1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_wlan.h" 32 33 #ifdef IEEE80211_SUPPORT_SUPERG 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/if.h> 44 #include <net/if_var.h> 45 #include <net/if_llc.h> 46 #include <net/if_media.h> 47 #include <net/bpf.h> 48 #include <net/ethernet.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_input.h> 52 #include <net80211/ieee80211_phy.h> 53 #include <net80211/ieee80211_superg.h> 54 55 /* 56 * Atheros fast-frame encapsulation format. 57 * FF max payload: 58 * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500: 59 * 8 + 4 + 4 + 14 + 8 + 1500 + 6 + 14 + 8 + 1500 60 * = 3066 61 */ 62 /* fast frame header is 32-bits */ 63 #define ATH_FF_PROTO 0x0000003f /* protocol */ 64 #define ATH_FF_PROTO_S 0 65 #define ATH_FF_FTYPE 0x000000c0 /* frame type */ 66 #define ATH_FF_FTYPE_S 6 67 #define ATH_FF_HLEN32 0x00000300 /* optional hdr length */ 68 #define ATH_FF_HLEN32_S 8 69 #define ATH_FF_SEQNUM 0x001ffc00 /* sequence number */ 70 #define ATH_FF_SEQNUM_S 10 71 #define ATH_FF_OFFSET 0xffe00000 /* offset to 2nd payload */ 72 #define ATH_FF_OFFSET_S 21 73 74 #define ATH_FF_MAX_HDR_PAD 4 75 #define ATH_FF_MAX_SEP_PAD 6 76 #define ATH_FF_MAX_HDR 30 77 78 #define ATH_FF_PROTO_L2TUNNEL 0 /* L2 tunnel protocol */ 79 #define ATH_FF_ETH_TYPE 0x88bd /* Ether type for encapsulated frames */ 80 #define ATH_FF_SNAP_ORGCODE_0 0x00 81 #define ATH_FF_SNAP_ORGCODE_1 0x03 82 #define ATH_FF_SNAP_ORGCODE_2 0x7f 83 84 #define ATH_FF_TXQMIN 2 /* min txq depth for staging */ 85 #define ATH_FF_TXQMAX 50 /* maximum # of queued frames allowed */ 86 #define ATH_FF_STAGEMAX 5 /* max waiting period for staged frame*/ 87 88 #define ETHER_HEADER_COPY(dst, src) \ 89 memcpy(dst, src, sizeof(struct ether_header)) 90 91 static int ieee80211_ffppsmin = 2; /* pps threshold for ff aggregation */ 92 SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW, 93 &ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging"); 94 static int ieee80211_ffagemax = -1; /* max time frames held on stage q */ 95 SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax, 96 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 97 &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I", 98 "max hold time for fast-frame staging (ms)"); 99 100 static void 101 ff_age_all(void *arg, int npending) 102 { 103 struct ieee80211com *ic = arg; 104 105 /* XXX cache timer value somewhere (racy) */ 106 ieee80211_ff_age_all(ic, ieee80211_ffagemax + 1); 107 } 108 109 void 110 ieee80211_superg_attach(struct ieee80211com *ic) 111 { 112 struct ieee80211_superg *sg; 113 114 IEEE80211_FF_LOCK_INIT(ic, ic->ic_name); 115 116 sg = (struct ieee80211_superg *) IEEE80211_MALLOC( 117 sizeof(struct ieee80211_superg), M_80211_VAP, 118 IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 119 if (sg == NULL) { 120 printf("%s: cannot allocate SuperG state block\n", 121 __func__); 122 return; 123 } 124 TIMEOUT_TASK_INIT(ic->ic_tq, &sg->ff_qtimer, 0, ff_age_all, ic); 125 ic->ic_superg = sg; 126 127 /* 128 * Default to not being so aggressive for FF/AMSDU 129 * aging, otherwise we may hold a frame around 130 * for way too long before we expire it out. 131 */ 132 ieee80211_ffagemax = msecs_to_ticks(2); 133 } 134 135 void 136 ieee80211_superg_detach(struct ieee80211com *ic) 137 { 138 139 if (ic->ic_superg != NULL) { 140 struct timeout_task *qtask = &ic->ic_superg->ff_qtimer; 141 142 while (taskqueue_cancel_timeout(ic->ic_tq, qtask, NULL) != 0) 143 taskqueue_drain_timeout(ic->ic_tq, qtask); 144 IEEE80211_FREE(ic->ic_superg, M_80211_VAP); 145 ic->ic_superg = NULL; 146 } 147 IEEE80211_FF_LOCK_DESTROY(ic); 148 } 149 150 void 151 ieee80211_superg_vattach(struct ieee80211vap *vap) 152 { 153 struct ieee80211com *ic = vap->iv_ic; 154 155 if (ic->ic_superg == NULL) /* NB: can't do fast-frames w/o state */ 156 vap->iv_caps &= ~IEEE80211_C_FF; 157 if (vap->iv_caps & IEEE80211_C_FF) 158 vap->iv_flags |= IEEE80211_F_FF; 159 /* NB: we only implement sta mode */ 160 if (vap->iv_opmode == IEEE80211_M_STA && 161 (vap->iv_caps & IEEE80211_C_TURBOP)) 162 vap->iv_flags |= IEEE80211_F_TURBOP; 163 } 164 165 void 166 ieee80211_superg_vdetach(struct ieee80211vap *vap) 167 { 168 } 169 170 #define ATH_OUI_BYTES 0x00, 0x03, 0x7f 171 /* 172 * Add a WME information element to a frame. 173 */ 174 uint8_t * 175 ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix) 176 { 177 static const struct ieee80211_ath_ie info = { 178 .ath_id = IEEE80211_ELEMID_VENDOR, 179 .ath_len = sizeof(struct ieee80211_ath_ie) - 2, 180 .ath_oui = { ATH_OUI_BYTES }, 181 .ath_oui_type = ATH_OUI_TYPE, 182 .ath_oui_subtype= ATH_OUI_SUBTYPE, 183 .ath_version = ATH_OUI_VERSION, 184 }; 185 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm; 186 187 memcpy(frm, &info, sizeof(info)); 188 ath->ath_capability = caps; 189 if (defkeyix != IEEE80211_KEYIX_NONE) { 190 ath->ath_defkeyix[0] = (defkeyix & 0xff); 191 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff); 192 } else { 193 ath->ath_defkeyix[0] = 0xff; 194 ath->ath_defkeyix[1] = 0x7f; 195 } 196 return frm + sizeof(info); 197 } 198 #undef ATH_OUI_BYTES 199 200 uint8_t * 201 ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss) 202 { 203 const struct ieee80211vap *vap = bss->ni_vap; 204 205 return ieee80211_add_ath(frm, 206 vap->iv_flags & IEEE80211_F_ATHEROS, 207 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 208 bss->ni_authmode != IEEE80211_AUTH_8021X) ? 209 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 210 } 211 212 void 213 ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie) 214 { 215 const struct ieee80211_ath_ie *ath = 216 (const struct ieee80211_ath_ie *) ie; 217 218 ni->ni_ath_flags = ath->ath_capability; 219 ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix); 220 } 221 222 int 223 ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm, 224 const struct ieee80211_frame *wh) 225 { 226 struct ieee80211vap *vap = ni->ni_vap; 227 const struct ieee80211_ath_ie *ath; 228 u_int len = frm[1]; 229 int capschanged; 230 uint16_t defkeyix; 231 232 if (len < sizeof(struct ieee80211_ath_ie)-2) { 233 IEEE80211_DISCARD_IE(vap, 234 IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG, 235 wh, "Atheros", "too short, len %u", len); 236 return -1; 237 } 238 ath = (const struct ieee80211_ath_ie *)frm; 239 capschanged = (ni->ni_ath_flags != ath->ath_capability); 240 defkeyix = le16dec(ath->ath_defkeyix); 241 if (capschanged || defkeyix != ni->ni_ath_defkeyix) { 242 ni->ni_ath_flags = ath->ath_capability; 243 ni->ni_ath_defkeyix = defkeyix; 244 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 245 "ath ie change: new caps 0x%x defkeyix 0x%x", 246 ni->ni_ath_flags, ni->ni_ath_defkeyix); 247 } 248 if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) { 249 uint16_t curflags, newflags; 250 251 /* 252 * Check for turbo mode switch. Calculate flags 253 * for the new mode and effect the switch. 254 */ 255 newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags; 256 /* NB: BOOST is not in ic_flags, so get it from the ie */ 257 if (ath->ath_capability & ATHEROS_CAP_BOOST) 258 newflags |= IEEE80211_CHAN_TURBO; 259 else 260 newflags &= ~IEEE80211_CHAN_TURBO; 261 if (newflags != curflags) 262 ieee80211_dturbo_switch(vap, newflags); 263 } 264 return capschanged; 265 } 266 267 /* 268 * Decap the encapsulated frame pair and dispatch the first 269 * for delivery. The second frame is returned for delivery 270 * via the normal path. 271 */ 272 struct mbuf * 273 ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m) 274 { 275 #define FF_LLC_SIZE (sizeof(struct ether_header) + sizeof(struct llc)) 276 #define MS(x,f) (((x) & f) >> f##_S) 277 struct ieee80211vap *vap = ni->ni_vap; 278 struct llc *llc; 279 uint32_t ath; 280 struct mbuf *n; 281 int framelen; 282 283 /* NB: we assume caller does this check for us */ 284 KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF), 285 ("ff not negotiated")); 286 /* 287 * Check for fast-frame tunnel encapsulation. 288 */ 289 if (m->m_pkthdr.len < 3*FF_LLC_SIZE) 290 return m; 291 if (m->m_len < FF_LLC_SIZE && 292 (m = m_pullup(m, FF_LLC_SIZE)) == NULL) { 293 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 294 ni->ni_macaddr, "fast-frame", 295 "%s", "m_pullup(llc) failed"); 296 vap->iv_stats.is_rx_tooshort++; 297 return NULL; 298 } 299 llc = (struct llc *)(mtod(m, uint8_t *) + 300 sizeof(struct ether_header)); 301 if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE)) 302 return m; 303 m_adj(m, FF_LLC_SIZE); 304 m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath); 305 if (MS(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) { 306 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 307 ni->ni_macaddr, "fast-frame", 308 "unsupport tunnel protocol, header 0x%x", ath); 309 vap->iv_stats.is_ff_badhdr++; 310 m_freem(m); 311 return NULL; 312 } 313 /* NB: skip header and alignment padding */ 314 m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2); 315 316 vap->iv_stats.is_ff_decap++; 317 318 /* 319 * Decap the first frame, bust it apart from the 320 * second and deliver; then decap the second frame 321 * and return it to the caller for normal delivery. 322 */ 323 m = ieee80211_decap1(m, &framelen); 324 if (m == NULL) { 325 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 326 ni->ni_macaddr, "fast-frame", "%s", "first decap failed"); 327 vap->iv_stats.is_ff_tooshort++; 328 return NULL; 329 } 330 n = m_split(m, framelen, M_NOWAIT); 331 if (n == NULL) { 332 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 333 ni->ni_macaddr, "fast-frame", 334 "%s", "unable to split encapsulated frames"); 335 vap->iv_stats.is_ff_split++; 336 m_freem(m); /* NB: must reclaim */ 337 return NULL; 338 } 339 /* XXX not right for WDS */ 340 vap->iv_deliver_data(vap, ni, m); /* 1st of pair */ 341 342 /* 343 * Decap second frame. 344 */ 345 m_adj(n, roundup2(framelen, 4) - framelen); /* padding */ 346 n = ieee80211_decap1(n, &framelen); 347 if (n == NULL) { 348 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 349 ni->ni_macaddr, "fast-frame", "%s", "second decap failed"); 350 vap->iv_stats.is_ff_tooshort++; 351 } 352 /* XXX verify framelen against mbuf contents */ 353 return n; /* 2nd delivered by caller */ 354 #undef MS 355 #undef FF_LLC_SIZE 356 } 357 358 /* 359 * Fast frame encapsulation. There must be two packets 360 * chained with m_nextpkt. We do header adjustment for 361 * each, add the tunnel encapsulation, and then concatenate 362 * the mbuf chains to form a single frame for transmission. 363 */ 364 struct mbuf * 365 ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, 366 struct ieee80211_key *key) 367 { 368 struct mbuf *m2; 369 struct ether_header eh1, eh2; 370 struct llc *llc; 371 struct mbuf *m; 372 int pad; 373 374 m2 = m1->m_nextpkt; 375 if (m2 == NULL) { 376 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 377 "%s: only one frame\n", __func__); 378 goto bad; 379 } 380 m1->m_nextpkt = NULL; 381 382 /* 383 * Adjust to include 802.11 header requirement. 384 */ 385 KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); 386 ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); 387 m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1); 388 if (m1 == NULL) { 389 printf("%s: failed initial mbuf_adjust\n", __func__); 390 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 391 m_freem(m2); 392 goto bad; 393 } 394 395 /* 396 * Copy second frame's Ethernet header out of line 397 * and adjust for possible padding in case there isn't room 398 * at the end of first frame. 399 */ 400 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 401 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 402 m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); 403 if (m2 == NULL) { 404 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 405 printf("%s: failed second \n", __func__); 406 goto bad; 407 } 408 409 /* 410 * Now do tunnel encapsulation. First, each 411 * frame gets a standard encapsulation. 412 */ 413 m1 = ieee80211_ff_encap1(vap, m1, &eh1); 414 if (m1 == NULL) 415 goto bad; 416 m2 = ieee80211_ff_encap1(vap, m2, &eh2); 417 if (m2 == NULL) 418 goto bad; 419 420 /* 421 * Pad leading frame to a 4-byte boundary. If there 422 * is space at the end of the first frame, put it 423 * there; otherwise prepend to the front of the second 424 * frame. We know doing the second will always work 425 * because we reserve space above. We prefer appending 426 * as this typically has better DMA alignment properties. 427 */ 428 for (m = m1; m->m_next != NULL; m = m->m_next) 429 ; 430 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 431 if (pad) { 432 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 433 m2->m_data -= pad; 434 m2->m_len += pad; 435 m2->m_pkthdr.len += pad; 436 } else { /* append to first */ 437 m->m_len += pad; 438 m1->m_pkthdr.len += pad; 439 } 440 } 441 442 /* 443 * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the 444 * QoS header. 445 * 446 * XXX optimize by prepending together 447 */ 448 m->m_next = m2; /* NB: last mbuf from above */ 449 m1->m_pkthdr.len += m2->m_pkthdr.len; 450 M_PREPEND(m1, sizeof(uint32_t)+2, M_NOWAIT); 451 if (m1 == NULL) { /* XXX cannot happen */ 452 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 453 "%s: no space for tunnel header\n", __func__); 454 vap->iv_stats.is_tx_nobuf++; 455 return NULL; 456 } 457 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2); 458 459 M_PREPEND(m1, sizeof(struct llc), M_NOWAIT); 460 if (m1 == NULL) { /* XXX cannot happen */ 461 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 462 "%s: no space for llc header\n", __func__); 463 vap->iv_stats.is_tx_nobuf++; 464 return NULL; 465 } 466 llc = mtod(m1, struct llc *); 467 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 468 llc->llc_control = LLC_UI; 469 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0; 470 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1; 471 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2; 472 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE); 473 474 vap->iv_stats.is_ff_encap++; 475 476 return m1; 477 bad: 478 vap->iv_stats.is_ff_encapfail++; 479 if (m1 != NULL) 480 m_freem(m1); 481 if (m2 != NULL) 482 m_freem(m2); 483 return NULL; 484 } 485 486 /* 487 * A-MSDU encapsulation. 488 * 489 * This assumes just two frames for now, since we're borrowing the 490 * same queuing code and infrastructure as fast-frames. 491 * 492 * There must be two packets chained with m_nextpkt. 493 * We do header adjustment for each, and then concatenate the mbuf chains 494 * to form a single frame for transmission. 495 */ 496 struct mbuf * 497 ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, 498 struct ieee80211_key *key) 499 { 500 struct mbuf *m2; 501 struct ether_header eh1, eh2; 502 struct mbuf *m; 503 int pad; 504 505 m2 = m1->m_nextpkt; 506 if (m2 == NULL) { 507 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 508 "%s: only one frame\n", __func__); 509 goto bad; 510 } 511 m1->m_nextpkt = NULL; 512 513 /* 514 * Include A-MSDU header in adjusting header layout. 515 */ 516 KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); 517 ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); 518 m1 = ieee80211_mbuf_adjust(vap, 519 hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 520 sizeof(struct ether_header), 521 key, m1); 522 if (m1 == NULL) { 523 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 524 m_freem(m2); 525 goto bad; 526 } 527 528 /* 529 * Copy second frame's Ethernet header out of line 530 * and adjust for encapsulation headers. Note that 531 * we make room for padding in case there isn't room 532 * at the end of first frame. 533 */ 534 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 535 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 536 m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); 537 if (m2 == NULL) { 538 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 539 goto bad; 540 } 541 542 /* 543 * Now do tunnel encapsulation. First, each 544 * frame gets a standard encapsulation. 545 */ 546 m1 = ieee80211_ff_encap1(vap, m1, &eh1); 547 if (m1 == NULL) 548 goto bad; 549 m2 = ieee80211_ff_encap1(vap, m2, &eh2); 550 if (m2 == NULL) 551 goto bad; 552 553 /* 554 * Pad leading frame to a 4-byte boundary. If there 555 * is space at the end of the first frame, put it 556 * there; otherwise prepend to the front of the second 557 * frame. We know doing the second will always work 558 * because we reserve space above. We prefer appending 559 * as this typically has better DMA alignment properties. 560 */ 561 for (m = m1; m->m_next != NULL; m = m->m_next) 562 ; 563 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 564 if (pad) { 565 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 566 m2->m_data -= pad; 567 m2->m_len += pad; 568 m2->m_pkthdr.len += pad; 569 } else { /* append to first */ 570 m->m_len += pad; 571 m1->m_pkthdr.len += pad; 572 } 573 } 574 575 /* 576 * Now, stick 'em together. 577 */ 578 m->m_next = m2; /* NB: last mbuf from above */ 579 m1->m_pkthdr.len += m2->m_pkthdr.len; 580 581 vap->iv_stats.is_amsdu_encap++; 582 583 return m1; 584 bad: 585 vap->iv_stats.is_amsdu_encapfail++; 586 if (m1 != NULL) 587 m_freem(m1); 588 if (m2 != NULL) 589 m_freem(m2); 590 return NULL; 591 } 592 593 594 static void 595 ff_transmit(struct ieee80211_node *ni, struct mbuf *m) 596 { 597 struct ieee80211vap *vap = ni->ni_vap; 598 struct ieee80211com *ic = ni->ni_ic; 599 600 IEEE80211_TX_LOCK_ASSERT(ic); 601 602 /* encap and xmit */ 603 m = ieee80211_encap(vap, ni, m); 604 if (m != NULL) 605 (void) ieee80211_parent_xmitpkt(ic, m); 606 else 607 ieee80211_free_node(ni); 608 } 609 610 /* 611 * Flush frames to device; note we re-use the linked list 612 * the frames were stored on and use the sentinel (unchanged) 613 * which may be non-NULL. 614 */ 615 static void 616 ff_flush(struct mbuf *head, struct mbuf *last) 617 { 618 struct mbuf *m, *next; 619 struct ieee80211_node *ni; 620 struct ieee80211vap *vap; 621 622 for (m = head; m != last; m = next) { 623 next = m->m_nextpkt; 624 m->m_nextpkt = NULL; 625 626 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 627 vap = ni->ni_vap; 628 629 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 630 "%s: flush frame, age %u", __func__, M_AGE_GET(m)); 631 vap->iv_stats.is_ff_flush++; 632 633 ff_transmit(ni, m); 634 } 635 } 636 637 /* 638 * Age frames on the staging queue. 639 */ 640 void 641 ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq, 642 int quanta) 643 { 644 struct mbuf *m, *head; 645 struct ieee80211_node *ni; 646 647 IEEE80211_FF_LOCK(ic); 648 if (sq->depth == 0) { 649 IEEE80211_FF_UNLOCK(ic); 650 return; /* nothing to do */ 651 } 652 653 KASSERT(sq->head != NULL, ("stageq empty")); 654 655 head = sq->head; 656 while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) { 657 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 658 659 /* clear staging ref to frame */ 660 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 661 KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty")); 662 ni->ni_tx_superg[tid] = NULL; 663 664 sq->head = m->m_nextpkt; 665 sq->depth--; 666 } 667 if (m == NULL) 668 sq->tail = NULL; 669 else 670 M_AGE_SUB(m, quanta); 671 IEEE80211_FF_UNLOCK(ic); 672 673 IEEE80211_TX_LOCK(ic); 674 ff_flush(head, m); 675 IEEE80211_TX_UNLOCK(ic); 676 } 677 678 static void 679 stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m) 680 { 681 int age = ieee80211_ffagemax; 682 683 IEEE80211_FF_LOCK_ASSERT(ic); 684 685 if (sq->tail != NULL) { 686 sq->tail->m_nextpkt = m; 687 age -= M_AGE_GET(sq->head); 688 } else { 689 sq->head = m; 690 691 struct timeout_task *qtask = &ic->ic_superg->ff_qtimer; 692 taskqueue_enqueue_timeout(ic->ic_tq, qtask, age); 693 } 694 KASSERT(age >= 0, ("age %d", age)); 695 M_AGE_SET(m, age); 696 m->m_nextpkt = NULL; 697 sq->tail = m; 698 sq->depth++; 699 } 700 701 static void 702 stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged) 703 { 704 struct mbuf *m, *mprev; 705 706 IEEE80211_FF_LOCK_ASSERT(ic); 707 708 mprev = NULL; 709 for (m = sq->head; m != NULL; m = m->m_nextpkt) { 710 if (m == mstaged) { 711 if (mprev == NULL) 712 sq->head = m->m_nextpkt; 713 else 714 mprev->m_nextpkt = m->m_nextpkt; 715 if (sq->tail == m) 716 sq->tail = mprev; 717 sq->depth--; 718 return; 719 } 720 mprev = m; 721 } 722 printf("%s: packet not found\n", __func__); 723 } 724 725 static uint32_t 726 ff_approx_txtime(struct ieee80211_node *ni, 727 const struct mbuf *m1, const struct mbuf *m2) 728 { 729 struct ieee80211com *ic = ni->ni_ic; 730 struct ieee80211vap *vap = ni->ni_vap; 731 uint32_t framelen; 732 uint32_t frame_time; 733 734 /* 735 * Approximate the frame length to be transmitted. A swag to add 736 * the following maximal values to the skb payload: 737 * - 32: 802.11 encap + CRC 738 * - 24: encryption overhead (if wep bit) 739 * - 4 + 6: fast-frame header and padding 740 * - 16: 2 LLC FF tunnel headers 741 * - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd) 742 */ 743 framelen = m1->m_pkthdr.len + 32 + 744 ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR; 745 if (vap->iv_flags & IEEE80211_F_PRIVACY) 746 framelen += 24; 747 if (m2 != NULL) 748 framelen += m2->m_pkthdr.len; 749 750 /* 751 * For now, we assume non-shortgi, 20MHz, just because I want to 752 * at least test 802.11n. 753 */ 754 if (ni->ni_txrate & IEEE80211_RATE_MCS) 755 frame_time = ieee80211_compute_duration_ht(framelen, 756 ni->ni_txrate, 757 IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate), 758 0, /* isht40 */ 759 0); /* isshortgi */ 760 else 761 frame_time = ieee80211_compute_duration(ic->ic_rt, framelen, 762 ni->ni_txrate, 0); 763 return (frame_time); 764 } 765 766 /* 767 * Check if the supplied frame can be partnered with an existing 768 * or pending frame. Return a reference to any frame that should be 769 * sent on return; otherwise return NULL. 770 */ 771 struct mbuf * 772 ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m) 773 { 774 struct ieee80211vap *vap = ni->ni_vap; 775 struct ieee80211com *ic = ni->ni_ic; 776 struct ieee80211_superg *sg = ic->ic_superg; 777 const int pri = M_WME_GETAC(m); 778 struct ieee80211_stageq *sq; 779 struct ieee80211_tx_ampdu *tap; 780 struct mbuf *mstaged; 781 uint32_t txtime, limit; 782 783 IEEE80211_TX_UNLOCK_ASSERT(ic); 784 785 IEEE80211_LOCK(ic); 786 limit = IEEE80211_TXOP_TO_US( 787 ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit); 788 IEEE80211_UNLOCK(ic); 789 790 /* 791 * Check if the supplied frame can be aggregated. 792 * 793 * NB: we allow EAPOL frames to be aggregated with other ucast traffic. 794 * Do 802.1x EAPOL frames proceed in the clear? Then they couldn't 795 * be aggregated with other types of frames when encryption is on? 796 */ 797 IEEE80211_FF_LOCK(ic); 798 tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)]; 799 mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)]; 800 /* XXX NOTE: reusing packet counter state from A-MPDU */ 801 /* 802 * XXX NOTE: this means we're double-counting; it should just 803 * be done in ieee80211_output.c once for both superg and A-MPDU. 804 */ 805 ieee80211_txampdu_count_packet(tap); 806 807 /* 808 * When not in station mode never aggregate a multicast 809 * frame; this insures, for example, that a combined frame 810 * does not require multiple encryption keys. 811 */ 812 if (vap->iv_opmode != IEEE80211_M_STA && 813 ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) { 814 /* XXX flush staged frame? */ 815 IEEE80211_FF_UNLOCK(ic); 816 return m; 817 } 818 /* 819 * If there is no frame to combine with and the pps is 820 * too low; then do not attempt to aggregate this frame. 821 */ 822 if (mstaged == NULL && 823 ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) { 824 IEEE80211_FF_UNLOCK(ic); 825 return m; 826 } 827 sq = &sg->ff_stageq[pri]; 828 /* 829 * Check the txop limit to insure the aggregate fits. 830 */ 831 if (limit != 0 && 832 (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) { 833 /* 834 * Aggregate too long, return to the caller for direct 835 * transmission. In addition, flush any pending frame 836 * before sending this one. 837 */ 838 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 839 "%s: txtime %u exceeds txop limit %u\n", 840 __func__, txtime, limit); 841 842 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; 843 if (mstaged != NULL) 844 stageq_remove(ic, sq, mstaged); 845 IEEE80211_FF_UNLOCK(ic); 846 847 if (mstaged != NULL) { 848 IEEE80211_TX_LOCK(ic); 849 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 850 "%s: flush staged frame", __func__); 851 /* encap and xmit */ 852 ff_transmit(ni, mstaged); 853 IEEE80211_TX_UNLOCK(ic); 854 } 855 return m; /* NB: original frame */ 856 } 857 /* 858 * An aggregation candidate. If there's a frame to partner 859 * with then combine and return for processing. Otherwise 860 * save this frame and wait for a partner to show up (or 861 * the frame to be flushed). Note that staged frames also 862 * hold their node reference. 863 */ 864 if (mstaged != NULL) { 865 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; 866 stageq_remove(ic, sq, mstaged); 867 IEEE80211_FF_UNLOCK(ic); 868 869 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 870 "%s: aggregate fast-frame", __func__); 871 /* 872 * Release the node reference; we only need 873 * the one already in mstaged. 874 */ 875 KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni, 876 ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni)); 877 ieee80211_free_node(ni); 878 879 m->m_nextpkt = NULL; 880 mstaged->m_nextpkt = m; 881 mstaged->m_flags |= M_FF; /* NB: mark for encap work */ 882 } else { 883 KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL, 884 ("ni_tx_superg[]: %p", 885 ni->ni_tx_superg[WME_AC_TO_TID(pri)])); 886 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m; 887 888 stageq_add(ic, sq, m); 889 IEEE80211_FF_UNLOCK(ic); 890 891 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 892 "%s: stage frame, %u queued", __func__, sq->depth); 893 /* NB: mstaged is NULL */ 894 } 895 return mstaged; 896 } 897 898 struct mbuf * 899 ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m) 900 { 901 /* 902 * XXX TODO: actually enforce the node support 903 * and HTCAP requirements for the maximum A-MSDU 904 * size. 905 */ 906 907 /* First: software A-MSDU transmit? */ 908 if (! ieee80211_amsdu_tx_ok(ni)) 909 return (m); 910 911 /* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */ 912 if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST)) 913 return (m); 914 915 /* Next - needs to be a data frame, non-broadcast, etc */ 916 if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) 917 return (m); 918 919 return (ieee80211_ff_check(ni, m)); 920 } 921 922 void 923 ieee80211_ff_node_init(struct ieee80211_node *ni) 924 { 925 /* 926 * Clean FF state on re-associate. This handles the case 927 * where a station leaves w/o notifying us and then returns 928 * before node is reaped for inactivity. 929 */ 930 ieee80211_ff_node_cleanup(ni); 931 } 932 933 void 934 ieee80211_ff_node_cleanup(struct ieee80211_node *ni) 935 { 936 struct ieee80211com *ic = ni->ni_ic; 937 struct ieee80211_superg *sg = ic->ic_superg; 938 struct mbuf *m, *next_m, *head; 939 int tid; 940 941 IEEE80211_FF_LOCK(ic); 942 head = NULL; 943 for (tid = 0; tid < WME_NUM_TID; tid++) { 944 int ac = TID_TO_WME_AC(tid); 945 /* 946 * XXX Initialise the packet counter. 947 * 948 * This may be double-work for 11n stations; 949 * but without it we never setup things. 950 */ 951 ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]); 952 m = ni->ni_tx_superg[tid]; 953 if (m != NULL) { 954 ni->ni_tx_superg[tid] = NULL; 955 stageq_remove(ic, &sg->ff_stageq[ac], m); 956 m->m_nextpkt = head; 957 head = m; 958 } 959 } 960 IEEE80211_FF_UNLOCK(ic); 961 962 /* 963 * Free mbufs, taking care to not dereference the mbuf after 964 * we free it (hence grabbing m_nextpkt before we free it.) 965 */ 966 m = head; 967 while (m != NULL) { 968 next_m = m->m_nextpkt; 969 m_freem(m); 970 ieee80211_free_node(ni); 971 m = next_m; 972 } 973 } 974 975 /* 976 * Switch between turbo and non-turbo operating modes. 977 * Use the specified channel flags to locate the new 978 * channel, update 802.11 state, and then call back into 979 * the driver to effect the change. 980 */ 981 void 982 ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags) 983 { 984 struct ieee80211com *ic = vap->iv_ic; 985 struct ieee80211_channel *chan; 986 987 chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags); 988 if (chan == NULL) { /* XXX should not happen */ 989 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 990 "%s: no channel with freq %u flags 0x%x\n", 991 __func__, ic->ic_bsschan->ic_freq, newflags); 992 return; 993 } 994 995 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 996 "%s: %s -> %s (freq %u flags 0x%x)\n", __func__, 997 ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)], 998 ieee80211_phymode_name[ieee80211_chan2mode(chan)], 999 chan->ic_freq, chan->ic_flags); 1000 1001 ic->ic_bsschan = chan; 1002 ic->ic_prevchan = ic->ic_curchan; 1003 ic->ic_curchan = chan; 1004 ic->ic_rt = ieee80211_get_ratetable(chan); 1005 ic->ic_set_channel(ic); 1006 ieee80211_radiotap_chan_change(ic); 1007 /* NB: do not need to reset ERP state 'cuz we're in sta mode */ 1008 } 1009 1010 /* 1011 * Return the current ``state'' of an Atheros capbility. 1012 * If associated in station mode report the negotiated 1013 * setting. Otherwise report the current setting. 1014 */ 1015 static int 1016 getathcap(struct ieee80211vap *vap, int cap) 1017 { 1018 if (vap->iv_opmode == IEEE80211_M_STA && 1019 vap->iv_state == IEEE80211_S_RUN) 1020 return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0; 1021 else 1022 return (vap->iv_flags & cap) != 0; 1023 } 1024 1025 static int 1026 superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq) 1027 { 1028 switch (ireq->i_type) { 1029 case IEEE80211_IOC_FF: 1030 ireq->i_val = getathcap(vap, IEEE80211_F_FF); 1031 break; 1032 case IEEE80211_IOC_TURBOP: 1033 ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP); 1034 break; 1035 default: 1036 return ENOSYS; 1037 } 1038 return 0; 1039 } 1040 IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211); 1041 1042 static int 1043 superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq) 1044 { 1045 switch (ireq->i_type) { 1046 case IEEE80211_IOC_FF: 1047 if (ireq->i_val) { 1048 if ((vap->iv_caps & IEEE80211_C_FF) == 0) 1049 return EOPNOTSUPP; 1050 vap->iv_flags |= IEEE80211_F_FF; 1051 } else 1052 vap->iv_flags &= ~IEEE80211_F_FF; 1053 return ENETRESET; 1054 case IEEE80211_IOC_TURBOP: 1055 if (ireq->i_val) { 1056 if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0) 1057 return EOPNOTSUPP; 1058 vap->iv_flags |= IEEE80211_F_TURBOP; 1059 } else 1060 vap->iv_flags &= ~IEEE80211_F_TURBOP; 1061 return ENETRESET; 1062 default: 1063 return ENOSYS; 1064 } 1065 } 1066 IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211); 1067 1068 #endif /* IEEE80211_SUPPORT_SUPERG */ 1069