1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 /* 29 * IEEE 802.11n protocol support. 30 */ 31 32 #include "opt_inet.h" 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/systm.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/if.h> 44 #include <net/if_var.h> 45 #include <net/if_media.h> 46 #include <net/ethernet.h> 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_action.h> 50 #include <net80211/ieee80211_input.h> 51 52 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 53 { 13, 14, 27, 30 }, /* MCS 0 */ 54 { 26, 29, 54, 60 }, /* MCS 1 */ 55 { 39, 43, 81, 90 }, /* MCS 2 */ 56 { 52, 58, 108, 120 }, /* MCS 3 */ 57 { 78, 87, 162, 180 }, /* MCS 4 */ 58 { 104, 116, 216, 240 }, /* MCS 5 */ 59 { 117, 130, 243, 270 }, /* MCS 6 */ 60 { 130, 144, 270, 300 }, /* MCS 7 */ 61 { 26, 29, 54, 60 }, /* MCS 8 */ 62 { 52, 58, 108, 120 }, /* MCS 9 */ 63 { 78, 87, 162, 180 }, /* MCS 10 */ 64 { 104, 116, 216, 240 }, /* MCS 11 */ 65 { 156, 173, 324, 360 }, /* MCS 12 */ 66 { 208, 231, 432, 480 }, /* MCS 13 */ 67 { 234, 260, 486, 540 }, /* MCS 14 */ 68 { 260, 289, 540, 600 }, /* MCS 15 */ 69 { 39, 43, 81, 90 }, /* MCS 16 */ 70 { 78, 87, 162, 180 }, /* MCS 17 */ 71 { 117, 130, 243, 270 }, /* MCS 18 */ 72 { 156, 173, 324, 360 }, /* MCS 19 */ 73 { 234, 260, 486, 540 }, /* MCS 20 */ 74 { 312, 347, 648, 720 }, /* MCS 21 */ 75 { 351, 390, 729, 810 }, /* MCS 22 */ 76 { 390, 433, 810, 900 }, /* MCS 23 */ 77 { 52, 58, 108, 120 }, /* MCS 24 */ 78 { 104, 116, 216, 240 }, /* MCS 25 */ 79 { 156, 173, 324, 360 }, /* MCS 26 */ 80 { 208, 231, 432, 480 }, /* MCS 27 */ 81 { 312, 347, 648, 720 }, /* MCS 28 */ 82 { 416, 462, 864, 960 }, /* MCS 29 */ 83 { 468, 520, 972, 1080 }, /* MCS 30 */ 84 { 520, 578, 1080, 1200 }, /* MCS 31 */ 85 { 0, 0, 12, 13 }, /* MCS 32 */ 86 { 78, 87, 162, 180 }, /* MCS 33 */ 87 { 104, 116, 216, 240 }, /* MCS 34 */ 88 { 130, 144, 270, 300 }, /* MCS 35 */ 89 { 117, 130, 243, 270 }, /* MCS 36 */ 90 { 156, 173, 324, 360 }, /* MCS 37 */ 91 { 195, 217, 405, 450 }, /* MCS 38 */ 92 { 104, 116, 216, 240 }, /* MCS 39 */ 93 { 130, 144, 270, 300 }, /* MCS 40 */ 94 { 130, 144, 270, 300 }, /* MCS 41 */ 95 { 156, 173, 324, 360 }, /* MCS 42 */ 96 { 182, 202, 378, 420 }, /* MCS 43 */ 97 { 182, 202, 378, 420 }, /* MCS 44 */ 98 { 208, 231, 432, 480 }, /* MCS 45 */ 99 { 156, 173, 324, 360 }, /* MCS 46 */ 100 { 195, 217, 405, 450 }, /* MCS 47 */ 101 { 195, 217, 405, 450 }, /* MCS 48 */ 102 { 234, 260, 486, 540 }, /* MCS 49 */ 103 { 273, 303, 567, 630 }, /* MCS 50 */ 104 { 273, 303, 567, 630 }, /* MCS 51 */ 105 { 312, 347, 648, 720 }, /* MCS 52 */ 106 { 130, 144, 270, 300 }, /* MCS 53 */ 107 { 156, 173, 324, 360 }, /* MCS 54 */ 108 { 182, 202, 378, 420 }, /* MCS 55 */ 109 { 156, 173, 324, 360 }, /* MCS 56 */ 110 { 182, 202, 378, 420 }, /* MCS 57 */ 111 { 208, 231, 432, 480 }, /* MCS 58 */ 112 { 234, 260, 486, 540 }, /* MCS 59 */ 113 { 208, 231, 432, 480 }, /* MCS 60 */ 114 { 234, 260, 486, 540 }, /* MCS 61 */ 115 { 260, 289, 540, 600 }, /* MCS 62 */ 116 { 260, 289, 540, 600 }, /* MCS 63 */ 117 { 286, 318, 594, 660 }, /* MCS 64 */ 118 { 195, 217, 405, 450 }, /* MCS 65 */ 119 { 234, 260, 486, 540 }, /* MCS 66 */ 120 { 273, 303, 567, 630 }, /* MCS 67 */ 121 { 234, 260, 486, 540 }, /* MCS 68 */ 122 { 273, 303, 567, 630 }, /* MCS 69 */ 123 { 312, 347, 648, 720 }, /* MCS 70 */ 124 { 351, 390, 729, 810 }, /* MCS 71 */ 125 { 312, 347, 648, 720 }, /* MCS 72 */ 126 { 351, 390, 729, 810 }, /* MCS 73 */ 127 { 390, 433, 810, 900 }, /* MCS 74 */ 128 { 390, 433, 810, 900 }, /* MCS 75 */ 129 { 429, 477, 891, 990 }, /* MCS 76 */ 130 }; 131 132 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 133 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, 134 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 135 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 136 "AMPDU max reorder age (ms)"); 137 138 static int ieee80211_recv_bar_ena = 1; 139 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 140 0, "BAR frame processing (ena/dis)"); 141 142 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 143 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, 144 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 145 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 146 "ADDBA request timeout (ms)"); 147 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 148 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, 149 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 150 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request backoff (ms)"); 152 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 153 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 154 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 155 156 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 157 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 158 159 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 160 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 161 static ieee80211_recv_action_func ht_recv_action_ba_delba; 162 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 163 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 164 165 static ieee80211_send_action_func ht_send_action_ba_addba; 166 static ieee80211_send_action_func ht_send_action_ba_delba; 167 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 168 169 static void 170 ieee80211_ht_init(void) 171 { 172 /* 173 * Setup HT parameters that depends on the clock frequency. 174 */ 175 ieee80211_ampdu_age = msecs_to_ticks(500); 176 ieee80211_addba_timeout = msecs_to_ticks(250); 177 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 178 ieee80211_bar_timeout = msecs_to_ticks(250); 179 /* 180 * Register action frame handlers. 181 */ 182 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 183 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 184 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 185 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 189 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 191 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 192 193 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 194 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 195 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 196 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 200 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 201 } 202 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 203 204 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 205 struct ieee80211_tx_ampdu *tap); 206 static int ieee80211_addba_request(struct ieee80211_node *ni, 207 struct ieee80211_tx_ampdu *tap, 208 int dialogtoken, int baparamset, int batimeout); 209 static int ieee80211_addba_response(struct ieee80211_node *ni, 210 struct ieee80211_tx_ampdu *tap, 211 int code, int baparamset, int batimeout); 212 static void ieee80211_addba_stop(struct ieee80211_node *ni, 213 struct ieee80211_tx_ampdu *tap); 214 static void null_addba_response_timeout(struct ieee80211_node *ni, 215 struct ieee80211_tx_ampdu *tap); 216 217 static void ieee80211_bar_response(struct ieee80211_node *ni, 218 struct ieee80211_tx_ampdu *tap, int status); 219 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 220 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 221 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 222 int baparamset, int batimeout, int baseqctl); 223 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 224 225 void 226 ieee80211_ht_attach(struct ieee80211com *ic) 227 { 228 /* setup default aggregation policy */ 229 ic->ic_recv_action = ieee80211_recv_action; 230 ic->ic_send_action = ieee80211_send_action; 231 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 232 ic->ic_addba_request = ieee80211_addba_request; 233 ic->ic_addba_response = ieee80211_addba_response; 234 ic->ic_addba_response_timeout = null_addba_response_timeout; 235 ic->ic_addba_stop = ieee80211_addba_stop; 236 ic->ic_bar_response = ieee80211_bar_response; 237 ic->ic_ampdu_rx_start = ampdu_rx_start; 238 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 239 240 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 241 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 242 } 243 244 void 245 ieee80211_ht_detach(struct ieee80211com *ic) 246 { 247 } 248 249 void 250 ieee80211_ht_vattach(struct ieee80211vap *vap) 251 { 252 253 /* driver can override defaults */ 254 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 255 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 256 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 257 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 258 /* tx aggregation traffic thresholds */ 259 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 260 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 261 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 262 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 263 264 vap->iv_htprotmode = IEEE80211_PROT_RTSCTS; 265 vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 266 267 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 268 /* 269 * Device is HT capable; enable all HT-related 270 * facilities by default. 271 * XXX these choices may be too aggressive. 272 */ 273 vap->iv_flags_ht |= IEEE80211_FHT_HT 274 | IEEE80211_FHT_HTCOMPAT 275 ; 276 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 277 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 278 /* XXX infer from channel list? */ 279 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 280 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 281 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 282 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 283 } 284 /* enable RIFS if capable */ 285 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 286 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 287 288 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 289 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 290 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 291 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 292 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 293 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 294 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 295 296 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 297 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 298 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 299 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 300 301 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) 302 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; 303 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) 304 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; 305 } 306 /* NB: disable default legacy WDS, too many issues right now */ 307 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 308 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 309 } 310 311 void 312 ieee80211_ht_vdetach(struct ieee80211vap *vap) 313 { 314 } 315 316 static int 317 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 318 int ratetype) 319 { 320 int mword, rate; 321 322 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 323 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 324 return (0); 325 switch (ratetype) { 326 case 0: 327 rate = ieee80211_htrates[index].ht20_rate_800ns; 328 break; 329 case 1: 330 rate = ieee80211_htrates[index].ht20_rate_400ns; 331 break; 332 case 2: 333 rate = ieee80211_htrates[index].ht40_rate_800ns; 334 break; 335 default: 336 rate = ieee80211_htrates[index].ht40_rate_400ns; 337 break; 338 } 339 return (rate); 340 } 341 342 static struct printranges { 343 int minmcs; 344 int maxmcs; 345 int txstream; 346 int ratetype; 347 int htcapflags; 348 } ranges[] = { 349 { 0, 7, 1, 0, 0 }, 350 { 8, 15, 2, 0, 0 }, 351 { 16, 23, 3, 0, 0 }, 352 { 24, 31, 4, 0, 0 }, 353 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 354 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 355 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 356 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 357 { 0, 0, 0, 0, 0 }, 358 }; 359 360 static void 361 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 362 { 363 int minrate, maxrate; 364 struct printranges *range; 365 366 for (range = ranges; range->txstream != 0; range++) { 367 if (ic->ic_txstream < range->txstream) 368 continue; 369 if (range->htcapflags && 370 (ic->ic_htcaps & range->htcapflags) == 0) 371 continue; 372 if (ratetype < range->ratetype) 373 continue; 374 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 375 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 376 if (range->maxmcs) { 377 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 378 range->minmcs, range->maxmcs, 379 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 380 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 381 } else { 382 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 383 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 384 } 385 } 386 } 387 388 static void 389 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 390 { 391 const char *modestr = ieee80211_phymode_name[mode]; 392 393 ic_printf(ic, "%s MCS 20MHz\n", modestr); 394 ht_rateprint(ic, mode, 0); 395 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 396 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 397 ht_rateprint(ic, mode, 1); 398 } 399 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 400 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 401 ht_rateprint(ic, mode, 2); 402 } 403 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 404 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 405 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 406 ht_rateprint(ic, mode, 3); 407 } 408 } 409 410 void 411 ieee80211_ht_announce(struct ieee80211com *ic) 412 { 413 414 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 415 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 416 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 417 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 418 ht_announce(ic, IEEE80211_MODE_11NA); 419 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 420 ht_announce(ic, IEEE80211_MODE_11NG); 421 } 422 423 void 424 ieee80211_init_suphtrates(struct ieee80211com *ic) 425 { 426 #define ADDRATE(x) do { \ 427 htrateset->rs_rates[htrateset->rs_nrates] = x; \ 428 htrateset->rs_nrates++; \ 429 } while (0) 430 struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; 431 int i; 432 433 memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); 434 for (i = 0; i < ic->ic_txstream * 8; i++) 435 ADDRATE(i); 436 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 437 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 438 ADDRATE(32); 439 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 440 if (ic->ic_txstream >= 2) { 441 for (i = 33; i <= 38; i++) 442 ADDRATE(i); 443 } 444 if (ic->ic_txstream >= 3) { 445 for (i = 39; i <= 52; i++) 446 ADDRATE(i); 447 } 448 if (ic->ic_txstream == 4) { 449 for (i = 53; i <= 76; i++) 450 ADDRATE(i); 451 } 452 } 453 #undef ADDRATE 454 } 455 456 /* 457 * Receive processing. 458 */ 459 460 /* 461 * Decap the encapsulated A-MSDU frames and dispatch all but 462 * the last for delivery. The last frame is returned for 463 * delivery via the normal path. 464 */ 465 struct mbuf * 466 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 467 { 468 struct ieee80211vap *vap = ni->ni_vap; 469 int framelen; 470 struct mbuf *n; 471 472 /* discard 802.3 header inserted by ieee80211_decap */ 473 m_adj(m, sizeof(struct ether_header)); 474 475 vap->iv_stats.is_amsdu_decap++; 476 477 for (;;) { 478 /* 479 * Decap the first frame, bust it apart from the 480 * remainder and deliver. We leave the last frame 481 * delivery to the caller (for consistency with other 482 * code paths, could also do it here). 483 */ 484 m = ieee80211_decap1(m, &framelen); 485 if (m == NULL) { 486 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 487 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 488 vap->iv_stats.is_amsdu_tooshort++; 489 return NULL; 490 } 491 if (m->m_pkthdr.len == framelen) 492 break; 493 n = m_split(m, framelen, IEEE80211_M_NOWAIT); 494 if (n == NULL) { 495 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 496 ni->ni_macaddr, "a-msdu", 497 "%s", "unable to split encapsulated frames"); 498 vap->iv_stats.is_amsdu_split++; 499 m_freem(m); /* NB: must reclaim */ 500 return NULL; 501 } 502 vap->iv_deliver_data(vap, ni, m); 503 504 /* 505 * Remove frame contents; each intermediate frame 506 * is required to be aligned to a 4-byte boundary. 507 */ 508 m = n; 509 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 510 } 511 return m; /* last delivered by caller */ 512 } 513 514 static void 515 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i) 516 { 517 struct mbuf *m; 518 519 /* Walk the queue, removing frames as appropriate */ 520 for (;;) { 521 m = mbufq_dequeue(&rap->rxa_mq[i]); 522 if (m == NULL) 523 break; 524 rap->rxa_qbytes -= m->m_pkthdr.len; 525 rap->rxa_qframes--; 526 m_freem(m); 527 } 528 } 529 530 /* 531 * Add the given frame to the current RX reorder slot. 532 * 533 * For future offloaded A-MSDU handling where multiple frames with 534 * the same sequence number show up here, this routine will append 535 * those frames as long as they're appropriately tagged. 536 */ 537 static int 538 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid, 539 ieee80211_seq rxseq, 540 struct ieee80211_node *ni, 541 struct mbuf *m, 542 const struct ieee80211_rx_stats *rxs) 543 { 544 const struct ieee80211_rx_stats *rxs_final = NULL; 545 struct ieee80211vap *vap = ni->ni_vap; 546 int toss_dup; 547 #define PROCESS 0 /* caller should process frame */ 548 #define CONSUMED 1 /* frame consumed, caller does nothing */ 549 550 /* 551 * Figure out if this is a duplicate frame for the given slot. 552 * 553 * We're assuming that the driver will hand us all the frames 554 * for a given AMSDU decap pass and if we get /a/ frame 555 * for an AMSDU decap then we'll get all of them. 556 * 557 * The tricksy bit is that we don't know when the /end/ of 558 * the decap pass is, because we aren't tracking state here 559 * per-slot to know that we've finished receiving the frame list. 560 * 561 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us 562 * what's going on; so ideally we'd just check the frame at the 563 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE - 564 * that means we've received the whole AMSDU decap pass. 565 */ 566 567 /* 568 * Get the rxs of the final mbuf in the slot, if one exists. 569 */ 570 if (!mbufq_empty(&rap->rxa_mq[off])) { 571 rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off])); 572 } 573 574 /* Default to tossing the duplicate frame */ 575 toss_dup = 1; 576 577 /* 578 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND 579 * this frame has F_AMSDU set (MORE or otherwise.) That's a sign 580 * that more can come. 581 */ 582 583 if ((rxs != NULL) && (rxs_final != NULL) && 584 ieee80211_check_rxseq_amsdu(rxs) && 585 ieee80211_check_rxseq_amsdu(rxs_final)) { 586 if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) { 587 /* 588 * amsdu_more() returning 0 means "it's not the 589 * final frame" so we can append more 590 * frames here. 591 */ 592 toss_dup = 0; 593 } 594 } 595 596 /* 597 * If the list is empty OR we have determined we can put more 598 * driver decap'ed AMSDU frames in here, then insert. 599 */ 600 if (mbufq_empty(&rap->rxa_mq[off]) || (toss_dup == 0)) { 601 if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) { 602 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 603 ni->ni_macaddr, 604 "a-mpdu queue fail", 605 "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d", 606 rxseq, tid, rap->rxa_start, 607 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 608 off, 609 mbufq_len(&rap->rxa_mq[off]), 610 rap->rxa_mq[off].mq_maxlen); 611 /* XXX error count */ 612 m_freem(m); 613 return CONSUMED; 614 } 615 rap->rxa_qframes++; 616 rap->rxa_qbytes += m->m_pkthdr.len; 617 vap->iv_stats.is_ampdu_rx_reorder++; 618 /* 619 * Statistics for AMSDU decap. 620 */ 621 if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) { 622 if (ieee80211_check_rxseq_amsdu_more(rxs)) { 623 /* more=1, AMSDU, end of batch */ 624 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 625 } else { 626 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 627 } 628 } 629 } else { 630 IEEE80211_DISCARD_MAC(vap, 631 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 632 ni->ni_macaddr, "a-mpdu duplicate", 633 "seqno %u tid %u BA win <%u:%u>", 634 rxseq, tid, rap->rxa_start, 635 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 636 if (rxs != NULL) { 637 IEEE80211_DISCARD_MAC(vap, 638 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 639 ni->ni_macaddr, "a-mpdu duplicate", 640 "seqno %d tid %u pktflags 0x%08x\n", 641 rxseq, tid, rxs->c_pktflags); 642 } 643 if (rxs_final != NULL) { 644 IEEE80211_DISCARD_MAC(vap, 645 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 646 ni->ni_macaddr, "a-mpdu duplicate", 647 "final: pktflags 0x%08x\n", 648 rxs_final->c_pktflags); 649 } 650 vap->iv_stats.is_rx_dup++; 651 IEEE80211_NODE_STAT(ni, rx_dup); 652 m_freem(m); 653 } 654 return CONSUMED; 655 #undef CONSUMED 656 #undef PROCESS 657 } 658 659 /* 660 * Purge all frames in the A-MPDU re-order queue. 661 */ 662 static void 663 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 664 { 665 int i; 666 667 for (i = 0; i < rap->rxa_wnd; i++) { 668 ampdu_rx_purge_slot(rap, i); 669 if (rap->rxa_qframes == 0) 670 break; 671 } 672 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 673 ("lost %u data, %u frames on ampdu rx q", 674 rap->rxa_qbytes, rap->rxa_qframes)); 675 } 676 677 static void 678 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni, 679 struct ieee80211_rx_ampdu *rap) 680 { 681 int i; 682 683 /* XXX TODO: ensure the queues are empty */ 684 memset(rap, 0, sizeof(*rap)); 685 for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++) 686 mbufq_init(&rap->rxa_mq[i], 256); 687 } 688 689 /* 690 * Start A-MPDU rx/re-order processing for the specified TID. 691 */ 692 static int 693 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 694 int baparamset, int batimeout, int baseqctl) 695 { 696 struct ieee80211vap *vap = ni->ni_vap; 697 int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 698 699 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 700 /* 701 * AMPDU previously setup and not terminated with a DELBA, 702 * flush the reorder q's in case anything remains. 703 */ 704 ampdu_rx_purge(rap); 705 } 706 ieee80211_ampdu_rx_init_rap(ni, rap); 707 rap->rxa_wnd = (bufsiz == 0) ? 708 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 709 rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START); 710 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 711 712 /* XXX this should be a configuration flag */ 713 if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) && 714 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) 715 rap->rxa_flags |= IEEE80211_AGGR_AMSDU; 716 else 717 rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU; 718 719 return 0; 720 } 721 722 /* 723 * Public function; manually setup the RX ampdu state. 724 */ 725 int 726 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 727 { 728 struct ieee80211_rx_ampdu *rap; 729 730 /* XXX TODO: sanity check tid, seq, baw */ 731 732 rap = &ni->ni_rx_ampdu[tid]; 733 734 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 735 /* 736 * AMPDU previously setup and not terminated with a DELBA, 737 * flush the reorder q's in case anything remains. 738 */ 739 ampdu_rx_purge(rap); 740 } 741 742 ieee80211_ampdu_rx_init_rap(ni, rap); 743 744 rap->rxa_wnd = (baw== 0) ? 745 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 746 if (seq == -1) { 747 /* Wait for the first RX frame, use that as BAW */ 748 rap->rxa_start = 0; 749 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 750 } else { 751 rap->rxa_start = seq; 752 } 753 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 754 755 /* XXX TODO: no amsdu flag */ 756 757 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 758 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 759 __func__, 760 tid, 761 seq, 762 rap->rxa_wnd, 763 rap->rxa_flags); 764 765 return 0; 766 } 767 768 /* 769 * Public function; manually stop the RX AMPDU state. 770 */ 771 void 772 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 773 { 774 struct ieee80211_rx_ampdu *rap; 775 776 /* XXX TODO: sanity check tid, seq, baw */ 777 rap = &ni->ni_rx_ampdu[tid]; 778 ampdu_rx_stop(ni, rap); 779 } 780 781 /* 782 * Stop A-MPDU rx processing for the specified TID. 783 */ 784 static void 785 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 786 { 787 788 ampdu_rx_purge(rap); 789 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 790 | IEEE80211_AGGR_XCHGPEND 791 | IEEE80211_AGGR_WAITRX); 792 } 793 794 /* 795 * Dispatch a frame from the A-MPDU reorder queue. The 796 * frame is fed back into ieee80211_input marked with an 797 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 798 * permits ieee80211_input to optimize re-processing). 799 */ 800 static __inline void 801 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 802 { 803 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 804 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 805 (void) ieee80211_input(ni, m, 0, 0); 806 } 807 808 static int 809 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 810 int i) 811 { 812 struct mbuf *m; 813 int n = 0; 814 815 for (;;) { 816 m = mbufq_dequeue(&rap->rxa_mq[i]); 817 if (m == NULL) 818 break; 819 n++; 820 821 rap->rxa_qbytes -= m->m_pkthdr.len; 822 rap->rxa_qframes--; 823 824 ampdu_dispatch(ni, m); 825 } 826 return (n); 827 } 828 829 static void 830 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 831 int i, int winstart) 832 { 833 struct ieee80211vap *vap = ni->ni_vap; 834 835 /* 836 * If frames remain, copy the mbuf pointers down so 837 * they correspond to the offsets in the new window. 838 */ 839 if (rap->rxa_qframes != 0) { 840 int n = rap->rxa_qframes, j; 841 for (j = i+1; j < rap->rxa_wnd; j++) { 842 /* 843 * Concat the list contents over, which will 844 * blank the source list for us. 845 */ 846 if (mbufq_len(&rap->rxa_mq[j]) != 0) { 847 n = n - mbufq_len(&rap->rxa_mq[j]); 848 mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]); 849 KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n)); 850 if (n == 0) 851 break; 852 } 853 } 854 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 855 "BA win <%d:%d> winstart %d", 856 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 857 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 858 winstart)); 859 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 860 } 861 } 862 863 /* 864 * Dispatch as many frames as possible from the re-order queue. 865 * Frames will always be "at the front"; we process all frames 866 * up to the first empty slot in the window. On completion we 867 * cleanup state if there are still pending frames in the current 868 * BA window. We assume the frame at slot 0 is already handled 869 * by the caller; we always start at slot 1. 870 */ 871 static void 872 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 873 { 874 struct ieee80211vap *vap = ni->ni_vap; 875 int i, r, r2; 876 877 /* flush run of frames */ 878 r2 = 0; 879 for (i = 1; i < rap->rxa_wnd; i++) { 880 r = ampdu_dispatch_slot(rap, ni, i); 881 if (r == 0) 882 break; 883 r2 += r; 884 } 885 886 /* move up frames */ 887 ampdu_rx_moveup(rap, ni, i, -1); 888 889 /* 890 * Adjust the start of the BA window to 891 * reflect the frames just dispatched. 892 */ 893 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 894 vap->iv_stats.is_ampdu_rx_oor += r2; 895 896 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 897 "%s: moved slot up %d slots to start at %d (%d frames)", 898 __func__, 899 i, 900 rap->rxa_start, 901 r2); 902 } 903 904 /* 905 * Dispatch all frames in the A-MPDU re-order queue. 906 */ 907 static void 908 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 909 { 910 int i, r; 911 912 for (i = 0; i < rap->rxa_wnd; i++) { 913 r = ampdu_dispatch_slot(rap, ni, i); 914 if (r == 0) 915 continue; 916 ni->ni_vap->iv_stats.is_ampdu_rx_oor += r; 917 918 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 919 "%s: moved slot up %d slots to start at %d (%d frames)", 920 __func__, 921 1, 922 rap->rxa_start, 923 r); 924 925 if (rap->rxa_qframes == 0) 926 break; 927 } 928 } 929 930 /* 931 * Dispatch all frames in the A-MPDU re-order queue 932 * preceding the specified sequence number. This logic 933 * handles window moves due to a received MSDU or BAR. 934 */ 935 static void 936 ampdu_rx_flush_upto(struct ieee80211_node *ni, 937 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 938 { 939 struct ieee80211vap *vap = ni->ni_vap; 940 ieee80211_seq seqno; 941 int i, r; 942 943 /* 944 * Flush any complete MSDU's with a sequence number lower 945 * than winstart. Gaps may exist. Note that we may actually 946 * dispatch frames past winstart if a run continues; this is 947 * an optimization that avoids having to do a separate pass 948 * to dispatch frames after moving the BA window start. 949 */ 950 seqno = rap->rxa_start; 951 for (i = 0; i < rap->rxa_wnd; i++) { 952 if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) { 953 (void) ampdu_dispatch_slot(rap, ni, i); 954 } else { 955 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 956 break; 957 } 958 vap->iv_stats.is_ampdu_rx_oor += r; 959 seqno = IEEE80211_SEQ_INC(seqno); 960 961 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 962 "%s: moved slot up %d slots to start at %d (%d frames)", 963 __func__, 964 1, 965 seqno, 966 r); 967 } 968 969 /* 970 * If frames remain, copy the mbuf pointers down so 971 * they correspond to the offsets in the new window. 972 */ 973 ampdu_rx_moveup(rap, ni, i, winstart); 974 975 /* 976 * Move the start of the BA window; we use the 977 * sequence number of the last MSDU that was 978 * passed up the stack+1 or winstart if stopped on 979 * a gap in the reorder buffer. 980 */ 981 rap->rxa_start = seqno; 982 } 983 984 /* 985 * Process a received QoS data frame for an HT station. Handle 986 * A-MPDU reordering: if this frame is received out of order 987 * and falls within the BA window hold onto it. Otherwise if 988 * this frame completes a run, flush any pending frames. We 989 * return 1 if the frame is consumed. A 0 is returned if 990 * the frame should be processed normally by the caller. 991 * 992 * A-MSDU: handle hardware decap'ed A-MSDU frames that are 993 * pretending to be MPDU's. They're dispatched directly if 994 * able; or attempted to put into the receive reordering slot. 995 */ 996 int 997 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m, 998 const struct ieee80211_rx_stats *rxs) 999 { 1000 #define PROCESS 0 /* caller should process frame */ 1001 #define CONSUMED 1 /* frame consumed, caller does nothing */ 1002 struct ieee80211vap *vap = ni->ni_vap; 1003 struct ieee80211_qosframe *wh; 1004 struct ieee80211_rx_ampdu *rap; 1005 ieee80211_seq rxseq; 1006 uint8_t tid; 1007 int off; 1008 int amsdu = ieee80211_check_rxseq_amsdu(rxs); 1009 int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs); 1010 1011 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 1012 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 1013 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1014 1015 /* NB: m_len known to be sufficient */ 1016 wh = mtod(m, struct ieee80211_qosframe *); 1017 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 1018 /* 1019 * Not QoS data, shouldn't get here but just 1020 * return it to the caller for processing. 1021 */ 1022 return PROCESS; 1023 } 1024 1025 /* 1026 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. 1027 * 1028 * Multicast QoS data frames are checked against a different 1029 * counter, not the per-TID counter. 1030 */ 1031 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1032 return PROCESS; 1033 1034 tid = ieee80211_getqos(wh)[0]; 1035 tid &= IEEE80211_QOS_TID; 1036 rap = &ni->ni_rx_ampdu[tid]; 1037 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1038 /* 1039 * No ADDBA request yet, don't touch. 1040 */ 1041 return PROCESS; 1042 } 1043 rxseq = le16toh(*(uint16_t *)wh->i_seq); 1044 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 1045 /* 1046 * Fragments are not allowed; toss. 1047 */ 1048 IEEE80211_DISCARD_MAC(vap, 1049 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1050 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 1051 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1052 vap->iv_stats.is_ampdu_rx_drop++; 1053 IEEE80211_NODE_STAT(ni, rx_drop); 1054 m_freem(m); 1055 return CONSUMED; 1056 } 1057 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 1058 rap->rxa_nframes++; 1059 1060 /* 1061 * Handle waiting for the first frame to define the BAW. 1062 * Some firmware doesn't provide the RX of the starting point 1063 * of the BAW and we have to cope. 1064 */ 1065 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 1066 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 1067 rap->rxa_start = rxseq; 1068 } 1069 again: 1070 if (rxseq == rap->rxa_start) { 1071 /* 1072 * First frame in window. 1073 */ 1074 if (rap->rxa_qframes != 0) { 1075 /* 1076 * Dispatch as many packets as we can. 1077 */ 1078 KASSERT(mbufq_empty(&rap->rxa_mq[0]), ("unexpected dup")); 1079 ampdu_dispatch(ni, m); 1080 ampdu_rx_dispatch(rap, ni); 1081 return CONSUMED; 1082 } else { 1083 /* 1084 * In order; advance window if needed and notify 1085 * caller to dispatch directly. 1086 */ 1087 if (amsdu) { 1088 if (amsdu_end) { 1089 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1090 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 1091 } else { 1092 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 1093 } 1094 } else { 1095 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1096 } 1097 return PROCESS; 1098 } 1099 } 1100 /* 1101 * Frame is out of order; store if in the BA window. 1102 */ 1103 /* calculate offset in BA window */ 1104 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1105 if (off < rap->rxa_wnd) { 1106 /* 1107 * Common case (hopefully): in the BA window. 1108 * Sec 9.10.7.6.2 a) (p.137) 1109 */ 1110 1111 /* 1112 * Check for frames sitting too long in the reorder queue. 1113 * This should only ever happen if frames are not delivered 1114 * without the sender otherwise notifying us (e.g. with a 1115 * BAR to move the window). Typically this happens because 1116 * of vendor bugs that cause the sequence number to jump. 1117 * When this happens we get a gap in the reorder queue that 1118 * leaves frame sitting on the queue until they get pushed 1119 * out due to window moves. When the vendor does not send 1120 * BAR this move only happens due to explicit packet sends 1121 * 1122 * NB: we only track the time of the oldest frame in the 1123 * reorder q; this means that if we flush we might push 1124 * frames that still "new"; if this happens then subsequent 1125 * frames will result in BA window moves which cost something 1126 * but is still better than a big throughput dip. 1127 */ 1128 if (rap->rxa_qframes != 0) { 1129 /* XXX honor batimeout? */ 1130 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1131 /* 1132 * Too long since we received the first 1133 * frame; flush the reorder buffer. 1134 */ 1135 if (rap->rxa_qframes != 0) { 1136 vap->iv_stats.is_ampdu_rx_age += 1137 rap->rxa_qframes; 1138 ampdu_rx_flush(ni, rap); 1139 } 1140 /* 1141 * Advance the window if needed and notify 1142 * the caller to dispatch directly. 1143 */ 1144 if (amsdu) { 1145 if (amsdu_end) { 1146 rap->rxa_start = 1147 IEEE80211_SEQ_INC(rxseq); 1148 IEEE80211_NODE_STAT(ni, 1149 rx_amsdu_more_end); 1150 } else { 1151 IEEE80211_NODE_STAT(ni, 1152 rx_amsdu_more); 1153 } 1154 } else { 1155 rap->rxa_start = 1156 IEEE80211_SEQ_INC(rxseq); 1157 } 1158 return PROCESS; 1159 } 1160 } else { 1161 /* 1162 * First frame, start aging timer. 1163 */ 1164 rap->rxa_age = ticks; 1165 } 1166 1167 /* save packet - this consumes, no matter what */ 1168 ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs); 1169 return CONSUMED; 1170 } 1171 if (off < IEEE80211_SEQ_BA_RANGE) { 1172 /* 1173 * Outside the BA window, but within range; 1174 * flush the reorder q and move the window. 1175 * Sec 9.10.7.6.2 b) (p.138) 1176 */ 1177 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1178 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 1179 rap->rxa_start, 1180 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1181 rap->rxa_qframes, rxseq, tid); 1182 vap->iv_stats.is_ampdu_rx_move++; 1183 1184 /* 1185 * The spec says to flush frames up to but not including: 1186 * WinStart_B = rxseq - rap->rxa_wnd + 1 1187 * Then insert the frame or notify the caller to process 1188 * it immediately. We can safely do this by just starting 1189 * over again because we know the frame will now be within 1190 * the BA window. 1191 */ 1192 /* NB: rxa_wnd known to be >0 */ 1193 ampdu_rx_flush_upto(ni, rap, 1194 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 1195 goto again; 1196 } else { 1197 /* 1198 * Outside the BA window and out of range; toss. 1199 * Sec 9.10.7.6.2 c) (p.138) 1200 */ 1201 IEEE80211_DISCARD_MAC(vap, 1202 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1203 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1204 rap->rxa_start, 1205 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1206 rap->rxa_qframes, rxseq, tid, 1207 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1208 vap->iv_stats.is_ampdu_rx_drop++; 1209 IEEE80211_NODE_STAT(ni, rx_drop); 1210 m_freem(m); 1211 return CONSUMED; 1212 } 1213 #undef CONSUMED 1214 #undef PROCESS 1215 } 1216 1217 /* 1218 * Process a BAR ctl frame. Dispatch all frames up to 1219 * the sequence number of the frame. If this frame is 1220 * out of range it's discarded. 1221 */ 1222 void 1223 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1224 { 1225 struct ieee80211vap *vap = ni->ni_vap; 1226 struct ieee80211_frame_bar *wh; 1227 struct ieee80211_rx_ampdu *rap; 1228 ieee80211_seq rxseq; 1229 int tid, off; 1230 1231 if (!ieee80211_recv_bar_ena) { 1232 #if 0 1233 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1234 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1235 #endif 1236 vap->iv_stats.is_ampdu_bar_bad++; 1237 return; 1238 } 1239 wh = mtod(m0, struct ieee80211_frame_bar *); 1240 /* XXX check basic BAR */ 1241 tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1242 rap = &ni->ni_rx_ampdu[tid]; 1243 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1244 /* 1245 * No ADDBA request yet, don't touch. 1246 */ 1247 IEEE80211_DISCARD_MAC(vap, 1248 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1249 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1250 vap->iv_stats.is_ampdu_bar_bad++; 1251 return; 1252 } 1253 vap->iv_stats.is_ampdu_bar_rx++; 1254 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1255 if (rxseq == rap->rxa_start) 1256 return; 1257 /* calculate offset in BA window */ 1258 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1259 if (off < IEEE80211_SEQ_BA_RANGE) { 1260 /* 1261 * Flush the reorder q up to rxseq and move the window. 1262 * Sec 9.10.7.6.3 a) (p.138) 1263 */ 1264 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1265 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1266 rap->rxa_start, 1267 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1268 rap->rxa_qframes, rxseq, tid); 1269 vap->iv_stats.is_ampdu_bar_move++; 1270 1271 ampdu_rx_flush_upto(ni, rap, rxseq); 1272 if (off >= rap->rxa_wnd) { 1273 /* 1274 * BAR specifies a window start to the right of BA 1275 * window; we must move it explicitly since 1276 * ampdu_rx_flush_upto will not. 1277 */ 1278 rap->rxa_start = rxseq; 1279 } 1280 } else { 1281 /* 1282 * Out of range; toss. 1283 * Sec 9.10.7.6.3 b) (p.138) 1284 */ 1285 IEEE80211_DISCARD_MAC(vap, 1286 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1287 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1288 rap->rxa_start, 1289 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1290 rap->rxa_qframes, rxseq, tid, 1291 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1292 vap->iv_stats.is_ampdu_bar_oow++; 1293 IEEE80211_NODE_STAT(ni, rx_drop); 1294 } 1295 } 1296 1297 /* 1298 * Setup HT-specific state in a node. Called only 1299 * when HT use is negotiated so we don't do extra 1300 * work for temporary and/or legacy sta's. 1301 */ 1302 void 1303 ieee80211_ht_node_init(struct ieee80211_node *ni) 1304 { 1305 struct ieee80211_tx_ampdu *tap; 1306 int tid; 1307 1308 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1309 ni, 1310 "%s: called (%p)", 1311 __func__, 1312 ni); 1313 1314 if (ni->ni_flags & IEEE80211_NODE_HT) { 1315 /* 1316 * Clean AMPDU state on re-associate. This handles the case 1317 * where a station leaves w/o notifying us and then returns 1318 * before node is reaped for inactivity. 1319 */ 1320 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1321 ni, 1322 "%s: calling cleanup (%p)", 1323 __func__, ni); 1324 ieee80211_ht_node_cleanup(ni); 1325 } 1326 for (tid = 0; tid < WME_NUM_TID; tid++) { 1327 tap = &ni->ni_tx_ampdu[tid]; 1328 tap->txa_tid = tid; 1329 tap->txa_ni = ni; 1330 ieee80211_txampdu_init_pps(tap); 1331 /* NB: further initialization deferred */ 1332 ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]); 1333 } 1334 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1335 IEEE80211_NODE_AMSDU; 1336 } 1337 1338 /* 1339 * Cleanup HT-specific state in a node. Called only 1340 * when HT use has been marked. 1341 */ 1342 void 1343 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1344 { 1345 struct ieee80211com *ic = ni->ni_ic; 1346 int i; 1347 1348 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1349 ni, 1350 "%s: called (%p)", 1351 __func__, ni); 1352 1353 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1354 1355 /* XXX optimize this */ 1356 for (i = 0; i < WME_NUM_TID; i++) { 1357 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1358 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1359 ampdu_tx_stop(tap); 1360 } 1361 for (i = 0; i < WME_NUM_TID; i++) 1362 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1363 1364 ni->ni_htcap = 0; 1365 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1366 } 1367 1368 /* 1369 * Age out HT resources for a station. 1370 */ 1371 void 1372 ieee80211_ht_node_age(struct ieee80211_node *ni) 1373 { 1374 struct ieee80211vap *vap = ni->ni_vap; 1375 uint8_t tid; 1376 1377 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1378 1379 for (tid = 0; tid < WME_NUM_TID; tid++) { 1380 struct ieee80211_rx_ampdu *rap; 1381 1382 rap = &ni->ni_rx_ampdu[tid]; 1383 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1384 continue; 1385 if (rap->rxa_qframes == 0) 1386 continue; 1387 /* 1388 * Check for frames sitting too long in the reorder queue. 1389 * See above for more details on what's happening here. 1390 */ 1391 /* XXX honor batimeout? */ 1392 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1393 /* 1394 * Too long since we received the first 1395 * frame; flush the reorder buffer. 1396 */ 1397 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1398 ampdu_rx_flush(ni, rap); 1399 } 1400 } 1401 } 1402 1403 static struct ieee80211_channel * 1404 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1405 { 1406 return ieee80211_find_channel(ic, c->ic_freq, 1407 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1408 } 1409 1410 /* 1411 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1412 */ 1413 struct ieee80211_channel * 1414 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1415 struct ieee80211_channel *chan, int flags) 1416 { 1417 struct ieee80211_channel *c; 1418 1419 if (flags & IEEE80211_FHT_HT) { 1420 /* promote to HT if possible */ 1421 if (flags & IEEE80211_FHT_USEHT40) { 1422 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1423 /* NB: arbitrarily pick ht40+ over ht40- */ 1424 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1425 if (c == NULL) 1426 c = findhtchan(ic, chan, 1427 IEEE80211_CHAN_HT40D); 1428 if (c == NULL) 1429 c = findhtchan(ic, chan, 1430 IEEE80211_CHAN_HT20); 1431 if (c != NULL) 1432 chan = c; 1433 } 1434 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1435 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1436 if (c != NULL) 1437 chan = c; 1438 } 1439 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1440 /* demote to legacy, HT use is disabled */ 1441 c = ieee80211_find_channel(ic, chan->ic_freq, 1442 chan->ic_flags &~ IEEE80211_CHAN_HT); 1443 if (c != NULL) 1444 chan = c; 1445 } 1446 return chan; 1447 } 1448 1449 /* 1450 * Setup HT-specific state for a legacy WDS peer. 1451 */ 1452 void 1453 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1454 { 1455 struct ieee80211vap *vap = ni->ni_vap; 1456 struct ieee80211_tx_ampdu *tap; 1457 int tid; 1458 1459 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1460 1461 /* XXX check scan cache in case peer has an ap and we have info */ 1462 /* 1463 * If setup with a legacy channel; locate an HT channel. 1464 * Otherwise if the inherited channel (from a companion 1465 * AP) is suitable use it so we use the same location 1466 * for the extension channel). 1467 */ 1468 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1469 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1470 1471 ni->ni_htcap = 0; 1472 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1473 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1474 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1475 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1476 ni->ni_chw = 40; 1477 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1478 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1479 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1480 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1481 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1482 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1483 } else { 1484 ni->ni_chw = 20; 1485 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1486 } 1487 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1488 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1489 ni->ni_flags |= IEEE80211_NODE_RIFS; 1490 /* XXX does it make sense to enable SMPS? */ 1491 1492 ni->ni_htopmode = 0; /* XXX need protection state */ 1493 ni->ni_htstbc = 0; /* XXX need info */ 1494 1495 for (tid = 0; tid < WME_NUM_TID; tid++) { 1496 tap = &ni->ni_tx_ampdu[tid]; 1497 tap->txa_tid = tid; 1498 ieee80211_txampdu_init_pps(tap); 1499 } 1500 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1501 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1502 IEEE80211_NODE_AMSDU; 1503 } 1504 1505 /* 1506 * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP. 1507 * 1508 * This is to be called from the deferred HT protection update 1509 * task once the flags are updated. 1510 */ 1511 void 1512 ieee80211_htinfo_notify(struct ieee80211vap *vap) 1513 { 1514 1515 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1516 1517 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1518 return; 1519 if (vap->iv_state != IEEE80211_S_RUN || 1520 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1521 return; 1522 1523 IEEE80211_NOTE(vap, 1524 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1525 vap->iv_bss, 1526 "HT bss occupancy change: %d sta, %d ht, " 1527 "%d ht40%s, HT protmode now 0x%x" 1528 , vap->iv_sta_assoc 1529 , vap->iv_ht_sta_assoc 1530 , vap->iv_ht40_sta_assoc 1531 , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1532 ", non-HT sta present" : "" 1533 , vap->iv_curhtprotmode); 1534 1535 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1536 } 1537 1538 /* 1539 * Calculate HT protection mode from current 1540 * state and handle updates. 1541 */ 1542 static void 1543 htinfo_update(struct ieee80211vap *vap) 1544 { 1545 struct ieee80211com *ic = vap->iv_ic; 1546 uint8_t protmode; 1547 1548 if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) { 1549 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1550 | IEEE80211_HTINFO_NONHT_PRESENT; 1551 } else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) { 1552 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1553 | IEEE80211_HTINFO_NONHT_PRESENT; 1554 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1555 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1556 vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) { 1557 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1558 } else { 1559 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1560 } 1561 if (protmode != vap->iv_curhtprotmode) { 1562 vap->iv_curhtprotmode = protmode; 1563 /* Update VAP with new protection mode */ 1564 ieee80211_vap_update_ht_protmode(vap); 1565 } 1566 } 1567 1568 /* 1569 * Handle an HT station joining a BSS. 1570 */ 1571 void 1572 ieee80211_ht_node_join(struct ieee80211_node *ni) 1573 { 1574 struct ieee80211vap *vap = ni->ni_vap; 1575 1576 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1577 1578 if (ni->ni_flags & IEEE80211_NODE_HT) { 1579 vap->iv_ht_sta_assoc++; 1580 if (ni->ni_chw == 40) 1581 vap->iv_ht40_sta_assoc++; 1582 } 1583 htinfo_update(vap); 1584 } 1585 1586 /* 1587 * Handle an HT station leaving a BSS. 1588 */ 1589 void 1590 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1591 { 1592 struct ieee80211vap *vap = ni->ni_vap; 1593 1594 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1595 1596 if (ni->ni_flags & IEEE80211_NODE_HT) { 1597 vap->iv_ht_sta_assoc--; 1598 if (ni->ni_chw == 40) 1599 vap->iv_ht40_sta_assoc--; 1600 } 1601 htinfo_update(vap); 1602 } 1603 1604 /* 1605 * Public version of htinfo_update; used for processing 1606 * beacon frames from overlapping bss. 1607 * 1608 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1609 * (on receipt of a beacon that advertises MIXED) or 1610 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1611 * from an overlapping legacy bss). We treat MIXED with 1612 * a higher precedence than PROTOPT (i.e. we will not change 1613 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1614 * corresponds to how we handle things in htinfo_update. 1615 * 1616 */ 1617 void 1618 ieee80211_htprot_update(struct ieee80211vap *vap, int protmode) 1619 { 1620 struct ieee80211com *ic = vap->iv_ic; 1621 #define OPMODE(x) _IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE) 1622 IEEE80211_LOCK(ic); 1623 1624 /* track non-HT station presence */ 1625 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1626 ("protmode 0x%x", protmode)); 1627 vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR; 1628 vap->iv_lastnonht = ticks; 1629 1630 if (protmode != vap->iv_curhtprotmode && 1631 (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1632 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1633 vap->iv_curhtprotmode = protmode; 1634 /* Update VAP with new protection mode */ 1635 ieee80211_vap_update_ht_protmode(vap); 1636 } 1637 IEEE80211_UNLOCK(ic); 1638 #undef OPMODE 1639 } 1640 1641 /* 1642 * Time out presence of an overlapping bss with non-HT 1643 * stations. When operating in hostap mode we listen for 1644 * beacons from other stations and if we identify a non-HT 1645 * station is present we update the opmode field of the 1646 * HTINFO ie. To identify when all non-HT stations are 1647 * gone we time out this condition. 1648 */ 1649 void 1650 ieee80211_ht_timeout(struct ieee80211vap *vap) 1651 { 1652 1653 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1654 1655 if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) && 1656 ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1657 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1658 "%s", "time out non-HT STA present on channel"); 1659 vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1660 htinfo_update(vap); 1661 } 1662 } 1663 1664 /* 1665 * Process an 802.11n HT capabilities ie. 1666 */ 1667 void 1668 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1669 { 1670 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1671 /* 1672 * Station used Vendor OUI ie to associate; 1673 * mark the node so when we respond we'll use 1674 * the Vendor OUI's and not the standard ie's. 1675 */ 1676 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1677 ie += 4; 1678 } else 1679 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1680 1681 ni->ni_htcap = le16dec(ie + 1682 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1683 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1684 } 1685 1686 static void 1687 htinfo_parse(struct ieee80211_node *ni, 1688 const struct ieee80211_ie_htinfo *htinfo) 1689 { 1690 uint16_t w; 1691 1692 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1693 ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1, 1694 IEEE80211_HTINFO_2NDCHAN); 1695 w = le16dec(&htinfo->hi_byte2); 1696 ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE); 1697 w = le16dec(&htinfo->hi_byte45); 1698 ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1699 } 1700 1701 /* 1702 * Parse an 802.11n HT info ie and save useful information 1703 * to the node state. Note this does not effect any state 1704 * changes such as for channel width change. 1705 */ 1706 void 1707 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1708 { 1709 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1710 ie += 4; 1711 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1712 } 1713 1714 /* 1715 * Handle 11n/11ac channel switch. 1716 * 1717 * Use the received HT/VHT ie's to identify the right channel to use. 1718 * If we cannot locate it in the channel table then fallback to 1719 * legacy operation. 1720 * 1721 * Note that we use this information to identify the node's 1722 * channel only; the caller is responsible for insuring any 1723 * required channel change is done (e.g. in sta mode when 1724 * parsing the contents of a beacon frame). 1725 */ 1726 static int 1727 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1728 { 1729 struct ieee80211com *ic = ni->ni_ic; 1730 struct ieee80211_channel *c; 1731 int chanflags; 1732 int ret = 0; 1733 1734 /* 1735 * First step - do HT/VHT only channel lookup based on operating mode 1736 * flags. This involves masking out the VHT flags as well. 1737 * Otherwise we end up doing the full channel walk each time 1738 * we trigger this, which is expensive. 1739 */ 1740 chanflags = (ni->ni_chan->ic_flags &~ 1741 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1742 1743 if (chanflags == ni->ni_chan->ic_flags) 1744 goto done; 1745 1746 /* 1747 * If HT /or/ VHT flags have changed then check both. 1748 * We need to start by picking a HT channel anyway. 1749 */ 1750 1751 c = NULL; 1752 chanflags = (ni->ni_chan->ic_flags &~ 1753 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1754 /* XXX not right for ht40- */ 1755 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1756 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1757 /* 1758 * No HT40 channel entry in our table; fall back 1759 * to HT20 operation. This should not happen. 1760 */ 1761 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1762 #if 0 1763 IEEE80211_NOTE(ni->ni_vap, 1764 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1765 "no HT40 channel (freq %u), falling back to HT20", 1766 ni->ni_chan->ic_freq); 1767 #endif 1768 /* XXX stat */ 1769 } 1770 1771 /* Nothing found - leave it alone; move onto VHT */ 1772 if (c == NULL) 1773 c = ni->ni_chan; 1774 1775 /* 1776 * If it's non-HT, then bail out now. 1777 */ 1778 if (! IEEE80211_IS_CHAN_HT(c)) { 1779 IEEE80211_NOTE(ni->ni_vap, 1780 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1781 "not HT; skipping VHT check (%u/0x%x)", 1782 c->ic_freq, c->ic_flags); 1783 goto done; 1784 } 1785 1786 /* 1787 * Next step - look at the current VHT flags and determine 1788 * if we need to upgrade. Mask out the VHT and HT flags since 1789 * the vhtflags field will already have the correct HT 1790 * flags to use. 1791 */ 1792 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1793 chanflags = (c->ic_flags 1794 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1795 | vhtflags; 1796 IEEE80211_NOTE(ni->ni_vap, 1797 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1798 ni, 1799 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1800 __func__, ni->ni_vht_chanwidth, vhtflags); 1801 1802 IEEE80211_NOTE(ni->ni_vap, 1803 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1804 ni, 1805 "%s: VHT; trying lookup for %d/0x%08x", 1806 __func__, c->ic_freq, chanflags); 1807 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1808 } 1809 1810 /* Finally, if it's changed */ 1811 if (c != NULL && c != ni->ni_chan) { 1812 IEEE80211_NOTE(ni->ni_vap, 1813 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1814 "switch station to %s%d channel %u/0x%x", 1815 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1816 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1817 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1818 c->ic_freq, c->ic_flags); 1819 ni->ni_chan = c; 1820 ret = 1; 1821 } 1822 /* NB: caller responsible for forcing any channel change */ 1823 1824 done: 1825 /* update node's (11n) tx channel width */ 1826 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1827 return (ret); 1828 } 1829 1830 /* 1831 * Update 11n MIMO PS state according to received htcap. 1832 */ 1833 static __inline int 1834 htcap_update_mimo_ps(struct ieee80211_node *ni) 1835 { 1836 uint16_t oflags = ni->ni_flags; 1837 1838 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1839 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1840 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1841 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1842 break; 1843 case IEEE80211_HTCAP_SMPS_ENA: 1844 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1845 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1846 break; 1847 case IEEE80211_HTCAP_SMPS_OFF: 1848 default: /* disable on rx of reserved value */ 1849 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1850 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1851 break; 1852 } 1853 return (oflags ^ ni->ni_flags); 1854 } 1855 1856 /* 1857 * Update short GI state according to received htcap 1858 * and local settings. 1859 */ 1860 static __inline void 1861 htcap_update_shortgi(struct ieee80211_node *ni) 1862 { 1863 struct ieee80211vap *vap = ni->ni_vap; 1864 1865 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1866 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1867 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1868 ni->ni_flags |= IEEE80211_NODE_SGI20; 1869 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1870 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1871 ni->ni_flags |= IEEE80211_NODE_SGI40; 1872 } 1873 1874 /* 1875 * Update LDPC state according to received htcap 1876 * and local settings. 1877 */ 1878 static __inline void 1879 htcap_update_ldpc(struct ieee80211_node *ni) 1880 { 1881 struct ieee80211vap *vap = ni->ni_vap; 1882 1883 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && 1884 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) 1885 ni->ni_flags |= IEEE80211_NODE_LDPC; 1886 } 1887 1888 /* 1889 * Parse and update HT-related state extracted from 1890 * the HT cap and info ie's. 1891 * 1892 * This is called from the STA management path and 1893 * the ieee80211_node_join() path. It will take into 1894 * account the IEs discovered during scanning and 1895 * adjust things accordingly. 1896 */ 1897 void 1898 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1899 const uint8_t *htcapie, const uint8_t *htinfoie) 1900 { 1901 struct ieee80211vap *vap = ni->ni_vap; 1902 const struct ieee80211_ie_htinfo *htinfo; 1903 1904 ieee80211_parse_htcap(ni, htcapie); 1905 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 1906 htcap_update_mimo_ps(ni); 1907 htcap_update_shortgi(ni); 1908 htcap_update_ldpc(ni); 1909 1910 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1911 htinfoie += 4; 1912 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1913 htinfo_parse(ni, htinfo); 1914 1915 /* 1916 * Defer the node channel change; we need to now 1917 * update VHT parameters before we do it. 1918 */ 1919 1920 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1921 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1922 ni->ni_flags |= IEEE80211_NODE_RIFS; 1923 else 1924 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1925 } 1926 1927 static uint32_t 1928 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1929 { 1930 struct ieee80211vap *vap = ni->ni_vap; 1931 uint32_t vhtflags = 0; 1932 1933 vhtflags = 0; 1934 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_vht_flags & IEEE80211_FVHT_VHT) { 1935 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1936 /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ 1937 (_IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 1938 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && 1939 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT160)) { 1940 vhtflags = IEEE80211_CHAN_VHT160; 1941 /* Mirror the HT40 flags */ 1942 if (htflags == IEEE80211_CHAN_HT40U) { 1943 vhtflags |= IEEE80211_CHAN_HT40U; 1944 } else if (htflags == IEEE80211_CHAN_HT40D) { 1945 vhtflags |= IEEE80211_CHAN_HT40D; 1946 } 1947 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1948 /* XXX 2 means "160MHz and 80+80MHz" */ 1949 (_IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 1950 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && 1951 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80P80)) { 1952 vhtflags = IEEE80211_CHAN_VHT80P80; 1953 /* Mirror the HT40 flags */ 1954 if (htflags == IEEE80211_CHAN_HT40U) { 1955 vhtflags |= IEEE80211_CHAN_HT40U; 1956 } else if (htflags == IEEE80211_CHAN_HT40D) { 1957 vhtflags |= IEEE80211_CHAN_HT40D; 1958 } 1959 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1960 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80)) { 1961 vhtflags = IEEE80211_CHAN_VHT80; 1962 /* Mirror the HT40 flags */ 1963 if (htflags == IEEE80211_CHAN_HT40U) { 1964 vhtflags |= IEEE80211_CHAN_HT40U; 1965 } else if (htflags == IEEE80211_CHAN_HT40D) { 1966 vhtflags |= IEEE80211_CHAN_HT40D; 1967 } 1968 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1969 /* Mirror the HT40 flags */ 1970 /* 1971 * XXX TODO: if ht40 is disabled, but vht40 isn't 1972 * disabled then this logic will get very, very sad. 1973 * It's quite possible the only sane thing to do is 1974 * to not have vht40 as an option, and just obey 1975 * 'ht40' as that flag. 1976 */ 1977 if ((htflags == IEEE80211_CHAN_HT40U) && 1978 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40)) { 1979 vhtflags = IEEE80211_CHAN_VHT40U 1980 | IEEE80211_CHAN_HT40U; 1981 } else if (htflags == IEEE80211_CHAN_HT40D && 1982 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40)) { 1983 vhtflags = IEEE80211_CHAN_VHT40D 1984 | IEEE80211_CHAN_HT40D; 1985 } else if (htflags == IEEE80211_CHAN_HT20) { 1986 vhtflags = IEEE80211_CHAN_VHT20 1987 | IEEE80211_CHAN_HT20; 1988 } 1989 } else { 1990 vhtflags = IEEE80211_CHAN_VHT20; 1991 } 1992 } 1993 return (vhtflags); 1994 } 1995 1996 /* 1997 * Final part of updating the HT parameters. 1998 * 1999 * This is called from the STA management path and 2000 * the ieee80211_node_join() path. It will take into 2001 * account the IEs discovered during scanning and 2002 * adjust things accordingly. 2003 * 2004 * This is done after a call to ieee80211_ht_updateparams() 2005 * because it (and the upcoming VHT version of updateparams) 2006 * needs to ensure everything is parsed before htinfo_update_chw() 2007 * is called - which will change the channel config for the 2008 * node for us. 2009 */ 2010 int 2011 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 2012 const uint8_t *htcapie, const uint8_t *htinfoie) 2013 { 2014 struct ieee80211vap *vap = ni->ni_vap; 2015 const struct ieee80211_ie_htinfo *htinfo; 2016 int htflags, vhtflags; 2017 int ret = 0; 2018 2019 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 2020 2021 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2022 IEEE80211_CHAN_HT20 : 0; 2023 2024 /* NB: honor operating mode constraint */ 2025 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 2026 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2027 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 2028 htflags = IEEE80211_CHAN_HT40U; 2029 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 2030 htflags = IEEE80211_CHAN_HT40D; 2031 } 2032 2033 /* 2034 * VHT flags - do much the same; check whether VHT is available 2035 * and if so, what our ideal channel use would be based on our 2036 * capabilities and the (pre-parsed) VHT info IE. 2037 */ 2038 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2039 2040 if (htinfo_update_chw(ni, htflags, vhtflags)) 2041 ret = 1; 2042 2043 return (ret); 2044 } 2045 2046 /* 2047 * Parse and update HT-related state extracted from the HT cap ie 2048 * for a station joining an HT BSS. 2049 * 2050 * This is called from the hostap path for each station. 2051 */ 2052 void 2053 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 2054 { 2055 struct ieee80211vap *vap = ni->ni_vap; 2056 2057 ieee80211_parse_htcap(ni, htcapie); 2058 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 2059 htcap_update_mimo_ps(ni); 2060 htcap_update_shortgi(ni); 2061 htcap_update_ldpc(ni); 2062 } 2063 2064 /* 2065 * Called once HT and VHT capabilities are parsed in hostap mode - 2066 * this will adjust the channel configuration of the given node 2067 * based on the configuration and capabilities. 2068 */ 2069 void 2070 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 2071 { 2072 struct ieee80211vap *vap = ni->ni_vap; 2073 int htflags; 2074 int vhtflags; 2075 2076 /* NB: honor operating mode constraint */ 2077 /* XXX 40 MHz intolerant */ 2078 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2079 IEEE80211_CHAN_HT20 : 0; 2080 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 2081 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2082 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 2083 htflags = IEEE80211_CHAN_HT40U; 2084 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 2085 htflags = IEEE80211_CHAN_HT40D; 2086 } 2087 /* 2088 * VHT flags - do much the same; check whether VHT is available 2089 * and if so, what our ideal channel use would be based on our 2090 * capabilities and the (pre-parsed) VHT info IE. 2091 */ 2092 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2093 2094 (void) htinfo_update_chw(ni, htflags, vhtflags); 2095 } 2096 2097 /* 2098 * Install received HT rate set by parsing the HT cap ie. 2099 */ 2100 int 2101 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 2102 { 2103 struct ieee80211com *ic = ni->ni_ic; 2104 struct ieee80211vap *vap = ni->ni_vap; 2105 const struct ieee80211_ie_htcap *htcap; 2106 struct ieee80211_htrateset *rs; 2107 int i, maxequalmcs, maxunequalmcs; 2108 2109 maxequalmcs = ic->ic_txstream * 8 - 1; 2110 maxunequalmcs = 0; 2111 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 2112 if (ic->ic_txstream >= 2) 2113 maxunequalmcs = 38; 2114 if (ic->ic_txstream >= 3) 2115 maxunequalmcs = 52; 2116 if (ic->ic_txstream >= 4) 2117 maxunequalmcs = 76; 2118 } 2119 2120 rs = &ni->ni_htrates; 2121 memset(rs, 0, sizeof(*rs)); 2122 if (ie != NULL) { 2123 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2124 ie += 4; 2125 htcap = (const struct ieee80211_ie_htcap *) ie; 2126 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2127 if (isclr(htcap->hc_mcsset, i)) 2128 continue; 2129 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 2130 IEEE80211_NOTE(vap, 2131 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2132 "WARNING, HT rate set too large; only " 2133 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 2134 vap->iv_stats.is_rx_rstoobig++; 2135 break; 2136 } 2137 if (i <= 31 && i > maxequalmcs) 2138 continue; 2139 if (i == 32 && 2140 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 2141 continue; 2142 if (i > 32 && i > maxunequalmcs) 2143 continue; 2144 rs->rs_rates[rs->rs_nrates++] = i; 2145 } 2146 } 2147 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 2148 } 2149 2150 /* 2151 * Mark rates in a node's HT rate set as basic according 2152 * to the information in the supplied HT info ie. 2153 */ 2154 void 2155 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 2156 { 2157 const struct ieee80211_ie_htinfo *htinfo; 2158 struct ieee80211_htrateset *rs; 2159 int i, j; 2160 2161 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2162 ie += 4; 2163 htinfo = (const struct ieee80211_ie_htinfo *) ie; 2164 rs = &ni->ni_htrates; 2165 if (rs->rs_nrates == 0) { 2166 IEEE80211_NOTE(ni->ni_vap, 2167 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2168 "%s", "WARNING, empty HT rate set"); 2169 return; 2170 } 2171 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2172 if (isclr(htinfo->hi_basicmcsset, i)) 2173 continue; 2174 for (j = 0; j < rs->rs_nrates; j++) 2175 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 2176 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 2177 } 2178 } 2179 2180 static void 2181 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 2182 { 2183 callout_init(&tap->txa_timer, 1); 2184 tap->txa_flags |= IEEE80211_AGGR_SETUP; 2185 tap->txa_lastsample = ticks; 2186 } 2187 2188 static void 2189 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 2190 { 2191 struct ieee80211_node *ni = tap->txa_ni; 2192 struct ieee80211com *ic = ni->ni_ic; 2193 2194 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2195 tap->txa_ni, 2196 "%s: called", 2197 __func__); 2198 2199 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 2200 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 2201 TID_TO_WME_AC(tap->txa_tid))); 2202 2203 /* 2204 * Stop BA stream if setup so driver has a chance 2205 * to reclaim any resources it might have allocated. 2206 */ 2207 ic->ic_addba_stop(ni, tap); 2208 /* 2209 * Stop any pending BAR transmit. 2210 */ 2211 bar_stop_timer(tap); 2212 2213 /* 2214 * Reset packet estimate. 2215 */ 2216 ieee80211_txampdu_init_pps(tap); 2217 2218 /* NB: clearing NAK means we may re-send ADDBA */ 2219 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 2220 } 2221 2222 /* 2223 * ADDBA response timeout. 2224 * 2225 * If software aggregation and per-TID queue management was done here, 2226 * that queue would be unpaused after the ADDBA timeout occurs. 2227 */ 2228 static void 2229 addba_timeout(void *arg) 2230 { 2231 struct ieee80211_tx_ampdu *tap = arg; 2232 struct ieee80211_node *ni = tap->txa_ni; 2233 struct ieee80211com *ic = ni->ni_ic; 2234 2235 /* XXX ? */ 2236 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2237 tap->txa_attempts++; 2238 ic->ic_addba_response_timeout(ni, tap); 2239 } 2240 2241 static void 2242 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2243 { 2244 /* XXX use CALLOUT_PENDING instead? */ 2245 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2246 addba_timeout, tap); 2247 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2248 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2249 } 2250 2251 static void 2252 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2253 { 2254 /* XXX use CALLOUT_PENDING instead? */ 2255 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2256 callout_stop(&tap->txa_timer); 2257 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2258 } 2259 } 2260 2261 static void 2262 null_addba_response_timeout(struct ieee80211_node *ni, 2263 struct ieee80211_tx_ampdu *tap) 2264 { 2265 } 2266 2267 /* 2268 * Default method for requesting A-MPDU tx aggregation. 2269 * We setup the specified state block and start a timer 2270 * to wait for an ADDBA response frame. 2271 */ 2272 static int 2273 ieee80211_addba_request(struct ieee80211_node *ni, 2274 struct ieee80211_tx_ampdu *tap, 2275 int dialogtoken, int baparamset, int batimeout) 2276 { 2277 int bufsiz; 2278 2279 /* XXX locking */ 2280 tap->txa_token = dialogtoken; 2281 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2282 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2283 tap->txa_wnd = (bufsiz == 0) ? 2284 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2285 addba_start_timeout(tap); 2286 return 1; 2287 } 2288 2289 /* 2290 * Called by drivers that wish to request an ADDBA session be 2291 * setup. This brings it up and starts the request timer. 2292 */ 2293 int 2294 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2295 { 2296 struct ieee80211_tx_ampdu *tap; 2297 2298 if (tid < 0 || tid > 15) 2299 return (0); 2300 tap = &ni->ni_tx_ampdu[tid]; 2301 2302 /* XXX locking */ 2303 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2304 /* do deferred setup of state */ 2305 ampdu_tx_setup(tap); 2306 } 2307 /* XXX hack for not doing proper locking */ 2308 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2309 addba_start_timeout(tap); 2310 return (1); 2311 } 2312 2313 /* 2314 * Called by drivers that have marked a session as active. 2315 */ 2316 int 2317 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2318 int status) 2319 { 2320 struct ieee80211_tx_ampdu *tap; 2321 2322 if (tid < 0 || tid > 15) 2323 return (0); 2324 tap = &ni->ni_tx_ampdu[tid]; 2325 2326 /* XXX locking */ 2327 addba_stop_timeout(tap); 2328 if (status == 1) { 2329 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2330 tap->txa_attempts = 0; 2331 } else { 2332 /* mark tid so we don't try again */ 2333 tap->txa_flags |= IEEE80211_AGGR_NAK; 2334 } 2335 return (1); 2336 } 2337 2338 /* 2339 * Default method for processing an A-MPDU tx aggregation 2340 * response. We shutdown any pending timer and update the 2341 * state block according to the reply. 2342 */ 2343 static int 2344 ieee80211_addba_response(struct ieee80211_node *ni, 2345 struct ieee80211_tx_ampdu *tap, 2346 int status, int baparamset, int batimeout) 2347 { 2348 struct ieee80211vap *vap = ni->ni_vap; 2349 int bufsiz; 2350 2351 /* XXX locking */ 2352 addba_stop_timeout(tap); 2353 if (status == IEEE80211_STATUS_SUCCESS) { 2354 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2355 /* XXX override our request? */ 2356 tap->txa_wnd = (bufsiz == 0) ? 2357 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2358 #ifdef __notyet__ 2359 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2360 #endif 2361 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2362 tap->txa_attempts = 0; 2363 /* TODO: this should be a vap flag */ 2364 if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) && 2365 (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2366 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) 2367 tap->txa_flags |= IEEE80211_AGGR_AMSDU; 2368 else 2369 tap->txa_flags &= ~IEEE80211_AGGR_AMSDU; 2370 } else { 2371 /* mark tid so we don't try again */ 2372 tap->txa_flags |= IEEE80211_AGGR_NAK; 2373 } 2374 return 1; 2375 } 2376 2377 /* 2378 * Default method for stopping A-MPDU tx aggregation. 2379 * Any timer is cleared and we drain any pending frames. 2380 */ 2381 static void 2382 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2383 { 2384 /* XXX locking */ 2385 addba_stop_timeout(tap); 2386 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2387 /* XXX clear aggregation queue */ 2388 tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU); 2389 } 2390 tap->txa_attempts = 0; 2391 } 2392 2393 /* 2394 * Process a received action frame using the default aggregation 2395 * policy. We intercept ADDBA-related frames and use them to 2396 * update our aggregation state. All other frames are passed up 2397 * for processing by ieee80211_recv_action. 2398 */ 2399 static int 2400 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2401 const struct ieee80211_frame *wh, 2402 const uint8_t *frm, const uint8_t *efrm) 2403 { 2404 struct ieee80211com *ic = ni->ni_ic; 2405 struct ieee80211vap *vap = ni->ni_vap; 2406 struct ieee80211_rx_ampdu *rap; 2407 uint8_t dialogtoken; 2408 uint16_t baparamset, batimeout, baseqctl; 2409 uint16_t args[5]; 2410 int tid; 2411 2412 dialogtoken = frm[2]; 2413 baparamset = le16dec(frm+3); 2414 batimeout = le16dec(frm+5); 2415 baseqctl = le16dec(frm+7); 2416 2417 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2418 2419 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2420 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2421 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d", 2422 dialogtoken, baparamset, 2423 tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ), 2424 batimeout, 2425 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START), 2426 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG), 2427 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)); 2428 2429 rap = &ni->ni_rx_ampdu[tid]; 2430 2431 /* Send ADDBA response */ 2432 args[0] = dialogtoken; 2433 /* 2434 * NB: We ack only if the sta associated with HT and 2435 * the ap is configured to do AMPDU rx (the latter 2436 * violates the 11n spec and is mostly for testing). 2437 */ 2438 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2439 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2440 /* XXX TODO: handle ampdu_rx_start failure */ 2441 ic->ic_ampdu_rx_start(ni, rap, 2442 baparamset, batimeout, baseqctl); 2443 2444 args[1] = IEEE80211_STATUS_SUCCESS; 2445 } else { 2446 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2447 ni, "reject ADDBA request: %s", 2448 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2449 "administratively disabled" : 2450 "not negotiated for station"); 2451 vap->iv_stats.is_addba_reject++; 2452 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2453 } 2454 /* XXX honor rap flags? */ 2455 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2456 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) 2457 | _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2458 ; 2459 2460 /* 2461 * TODO: we're out of iv_flags_ht fields; once 2462 * this is extended we should make this configurable. 2463 */ 2464 if ((baparamset & IEEE80211_BAPS_AMSDU) && 2465 (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) && 2466 (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU)) 2467 args[2] |= IEEE80211_BAPS_AMSDU; 2468 2469 args[3] = 0; 2470 args[4] = 0; 2471 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2472 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2473 return 0; 2474 } 2475 2476 static int 2477 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2478 const struct ieee80211_frame *wh, 2479 const uint8_t *frm, const uint8_t *efrm) 2480 { 2481 struct ieee80211com *ic = ni->ni_ic; 2482 struct ieee80211vap *vap = ni->ni_vap; 2483 struct ieee80211_tx_ampdu *tap; 2484 uint8_t dialogtoken, policy; 2485 uint16_t baparamset, batimeout, code; 2486 int tid; 2487 #ifdef IEEE80211_DEBUG 2488 int amsdu, bufsiz; 2489 #endif 2490 2491 dialogtoken = frm[2]; 2492 code = le16dec(frm+3); 2493 baparamset = le16dec(frm+5); 2494 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2495 #ifdef IEEE80211_DEBUG 2496 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2497 amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU); 2498 #endif 2499 policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY); 2500 batimeout = le16dec(frm+7); 2501 2502 tap = &ni->ni_tx_ampdu[tid]; 2503 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2504 IEEE80211_DISCARD_MAC(vap, 2505 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2506 ni->ni_macaddr, "ADDBA response", 2507 "no pending ADDBA, tid %d dialogtoken %u " 2508 "code %d", tid, dialogtoken, code); 2509 vap->iv_stats.is_addba_norequest++; 2510 return 0; 2511 } 2512 if (dialogtoken != tap->txa_token) { 2513 IEEE80211_DISCARD_MAC(vap, 2514 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2515 ni->ni_macaddr, "ADDBA response", 2516 "dialogtoken mismatch: waiting for %d, " 2517 "received %d, tid %d code %d", 2518 tap->txa_token, dialogtoken, tid, code); 2519 vap->iv_stats.is_addba_badtoken++; 2520 return 0; 2521 } 2522 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2523 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2524 IEEE80211_DISCARD_MAC(vap, 2525 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2526 ni->ni_macaddr, "ADDBA response", 2527 "policy mismatch: expecting %s, " 2528 "received %s, tid %d code %d", 2529 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2530 policy, tid, code); 2531 vap->iv_stats.is_addba_badpolicy++; 2532 return 0; 2533 } 2534 #if 0 2535 /* XXX we take MIN in ieee80211_addba_response */ 2536 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2537 IEEE80211_DISCARD_MAC(vap, 2538 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2539 ni->ni_macaddr, "ADDBA response", 2540 "BA window too large: max %d, " 2541 "received %d, tid %d code %d", 2542 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2543 vap->iv_stats.is_addba_badbawinsize++; 2544 return 0; 2545 } 2546 #endif 2547 2548 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2549 "recv ADDBA response: dialogtoken %u code %d " 2550 "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d", 2551 dialogtoken, code, baparamset, tid, 2552 bufsiz, 2553 amsdu, 2554 batimeout); 2555 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2556 return 0; 2557 } 2558 2559 static int 2560 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2561 const struct ieee80211_frame *wh, 2562 const uint8_t *frm, const uint8_t *efrm) 2563 { 2564 struct ieee80211com *ic = ni->ni_ic; 2565 struct ieee80211_rx_ampdu *rap; 2566 struct ieee80211_tx_ampdu *tap; 2567 uint16_t baparamset; 2568 #ifdef IEEE80211_DEBUG 2569 uint16_t code; 2570 #endif 2571 int tid; 2572 2573 baparamset = le16dec(frm+2); 2574 #ifdef IEEE80211_DEBUG 2575 code = le16dec(frm+4); 2576 #endif 2577 2578 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID); 2579 2580 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2581 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2582 "code %d", baparamset, tid, 2583 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code); 2584 2585 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2586 tap = &ni->ni_tx_ampdu[tid]; 2587 ic->ic_addba_stop(ni, tap); 2588 } else { 2589 rap = &ni->ni_rx_ampdu[tid]; 2590 ic->ic_ampdu_rx_stop(ni, rap); 2591 } 2592 return 0; 2593 } 2594 2595 static int 2596 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2597 const struct ieee80211_frame *wh, 2598 const uint8_t *frm, const uint8_t *efrm) 2599 { 2600 int chw; 2601 2602 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2603 2604 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2605 "%s: HT txchwidth, width %d%s", 2606 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2607 if (chw != ni->ni_chw) { 2608 /* XXX does this need to change the ht40 station count? */ 2609 ni->ni_chw = chw; 2610 /* XXX notify on change */ 2611 } 2612 return 0; 2613 } 2614 2615 static int 2616 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2617 const struct ieee80211_frame *wh, 2618 const uint8_t *frm, const uint8_t *efrm) 2619 { 2620 const struct ieee80211_action_ht_mimopowersave *mps = 2621 (const struct ieee80211_action_ht_mimopowersave *) frm; 2622 2623 /* XXX check iv_htcaps */ 2624 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2625 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2626 else 2627 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2628 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2629 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2630 else 2631 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2632 /* XXX notify on change */ 2633 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2634 "%s: HT MIMO PS (%s%s)", __func__, 2635 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2636 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2637 ); 2638 return 0; 2639 } 2640 2641 /* 2642 * Transmit processing. 2643 */ 2644 2645 /* 2646 * Check if A-MPDU should be requested/enabled for a stream. 2647 * We require a traffic rate above a per-AC threshold and we 2648 * also handle backoff from previous failed attempts. 2649 * 2650 * Drivers may override this method to bring in information 2651 * such as link state conditions in making the decision. 2652 */ 2653 static int 2654 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2655 struct ieee80211_tx_ampdu *tap) 2656 { 2657 struct ieee80211vap *vap = ni->ni_vap; 2658 2659 if (tap->txa_avgpps < 2660 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2661 return 0; 2662 /* XXX check rssi? */ 2663 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2664 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2665 /* 2666 * Don't retry too often; txa_nextrequest is set 2667 * to the minimum interval we'll retry after 2668 * ieee80211_addba_maxtries failed attempts are made. 2669 */ 2670 return 0; 2671 } 2672 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2673 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2674 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2675 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2676 return 1; 2677 } 2678 2679 /* 2680 * Request A-MPDU tx aggregation. Setup local state and 2681 * issue an ADDBA request. BA use will only happen after 2682 * the other end replies with ADDBA response. 2683 */ 2684 int 2685 ieee80211_ampdu_request(struct ieee80211_node *ni, 2686 struct ieee80211_tx_ampdu *tap) 2687 { 2688 struct ieee80211com *ic = ni->ni_ic; 2689 uint16_t args[5]; 2690 int tid, dialogtoken; 2691 static int tokens = 0; /* XXX */ 2692 2693 /* XXX locking */ 2694 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2695 /* do deferred setup of state */ 2696 ampdu_tx_setup(tap); 2697 } 2698 /* XXX hack for not doing proper locking */ 2699 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2700 2701 dialogtoken = (tokens+1) % 63; /* XXX */ 2702 tid = tap->txa_tid; 2703 2704 /* 2705 * XXX TODO: This is racy with any other parallel TX going on. :( 2706 */ 2707 tap->txa_start = ni->ni_txseqs[tid]; 2708 2709 args[0] = dialogtoken; 2710 args[1] = 0; /* NB: status code not used */ 2711 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2712 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) 2713 | _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX, 2714 IEEE80211_BAPS_BUFSIZ) 2715 ; 2716 2717 /* XXX TODO: this should be a flag, not iv_htcaps */ 2718 if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2719 (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU)) 2720 args[2] |= IEEE80211_BAPS_AMSDU; 2721 2722 args[3] = 0; /* batimeout */ 2723 /* NB: do first so there's no race against reply */ 2724 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2725 /* unable to setup state, don't make request */ 2726 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2727 ni, "%s: could not setup BA stream for TID %d AC %d", 2728 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2729 /* defer next try so we don't slam the driver with requests */ 2730 tap->txa_attempts = ieee80211_addba_maxtries; 2731 /* NB: check in case driver wants to override */ 2732 if (tap->txa_nextrequest <= ticks) 2733 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2734 return 0; 2735 } 2736 tokens = dialogtoken; /* allocate token */ 2737 /* NB: after calling ic_addba_request so driver can set txa_start */ 2738 args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START) 2739 | _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG) 2740 ; 2741 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2742 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2743 } 2744 2745 /* 2746 * Terminate an AMPDU tx stream. State is reclaimed 2747 * and the peer notified with a DelBA Action frame. 2748 */ 2749 void 2750 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2751 int reason) 2752 { 2753 struct ieee80211com *ic = ni->ni_ic; 2754 struct ieee80211vap *vap = ni->ni_vap; 2755 uint16_t args[4]; 2756 2757 /* XXX locking */ 2758 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2759 if (IEEE80211_AMPDU_RUNNING(tap)) { 2760 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2761 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2762 __func__, tap->txa_tid, reason, 2763 ieee80211_reason_to_string(reason)); 2764 vap->iv_stats.is_ampdu_stop++; 2765 2766 ic->ic_addba_stop(ni, tap); 2767 args[0] = tap->txa_tid; 2768 args[1] = IEEE80211_DELBAPS_INIT; 2769 args[2] = reason; /* XXX reason code */ 2770 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2771 IEEE80211_ACTION_BA_DELBA, args); 2772 } else { 2773 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2774 ni, "%s: BA stream for TID %d not running " 2775 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2776 ieee80211_reason_to_string(reason)); 2777 vap->iv_stats.is_ampdu_stop_failed++; 2778 } 2779 } 2780 2781 /* XXX */ 2782 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2783 2784 static void 2785 bar_timeout(void *arg) 2786 { 2787 struct ieee80211_tx_ampdu *tap = arg; 2788 struct ieee80211_node *ni = tap->txa_ni; 2789 2790 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2791 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2792 2793 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2794 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2795 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2796 2797 /* guard against race with bar_tx_complete */ 2798 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2799 return; 2800 /* XXX ? */ 2801 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2802 struct ieee80211com *ic = ni->ni_ic; 2803 2804 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2805 /* 2806 * If (at least) the last BAR TX timeout was due to 2807 * an ieee80211_send_bar() failures, then we need 2808 * to make sure we notify the driver that a BAR 2809 * TX did occur and fail. This gives the driver 2810 * a chance to undo any queue pause that may 2811 * have occurred. 2812 */ 2813 ic->ic_bar_response(ni, tap, 1); 2814 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2815 } else { 2816 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2817 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2818 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2819 ni, "%s: failed to TX, starting timer\n", 2820 __func__); 2821 /* 2822 * If ieee80211_send_bar() fails here, the 2823 * timer may have stopped and/or the pending 2824 * flag may be clear. Because of this, 2825 * fake the BARPEND and reset the timer. 2826 * A retransmission attempt will then occur 2827 * during the next timeout. 2828 */ 2829 /* XXX locking */ 2830 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2831 bar_start_timer(tap); 2832 } 2833 } 2834 } 2835 2836 static void 2837 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2838 { 2839 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2840 tap->txa_ni, 2841 "%s: called", 2842 __func__); 2843 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2844 } 2845 2846 static void 2847 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2848 { 2849 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2850 tap->txa_ni, 2851 "%s: called", 2852 __func__); 2853 callout_stop(&tap->txa_timer); 2854 } 2855 2856 static void 2857 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2858 { 2859 struct ieee80211_tx_ampdu *tap = arg; 2860 2861 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2862 ni, "%s: tid %u flags 0x%x pending %d status %d", 2863 __func__, tap->txa_tid, tap->txa_flags, 2864 callout_pending(&tap->txa_timer), status); 2865 2866 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2867 /* XXX locking */ 2868 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2869 callout_pending(&tap->txa_timer)) { 2870 struct ieee80211com *ic = ni->ni_ic; 2871 2872 if (status == 0) /* ACK'd */ 2873 bar_stop_timer(tap); 2874 ic->ic_bar_response(ni, tap, status); 2875 /* NB: just let timer expire so we pace requests */ 2876 } 2877 } 2878 2879 static void 2880 ieee80211_bar_response(struct ieee80211_node *ni, 2881 struct ieee80211_tx_ampdu *tap, int status) 2882 { 2883 2884 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2885 tap->txa_ni, 2886 "%s: called", 2887 __func__); 2888 if (status == 0) { /* got ACK */ 2889 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2890 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2891 tap->txa_start, 2892 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2893 tap->txa_qframes, tap->txa_seqpending, 2894 tap->txa_tid); 2895 2896 /* NB: timer already stopped in bar_tx_complete */ 2897 tap->txa_start = tap->txa_seqpending; 2898 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2899 } 2900 } 2901 2902 /* 2903 * Transmit a BAR frame to the specified node. The 2904 * BAR contents are drawn from the supplied aggregation 2905 * state associated with the node. 2906 * 2907 * NB: we only handle immediate ACK w/ compressed bitmap. 2908 */ 2909 int 2910 ieee80211_send_bar(struct ieee80211_node *ni, 2911 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2912 { 2913 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2914 struct ieee80211vap *vap = ni->ni_vap; 2915 struct ieee80211com *ic = ni->ni_ic; 2916 struct ieee80211_frame_bar *bar; 2917 struct mbuf *m; 2918 uint16_t barctl, barseqctl; 2919 uint8_t *frm; 2920 int tid, ret; 2921 2922 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2923 tap->txa_ni, 2924 "%s: called", 2925 __func__); 2926 2927 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2928 /* no ADDBA response, should not happen */ 2929 /* XXX stat+msg */ 2930 return EINVAL; 2931 } 2932 /* XXX locking */ 2933 bar_stop_timer(tap); 2934 2935 ieee80211_ref_node(ni); 2936 2937 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2938 if (m == NULL) 2939 senderr(ENOMEM, is_tx_nobuf); 2940 2941 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2942 m_freem(m); 2943 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2944 /* NOTREACHED */ 2945 } 2946 2947 bar = mtod(m, struct ieee80211_frame_bar *); 2948 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2949 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2950 bar->i_fc[1] = 0; 2951 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2952 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2953 2954 tid = tap->txa_tid; 2955 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2956 0 : IEEE80211_BAR_NOACK) 2957 | IEEE80211_BAR_COMP 2958 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID) 2959 ; 2960 barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START); 2961 /* NB: known to have proper alignment */ 2962 bar->i_ctl = htole16(barctl); 2963 bar->i_seq = htole16(barseqctl); 2964 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2965 2966 M_WME_SETAC(m, WME_AC_VO); 2967 2968 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2969 2970 /* XXX locking */ 2971 /* init/bump attempts counter */ 2972 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2973 tap->txa_attempts = 1; 2974 else 2975 tap->txa_attempts++; 2976 tap->txa_seqpending = seq; 2977 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2978 2979 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2980 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2981 tid, barctl, seq, tap->txa_attempts); 2982 2983 /* 2984 * ic_raw_xmit will free the node reference 2985 * regardless of queue/TX success or failure. 2986 */ 2987 IEEE80211_TX_LOCK(ic); 2988 ret = ieee80211_raw_output(vap, ni, m, NULL); 2989 IEEE80211_TX_UNLOCK(ic); 2990 if (ret != 0) { 2991 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2992 ni, "send BAR: failed: (ret = %d)\n", 2993 ret); 2994 /* xmit failed, clear state flag */ 2995 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2996 vap->iv_stats.is_ampdu_bar_tx_fail++; 2997 return ret; 2998 } 2999 /* XXX hack against tx complete happening before timer is started */ 3000 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 3001 bar_start_timer(tap); 3002 return 0; 3003 bad: 3004 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 3005 tap->txa_ni, 3006 "%s: bad! ret=%d", 3007 __func__, ret); 3008 vap->iv_stats.is_ampdu_bar_tx_fail++; 3009 ieee80211_free_node(ni); 3010 return ret; 3011 #undef senderr 3012 } 3013 3014 static int 3015 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 3016 { 3017 struct ieee80211_bpf_params params; 3018 3019 memset(¶ms, 0, sizeof(params)); 3020 params.ibp_pri = WME_AC_VO; 3021 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 3022 /* NB: we know all frames are unicast */ 3023 params.ibp_try0 = ni->ni_txparms->maxretry; 3024 params.ibp_power = ni->ni_txpower; 3025 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 3026 ¶ms); 3027 } 3028 3029 #define ADDSHORT(frm, v) do { \ 3030 frm[0] = (v) & 0xff; \ 3031 frm[1] = (v) >> 8; \ 3032 frm += 2; \ 3033 } while (0) 3034 3035 /* 3036 * Send an action management frame. The arguments are stuff 3037 * into a frame without inspection; the caller is assumed to 3038 * prepare them carefully (e.g. based on the aggregation state). 3039 */ 3040 static int 3041 ht_send_action_ba_addba(struct ieee80211_node *ni, 3042 int category, int action, void *arg0) 3043 { 3044 struct ieee80211vap *vap = ni->ni_vap; 3045 struct ieee80211com *ic = ni->ni_ic; 3046 uint16_t *args = arg0; 3047 struct mbuf *m; 3048 uint8_t *frm; 3049 3050 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3051 "send ADDBA %s: dialogtoken %d status %d " 3052 "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x", 3053 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 3054 "request" : "response", args[0], args[1], args[2], 3055 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID), 3056 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU), 3057 args[3], args[4]); 3058 3059 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3060 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3061 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3062 ieee80211_ref_node(ni); 3063 3064 m = ieee80211_getmgtframe(&frm, 3065 ic->ic_headroom + sizeof(struct ieee80211_frame), 3066 sizeof(uint16_t) /* action+category */ 3067 /* XXX may action payload */ 3068 + sizeof(struct ieee80211_action_ba_addbaresponse) 3069 ); 3070 if (m != NULL) { 3071 *frm++ = category; 3072 *frm++ = action; 3073 *frm++ = args[0]; /* dialog token */ 3074 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 3075 ADDSHORT(frm, args[1]); /* status code */ 3076 ADDSHORT(frm, args[2]); /* baparamset */ 3077 ADDSHORT(frm, args[3]); /* batimeout */ 3078 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 3079 ADDSHORT(frm, args[4]); /* baseqctl */ 3080 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3081 return ht_action_output(ni, m); 3082 } else { 3083 vap->iv_stats.is_tx_nobuf++; 3084 ieee80211_free_node(ni); 3085 return ENOMEM; 3086 } 3087 } 3088 3089 static int 3090 ht_send_action_ba_delba(struct ieee80211_node *ni, 3091 int category, int action, void *arg0) 3092 { 3093 struct ieee80211vap *vap = ni->ni_vap; 3094 struct ieee80211com *ic = ni->ni_ic; 3095 uint16_t *args = arg0; 3096 struct mbuf *m; 3097 uint16_t baparamset; 3098 uint8_t *frm; 3099 3100 baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID) 3101 | args[1] 3102 ; 3103 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3104 "send DELBA action: tid %d, initiator %d reason %d (%s)", 3105 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 3106 3107 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3108 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3109 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3110 ieee80211_ref_node(ni); 3111 3112 m = ieee80211_getmgtframe(&frm, 3113 ic->ic_headroom + sizeof(struct ieee80211_frame), 3114 sizeof(uint16_t) /* action+category */ 3115 /* XXX may action payload */ 3116 + sizeof(struct ieee80211_action_ba_addbaresponse) 3117 ); 3118 if (m != NULL) { 3119 *frm++ = category; 3120 *frm++ = action; 3121 ADDSHORT(frm, baparamset); 3122 ADDSHORT(frm, args[2]); /* reason code */ 3123 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3124 return ht_action_output(ni, m); 3125 } else { 3126 vap->iv_stats.is_tx_nobuf++; 3127 ieee80211_free_node(ni); 3128 return ENOMEM; 3129 } 3130 } 3131 3132 static int 3133 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 3134 int category, int action, void *arg0) 3135 { 3136 struct ieee80211vap *vap = ni->ni_vap; 3137 struct ieee80211com *ic = ni->ni_ic; 3138 struct mbuf *m; 3139 uint8_t *frm; 3140 3141 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3142 "send HT txchwidth: width %d", 3143 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 3144 3145 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3146 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3147 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3148 ieee80211_ref_node(ni); 3149 3150 m = ieee80211_getmgtframe(&frm, 3151 ic->ic_headroom + sizeof(struct ieee80211_frame), 3152 sizeof(uint16_t) /* action+category */ 3153 /* XXX may action payload */ 3154 + sizeof(struct ieee80211_action_ba_addbaresponse) 3155 ); 3156 if (m != NULL) { 3157 *frm++ = category; 3158 *frm++ = action; 3159 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 3160 IEEE80211_A_HT_TXCHWIDTH_2040 : 3161 IEEE80211_A_HT_TXCHWIDTH_20; 3162 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3163 return ht_action_output(ni, m); 3164 } else { 3165 vap->iv_stats.is_tx_nobuf++; 3166 ieee80211_free_node(ni); 3167 return ENOMEM; 3168 } 3169 } 3170 #undef ADDSHORT 3171 3172 /* 3173 * Construct the MCS bit mask for inclusion in an HT capabilities 3174 * information element. 3175 */ 3176 static void 3177 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 3178 { 3179 int i; 3180 uint8_t txparams; 3181 3182 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 3183 ("ic_rxstream %d out of range", ic->ic_rxstream)); 3184 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 3185 ("ic_txstream %d out of range", ic->ic_txstream)); 3186 3187 for (i = 0; i < ic->ic_rxstream * 8; i++) 3188 setbit(frm, i); 3189 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 3190 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 3191 setbit(frm, 32); 3192 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 3193 if (ic->ic_rxstream >= 2) { 3194 for (i = 33; i <= 38; i++) 3195 setbit(frm, i); 3196 } 3197 if (ic->ic_rxstream >= 3) { 3198 for (i = 39; i <= 52; i++) 3199 setbit(frm, i); 3200 } 3201 if (ic->ic_rxstream >= 4) { 3202 for (i = 53; i <= 76; i++) 3203 setbit(frm, i); 3204 } 3205 } 3206 3207 txparams = 0x1; /* TX MCS set defined */ 3208 if (ic->ic_rxstream != ic->ic_txstream) { 3209 txparams |= 0x2; /* TX RX MCS not equal */ 3210 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 3211 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 3212 txparams |= 0x16; /* TX unequal modulation sup */ 3213 } 3214 3215 frm[12] = txparams; 3216 } 3217 3218 /* 3219 * Add body of an HTCAP information element. 3220 */ 3221 static uint8_t * 3222 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 3223 { 3224 #define ADDSHORT(frm, v) do { \ 3225 frm[0] = (v) & 0xff; \ 3226 frm[1] = (v) >> 8; \ 3227 frm += 2; \ 3228 } while (0) 3229 struct ieee80211com *ic = ni->ni_ic; 3230 struct ieee80211vap *vap = ni->ni_vap; 3231 uint16_t caps, extcaps; 3232 int rxmax, density; 3233 3234 /* HT capabilities */ 3235 caps = vap->iv_htcaps & 0xffff; 3236 /* 3237 * Note channel width depends on whether we are operating as 3238 * a sta or not. When operating as a sta we are generating 3239 * a request based on our desired configuration. Otherwise 3240 * we are operational and the channel attributes identify 3241 * how we've been setup (which might be different if a fixed 3242 * channel is specified). 3243 */ 3244 if (vap->iv_opmode == IEEE80211_M_STA) { 3245 /* override 20/40 use based on config */ 3246 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 3247 caps |= IEEE80211_HTCAP_CHWIDTH40; 3248 else 3249 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3250 3251 /* Start by using the advertised settings */ 3252 rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam, 3253 IEEE80211_HTCAP_MAXRXAMPDU); 3254 density = _IEEE80211_MASKSHIFT(ni->ni_htparam, 3255 IEEE80211_HTCAP_MPDUDENSITY); 3256 3257 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 3258 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 3259 __func__, 3260 rxmax, 3261 density, 3262 vap->iv_ampdu_rxmax, 3263 vap->iv_ampdu_density); 3264 3265 /* Cap at VAP rxmax */ 3266 if (rxmax > vap->iv_ampdu_rxmax) 3267 rxmax = vap->iv_ampdu_rxmax; 3268 3269 /* 3270 * If the VAP ampdu density value greater, use that. 3271 * 3272 * (Larger density value == larger minimum gap between A-MPDU 3273 * subframes.) 3274 */ 3275 if (vap->iv_ampdu_density > density) 3276 density = vap->iv_ampdu_density; 3277 3278 /* 3279 * NB: Hardware might support HT40 on some but not all 3280 * channels. We can't determine this earlier because only 3281 * after association the channel is upgraded to HT based 3282 * on the negotiated capabilities. 3283 */ 3284 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3285 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3286 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3287 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3288 } else { 3289 /* override 20/40 use based on current channel */ 3290 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3291 caps |= IEEE80211_HTCAP_CHWIDTH40; 3292 else 3293 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3294 3295 /* XXX TODO should it start by using advertised settings? */ 3296 rxmax = vap->iv_ampdu_rxmax; 3297 density = vap->iv_ampdu_density; 3298 } 3299 3300 /* adjust short GI based on channel and config */ 3301 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3302 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3303 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3304 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3305 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3306 3307 /* adjust STBC based on receive capabilities */ 3308 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3309 caps &= ~IEEE80211_HTCAP_RXSTBC; 3310 3311 /* adjust LDPC based on receive capabilites */ 3312 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) 3313 caps &= ~IEEE80211_HTCAP_LDPC; 3314 3315 ADDSHORT(frm, caps); 3316 3317 /* HT parameters */ 3318 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3319 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) 3320 ; 3321 frm++; 3322 3323 /* pre-zero remainder of ie */ 3324 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3325 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3326 3327 /* supported MCS set */ 3328 /* 3329 * XXX: For sta mode the rate set should be restricted based 3330 * on the AP's capabilities, but ni_htrates isn't setup when 3331 * we're called to form an AssocReq frame so for now we're 3332 * restricted to the device capabilities. 3333 */ 3334 ieee80211_set_mcsset(ni->ni_ic, frm); 3335 3336 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3337 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3338 3339 /* HT extended capabilities */ 3340 extcaps = vap->iv_htextcaps & 0xffff; 3341 3342 ADDSHORT(frm, extcaps); 3343 3344 frm += sizeof(struct ieee80211_ie_htcap) - 3345 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3346 3347 return frm; 3348 #undef ADDSHORT 3349 } 3350 3351 /* 3352 * Add 802.11n HT capabilities information element 3353 */ 3354 uint8_t * 3355 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3356 { 3357 frm[0] = IEEE80211_ELEMID_HTCAP; 3358 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3359 return ieee80211_add_htcap_body(frm + 2, ni); 3360 } 3361 3362 /* 3363 * Non-associated probe request - add HT capabilities based on 3364 * the current channel configuration. 3365 */ 3366 static uint8_t * 3367 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3368 struct ieee80211_channel *c) 3369 { 3370 #define ADDSHORT(frm, v) do { \ 3371 frm[0] = (v) & 0xff; \ 3372 frm[1] = (v) >> 8; \ 3373 frm += 2; \ 3374 } while (0) 3375 struct ieee80211com *ic = vap->iv_ic; 3376 uint16_t caps, extcaps; 3377 int rxmax, density; 3378 3379 /* HT capabilities */ 3380 caps = vap->iv_htcaps & 0xffff; 3381 3382 /* 3383 * We don't use this in STA mode; only in IBSS mode. 3384 * So in IBSS mode we base our HTCAP flags on the 3385 * given channel. 3386 */ 3387 3388 /* override 20/40 use based on current channel */ 3389 if (IEEE80211_IS_CHAN_HT40(c)) 3390 caps |= IEEE80211_HTCAP_CHWIDTH40; 3391 else 3392 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3393 3394 /* Use the currently configured values */ 3395 rxmax = vap->iv_ampdu_rxmax; 3396 density = vap->iv_ampdu_density; 3397 3398 /* adjust short GI based on channel and config */ 3399 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3400 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3401 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3402 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3403 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3404 ADDSHORT(frm, caps); 3405 3406 /* HT parameters */ 3407 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3408 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) 3409 ; 3410 frm++; 3411 3412 /* pre-zero remainder of ie */ 3413 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3414 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3415 3416 /* supported MCS set */ 3417 /* 3418 * XXX: For sta mode the rate set should be restricted based 3419 * on the AP's capabilities, but ni_htrates isn't setup when 3420 * we're called to form an AssocReq frame so for now we're 3421 * restricted to the device capabilities. 3422 */ 3423 ieee80211_set_mcsset(ic, frm); 3424 3425 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3426 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3427 3428 /* HT extended capabilities */ 3429 extcaps = vap->iv_htextcaps & 0xffff; 3430 3431 ADDSHORT(frm, extcaps); 3432 3433 frm += sizeof(struct ieee80211_ie_htcap) - 3434 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3435 3436 return frm; 3437 #undef ADDSHORT 3438 } 3439 3440 /* 3441 * Add 802.11n HT capabilities information element 3442 */ 3443 uint8_t * 3444 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3445 struct ieee80211_channel *c) 3446 { 3447 frm[0] = IEEE80211_ELEMID_HTCAP; 3448 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3449 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3450 } 3451 3452 /* 3453 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3454 * used for compatibility w/ pre-draft implementations. 3455 */ 3456 uint8_t * 3457 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3458 { 3459 frm[0] = IEEE80211_ELEMID_VENDOR; 3460 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3461 frm[2] = (BCM_OUI >> 0) & 0xff; 3462 frm[3] = (BCM_OUI >> 8) & 0xff; 3463 frm[4] = (BCM_OUI >> 16) & 0xff; 3464 frm[5] = BCM_OUI_HTCAP; 3465 return ieee80211_add_htcap_body(frm + 6, ni); 3466 } 3467 3468 /* 3469 * Construct the MCS bit mask of basic rates 3470 * for inclusion in an HT information element. 3471 */ 3472 static void 3473 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3474 { 3475 int i; 3476 3477 for (i = 0; i < rs->rs_nrates; i++) { 3478 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3479 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3480 r < IEEE80211_HTRATE_MAXSIZE) { 3481 /* NB: this assumes a particular implementation */ 3482 setbit(frm, r); 3483 } 3484 } 3485 } 3486 3487 /* 3488 * Update the HTINFO ie for a beacon frame. 3489 */ 3490 void 3491 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3492 struct ieee80211_beacon_offsets *bo) 3493 { 3494 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3495 struct ieee80211_node *ni; 3496 const struct ieee80211_channel *bsschan; 3497 struct ieee80211com *ic = vap->iv_ic; 3498 struct ieee80211_ie_htinfo *ht = 3499 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3500 3501 ni = ieee80211_ref_node(vap->iv_bss); 3502 bsschan = ni->ni_chan; 3503 3504 /* XXX only update on channel change */ 3505 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3506 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3507 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3508 else 3509 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3510 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3511 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3512 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3513 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3514 else 3515 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3516 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3517 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3518 3519 /* protection mode */ 3520 /* 3521 * XXX TODO: this uses the global flag, not the per-VAP flag. 3522 * Eventually (once the protection modes are done per-channel 3523 * rather than per-VAP) we can flip this over to be per-VAP but 3524 * using the channel protection mode. 3525 */ 3526 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3527 3528 ieee80211_free_node(ni); 3529 3530 /* XXX propagate to vendor ie's */ 3531 #undef PROTMODE 3532 } 3533 3534 /* 3535 * Add body of an HTINFO information element. 3536 * 3537 * NB: We don't use struct ieee80211_ie_htinfo because we can 3538 * be called to fillin both a standard ie and a compat ie that 3539 * has a vendor OUI at the front. 3540 */ 3541 static uint8_t * 3542 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3543 { 3544 struct ieee80211vap *vap = ni->ni_vap; 3545 struct ieee80211com *ic = ni->ni_ic; 3546 3547 /* pre-zero remainder of ie */ 3548 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3549 3550 /* primary/control channel center */ 3551 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3552 3553 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3554 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3555 else 3556 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3557 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3558 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3559 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3560 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3561 else 3562 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3563 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3564 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3565 3566 /* 3567 * Add current protection mode. Unlike for beacons, 3568 * this will respect the per-VAP flags. 3569 */ 3570 frm[1] = vap->iv_curhtprotmode; 3571 3572 frm += 5; 3573 3574 /* basic MCS set */ 3575 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3576 frm += sizeof(struct ieee80211_ie_htinfo) - 3577 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3578 return frm; 3579 } 3580 3581 /* 3582 * Add 802.11n HT information element. 3583 */ 3584 uint8_t * 3585 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3586 { 3587 frm[0] = IEEE80211_ELEMID_HTINFO; 3588 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3589 return ieee80211_add_htinfo_body(frm + 2, ni); 3590 } 3591 3592 /* 3593 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3594 * used for compatibility w/ pre-draft implementations. 3595 */ 3596 uint8_t * 3597 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3598 { 3599 frm[0] = IEEE80211_ELEMID_VENDOR; 3600 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3601 frm[2] = (BCM_OUI >> 0) & 0xff; 3602 frm[3] = (BCM_OUI >> 8) & 0xff; 3603 frm[4] = (BCM_OUI >> 16) & 0xff; 3604 frm[5] = BCM_OUI_HTINFO; 3605 return ieee80211_add_htinfo_body(frm + 6, ni); 3606 } 3607