1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> /* XXX for ether_sprintf */ 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_adhoc.h> 55 #include <net80211/ieee80211_sta.h> 56 #include <net80211/ieee80211_hostap.h> 57 #include <net80211/ieee80211_wds.h> 58 #ifdef IEEE80211_SUPPORT_MESH 59 #include <net80211/ieee80211_mesh.h> 60 #endif 61 #include <net80211/ieee80211_monitor.h> 62 #include <net80211/ieee80211_input.h> 63 64 /* XXX tunables */ 65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 66 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 67 68 const char *mgt_subtype_name[] = { 69 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 70 "probe_req", "probe_resp", "timing_adv", "reserved#7", 71 "beacon", "atim", "disassoc", "auth", 72 "deauth", "action", "action_noack", "reserved#15" 73 }; 74 const char *ctl_subtype_name[] = { 75 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 76 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 77 "bar", "ba", "ps_poll", "rts", 78 "cts", "ack", "cf_end", "cf_end_ack" 79 }; 80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 81 "IBSS", /* IEEE80211_M_IBSS */ 82 "STA", /* IEEE80211_M_STA */ 83 "WDS", /* IEEE80211_M_WDS */ 84 "AHDEMO", /* IEEE80211_M_AHDEMO */ 85 "HOSTAP", /* IEEE80211_M_HOSTAP */ 86 "MONITOR", /* IEEE80211_M_MONITOR */ 87 "MBSS" /* IEEE80211_M_MBSS */ 88 }; 89 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 90 "INIT", /* IEEE80211_S_INIT */ 91 "SCAN", /* IEEE80211_S_SCAN */ 92 "AUTH", /* IEEE80211_S_AUTH */ 93 "ASSOC", /* IEEE80211_S_ASSOC */ 94 "CAC", /* IEEE80211_S_CAC */ 95 "RUN", /* IEEE80211_S_RUN */ 96 "CSA", /* IEEE80211_S_CSA */ 97 "SLEEP", /* IEEE80211_S_SLEEP */ 98 }; 99 const char *ieee80211_wme_acnames[] = { 100 "WME_AC_BE", 101 "WME_AC_BK", 102 "WME_AC_VI", 103 "WME_AC_VO", 104 "WME_UPSD", 105 }; 106 107 108 /* 109 * Reason code descriptions were (mostly) obtained from 110 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 111 */ 112 const char * 113 ieee80211_reason_to_string(uint16_t reason) 114 { 115 switch (reason) { 116 case IEEE80211_REASON_UNSPECIFIED: 117 return ("unspecified"); 118 case IEEE80211_REASON_AUTH_EXPIRE: 119 return ("previous authentication is expired"); 120 case IEEE80211_REASON_AUTH_LEAVE: 121 return ("sending STA is leaving/has left IBSS or ESS"); 122 case IEEE80211_REASON_ASSOC_EXPIRE: 123 return ("disassociated due to inactivity"); 124 case IEEE80211_REASON_ASSOC_TOOMANY: 125 return ("too many associated STAs"); 126 case IEEE80211_REASON_NOT_AUTHED: 127 return ("class 2 frame received from nonauthenticated STA"); 128 case IEEE80211_REASON_NOT_ASSOCED: 129 return ("class 3 frame received from nonassociated STA"); 130 case IEEE80211_REASON_ASSOC_LEAVE: 131 return ("sending STA is leaving/has left BSS"); 132 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 133 return ("STA requesting (re)association is not authenticated"); 134 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 135 return ("information in the Power Capability element is " 136 "unacceptable"); 137 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 138 return ("information in the Supported Channels element is " 139 "unacceptable"); 140 case IEEE80211_REASON_IE_INVALID: 141 return ("invalid element"); 142 case IEEE80211_REASON_MIC_FAILURE: 143 return ("MIC failure"); 144 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 145 return ("4-Way handshake timeout"); 146 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 147 return ("group key update timeout"); 148 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 149 return ("element in 4-Way handshake different from " 150 "(re)association request/probe response/beacon frame"); 151 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 152 return ("invalid group cipher"); 153 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 154 return ("invalid pairwise cipher"); 155 case IEEE80211_REASON_AKMP_INVALID: 156 return ("invalid AKMP"); 157 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 158 return ("unsupported version in RSN IE"); 159 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 160 return ("invalid capabilities in RSN IE"); 161 case IEEE80211_REASON_802_1X_AUTH_FAILED: 162 return ("IEEE 802.1X authentication failed"); 163 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 164 return ("cipher suite rejected because of the security " 165 "policy"); 166 case IEEE80211_REASON_UNSPECIFIED_QOS: 167 return ("unspecified (QoS-related)"); 168 case IEEE80211_REASON_INSUFFICIENT_BW: 169 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 170 case IEEE80211_REASON_TOOMANY_FRAMES: 171 return ("too many frames need to be acknowledged"); 172 case IEEE80211_REASON_OUTSIDE_TXOP: 173 return ("STA is transmitting outside the limits of its TXOPs"); 174 case IEEE80211_REASON_LEAVING_QBSS: 175 return ("requested from peer STA (the STA is " 176 "resetting/leaving the BSS)"); 177 case IEEE80211_REASON_BAD_MECHANISM: 178 return ("requested from peer STA (it does not want to use " 179 "the mechanism)"); 180 case IEEE80211_REASON_SETUP_NEEDED: 181 return ("requested from peer STA (setup is required for the " 182 "used mechanism)"); 183 case IEEE80211_REASON_TIMEOUT: 184 return ("requested from peer STA (timeout)"); 185 case IEEE80211_REASON_PEER_LINK_CANCELED: 186 return ("SME cancels the mesh peering instance (not related " 187 "to the maximum number of peer mesh STAs)"); 188 case IEEE80211_REASON_MESH_MAX_PEERS: 189 return ("maximum number of peer mesh STAs was reached"); 190 case IEEE80211_REASON_MESH_CPVIOLATION: 191 return ("the received information violates the Mesh " 192 "Configuration policy configured in the mesh STA " 193 "profile"); 194 case IEEE80211_REASON_MESH_CLOSE_RCVD: 195 return ("the mesh STA has received a Mesh Peering Close " 196 "message requesting to close the mesh peering"); 197 case IEEE80211_REASON_MESH_MAX_RETRIES: 198 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 199 "Peering Open messages, without receiving a Mesh " 200 "Peering Confirm message"); 201 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 202 return ("the confirmTimer for the mesh peering instance times " 203 "out"); 204 case IEEE80211_REASON_MESH_INVALID_GTK: 205 return ("the mesh STA fails to unwrap the GTK or the values " 206 "in the wrapped contents do not match"); 207 case IEEE80211_REASON_MESH_INCONS_PARAMS: 208 return ("the mesh STA receives inconsistent information about " 209 "the mesh parameters between Mesh Peering Management " 210 "frames"); 211 case IEEE80211_REASON_MESH_INVALID_SECURITY: 212 return ("the mesh STA fails the authenticated mesh peering " 213 "exchange because due to failure in selecting " 214 "pairwise/group ciphersuite"); 215 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 216 return ("the mesh STA does not have proxy information for " 217 "this external destination"); 218 case IEEE80211_REASON_MESH_PERR_NO_FI: 219 return ("the mesh STA does not have forwarding information " 220 "for this destination"); 221 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 222 return ("the mesh STA determines that the link to the next " 223 "hop of an active path in its forwarding information " 224 "is no longer usable"); 225 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 226 return ("the MAC address of the STA already exists in the " 227 "mesh BSS"); 228 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 229 return ("the mesh STA performs channel switch to meet " 230 "regulatory requirements"); 231 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 232 return ("the mesh STA performs channel switch with " 233 "unspecified reason"); 234 default: 235 return ("reserved/unknown"); 236 } 237 } 238 239 static void beacon_miss(void *, int); 240 static void beacon_swmiss(void *, int); 241 static void parent_updown(void *, int); 242 static void update_mcast(void *, int); 243 static void update_promisc(void *, int); 244 static void update_channel(void *, int); 245 static void update_chw(void *, int); 246 static void vap_update_wme(void *, int); 247 static void restart_vaps(void *, int); 248 static void ieee80211_newstate_cb(void *, int); 249 250 static int 251 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 252 const struct ieee80211_bpf_params *params) 253 { 254 255 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 256 m_freem(m); 257 return ENETDOWN; 258 } 259 260 void 261 ieee80211_proto_attach(struct ieee80211com *ic) 262 { 263 uint8_t hdrlen; 264 265 /* override the 802.3 setting */ 266 hdrlen = ic->ic_headroom 267 + sizeof(struct ieee80211_qosframe_addr4) 268 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 269 + IEEE80211_WEP_EXTIVLEN; 270 /* XXX no way to recalculate on ifdetach */ 271 if (ALIGN(hdrlen) > max_linkhdr) { 272 /* XXX sanity check... */ 273 max_linkhdr = ALIGN(hdrlen); 274 max_hdr = max_linkhdr + max_protohdr; 275 max_datalen = MHLEN - max_hdr; 276 } 277 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 278 279 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 280 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 281 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 282 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 283 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 284 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 285 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 286 287 ic->ic_wme.wme_hipri_switch_hysteresis = 288 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 289 290 /* initialize management frame handlers */ 291 ic->ic_send_mgmt = ieee80211_send_mgmt; 292 ic->ic_raw_xmit = null_raw_xmit; 293 294 ieee80211_adhoc_attach(ic); 295 ieee80211_sta_attach(ic); 296 ieee80211_wds_attach(ic); 297 ieee80211_hostap_attach(ic); 298 #ifdef IEEE80211_SUPPORT_MESH 299 ieee80211_mesh_attach(ic); 300 #endif 301 ieee80211_monitor_attach(ic); 302 } 303 304 void 305 ieee80211_proto_detach(struct ieee80211com *ic) 306 { 307 ieee80211_monitor_detach(ic); 308 #ifdef IEEE80211_SUPPORT_MESH 309 ieee80211_mesh_detach(ic); 310 #endif 311 ieee80211_hostap_detach(ic); 312 ieee80211_wds_detach(ic); 313 ieee80211_adhoc_detach(ic); 314 ieee80211_sta_detach(ic); 315 } 316 317 static void 318 null_update_beacon(struct ieee80211vap *vap, int item) 319 { 320 } 321 322 void 323 ieee80211_proto_vattach(struct ieee80211vap *vap) 324 { 325 struct ieee80211com *ic = vap->iv_ic; 326 struct ifnet *ifp = vap->iv_ifp; 327 int i; 328 329 /* override the 802.3 setting */ 330 ifp->if_hdrlen = ic->ic_headroom 331 + sizeof(struct ieee80211_qosframe_addr4) 332 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 333 + IEEE80211_WEP_EXTIVLEN; 334 335 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 336 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 337 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 338 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 339 callout_init(&vap->iv_mgtsend, 1); 340 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 341 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 342 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 343 /* 344 * Install default tx rate handling: no fixed rate, lowest 345 * supported rate for mgmt and multicast frames. Default 346 * max retry count. These settings can be changed by the 347 * driver and/or user applications. 348 */ 349 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 350 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 351 352 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 353 354 /* 355 * Setting the management rate to MCS 0 assumes that the 356 * BSS Basic rate set is empty and the BSS Basic MCS set 357 * is not. 358 * 359 * Since we're not checking this, default to the lowest 360 * defined rate for this mode. 361 * 362 * At least one 11n AP (DLINK DIR-825) is reported to drop 363 * some MCS management traffic (eg BA response frames.) 364 * 365 * See also: 9.6.0 of the 802.11n-2009 specification. 366 */ 367 #ifdef NOTYET 368 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 369 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 370 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 371 } else { 372 vap->iv_txparms[i].mgmtrate = 373 rs->rs_rates[0] & IEEE80211_RATE_VAL; 374 vap->iv_txparms[i].mcastrate = 375 rs->rs_rates[0] & IEEE80211_RATE_VAL; 376 } 377 #endif 378 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 379 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 380 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 381 } 382 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 383 384 vap->iv_update_beacon = null_update_beacon; 385 vap->iv_deliver_data = ieee80211_deliver_data; 386 387 /* attach support for operating mode */ 388 ic->ic_vattach[vap->iv_opmode](vap); 389 } 390 391 void 392 ieee80211_proto_vdetach(struct ieee80211vap *vap) 393 { 394 #define FREEAPPIE(ie) do { \ 395 if (ie != NULL) \ 396 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 397 } while (0) 398 /* 399 * Detach operating mode module. 400 */ 401 if (vap->iv_opdetach != NULL) 402 vap->iv_opdetach(vap); 403 /* 404 * This should not be needed as we detach when reseting 405 * the state but be conservative here since the 406 * authenticator may do things like spawn kernel threads. 407 */ 408 if (vap->iv_auth->ia_detach != NULL) 409 vap->iv_auth->ia_detach(vap); 410 /* 411 * Detach any ACL'ator. 412 */ 413 if (vap->iv_acl != NULL) 414 vap->iv_acl->iac_detach(vap); 415 416 FREEAPPIE(vap->iv_appie_beacon); 417 FREEAPPIE(vap->iv_appie_probereq); 418 FREEAPPIE(vap->iv_appie_proberesp); 419 FREEAPPIE(vap->iv_appie_assocreq); 420 FREEAPPIE(vap->iv_appie_assocresp); 421 FREEAPPIE(vap->iv_appie_wpa); 422 #undef FREEAPPIE 423 } 424 425 /* 426 * Simple-minded authenticator module support. 427 */ 428 429 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 430 /* XXX well-known names */ 431 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 432 "wlan_internal", /* IEEE80211_AUTH_NONE */ 433 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 434 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 435 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 436 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 437 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 438 }; 439 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 440 441 static const struct ieee80211_authenticator auth_internal = { 442 .ia_name = "wlan_internal", 443 .ia_attach = NULL, 444 .ia_detach = NULL, 445 .ia_node_join = NULL, 446 .ia_node_leave = NULL, 447 }; 448 449 /* 450 * Setup internal authenticators once; they are never unregistered. 451 */ 452 static void 453 ieee80211_auth_setup(void) 454 { 455 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 456 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 457 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 458 } 459 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 460 461 const struct ieee80211_authenticator * 462 ieee80211_authenticator_get(int auth) 463 { 464 if (auth >= IEEE80211_AUTH_MAX) 465 return NULL; 466 if (authenticators[auth] == NULL) 467 ieee80211_load_module(auth_modnames[auth]); 468 return authenticators[auth]; 469 } 470 471 void 472 ieee80211_authenticator_register(int type, 473 const struct ieee80211_authenticator *auth) 474 { 475 if (type >= IEEE80211_AUTH_MAX) 476 return; 477 authenticators[type] = auth; 478 } 479 480 void 481 ieee80211_authenticator_unregister(int type) 482 { 483 484 if (type >= IEEE80211_AUTH_MAX) 485 return; 486 authenticators[type] = NULL; 487 } 488 489 /* 490 * Very simple-minded ACL module support. 491 */ 492 /* XXX just one for now */ 493 static const struct ieee80211_aclator *acl = NULL; 494 495 void 496 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 497 { 498 printf("wlan: %s acl policy registered\n", iac->iac_name); 499 acl = iac; 500 } 501 502 void 503 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 504 { 505 if (acl == iac) 506 acl = NULL; 507 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 508 } 509 510 const struct ieee80211_aclator * 511 ieee80211_aclator_get(const char *name) 512 { 513 if (acl == NULL) 514 ieee80211_load_module("wlan_acl"); 515 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 516 } 517 518 void 519 ieee80211_print_essid(const uint8_t *essid, int len) 520 { 521 const uint8_t *p; 522 int i; 523 524 if (len > IEEE80211_NWID_LEN) 525 len = IEEE80211_NWID_LEN; 526 /* determine printable or not */ 527 for (i = 0, p = essid; i < len; i++, p++) { 528 if (*p < ' ' || *p > 0x7e) 529 break; 530 } 531 if (i == len) { 532 printf("\""); 533 for (i = 0, p = essid; i < len; i++, p++) 534 printf("%c", *p); 535 printf("\""); 536 } else { 537 printf("0x"); 538 for (i = 0, p = essid; i < len; i++, p++) 539 printf("%02x", *p); 540 } 541 } 542 543 void 544 ieee80211_dump_pkt(struct ieee80211com *ic, 545 const uint8_t *buf, int len, int rate, int rssi) 546 { 547 const struct ieee80211_frame *wh; 548 int i; 549 550 wh = (const struct ieee80211_frame *)buf; 551 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 552 case IEEE80211_FC1_DIR_NODS: 553 printf("NODS %s", ether_sprintf(wh->i_addr2)); 554 printf("->%s", ether_sprintf(wh->i_addr1)); 555 printf("(%s)", ether_sprintf(wh->i_addr3)); 556 break; 557 case IEEE80211_FC1_DIR_TODS: 558 printf("TODS %s", ether_sprintf(wh->i_addr2)); 559 printf("->%s", ether_sprintf(wh->i_addr3)); 560 printf("(%s)", ether_sprintf(wh->i_addr1)); 561 break; 562 case IEEE80211_FC1_DIR_FROMDS: 563 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 564 printf("->%s", ether_sprintf(wh->i_addr1)); 565 printf("(%s)", ether_sprintf(wh->i_addr2)); 566 break; 567 case IEEE80211_FC1_DIR_DSTODS: 568 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 569 printf("->%s", ether_sprintf(wh->i_addr3)); 570 printf("(%s", ether_sprintf(wh->i_addr2)); 571 printf("->%s)", ether_sprintf(wh->i_addr1)); 572 break; 573 } 574 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 575 case IEEE80211_FC0_TYPE_DATA: 576 printf(" data"); 577 break; 578 case IEEE80211_FC0_TYPE_MGT: 579 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 580 break; 581 default: 582 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 583 break; 584 } 585 if (IEEE80211_QOS_HAS_SEQ(wh)) { 586 const struct ieee80211_qosframe *qwh = 587 (const struct ieee80211_qosframe *)buf; 588 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 589 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 590 } 591 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 592 int off; 593 594 off = ieee80211_anyhdrspace(ic, wh); 595 printf(" WEP [IV %.02x %.02x %.02x", 596 buf[off+0], buf[off+1], buf[off+2]); 597 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 598 printf(" %.02x %.02x %.02x", 599 buf[off+4], buf[off+5], buf[off+6]); 600 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 601 } 602 if (rate >= 0) 603 printf(" %dM", rate / 2); 604 if (rssi >= 0) 605 printf(" +%d", rssi); 606 printf("\n"); 607 if (len > 0) { 608 for (i = 0; i < len; i++) { 609 if ((i & 1) == 0) 610 printf(" "); 611 printf("%02x", buf[i]); 612 } 613 printf("\n"); 614 } 615 } 616 617 static __inline int 618 findrix(const struct ieee80211_rateset *rs, int r) 619 { 620 int i; 621 622 for (i = 0; i < rs->rs_nrates; i++) 623 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 624 return i; 625 return -1; 626 } 627 628 int 629 ieee80211_fix_rate(struct ieee80211_node *ni, 630 struct ieee80211_rateset *nrs, int flags) 631 { 632 struct ieee80211vap *vap = ni->ni_vap; 633 struct ieee80211com *ic = ni->ni_ic; 634 int i, j, rix, error; 635 int okrate, badrate, fixedrate, ucastrate; 636 const struct ieee80211_rateset *srs; 637 uint8_t r; 638 639 error = 0; 640 okrate = badrate = 0; 641 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 642 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 643 /* 644 * Workaround awkwardness with fixed rate. We are called 645 * to check both the legacy rate set and the HT rate set 646 * but we must apply any legacy fixed rate check only to the 647 * legacy rate set and vice versa. We cannot tell what type 648 * of rate set we've been given (legacy or HT) but we can 649 * distinguish the fixed rate type (MCS have 0x80 set). 650 * So to deal with this the caller communicates whether to 651 * check MCS or legacy rate using the flags and we use the 652 * type of any fixed rate to avoid applying an MCS to a 653 * legacy rate and vice versa. 654 */ 655 if (ucastrate & 0x80) { 656 if (flags & IEEE80211_F_DOFRATE) 657 flags &= ~IEEE80211_F_DOFRATE; 658 } else if ((ucastrate & 0x80) == 0) { 659 if (flags & IEEE80211_F_DOFMCS) 660 flags &= ~IEEE80211_F_DOFMCS; 661 } 662 /* NB: required to make MCS match below work */ 663 ucastrate &= IEEE80211_RATE_VAL; 664 } 665 fixedrate = IEEE80211_FIXED_RATE_NONE; 666 /* 667 * XXX we are called to process both MCS and legacy rates; 668 * we must use the appropriate basic rate set or chaos will 669 * ensue; for now callers that want MCS must supply 670 * IEEE80211_F_DOBRS; at some point we'll need to split this 671 * function so there are two variants, one for MCS and one 672 * for legacy rates. 673 */ 674 if (flags & IEEE80211_F_DOBRS) 675 srs = (const struct ieee80211_rateset *) 676 ieee80211_get_suphtrates(ic, ni->ni_chan); 677 else 678 srs = ieee80211_get_suprates(ic, ni->ni_chan); 679 for (i = 0; i < nrs->rs_nrates; ) { 680 if (flags & IEEE80211_F_DOSORT) { 681 /* 682 * Sort rates. 683 */ 684 for (j = i + 1; j < nrs->rs_nrates; j++) { 685 if (IEEE80211_RV(nrs->rs_rates[i]) > 686 IEEE80211_RV(nrs->rs_rates[j])) { 687 r = nrs->rs_rates[i]; 688 nrs->rs_rates[i] = nrs->rs_rates[j]; 689 nrs->rs_rates[j] = r; 690 } 691 } 692 } 693 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 694 badrate = r; 695 /* 696 * Check for fixed rate. 697 */ 698 if (r == ucastrate) 699 fixedrate = r; 700 /* 701 * Check against supported rates. 702 */ 703 rix = findrix(srs, r); 704 if (flags & IEEE80211_F_DONEGO) { 705 if (rix < 0) { 706 /* 707 * A rate in the node's rate set is not 708 * supported. If this is a basic rate and we 709 * are operating as a STA then this is an error. 710 * Otherwise we just discard/ignore the rate. 711 */ 712 if ((flags & IEEE80211_F_JOIN) && 713 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 714 error++; 715 } else if ((flags & IEEE80211_F_JOIN) == 0) { 716 /* 717 * Overwrite with the supported rate 718 * value so any basic rate bit is set. 719 */ 720 nrs->rs_rates[i] = srs->rs_rates[rix]; 721 } 722 } 723 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 724 /* 725 * Delete unacceptable rates. 726 */ 727 nrs->rs_nrates--; 728 for (j = i; j < nrs->rs_nrates; j++) 729 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 730 nrs->rs_rates[j] = 0; 731 continue; 732 } 733 if (rix >= 0) 734 okrate = nrs->rs_rates[i]; 735 i++; 736 } 737 if (okrate == 0 || error != 0 || 738 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 739 fixedrate != ucastrate)) { 740 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 741 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 742 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 743 return badrate | IEEE80211_RATE_BASIC; 744 } else 745 return IEEE80211_RV(okrate); 746 } 747 748 /* 749 * Reset 11g-related state. 750 */ 751 void 752 ieee80211_reset_erp(struct ieee80211com *ic) 753 { 754 ic->ic_flags &= ~IEEE80211_F_USEPROT; 755 ic->ic_nonerpsta = 0; 756 ic->ic_longslotsta = 0; 757 /* 758 * Short slot time is enabled only when operating in 11g 759 * and not in an IBSS. We must also honor whether or not 760 * the driver is capable of doing it. 761 */ 762 ieee80211_set_shortslottime(ic, 763 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 764 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 765 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 766 ic->ic_opmode == IEEE80211_M_HOSTAP && 767 (ic->ic_caps & IEEE80211_C_SHSLOT))); 768 /* 769 * Set short preamble and ERP barker-preamble flags. 770 */ 771 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 772 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 773 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 774 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 775 } else { 776 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 777 ic->ic_flags |= IEEE80211_F_USEBARKER; 778 } 779 } 780 781 /* 782 * Set the short slot time state and notify the driver. 783 */ 784 void 785 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 786 { 787 if (onoff) 788 ic->ic_flags |= IEEE80211_F_SHSLOT; 789 else 790 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 791 /* notify driver */ 792 if (ic->ic_updateslot != NULL) 793 ic->ic_updateslot(ic); 794 } 795 796 /* 797 * Check if the specified rate set supports ERP. 798 * NB: the rate set is assumed to be sorted. 799 */ 800 int 801 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 802 { 803 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 804 int i, j; 805 806 if (rs->rs_nrates < nitems(rates)) 807 return 0; 808 for (i = 0; i < nitems(rates); i++) { 809 for (j = 0; j < rs->rs_nrates; j++) { 810 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 811 if (rates[i] == r) 812 goto next; 813 if (r > rates[i]) 814 return 0; 815 } 816 return 0; 817 next: 818 ; 819 } 820 return 1; 821 } 822 823 /* 824 * Mark the basic rates for the rate table based on the 825 * operating mode. For real 11g we mark all the 11b rates 826 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 827 * 11b rates. There's also a pseudo 11a-mode used to mark only 828 * the basic OFDM rates. 829 */ 830 static void 831 setbasicrates(struct ieee80211_rateset *rs, 832 enum ieee80211_phymode mode, int add) 833 { 834 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 835 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 836 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 837 /* NB: mixed b/g */ 838 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 839 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 840 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 841 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 842 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 843 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 844 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 845 /* NB: mixed b/g */ 846 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 847 /* NB: mixed b/g */ 848 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 849 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 850 }; 851 int i, j; 852 853 for (i = 0; i < rs->rs_nrates; i++) { 854 if (!add) 855 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 856 for (j = 0; j < basic[mode].rs_nrates; j++) 857 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 858 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 859 break; 860 } 861 } 862 } 863 864 /* 865 * Set the basic rates in a rate set. 866 */ 867 void 868 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 869 enum ieee80211_phymode mode) 870 { 871 setbasicrates(rs, mode, 0); 872 } 873 874 /* 875 * Add basic rates to a rate set. 876 */ 877 void 878 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 879 enum ieee80211_phymode mode) 880 { 881 setbasicrates(rs, mode, 1); 882 } 883 884 /* 885 * WME protocol support. 886 * 887 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 888 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 889 * Draft 2.0 Test Plan (Appendix D). 890 * 891 * Static/Dynamic Turbo mode settings come from Atheros. 892 */ 893 typedef struct phyParamType { 894 uint8_t aifsn; 895 uint8_t logcwmin; 896 uint8_t logcwmax; 897 uint16_t txopLimit; 898 uint8_t acm; 899 } paramType; 900 901 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 902 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 903 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 904 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 905 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 906 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 907 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 908 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 909 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 910 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 911 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 912 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 913 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 914 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 915 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 916 }; 917 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 918 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 919 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 920 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 921 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 922 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 923 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 924 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 925 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 926 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 927 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 928 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 929 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 930 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 931 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 932 }; 933 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 934 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 935 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 936 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 937 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 938 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 939 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 940 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 941 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 942 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 943 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 944 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 945 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 946 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 947 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 948 }; 949 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 950 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 951 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 952 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 953 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 954 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 955 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 956 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 957 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 958 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 959 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 960 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 961 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 962 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 963 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 964 }; 965 966 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 967 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 968 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 969 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 970 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 971 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 972 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 973 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 974 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 975 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 976 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 977 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 978 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 979 }; 980 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 981 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 982 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 983 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 984 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 985 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 986 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 987 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 988 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 989 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 990 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 991 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 992 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 993 }; 994 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 995 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 996 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 997 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 998 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 999 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1000 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1001 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1002 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1003 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1004 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1005 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1006 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1007 }; 1008 1009 static void 1010 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1011 { 1012 wmep->wmep_aifsn = phy->aifsn; 1013 wmep->wmep_logcwmin = phy->logcwmin; 1014 wmep->wmep_logcwmax = phy->logcwmax; 1015 wmep->wmep_txopLimit = phy->txopLimit; 1016 } 1017 1018 static void 1019 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1020 struct wmeParams *wmep, const paramType *phy) 1021 { 1022 wmep->wmep_acm = phy->acm; 1023 _setifsparams(wmep, phy); 1024 1025 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1026 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1027 ieee80211_wme_acnames[ac], type, 1028 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1029 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1030 } 1031 1032 static void 1033 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1034 { 1035 struct ieee80211com *ic = vap->iv_ic; 1036 struct ieee80211_wme_state *wme = &ic->ic_wme; 1037 const paramType *pPhyParam, *pBssPhyParam; 1038 struct wmeParams *wmep; 1039 enum ieee80211_phymode mode; 1040 int i; 1041 1042 IEEE80211_LOCK_ASSERT(ic); 1043 1044 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1045 return; 1046 1047 /* 1048 * Clear the wme cap_info field so a qoscount from a previous 1049 * vap doesn't confuse later code which only parses the beacon 1050 * field and updates hardware when said field changes. 1051 * Otherwise the hardware is programmed with defaults, not what 1052 * the beacon actually announces. 1053 */ 1054 wme->wme_wmeChanParams.cap_info = 0; 1055 1056 /* 1057 * Select mode; we can be called early in which case we 1058 * always use auto mode. We know we'll be called when 1059 * entering the RUN state with bsschan setup properly 1060 * so state will eventually get set correctly 1061 */ 1062 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1063 mode = ieee80211_chan2mode(ic->ic_bsschan); 1064 else 1065 mode = IEEE80211_MODE_AUTO; 1066 for (i = 0; i < WME_NUM_AC; i++) { 1067 switch (i) { 1068 case WME_AC_BK: 1069 pPhyParam = &phyParamForAC_BK[mode]; 1070 pBssPhyParam = &phyParamForAC_BK[mode]; 1071 break; 1072 case WME_AC_VI: 1073 pPhyParam = &phyParamForAC_VI[mode]; 1074 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1075 break; 1076 case WME_AC_VO: 1077 pPhyParam = &phyParamForAC_VO[mode]; 1078 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1079 break; 1080 case WME_AC_BE: 1081 default: 1082 pPhyParam = &phyParamForAC_BE[mode]; 1083 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1084 break; 1085 } 1086 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1087 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1088 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1089 } else { 1090 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1091 } 1092 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1093 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1094 } 1095 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1096 if (vap->iv_bss != NULL) { 1097 /* 1098 * Calculate aggressive mode switching threshold based 1099 * on beacon interval. This doesn't need locking since 1100 * we're only called before entering the RUN state at 1101 * which point we start sending beacon frames. 1102 */ 1103 wme->wme_hipri_switch_thresh = 1104 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1105 wme->wme_flags &= ~WME_F_AGGRMODE; 1106 ieee80211_wme_updateparams(vap); 1107 } 1108 } 1109 1110 void 1111 ieee80211_wme_initparams(struct ieee80211vap *vap) 1112 { 1113 struct ieee80211com *ic = vap->iv_ic; 1114 1115 IEEE80211_LOCK(ic); 1116 ieee80211_wme_initparams_locked(vap); 1117 IEEE80211_UNLOCK(ic); 1118 } 1119 1120 /* 1121 * Update WME parameters for ourself and the BSS. 1122 */ 1123 void 1124 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1125 { 1126 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1127 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1128 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1129 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1130 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1131 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1132 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1133 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1134 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1135 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1136 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1137 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1138 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1139 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1140 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1141 }; 1142 struct ieee80211com *ic = vap->iv_ic; 1143 struct ieee80211_wme_state *wme = &ic->ic_wme; 1144 const struct wmeParams *wmep; 1145 struct wmeParams *chanp, *bssp; 1146 enum ieee80211_phymode mode; 1147 int i; 1148 int do_aggrmode = 0; 1149 1150 /* 1151 * Set up the channel access parameters for the physical 1152 * device. First populate the configured settings. 1153 */ 1154 for (i = 0; i < WME_NUM_AC; i++) { 1155 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1156 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1157 chanp->wmep_aifsn = wmep->wmep_aifsn; 1158 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1159 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1160 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1161 1162 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1163 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1164 chanp->wmep_aifsn = wmep->wmep_aifsn; 1165 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1166 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1167 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1168 } 1169 1170 /* 1171 * Select mode; we can be called early in which case we 1172 * always use auto mode. We know we'll be called when 1173 * entering the RUN state with bsschan setup properly 1174 * so state will eventually get set correctly 1175 */ 1176 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1177 mode = ieee80211_chan2mode(ic->ic_bsschan); 1178 else 1179 mode = IEEE80211_MODE_AUTO; 1180 1181 /* 1182 * This implements aggressive mode as found in certain 1183 * vendors' AP's. When there is significant high 1184 * priority (VI/VO) traffic in the BSS throttle back BE 1185 * traffic by using conservative parameters. Otherwise 1186 * BE uses aggressive params to optimize performance of 1187 * legacy/non-QoS traffic. 1188 */ 1189 1190 /* Hostap? Only if aggressive mode is enabled */ 1191 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1192 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1193 do_aggrmode = 1; 1194 1195 /* 1196 * Station? Only if we're in a non-QoS BSS. 1197 */ 1198 else if ((vap->iv_opmode == IEEE80211_M_STA && 1199 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1200 do_aggrmode = 1; 1201 1202 /* 1203 * IBSS? Only if we we have WME enabled. 1204 */ 1205 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1206 (vap->iv_flags & IEEE80211_F_WME)) 1207 do_aggrmode = 1; 1208 1209 /* 1210 * If WME is disabled on this VAP, default to aggressive mode 1211 * regardless of the configuration. 1212 */ 1213 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1214 do_aggrmode = 1; 1215 1216 /* XXX WDS? */ 1217 1218 /* XXX MBSS? */ 1219 1220 if (do_aggrmode) { 1221 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1222 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1223 1224 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1225 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1226 aggrParam[mode].logcwmin; 1227 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1228 aggrParam[mode].logcwmax; 1229 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1230 (vap->iv_flags & IEEE80211_F_BURST) ? 1231 aggrParam[mode].txopLimit : 0; 1232 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1233 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1234 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1235 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1236 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1237 } 1238 1239 1240 /* 1241 * Change the contention window based on the number of associated 1242 * stations. If the number of associated stations is 1 and 1243 * aggressive mode is enabled, lower the contention window even 1244 * further. 1245 */ 1246 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1247 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1248 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1249 [IEEE80211_MODE_AUTO] = 3, 1250 [IEEE80211_MODE_11A] = 3, 1251 [IEEE80211_MODE_11B] = 4, 1252 [IEEE80211_MODE_11G] = 3, 1253 [IEEE80211_MODE_FH] = 4, 1254 [IEEE80211_MODE_TURBO_A] = 3, 1255 [IEEE80211_MODE_TURBO_G] = 3, 1256 [IEEE80211_MODE_STURBO_A] = 3, 1257 [IEEE80211_MODE_HALF] = 3, 1258 [IEEE80211_MODE_QUARTER] = 3, 1259 [IEEE80211_MODE_11NA] = 3, 1260 [IEEE80211_MODE_11NG] = 3, 1261 [IEEE80211_MODE_VHT_2GHZ] = 3, 1262 [IEEE80211_MODE_VHT_5GHZ] = 3, 1263 }; 1264 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1265 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1266 1267 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1268 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1269 "update %s (chan+bss) logcwmin %u\n", 1270 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1271 } 1272 1273 /* 1274 * Arrange for the beacon update. 1275 * 1276 * XXX what about MBSS, WDS? 1277 */ 1278 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1279 || vap->iv_opmode == IEEE80211_M_IBSS) { 1280 /* 1281 * Arrange for a beacon update and bump the parameter 1282 * set number so associated stations load the new values. 1283 */ 1284 wme->wme_bssChanParams.cap_info = 1285 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1286 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1287 } 1288 1289 /* schedule the deferred WME update */ 1290 ieee80211_runtask(ic, &vap->iv_wme_task); 1291 1292 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1293 "%s: WME params updated, cap_info 0x%x\n", __func__, 1294 vap->iv_opmode == IEEE80211_M_STA ? 1295 wme->wme_wmeChanParams.cap_info : 1296 wme->wme_bssChanParams.cap_info); 1297 } 1298 1299 void 1300 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1301 { 1302 struct ieee80211com *ic = vap->iv_ic; 1303 1304 if (ic->ic_caps & IEEE80211_C_WME) { 1305 IEEE80211_LOCK(ic); 1306 ieee80211_wme_updateparams_locked(vap); 1307 IEEE80211_UNLOCK(ic); 1308 } 1309 } 1310 1311 /* 1312 * Fetch the WME parameters for the given VAP. 1313 * 1314 * When net80211 grows p2p, etc support, this may return different 1315 * parameters for each VAP. 1316 */ 1317 void 1318 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1319 { 1320 1321 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1322 } 1323 1324 /* 1325 * For NICs which only support one set of WME paramaters (ie, softmac NICs) 1326 * there may be different VAP WME parameters but only one is "active". 1327 * This returns the "NIC" WME parameters for the currently active 1328 * context. 1329 */ 1330 void 1331 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1332 { 1333 1334 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1335 } 1336 1337 /* 1338 * Return whether to use QoS on a given WME queue. 1339 * 1340 * This is intended to be called from the transmit path of softmac drivers 1341 * which are setting NoAck bits in transmit descriptors. 1342 * 1343 * Ideally this would be set in some transmit field before the packet is 1344 * queued to the driver but net80211 isn't quite there yet. 1345 */ 1346 int 1347 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1348 { 1349 /* Bounds/sanity check */ 1350 if (ac < 0 || ac >= WME_NUM_AC) 1351 return (0); 1352 1353 /* Again, there's only one global context for now */ 1354 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1355 } 1356 1357 static void 1358 parent_updown(void *arg, int npending) 1359 { 1360 struct ieee80211com *ic = arg; 1361 1362 ic->ic_parent(ic); 1363 } 1364 1365 static void 1366 update_mcast(void *arg, int npending) 1367 { 1368 struct ieee80211com *ic = arg; 1369 1370 ic->ic_update_mcast(ic); 1371 } 1372 1373 static void 1374 update_promisc(void *arg, int npending) 1375 { 1376 struct ieee80211com *ic = arg; 1377 1378 ic->ic_update_promisc(ic); 1379 } 1380 1381 static void 1382 update_channel(void *arg, int npending) 1383 { 1384 struct ieee80211com *ic = arg; 1385 1386 ic->ic_set_channel(ic); 1387 ieee80211_radiotap_chan_change(ic); 1388 } 1389 1390 static void 1391 update_chw(void *arg, int npending) 1392 { 1393 struct ieee80211com *ic = arg; 1394 1395 /* 1396 * XXX should we defer the channel width _config_ update until now? 1397 */ 1398 ic->ic_update_chw(ic); 1399 } 1400 1401 /* 1402 * Deferred WME update. 1403 * 1404 * In preparation for per-VAP WME configuration, call the VAP 1405 * method if the VAP requires it. Otherwise, just call the 1406 * older global method. There isn't a per-VAP WME configuration 1407 * just yet so for now just use the global configuration. 1408 */ 1409 static void 1410 vap_update_wme(void *arg, int npending) 1411 { 1412 struct ieee80211vap *vap = arg; 1413 struct ieee80211com *ic = vap->iv_ic; 1414 1415 if (vap->iv_wme_update != NULL) 1416 vap->iv_wme_update(vap, 1417 ic->ic_wme.wme_chanParams.cap_wmeParams); 1418 else 1419 ic->ic_wme.wme_update(ic); 1420 } 1421 1422 static void 1423 restart_vaps(void *arg, int npending) 1424 { 1425 struct ieee80211com *ic = arg; 1426 1427 ieee80211_suspend_all(ic); 1428 ieee80211_resume_all(ic); 1429 } 1430 1431 /* 1432 * Block until the parent is in a known state. This is 1433 * used after any operations that dispatch a task (e.g. 1434 * to auto-configure the parent device up/down). 1435 */ 1436 void 1437 ieee80211_waitfor_parent(struct ieee80211com *ic) 1438 { 1439 taskqueue_block(ic->ic_tq); 1440 ieee80211_draintask(ic, &ic->ic_parent_task); 1441 ieee80211_draintask(ic, &ic->ic_mcast_task); 1442 ieee80211_draintask(ic, &ic->ic_promisc_task); 1443 ieee80211_draintask(ic, &ic->ic_chan_task); 1444 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1445 ieee80211_draintask(ic, &ic->ic_chw_task); 1446 taskqueue_unblock(ic->ic_tq); 1447 } 1448 1449 /* 1450 * Check to see whether the current channel needs reset. 1451 * 1452 * Some devices don't handle being given an invalid channel 1453 * in their operating mode very well (eg wpi(4) will throw a 1454 * firmware exception.) 1455 * 1456 * Return 0 if we're ok, 1 if the channel needs to be reset. 1457 * 1458 * See PR kern/202502. 1459 */ 1460 static int 1461 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1462 { 1463 struct ieee80211com *ic = vap->iv_ic; 1464 1465 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1466 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1467 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1468 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1469 return (1); 1470 return (0); 1471 } 1472 1473 /* 1474 * Reset the curchan to a known good state. 1475 */ 1476 static void 1477 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1478 { 1479 struct ieee80211com *ic = vap->iv_ic; 1480 1481 ic->ic_curchan = &ic->ic_channels[0]; 1482 } 1483 1484 /* 1485 * Start a vap running. If this is the first vap to be 1486 * set running on the underlying device then we 1487 * automatically bring the device up. 1488 */ 1489 void 1490 ieee80211_start_locked(struct ieee80211vap *vap) 1491 { 1492 struct ifnet *ifp = vap->iv_ifp; 1493 struct ieee80211com *ic = vap->iv_ic; 1494 1495 IEEE80211_LOCK_ASSERT(ic); 1496 1497 IEEE80211_DPRINTF(vap, 1498 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1499 "start running, %d vaps running\n", ic->ic_nrunning); 1500 1501 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1502 /* 1503 * Mark us running. Note that it's ok to do this first; 1504 * if we need to bring the parent device up we defer that 1505 * to avoid dropping the com lock. We expect the device 1506 * to respond to being marked up by calling back into us 1507 * through ieee80211_start_all at which point we'll come 1508 * back in here and complete the work. 1509 */ 1510 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1511 /* 1512 * We are not running; if this we are the first vap 1513 * to be brought up auto-up the parent if necessary. 1514 */ 1515 if (ic->ic_nrunning++ == 0) { 1516 1517 /* reset the channel to a known good channel */ 1518 if (ieee80211_start_check_reset_chan(vap)) 1519 ieee80211_start_reset_chan(vap); 1520 1521 IEEE80211_DPRINTF(vap, 1522 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1523 "%s: up parent %s\n", __func__, ic->ic_name); 1524 ieee80211_runtask(ic, &ic->ic_parent_task); 1525 return; 1526 } 1527 } 1528 /* 1529 * If the parent is up and running, then kick the 1530 * 802.11 state machine as appropriate. 1531 */ 1532 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1533 if (vap->iv_opmode == IEEE80211_M_STA) { 1534 #if 0 1535 /* XXX bypasses scan too easily; disable for now */ 1536 /* 1537 * Try to be intelligent about clocking the state 1538 * machine. If we're currently in RUN state then 1539 * we should be able to apply any new state/parameters 1540 * simply by re-associating. Otherwise we need to 1541 * re-scan to select an appropriate ap. 1542 */ 1543 if (vap->iv_state >= IEEE80211_S_RUN) 1544 ieee80211_new_state_locked(vap, 1545 IEEE80211_S_ASSOC, 1); 1546 else 1547 #endif 1548 ieee80211_new_state_locked(vap, 1549 IEEE80211_S_SCAN, 0); 1550 } else { 1551 /* 1552 * For monitor+wds mode there's nothing to do but 1553 * start running. Otherwise if this is the first 1554 * vap to be brought up, start a scan which may be 1555 * preempted if the station is locked to a particular 1556 * channel. 1557 */ 1558 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1559 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1560 vap->iv_opmode == IEEE80211_M_WDS) 1561 ieee80211_new_state_locked(vap, 1562 IEEE80211_S_RUN, -1); 1563 else 1564 ieee80211_new_state_locked(vap, 1565 IEEE80211_S_SCAN, 0); 1566 } 1567 } 1568 } 1569 1570 /* 1571 * Start a single vap. 1572 */ 1573 void 1574 ieee80211_init(void *arg) 1575 { 1576 struct ieee80211vap *vap = arg; 1577 1578 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1579 "%s\n", __func__); 1580 1581 IEEE80211_LOCK(vap->iv_ic); 1582 ieee80211_start_locked(vap); 1583 IEEE80211_UNLOCK(vap->iv_ic); 1584 } 1585 1586 /* 1587 * Start all runnable vap's on a device. 1588 */ 1589 void 1590 ieee80211_start_all(struct ieee80211com *ic) 1591 { 1592 struct ieee80211vap *vap; 1593 1594 IEEE80211_LOCK(ic); 1595 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1596 struct ifnet *ifp = vap->iv_ifp; 1597 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1598 ieee80211_start_locked(vap); 1599 } 1600 IEEE80211_UNLOCK(ic); 1601 } 1602 1603 /* 1604 * Stop a vap. We force it down using the state machine 1605 * then mark it's ifnet not running. If this is the last 1606 * vap running on the underlying device then we close it 1607 * too to insure it will be properly initialized when the 1608 * next vap is brought up. 1609 */ 1610 void 1611 ieee80211_stop_locked(struct ieee80211vap *vap) 1612 { 1613 struct ieee80211com *ic = vap->iv_ic; 1614 struct ifnet *ifp = vap->iv_ifp; 1615 1616 IEEE80211_LOCK_ASSERT(ic); 1617 1618 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1619 "stop running, %d vaps running\n", ic->ic_nrunning); 1620 1621 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1622 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1623 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1624 if (--ic->ic_nrunning == 0) { 1625 IEEE80211_DPRINTF(vap, 1626 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1627 "down parent %s\n", ic->ic_name); 1628 ieee80211_runtask(ic, &ic->ic_parent_task); 1629 } 1630 } 1631 } 1632 1633 void 1634 ieee80211_stop(struct ieee80211vap *vap) 1635 { 1636 struct ieee80211com *ic = vap->iv_ic; 1637 1638 IEEE80211_LOCK(ic); 1639 ieee80211_stop_locked(vap); 1640 IEEE80211_UNLOCK(ic); 1641 } 1642 1643 /* 1644 * Stop all vap's running on a device. 1645 */ 1646 void 1647 ieee80211_stop_all(struct ieee80211com *ic) 1648 { 1649 struct ieee80211vap *vap; 1650 1651 IEEE80211_LOCK(ic); 1652 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1653 struct ifnet *ifp = vap->iv_ifp; 1654 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1655 ieee80211_stop_locked(vap); 1656 } 1657 IEEE80211_UNLOCK(ic); 1658 1659 ieee80211_waitfor_parent(ic); 1660 } 1661 1662 /* 1663 * Stop all vap's running on a device and arrange 1664 * for those that were running to be resumed. 1665 */ 1666 void 1667 ieee80211_suspend_all(struct ieee80211com *ic) 1668 { 1669 struct ieee80211vap *vap; 1670 1671 IEEE80211_LOCK(ic); 1672 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1673 struct ifnet *ifp = vap->iv_ifp; 1674 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1675 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1676 ieee80211_stop_locked(vap); 1677 } 1678 } 1679 IEEE80211_UNLOCK(ic); 1680 1681 ieee80211_waitfor_parent(ic); 1682 } 1683 1684 /* 1685 * Start all vap's marked for resume. 1686 */ 1687 void 1688 ieee80211_resume_all(struct ieee80211com *ic) 1689 { 1690 struct ieee80211vap *vap; 1691 1692 IEEE80211_LOCK(ic); 1693 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1694 struct ifnet *ifp = vap->iv_ifp; 1695 if (!IFNET_IS_UP_RUNNING(ifp) && 1696 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1697 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1698 ieee80211_start_locked(vap); 1699 } 1700 } 1701 IEEE80211_UNLOCK(ic); 1702 } 1703 1704 /* 1705 * Restart all vap's running on a device. 1706 */ 1707 void 1708 ieee80211_restart_all(struct ieee80211com *ic) 1709 { 1710 /* 1711 * NB: do not use ieee80211_runtask here, we will 1712 * block & drain net80211 taskqueue. 1713 */ 1714 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 1715 } 1716 1717 void 1718 ieee80211_beacon_miss(struct ieee80211com *ic) 1719 { 1720 IEEE80211_LOCK(ic); 1721 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1722 /* Process in a taskq, the handler may reenter the driver */ 1723 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1724 } 1725 IEEE80211_UNLOCK(ic); 1726 } 1727 1728 static void 1729 beacon_miss(void *arg, int npending) 1730 { 1731 struct ieee80211com *ic = arg; 1732 struct ieee80211vap *vap; 1733 1734 IEEE80211_LOCK(ic); 1735 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1736 /* 1737 * We only pass events through for sta vap's in RUN+ state; 1738 * may be too restrictive but for now this saves all the 1739 * handlers duplicating these checks. 1740 */ 1741 if (vap->iv_opmode == IEEE80211_M_STA && 1742 vap->iv_state >= IEEE80211_S_RUN && 1743 vap->iv_bmiss != NULL) 1744 vap->iv_bmiss(vap); 1745 } 1746 IEEE80211_UNLOCK(ic); 1747 } 1748 1749 static void 1750 beacon_swmiss(void *arg, int npending) 1751 { 1752 struct ieee80211vap *vap = arg; 1753 struct ieee80211com *ic = vap->iv_ic; 1754 1755 IEEE80211_LOCK(ic); 1756 if (vap->iv_state >= IEEE80211_S_RUN) { 1757 /* XXX Call multiple times if npending > zero? */ 1758 vap->iv_bmiss(vap); 1759 } 1760 IEEE80211_UNLOCK(ic); 1761 } 1762 1763 /* 1764 * Software beacon miss handling. Check if any beacons 1765 * were received in the last period. If not post a 1766 * beacon miss; otherwise reset the counter. 1767 */ 1768 void 1769 ieee80211_swbmiss(void *arg) 1770 { 1771 struct ieee80211vap *vap = arg; 1772 struct ieee80211com *ic = vap->iv_ic; 1773 1774 IEEE80211_LOCK_ASSERT(ic); 1775 1776 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 1777 ("wrong state %d", vap->iv_state)); 1778 1779 if (ic->ic_flags & IEEE80211_F_SCAN) { 1780 /* 1781 * If scanning just ignore and reset state. If we get a 1782 * bmiss after coming out of scan because we haven't had 1783 * time to receive a beacon then we should probe the AP 1784 * before posting a real bmiss (unless iv_bmiss_max has 1785 * been artifiically lowered). A cleaner solution might 1786 * be to disable the timer on scan start/end but to handle 1787 * case of multiple sta vap's we'd need to disable the 1788 * timers of all affected vap's. 1789 */ 1790 vap->iv_swbmiss_count = 0; 1791 } else if (vap->iv_swbmiss_count == 0) { 1792 if (vap->iv_bmiss != NULL) 1793 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1794 } else 1795 vap->iv_swbmiss_count = 0; 1796 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1797 ieee80211_swbmiss, vap); 1798 } 1799 1800 /* 1801 * Start an 802.11h channel switch. We record the parameters, 1802 * mark the operation pending, notify each vap through the 1803 * beacon update mechanism so it can update the beacon frame 1804 * contents, and then switch vap's to CSA state to block outbound 1805 * traffic. Devices that handle CSA directly can use the state 1806 * switch to do the right thing so long as they call 1807 * ieee80211_csa_completeswitch when it's time to complete the 1808 * channel change. Devices that depend on the net80211 layer can 1809 * use ieee80211_beacon_update to handle the countdown and the 1810 * channel switch. 1811 */ 1812 void 1813 ieee80211_csa_startswitch(struct ieee80211com *ic, 1814 struct ieee80211_channel *c, int mode, int count) 1815 { 1816 struct ieee80211vap *vap; 1817 1818 IEEE80211_LOCK_ASSERT(ic); 1819 1820 ic->ic_csa_newchan = c; 1821 ic->ic_csa_mode = mode; 1822 ic->ic_csa_count = count; 1823 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1824 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1825 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1826 vap->iv_opmode == IEEE80211_M_IBSS || 1827 vap->iv_opmode == IEEE80211_M_MBSS) 1828 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1829 /* switch to CSA state to block outbound traffic */ 1830 if (vap->iv_state == IEEE80211_S_RUN) 1831 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1832 } 1833 ieee80211_notify_csa(ic, c, mode, count); 1834 } 1835 1836 /* 1837 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1838 * This is called by both the completion and cancellation functions 1839 * so each VAP is placed back in the RUN state and can thus transmit. 1840 */ 1841 static void 1842 csa_completeswitch(struct ieee80211com *ic) 1843 { 1844 struct ieee80211vap *vap; 1845 1846 ic->ic_csa_newchan = NULL; 1847 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1848 1849 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1850 if (vap->iv_state == IEEE80211_S_CSA) 1851 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1852 } 1853 1854 /* 1855 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1856 * We clear state and move all vap's in CSA state to RUN state 1857 * so they can again transmit. 1858 * 1859 * Although this may not be completely correct, update the BSS channel 1860 * for each VAP to the newly configured channel. The setcurchan sets 1861 * the current operating channel for the interface (so the radio does 1862 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1863 * reported information via ioctl. 1864 */ 1865 void 1866 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1867 { 1868 struct ieee80211vap *vap; 1869 1870 IEEE80211_LOCK_ASSERT(ic); 1871 1872 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1873 1874 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1875 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1876 if (vap->iv_state == IEEE80211_S_CSA) 1877 vap->iv_bss->ni_chan = ic->ic_curchan; 1878 1879 csa_completeswitch(ic); 1880 } 1881 1882 /* 1883 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1884 * We clear state and move all vap's in CSA state to RUN state 1885 * so they can again transmit. 1886 */ 1887 void 1888 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1889 { 1890 IEEE80211_LOCK_ASSERT(ic); 1891 1892 csa_completeswitch(ic); 1893 } 1894 1895 /* 1896 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1897 * We clear state and move all vap's in CAC state to RUN state. 1898 */ 1899 void 1900 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1901 { 1902 struct ieee80211com *ic = vap0->iv_ic; 1903 struct ieee80211vap *vap; 1904 1905 IEEE80211_LOCK(ic); 1906 /* 1907 * Complete CAC state change for lead vap first; then 1908 * clock all the other vap's waiting. 1909 */ 1910 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1911 ("wrong state %d", vap0->iv_state)); 1912 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1913 1914 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1915 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 1916 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1917 IEEE80211_UNLOCK(ic); 1918 } 1919 1920 /* 1921 * Force all vap's other than the specified vap to the INIT state 1922 * and mark them as waiting for a scan to complete. These vaps 1923 * will be brought up when the scan completes and the scanning vap 1924 * reaches RUN state by wakeupwaiting. 1925 */ 1926 static void 1927 markwaiting(struct ieee80211vap *vap0) 1928 { 1929 struct ieee80211com *ic = vap0->iv_ic; 1930 struct ieee80211vap *vap; 1931 1932 IEEE80211_LOCK_ASSERT(ic); 1933 1934 /* 1935 * A vap list entry can not disappear since we are running on the 1936 * taskqueue and a vap destroy will queue and drain another state 1937 * change task. 1938 */ 1939 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1940 if (vap == vap0) 1941 continue; 1942 if (vap->iv_state != IEEE80211_S_INIT) { 1943 /* NB: iv_newstate may drop the lock */ 1944 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1945 IEEE80211_LOCK_ASSERT(ic); 1946 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1947 } 1948 } 1949 } 1950 1951 /* 1952 * Wakeup all vap's waiting for a scan to complete. This is the 1953 * companion to markwaiting (above) and is used to coordinate 1954 * multiple vaps scanning. 1955 * This is called from the state taskqueue. 1956 */ 1957 static void 1958 wakeupwaiting(struct ieee80211vap *vap0) 1959 { 1960 struct ieee80211com *ic = vap0->iv_ic; 1961 struct ieee80211vap *vap; 1962 1963 IEEE80211_LOCK_ASSERT(ic); 1964 1965 /* 1966 * A vap list entry can not disappear since we are running on the 1967 * taskqueue and a vap destroy will queue and drain another state 1968 * change task. 1969 */ 1970 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1971 if (vap == vap0) 1972 continue; 1973 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1974 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1975 /* NB: sta's cannot go INIT->RUN */ 1976 /* NB: iv_newstate may drop the lock */ 1977 vap->iv_newstate(vap, 1978 vap->iv_opmode == IEEE80211_M_STA ? 1979 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1980 IEEE80211_LOCK_ASSERT(ic); 1981 } 1982 } 1983 } 1984 1985 /* 1986 * Handle post state change work common to all operating modes. 1987 */ 1988 static void 1989 ieee80211_newstate_cb(void *xvap, int npending) 1990 { 1991 struct ieee80211vap *vap = xvap; 1992 struct ieee80211com *ic = vap->iv_ic; 1993 enum ieee80211_state nstate, ostate; 1994 int arg, rc; 1995 1996 IEEE80211_LOCK(ic); 1997 nstate = vap->iv_nstate; 1998 arg = vap->iv_nstate_arg; 1999 2000 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2001 /* 2002 * We have been requested to drop back to the INIT before 2003 * proceeding to the new state. 2004 */ 2005 /* Deny any state changes while we are here. */ 2006 vap->iv_nstate = IEEE80211_S_INIT; 2007 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2008 "%s: %s -> %s arg %d\n", __func__, 2009 ieee80211_state_name[vap->iv_state], 2010 ieee80211_state_name[vap->iv_nstate], arg); 2011 vap->iv_newstate(vap, vap->iv_nstate, 0); 2012 IEEE80211_LOCK_ASSERT(ic); 2013 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2014 IEEE80211_FEXT_STATEWAIT); 2015 /* enqueue new state transition after cancel_scan() task */ 2016 ieee80211_new_state_locked(vap, nstate, arg); 2017 goto done; 2018 } 2019 2020 ostate = vap->iv_state; 2021 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2022 /* 2023 * SCAN was forced; e.g. on beacon miss. Force other running 2024 * vap's to INIT state and mark them as waiting for the scan to 2025 * complete. This insures they don't interfere with our 2026 * scanning. Since we are single threaded the vaps can not 2027 * transition again while we are executing. 2028 * 2029 * XXX not always right, assumes ap follows sta 2030 */ 2031 markwaiting(vap); 2032 } 2033 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2034 "%s: %s -> %s arg %d\n", __func__, 2035 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2036 2037 rc = vap->iv_newstate(vap, nstate, arg); 2038 IEEE80211_LOCK_ASSERT(ic); 2039 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2040 if (rc != 0) { 2041 /* State transition failed */ 2042 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2043 KASSERT(nstate != IEEE80211_S_INIT, 2044 ("INIT state change failed")); 2045 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2046 "%s: %s returned error %d\n", __func__, 2047 ieee80211_state_name[nstate], rc); 2048 goto done; 2049 } 2050 2051 /* No actual transition, skip post processing */ 2052 if (ostate == nstate) 2053 goto done; 2054 2055 if (nstate == IEEE80211_S_RUN) { 2056 /* 2057 * OACTIVE may be set on the vap if the upper layer 2058 * tried to transmit (e.g. IPv6 NDP) before we reach 2059 * RUN state. Clear it and restart xmit. 2060 * 2061 * Note this can also happen as a result of SLEEP->RUN 2062 * (i.e. coming out of power save mode). 2063 */ 2064 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2065 2066 /* 2067 * XXX TODO Kick-start a VAP queue - this should be a method! 2068 */ 2069 2070 /* bring up any vaps waiting on us */ 2071 wakeupwaiting(vap); 2072 } else if (nstate == IEEE80211_S_INIT) { 2073 /* 2074 * Flush the scan cache if we did the last scan (XXX?) 2075 * and flush any frames on send queues from this vap. 2076 * Note the mgt q is used only for legacy drivers and 2077 * will go away shortly. 2078 */ 2079 ieee80211_scan_flush(vap); 2080 2081 /* 2082 * XXX TODO: ic/vap queue flush 2083 */ 2084 } 2085 done: 2086 IEEE80211_UNLOCK(ic); 2087 } 2088 2089 /* 2090 * Public interface for initiating a state machine change. 2091 * This routine single-threads the request and coordinates 2092 * the scheduling of multiple vaps for the purpose of selecting 2093 * an operating channel. Specifically the following scenarios 2094 * are handled: 2095 * o only one vap can be selecting a channel so on transition to 2096 * SCAN state if another vap is already scanning then 2097 * mark the caller for later processing and return without 2098 * doing anything (XXX? expectations by caller of synchronous operation) 2099 * o only one vap can be doing CAC of a channel so on transition to 2100 * CAC state if another vap is already scanning for radar then 2101 * mark the caller for later processing and return without 2102 * doing anything (XXX? expectations by caller of synchronous operation) 2103 * o if another vap is already running when a request is made 2104 * to SCAN then an operating channel has been chosen; bypass 2105 * the scan and just join the channel 2106 * 2107 * Note that the state change call is done through the iv_newstate 2108 * method pointer so any driver routine gets invoked. The driver 2109 * will normally call back into operating mode-specific 2110 * ieee80211_newstate routines (below) unless it needs to completely 2111 * bypass the state machine (e.g. because the firmware has it's 2112 * own idea how things should work). Bypassing the net80211 layer 2113 * is usually a mistake and indicates lack of proper integration 2114 * with the net80211 layer. 2115 */ 2116 int 2117 ieee80211_new_state_locked(struct ieee80211vap *vap, 2118 enum ieee80211_state nstate, int arg) 2119 { 2120 struct ieee80211com *ic = vap->iv_ic; 2121 struct ieee80211vap *vp; 2122 enum ieee80211_state ostate; 2123 int nrunning, nscanning; 2124 2125 IEEE80211_LOCK_ASSERT(ic); 2126 2127 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2128 if (vap->iv_nstate == IEEE80211_S_INIT || 2129 ((vap->iv_state == IEEE80211_S_INIT || 2130 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2131 vap->iv_nstate == IEEE80211_S_SCAN && 2132 nstate > IEEE80211_S_SCAN)) { 2133 /* 2134 * XXX The vap is being stopped/started, 2135 * do not allow any other state changes 2136 * until this is completed. 2137 */ 2138 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2139 "%s: %s -> %s (%s) transition discarded\n", 2140 __func__, 2141 ieee80211_state_name[vap->iv_state], 2142 ieee80211_state_name[nstate], 2143 ieee80211_state_name[vap->iv_nstate]); 2144 return -1; 2145 } else if (vap->iv_state != vap->iv_nstate) { 2146 #if 0 2147 /* Warn if the previous state hasn't completed. */ 2148 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2149 "%s: pending %s -> %s transition lost\n", __func__, 2150 ieee80211_state_name[vap->iv_state], 2151 ieee80211_state_name[vap->iv_nstate]); 2152 #else 2153 /* XXX temporarily enable to identify issues */ 2154 if_printf(vap->iv_ifp, 2155 "%s: pending %s -> %s transition lost\n", 2156 __func__, ieee80211_state_name[vap->iv_state], 2157 ieee80211_state_name[vap->iv_nstate]); 2158 #endif 2159 } 2160 } 2161 2162 nrunning = nscanning = 0; 2163 /* XXX can track this state instead of calculating */ 2164 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2165 if (vp != vap) { 2166 if (vp->iv_state >= IEEE80211_S_RUN) 2167 nrunning++; 2168 /* XXX doesn't handle bg scan */ 2169 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2170 else if (vp->iv_state > IEEE80211_S_INIT) 2171 nscanning++; 2172 } 2173 } 2174 ostate = vap->iv_state; 2175 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2176 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 2177 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 2178 nrunning, nscanning); 2179 switch (nstate) { 2180 case IEEE80211_S_SCAN: 2181 if (ostate == IEEE80211_S_INIT) { 2182 /* 2183 * INIT -> SCAN happens on initial bringup. 2184 */ 2185 KASSERT(!(nscanning && nrunning), 2186 ("%d scanning and %d running", nscanning, nrunning)); 2187 if (nscanning) { 2188 /* 2189 * Someone is scanning, defer our state 2190 * change until the work has completed. 2191 */ 2192 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2193 "%s: defer %s -> %s\n", 2194 __func__, ieee80211_state_name[ostate], 2195 ieee80211_state_name[nstate]); 2196 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2197 return 0; 2198 } 2199 if (nrunning) { 2200 /* 2201 * Someone is operating; just join the channel 2202 * they have chosen. 2203 */ 2204 /* XXX kill arg? */ 2205 /* XXX check each opmode, adhoc? */ 2206 if (vap->iv_opmode == IEEE80211_M_STA) 2207 nstate = IEEE80211_S_SCAN; 2208 else 2209 nstate = IEEE80211_S_RUN; 2210 #ifdef IEEE80211_DEBUG 2211 if (nstate != IEEE80211_S_SCAN) { 2212 IEEE80211_DPRINTF(vap, 2213 IEEE80211_MSG_STATE, 2214 "%s: override, now %s -> %s\n", 2215 __func__, 2216 ieee80211_state_name[ostate], 2217 ieee80211_state_name[nstate]); 2218 } 2219 #endif 2220 } 2221 } 2222 break; 2223 case IEEE80211_S_RUN: 2224 if (vap->iv_opmode == IEEE80211_M_WDS && 2225 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2226 nscanning) { 2227 /* 2228 * Legacy WDS with someone else scanning; don't 2229 * go online until that completes as we should 2230 * follow the other vap to the channel they choose. 2231 */ 2232 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2233 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2234 ieee80211_state_name[ostate], 2235 ieee80211_state_name[nstate]); 2236 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2237 return 0; 2238 } 2239 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2240 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2241 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2242 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2243 /* 2244 * This is a DFS channel, transition to CAC state 2245 * instead of RUN. This allows us to initiate 2246 * Channel Availability Check (CAC) as specified 2247 * by 11h/DFS. 2248 */ 2249 nstate = IEEE80211_S_CAC; 2250 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2251 "%s: override %s -> %s (DFS)\n", __func__, 2252 ieee80211_state_name[ostate], 2253 ieee80211_state_name[nstate]); 2254 } 2255 break; 2256 case IEEE80211_S_INIT: 2257 /* cancel any scan in progress */ 2258 ieee80211_cancel_scan(vap); 2259 if (ostate == IEEE80211_S_INIT ) { 2260 /* XXX don't believe this */ 2261 /* INIT -> INIT. nothing to do */ 2262 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2263 } 2264 /* fall thru... */ 2265 default: 2266 break; 2267 } 2268 /* defer the state change to a thread */ 2269 vap->iv_nstate = nstate; 2270 vap->iv_nstate_arg = arg; 2271 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2272 ieee80211_runtask(ic, &vap->iv_nstate_task); 2273 return EINPROGRESS; 2274 } 2275 2276 int 2277 ieee80211_new_state(struct ieee80211vap *vap, 2278 enum ieee80211_state nstate, int arg) 2279 { 2280 struct ieee80211com *ic = vap->iv_ic; 2281 int rc; 2282 2283 IEEE80211_LOCK(ic); 2284 rc = ieee80211_new_state_locked(vap, nstate, arg); 2285 IEEE80211_UNLOCK(ic); 2286 return rc; 2287 } 2288