 1668 /* Got one */ 1669 return (1); 1670 } 1671 1672 /* 1673 * Pull a completed packet off the head of the incoming fragment queue. 1674 * This assumes there is a completed packet there to pull off. 1675 */ 1676 static void 1677 ng_ppp_get_packet(node_p node, struct mbuf **mp) 1678 { 1679 const priv_p priv = NG_NODE_PRIVATE(node); 1680 struct ng_ppp_frag *qent, *qnext; 1681 struct mbuf *m = NULL, *tail; 1682 1683 qent = TAILQ_FIRST(&priv->frags); 1684 KASSERT(!TAILQ_EMPTY(&priv->frags) && qent->first, 1685 ("%s: no packet", __func__)); 1686 for (tail = NULL; qent != NULL; qent = qnext) { 1687 qnext = TAILQ_NEXT(qent, f_qent); 1688 KASSERT(!TAILQ_EMPTY(&priv->frags), 1689 ("%s: empty q", __func__)); 1690 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1691 if (tail == NULL) 1692 tail = m = qent->data; 1693 else { 1694 m->m_pkthdr.len += qent->data->m_pkthdr.len; 1695 tail->m_next = qent->data; 1696 } 1697 while (tail->m_next != NULL) 1698 tail = tail->m_next; 1699 if (qent->last) { 1700 qnext = NULL; 1701 /* Bump MSEQ if necessary */ 1702 ng_ppp_bump_mseq(node, qent->seq); 1703 } 1704 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1705 } 1706 *mp = m; 1707 } 1708 1709 /* 1710 * Trim fragments from the queue whose packets can never be completed. 1711 * This assumes a complete packet is NOT at the beginning of the queue. 1712 * Returns 1 if fragments were removed, zero otherwise. 1713 */ 1714 static int 1715 ng_ppp_frag_trim(node_p node) 1716 { 1717 const priv_p priv = NG_NODE_PRIVATE(node); 1718 struct ng_ppp_frag *qent, *qnext = NULL; 1719 int removed = 0; 1720 1721 /* Scan for "dead" fragments and remove them */ 1722 while (1) { 1723 int dead = 0; 1724 1725 /* If queue is empty, we're done */ 1726 if (TAILQ_EMPTY(&priv->frags)) 1727 break; 1728 1729 /* Determine whether first fragment can ever be completed */ 1730 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1731 if (MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) >= 0) 1732 break; 1733 qnext = TAILQ_NEXT(qent, f_qent); 1734 KASSERT(qnext != NULL, 1735 ("%s: last frag < MSEQ?", __func__)); 1736 if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq) 1737 || qent->last || qnext->first) { 1738 dead = 1; 1739 break; 1740 } 1741 } 1742 if (!dead) 1743 break; 1744 1745 /* Remove fragment and all others in the same packet */ 1746 while ((qent = TAILQ_FIRST(&priv->frags)) != qnext) { 1747 KASSERT(!TAILQ_EMPTY(&priv->frags), 1748 ("%s: empty q", __func__)); 1749 priv->bundleStats.dropFragments++; 1750 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1751 NG_FREE_M(qent->data); 1752 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1753 removed = 1; 1754 } 1755 } 1756 return (removed); 1757 } 1758 1759 /* 1760 * Drop fragments on queue overflow. 1761 * Returns 1 if fragments were removed, zero otherwise. 1762 */ 1763 static int 1764 ng_ppp_frag_drop(node_p node) 1765 { 1766 const priv_p priv = NG_NODE_PRIVATE(node); 1767 1768 /* Check queue length */ 1769 if (TAILQ_EMPTY(&priv->fragsfree)) { 1770 struct ng_ppp_frag *qent; 1771 1772 /* Get oldest fragment */ 1773 KASSERT(!TAILQ_EMPTY(&priv->frags), 1774 ("%s: empty q", __func__)); 1775 qent = TAILQ_FIRST(&priv->frags); 1776 1777 /* Bump MSEQ if necessary */ 1778 ng_ppp_bump_mseq(node, qent->seq); 1779 1780 /* Drop it */ 1781 priv->bundleStats.dropFragments++; 1782 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1783 NG_FREE_M(qent->data); 1784 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1785 1786 return (1); 1787 } 1788 return (0); 1789 } 1790 1791 /* 1792 * Run the queue, restoring the queue invariants 1793 */ 1794 static int 1795 ng_ppp_frag_process(node_p node, item_p oitem) 1796 { 1797 const priv_p priv = NG_NODE_PRIVATE(node); 1798 struct mbuf *m; 1799 item_p item; 1800 uint16_t proto; 1801 1802 do { 1803 /* Deliver any deliverable packets */ 1804 while (ng_ppp_check_packet(node)) { 1805 ng_ppp_get_packet(node, &m); 1806 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1807 continue; 1808 if (!PROT_VALID(proto)) { 1809 priv->bundleStats.badProtos++; 1810 NG_FREE_M(m); 1811 continue; 1812 } 1813 if (oitem) { /* If original item present - reuse it. */ 1814 item = oitem; 1815 oitem = NULL; 1816 NGI_M(item) = m; 1817 } else { 1818 item = ng_package_data(m, NG_NOFLAGS); 1819 } 1820 if (item != NULL) { 1821 /* Stats */ 1822 priv->bundleStats.recvFrames++; 1823 priv->bundleStats.recvOctets += 1824 NGI_M(item)->m_pkthdr.len; 1825 1826 /* Drop mutex for the sending time. 1827 * Priv may change, but we are ready! 1828 */ 1829 mtx_unlock(&priv->rmtx); 1830 ng_ppp_crypt_recv(node, item, proto, 1831 NG_PPP_BUNDLE_LINKNUM); 1832 mtx_lock(&priv->rmtx); 1833 } 1834 } 1835 /* Delete dead fragments and try again */ 1836 } while (ng_ppp_frag_trim(node) || ng_ppp_frag_drop(node)); 1837 1838 /* If we haven't reused original item - free it. */ 1839 if (oitem) NG_FREE_ITEM(oitem); 1840 1841 /* Done */ 1842 return (0); 1843 } 1844 1845 /* 1846 * Check for 'stale' completed packets that need to be delivered 1847 * 1848 * If a link goes down or has a temporary failure, MSEQ can get 1849 * "stuck", because no new incoming fragments appear on that link. 1850 * This can cause completed packets to never get delivered if 1851 * their sequence numbers are all > MSEQ + 1. 1852 * 1853 * This routine checks how long all of the completed packets have 1854 * been sitting in the queue, and if too long, removes fragments 1855 * from the queue and increments MSEQ to allow them to be delivered. 1856 */ 1857 static void 1858 ng_ppp_frag_checkstale(node_p node) 1859 { 1860 const priv_p priv = NG_NODE_PRIVATE(node); 1861 struct ng_ppp_frag *qent, *beg, *end; 1862 struct timeval now, age; 1863 struct mbuf *m; 1864 int seq; 1865 item_p item; 1866 int endseq; 1867 uint16_t proto; 1868 1869 now.tv_sec = 0; /* uninitialized state */ 1870 while (1) { 1871 1872 /* If queue is empty, we're done */ 1873 if (TAILQ_EMPTY(&priv->frags)) 1874 break; 1875 1876 /* Find the first complete packet in the queue */ 1877 beg = end = NULL; 1878 seq = TAILQ_FIRST(&priv->frags)->seq; 1879 TAILQ_FOREACH(qent, &priv->frags, f_qent) { 1880 if (qent->first) 1881 beg = qent; 1882 else if (qent->seq != seq) 1883 beg = NULL; 1884 if (beg != NULL && qent->last) { 1885 end = qent; 1886 break; 1887 } 1888 seq = MP_NEXT_RECV_SEQ(priv, seq); 1889 } 1890 1891 /* If none found, exit */ 1892 if (end == NULL) 1893 break; 1894 1895 /* Get current time (we assume we've been up for >= 1 second) */ 1896 if (now.tv_sec == 0) 1897 getmicrouptime(&now); 1898 1899 /* Check if packet has been queued too long */ 1900 age = now; 1901 timevalsub(&age, &beg->timestamp); 1902 if (timevalcmp(&age, &ng_ppp_max_staleness, < )) 1903 break; 1904 1905 /* Throw away junk fragments in front of the completed packet */ 1906 while ((qent = TAILQ_FIRST(&priv->frags)) != beg) { 1907 KASSERT(!TAILQ_EMPTY(&priv->frags), 1908 ("%s: empty q", __func__)); 1909 priv->bundleStats.dropFragments++; 1910 TAILQ_REMOVE(&priv->frags, qent, f_qent); 1911 NG_FREE_M(qent->data); 1912 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 1913 } 1914 1915 /* Extract completed packet */ 1916 endseq = end->seq; 1917 ng_ppp_get_packet(node, &m); 1918 1919 if ((m = ng_ppp_cutproto(m, &proto)) == NULL) 1920 continue; 1921 if (!PROT_VALID(proto)) { 1922 priv->bundleStats.badProtos++; 1923 NG_FREE_M(m); 1924 continue; 1925 } 1926 1927 /* Deliver packet */ 1928 if ((item = ng_package_data(m, NG_NOFLAGS)) != NULL) { 1929 /* Stats */ 1930 priv->bundleStats.recvFrames++; 1931 priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len; 1932 1933 ng_ppp_crypt_recv(node, item, proto, 1934 NG_PPP_BUNDLE_LINKNUM); 1935 } 1936 } 1937 } 1938 1939 /* 1940 * Periodically call ng_ppp_frag_checkstale() 1941 */ 1942 static void 1943 ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, int arg2) 1944 { 1945 /* XXX: is this needed? */ 1946 if (NG_NODE_NOT_VALID(node)) 1947 return; 1948 1949 /* Scan the fragment queue */ 1950 ng_ppp_frag_checkstale(node); 1951 1952 /* Start timer again */ 1953 ng_ppp_start_frag_timer(node); 1954 } 1955 1956 /* 1957 * Deliver a frame out on the bundle, i.e., figure out how to fragment 1958 * the frame across the individual PPP links and do so. 1959 */ 1960 static int 1961 ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto) 1962 { 1963 const priv_p priv = NG_NODE_PRIVATE(node); 1964 const int hdr_len = priv->conf.xmitShortSeq ? 2 : 4; 1965 int distrib[NG_PPP_MAX_LINKS]; 1966 int firstFragment; 1967 int activeLinkNum; 1968 struct mbuf *m; 1969 int plen; 1970 int frags; 1971 int32_t seq; 1972 1973 /* At least one link must be active */ 1974 if (priv->numActiveLinks == 0) { 1975 NG_FREE_ITEM(item); 1976 return (ENETDOWN); 1977 } 1978 1979 /* Save length for later stats. */ 1980 plen = NGI_M(item)->m_pkthdr.len; 1981 1982 if (!priv->conf.enableMultilink) { 1983 return (ng_ppp_link_xmit(node, item, proto, 1984 priv->activeLinks[0], plen)); 1985 } 1986 1987 /* Check peer's MRRU for this bundle. */ 1988 if (plen > priv->conf.mrru) { 1989 NG_FREE_ITEM(item); 1990 return (EMSGSIZE); 1991 } 1992 1993 /* Extract mbuf. */ 1994 NGI_GET_M(item, m); 1995 1996 /* Prepend protocol number, possibly compressed. */ 1997 if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) { 1998 NG_FREE_ITEM(item); 1999 return (ENOBUFS); 2000 } 2001 2002 /* Clear distribution plan */ 2003 bzero(&distrib, priv->numActiveLinks * sizeof(distrib[0])); 2004 2005 mtx_lock(&priv->xmtx); 2006 2007 /* Round-robin strategy */ 2008 if (priv->conf.enableRoundRobin) { 2009 activeLinkNum = priv->lastLink++ % priv->numActiveLinks; 2010 distrib[activeLinkNum] = m->m_pkthdr.len; 2011 goto deliver; 2012 } 2013 2014 /* Strategy when all links are equivalent (optimize the common case) */ 2015 if (priv->allLinksEqual) { 2016 int numFrags, fraction, remain; 2017 int i; 2018 2019 /* Calculate optimal fragment count */ 2020 numFrags = priv->numActiveLinks; 2021 if (numFrags > m->m_pkthdr.len / MP_MIN_FRAG_LEN) 2022 numFrags = m->m_pkthdr.len / MP_MIN_FRAG_LEN; 2023 if (numFrags == 0) 2024 numFrags = 1; 2025 2026 fraction = m->m_pkthdr.len / numFrags; 2027 remain = m->m_pkthdr.len - (fraction * numFrags); 2028 2029 /* Assign distribution */ 2030 for (i = 0; i < numFrags; i++) { 2031 distrib[priv->lastLink++ % priv->numActiveLinks] 2032 = fraction + (((remain--) > 0)?1:0); 2033 } 2034 goto deliver; 2035 } 2036 2037 /* Strategy when all links are not equivalent */ 2038 ng_ppp_mp_strategy(node, m->m_pkthdr.len, distrib); 2039 2040 deliver: 2041 /* Estimate fragments count */ 2042 frags = 0; 2043 for (activeLinkNum = priv->numActiveLinks - 1; 2044 activeLinkNum >= 0; activeLinkNum--) { 2045 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2046 struct ng_ppp_link *const link = &priv->links[linkNum]; 2047 2048 frags += (distrib[activeLinkNum] + link->conf.mru - hdr_len - 1) / 2049 (link->conf.mru - hdr_len); 2050 } 2051 2052 /* Get out initial sequence number */ 2053 seq = priv->xseq; 2054 2055 /* Update next sequence number */ 2056 if (priv->conf.xmitShortSeq) { 2057 priv->xseq = (seq + frags) & MP_SHORT_SEQ_MASK; 2058 } else { 2059 priv->xseq = (seq + frags) & MP_LONG_SEQ_MASK; 2060 } 2061 2062 mtx_unlock(&priv->xmtx); 2063 2064 /* Send alloted portions of frame out on the link(s) */ 2065 for (firstFragment = 1, activeLinkNum = priv->numActiveLinks - 1; 2066 activeLinkNum >= 0; activeLinkNum--) { 2067 const uint16_t linkNum = priv->activeLinks[activeLinkNum]; 2068 struct ng_ppp_link *const link = &priv->links[linkNum]; 2069 2070 /* Deliver fragment(s) out the next link */ 2071 for ( ; distrib[activeLinkNum] > 0; firstFragment = 0) { 2072 int len, lastFragment, error; 2073 struct mbuf *m2; 2074 2075 /* Calculate fragment length; don't exceed link MTU */ 2076 len = distrib[activeLinkNum]; 2077 if (len > link->conf.mru - hdr_len) 2078 len = link->conf.mru - hdr_len; 2079 distrib[activeLinkNum] -= len; 2080 lastFragment = (len == m->m_pkthdr.len); 2081 2082 /* Split off next fragment as "m2" */ 2083 m2 = m; 2084 if (!lastFragment) { 2085 struct mbuf *n = m_split(m, len, M_DONTWAIT); 2086 2087 if (n == NULL) { 2088 NG_FREE_M(m); 2089 if (firstFragment) 2090 NG_FREE_ITEM(item); 2091 return (ENOMEM); 2092 } 2093 m_tag_copy_chain(n, m, M_DONTWAIT); 2094 m = n; 2095 } 2096 2097 /* Prepend MP header */ 2098 if (priv->conf.xmitShortSeq) { 2099 uint16_t shdr; 2100 2101 shdr = seq; 2102 seq = (seq + 1) & MP_SHORT_SEQ_MASK; 2103 if (firstFragment) 2104 shdr |= MP_SHORT_FIRST_FLAG; 2105 if (lastFragment) 2106 shdr |= MP_SHORT_LAST_FLAG; 2107 shdr = htons(shdr); 2108 m2 = ng_ppp_prepend(m2, &shdr, 2); 2109 } else { 2110 uint32_t lhdr; 2111 2112 lhdr = seq; 2113 seq = (seq + 1) & MP_LONG_SEQ_MASK; 2114 if (firstFragment) 2115 lhdr |= MP_LONG_FIRST_FLAG; 2116 if (lastFragment) 2117 lhdr |= MP_LONG_LAST_FLAG; 2118 lhdr = htonl(lhdr); 2119 m2 = ng_ppp_prepend(m2, &lhdr, 4); 2120 } 2121 if (m2 == NULL) { 2122 if (!lastFragment) 2123 m_freem(m); 2124 if (firstFragment) 2125 NG_FREE_ITEM(item); 2126 return (ENOBUFS); 2127 } 2128 2129 /* Send fragment */ 2130 if (firstFragment) { 2131 NGI_M(item) = m2; /* Reuse original item. */ 2132 } else { 2133 item = ng_package_data(m2, NG_NOFLAGS); 2134 } 2135 if (item != NULL) { 2136 error = ng_ppp_link_xmit(node, item, PROT_MP, 2137 linkNum, (firstFragment?plen:0)); 2138 if (error != 0) { 2139 if (!lastFragment) 2140 NG_FREE_M(m); 2141 return (error); 2142 } 2143 } 2144 } 2145 } 2146 2147 /* Done */ 2148 return (0); 2149 } 2150 2151 /* 2152 * Computing the optimal fragmentation 2153 * ----------------------------------- 2154 * 2155 * This routine tries to compute the optimal fragmentation pattern based 2156 * on each link's latency, bandwidth, and calculated additional latency. 2157 * The latter quantity is the additional latency caused by previously 2158 * written data that has not been transmitted yet. 2159 * 2160 * This algorithm is only useful when not all of the links have the 2161 * same latency and bandwidth values. 2162 * 2163 * The essential idea is to make the last bit of each fragment of the 2164 * frame arrive at the opposite end at the exact same time. This greedy 2165 * algorithm is optimal, in that no other scheduling could result in any 2166 * packet arriving any sooner unless packets are delivered out of order. 2167 * 2168 * Suppose link i has bandwidth b_i (in tens of bytes per milisecond) and 2169 * latency l_i (in miliseconds). Consider the function function f_i(t) 2170 * which is equal to the number of bytes that will have arrived at 2171 * the peer after t miliseconds if we start writing continuously at 2172 * time t = 0. Then f_i(t) = b_i * (t - l_i) = ((b_i * t) - (l_i * b_i). 2173 * That is, f_i(t) is a line with slope b_i and y-intersect -(l_i * b_i). 2174 * Note that the y-intersect is always <= zero because latency can't be 2175 * negative. Note also that really the function is f_i(t) except when 2176 * f_i(t) is negative, in which case the function is zero. To take 2177 * care of this, let Q_i(t) = { if (f_i(t) > 0) return 1; else return 0; }. 2178 * So the actual number of bytes that will have arrived at the peer after 2179 * t miliseconds is f_i(t) * Q_i(t). 2180 * 2181 * At any given time, each link has some additional latency a_i >= 0 2182 * due to previously written fragment(s) which are still in the queue. 2183 * This value is easily computed from the time since last transmission, 2184 * the previous latency value, the number of bytes written, and the 2185 * link's bandwidth. 2186 * 2187 * Assume that l_i includes any a_i already, and that the links are 2188 * sorted by latency, so that l_i <= l_{i+1}. 2189 * 2190 * Let N be the total number of bytes in the current frame we are sending. 2191 * 2192 * Suppose we were to start writing bytes at time t = 0 on all links 2193 * simultaneously, which is the most we can possibly do. Then let 2194 * F(t) be equal to the total number of bytes received by the peer 2195 * after t miliseconds. Then F(t) = Sum_i (f_i(t) * Q_i(t)). 2196 * 2197 * Our goal is simply this: fragment the frame across the links such 2198 * that the peer is able to reconstruct the completed frame as soon as 2199 * possible, i.e., at the least possible value of t. Call this value t_0. 2200 * 2201 * Then it follows that F(t_0) = N. Our strategy is first to find the value 2202 * of t_0, and then deduce how many bytes to write to each link. 2203 * 2204 * Rewriting F(t_0): 2205 * 2206 * t_0 = ( N + Sum_i ( l_i * b_i * Q_i(t_0) ) ) / Sum_i ( b_i * Q_i(t_0) ) 2207 * 2208 * Now, we note that Q_i(t) is constant for l_i <= t <= l_{i+1}. t_0 will 2209 * lie in one of these ranges. To find it, we just need to find the i such 2210 * that F(l_i) <= N <= F(l_{i+1}). Then we compute all the constant values 2211 * for Q_i() in this range, plug in the remaining values, solving for t_0. 2212 * 2213 * Once t_0 is known, then the number of bytes to send on link i is 2214 * just f_i(t_0) * Q_i(t_0). 2215 * 2216 * In other words, we start allocating bytes to the links one at a time. 2217 * We keep adding links until the frame is completely sent. Some links 2218 * may not get any bytes because their latency is too high. 2219 * 2220 * Is all this work really worth the trouble? Depends on the situation. 2221 * The bigger the ratio of computer speed to link speed, and the more 2222 * important total bundle latency is (e.g., for interactive response time), 2223 * the more it's worth it. There is however the cost of calling this 2224 * function for every frame. The running time is O(n^2) where n is the 2225 * number of links that receive a non-zero number of bytes. 2226 * 2227 * Since latency is measured in miliseconds, the "resolution" of this 2228 * algorithm is one milisecond. 2229 * 2230 * To avoid this algorithm altogether, configure all links to have the 2231 * same latency and bandwidth. 2232 */ 2233 static void 2234 ng_ppp_mp_strategy(node_p node, int len, int *distrib) 2235 { 2236 const priv_p priv = NG_NODE_PRIVATE(node); 2237 int latency[NG_PPP_MAX_LINKS]; 2238 int sortByLatency[NG_PPP_MAX_LINKS]; 2239 int activeLinkNum; 2240 int t0, total, topSum, botSum; 2241 struct timeval now; 2242 int i, numFragments; 2243 2244 /* If only one link, this gets real easy */ 2245 if (priv->numActiveLinks == 1) { 2246 distrib[0] = len; 2247 return; 2248 } 2249 2250 /* Get current time */ 2251 getmicrouptime(&now); 2252 2253 /* Compute latencies for each link at this point in time */ 2254 for (activeLinkNum = 0; 2255 activeLinkNum < priv->numActiveLinks; activeLinkNum++) { 2256 struct ng_ppp_link *alink; 2257 struct timeval diff; 2258 int xmitBytes; 2259 2260 /* Start with base latency value */ 2261 alink = &priv->links[priv->activeLinks[activeLinkNum]]; 2262 latency[activeLinkNum] = alink->latency; 2263 sortByLatency[activeLinkNum] = activeLinkNum; /* see below */ 2264 2265 /* Any additional latency? */ 2266 if (alink->bytesInQueue == 0) 2267 continue; 2268 2269 /* Compute time delta since last write */ 2270 diff = now; 2271 timevalsub(&diff, &alink->lastWrite); 2272 2273 /* alink->bytesInQueue will be changed, mark change time. */ 2274 alink->lastWrite = now; 2275 2276 if (now.tv_sec < 0 || diff.tv_sec >= 10) { /* sanity */ 2277 alink->bytesInQueue = 0; 2278 continue; 2279 } 2280 2281 /* How many bytes could have transmitted since last write? */ 2282 xmitBytes = (alink->conf.bandwidth * 10 * diff.tv_sec) 2283 + (alink->conf.bandwidth * (diff.tv_usec / 1000)) / 100; 2284 alink->bytesInQueue -= xmitBytes; 2285 if (alink->bytesInQueue < 0) 2286 alink->bytesInQueue = 0; 2287 else 2288 latency[activeLinkNum] += 2289 (100 * alink->bytesInQueue) / alink->conf.bandwidth; 2290 } 2291 2292 /* Sort active links by latency */ 2293 qsort_r(sortByLatency, 2294 priv->numActiveLinks, sizeof(*sortByLatency), latency, ng_ppp_intcmp); 2295 2296 /* Find the interval we need (add links in sortByLatency[] order) */ 2297 for (numFragments = 1; 2298 numFragments < priv->numActiveLinks; numFragments++) { 2299 for (total = i = 0; i < numFragments; i++) { 2300 int flowTime; 2301 2302 flowTime = latency[sortByLatency[numFragments]] 2303 - latency[sortByLatency[i]]; 2304 total += ((flowTime * priv->links[ 2305 priv->activeLinks[sortByLatency[i]]].conf.bandwidth) 2306 + 99) / 100; 2307 } 2308 if (total >= len) 2309 break; 2310 } 2311 2312 /* Solve for t_0 in that interval */ 2313 for (topSum = botSum = i = 0; i < numFragments; i++) { 2314 int bw = priv->links[ 2315 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2316 2317 topSum += latency[sortByLatency[i]] * bw; /* / 100 */ 2318 botSum += bw; /* / 100 */ 2319 } 2320 t0 = ((len * 100) + topSum + botSum / 2) / botSum; 2321 2322 /* Compute f_i(t_0) all i */ 2323 for (total = i = 0; i < numFragments; i++) { 2324 int bw = priv->links[ 2325 priv->activeLinks[sortByLatency[i]]].conf.bandwidth; 2326 2327 distrib[sortByLatency[i]] = 2328 (bw * (t0 - latency[sortByLatency[i]]) + 50) / 100; 2329 total += distrib[sortByLatency[i]]; 2330 } 2331 2332 /* Deal with any rounding error */ 2333 if (total < len) { 2334 struct ng_ppp_link *fastLink = 2335 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2336 int fast = 0; 2337 2338 /* Find the fastest link */ 2339 for (i = 1; i < numFragments; i++) { 2340 struct ng_ppp_link *const link = 2341 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2342 2343 if (link->conf.bandwidth > fastLink->conf.bandwidth) { 2344 fast = i; 2345 fastLink = link; 2346 } 2347 } 2348 distrib[sortByLatency[fast]] += len - total; 2349 } else while (total > len) { 2350 struct ng_ppp_link *slowLink = 2351 &priv->links[priv->activeLinks[sortByLatency[0]]]; 2352 int delta, slow = 0; 2353 2354 /* Find the slowest link that still has bytes to remove */ 2355 for (i = 1; i < numFragments; i++) { 2356 struct ng_ppp_link *const link = 2357 &priv->links[priv->activeLinks[sortByLatency[i]]]; 2358 2359 if (distrib[sortByLatency[slow]] == 0 2360 || (distrib[sortByLatency[i]] > 0 2361 && link->conf.bandwidth < 2362 slowLink->conf.bandwidth)) { 2363 slow = i; 2364 slowLink = link; 2365 } 2366 } 2367 delta = total - len; 2368 if (delta > distrib[sortByLatency[slow]]) 2369 delta = distrib[sortByLatency[slow]]; 2370 distrib[sortByLatency[slow]] -= delta; 2371 total -= delta; 2372 } 2373 } 2374 2375 /* 2376 * Compare two integers 2377 */ 2378 static int 2379 ng_ppp_intcmp(void *latency, const void *v1, const void *v2) 2380 { 2381 const int index1 = *((const int *) v1); 2382 const int index2 = *((const int *) v2); 2383 2384 return ((int *)latency)[index1] - ((int *)latency)[index2]; 2385 } 2386 2387 /* 2388 * Prepend a possibly compressed PPP protocol number in front of a frame 2389 */ 2390 static struct mbuf * 2391 ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK) 2392 { 2393 if (compOK && PROT_COMPRESSABLE(proto)) { 2394 uint8_t pbyte = (uint8_t)proto; 2395 2396 return ng_ppp_prepend(m, &pbyte, 1); 2397 } else { 2398 uint16_t pword = htons((uint16_t)proto); 2399 2400 return ng_ppp_prepend(m, &pword, 2); 2401 } 2402 } 2403 2404 /* 2405 * Cut a possibly compressed PPP protocol number from the front of a frame. 2406 */ 2407 static struct mbuf * 2408 ng_ppp_cutproto(struct mbuf *m, uint16_t *proto) 2409 { 2410 2411 *proto = 0; 2412 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2413 return (NULL); 2414 2415 *proto = *mtod(m, uint8_t *); 2416 m_adj(m, 1); 2417 2418 if (!PROT_VALID(*proto)) { 2419 if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) 2420 return (NULL); 2421 2422 *proto = (*proto << 8) + *mtod(m, uint8_t *); 2423 m_adj(m, 1); 2424 } 2425 2426 return (m); 2427 } 2428 2429 /* 2430 * Prepend some bytes to an mbuf. 2431 */ 2432 static struct mbuf * 2433 ng_ppp_prepend(struct mbuf *m, const void *buf, int len) 2434 { 2435 M_PREPEND(m, len, M_DONTWAIT); 2436 if (m == NULL || (m->m_len < len && (m = m_pullup(m, len)) == NULL)) 2437 return (NULL); 2438 bcopy(buf, mtod(m, uint8_t *), len); 2439 return (m); 2440 } 2441 2442 /* 2443 * Update private information that is derived from other private information 2444 */ 2445 static void 2446 ng_ppp_update(node_p node, int newConf) 2447 { 2448 const priv_p priv = NG_NODE_PRIVATE(node); 2449 int i; 2450 2451 /* Update active status for VJ Compression */ 2452 priv->vjCompHooked = priv->hooks[HOOK_INDEX_VJC_IP] != NULL 2453 && priv->hooks[HOOK_INDEX_VJC_COMP] != NULL 2454 && priv->hooks[HOOK_INDEX_VJC_UNCOMP] != NULL 2455 && priv->hooks[HOOK_INDEX_VJC_VJIP] != NULL; 2456 2457 /* Increase latency for each link an amount equal to one MP header */ 2458 if (newConf) { 2459 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2460 int hdrBytes; 2461 2462 if (priv->links[i].conf.bandwidth == 0) 2463 continue; 2464 2465 hdrBytes = MP_AVERAGE_LINK_OVERHEAD 2466 + (priv->links[i].conf.enableACFComp ? 0 : 2) 2467 + (priv->links[i].conf.enableProtoComp ? 1 : 2) 2468 + (priv->conf.xmitShortSeq ? 2 : 4); 2469 priv->links[i].latency = 2470 priv->links[i].conf.latency + 2471 (hdrBytes / priv->links[i].conf.bandwidth + 50) / 100; 2472 } 2473 } 2474 2475 /* Update list of active links */ 2476 bzero(&priv->activeLinks, sizeof(priv->activeLinks)); 2477 priv->numActiveLinks = 0; 2478 priv->allLinksEqual = 1; 2479 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2480 struct ng_ppp_link *const link = &priv->links[i]; 2481 2482 /* Is link active? */ 2483 if (link->conf.enableLink && link->hook != NULL) { 2484 struct ng_ppp_link *link0; 2485 2486 /* Add link to list of active links */ 2487 priv->activeLinks[priv->numActiveLinks++] = i; 2488 link0 = &priv->links[priv->activeLinks[0]]; 2489 2490 /* Determine if all links are still equal */ 2491 if (link->latency != link0->latency 2492 || link->conf.bandwidth != link0->conf.bandwidth) 2493 priv->allLinksEqual = 0; 2494 2495 /* Initialize rec'd sequence number */ 2496 if (link->seq == MP_NOSEQ) { 2497 link->seq = (link == link0) ? 2498 MP_INITIAL_SEQ : link0->seq; 2499 } 2500 } else 2501 link->seq = MP_NOSEQ; 2502 } 2503 2504 /* Update MP state as multi-link is active or not */ 2505 if (priv->conf.enableMultilink && priv->numActiveLinks > 0) 2506 ng_ppp_start_frag_timer(node); 2507 else { 2508 ng_ppp_stop_frag_timer(node); 2509 ng_ppp_frag_reset(node); 2510 priv->xseq = MP_INITIAL_SEQ; 2511 priv->mseq = MP_INITIAL_SEQ; 2512 for (i = 0; i < NG_PPP_MAX_LINKS; i++) { 2513 struct ng_ppp_link *const link = &priv->links[i]; 2514 2515 bzero(&link->lastWrite, sizeof(link->lastWrite)); 2516 link->bytesInQueue = 0; 2517 link->seq = MP_NOSEQ; 2518 } 2519 } 2520 } 2521 2522 /* 2523 * Determine if a new configuration would represent a valid change 2524 * from the current configuration and link activity status. 2525 */ 2526 static int 2527 ng_ppp_config_valid(node_p node, const struct ng_ppp_node_conf *newConf) 2528 { 2529 const priv_p priv = NG_NODE_PRIVATE(node); 2530 int i, newNumLinksActive; 2531 2532 /* Check per-link config and count how many links would be active */ 2533 for (newNumLinksActive = i = 0; i < NG_PPP_MAX_LINKS; i++) { 2534 if (newConf->links[i].enableLink && priv->links[i].hook != NULL) 2535 newNumLinksActive++; 2536 if (!newConf->links[i].enableLink) 2537 continue; 2538 if (newConf->links[i].mru < MP_MIN_LINK_MRU) 2539 return (0); 2540 if (newConf->links[i].bandwidth == 0) 2541 return (0); 2542 if (newConf->links[i].bandwidth > NG_PPP_MAX_BANDWIDTH) 2543 return (0); 2544 if (newConf->links[i].latency > NG_PPP_MAX_LATENCY) 2545 return (0); 2546 } 2547 2548 /* Disallow changes to multi-link configuration while MP is active */ 2549 if (priv->numActiveLinks > 0 && newNumLinksActive > 0) { 2550 if (!priv->conf.enableMultilink 2551 != !newConf->bund.enableMultilink 2552 || !priv->conf.xmitShortSeq != !newConf->bund.xmitShortSeq 2553 || !priv->conf.recvShortSeq != !newConf->bund.recvShortSeq) 2554 return (0); 2555 } 2556 2557 /* At most one link can be active unless multi-link is enabled */ 2558 if (!newConf->bund.enableMultilink && newNumLinksActive > 1) 2559 return (0); 2560 2561 /* Configuration change would be valid */ 2562 return (1); 2563 } 2564 2565 /* 2566 * Free all entries in the fragment queue 2567 */ 2568 static void 2569 ng_ppp_frag_reset(node_p node) 2570 { 2571 const priv_p priv = NG_NODE_PRIVATE(node); 2572 struct ng_ppp_frag *qent, *qnext; 2573 2574 for (qent = TAILQ_FIRST(&priv->frags); qent; qent = qnext) { 2575 qnext = TAILQ_NEXT(qent, f_qent); 2576 NG_FREE_M(qent->data); 2577 TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent); 2578 } 2579 TAILQ_INIT(&priv->frags); 2580 } 2581 2582 /* 2583 * Start fragment queue timer 2584 */ 2585 static void 2586 ng_ppp_start_frag_timer(node_p node) 2587 { 2588 const priv_p priv = NG_NODE_PRIVATE(node); 2589 2590 if (!(callout_pending(&priv->fragTimer))) 2591 ng_callout(&priv->fragTimer, node, NULL, MP_FRAGTIMER_INTERVAL, 2592 ng_ppp_frag_timeout, NULL, 0); 2593 } 2594 2595 /* 2596 * Stop fragment queue timer 2597 */ 2598 static void 2599 ng_ppp_stop_frag_timer(node_p node) 2600 { 2601 const priv_p priv = NG_NODE_PRIVATE(node); 2602 2603 if (callout_pending(&priv->fragTimer)) 2604 ng_uncallout(&priv->fragTimer, node); 2605 } 2606