1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 129 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 130 (m->m_flags & M_PWR_SAV) == 0) { 131 /* 132 * Station in power save mode; pass the frame 133 * to the 802.11 layer and continue. We'll get 134 * the frame back when the time is right. 135 * XXX lose WDS vap linkage? 136 */ 137 if (ieee80211_pwrsave(ni, m) != 0) 138 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 139 ieee80211_free_node(ni); 140 141 /* 142 * We queued it fine, so tell the upper layer 143 * that we consumed it. 144 */ 145 return (0); 146 } 147 /* calculate priority so drivers can find the tx queue */ 148 if (ieee80211_classify(ni, m)) { 149 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 150 ni->ni_macaddr, NULL, 151 "%s", "classification failure"); 152 vap->iv_stats.is_tx_classify++; 153 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 154 m_freem(m); 155 ieee80211_free_node(ni); 156 157 /* XXX better status? */ 158 return (0); 159 } 160 /* 161 * Stash the node pointer. Note that we do this after 162 * any call to ieee80211_dwds_mcast because that code 163 * uses any existing value for rcvif to identify the 164 * interface it (might have been) received on. 165 */ 166 m->m_pkthdr.rcvif = (void *)ni; 167 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 168 169 BPF_MTAP(ifp, m); /* 802.3 tx */ 170 171 /* 172 * Check if A-MPDU tx aggregation is setup or if we 173 * should try to enable it. The sta must be associated 174 * with HT and A-MPDU enabled for use. When the policy 175 * routine decides we should enable A-MPDU we issue an 176 * ADDBA request and wait for a reply. The frame being 177 * encapsulated will go out w/o using A-MPDU, or possibly 178 * it might be collected by the driver and held/retransmit. 179 * The default ic_ampdu_enable routine handles staggering 180 * ADDBA requests in case the receiver NAK's us or we are 181 * otherwise unable to establish a BA stream. 182 * 183 * Don't treat group-addressed frames as candidates for aggregation; 184 * net80211 doesn't support 802.11aa-2012 and so group addressed 185 * frames will always have sequence numbers allocated from the NON_QOS 186 * TID. 187 */ 188 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 189 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 190 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 191 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 192 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 193 194 ieee80211_txampdu_count_packet(tap); 195 if (IEEE80211_AMPDU_RUNNING(tap)) { 196 /* 197 * Operational, mark frame for aggregation. 198 * 199 * XXX do tx aggregation here 200 */ 201 m->m_flags |= M_AMPDU_MPDU; 202 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 203 ic->ic_ampdu_enable(ni, tap)) { 204 /* 205 * Not negotiated yet, request service. 206 */ 207 ieee80211_ampdu_request(ni, tap); 208 /* XXX hold frame for reply? */ 209 } 210 } 211 } 212 213 #ifdef IEEE80211_SUPPORT_SUPERG 214 /* 215 * Check for AMSDU/FF; queue for aggregation 216 * 217 * Note: we don't bother trying to do fast frames or 218 * A-MSDU encapsulation for 802.3 drivers. Now, we 219 * likely could do it for FF (because it's a magic 220 * atheros tunnel LLC type) but I don't think we're going 221 * to really need to. For A-MSDU we'd have to set the 222 * A-MSDU QoS bit in the wifi header, so we just plain 223 * can't do it. 224 * 225 * Strictly speaking, we could actually /do/ A-MSDU / FF 226 * with A-MPDU together which for certain circumstances 227 * is beneficial (eg A-MSDU of TCK ACKs.) However, 228 * I'll ignore that for now so existing behaviour is maintained. 229 * Later on it would be good to make "amsdu + ampdu" configurable. 230 */ 231 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 232 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 233 m = ieee80211_amsdu_check(ni, m); 234 if (m == NULL) { 235 /* NB: any ni ref held on stageq */ 236 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 237 "%s: amsdu_check queued frame\n", 238 __func__); 239 return (0); 240 } 241 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 242 IEEE80211_NODE_FF)) { 243 m = ieee80211_ff_check(ni, m); 244 if (m == NULL) { 245 /* NB: any ni ref held on stageq */ 246 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 247 "%s: ff_check queued frame\n", 248 __func__); 249 return (0); 250 } 251 } 252 } 253 #endif /* IEEE80211_SUPPORT_SUPERG */ 254 255 /* 256 * Grab the TX lock - serialise the TX process from this 257 * point (where TX state is being checked/modified) 258 * through to driver queue. 259 */ 260 IEEE80211_TX_LOCK(ic); 261 262 /* 263 * XXX make the encap and transmit code a separate function 264 * so things like the FF (and later A-MSDU) path can just call 265 * it for flushed frames. 266 */ 267 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 268 /* 269 * Encapsulate the packet in prep for transmission. 270 */ 271 m = ieee80211_encap(vap, ni, m); 272 if (m == NULL) { 273 /* NB: stat+msg handled in ieee80211_encap */ 274 IEEE80211_TX_UNLOCK(ic); 275 ieee80211_free_node(ni); 276 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 277 return (ENOBUFS); 278 } 279 } 280 (void) ieee80211_parent_xmitpkt(ic, m); 281 282 /* 283 * Unlock at this point - no need to hold it across 284 * ieee80211_free_node() (ie, the comlock) 285 */ 286 IEEE80211_TX_UNLOCK(ic); 287 ic->ic_lastdata = ticks; 288 289 return (0); 290 } 291 292 293 294 /* 295 * Send the given mbuf through the given vap. 296 * 297 * This consumes the mbuf regardless of whether the transmit 298 * was successful or not. 299 * 300 * This does none of the initial checks that ieee80211_start() 301 * does (eg CAC timeout, interface wakeup) - the caller must 302 * do this first. 303 */ 304 static int 305 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 306 { 307 #define IS_DWDS(vap) \ 308 (vap->iv_opmode == IEEE80211_M_WDS && \ 309 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 310 struct ieee80211com *ic = vap->iv_ic; 311 struct ifnet *ifp = vap->iv_ifp; 312 struct ieee80211_node *ni; 313 struct ether_header *eh; 314 315 /* 316 * Cancel any background scan. 317 */ 318 if (ic->ic_flags & IEEE80211_F_SCAN) 319 ieee80211_cancel_anyscan(vap); 320 /* 321 * Find the node for the destination so we can do 322 * things like power save and fast frames aggregation. 323 * 324 * NB: past this point various code assumes the first 325 * mbuf has the 802.3 header present (and contiguous). 326 */ 327 ni = NULL; 328 if (m->m_len < sizeof(struct ether_header) && 329 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 330 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 331 "discard frame, %s\n", "m_pullup failed"); 332 vap->iv_stats.is_tx_nobuf++; /* XXX */ 333 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 334 return (ENOBUFS); 335 } 336 eh = mtod(m, struct ether_header *); 337 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 338 if (IS_DWDS(vap)) { 339 /* 340 * Only unicast frames from the above go out 341 * DWDS vaps; multicast frames are handled by 342 * dispatching the frame as it comes through 343 * the AP vap (see below). 344 */ 345 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 346 eh->ether_dhost, "mcast", "%s", "on DWDS"); 347 vap->iv_stats.is_dwds_mcast++; 348 m_freem(m); 349 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 350 /* XXX better status? */ 351 return (ENOBUFS); 352 } 353 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 354 /* 355 * Spam DWDS vap's w/ multicast traffic. 356 */ 357 /* XXX only if dwds in use? */ 358 ieee80211_dwds_mcast(vap, m); 359 } 360 } 361 #ifdef IEEE80211_SUPPORT_MESH 362 if (vap->iv_opmode != IEEE80211_M_MBSS) { 363 #endif 364 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 365 if (ni == NULL) { 366 /* NB: ieee80211_find_txnode does stat+msg */ 367 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 368 m_freem(m); 369 /* XXX better status? */ 370 return (ENOBUFS); 371 } 372 if (ni->ni_associd == 0 && 373 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 374 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 375 eh->ether_dhost, NULL, 376 "sta not associated (type 0x%04x)", 377 htons(eh->ether_type)); 378 vap->iv_stats.is_tx_notassoc++; 379 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 380 m_freem(m); 381 ieee80211_free_node(ni); 382 /* XXX better status? */ 383 return (ENOBUFS); 384 } 385 #ifdef IEEE80211_SUPPORT_MESH 386 } else { 387 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 388 /* 389 * Proxy station only if configured. 390 */ 391 if (!ieee80211_mesh_isproxyena(vap)) { 392 IEEE80211_DISCARD_MAC(vap, 393 IEEE80211_MSG_OUTPUT | 394 IEEE80211_MSG_MESH, 395 eh->ether_dhost, NULL, 396 "%s", "proxy not enabled"); 397 vap->iv_stats.is_mesh_notproxy++; 398 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 399 m_freem(m); 400 /* XXX better status? */ 401 return (ENOBUFS); 402 } 403 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 404 "forward frame from DS SA(%6D), DA(%6D)\n", 405 eh->ether_shost, ":", 406 eh->ether_dhost, ":"); 407 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 408 } 409 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 410 if (ni == NULL) { 411 /* 412 * NB: ieee80211_mesh_discover holds/disposes 413 * frame (e.g. queueing on path discovery). 414 */ 415 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 416 /* XXX better status? */ 417 return (ENOBUFS); 418 } 419 } 420 #endif 421 422 /* 423 * We've resolved the sender, so attempt to transmit it. 424 */ 425 426 if (vap->iv_state == IEEE80211_S_SLEEP) { 427 /* 428 * In power save; queue frame and then wakeup device 429 * for transmit. 430 */ 431 ic->ic_lastdata = ticks; 432 if (ieee80211_pwrsave(ni, m) != 0) 433 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 434 ieee80211_free_node(ni); 435 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 436 return (0); 437 } 438 439 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 440 return (ENOBUFS); 441 return (0); 442 #undef IS_DWDS 443 } 444 445 /* 446 * Start method for vap's. All packets from the stack come 447 * through here. We handle common processing of the packets 448 * before dispatching them to the underlying device. 449 * 450 * if_transmit() requires that the mbuf be consumed by this call 451 * regardless of the return condition. 452 */ 453 int 454 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 455 { 456 struct ieee80211vap *vap = ifp->if_softc; 457 struct ieee80211com *ic = vap->iv_ic; 458 459 /* 460 * No data frames go out unless we're running. 461 * Note in particular this covers CAC and CSA 462 * states (though maybe we should check muting 463 * for CSA). 464 */ 465 if (vap->iv_state != IEEE80211_S_RUN && 466 vap->iv_state != IEEE80211_S_SLEEP) { 467 IEEE80211_LOCK(ic); 468 /* re-check under the com lock to avoid races */ 469 if (vap->iv_state != IEEE80211_S_RUN && 470 vap->iv_state != IEEE80211_S_SLEEP) { 471 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 472 "%s: ignore queue, in %s state\n", 473 __func__, ieee80211_state_name[vap->iv_state]); 474 vap->iv_stats.is_tx_badstate++; 475 IEEE80211_UNLOCK(ic); 476 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 477 m_freem(m); 478 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 479 return (ENETDOWN); 480 } 481 IEEE80211_UNLOCK(ic); 482 } 483 484 /* 485 * Sanitize mbuf flags for net80211 use. We cannot 486 * clear M_PWR_SAV or M_MORE_DATA because these may 487 * be set for frames that are re-submitted from the 488 * power save queue. 489 * 490 * NB: This must be done before ieee80211_classify as 491 * it marks EAPOL in frames with M_EAPOL. 492 */ 493 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 494 495 /* 496 * Bump to the packet transmission path. 497 * The mbuf will be consumed here. 498 */ 499 return (ieee80211_start_pkt(vap, m)); 500 } 501 502 void 503 ieee80211_vap_qflush(struct ifnet *ifp) 504 { 505 506 /* Empty for now */ 507 } 508 509 /* 510 * 802.11 raw output routine. 511 * 512 * XXX TODO: this (and other send routines) should correctly 513 * XXX keep the pwr mgmt bit set if it decides to call into the 514 * XXX driver to send a frame whilst the state is SLEEP. 515 * 516 * Otherwise the peer may decide that we're awake and flood us 517 * with traffic we are still too asleep to receive! 518 */ 519 int 520 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 521 struct mbuf *m, const struct ieee80211_bpf_params *params) 522 { 523 struct ieee80211com *ic = vap->iv_ic; 524 int error; 525 526 /* 527 * Set node - the caller has taken a reference, so ensure 528 * that the mbuf has the same node value that 529 * it would if it were going via the normal path. 530 */ 531 m->m_pkthdr.rcvif = (void *)ni; 532 533 /* 534 * Attempt to add bpf transmit parameters. 535 * 536 * For now it's ok to fail; the raw_xmit api still takes 537 * them as an option. 538 * 539 * Later on when ic_raw_xmit() has params removed, 540 * they'll have to be added - so fail the transmit if 541 * they can't be. 542 */ 543 if (params) 544 (void) ieee80211_add_xmit_params(m, params); 545 546 error = ic->ic_raw_xmit(ni, m, params); 547 if (error) { 548 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 549 ieee80211_free_node(ni); 550 } 551 return (error); 552 } 553 554 static int 555 ieee80211_validate_frame(struct mbuf *m, 556 const struct ieee80211_bpf_params *params) 557 { 558 struct ieee80211_frame *wh; 559 int type; 560 561 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 562 return (EINVAL); 563 564 wh = mtod(m, struct ieee80211_frame *); 565 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 566 IEEE80211_FC0_VERSION_0) 567 return (EINVAL); 568 569 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 570 if (type != IEEE80211_FC0_TYPE_DATA) { 571 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 572 IEEE80211_FC1_DIR_NODS) 573 return (EINVAL); 574 575 if (type != IEEE80211_FC0_TYPE_MGT && 576 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 577 return (EINVAL); 578 579 /* XXX skip other field checks? */ 580 } 581 582 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 583 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 584 int subtype; 585 586 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 587 588 /* 589 * See IEEE Std 802.11-2012, 590 * 8.2.4.1.9 'Protected Frame field' 591 */ 592 /* XXX no support for robust management frames yet. */ 593 if (!(type == IEEE80211_FC0_TYPE_DATA || 594 (type == IEEE80211_FC0_TYPE_MGT && 595 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 596 return (EINVAL); 597 598 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 599 } 600 601 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 602 return (EINVAL); 603 604 return (0); 605 } 606 607 /* 608 * 802.11 output routine. This is (currently) used only to 609 * connect bpf write calls to the 802.11 layer for injecting 610 * raw 802.11 frames. 611 */ 612 int 613 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 614 const struct sockaddr *dst, struct route *ro) 615 { 616 #define senderr(e) do { error = (e); goto bad;} while (0) 617 const struct ieee80211_bpf_params *params = NULL; 618 struct ieee80211_node *ni = NULL; 619 struct ieee80211vap *vap; 620 struct ieee80211_frame *wh; 621 struct ieee80211com *ic = NULL; 622 int error; 623 int ret; 624 625 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 626 /* 627 * Short-circuit requests if the vap is marked OACTIVE 628 * as this can happen because a packet came down through 629 * ieee80211_start before the vap entered RUN state in 630 * which case it's ok to just drop the frame. This 631 * should not be necessary but callers of if_output don't 632 * check OACTIVE. 633 */ 634 senderr(ENETDOWN); 635 } 636 vap = ifp->if_softc; 637 ic = vap->iv_ic; 638 /* 639 * Hand to the 802.3 code if not tagged as 640 * a raw 802.11 frame. 641 */ 642 if (dst->sa_family != AF_IEEE80211) 643 return vap->iv_output(ifp, m, dst, ro); 644 #ifdef MAC 645 error = mac_ifnet_check_transmit(ifp, m); 646 if (error) 647 senderr(error); 648 #endif 649 if (ifp->if_flags & IFF_MONITOR) 650 senderr(ENETDOWN); 651 if (!IFNET_IS_UP_RUNNING(ifp)) 652 senderr(ENETDOWN); 653 if (vap->iv_state == IEEE80211_S_CAC) { 654 IEEE80211_DPRINTF(vap, 655 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 656 "block %s frame in CAC state\n", "raw data"); 657 vap->iv_stats.is_tx_badstate++; 658 senderr(EIO); /* XXX */ 659 } else if (vap->iv_state == IEEE80211_S_SCAN) 660 senderr(EIO); 661 /* XXX bypass bridge, pfil, carp, etc. */ 662 663 /* 664 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 665 * present by setting the sa_len field of the sockaddr (yes, 666 * this is a hack). 667 * NB: we assume sa_data is suitably aligned to cast. 668 */ 669 if (dst->sa_len != 0) 670 params = (const struct ieee80211_bpf_params *)dst->sa_data; 671 672 error = ieee80211_validate_frame(m, params); 673 if (error != 0) 674 senderr(error); 675 676 wh = mtod(m, struct ieee80211_frame *); 677 678 /* locate destination node */ 679 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 680 case IEEE80211_FC1_DIR_NODS: 681 case IEEE80211_FC1_DIR_FROMDS: 682 ni = ieee80211_find_txnode(vap, wh->i_addr1); 683 break; 684 case IEEE80211_FC1_DIR_TODS: 685 case IEEE80211_FC1_DIR_DSTODS: 686 ni = ieee80211_find_txnode(vap, wh->i_addr3); 687 break; 688 default: 689 senderr(EDOOFUS); 690 } 691 if (ni == NULL) { 692 /* 693 * Permit packets w/ bpf params through regardless 694 * (see below about sa_len). 695 */ 696 if (dst->sa_len == 0) 697 senderr(EHOSTUNREACH); 698 ni = ieee80211_ref_node(vap->iv_bss); 699 } 700 701 /* 702 * Sanitize mbuf for net80211 flags leaked from above. 703 * 704 * NB: This must be done before ieee80211_classify as 705 * it marks EAPOL in frames with M_EAPOL. 706 */ 707 m->m_flags &= ~M_80211_TX; 708 m->m_flags |= M_ENCAP; /* mark encapsulated */ 709 710 if (IEEE80211_IS_DATA(wh)) { 711 /* calculate priority so drivers can find the tx queue */ 712 if (ieee80211_classify(ni, m)) 713 senderr(EIO); /* XXX */ 714 715 /* NB: ieee80211_encap does not include 802.11 header */ 716 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 717 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 718 } else 719 M_WME_SETAC(m, WME_AC_BE); 720 721 IEEE80211_NODE_STAT(ni, tx_data); 722 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 723 IEEE80211_NODE_STAT(ni, tx_mcast); 724 m->m_flags |= M_MCAST; 725 } else 726 IEEE80211_NODE_STAT(ni, tx_ucast); 727 728 IEEE80211_TX_LOCK(ic); 729 ret = ieee80211_raw_output(vap, ni, m, params); 730 IEEE80211_TX_UNLOCK(ic); 731 return (ret); 732 bad: 733 if (m != NULL) 734 m_freem(m); 735 if (ni != NULL) 736 ieee80211_free_node(ni); 737 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 738 return error; 739 #undef senderr 740 } 741 742 /* 743 * Set the direction field and address fields of an outgoing 744 * frame. Note this should be called early on in constructing 745 * a frame as it sets i_fc[1]; other bits can then be or'd in. 746 */ 747 void 748 ieee80211_send_setup( 749 struct ieee80211_node *ni, 750 struct mbuf *m, 751 int type, int tid, 752 const uint8_t sa[IEEE80211_ADDR_LEN], 753 const uint8_t da[IEEE80211_ADDR_LEN], 754 const uint8_t bssid[IEEE80211_ADDR_LEN]) 755 { 756 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 757 struct ieee80211vap *vap = ni->ni_vap; 758 struct ieee80211_tx_ampdu *tap; 759 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 760 ieee80211_seq seqno; 761 762 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 763 764 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 765 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 766 switch (vap->iv_opmode) { 767 case IEEE80211_M_STA: 768 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 769 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 770 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 771 IEEE80211_ADDR_COPY(wh->i_addr3, da); 772 break; 773 case IEEE80211_M_IBSS: 774 case IEEE80211_M_AHDEMO: 775 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 776 IEEE80211_ADDR_COPY(wh->i_addr1, da); 777 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 778 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 779 break; 780 case IEEE80211_M_HOSTAP: 781 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 782 IEEE80211_ADDR_COPY(wh->i_addr1, da); 783 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 784 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 785 break; 786 case IEEE80211_M_WDS: 787 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 788 IEEE80211_ADDR_COPY(wh->i_addr1, da); 789 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 790 IEEE80211_ADDR_COPY(wh->i_addr3, da); 791 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 792 break; 793 case IEEE80211_M_MBSS: 794 #ifdef IEEE80211_SUPPORT_MESH 795 if (IEEE80211_IS_MULTICAST(da)) { 796 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 797 /* XXX next hop */ 798 IEEE80211_ADDR_COPY(wh->i_addr1, da); 799 IEEE80211_ADDR_COPY(wh->i_addr2, 800 vap->iv_myaddr); 801 } else { 802 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 803 IEEE80211_ADDR_COPY(wh->i_addr1, da); 804 IEEE80211_ADDR_COPY(wh->i_addr2, 805 vap->iv_myaddr); 806 IEEE80211_ADDR_COPY(wh->i_addr3, da); 807 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 808 } 809 #endif 810 break; 811 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 812 break; 813 } 814 } else { 815 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 816 IEEE80211_ADDR_COPY(wh->i_addr1, da); 817 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 818 #ifdef IEEE80211_SUPPORT_MESH 819 if (vap->iv_opmode == IEEE80211_M_MBSS) 820 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 821 else 822 #endif 823 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 824 } 825 *(uint16_t *)&wh->i_dur[0] = 0; 826 827 /* 828 * XXX TODO: this is what the TX lock is for. 829 * Here we're incrementing sequence numbers, and they 830 * need to be in lock-step with what the driver is doing 831 * both in TX ordering and crypto encap (IV increment.) 832 * 833 * If the driver does seqno itself, then we can skip 834 * assigning sequence numbers here, and we can avoid 835 * requiring the TX lock. 836 */ 837 tap = &ni->ni_tx_ampdu[tid]; 838 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 839 m->m_flags |= M_AMPDU_MPDU; 840 841 /* NB: zero out i_seq field (for s/w encryption etc) */ 842 *(uint16_t *)&wh->i_seq[0] = 0; 843 } else { 844 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 845 type & IEEE80211_FC0_SUBTYPE_MASK)) 846 /* 847 * 802.11-2012 9.3.2.10 - QoS multicast frames 848 * come out of a different seqno space. 849 */ 850 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 851 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 852 } else { 853 seqno = ni->ni_txseqs[tid]++; 854 } 855 else 856 seqno = 0; 857 858 *(uint16_t *)&wh->i_seq[0] = 859 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 860 M_SEQNO_SET(m, seqno); 861 } 862 863 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 864 m->m_flags |= M_MCAST; 865 #undef WH4 866 } 867 868 /* 869 * Send a management frame to the specified node. The node pointer 870 * must have a reference as the pointer will be passed to the driver 871 * and potentially held for a long time. If the frame is successfully 872 * dispatched to the driver, then it is responsible for freeing the 873 * reference (and potentially free'ing up any associated storage); 874 * otherwise deal with reclaiming any reference (on error). 875 */ 876 int 877 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 878 struct ieee80211_bpf_params *params) 879 { 880 struct ieee80211vap *vap = ni->ni_vap; 881 struct ieee80211com *ic = ni->ni_ic; 882 struct ieee80211_frame *wh; 883 int ret; 884 885 KASSERT(ni != NULL, ("null node")); 886 887 if (vap->iv_state == IEEE80211_S_CAC) { 888 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 889 ni, "block %s frame in CAC state", 890 ieee80211_mgt_subtype_name(type)); 891 vap->iv_stats.is_tx_badstate++; 892 ieee80211_free_node(ni); 893 m_freem(m); 894 return EIO; /* XXX */ 895 } 896 897 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 898 if (m == NULL) { 899 ieee80211_free_node(ni); 900 return ENOMEM; 901 } 902 903 IEEE80211_TX_LOCK(ic); 904 905 wh = mtod(m, struct ieee80211_frame *); 906 ieee80211_send_setup(ni, m, 907 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 908 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 909 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 910 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 911 "encrypting frame (%s)", __func__); 912 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 913 } 914 m->m_flags |= M_ENCAP; /* mark encapsulated */ 915 916 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 917 M_WME_SETAC(m, params->ibp_pri); 918 919 #ifdef IEEE80211_DEBUG 920 /* avoid printing too many frames */ 921 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 922 ieee80211_msg_dumppkts(vap)) { 923 printf("[%s] send %s on channel %u\n", 924 ether_sprintf(wh->i_addr1), 925 ieee80211_mgt_subtype_name(type), 926 ieee80211_chan2ieee(ic, ic->ic_curchan)); 927 } 928 #endif 929 IEEE80211_NODE_STAT(ni, tx_mgmt); 930 931 ret = ieee80211_raw_output(vap, ni, m, params); 932 IEEE80211_TX_UNLOCK(ic); 933 return (ret); 934 } 935 936 static void 937 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 938 int status) 939 { 940 struct ieee80211vap *vap = ni->ni_vap; 941 942 wakeup(vap); 943 } 944 945 /* 946 * Send a null data frame to the specified node. If the station 947 * is setup for QoS then a QoS Null Data frame is constructed. 948 * If this is a WDS station then a 4-address frame is constructed. 949 * 950 * NB: the caller is assumed to have setup a node reference 951 * for use; this is necessary to deal with a race condition 952 * when probing for inactive stations. Like ieee80211_mgmt_output 953 * we must cleanup any node reference on error; however we 954 * can safely just unref it as we know it will never be the 955 * last reference to the node. 956 */ 957 int 958 ieee80211_send_nulldata(struct ieee80211_node *ni) 959 { 960 struct ieee80211vap *vap = ni->ni_vap; 961 struct ieee80211com *ic = ni->ni_ic; 962 struct mbuf *m; 963 struct ieee80211_frame *wh; 964 int hdrlen; 965 uint8_t *frm; 966 int ret; 967 968 if (vap->iv_state == IEEE80211_S_CAC) { 969 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 970 ni, "block %s frame in CAC state", "null data"); 971 ieee80211_unref_node(&ni); 972 vap->iv_stats.is_tx_badstate++; 973 return EIO; /* XXX */ 974 } 975 976 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 977 hdrlen = sizeof(struct ieee80211_qosframe); 978 else 979 hdrlen = sizeof(struct ieee80211_frame); 980 /* NB: only WDS vap's get 4-address frames */ 981 if (vap->iv_opmode == IEEE80211_M_WDS) 982 hdrlen += IEEE80211_ADDR_LEN; 983 if (ic->ic_flags & IEEE80211_F_DATAPAD) 984 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 985 986 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 987 if (m == NULL) { 988 /* XXX debug msg */ 989 ieee80211_unref_node(&ni); 990 vap->iv_stats.is_tx_nobuf++; 991 return ENOMEM; 992 } 993 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 994 ("leading space %zd", M_LEADINGSPACE(m))); 995 M_PREPEND(m, hdrlen, M_NOWAIT); 996 if (m == NULL) { 997 /* NB: cannot happen */ 998 ieee80211_free_node(ni); 999 return ENOMEM; 1000 } 1001 1002 IEEE80211_TX_LOCK(ic); 1003 1004 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1005 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1006 const int tid = WME_AC_TO_TID(WME_AC_BE); 1007 uint8_t *qos; 1008 1009 ieee80211_send_setup(ni, m, 1010 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1011 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1012 1013 if (vap->iv_opmode == IEEE80211_M_WDS) 1014 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1015 else 1016 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1017 qos[0] = tid & IEEE80211_QOS_TID; 1018 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1019 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1020 qos[1] = 0; 1021 } else { 1022 ieee80211_send_setup(ni, m, 1023 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1024 IEEE80211_NONQOS_TID, 1025 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1026 } 1027 if (vap->iv_opmode != IEEE80211_M_WDS) { 1028 /* NB: power management bit is never sent by an AP */ 1029 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1030 vap->iv_opmode != IEEE80211_M_HOSTAP) 1031 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1032 } 1033 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1034 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1035 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1036 NULL); 1037 } 1038 m->m_len = m->m_pkthdr.len = hdrlen; 1039 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1040 1041 M_WME_SETAC(m, WME_AC_BE); 1042 1043 IEEE80211_NODE_STAT(ni, tx_data); 1044 1045 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1046 "send %snull data frame on channel %u, pwr mgt %s", 1047 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1048 ieee80211_chan2ieee(ic, ic->ic_curchan), 1049 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1050 1051 ret = ieee80211_raw_output(vap, ni, m, NULL); 1052 IEEE80211_TX_UNLOCK(ic); 1053 return (ret); 1054 } 1055 1056 /* 1057 * Assign priority to a frame based on any vlan tag assigned 1058 * to the station and/or any Diffserv setting in an IP header. 1059 * Finally, if an ACM policy is setup (in station mode) it's 1060 * applied. 1061 */ 1062 int 1063 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1064 { 1065 const struct ether_header *eh = NULL; 1066 uint16_t ether_type; 1067 int v_wme_ac, d_wme_ac, ac; 1068 1069 if (__predict_false(m->m_flags & M_ENCAP)) { 1070 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1071 struct llc *llc; 1072 int hdrlen, subtype; 1073 1074 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1075 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1076 ac = WME_AC_BE; 1077 goto done; 1078 } 1079 1080 hdrlen = ieee80211_hdrsize(wh); 1081 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1082 return 1; 1083 1084 llc = (struct llc *)mtodo(m, hdrlen); 1085 if (llc->llc_dsap != LLC_SNAP_LSAP || 1086 llc->llc_ssap != LLC_SNAP_LSAP || 1087 llc->llc_control != LLC_UI || 1088 llc->llc_snap.org_code[0] != 0 || 1089 llc->llc_snap.org_code[1] != 0 || 1090 llc->llc_snap.org_code[2] != 0) 1091 return 1; 1092 1093 ether_type = llc->llc_snap.ether_type; 1094 } else { 1095 eh = mtod(m, struct ether_header *); 1096 ether_type = eh->ether_type; 1097 } 1098 1099 /* 1100 * Always promote PAE/EAPOL frames to high priority. 1101 */ 1102 if (ether_type == htons(ETHERTYPE_PAE)) { 1103 /* NB: mark so others don't need to check header */ 1104 m->m_flags |= M_EAPOL; 1105 ac = WME_AC_VO; 1106 goto done; 1107 } 1108 /* 1109 * Non-qos traffic goes to BE. 1110 */ 1111 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1112 ac = WME_AC_BE; 1113 goto done; 1114 } 1115 1116 /* 1117 * If node has a vlan tag then all traffic 1118 * to it must have a matching tag. 1119 */ 1120 v_wme_ac = 0; 1121 if (ni->ni_vlan != 0) { 1122 if ((m->m_flags & M_VLANTAG) == 0) { 1123 IEEE80211_NODE_STAT(ni, tx_novlantag); 1124 return 1; 1125 } 1126 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1127 EVL_VLANOFTAG(ni->ni_vlan)) { 1128 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1129 return 1; 1130 } 1131 /* map vlan priority to AC */ 1132 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1133 } 1134 1135 /* XXX m_copydata may be too slow for fast path */ 1136 #ifdef INET 1137 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1138 uint8_t tos; 1139 /* 1140 * IP frame, map the DSCP bits from the TOS field. 1141 */ 1142 /* NB: ip header may not be in first mbuf */ 1143 m_copydata(m, sizeof(struct ether_header) + 1144 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1145 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1146 d_wme_ac = TID_TO_WME_AC(tos); 1147 } else { 1148 #endif /* INET */ 1149 #ifdef INET6 1150 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1151 uint32_t flow; 1152 uint8_t tos; 1153 /* 1154 * IPv6 frame, map the DSCP bits from the traffic class field. 1155 */ 1156 m_copydata(m, sizeof(struct ether_header) + 1157 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1158 (caddr_t) &flow); 1159 tos = (uint8_t)(ntohl(flow) >> 20); 1160 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1161 d_wme_ac = TID_TO_WME_AC(tos); 1162 } else { 1163 #endif /* INET6 */ 1164 d_wme_ac = WME_AC_BE; 1165 #ifdef INET6 1166 } 1167 #endif 1168 #ifdef INET 1169 } 1170 #endif 1171 /* 1172 * Use highest priority AC. 1173 */ 1174 if (v_wme_ac > d_wme_ac) 1175 ac = v_wme_ac; 1176 else 1177 ac = d_wme_ac; 1178 1179 /* 1180 * Apply ACM policy. 1181 */ 1182 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1183 static const int acmap[4] = { 1184 WME_AC_BK, /* WME_AC_BE */ 1185 WME_AC_BK, /* WME_AC_BK */ 1186 WME_AC_BE, /* WME_AC_VI */ 1187 WME_AC_VI, /* WME_AC_VO */ 1188 }; 1189 struct ieee80211com *ic = ni->ni_ic; 1190 1191 while (ac != WME_AC_BK && 1192 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1193 ac = acmap[ac]; 1194 } 1195 done: 1196 M_WME_SETAC(m, ac); 1197 return 0; 1198 } 1199 1200 /* 1201 * Insure there is sufficient contiguous space to encapsulate the 1202 * 802.11 data frame. If room isn't already there, arrange for it. 1203 * Drivers and cipher modules assume we have done the necessary work 1204 * and fail rudely if they don't find the space they need. 1205 */ 1206 struct mbuf * 1207 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1208 struct ieee80211_key *key, struct mbuf *m) 1209 { 1210 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1211 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1212 1213 if (key != NULL) { 1214 /* XXX belongs in crypto code? */ 1215 needed_space += key->wk_cipher->ic_header; 1216 /* XXX frags */ 1217 /* 1218 * When crypto is being done in the host we must insure 1219 * the data are writable for the cipher routines; clone 1220 * a writable mbuf chain. 1221 * XXX handle SWMIC specially 1222 */ 1223 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1224 m = m_unshare(m, M_NOWAIT); 1225 if (m == NULL) { 1226 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1227 "%s: cannot get writable mbuf\n", __func__); 1228 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1229 return NULL; 1230 } 1231 } 1232 } 1233 /* 1234 * We know we are called just before stripping an Ethernet 1235 * header and prepending an LLC header. This means we know 1236 * there will be 1237 * sizeof(struct ether_header) - sizeof(struct llc) 1238 * bytes recovered to which we need additional space for the 1239 * 802.11 header and any crypto header. 1240 */ 1241 /* XXX check trailing space and copy instead? */ 1242 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1243 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1244 if (n == NULL) { 1245 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1246 "%s: cannot expand storage\n", __func__); 1247 vap->iv_stats.is_tx_nobuf++; 1248 m_freem(m); 1249 return NULL; 1250 } 1251 KASSERT(needed_space <= MHLEN, 1252 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1253 /* 1254 * Setup new mbuf to have leading space to prepend the 1255 * 802.11 header and any crypto header bits that are 1256 * required (the latter are added when the driver calls 1257 * back to ieee80211_crypto_encap to do crypto encapsulation). 1258 */ 1259 /* NB: must be first 'cuz it clobbers m_data */ 1260 m_move_pkthdr(n, m); 1261 n->m_len = 0; /* NB: m_gethdr does not set */ 1262 n->m_data += needed_space; 1263 /* 1264 * Pull up Ethernet header to create the expected layout. 1265 * We could use m_pullup but that's overkill (i.e. we don't 1266 * need the actual data) and it cannot fail so do it inline 1267 * for speed. 1268 */ 1269 /* NB: struct ether_header is known to be contiguous */ 1270 n->m_len += sizeof(struct ether_header); 1271 m->m_len -= sizeof(struct ether_header); 1272 m->m_data += sizeof(struct ether_header); 1273 /* 1274 * Replace the head of the chain. 1275 */ 1276 n->m_next = m; 1277 m = n; 1278 } 1279 return m; 1280 #undef TO_BE_RECLAIMED 1281 } 1282 1283 /* 1284 * Return the transmit key to use in sending a unicast frame. 1285 * If a unicast key is set we use that. When no unicast key is set 1286 * we fall back to the default transmit key. 1287 */ 1288 static __inline struct ieee80211_key * 1289 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1290 struct ieee80211_node *ni) 1291 { 1292 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1293 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1294 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1295 return NULL; 1296 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1297 } else { 1298 return &ni->ni_ucastkey; 1299 } 1300 } 1301 1302 /* 1303 * Return the transmit key to use in sending a multicast frame. 1304 * Multicast traffic always uses the group key which is installed as 1305 * the default tx key. 1306 */ 1307 static __inline struct ieee80211_key * 1308 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1309 struct ieee80211_node *ni) 1310 { 1311 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1312 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1313 return NULL; 1314 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1315 } 1316 1317 /* 1318 * Encapsulate an outbound data frame. The mbuf chain is updated. 1319 * If an error is encountered NULL is returned. The caller is required 1320 * to provide a node reference and pullup the ethernet header in the 1321 * first mbuf. 1322 * 1323 * NB: Packet is assumed to be processed by ieee80211_classify which 1324 * marked EAPOL frames w/ M_EAPOL. 1325 */ 1326 struct mbuf * 1327 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1328 struct mbuf *m) 1329 { 1330 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1331 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1332 struct ieee80211com *ic = ni->ni_ic; 1333 #ifdef IEEE80211_SUPPORT_MESH 1334 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1335 struct ieee80211_meshcntl_ae10 *mc; 1336 struct ieee80211_mesh_route *rt = NULL; 1337 int dir = -1; 1338 #endif 1339 struct ether_header eh; 1340 struct ieee80211_frame *wh; 1341 struct ieee80211_key *key; 1342 struct llc *llc; 1343 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1344 ieee80211_seq seqno; 1345 int meshhdrsize, meshae; 1346 uint8_t *qos; 1347 int is_amsdu = 0; 1348 1349 IEEE80211_TX_LOCK_ASSERT(ic); 1350 1351 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1352 1353 /* 1354 * Copy existing Ethernet header to a safe place. The 1355 * rest of the code assumes it's ok to strip it when 1356 * reorganizing state for the final encapsulation. 1357 */ 1358 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1359 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1360 1361 /* 1362 * Insure space for additional headers. First identify 1363 * transmit key to use in calculating any buffer adjustments 1364 * required. This is also used below to do privacy 1365 * encapsulation work. Then calculate the 802.11 header 1366 * size and any padding required by the driver. 1367 * 1368 * Note key may be NULL if we fall back to the default 1369 * transmit key and that is not set. In that case the 1370 * buffer may not be expanded as needed by the cipher 1371 * routines, but they will/should discard it. 1372 */ 1373 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1374 if (vap->iv_opmode == IEEE80211_M_STA || 1375 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1376 (vap->iv_opmode == IEEE80211_M_WDS && 1377 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1378 key = ieee80211_crypto_getucastkey(vap, ni); 1379 else 1380 key = ieee80211_crypto_getmcastkey(vap, ni); 1381 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1382 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1383 eh.ether_dhost, 1384 "no default transmit key (%s) deftxkey %u", 1385 __func__, vap->iv_def_txkey); 1386 vap->iv_stats.is_tx_nodefkey++; 1387 goto bad; 1388 } 1389 } else 1390 key = NULL; 1391 /* 1392 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1393 * frames so suppress use. This may be an issue if other 1394 * ap's require all data frames to be QoS-encapsulated 1395 * once negotiated in which case we'll need to make this 1396 * configurable. 1397 * 1398 * Don't send multicast QoS frames. 1399 * Technically multicast frames can be QoS if all stations in the 1400 * BSS are also QoS. 1401 * 1402 * NB: mesh data frames are QoS, including multicast frames. 1403 */ 1404 addqos = 1405 (((is_mcast == 0) && (ni->ni_flags & 1406 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1407 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1408 (m->m_flags & M_EAPOL) == 0; 1409 1410 if (addqos) 1411 hdrsize = sizeof(struct ieee80211_qosframe); 1412 else 1413 hdrsize = sizeof(struct ieee80211_frame); 1414 #ifdef IEEE80211_SUPPORT_MESH 1415 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1416 /* 1417 * Mesh data frames are encapsulated according to the 1418 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1419 * o Group Addressed data (aka multicast) originating 1420 * at the local sta are sent w/ 3-address format and 1421 * address extension mode 00 1422 * o Individually Addressed data (aka unicast) originating 1423 * at the local sta are sent w/ 4-address format and 1424 * address extension mode 00 1425 * o Group Addressed data forwarded from a non-mesh sta are 1426 * sent w/ 3-address format and address extension mode 01 1427 * o Individually Address data from another sta are sent 1428 * w/ 4-address format and address extension mode 10 1429 */ 1430 is4addr = 0; /* NB: don't use, disable */ 1431 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1432 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1433 KASSERT(rt != NULL, ("route is NULL")); 1434 dir = IEEE80211_FC1_DIR_DSTODS; 1435 hdrsize += IEEE80211_ADDR_LEN; 1436 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1437 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1438 vap->iv_myaddr)) { 1439 IEEE80211_NOTE_MAC(vap, 1440 IEEE80211_MSG_MESH, 1441 eh.ether_dhost, 1442 "%s", "trying to send to ourself"); 1443 goto bad; 1444 } 1445 meshae = IEEE80211_MESH_AE_10; 1446 meshhdrsize = 1447 sizeof(struct ieee80211_meshcntl_ae10); 1448 } else { 1449 meshae = IEEE80211_MESH_AE_00; 1450 meshhdrsize = 1451 sizeof(struct ieee80211_meshcntl); 1452 } 1453 } else { 1454 dir = IEEE80211_FC1_DIR_FROMDS; 1455 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1456 /* proxy group */ 1457 meshae = IEEE80211_MESH_AE_01; 1458 meshhdrsize = 1459 sizeof(struct ieee80211_meshcntl_ae01); 1460 } else { 1461 /* group */ 1462 meshae = IEEE80211_MESH_AE_00; 1463 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1464 } 1465 } 1466 } else { 1467 #endif 1468 /* 1469 * 4-address frames need to be generated for: 1470 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1471 * o packets sent through a vap marked for relaying 1472 * (e.g. a station operating with dynamic WDS) 1473 */ 1474 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1475 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1476 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1477 if (is4addr) 1478 hdrsize += IEEE80211_ADDR_LEN; 1479 meshhdrsize = meshae = 0; 1480 #ifdef IEEE80211_SUPPORT_MESH 1481 } 1482 #endif 1483 /* 1484 * Honor driver DATAPAD requirement. 1485 */ 1486 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1487 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1488 else 1489 hdrspace = hdrsize; 1490 1491 if (__predict_true((m->m_flags & M_FF) == 0)) { 1492 /* 1493 * Normal frame. 1494 */ 1495 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1496 if (m == NULL) { 1497 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1498 goto bad; 1499 } 1500 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1501 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1502 llc = mtod(m, struct llc *); 1503 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1504 llc->llc_control = LLC_UI; 1505 llc->llc_snap.org_code[0] = 0; 1506 llc->llc_snap.org_code[1] = 0; 1507 llc->llc_snap.org_code[2] = 0; 1508 llc->llc_snap.ether_type = eh.ether_type; 1509 } else { 1510 #ifdef IEEE80211_SUPPORT_SUPERG 1511 /* 1512 * Aggregated frame. Check if it's for AMSDU or FF. 1513 * 1514 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1515 * anywhere for some reason. But, since 11n requires 1516 * AMSDU RX, we can just assume "11n" == "AMSDU". 1517 */ 1518 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1519 if (ieee80211_amsdu_tx_ok(ni)) { 1520 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1521 is_amsdu = 1; 1522 } else { 1523 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1524 } 1525 if (m == NULL) 1526 #endif 1527 goto bad; 1528 } 1529 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1530 1531 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1532 if (m == NULL) { 1533 vap->iv_stats.is_tx_nobuf++; 1534 goto bad; 1535 } 1536 wh = mtod(m, struct ieee80211_frame *); 1537 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1538 *(uint16_t *)wh->i_dur = 0; 1539 qos = NULL; /* NB: quiet compiler */ 1540 if (is4addr) { 1541 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1542 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1543 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1544 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1545 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1546 } else switch (vap->iv_opmode) { 1547 case IEEE80211_M_STA: 1548 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1549 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1550 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1551 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1552 break; 1553 case IEEE80211_M_IBSS: 1554 case IEEE80211_M_AHDEMO: 1555 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1556 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1557 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1558 /* 1559 * NB: always use the bssid from iv_bss as the 1560 * neighbor's may be stale after an ibss merge 1561 */ 1562 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1563 break; 1564 case IEEE80211_M_HOSTAP: 1565 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1566 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1567 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1568 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1569 break; 1570 #ifdef IEEE80211_SUPPORT_MESH 1571 case IEEE80211_M_MBSS: 1572 /* NB: offset by hdrspace to deal with DATAPAD */ 1573 mc = (struct ieee80211_meshcntl_ae10 *) 1574 (mtod(m, uint8_t *) + hdrspace); 1575 wh->i_fc[1] = dir; 1576 switch (meshae) { 1577 case IEEE80211_MESH_AE_00: /* no proxy */ 1578 mc->mc_flags = 0; 1579 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1580 IEEE80211_ADDR_COPY(wh->i_addr1, 1581 ni->ni_macaddr); 1582 IEEE80211_ADDR_COPY(wh->i_addr2, 1583 vap->iv_myaddr); 1584 IEEE80211_ADDR_COPY(wh->i_addr3, 1585 eh.ether_dhost); 1586 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1587 eh.ether_shost); 1588 qos =((struct ieee80211_qosframe_addr4 *) 1589 wh)->i_qos; 1590 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1591 /* mcast */ 1592 IEEE80211_ADDR_COPY(wh->i_addr1, 1593 eh.ether_dhost); 1594 IEEE80211_ADDR_COPY(wh->i_addr2, 1595 vap->iv_myaddr); 1596 IEEE80211_ADDR_COPY(wh->i_addr3, 1597 eh.ether_shost); 1598 qos = ((struct ieee80211_qosframe *) 1599 wh)->i_qos; 1600 } 1601 break; 1602 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1603 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1604 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1605 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1606 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1607 mc->mc_flags = 1; 1608 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1609 eh.ether_shost); 1610 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1611 break; 1612 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1613 KASSERT(rt != NULL, ("route is NULL")); 1614 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1615 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1616 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1617 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1618 mc->mc_flags = IEEE80211_MESH_AE_10; 1619 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1620 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1621 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1622 break; 1623 default: 1624 KASSERT(0, ("meshae %d", meshae)); 1625 break; 1626 } 1627 mc->mc_ttl = ms->ms_ttl; 1628 ms->ms_seq++; 1629 le32enc(mc->mc_seq, ms->ms_seq); 1630 break; 1631 #endif 1632 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1633 default: 1634 goto bad; 1635 } 1636 if (m->m_flags & M_MORE_DATA) 1637 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1638 if (addqos) { 1639 int ac, tid; 1640 1641 if (is4addr) { 1642 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1643 /* NB: mesh case handled earlier */ 1644 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1645 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1646 ac = M_WME_GETAC(m); 1647 /* map from access class/queue to 11e header priorty value */ 1648 tid = WME_AC_TO_TID(ac); 1649 qos[0] = tid & IEEE80211_QOS_TID; 1650 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1651 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1652 #ifdef IEEE80211_SUPPORT_MESH 1653 if (vap->iv_opmode == IEEE80211_M_MBSS) 1654 qos[1] = IEEE80211_QOS_MC; 1655 else 1656 #endif 1657 qos[1] = 0; 1658 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1659 1660 /* 1661 * If this is an A-MSDU then ensure we set the 1662 * relevant field. 1663 */ 1664 if (is_amsdu) 1665 qos[0] |= IEEE80211_QOS_AMSDU; 1666 1667 /* 1668 * XXX TODO TX lock is needed for atomic updates of sequence 1669 * numbers. If the driver does it, then don't do it here; 1670 * and we don't need the TX lock held. 1671 */ 1672 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1673 /* 1674 * 802.11-2012 9.3.2.10 - 1675 * 1676 * If this is a multicast frame then we need 1677 * to ensure that the sequence number comes from 1678 * a separate seqno space and not the TID space. 1679 * 1680 * Otherwise multicast frames may actually cause 1681 * holes in the TX blockack window space and 1682 * upset various things. 1683 */ 1684 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1685 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1686 else 1687 seqno = ni->ni_txseqs[tid]++; 1688 1689 /* 1690 * NB: don't assign a sequence # to potential 1691 * aggregates; we expect this happens at the 1692 * point the frame comes off any aggregation q 1693 * as otherwise we may introduce holes in the 1694 * BA sequence space and/or make window accouting 1695 * more difficult. 1696 * 1697 * XXX may want to control this with a driver 1698 * capability; this may also change when we pull 1699 * aggregation up into net80211 1700 */ 1701 seqno = ni->ni_txseqs[tid]++; 1702 *(uint16_t *)wh->i_seq = 1703 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1704 M_SEQNO_SET(m, seqno); 1705 } else { 1706 /* NB: zero out i_seq field (for s/w encryption etc) */ 1707 *(uint16_t *)wh->i_seq = 0; 1708 } 1709 } else { 1710 /* 1711 * XXX TODO TX lock is needed for atomic updates of sequence 1712 * numbers. If the driver does it, then don't do it here; 1713 * and we don't need the TX lock held. 1714 */ 1715 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1716 *(uint16_t *)wh->i_seq = 1717 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1718 M_SEQNO_SET(m, seqno); 1719 1720 /* 1721 * XXX TODO: we shouldn't allow EAPOL, etc that would 1722 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1723 */ 1724 if (is_amsdu) 1725 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1726 __func__); 1727 } 1728 1729 /* 1730 * Check if xmit fragmentation is required. 1731 * 1732 * If the hardware does fragmentation offload, then don't bother 1733 * doing it here. 1734 */ 1735 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1736 txfrag = 0; 1737 else 1738 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1739 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1740 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1741 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1742 1743 if (key != NULL) { 1744 /* 1745 * IEEE 802.1X: send EAPOL frames always in the clear. 1746 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1747 */ 1748 if ((m->m_flags & M_EAPOL) == 0 || 1749 ((vap->iv_flags & IEEE80211_F_WPA) && 1750 (vap->iv_opmode == IEEE80211_M_STA ? 1751 !IEEE80211_KEY_UNDEFINED(key) : 1752 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1753 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1754 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1755 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1756 eh.ether_dhost, 1757 "%s", "enmic failed, discard frame"); 1758 vap->iv_stats.is_crypto_enmicfail++; 1759 goto bad; 1760 } 1761 } 1762 } 1763 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1764 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1765 goto bad; 1766 1767 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1768 1769 IEEE80211_NODE_STAT(ni, tx_data); 1770 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1771 IEEE80211_NODE_STAT(ni, tx_mcast); 1772 m->m_flags |= M_MCAST; 1773 } else 1774 IEEE80211_NODE_STAT(ni, tx_ucast); 1775 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1776 1777 return m; 1778 bad: 1779 if (m != NULL) 1780 m_freem(m); 1781 return NULL; 1782 #undef WH4 1783 #undef MC01 1784 } 1785 1786 void 1787 ieee80211_free_mbuf(struct mbuf *m) 1788 { 1789 struct mbuf *next; 1790 1791 if (m == NULL) 1792 return; 1793 1794 do { 1795 next = m->m_nextpkt; 1796 m->m_nextpkt = NULL; 1797 m_freem(m); 1798 } while ((m = next) != NULL); 1799 } 1800 1801 /* 1802 * Fragment the frame according to the specified mtu. 1803 * The size of the 802.11 header (w/o padding) is provided 1804 * so we don't need to recalculate it. We create a new 1805 * mbuf for each fragment and chain it through m_nextpkt; 1806 * we might be able to optimize this by reusing the original 1807 * packet's mbufs but that is significantly more complicated. 1808 */ 1809 static int 1810 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1811 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1812 { 1813 struct ieee80211com *ic = vap->iv_ic; 1814 struct ieee80211_frame *wh, *whf; 1815 struct mbuf *m, *prev; 1816 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1817 u_int hdrspace; 1818 1819 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1820 KASSERT(m0->m_pkthdr.len > mtu, 1821 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1822 1823 /* 1824 * Honor driver DATAPAD requirement. 1825 */ 1826 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1827 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1828 else 1829 hdrspace = hdrsize; 1830 1831 wh = mtod(m0, struct ieee80211_frame *); 1832 /* NB: mark the first frag; it will be propagated below */ 1833 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1834 totalhdrsize = hdrspace + ciphdrsize; 1835 fragno = 1; 1836 off = mtu - ciphdrsize; 1837 remainder = m0->m_pkthdr.len - off; 1838 prev = m0; 1839 do { 1840 fragsize = MIN(totalhdrsize + remainder, mtu); 1841 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1842 if (m == NULL) 1843 goto bad; 1844 /* leave room to prepend any cipher header */ 1845 m_align(m, fragsize - ciphdrsize); 1846 1847 /* 1848 * Form the header in the fragment. Note that since 1849 * we mark the first fragment with the MORE_FRAG bit 1850 * it automatically is propagated to each fragment; we 1851 * need only clear it on the last fragment (done below). 1852 * NB: frag 1+ dont have Mesh Control field present. 1853 */ 1854 whf = mtod(m, struct ieee80211_frame *); 1855 memcpy(whf, wh, hdrsize); 1856 #ifdef IEEE80211_SUPPORT_MESH 1857 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1858 if (IEEE80211_IS_DSTODS(wh)) 1859 ((struct ieee80211_qosframe_addr4 *) 1860 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1861 else 1862 ((struct ieee80211_qosframe *) 1863 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1864 } 1865 #endif 1866 *(uint16_t *)&whf->i_seq[0] |= htole16( 1867 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1868 IEEE80211_SEQ_FRAG_SHIFT); 1869 fragno++; 1870 1871 payload = fragsize - totalhdrsize; 1872 /* NB: destination is known to be contiguous */ 1873 1874 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1875 m->m_len = hdrspace + payload; 1876 m->m_pkthdr.len = hdrspace + payload; 1877 m->m_flags |= M_FRAG; 1878 1879 /* chain up the fragment */ 1880 prev->m_nextpkt = m; 1881 prev = m; 1882 1883 /* deduct fragment just formed */ 1884 remainder -= payload; 1885 off += payload; 1886 } while (remainder != 0); 1887 1888 /* set the last fragment */ 1889 m->m_flags |= M_LASTFRAG; 1890 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1891 1892 /* strip first mbuf now that everything has been copied */ 1893 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1894 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1895 1896 vap->iv_stats.is_tx_fragframes++; 1897 vap->iv_stats.is_tx_frags += fragno-1; 1898 1899 return 1; 1900 bad: 1901 /* reclaim fragments but leave original frame for caller to free */ 1902 ieee80211_free_mbuf(m0->m_nextpkt); 1903 m0->m_nextpkt = NULL; 1904 return 0; 1905 } 1906 1907 /* 1908 * Add a supported rates element id to a frame. 1909 */ 1910 uint8_t * 1911 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1912 { 1913 int nrates; 1914 1915 *frm++ = IEEE80211_ELEMID_RATES; 1916 nrates = rs->rs_nrates; 1917 if (nrates > IEEE80211_RATE_SIZE) 1918 nrates = IEEE80211_RATE_SIZE; 1919 *frm++ = nrates; 1920 memcpy(frm, rs->rs_rates, nrates); 1921 return frm + nrates; 1922 } 1923 1924 /* 1925 * Add an extended supported rates element id to a frame. 1926 */ 1927 uint8_t * 1928 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1929 { 1930 /* 1931 * Add an extended supported rates element if operating in 11g mode. 1932 */ 1933 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1934 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1935 *frm++ = IEEE80211_ELEMID_XRATES; 1936 *frm++ = nrates; 1937 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1938 frm += nrates; 1939 } 1940 return frm; 1941 } 1942 1943 /* 1944 * Add an ssid element to a frame. 1945 */ 1946 uint8_t * 1947 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1948 { 1949 *frm++ = IEEE80211_ELEMID_SSID; 1950 *frm++ = len; 1951 memcpy(frm, ssid, len); 1952 return frm + len; 1953 } 1954 1955 /* 1956 * Add an erp element to a frame. 1957 */ 1958 static uint8_t * 1959 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1960 { 1961 uint8_t erp; 1962 1963 *frm++ = IEEE80211_ELEMID_ERP; 1964 *frm++ = 1; 1965 erp = 0; 1966 if (ic->ic_nonerpsta != 0) 1967 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1968 if (ic->ic_flags & IEEE80211_F_USEPROT) 1969 erp |= IEEE80211_ERP_USE_PROTECTION; 1970 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1971 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1972 *frm++ = erp; 1973 return frm; 1974 } 1975 1976 /* 1977 * Add a CFParams element to a frame. 1978 */ 1979 static uint8_t * 1980 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1981 { 1982 #define ADDSHORT(frm, v) do { \ 1983 le16enc(frm, v); \ 1984 frm += 2; \ 1985 } while (0) 1986 *frm++ = IEEE80211_ELEMID_CFPARMS; 1987 *frm++ = 6; 1988 *frm++ = 0; /* CFP count */ 1989 *frm++ = 2; /* CFP period */ 1990 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1991 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1992 return frm; 1993 #undef ADDSHORT 1994 } 1995 1996 static __inline uint8_t * 1997 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1998 { 1999 memcpy(frm, ie->ie_data, ie->ie_len); 2000 return frm + ie->ie_len; 2001 } 2002 2003 static __inline uint8_t * 2004 add_ie(uint8_t *frm, const uint8_t *ie) 2005 { 2006 memcpy(frm, ie, 2 + ie[1]); 2007 return frm + 2 + ie[1]; 2008 } 2009 2010 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2011 /* 2012 * Add a WME information element to a frame. 2013 */ 2014 uint8_t * 2015 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 2016 { 2017 static const struct ieee80211_wme_info info = { 2018 .wme_id = IEEE80211_ELEMID_VENDOR, 2019 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 2020 .wme_oui = { WME_OUI_BYTES }, 2021 .wme_type = WME_OUI_TYPE, 2022 .wme_subtype = WME_INFO_OUI_SUBTYPE, 2023 .wme_version = WME_VERSION, 2024 .wme_info = 0, 2025 }; 2026 memcpy(frm, &info, sizeof(info)); 2027 return frm + sizeof(info); 2028 } 2029 2030 /* 2031 * Add a WME parameters element to a frame. 2032 */ 2033 static uint8_t * 2034 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 2035 { 2036 #define SM(_v, _f) (((_v) << _f##_S) & _f) 2037 #define ADDSHORT(frm, v) do { \ 2038 le16enc(frm, v); \ 2039 frm += 2; \ 2040 } while (0) 2041 /* NB: this works 'cuz a param has an info at the front */ 2042 static const struct ieee80211_wme_info param = { 2043 .wme_id = IEEE80211_ELEMID_VENDOR, 2044 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2045 .wme_oui = { WME_OUI_BYTES }, 2046 .wme_type = WME_OUI_TYPE, 2047 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2048 .wme_version = WME_VERSION, 2049 }; 2050 int i; 2051 2052 memcpy(frm, ¶m, sizeof(param)); 2053 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2054 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 2055 *frm++ = 0; /* reserved field */ 2056 for (i = 0; i < WME_NUM_AC; i++) { 2057 const struct wmeParams *ac = 2058 &wme->wme_bssChanParams.cap_wmeParams[i]; 2059 *frm++ = SM(i, WME_PARAM_ACI) 2060 | SM(ac->wmep_acm, WME_PARAM_ACM) 2061 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 2062 ; 2063 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 2064 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 2065 ; 2066 ADDSHORT(frm, ac->wmep_txopLimit); 2067 } 2068 return frm; 2069 #undef SM 2070 #undef ADDSHORT 2071 } 2072 #undef WME_OUI_BYTES 2073 2074 /* 2075 * Add an 11h Power Constraint element to a frame. 2076 */ 2077 static uint8_t * 2078 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2079 { 2080 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2081 /* XXX per-vap tx power limit? */ 2082 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2083 2084 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2085 frm[1] = 1; 2086 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2087 return frm + 3; 2088 } 2089 2090 /* 2091 * Add an 11h Power Capability element to a frame. 2092 */ 2093 static uint8_t * 2094 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2095 { 2096 frm[0] = IEEE80211_ELEMID_PWRCAP; 2097 frm[1] = 2; 2098 frm[2] = c->ic_minpower; 2099 frm[3] = c->ic_maxpower; 2100 return frm + 4; 2101 } 2102 2103 /* 2104 * Add an 11h Supported Channels element to a frame. 2105 */ 2106 static uint8_t * 2107 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2108 { 2109 static const int ielen = 26; 2110 2111 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2112 frm[1] = ielen; 2113 /* XXX not correct */ 2114 memcpy(frm+2, ic->ic_chan_avail, ielen); 2115 return frm + 2 + ielen; 2116 } 2117 2118 /* 2119 * Add an 11h Quiet time element to a frame. 2120 */ 2121 static uint8_t * 2122 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2123 { 2124 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2125 2126 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2127 quiet->len = 6; 2128 2129 /* 2130 * Only update every beacon interval - otherwise probe responses 2131 * would update the quiet count value. 2132 */ 2133 if (update) { 2134 if (vap->iv_quiet_count_value == 1) 2135 vap->iv_quiet_count_value = vap->iv_quiet_count; 2136 else if (vap->iv_quiet_count_value > 1) 2137 vap->iv_quiet_count_value--; 2138 } 2139 2140 if (vap->iv_quiet_count_value == 0) { 2141 /* value 0 is reserved as per 802.11h standerd */ 2142 vap->iv_quiet_count_value = 1; 2143 } 2144 2145 quiet->tbttcount = vap->iv_quiet_count_value; 2146 quiet->period = vap->iv_quiet_period; 2147 quiet->duration = htole16(vap->iv_quiet_duration); 2148 quiet->offset = htole16(vap->iv_quiet_offset); 2149 return frm + sizeof(*quiet); 2150 } 2151 2152 /* 2153 * Add an 11h Channel Switch Announcement element to a frame. 2154 * Note that we use the per-vap CSA count to adjust the global 2155 * counter so we can use this routine to form probe response 2156 * frames and get the current count. 2157 */ 2158 static uint8_t * 2159 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2160 { 2161 struct ieee80211com *ic = vap->iv_ic; 2162 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2163 2164 csa->csa_ie = IEEE80211_ELEMID_CSA; 2165 csa->csa_len = 3; 2166 csa->csa_mode = 1; /* XXX force quiet on channel */ 2167 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2168 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2169 return frm + sizeof(*csa); 2170 } 2171 2172 /* 2173 * Add an 11h country information element to a frame. 2174 */ 2175 static uint8_t * 2176 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2177 { 2178 2179 if (ic->ic_countryie == NULL || 2180 ic->ic_countryie_chan != ic->ic_bsschan) { 2181 /* 2182 * Handle lazy construction of ie. This is done on 2183 * first use and after a channel change that requires 2184 * re-calculation. 2185 */ 2186 if (ic->ic_countryie != NULL) 2187 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2188 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2189 if (ic->ic_countryie == NULL) 2190 return frm; 2191 ic->ic_countryie_chan = ic->ic_bsschan; 2192 } 2193 return add_appie(frm, ic->ic_countryie); 2194 } 2195 2196 uint8_t * 2197 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2198 { 2199 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2200 return (add_ie(frm, vap->iv_wpa_ie)); 2201 else { 2202 /* XXX else complain? */ 2203 return (frm); 2204 } 2205 } 2206 2207 uint8_t * 2208 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2209 { 2210 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2211 return (add_ie(frm, vap->iv_rsn_ie)); 2212 else { 2213 /* XXX else complain? */ 2214 return (frm); 2215 } 2216 } 2217 2218 uint8_t * 2219 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2220 { 2221 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2222 *frm++ = IEEE80211_ELEMID_QOS; 2223 *frm++ = 1; 2224 *frm++ = 0; 2225 } 2226 2227 return (frm); 2228 } 2229 2230 /* 2231 * Send a probe request frame with the specified ssid 2232 * and any optional information element data. 2233 */ 2234 int 2235 ieee80211_send_probereq(struct ieee80211_node *ni, 2236 const uint8_t sa[IEEE80211_ADDR_LEN], 2237 const uint8_t da[IEEE80211_ADDR_LEN], 2238 const uint8_t bssid[IEEE80211_ADDR_LEN], 2239 const uint8_t *ssid, size_t ssidlen) 2240 { 2241 struct ieee80211vap *vap = ni->ni_vap; 2242 struct ieee80211com *ic = ni->ni_ic; 2243 struct ieee80211_node *bss; 2244 const struct ieee80211_txparam *tp; 2245 struct ieee80211_bpf_params params; 2246 const struct ieee80211_rateset *rs; 2247 struct mbuf *m; 2248 uint8_t *frm; 2249 int ret; 2250 2251 bss = ieee80211_ref_node(vap->iv_bss); 2252 2253 if (vap->iv_state == IEEE80211_S_CAC) { 2254 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2255 "block %s frame in CAC state", "probe request"); 2256 vap->iv_stats.is_tx_badstate++; 2257 ieee80211_free_node(bss); 2258 return EIO; /* XXX */ 2259 } 2260 2261 /* 2262 * Hold a reference on the node so it doesn't go away until after 2263 * the xmit is complete all the way in the driver. On error we 2264 * will remove our reference. 2265 */ 2266 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2267 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2268 __func__, __LINE__, 2269 ni, ether_sprintf(ni->ni_macaddr), 2270 ieee80211_node_refcnt(ni)+1); 2271 ieee80211_ref_node(ni); 2272 2273 /* 2274 * prreq frame format 2275 * [tlv] ssid 2276 * [tlv] supported rates 2277 * [tlv] RSN (optional) 2278 * [tlv] extended supported rates 2279 * [tlv] HT cap (optional) 2280 * [tlv] VHT cap (optional) 2281 * [tlv] WPA (optional) 2282 * [tlv] user-specified ie's 2283 */ 2284 m = ieee80211_getmgtframe(&frm, 2285 ic->ic_headroom + sizeof(struct ieee80211_frame), 2286 2 + IEEE80211_NWID_LEN 2287 + 2 + IEEE80211_RATE_SIZE 2288 + sizeof(struct ieee80211_ie_htcap) 2289 + sizeof(struct ieee80211_ie_vhtcap) 2290 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2291 + sizeof(struct ieee80211_ie_wpa) 2292 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2293 + sizeof(struct ieee80211_ie_wpa) 2294 + (vap->iv_appie_probereq != NULL ? 2295 vap->iv_appie_probereq->ie_len : 0) 2296 ); 2297 if (m == NULL) { 2298 vap->iv_stats.is_tx_nobuf++; 2299 ieee80211_free_node(ni); 2300 ieee80211_free_node(bss); 2301 return ENOMEM; 2302 } 2303 2304 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2305 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2306 frm = ieee80211_add_rates(frm, rs); 2307 frm = ieee80211_add_rsn(frm, vap); 2308 frm = ieee80211_add_xrates(frm, rs); 2309 2310 /* 2311 * Note: we can't use bss; we don't have one yet. 2312 * 2313 * So, we should announce our capabilities 2314 * in this channel mode (2g/5g), not the 2315 * channel details itself. 2316 */ 2317 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2318 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2319 struct ieee80211_channel *c; 2320 2321 /* 2322 * Get the HT channel that we should try upgrading to. 2323 * If we can do 40MHz then this'll upgrade it appropriately. 2324 */ 2325 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2326 vap->iv_flags_ht); 2327 frm = ieee80211_add_htcap_ch(frm, vap, c); 2328 } 2329 2330 /* 2331 * XXX TODO: need to figure out what/how to update the 2332 * VHT channel. 2333 */ 2334 #if 0 2335 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2336 struct ieee80211_channel *c; 2337 2338 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2339 vap->iv_flags_ht); 2340 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2341 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2342 } 2343 #endif 2344 2345 frm = ieee80211_add_wpa(frm, vap); 2346 if (vap->iv_appie_probereq != NULL) 2347 frm = add_appie(frm, vap->iv_appie_probereq); 2348 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2349 2350 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2351 ("leading space %zd", M_LEADINGSPACE(m))); 2352 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2353 if (m == NULL) { 2354 /* NB: cannot happen */ 2355 ieee80211_free_node(ni); 2356 ieee80211_free_node(bss); 2357 return ENOMEM; 2358 } 2359 2360 IEEE80211_TX_LOCK(ic); 2361 ieee80211_send_setup(ni, m, 2362 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2363 IEEE80211_NONQOS_TID, sa, da, bssid); 2364 /* XXX power management? */ 2365 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2366 2367 M_WME_SETAC(m, WME_AC_BE); 2368 2369 IEEE80211_NODE_STAT(ni, tx_probereq); 2370 IEEE80211_NODE_STAT(ni, tx_mgmt); 2371 2372 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2373 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2374 ieee80211_chan2ieee(ic, ic->ic_curchan), 2375 ether_sprintf(bssid), 2376 sa, ":", 2377 da, ":", 2378 ssidlen, ssid); 2379 2380 memset(¶ms, 0, sizeof(params)); 2381 params.ibp_pri = M_WME_GETAC(m); 2382 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2383 params.ibp_rate0 = tp->mgmtrate; 2384 if (IEEE80211_IS_MULTICAST(da)) { 2385 params.ibp_flags |= IEEE80211_BPF_NOACK; 2386 params.ibp_try0 = 1; 2387 } else 2388 params.ibp_try0 = tp->maxretry; 2389 params.ibp_power = ni->ni_txpower; 2390 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2391 IEEE80211_TX_UNLOCK(ic); 2392 ieee80211_free_node(bss); 2393 return (ret); 2394 } 2395 2396 /* 2397 * Calculate capability information for mgt frames. 2398 */ 2399 uint16_t 2400 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2401 { 2402 struct ieee80211com *ic = vap->iv_ic; 2403 uint16_t capinfo; 2404 2405 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2406 2407 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2408 capinfo = IEEE80211_CAPINFO_ESS; 2409 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2410 capinfo = IEEE80211_CAPINFO_IBSS; 2411 else 2412 capinfo = 0; 2413 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2414 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2415 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2416 IEEE80211_IS_CHAN_2GHZ(chan)) 2417 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2418 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2419 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2420 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2421 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2422 return capinfo; 2423 } 2424 2425 /* 2426 * Send a management frame. The node is for the destination (or ic_bss 2427 * when in station mode). Nodes other than ic_bss have their reference 2428 * count bumped to reflect our use for an indeterminant time. 2429 */ 2430 int 2431 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2432 { 2433 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2434 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2435 struct ieee80211vap *vap = ni->ni_vap; 2436 struct ieee80211com *ic = ni->ni_ic; 2437 struct ieee80211_node *bss = vap->iv_bss; 2438 struct ieee80211_bpf_params params; 2439 struct mbuf *m; 2440 uint8_t *frm; 2441 uint16_t capinfo; 2442 int has_challenge, is_shared_key, ret, status; 2443 2444 KASSERT(ni != NULL, ("null node")); 2445 2446 /* 2447 * Hold a reference on the node so it doesn't go away until after 2448 * the xmit is complete all the way in the driver. On error we 2449 * will remove our reference. 2450 */ 2451 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2452 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2453 __func__, __LINE__, 2454 ni, ether_sprintf(ni->ni_macaddr), 2455 ieee80211_node_refcnt(ni)+1); 2456 ieee80211_ref_node(ni); 2457 2458 memset(¶ms, 0, sizeof(params)); 2459 switch (type) { 2460 2461 case IEEE80211_FC0_SUBTYPE_AUTH: 2462 status = arg >> 16; 2463 arg &= 0xffff; 2464 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2465 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2466 ni->ni_challenge != NULL); 2467 2468 /* 2469 * Deduce whether we're doing open authentication or 2470 * shared key authentication. We do the latter if 2471 * we're in the middle of a shared key authentication 2472 * handshake or if we're initiating an authentication 2473 * request and configured to use shared key. 2474 */ 2475 is_shared_key = has_challenge || 2476 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2477 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2478 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2479 2480 m = ieee80211_getmgtframe(&frm, 2481 ic->ic_headroom + sizeof(struct ieee80211_frame), 2482 3 * sizeof(uint16_t) 2483 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2484 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2485 ); 2486 if (m == NULL) 2487 senderr(ENOMEM, is_tx_nobuf); 2488 2489 ((uint16_t *)frm)[0] = 2490 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2491 : htole16(IEEE80211_AUTH_ALG_OPEN); 2492 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2493 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2494 2495 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2496 ((uint16_t *)frm)[3] = 2497 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2498 IEEE80211_ELEMID_CHALLENGE); 2499 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2500 IEEE80211_CHALLENGE_LEN); 2501 m->m_pkthdr.len = m->m_len = 2502 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2503 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2504 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2505 "request encrypt frame (%s)", __func__); 2506 /* mark frame for encryption */ 2507 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2508 } 2509 } else 2510 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2511 2512 /* XXX not right for shared key */ 2513 if (status == IEEE80211_STATUS_SUCCESS) 2514 IEEE80211_NODE_STAT(ni, tx_auth); 2515 else 2516 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2517 2518 if (vap->iv_opmode == IEEE80211_M_STA) 2519 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2520 (void *) vap->iv_state); 2521 break; 2522 2523 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2524 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2525 "send station deauthenticate (reason: %d (%s))", arg, 2526 ieee80211_reason_to_string(arg)); 2527 m = ieee80211_getmgtframe(&frm, 2528 ic->ic_headroom + sizeof(struct ieee80211_frame), 2529 sizeof(uint16_t)); 2530 if (m == NULL) 2531 senderr(ENOMEM, is_tx_nobuf); 2532 *(uint16_t *)frm = htole16(arg); /* reason */ 2533 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2534 2535 IEEE80211_NODE_STAT(ni, tx_deauth); 2536 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2537 2538 ieee80211_node_unauthorize(ni); /* port closed */ 2539 break; 2540 2541 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2542 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2543 /* 2544 * asreq frame format 2545 * [2] capability information 2546 * [2] listen interval 2547 * [6*] current AP address (reassoc only) 2548 * [tlv] ssid 2549 * [tlv] supported rates 2550 * [tlv] extended supported rates 2551 * [4] power capability (optional) 2552 * [28] supported channels (optional) 2553 * [tlv] HT capabilities 2554 * [tlv] VHT capabilities 2555 * [tlv] WME (optional) 2556 * [tlv] Vendor OUI HT capabilities (optional) 2557 * [tlv] Atheros capabilities (if negotiated) 2558 * [tlv] AppIE's (optional) 2559 */ 2560 m = ieee80211_getmgtframe(&frm, 2561 ic->ic_headroom + sizeof(struct ieee80211_frame), 2562 sizeof(uint16_t) 2563 + sizeof(uint16_t) 2564 + IEEE80211_ADDR_LEN 2565 + 2 + IEEE80211_NWID_LEN 2566 + 2 + IEEE80211_RATE_SIZE 2567 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2568 + 4 2569 + 2 + 26 2570 + sizeof(struct ieee80211_wme_info) 2571 + sizeof(struct ieee80211_ie_htcap) 2572 + sizeof(struct ieee80211_ie_vhtcap) 2573 + 4 + sizeof(struct ieee80211_ie_htcap) 2574 #ifdef IEEE80211_SUPPORT_SUPERG 2575 + sizeof(struct ieee80211_ath_ie) 2576 #endif 2577 + (vap->iv_appie_wpa != NULL ? 2578 vap->iv_appie_wpa->ie_len : 0) 2579 + (vap->iv_appie_assocreq != NULL ? 2580 vap->iv_appie_assocreq->ie_len : 0) 2581 ); 2582 if (m == NULL) 2583 senderr(ENOMEM, is_tx_nobuf); 2584 2585 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2586 ("wrong mode %u", vap->iv_opmode)); 2587 capinfo = IEEE80211_CAPINFO_ESS; 2588 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2589 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2590 /* 2591 * NB: Some 11a AP's reject the request when 2592 * short preamble is set. 2593 */ 2594 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2595 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2596 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2597 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2598 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2599 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2600 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2601 (vap->iv_flags & IEEE80211_F_DOTH)) 2602 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2603 *(uint16_t *)frm = htole16(capinfo); 2604 frm += 2; 2605 2606 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2607 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2608 bss->ni_intval)); 2609 frm += 2; 2610 2611 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2612 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2613 frm += IEEE80211_ADDR_LEN; 2614 } 2615 2616 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2617 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2618 frm = ieee80211_add_rsn(frm, vap); 2619 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2620 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2621 frm = ieee80211_add_powercapability(frm, 2622 ic->ic_curchan); 2623 frm = ieee80211_add_supportedchannels(frm, ic); 2624 } 2625 2626 /* 2627 * Check the channel - we may be using an 11n NIC with an 2628 * 11n capable station, but we're configured to be an 11b 2629 * channel. 2630 */ 2631 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2632 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2633 ni->ni_ies.htcap_ie != NULL && 2634 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2635 frm = ieee80211_add_htcap(frm, ni); 2636 } 2637 2638 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2639 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2640 ni->ni_ies.vhtcap_ie != NULL && 2641 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2642 frm = ieee80211_add_vhtcap(frm, ni); 2643 } 2644 2645 frm = ieee80211_add_wpa(frm, vap); 2646 if ((ic->ic_flags & IEEE80211_F_WME) && 2647 ni->ni_ies.wme_ie != NULL) 2648 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2649 2650 /* 2651 * Same deal - only send HT info if we're on an 11n 2652 * capable channel. 2653 */ 2654 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2655 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2656 ni->ni_ies.htcap_ie != NULL && 2657 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2658 frm = ieee80211_add_htcap_vendor(frm, ni); 2659 } 2660 #ifdef IEEE80211_SUPPORT_SUPERG 2661 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2662 frm = ieee80211_add_ath(frm, 2663 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2664 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2665 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2666 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2667 } 2668 #endif /* IEEE80211_SUPPORT_SUPERG */ 2669 if (vap->iv_appie_assocreq != NULL) 2670 frm = add_appie(frm, vap->iv_appie_assocreq); 2671 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2672 2673 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2674 (void *) vap->iv_state); 2675 break; 2676 2677 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2678 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2679 /* 2680 * asresp frame format 2681 * [2] capability information 2682 * [2] status 2683 * [2] association ID 2684 * [tlv] supported rates 2685 * [tlv] extended supported rates 2686 * [tlv] HT capabilities (standard, if STA enabled) 2687 * [tlv] HT information (standard, if STA enabled) 2688 * [tlv] VHT capabilities (standard, if STA enabled) 2689 * [tlv] VHT information (standard, if STA enabled) 2690 * [tlv] WME (if configured and STA enabled) 2691 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2692 * [tlv] HT information (vendor OUI, if STA enabled) 2693 * [tlv] Atheros capabilities (if STA enabled) 2694 * [tlv] AppIE's (optional) 2695 */ 2696 m = ieee80211_getmgtframe(&frm, 2697 ic->ic_headroom + sizeof(struct ieee80211_frame), 2698 sizeof(uint16_t) 2699 + sizeof(uint16_t) 2700 + sizeof(uint16_t) 2701 + 2 + IEEE80211_RATE_SIZE 2702 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2703 + sizeof(struct ieee80211_ie_htcap) + 4 2704 + sizeof(struct ieee80211_ie_htinfo) + 4 2705 + sizeof(struct ieee80211_ie_vhtcap) 2706 + sizeof(struct ieee80211_ie_vht_operation) 2707 + sizeof(struct ieee80211_wme_param) 2708 #ifdef IEEE80211_SUPPORT_SUPERG 2709 + sizeof(struct ieee80211_ath_ie) 2710 #endif 2711 + (vap->iv_appie_assocresp != NULL ? 2712 vap->iv_appie_assocresp->ie_len : 0) 2713 ); 2714 if (m == NULL) 2715 senderr(ENOMEM, is_tx_nobuf); 2716 2717 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2718 *(uint16_t *)frm = htole16(capinfo); 2719 frm += 2; 2720 2721 *(uint16_t *)frm = htole16(arg); /* status */ 2722 frm += 2; 2723 2724 if (arg == IEEE80211_STATUS_SUCCESS) { 2725 *(uint16_t *)frm = htole16(ni->ni_associd); 2726 IEEE80211_NODE_STAT(ni, tx_assoc); 2727 } else 2728 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2729 frm += 2; 2730 2731 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2732 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2733 /* NB: respond according to what we received */ 2734 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2735 frm = ieee80211_add_htcap(frm, ni); 2736 frm = ieee80211_add_htinfo(frm, ni); 2737 } 2738 if ((vap->iv_flags & IEEE80211_F_WME) && 2739 ni->ni_ies.wme_ie != NULL) 2740 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2741 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2742 frm = ieee80211_add_htcap_vendor(frm, ni); 2743 frm = ieee80211_add_htinfo_vendor(frm, ni); 2744 } 2745 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2746 frm = ieee80211_add_vhtcap(frm, ni); 2747 frm = ieee80211_add_vhtinfo(frm, ni); 2748 } 2749 #ifdef IEEE80211_SUPPORT_SUPERG 2750 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2751 frm = ieee80211_add_ath(frm, 2752 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2753 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2754 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2755 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2756 #endif /* IEEE80211_SUPPORT_SUPERG */ 2757 if (vap->iv_appie_assocresp != NULL) 2758 frm = add_appie(frm, vap->iv_appie_assocresp); 2759 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2760 break; 2761 2762 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2763 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2764 "send station disassociate (reason: %d (%s))", arg, 2765 ieee80211_reason_to_string(arg)); 2766 m = ieee80211_getmgtframe(&frm, 2767 ic->ic_headroom + sizeof(struct ieee80211_frame), 2768 sizeof(uint16_t)); 2769 if (m == NULL) 2770 senderr(ENOMEM, is_tx_nobuf); 2771 *(uint16_t *)frm = htole16(arg); /* reason */ 2772 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2773 2774 IEEE80211_NODE_STAT(ni, tx_disassoc); 2775 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2776 break; 2777 2778 default: 2779 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2780 "invalid mgmt frame type %u", type); 2781 senderr(EINVAL, is_tx_unknownmgt); 2782 /* NOTREACHED */ 2783 } 2784 2785 /* NB: force non-ProbeResp frames to the highest queue */ 2786 params.ibp_pri = WME_AC_VO; 2787 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2788 /* NB: we know all frames are unicast */ 2789 params.ibp_try0 = bss->ni_txparms->maxretry; 2790 params.ibp_power = bss->ni_txpower; 2791 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2792 bad: 2793 ieee80211_free_node(ni); 2794 return ret; 2795 #undef senderr 2796 #undef HTFLAGS 2797 } 2798 2799 /* 2800 * Return an mbuf with a probe response frame in it. 2801 * Space is left to prepend and 802.11 header at the 2802 * front but it's left to the caller to fill in. 2803 */ 2804 struct mbuf * 2805 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2806 { 2807 struct ieee80211vap *vap = bss->ni_vap; 2808 struct ieee80211com *ic = bss->ni_ic; 2809 const struct ieee80211_rateset *rs; 2810 struct mbuf *m; 2811 uint16_t capinfo; 2812 uint8_t *frm; 2813 2814 /* 2815 * probe response frame format 2816 * [8] time stamp 2817 * [2] beacon interval 2818 * [2] cabability information 2819 * [tlv] ssid 2820 * [tlv] supported rates 2821 * [tlv] parameter set (FH/DS) 2822 * [tlv] parameter set (IBSS) 2823 * [tlv] country (optional) 2824 * [3] power control (optional) 2825 * [5] channel switch announcement (CSA) (optional) 2826 * [tlv] extended rate phy (ERP) 2827 * [tlv] extended supported rates 2828 * [tlv] RSN (optional) 2829 * [tlv] HT capabilities 2830 * [tlv] HT information 2831 * [tlv] VHT capabilities 2832 * [tlv] VHT information 2833 * [tlv] WPA (optional) 2834 * [tlv] WME (optional) 2835 * [tlv] Vendor OUI HT capabilities (optional) 2836 * [tlv] Vendor OUI HT information (optional) 2837 * [tlv] Atheros capabilities 2838 * [tlv] AppIE's (optional) 2839 * [tlv] Mesh ID (MBSS) 2840 * [tlv] Mesh Conf (MBSS) 2841 */ 2842 m = ieee80211_getmgtframe(&frm, 2843 ic->ic_headroom + sizeof(struct ieee80211_frame), 2844 8 2845 + sizeof(uint16_t) 2846 + sizeof(uint16_t) 2847 + 2 + IEEE80211_NWID_LEN 2848 + 2 + IEEE80211_RATE_SIZE 2849 + 7 /* max(7,3) */ 2850 + IEEE80211_COUNTRY_MAX_SIZE 2851 + 3 2852 + sizeof(struct ieee80211_csa_ie) 2853 + sizeof(struct ieee80211_quiet_ie) 2854 + 3 2855 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2856 + sizeof(struct ieee80211_ie_wpa) 2857 + sizeof(struct ieee80211_ie_htcap) 2858 + sizeof(struct ieee80211_ie_htinfo) 2859 + sizeof(struct ieee80211_ie_wpa) 2860 + sizeof(struct ieee80211_wme_param) 2861 + 4 + sizeof(struct ieee80211_ie_htcap) 2862 + 4 + sizeof(struct ieee80211_ie_htinfo) 2863 + sizeof(struct ieee80211_ie_vhtcap) 2864 + sizeof(struct ieee80211_ie_vht_operation) 2865 #ifdef IEEE80211_SUPPORT_SUPERG 2866 + sizeof(struct ieee80211_ath_ie) 2867 #endif 2868 #ifdef IEEE80211_SUPPORT_MESH 2869 + 2 + IEEE80211_MESHID_LEN 2870 + sizeof(struct ieee80211_meshconf_ie) 2871 #endif 2872 + (vap->iv_appie_proberesp != NULL ? 2873 vap->iv_appie_proberesp->ie_len : 0) 2874 ); 2875 if (m == NULL) { 2876 vap->iv_stats.is_tx_nobuf++; 2877 return NULL; 2878 } 2879 2880 memset(frm, 0, 8); /* timestamp should be filled later */ 2881 frm += 8; 2882 *(uint16_t *)frm = htole16(bss->ni_intval); 2883 frm += 2; 2884 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2885 *(uint16_t *)frm = htole16(capinfo); 2886 frm += 2; 2887 2888 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2889 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2890 frm = ieee80211_add_rates(frm, rs); 2891 2892 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2893 *frm++ = IEEE80211_ELEMID_FHPARMS; 2894 *frm++ = 5; 2895 *frm++ = bss->ni_fhdwell & 0x00ff; 2896 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2897 *frm++ = IEEE80211_FH_CHANSET( 2898 ieee80211_chan2ieee(ic, bss->ni_chan)); 2899 *frm++ = IEEE80211_FH_CHANPAT( 2900 ieee80211_chan2ieee(ic, bss->ni_chan)); 2901 *frm++ = bss->ni_fhindex; 2902 } else { 2903 *frm++ = IEEE80211_ELEMID_DSPARMS; 2904 *frm++ = 1; 2905 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2906 } 2907 2908 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2909 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2910 *frm++ = 2; 2911 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2912 } 2913 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2914 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2915 frm = ieee80211_add_countryie(frm, ic); 2916 if (vap->iv_flags & IEEE80211_F_DOTH) { 2917 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2918 frm = ieee80211_add_powerconstraint(frm, vap); 2919 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2920 frm = ieee80211_add_csa(frm, vap); 2921 } 2922 if (vap->iv_flags & IEEE80211_F_DOTH) { 2923 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2924 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2925 if (vap->iv_quiet) 2926 frm = ieee80211_add_quiet(frm, vap, 0); 2927 } 2928 } 2929 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2930 frm = ieee80211_add_erp(frm, ic); 2931 frm = ieee80211_add_xrates(frm, rs); 2932 frm = ieee80211_add_rsn(frm, vap); 2933 /* 2934 * NB: legacy 11b clients do not get certain ie's. 2935 * The caller identifies such clients by passing 2936 * a token in legacy to us. Could expand this to be 2937 * any legacy client for stuff like HT ie's. 2938 */ 2939 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2940 legacy != IEEE80211_SEND_LEGACY_11B) { 2941 frm = ieee80211_add_htcap(frm, bss); 2942 frm = ieee80211_add_htinfo(frm, bss); 2943 } 2944 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 2945 legacy != IEEE80211_SEND_LEGACY_11B) { 2946 frm = ieee80211_add_vhtcap(frm, bss); 2947 frm = ieee80211_add_vhtinfo(frm, bss); 2948 } 2949 frm = ieee80211_add_wpa(frm, vap); 2950 if (vap->iv_flags & IEEE80211_F_WME) 2951 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2952 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2953 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2954 legacy != IEEE80211_SEND_LEGACY_11B) { 2955 frm = ieee80211_add_htcap_vendor(frm, bss); 2956 frm = ieee80211_add_htinfo_vendor(frm, bss); 2957 } 2958 #ifdef IEEE80211_SUPPORT_SUPERG 2959 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2960 legacy != IEEE80211_SEND_LEGACY_11B) 2961 frm = ieee80211_add_athcaps(frm, bss); 2962 #endif 2963 if (vap->iv_appie_proberesp != NULL) 2964 frm = add_appie(frm, vap->iv_appie_proberesp); 2965 #ifdef IEEE80211_SUPPORT_MESH 2966 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2967 frm = ieee80211_add_meshid(frm, vap); 2968 frm = ieee80211_add_meshconf(frm, vap); 2969 } 2970 #endif 2971 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2972 2973 return m; 2974 } 2975 2976 /* 2977 * Send a probe response frame to the specified mac address. 2978 * This does not go through the normal mgt frame api so we 2979 * can specify the destination address and re-use the bss node 2980 * for the sta reference. 2981 */ 2982 int 2983 ieee80211_send_proberesp(struct ieee80211vap *vap, 2984 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2985 { 2986 struct ieee80211_node *bss = vap->iv_bss; 2987 struct ieee80211com *ic = vap->iv_ic; 2988 struct mbuf *m; 2989 int ret; 2990 2991 if (vap->iv_state == IEEE80211_S_CAC) { 2992 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2993 "block %s frame in CAC state", "probe response"); 2994 vap->iv_stats.is_tx_badstate++; 2995 return EIO; /* XXX */ 2996 } 2997 2998 /* 2999 * Hold a reference on the node so it doesn't go away until after 3000 * the xmit is complete all the way in the driver. On error we 3001 * will remove our reference. 3002 */ 3003 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3004 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3005 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3006 ieee80211_node_refcnt(bss)+1); 3007 ieee80211_ref_node(bss); 3008 3009 m = ieee80211_alloc_proberesp(bss, legacy); 3010 if (m == NULL) { 3011 ieee80211_free_node(bss); 3012 return ENOMEM; 3013 } 3014 3015 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3016 KASSERT(m != NULL, ("no room for header")); 3017 3018 IEEE80211_TX_LOCK(ic); 3019 ieee80211_send_setup(bss, m, 3020 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3021 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3022 /* XXX power management? */ 3023 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3024 3025 M_WME_SETAC(m, WME_AC_BE); 3026 3027 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3028 "send probe resp on channel %u to %s%s\n", 3029 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3030 legacy ? " <legacy>" : ""); 3031 IEEE80211_NODE_STAT(bss, tx_mgmt); 3032 3033 ret = ieee80211_raw_output(vap, bss, m, NULL); 3034 IEEE80211_TX_UNLOCK(ic); 3035 return (ret); 3036 } 3037 3038 /* 3039 * Allocate and build a RTS (Request To Send) control frame. 3040 */ 3041 struct mbuf * 3042 ieee80211_alloc_rts(struct ieee80211com *ic, 3043 const uint8_t ra[IEEE80211_ADDR_LEN], 3044 const uint8_t ta[IEEE80211_ADDR_LEN], 3045 uint16_t dur) 3046 { 3047 struct ieee80211_frame_rts *rts; 3048 struct mbuf *m; 3049 3050 /* XXX honor ic_headroom */ 3051 m = m_gethdr(M_NOWAIT, MT_DATA); 3052 if (m != NULL) { 3053 rts = mtod(m, struct ieee80211_frame_rts *); 3054 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3055 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3056 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3057 *(u_int16_t *)rts->i_dur = htole16(dur); 3058 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3059 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3060 3061 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3062 } 3063 return m; 3064 } 3065 3066 /* 3067 * Allocate and build a CTS (Clear To Send) control frame. 3068 */ 3069 struct mbuf * 3070 ieee80211_alloc_cts(struct ieee80211com *ic, 3071 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3072 { 3073 struct ieee80211_frame_cts *cts; 3074 struct mbuf *m; 3075 3076 /* XXX honor ic_headroom */ 3077 m = m_gethdr(M_NOWAIT, MT_DATA); 3078 if (m != NULL) { 3079 cts = mtod(m, struct ieee80211_frame_cts *); 3080 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3081 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3082 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3083 *(u_int16_t *)cts->i_dur = htole16(dur); 3084 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3085 3086 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3087 } 3088 return m; 3089 } 3090 3091 /* 3092 * Wrapper for CTS/RTS frame allocation. 3093 */ 3094 struct mbuf * 3095 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3096 uint8_t rate, int prot) 3097 { 3098 struct ieee80211com *ic = ni->ni_ic; 3099 const struct ieee80211_frame *wh; 3100 struct mbuf *mprot; 3101 uint16_t dur; 3102 int pktlen, isshort; 3103 3104 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3105 prot == IEEE80211_PROT_CTSONLY, 3106 ("wrong protection type %d", prot)); 3107 3108 wh = mtod(m, const struct ieee80211_frame *); 3109 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3110 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 3111 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3112 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3113 3114 if (prot == IEEE80211_PROT_RTSCTS) { 3115 /* NB: CTS is the same size as an ACK */ 3116 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3117 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3118 } else 3119 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 3120 3121 return (mprot); 3122 } 3123 3124 static void 3125 ieee80211_tx_mgt_timeout(void *arg) 3126 { 3127 struct ieee80211vap *vap = arg; 3128 3129 IEEE80211_LOCK(vap->iv_ic); 3130 if (vap->iv_state != IEEE80211_S_INIT && 3131 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3132 /* 3133 * NB: it's safe to specify a timeout as the reason here; 3134 * it'll only be used in the right state. 3135 */ 3136 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3137 IEEE80211_SCAN_FAIL_TIMEOUT); 3138 } 3139 IEEE80211_UNLOCK(vap->iv_ic); 3140 } 3141 3142 /* 3143 * This is the callback set on net80211-sourced transmitted 3144 * authentication request frames. 3145 * 3146 * This does a couple of things: 3147 * 3148 * + If the frame transmitted was a success, it schedules a future 3149 * event which will transition the interface to scan. 3150 * If a state transition _then_ occurs before that event occurs, 3151 * said state transition will cancel this callout. 3152 * 3153 * + If the frame transmit was a failure, it immediately schedules 3154 * the transition back to scan. 3155 */ 3156 static void 3157 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3158 { 3159 struct ieee80211vap *vap = ni->ni_vap; 3160 enum ieee80211_state ostate = (enum ieee80211_state) arg; 3161 3162 /* 3163 * Frame transmit completed; arrange timer callback. If 3164 * transmit was successfully we wait for response. Otherwise 3165 * we arrange an immediate callback instead of doing the 3166 * callback directly since we don't know what state the driver 3167 * is in (e.g. what locks it is holding). This work should 3168 * not be too time-critical and not happen too often so the 3169 * added overhead is acceptable. 3170 * 3171 * XXX what happens if !acked but response shows up before callback? 3172 */ 3173 if (vap->iv_state == ostate) { 3174 callout_reset(&vap->iv_mgtsend, 3175 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3176 ieee80211_tx_mgt_timeout, vap); 3177 } 3178 } 3179 3180 static void 3181 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3182 struct ieee80211_node *ni) 3183 { 3184 struct ieee80211vap *vap = ni->ni_vap; 3185 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3186 struct ieee80211com *ic = ni->ni_ic; 3187 struct ieee80211_rateset *rs = &ni->ni_rates; 3188 uint16_t capinfo; 3189 3190 /* 3191 * beacon frame format 3192 * 3193 * TODO: update to 802.11-2012; a lot of stuff has changed; 3194 * vendor extensions should be at the end, etc. 3195 * 3196 * [8] time stamp 3197 * [2] beacon interval 3198 * [2] cabability information 3199 * [tlv] ssid 3200 * [tlv] supported rates 3201 * [3] parameter set (DS) 3202 * [8] CF parameter set (optional) 3203 * [tlv] parameter set (IBSS/TIM) 3204 * [tlv] country (optional) 3205 * [3] power control (optional) 3206 * [5] channel switch announcement (CSA) (optional) 3207 * XXX TODO: Quiet 3208 * XXX TODO: IBSS DFS 3209 * XXX TODO: TPC report 3210 * [tlv] extended rate phy (ERP) 3211 * [tlv] extended supported rates 3212 * [tlv] RSN parameters 3213 * XXX TODO: BSSLOAD 3214 * (XXX EDCA parameter set, QoS capability?) 3215 * XXX TODO: AP channel report 3216 * 3217 * [tlv] HT capabilities 3218 * [tlv] HT information 3219 * XXX TODO: 20/40 BSS coexistence 3220 * Mesh: 3221 * XXX TODO: Meshid 3222 * XXX TODO: mesh config 3223 * XXX TODO: mesh awake window 3224 * XXX TODO: beacon timing (mesh, etc) 3225 * XXX TODO: MCCAOP Advertisement Overview 3226 * XXX TODO: MCCAOP Advertisement 3227 * XXX TODO: Mesh channel switch parameters 3228 * VHT: 3229 * XXX TODO: VHT capabilities 3230 * XXX TODO: VHT operation 3231 * XXX TODO: VHT transmit power envelope 3232 * XXX TODO: channel switch wrapper element 3233 * XXX TODO: extended BSS load element 3234 * 3235 * XXX Vendor-specific OIDs (e.g. Atheros) 3236 * [tlv] WPA parameters 3237 * [tlv] WME parameters 3238 * [tlv] Vendor OUI HT capabilities (optional) 3239 * [tlv] Vendor OUI HT information (optional) 3240 * [tlv] Atheros capabilities (optional) 3241 * [tlv] TDMA parameters (optional) 3242 * [tlv] Mesh ID (MBSS) 3243 * [tlv] Mesh Conf (MBSS) 3244 * [tlv] application data (optional) 3245 */ 3246 3247 memset(bo, 0, sizeof(*bo)); 3248 3249 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3250 frm += 8; 3251 *(uint16_t *)frm = htole16(ni->ni_intval); 3252 frm += 2; 3253 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3254 bo->bo_caps = (uint16_t *)frm; 3255 *(uint16_t *)frm = htole16(capinfo); 3256 frm += 2; 3257 *frm++ = IEEE80211_ELEMID_SSID; 3258 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3259 *frm++ = ni->ni_esslen; 3260 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3261 frm += ni->ni_esslen; 3262 } else 3263 *frm++ = 0; 3264 frm = ieee80211_add_rates(frm, rs); 3265 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3266 *frm++ = IEEE80211_ELEMID_DSPARMS; 3267 *frm++ = 1; 3268 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3269 } 3270 if (ic->ic_flags & IEEE80211_F_PCF) { 3271 bo->bo_cfp = frm; 3272 frm = ieee80211_add_cfparms(frm, ic); 3273 } 3274 bo->bo_tim = frm; 3275 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3276 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3277 *frm++ = 2; 3278 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3279 bo->bo_tim_len = 0; 3280 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3281 vap->iv_opmode == IEEE80211_M_MBSS) { 3282 /* TIM IE is the same for Mesh and Hostap */ 3283 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3284 3285 tie->tim_ie = IEEE80211_ELEMID_TIM; 3286 tie->tim_len = 4; /* length */ 3287 tie->tim_count = 0; /* DTIM count */ 3288 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3289 tie->tim_bitctl = 0; /* bitmap control */ 3290 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3291 frm += sizeof(struct ieee80211_tim_ie); 3292 bo->bo_tim_len = 1; 3293 } 3294 bo->bo_tim_trailer = frm; 3295 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3296 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3297 frm = ieee80211_add_countryie(frm, ic); 3298 if (vap->iv_flags & IEEE80211_F_DOTH) { 3299 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3300 frm = ieee80211_add_powerconstraint(frm, vap); 3301 bo->bo_csa = frm; 3302 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3303 frm = ieee80211_add_csa(frm, vap); 3304 } else 3305 bo->bo_csa = frm; 3306 3307 bo->bo_quiet = NULL; 3308 if (vap->iv_flags & IEEE80211_F_DOTH) { 3309 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3310 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3311 (vap->iv_quiet == 1)) { 3312 /* 3313 * We only insert the quiet IE offset if 3314 * the quiet IE is enabled. Otherwise don't 3315 * put it here or we'll just overwrite 3316 * some other beacon contents. 3317 */ 3318 if (vap->iv_quiet) { 3319 bo->bo_quiet = frm; 3320 frm = ieee80211_add_quiet(frm,vap, 0); 3321 } 3322 } 3323 } 3324 3325 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3326 bo->bo_erp = frm; 3327 frm = ieee80211_add_erp(frm, ic); 3328 } 3329 frm = ieee80211_add_xrates(frm, rs); 3330 frm = ieee80211_add_rsn(frm, vap); 3331 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3332 frm = ieee80211_add_htcap(frm, ni); 3333 bo->bo_htinfo = frm; 3334 frm = ieee80211_add_htinfo(frm, ni); 3335 } 3336 3337 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3338 frm = ieee80211_add_vhtcap(frm, ni); 3339 bo->bo_vhtinfo = frm; 3340 frm = ieee80211_add_vhtinfo(frm, ni); 3341 /* Transmit power envelope */ 3342 /* Channel switch wrapper element */ 3343 /* Extended bss load element */ 3344 } 3345 3346 frm = ieee80211_add_wpa(frm, vap); 3347 if (vap->iv_flags & IEEE80211_F_WME) { 3348 bo->bo_wme = frm; 3349 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3350 } 3351 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3352 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3353 frm = ieee80211_add_htcap_vendor(frm, ni); 3354 frm = ieee80211_add_htinfo_vendor(frm, ni); 3355 } 3356 3357 #ifdef IEEE80211_SUPPORT_SUPERG 3358 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3359 bo->bo_ath = frm; 3360 frm = ieee80211_add_athcaps(frm, ni); 3361 } 3362 #endif 3363 #ifdef IEEE80211_SUPPORT_TDMA 3364 if (vap->iv_caps & IEEE80211_C_TDMA) { 3365 bo->bo_tdma = frm; 3366 frm = ieee80211_add_tdma(frm, vap); 3367 } 3368 #endif 3369 if (vap->iv_appie_beacon != NULL) { 3370 bo->bo_appie = frm; 3371 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3372 frm = add_appie(frm, vap->iv_appie_beacon); 3373 } 3374 3375 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3376 #ifdef IEEE80211_SUPPORT_MESH 3377 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3378 frm = ieee80211_add_meshid(frm, vap); 3379 bo->bo_meshconf = frm; 3380 frm = ieee80211_add_meshconf(frm, vap); 3381 } 3382 #endif 3383 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3384 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3385 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3386 } 3387 3388 /* 3389 * Allocate a beacon frame and fillin the appropriate bits. 3390 */ 3391 struct mbuf * 3392 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3393 { 3394 struct ieee80211vap *vap = ni->ni_vap; 3395 struct ieee80211com *ic = ni->ni_ic; 3396 struct ifnet *ifp = vap->iv_ifp; 3397 struct ieee80211_frame *wh; 3398 struct mbuf *m; 3399 int pktlen; 3400 uint8_t *frm; 3401 3402 /* 3403 * Update the "We're putting the quiet IE in the beacon" state. 3404 */ 3405 if (vap->iv_quiet == 1) 3406 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3407 else if (vap->iv_quiet == 0) 3408 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3409 3410 /* 3411 * beacon frame format 3412 * 3413 * Note: This needs updating for 802.11-2012. 3414 * 3415 * [8] time stamp 3416 * [2] beacon interval 3417 * [2] cabability information 3418 * [tlv] ssid 3419 * [tlv] supported rates 3420 * [3] parameter set (DS) 3421 * [8] CF parameter set (optional) 3422 * [tlv] parameter set (IBSS/TIM) 3423 * [tlv] country (optional) 3424 * [3] power control (optional) 3425 * [5] channel switch announcement (CSA) (optional) 3426 * [tlv] extended rate phy (ERP) 3427 * [tlv] extended supported rates 3428 * [tlv] RSN parameters 3429 * [tlv] HT capabilities 3430 * [tlv] HT information 3431 * [tlv] VHT capabilities 3432 * [tlv] VHT operation 3433 * [tlv] Vendor OUI HT capabilities (optional) 3434 * [tlv] Vendor OUI HT information (optional) 3435 * XXX Vendor-specific OIDs (e.g. Atheros) 3436 * [tlv] WPA parameters 3437 * [tlv] WME parameters 3438 * [tlv] TDMA parameters (optional) 3439 * [tlv] Mesh ID (MBSS) 3440 * [tlv] Mesh Conf (MBSS) 3441 * [tlv] application data (optional) 3442 * NB: we allocate the max space required for the TIM bitmap. 3443 * XXX how big is this? 3444 */ 3445 pktlen = 8 /* time stamp */ 3446 + sizeof(uint16_t) /* beacon interval */ 3447 + sizeof(uint16_t) /* capabilities */ 3448 + 2 + ni->ni_esslen /* ssid */ 3449 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3450 + 2 + 1 /* DS parameters */ 3451 + 2 + 6 /* CF parameters */ 3452 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3453 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3454 + 2 + 1 /* power control */ 3455 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3456 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3457 + 2 + 1 /* ERP */ 3458 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3459 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3460 2*sizeof(struct ieee80211_ie_wpa) : 0) 3461 /* XXX conditional? */ 3462 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3463 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3464 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3465 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3466 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3467 sizeof(struct ieee80211_wme_param) : 0) 3468 #ifdef IEEE80211_SUPPORT_SUPERG 3469 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3470 #endif 3471 #ifdef IEEE80211_SUPPORT_TDMA 3472 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3473 sizeof(struct ieee80211_tdma_param) : 0) 3474 #endif 3475 #ifdef IEEE80211_SUPPORT_MESH 3476 + 2 + ni->ni_meshidlen 3477 + sizeof(struct ieee80211_meshconf_ie) 3478 #endif 3479 + IEEE80211_MAX_APPIE 3480 ; 3481 m = ieee80211_getmgtframe(&frm, 3482 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3483 if (m == NULL) { 3484 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3485 "%s: cannot get buf; size %u\n", __func__, pktlen); 3486 vap->iv_stats.is_tx_nobuf++; 3487 return NULL; 3488 } 3489 ieee80211_beacon_construct(m, frm, ni); 3490 3491 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3492 KASSERT(m != NULL, ("no space for 802.11 header?")); 3493 wh = mtod(m, struct ieee80211_frame *); 3494 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3495 IEEE80211_FC0_SUBTYPE_BEACON; 3496 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3497 *(uint16_t *)wh->i_dur = 0; 3498 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3499 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3500 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3501 *(uint16_t *)wh->i_seq = 0; 3502 3503 return m; 3504 } 3505 3506 /* 3507 * Update the dynamic parts of a beacon frame based on the current state. 3508 */ 3509 int 3510 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3511 { 3512 struct ieee80211vap *vap = ni->ni_vap; 3513 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3514 struct ieee80211com *ic = ni->ni_ic; 3515 int len_changed = 0; 3516 uint16_t capinfo; 3517 struct ieee80211_frame *wh; 3518 ieee80211_seq seqno; 3519 3520 IEEE80211_LOCK(ic); 3521 /* 3522 * Handle 11h channel change when we've reached the count. 3523 * We must recalculate the beacon frame contents to account 3524 * for the new channel. Note we do this only for the first 3525 * vap that reaches this point; subsequent vaps just update 3526 * their beacon state to reflect the recalculated channel. 3527 */ 3528 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3529 vap->iv_csa_count == ic->ic_csa_count) { 3530 vap->iv_csa_count = 0; 3531 /* 3532 * Effect channel change before reconstructing the beacon 3533 * frame contents as many places reference ni_chan. 3534 */ 3535 if (ic->ic_csa_newchan != NULL) 3536 ieee80211_csa_completeswitch(ic); 3537 /* 3538 * NB: ieee80211_beacon_construct clears all pending 3539 * updates in bo_flags so we don't need to explicitly 3540 * clear IEEE80211_BEACON_CSA. 3541 */ 3542 ieee80211_beacon_construct(m, 3543 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3544 3545 /* XXX do WME aggressive mode processing? */ 3546 IEEE80211_UNLOCK(ic); 3547 return 1; /* just assume length changed */ 3548 } 3549 3550 /* 3551 * Handle the quiet time element being added and removed. 3552 * Again, for now we just cheat and reconstruct the whole 3553 * beacon - that way the gap is provided as appropriate. 3554 * 3555 * So, track whether we have already added the IE versus 3556 * whether we want to be adding the IE. 3557 */ 3558 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3559 (vap->iv_quiet == 0)) { 3560 /* 3561 * Quiet time beacon IE enabled, but it's disabled; 3562 * recalc 3563 */ 3564 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3565 ieee80211_beacon_construct(m, 3566 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3567 /* XXX do WME aggressive mode processing? */ 3568 IEEE80211_UNLOCK(ic); 3569 return 1; /* just assume length changed */ 3570 } 3571 3572 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3573 (vap->iv_quiet == 1)) { 3574 /* 3575 * Quiet time beacon IE disabled, but it's now enabled; 3576 * recalc 3577 */ 3578 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3579 ieee80211_beacon_construct(m, 3580 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3581 /* XXX do WME aggressive mode processing? */ 3582 IEEE80211_UNLOCK(ic); 3583 return 1; /* just assume length changed */ 3584 } 3585 3586 wh = mtod(m, struct ieee80211_frame *); 3587 3588 /* 3589 * XXX TODO Strictly speaking this should be incremented with the TX 3590 * lock held so as to serialise access to the non-qos TID sequence 3591 * number space. 3592 * 3593 * If the driver identifies it does its own TX seqno management then 3594 * we can skip this (and still not do the TX seqno.) 3595 */ 3596 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3597 *(uint16_t *)&wh->i_seq[0] = 3598 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3599 M_SEQNO_SET(m, seqno); 3600 3601 /* XXX faster to recalculate entirely or just changes? */ 3602 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3603 *bo->bo_caps = htole16(capinfo); 3604 3605 if (vap->iv_flags & IEEE80211_F_WME) { 3606 struct ieee80211_wme_state *wme = &ic->ic_wme; 3607 3608 /* 3609 * Check for aggressive mode change. When there is 3610 * significant high priority traffic in the BSS 3611 * throttle back BE traffic by using conservative 3612 * parameters. Otherwise BE uses aggressive params 3613 * to optimize performance of legacy/non-QoS traffic. 3614 */ 3615 if (wme->wme_flags & WME_F_AGGRMODE) { 3616 if (wme->wme_hipri_traffic > 3617 wme->wme_hipri_switch_thresh) { 3618 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3619 "%s: traffic %u, disable aggressive mode\n", 3620 __func__, wme->wme_hipri_traffic); 3621 wme->wme_flags &= ~WME_F_AGGRMODE; 3622 ieee80211_wme_updateparams_locked(vap); 3623 wme->wme_hipri_traffic = 3624 wme->wme_hipri_switch_hysteresis; 3625 } else 3626 wme->wme_hipri_traffic = 0; 3627 } else { 3628 if (wme->wme_hipri_traffic <= 3629 wme->wme_hipri_switch_thresh) { 3630 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3631 "%s: traffic %u, enable aggressive mode\n", 3632 __func__, wme->wme_hipri_traffic); 3633 wme->wme_flags |= WME_F_AGGRMODE; 3634 ieee80211_wme_updateparams_locked(vap); 3635 wme->wme_hipri_traffic = 0; 3636 } else 3637 wme->wme_hipri_traffic = 3638 wme->wme_hipri_switch_hysteresis; 3639 } 3640 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3641 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3642 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3643 } 3644 } 3645 3646 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3647 ieee80211_ht_update_beacon(vap, bo); 3648 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3649 } 3650 #ifdef IEEE80211_SUPPORT_TDMA 3651 if (vap->iv_caps & IEEE80211_C_TDMA) { 3652 /* 3653 * NB: the beacon is potentially updated every TBTT. 3654 */ 3655 ieee80211_tdma_update_beacon(vap, bo); 3656 } 3657 #endif 3658 #ifdef IEEE80211_SUPPORT_MESH 3659 if (vap->iv_opmode == IEEE80211_M_MBSS) 3660 ieee80211_mesh_update_beacon(vap, bo); 3661 #endif 3662 3663 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3664 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3665 struct ieee80211_tim_ie *tie = 3666 (struct ieee80211_tim_ie *) bo->bo_tim; 3667 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3668 u_int timlen, timoff, i; 3669 /* 3670 * ATIM/DTIM needs updating. If it fits in the 3671 * current space allocated then just copy in the 3672 * new bits. Otherwise we need to move any trailing 3673 * data to make room. Note that we know there is 3674 * contiguous space because ieee80211_beacon_allocate 3675 * insures there is space in the mbuf to write a 3676 * maximal-size virtual bitmap (based on iv_max_aid). 3677 */ 3678 /* 3679 * Calculate the bitmap size and offset, copy any 3680 * trailer out of the way, and then copy in the 3681 * new bitmap and update the information element. 3682 * Note that the tim bitmap must contain at least 3683 * one byte and any offset must be even. 3684 */ 3685 if (vap->iv_ps_pending != 0) { 3686 timoff = 128; /* impossibly large */ 3687 for (i = 0; i < vap->iv_tim_len; i++) 3688 if (vap->iv_tim_bitmap[i]) { 3689 timoff = i &~ 1; 3690 break; 3691 } 3692 KASSERT(timoff != 128, ("tim bitmap empty!")); 3693 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3694 if (vap->iv_tim_bitmap[i]) 3695 break; 3696 timlen = 1 + (i - timoff); 3697 } else { 3698 timoff = 0; 3699 timlen = 1; 3700 } 3701 3702 /* 3703 * TODO: validate this! 3704 */ 3705 if (timlen != bo->bo_tim_len) { 3706 /* copy up/down trailer */ 3707 int adjust = tie->tim_bitmap+timlen 3708 - bo->bo_tim_trailer; 3709 ovbcopy(bo->bo_tim_trailer, 3710 bo->bo_tim_trailer+adjust, 3711 bo->bo_tim_trailer_len); 3712 bo->bo_tim_trailer += adjust; 3713 bo->bo_erp += adjust; 3714 bo->bo_htinfo += adjust; 3715 bo->bo_vhtinfo += adjust; 3716 #ifdef IEEE80211_SUPPORT_SUPERG 3717 bo->bo_ath += adjust; 3718 #endif 3719 #ifdef IEEE80211_SUPPORT_TDMA 3720 bo->bo_tdma += adjust; 3721 #endif 3722 #ifdef IEEE80211_SUPPORT_MESH 3723 bo->bo_meshconf += adjust; 3724 #endif 3725 bo->bo_appie += adjust; 3726 bo->bo_wme += adjust; 3727 bo->bo_csa += adjust; 3728 bo->bo_quiet += adjust; 3729 bo->bo_tim_len = timlen; 3730 3731 /* update information element */ 3732 tie->tim_len = 3 + timlen; 3733 tie->tim_bitctl = timoff; 3734 len_changed = 1; 3735 } 3736 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3737 bo->bo_tim_len); 3738 3739 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3740 3741 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3742 "%s: TIM updated, pending %u, off %u, len %u\n", 3743 __func__, vap->iv_ps_pending, timoff, timlen); 3744 } 3745 /* count down DTIM period */ 3746 if (tie->tim_count == 0) 3747 tie->tim_count = tie->tim_period - 1; 3748 else 3749 tie->tim_count--; 3750 /* update state for buffered multicast frames on DTIM */ 3751 if (mcast && tie->tim_count == 0) 3752 tie->tim_bitctl |= 1; 3753 else 3754 tie->tim_bitctl &= ~1; 3755 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3756 struct ieee80211_csa_ie *csa = 3757 (struct ieee80211_csa_ie *) bo->bo_csa; 3758 3759 /* 3760 * Insert or update CSA ie. If we're just starting 3761 * to count down to the channel switch then we need 3762 * to insert the CSA ie. Otherwise we just need to 3763 * drop the count. The actual change happens above 3764 * when the vap's count reaches the target count. 3765 */ 3766 if (vap->iv_csa_count == 0) { 3767 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3768 bo->bo_erp += sizeof(*csa); 3769 bo->bo_htinfo += sizeof(*csa); 3770 bo->bo_vhtinfo += sizeof(*csa); 3771 bo->bo_wme += sizeof(*csa); 3772 #ifdef IEEE80211_SUPPORT_SUPERG 3773 bo->bo_ath += sizeof(*csa); 3774 #endif 3775 #ifdef IEEE80211_SUPPORT_TDMA 3776 bo->bo_tdma += sizeof(*csa); 3777 #endif 3778 #ifdef IEEE80211_SUPPORT_MESH 3779 bo->bo_meshconf += sizeof(*csa); 3780 #endif 3781 bo->bo_appie += sizeof(*csa); 3782 bo->bo_csa_trailer_len += sizeof(*csa); 3783 bo->bo_quiet += sizeof(*csa); 3784 bo->bo_tim_trailer_len += sizeof(*csa); 3785 m->m_len += sizeof(*csa); 3786 m->m_pkthdr.len += sizeof(*csa); 3787 3788 ieee80211_add_csa(bo->bo_csa, vap); 3789 } else 3790 csa->csa_count--; 3791 vap->iv_csa_count++; 3792 /* NB: don't clear IEEE80211_BEACON_CSA */ 3793 } 3794 3795 /* 3796 * Only add the quiet time IE if we've enabled it 3797 * as appropriate. 3798 */ 3799 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3800 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3801 if (vap->iv_quiet && 3802 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 3803 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 3804 } 3805 } 3806 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3807 /* 3808 * ERP element needs updating. 3809 */ 3810 (void) ieee80211_add_erp(bo->bo_erp, ic); 3811 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3812 } 3813 #ifdef IEEE80211_SUPPORT_SUPERG 3814 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3815 ieee80211_add_athcaps(bo->bo_ath, ni); 3816 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3817 } 3818 #endif 3819 } 3820 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3821 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3822 int aielen; 3823 uint8_t *frm; 3824 3825 aielen = 0; 3826 if (aie != NULL) 3827 aielen += aie->ie_len; 3828 if (aielen != bo->bo_appie_len) { 3829 /* copy up/down trailer */ 3830 int adjust = aielen - bo->bo_appie_len; 3831 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3832 bo->bo_tim_trailer_len); 3833 bo->bo_tim_trailer += adjust; 3834 bo->bo_appie += adjust; 3835 bo->bo_appie_len = aielen; 3836 3837 len_changed = 1; 3838 } 3839 frm = bo->bo_appie; 3840 if (aie != NULL) 3841 frm = add_appie(frm, aie); 3842 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3843 } 3844 IEEE80211_UNLOCK(ic); 3845 3846 return len_changed; 3847 } 3848 3849 /* 3850 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3851 * tunnel encapsulation. The frame is assumed to have an Ethernet 3852 * header at the front that must be stripped before prepending the 3853 * LLC followed by the Ethernet header passed in (with an Ethernet 3854 * type that specifies the payload size). 3855 */ 3856 struct mbuf * 3857 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3858 const struct ether_header *eh) 3859 { 3860 struct llc *llc; 3861 uint16_t payload; 3862 3863 /* XXX optimize by combining m_adj+M_PREPEND */ 3864 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3865 llc = mtod(m, struct llc *); 3866 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3867 llc->llc_control = LLC_UI; 3868 llc->llc_snap.org_code[0] = 0; 3869 llc->llc_snap.org_code[1] = 0; 3870 llc->llc_snap.org_code[2] = 0; 3871 llc->llc_snap.ether_type = eh->ether_type; 3872 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3873 3874 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3875 if (m == NULL) { /* XXX cannot happen */ 3876 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3877 "%s: no space for ether_header\n", __func__); 3878 vap->iv_stats.is_tx_nobuf++; 3879 return NULL; 3880 } 3881 ETHER_HEADER_COPY(mtod(m, void *), eh); 3882 mtod(m, struct ether_header *)->ether_type = htons(payload); 3883 return m; 3884 } 3885 3886 /* 3887 * Complete an mbuf transmission. 3888 * 3889 * For now, this simply processes a completed frame after the 3890 * driver has completed it's transmission and/or retransmission. 3891 * It assumes the frame is an 802.11 encapsulated frame. 3892 * 3893 * Later on it will grow to become the exit path for a given frame 3894 * from the driver and, depending upon how it's been encapsulated 3895 * and already transmitted, it may end up doing A-MPDU retransmission, 3896 * power save requeuing, etc. 3897 * 3898 * In order for the above to work, the driver entry point to this 3899 * must not hold any driver locks. Thus, the driver needs to delay 3900 * any actual mbuf completion until it can release said locks. 3901 * 3902 * This frees the mbuf and if the mbuf has a node reference, 3903 * the node reference will be freed. 3904 */ 3905 void 3906 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3907 { 3908 3909 if (ni != NULL) { 3910 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3911 3912 if (status == 0) { 3913 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3914 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3915 if (m->m_flags & M_MCAST) 3916 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3917 } else 3918 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3919 if (m->m_flags & M_TXCB) 3920 ieee80211_process_callback(ni, m, status); 3921 ieee80211_free_node(ni); 3922 } 3923 m_freem(m); 3924 } 3925