1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 /* 31 * IEEE 802.11 generic crypto support. 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 40 #include <sys/socket.h> 41 42 #include <net/if.h> 43 #include <net/if_media.h> 44 #include <net/ethernet.h> /* XXX ETHER_HDR_LEN */ 45 46 #include <net80211/ieee80211_var.h> 47 48 MALLOC_DEFINE(M_80211_CRYPTO, "80211crypto", "802.11 crypto state"); 49 50 static int _ieee80211_crypto_delkey(struct ieee80211vap *, 51 struct ieee80211_key *); 52 53 /* 54 * Table of registered cipher modules. 55 */ 56 static const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX]; 57 58 /* 59 * Default "null" key management routines. 60 */ 61 static int 62 null_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 63 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 64 { 65 if (!(&vap->iv_nw_keys[0] <= k && 66 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 67 /* 68 * Not in the global key table, the driver should handle this 69 * by allocating a slot in the h/w key table/cache. In 70 * lieu of that return key slot 0 for any unicast key 71 * request. We disallow the request if this is a group key. 72 * This default policy does the right thing for legacy hardware 73 * with a 4 key table. It also handles devices that pass 74 * packets through untouched when marked with the WEP bit 75 * and key index 0. 76 */ 77 if (k->wk_flags & IEEE80211_KEY_GROUP) 78 return 0; 79 *keyix = 0; /* NB: use key index 0 for ucast key */ 80 } else { 81 *keyix = ieee80211_crypto_get_key_wepidx(vap, k); 82 } 83 *rxkeyix = IEEE80211_KEYIX_NONE; /* XXX maybe *keyix? */ 84 return 1; 85 } 86 static int 87 null_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 88 { 89 return 1; 90 } 91 static int 92 null_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 93 { 94 return 1; 95 } 96 static void null_key_update(struct ieee80211vap *vap) {} 97 98 /* 99 * Write-arounds for common operations. 100 */ 101 static __inline void 102 cipher_detach(struct ieee80211_key *key) 103 { 104 key->wk_cipher->ic_detach(key); 105 } 106 107 static __inline void * 108 cipher_attach(struct ieee80211vap *vap, struct ieee80211_key *key) 109 { 110 return key->wk_cipher->ic_attach(vap, key); 111 } 112 113 /* 114 * Wrappers for driver key management methods. 115 */ 116 static __inline int 117 dev_key_alloc(struct ieee80211vap *vap, 118 struct ieee80211_key *key, 119 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 120 { 121 return vap->iv_key_alloc(vap, key, keyix, rxkeyix); 122 } 123 124 static __inline int 125 dev_key_delete(struct ieee80211vap *vap, 126 const struct ieee80211_key *key) 127 { 128 return vap->iv_key_delete(vap, key); 129 } 130 131 static __inline int 132 dev_key_set(struct ieee80211vap *vap, const struct ieee80211_key *key) 133 { 134 return vap->iv_key_set(vap, key); 135 } 136 137 /* 138 * Setup crypto support for a device/shared instance. 139 */ 140 void 141 ieee80211_crypto_attach(struct ieee80211com *ic) 142 { 143 /* NB: we assume everything is pre-zero'd */ 144 ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none; 145 } 146 147 /* 148 * Teardown crypto support. 149 */ 150 void 151 ieee80211_crypto_detach(struct ieee80211com *ic) 152 { 153 } 154 155 /* 156 * Setup crypto support for a vap. 157 */ 158 void 159 ieee80211_crypto_vattach(struct ieee80211vap *vap) 160 { 161 int i; 162 163 /* NB: we assume everything is pre-zero'd */ 164 vap->iv_max_keyix = IEEE80211_WEP_NKID; 165 vap->iv_def_txkey = IEEE80211_KEYIX_NONE; 166 for (i = 0; i < IEEE80211_WEP_NKID; i++) 167 ieee80211_crypto_resetkey(vap, &vap->iv_nw_keys[i], 168 IEEE80211_KEYIX_NONE); 169 /* 170 * Initialize the driver key support routines to noop entries. 171 * This is useful especially for the cipher test modules. 172 */ 173 vap->iv_key_alloc = null_key_alloc; 174 vap->iv_key_set = null_key_set; 175 vap->iv_key_delete = null_key_delete; 176 vap->iv_key_update_begin = null_key_update; 177 vap->iv_key_update_end = null_key_update; 178 } 179 180 /* 181 * Teardown crypto support for a vap. 182 */ 183 void 184 ieee80211_crypto_vdetach(struct ieee80211vap *vap) 185 { 186 ieee80211_crypto_delglobalkeys(vap); 187 } 188 189 /* 190 * Register a crypto cipher module. 191 */ 192 void 193 ieee80211_crypto_register(const struct ieee80211_cipher *cip) 194 { 195 if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) { 196 printf("%s: cipher %s has an invalid cipher index %u\n", 197 __func__, cip->ic_name, cip->ic_cipher); 198 return; 199 } 200 if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) { 201 printf("%s: cipher %s registered with a different template\n", 202 __func__, cip->ic_name); 203 return; 204 } 205 ciphers[cip->ic_cipher] = cip; 206 } 207 208 /* 209 * Unregister a crypto cipher module. 210 */ 211 void 212 ieee80211_crypto_unregister(const struct ieee80211_cipher *cip) 213 { 214 if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) { 215 printf("%s: cipher %s has an invalid cipher index %u\n", 216 __func__, cip->ic_name, cip->ic_cipher); 217 return; 218 } 219 if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) { 220 printf("%s: cipher %s registered with a different template\n", 221 __func__, cip->ic_name); 222 return; 223 } 224 /* NB: don't complain about not being registered */ 225 /* XXX disallow if references */ 226 ciphers[cip->ic_cipher] = NULL; 227 } 228 229 int 230 ieee80211_crypto_available(u_int cipher) 231 { 232 return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL; 233 } 234 235 /* XXX well-known names! */ 236 static const char *cipher_modnames[IEEE80211_CIPHER_MAX] = { 237 [IEEE80211_CIPHER_WEP] = "wlan_wep", 238 [IEEE80211_CIPHER_TKIP] = "wlan_tkip", 239 [IEEE80211_CIPHER_AES_OCB] = "wlan_aes_ocb", 240 [IEEE80211_CIPHER_AES_CCM] = "wlan_ccmp", 241 [IEEE80211_CIPHER_TKIPMIC] = "#4", /* NB: reserved */ 242 [IEEE80211_CIPHER_CKIP] = "wlan_ckip", 243 [IEEE80211_CIPHER_NONE] = "wlan_none", 244 }; 245 246 /* NB: there must be no overlap between user-supplied and device-owned flags */ 247 CTASSERT((IEEE80211_KEY_COMMON & IEEE80211_KEY_DEVICE) == 0); 248 249 /* 250 * Establish a relationship between the specified key and cipher 251 * and, if necessary, allocate a hardware index from the driver. 252 * Note that when a fixed key index is required it must be specified. 253 * 254 * This must be the first call applied to a key; all the other key 255 * routines assume wk_cipher is setup. 256 * 257 * Locking must be handled by the caller using: 258 * ieee80211_key_update_begin(vap); 259 * ieee80211_key_update_end(vap); 260 */ 261 int 262 ieee80211_crypto_newkey(struct ieee80211vap *vap, 263 int cipher, int flags, struct ieee80211_key *key) 264 { 265 struct ieee80211com *ic = vap->iv_ic; 266 const struct ieee80211_cipher *cip; 267 ieee80211_keyix keyix, rxkeyix; 268 void *keyctx; 269 int oflags; 270 271 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 272 "%s: cipher %u flags 0x%x keyix %u\n", 273 __func__, cipher, flags, key->wk_keyix); 274 275 /* 276 * Validate cipher and set reference to cipher routines. 277 */ 278 if (cipher >= IEEE80211_CIPHER_MAX) { 279 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 280 "%s: invalid cipher %u\n", __func__, cipher); 281 vap->iv_stats.is_crypto_badcipher++; 282 return 0; 283 } 284 cip = ciphers[cipher]; 285 if (cip == NULL) { 286 /* 287 * Auto-load cipher module if we have a well-known name 288 * for it. It might be better to use string names rather 289 * than numbers and craft a module name based on the cipher 290 * name; e.g. wlan_cipher_<cipher-name>. 291 */ 292 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 293 "%s: unregistered cipher %u, load module %s\n", 294 __func__, cipher, cipher_modnames[cipher]); 295 ieee80211_load_module(cipher_modnames[cipher]); 296 /* 297 * If cipher module loaded it should immediately 298 * call ieee80211_crypto_register which will fill 299 * in the entry in the ciphers array. 300 */ 301 cip = ciphers[cipher]; 302 if (cip == NULL) { 303 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 304 "%s: unable to load cipher %u, module %s\n", 305 __func__, cipher, cipher_modnames[cipher]); 306 vap->iv_stats.is_crypto_nocipher++; 307 return 0; 308 } 309 } 310 311 oflags = key->wk_flags; 312 flags &= IEEE80211_KEY_COMMON; 313 /* NB: preserve device attributes */ 314 flags |= (oflags & IEEE80211_KEY_DEVICE); 315 /* 316 * If the hardware does not support the cipher then 317 * fallback to a host-based implementation. 318 */ 319 if ((ic->ic_cryptocaps & (1<<cipher)) == 0) { 320 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 321 "%s: no h/w support for cipher %s, falling back to s/w\n", 322 __func__, cip->ic_name); 323 flags |= IEEE80211_KEY_SWCRYPT; 324 } 325 /* 326 * Hardware TKIP with software MIC is an important 327 * combination; we handle it by flagging each key, 328 * the cipher modules honor it. 329 */ 330 if (cipher == IEEE80211_CIPHER_TKIP && 331 (ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIPMIC) == 0) { 332 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 333 "%s: no h/w support for TKIP MIC, falling back to s/w\n", 334 __func__); 335 flags |= IEEE80211_KEY_SWMIC; 336 } 337 338 /* 339 * Bind cipher to key instance. Note we do this 340 * after checking the device capabilities so the 341 * cipher module can optimize space usage based on 342 * whether or not it needs to do the cipher work. 343 */ 344 if (key->wk_cipher != cip || key->wk_flags != flags) { 345 /* 346 * Fillin the flags so cipher modules can see s/w 347 * crypto requirements and potentially allocate 348 * different state and/or attach different method 349 * pointers. 350 */ 351 key->wk_flags = flags; 352 keyctx = cip->ic_attach(vap, key); 353 if (keyctx == NULL) { 354 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 355 "%s: unable to attach cipher %s\n", 356 __func__, cip->ic_name); 357 key->wk_flags = oflags; /* restore old flags */ 358 vap->iv_stats.is_crypto_attachfail++; 359 return 0; 360 } 361 cipher_detach(key); 362 key->wk_cipher = cip; /* XXX refcnt? */ 363 key->wk_private = keyctx; 364 } 365 366 /* 367 * Ask the driver for a key index if we don't have one. 368 * Note that entries in the global key table always have 369 * an index; this means it's safe to call this routine 370 * for these entries just to setup the reference to the 371 * cipher template. Note also that when using software 372 * crypto we also call the driver to give us a key index. 373 */ 374 if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) { 375 if (!dev_key_alloc(vap, key, &keyix, &rxkeyix)) { 376 /* 377 * Unable to setup driver state. 378 */ 379 vap->iv_stats.is_crypto_keyfail++; 380 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 381 "%s: unable to setup cipher %s\n", 382 __func__, cip->ic_name); 383 return 0; 384 } 385 if (key->wk_flags != flags) { 386 /* 387 * Driver overrode flags we setup; typically because 388 * resources were unavailable to handle _this_ key. 389 * Re-attach the cipher context to allow cipher 390 * modules to handle differing requirements. 391 */ 392 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 393 "%s: driver override for cipher %s, flags " 394 "0x%x -> 0x%x\n", __func__, cip->ic_name, 395 oflags, key->wk_flags); 396 keyctx = cip->ic_attach(vap, key); 397 if (keyctx == NULL) { 398 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 399 "%s: unable to attach cipher %s with " 400 "flags 0x%x\n", __func__, cip->ic_name, 401 key->wk_flags); 402 key->wk_flags = oflags; /* restore old flags */ 403 vap->iv_stats.is_crypto_attachfail++; 404 return 0; 405 } 406 cipher_detach(key); 407 key->wk_cipher = cip; /* XXX refcnt? */ 408 key->wk_private = keyctx; 409 } 410 key->wk_keyix = keyix; 411 key->wk_rxkeyix = rxkeyix; 412 key->wk_flags |= IEEE80211_KEY_DEVKEY; 413 } 414 return 1; 415 } 416 417 /* 418 * Remove the key (no locking, for internal use). 419 */ 420 static int 421 _ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key) 422 { 423 KASSERT(key->wk_cipher != NULL, ("No cipher!")); 424 425 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 426 "%s: %s keyix %u flags 0x%x rsc %ju tsc %ju len %u\n", 427 __func__, key->wk_cipher->ic_name, 428 key->wk_keyix, key->wk_flags, 429 key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc, 430 key->wk_keylen); 431 432 if (key->wk_flags & IEEE80211_KEY_DEVKEY) { 433 /* 434 * Remove hardware entry. 435 */ 436 /* XXX key cache */ 437 if (!dev_key_delete(vap, key)) { 438 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 439 "%s: driver did not delete key index %u\n", 440 __func__, key->wk_keyix); 441 vap->iv_stats.is_crypto_delkey++; 442 /* XXX recovery? */ 443 } 444 } 445 cipher_detach(key); 446 memset(key, 0, sizeof(*key)); 447 ieee80211_crypto_resetkey(vap, key, IEEE80211_KEYIX_NONE); 448 return 1; 449 } 450 451 /* 452 * Remove the specified key. 453 */ 454 int 455 ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key) 456 { 457 int status; 458 459 ieee80211_key_update_begin(vap); 460 status = _ieee80211_crypto_delkey(vap, key); 461 ieee80211_key_update_end(vap); 462 return status; 463 } 464 465 /* 466 * Clear the global key table. 467 */ 468 void 469 ieee80211_crypto_delglobalkeys(struct ieee80211vap *vap) 470 { 471 int i; 472 473 ieee80211_key_update_begin(vap); 474 for (i = 0; i < IEEE80211_WEP_NKID; i++) 475 (void) _ieee80211_crypto_delkey(vap, &vap->iv_nw_keys[i]); 476 ieee80211_key_update_end(vap); 477 } 478 479 /* 480 * Set the contents of the specified key. 481 * 482 * Locking must be handled by the caller using: 483 * ieee80211_key_update_begin(vap); 484 * ieee80211_key_update_end(vap); 485 */ 486 int 487 ieee80211_crypto_setkey(struct ieee80211vap *vap, struct ieee80211_key *key) 488 { 489 const struct ieee80211_cipher *cip = key->wk_cipher; 490 491 KASSERT(cip != NULL, ("No cipher!")); 492 493 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 494 "%s: %s keyix %u flags 0x%x mac %s rsc %ju tsc %ju len %u\n", 495 __func__, cip->ic_name, key->wk_keyix, 496 key->wk_flags, ether_sprintf(key->wk_macaddr), 497 key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc, 498 key->wk_keylen); 499 500 if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) { 501 /* XXX nothing allocated, should not happen */ 502 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 503 "%s: no device key setup done; should not happen!\n", 504 __func__); 505 vap->iv_stats.is_crypto_setkey_nokey++; 506 return 0; 507 } 508 /* 509 * Give cipher a chance to validate key contents. 510 * XXX should happen before modifying state. 511 */ 512 if (!cip->ic_setkey(key)) { 513 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 514 "%s: cipher %s rejected key index %u len %u flags 0x%x\n", 515 __func__, cip->ic_name, key->wk_keyix, 516 key->wk_keylen, key->wk_flags); 517 vap->iv_stats.is_crypto_setkey_cipher++; 518 return 0; 519 } 520 return dev_key_set(vap, key); 521 } 522 523 /* 524 * Return index if the key is a WEP key (0..3); -1 otherwise. 525 * 526 * This is different to "get_keyid" which defaults to returning 527 * 0 for unicast keys; it assumes that it won't be used for WEP. 528 */ 529 int 530 ieee80211_crypto_get_key_wepidx(const struct ieee80211vap *vap, 531 const struct ieee80211_key *k) 532 { 533 534 if (k >= &vap->iv_nw_keys[0] && 535 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) 536 return (k - vap->iv_nw_keys); 537 return (-1); 538 } 539 540 /* 541 * Note: only supports a single unicast key (0). 542 */ 543 uint8_t 544 ieee80211_crypto_get_keyid(struct ieee80211vap *vap, struct ieee80211_key *k) 545 { 546 if (k >= &vap->iv_nw_keys[0] && 547 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) 548 return (k - vap->iv_nw_keys); 549 else 550 return (0); 551 } 552 553 struct ieee80211_key * 554 ieee80211_crypto_get_txkey(struct ieee80211_node *ni, struct mbuf *m) 555 { 556 struct ieee80211vap *vap = ni->ni_vap; 557 struct ieee80211_frame *wh; 558 559 /* 560 * Multicast traffic always uses the multicast key. 561 * 562 * Historically we would fall back to the default 563 * transmit key if there was no unicast key. This 564 * behaviour was documented up to IEEE Std 802.11-2016, 565 * 12.9.2.2 Per-MSDU/Per-A-MSDU Tx pseudocode, in the 566 * 'else' case but is no longer in later versions of 567 * the standard. Additionally falling back to the 568 * group key for unicast was a security risk. 569 */ 570 wh = mtod(m, struct ieee80211_frame *); 571 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 572 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE) { 573 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 574 wh->i_addr1, 575 "no default transmit key (%s) deftxkey %u", 576 __func__, vap->iv_def_txkey); 577 vap->iv_stats.is_tx_nodefkey++; 578 return NULL; 579 } 580 return &vap->iv_nw_keys[vap->iv_def_txkey]; 581 } 582 583 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) 584 return NULL; 585 return &ni->ni_ucastkey; 586 } 587 588 /* 589 * Add privacy headers appropriate for the specified key. 590 */ 591 struct ieee80211_key * 592 ieee80211_crypto_encap(struct ieee80211_node *ni, struct mbuf *m) 593 { 594 struct ieee80211_key *k; 595 const struct ieee80211_cipher *cip; 596 597 if ((k = ieee80211_crypto_get_txkey(ni, m)) != NULL) { 598 cip = k->wk_cipher; 599 return (cip->ic_encap(k, m) ? k : NULL); 600 } 601 602 return NULL; 603 } 604 605 /* 606 * Validate and strip privacy headers (and trailer) for a 607 * received frame that has the WEP/Privacy bit set. 608 */ 609 int 610 ieee80211_crypto_decap(struct ieee80211_node *ni, struct mbuf *m, int hdrlen, 611 struct ieee80211_key **key) 612 { 613 #define IEEE80211_WEP_HDRLEN (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN) 614 #define IEEE80211_WEP_MINLEN \ 615 (sizeof(struct ieee80211_frame) + \ 616 IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN) 617 struct ieee80211vap *vap = ni->ni_vap; 618 struct ieee80211_key *k; 619 struct ieee80211_frame *wh; 620 const struct ieee80211_rx_stats *rxs; 621 const struct ieee80211_cipher *cip; 622 uint8_t keyid; 623 624 /* 625 * Check for hardware decryption and IV stripping. 626 * If the IV is stripped then we definitely can't find a key. 627 * Set the key to NULL but return true; upper layers 628 * will need to handle a NULL key for a successful 629 * decrypt. 630 */ 631 rxs = ieee80211_get_rx_params_ptr(m); 632 if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) { 633 if (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP) { 634 /* 635 * Hardware decrypted, IV stripped. 636 * We can't find a key with a stripped IV. 637 * Return successful. 638 */ 639 *key = NULL; 640 return (1); 641 } 642 } 643 644 /* NB: this minimum size data frame could be bigger */ 645 if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) { 646 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 647 "%s: WEP data frame too short, len %u\n", 648 __func__, m->m_pkthdr.len); 649 vap->iv_stats.is_rx_tooshort++; /* XXX need unique stat? */ 650 *key = NULL; 651 return (0); 652 } 653 654 /* 655 * Locate the key. If unicast and there is no unicast 656 * key then we fall back to the key id in the header. 657 * This assumes unicast keys are only configured when 658 * the key id in the header is meaningless (typically 0). 659 */ 660 wh = mtod(m, struct ieee80211_frame *); 661 m_copydata(m, hdrlen + IEEE80211_WEP_IVLEN, sizeof(keyid), &keyid); 662 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 663 IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) 664 k = &vap->iv_nw_keys[keyid >> 6]; 665 else 666 k = &ni->ni_ucastkey; 667 668 /* 669 * Insure crypto header is contiguous and long enough for all 670 * decap work. 671 */ 672 cip = k->wk_cipher; 673 if (m->m_len < hdrlen + cip->ic_header) { 674 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 675 "frame is too short (%d < %u) for crypto decap", 676 cip->ic_name, m->m_len, hdrlen + cip->ic_header); 677 vap->iv_stats.is_rx_tooshort++; 678 *key = NULL; 679 return (0); 680 } 681 682 /* 683 * Attempt decryption. 684 * 685 * If we fail then don't return the key - return NULL 686 * and an error. 687 */ 688 if (cip->ic_decap(k, m, hdrlen)) { 689 /* success */ 690 *key = k; 691 return (1); 692 } 693 694 /* Failure */ 695 *key = NULL; 696 return (0); 697 #undef IEEE80211_WEP_MINLEN 698 #undef IEEE80211_WEP_HDRLEN 699 } 700 701 /* 702 * Check and remove any MIC. 703 */ 704 int 705 ieee80211_crypto_demic(struct ieee80211vap *vap, struct ieee80211_key *k, 706 struct mbuf *m, int force) 707 { 708 const struct ieee80211_cipher *cip; 709 const struct ieee80211_rx_stats *rxs; 710 struct ieee80211_frame *wh; 711 712 rxs = ieee80211_get_rx_params_ptr(m); 713 wh = mtod(m, struct ieee80211_frame *); 714 715 /* 716 * Handle demic / mic errors from hardware-decrypted offload devices. 717 */ 718 if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) { 719 if (rxs->c_pktflags & IEEE80211_RX_F_FAIL_MIC) { 720 /* 721 * Hardware has said MIC failed. We don't care about 722 * whether it was stripped or not. 723 * 724 * Eventually - teach the demic methods in crypto 725 * modules to handle a NULL key and not to dereference 726 * it. 727 */ 728 ieee80211_notify_michael_failure(vap, wh, -1); 729 return (0); 730 } 731 732 if (rxs->c_pktflags & IEEE80211_RX_F_MMIC_STRIP) { 733 /* 734 * Hardware has decrypted and not indicated a 735 * MIC failure and has stripped the MIC. 736 * We may not have a key, so for now just 737 * return OK. 738 */ 739 return (1); 740 } 741 } 742 743 /* 744 * If we don't have a key at this point then we don't 745 * have to demic anything. 746 */ 747 if (k == NULL) 748 return (1); 749 750 cip = k->wk_cipher; 751 return (cip->ic_miclen > 0 ? cip->ic_demic(k, m, force) : 1); 752 } 753 754 static void 755 load_ucastkey(void *arg, struct ieee80211_node *ni) 756 { 757 struct ieee80211vap *vap = ni->ni_vap; 758 struct ieee80211_key *k; 759 760 if (vap->iv_state != IEEE80211_S_RUN) 761 return; 762 k = &ni->ni_ucastkey; 763 if (k->wk_flags & IEEE80211_KEY_DEVKEY) 764 dev_key_set(vap, k); 765 } 766 767 /* 768 * Re-load all keys known to the 802.11 layer that may 769 * have hardware state backing them. This is used by 770 * drivers on resume to push keys down into the device. 771 */ 772 void 773 ieee80211_crypto_reload_keys(struct ieee80211com *ic) 774 { 775 struct ieee80211vap *vap; 776 int i; 777 778 /* 779 * Keys in the global key table of each vap. 780 */ 781 /* NB: used only during resume so don't lock for now */ 782 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 783 if (vap->iv_state != IEEE80211_S_RUN) 784 continue; 785 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 786 const struct ieee80211_key *k = &vap->iv_nw_keys[i]; 787 if (k->wk_flags & IEEE80211_KEY_DEVKEY) 788 dev_key_set(vap, k); 789 } 790 } 791 /* 792 * Unicast keys. 793 */ 794 ieee80211_iterate_nodes(&ic->ic_sta, load_ucastkey, NULL); 795 } 796 797 /* 798 * Set the default key index for WEP, or KEYIX_NONE for no default TX key. 799 * 800 * This should be done as part of a key update block (iv_key_update_begin / 801 * iv_key_update_end.) 802 */ 803 void 804 ieee80211_crypto_set_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 805 { 806 807 /* XXX TODO: assert we're in a key update block */ 808 809 vap->iv_update_deftxkey(vap, kid); 810 } 811