1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * IEEE 802.11 generic crypto support. 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 42 #include <sys/socket.h> 43 44 #include <net/if.h> 45 #include <net/if_media.h> 46 #include <net/ethernet.h> /* XXX ETHER_HDR_LEN */ 47 48 #include <net80211/ieee80211_var.h> 49 50 MALLOC_DEFINE(M_80211_CRYPTO, "80211crypto", "802.11 crypto state"); 51 52 static int _ieee80211_crypto_delkey(struct ieee80211vap *, 53 struct ieee80211_key *); 54 55 /* 56 * Table of registered cipher modules. 57 */ 58 static const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX]; 59 60 /* 61 * Default "null" key management routines. 62 */ 63 static int 64 null_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 65 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 66 { 67 if (!(&vap->iv_nw_keys[0] <= k && 68 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 69 /* 70 * Not in the global key table, the driver should handle this 71 * by allocating a slot in the h/w key table/cache. In 72 * lieu of that return key slot 0 for any unicast key 73 * request. We disallow the request if this is a group key. 74 * This default policy does the right thing for legacy hardware 75 * with a 4 key table. It also handles devices that pass 76 * packets through untouched when marked with the WEP bit 77 * and key index 0. 78 */ 79 if (k->wk_flags & IEEE80211_KEY_GROUP) 80 return 0; 81 *keyix = 0; /* NB: use key index 0 for ucast key */ 82 } else { 83 *keyix = ieee80211_crypto_get_key_wepidx(vap, k); 84 } 85 *rxkeyix = IEEE80211_KEYIX_NONE; /* XXX maybe *keyix? */ 86 return 1; 87 } 88 static int 89 null_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 90 { 91 return 1; 92 } 93 static int 94 null_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 95 { 96 return 1; 97 } 98 static void null_key_update(struct ieee80211vap *vap) {} 99 100 /* 101 * Write-arounds for common operations. 102 */ 103 static __inline void 104 cipher_detach(struct ieee80211_key *key) 105 { 106 key->wk_cipher->ic_detach(key); 107 } 108 109 static __inline void * 110 cipher_attach(struct ieee80211vap *vap, struct ieee80211_key *key) 111 { 112 return key->wk_cipher->ic_attach(vap, key); 113 } 114 115 /* 116 * Wrappers for driver key management methods. 117 */ 118 static __inline int 119 dev_key_alloc(struct ieee80211vap *vap, 120 struct ieee80211_key *key, 121 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 122 { 123 return vap->iv_key_alloc(vap, key, keyix, rxkeyix); 124 } 125 126 static __inline int 127 dev_key_delete(struct ieee80211vap *vap, 128 const struct ieee80211_key *key) 129 { 130 return vap->iv_key_delete(vap, key); 131 } 132 133 static __inline int 134 dev_key_set(struct ieee80211vap *vap, const struct ieee80211_key *key) 135 { 136 return vap->iv_key_set(vap, key); 137 } 138 139 /* 140 * Setup crypto support for a device/shared instance. 141 */ 142 void 143 ieee80211_crypto_attach(struct ieee80211com *ic) 144 { 145 /* NB: we assume everything is pre-zero'd */ 146 ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none; 147 } 148 149 /* 150 * Teardown crypto support. 151 */ 152 void 153 ieee80211_crypto_detach(struct ieee80211com *ic) 154 { 155 } 156 157 /* 158 * Setup crypto support for a vap. 159 */ 160 void 161 ieee80211_crypto_vattach(struct ieee80211vap *vap) 162 { 163 int i; 164 165 /* NB: we assume everything is pre-zero'd */ 166 vap->iv_max_keyix = IEEE80211_WEP_NKID; 167 vap->iv_def_txkey = IEEE80211_KEYIX_NONE; 168 for (i = 0; i < IEEE80211_WEP_NKID; i++) 169 ieee80211_crypto_resetkey(vap, &vap->iv_nw_keys[i], 170 IEEE80211_KEYIX_NONE); 171 /* 172 * Initialize the driver key support routines to noop entries. 173 * This is useful especially for the cipher test modules. 174 */ 175 vap->iv_key_alloc = null_key_alloc; 176 vap->iv_key_set = null_key_set; 177 vap->iv_key_delete = null_key_delete; 178 vap->iv_key_update_begin = null_key_update; 179 vap->iv_key_update_end = null_key_update; 180 } 181 182 /* 183 * Teardown crypto support for a vap. 184 */ 185 void 186 ieee80211_crypto_vdetach(struct ieee80211vap *vap) 187 { 188 ieee80211_crypto_delglobalkeys(vap); 189 } 190 191 /* 192 * Register a crypto cipher module. 193 */ 194 void 195 ieee80211_crypto_register(const struct ieee80211_cipher *cip) 196 { 197 if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) { 198 printf("%s: cipher %s has an invalid cipher index %u\n", 199 __func__, cip->ic_name, cip->ic_cipher); 200 return; 201 } 202 if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) { 203 printf("%s: cipher %s registered with a different template\n", 204 __func__, cip->ic_name); 205 return; 206 } 207 ciphers[cip->ic_cipher] = cip; 208 } 209 210 /* 211 * Unregister a crypto cipher module. 212 */ 213 void 214 ieee80211_crypto_unregister(const struct ieee80211_cipher *cip) 215 { 216 if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) { 217 printf("%s: cipher %s has an invalid cipher index %u\n", 218 __func__, cip->ic_name, cip->ic_cipher); 219 return; 220 } 221 if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) { 222 printf("%s: cipher %s registered with a different template\n", 223 __func__, cip->ic_name); 224 return; 225 } 226 /* NB: don't complain about not being registered */ 227 /* XXX disallow if references */ 228 ciphers[cip->ic_cipher] = NULL; 229 } 230 231 int 232 ieee80211_crypto_available(u_int cipher) 233 { 234 return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL; 235 } 236 237 /* XXX well-known names! */ 238 static const char *cipher_modnames[IEEE80211_CIPHER_MAX] = { 239 [IEEE80211_CIPHER_WEP] = "wlan_wep", 240 [IEEE80211_CIPHER_TKIP] = "wlan_tkip", 241 [IEEE80211_CIPHER_AES_OCB] = "wlan_aes_ocb", 242 [IEEE80211_CIPHER_AES_CCM] = "wlan_ccmp", 243 [IEEE80211_CIPHER_TKIPMIC] = "#4", /* NB: reserved */ 244 [IEEE80211_CIPHER_CKIP] = "wlan_ckip", 245 [IEEE80211_CIPHER_NONE] = "wlan_none", 246 }; 247 248 /* NB: there must be no overlap between user-supplied and device-owned flags */ 249 CTASSERT((IEEE80211_KEY_COMMON & IEEE80211_KEY_DEVICE) == 0); 250 251 /* 252 * Establish a relationship between the specified key and cipher 253 * and, if necessary, allocate a hardware index from the driver. 254 * Note that when a fixed key index is required it must be specified. 255 * 256 * This must be the first call applied to a key; all the other key 257 * routines assume wk_cipher is setup. 258 * 259 * Locking must be handled by the caller using: 260 * ieee80211_key_update_begin(vap); 261 * ieee80211_key_update_end(vap); 262 */ 263 int 264 ieee80211_crypto_newkey(struct ieee80211vap *vap, 265 int cipher, int flags, struct ieee80211_key *key) 266 { 267 struct ieee80211com *ic = vap->iv_ic; 268 const struct ieee80211_cipher *cip; 269 ieee80211_keyix keyix, rxkeyix; 270 void *keyctx; 271 int oflags; 272 273 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 274 "%s: cipher %u flags 0x%x keyix %u\n", 275 __func__, cipher, flags, key->wk_keyix); 276 277 /* 278 * Validate cipher and set reference to cipher routines. 279 */ 280 if (cipher >= IEEE80211_CIPHER_MAX) { 281 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 282 "%s: invalid cipher %u\n", __func__, cipher); 283 vap->iv_stats.is_crypto_badcipher++; 284 return 0; 285 } 286 cip = ciphers[cipher]; 287 if (cip == NULL) { 288 /* 289 * Auto-load cipher module if we have a well-known name 290 * for it. It might be better to use string names rather 291 * than numbers and craft a module name based on the cipher 292 * name; e.g. wlan_cipher_<cipher-name>. 293 */ 294 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 295 "%s: unregistered cipher %u, load module %s\n", 296 __func__, cipher, cipher_modnames[cipher]); 297 ieee80211_load_module(cipher_modnames[cipher]); 298 /* 299 * If cipher module loaded it should immediately 300 * call ieee80211_crypto_register which will fill 301 * in the entry in the ciphers array. 302 */ 303 cip = ciphers[cipher]; 304 if (cip == NULL) { 305 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 306 "%s: unable to load cipher %u, module %s\n", 307 __func__, cipher, cipher_modnames[cipher]); 308 vap->iv_stats.is_crypto_nocipher++; 309 return 0; 310 } 311 } 312 313 oflags = key->wk_flags; 314 flags &= IEEE80211_KEY_COMMON; 315 /* NB: preserve device attributes */ 316 flags |= (oflags & IEEE80211_KEY_DEVICE); 317 /* 318 * If the hardware does not support the cipher then 319 * fallback to a host-based implementation. 320 */ 321 if ((ic->ic_cryptocaps & (1<<cipher)) == 0) { 322 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 323 "%s: no h/w support for cipher %s, falling back to s/w\n", 324 __func__, cip->ic_name); 325 flags |= IEEE80211_KEY_SWCRYPT; 326 } 327 /* 328 * Hardware TKIP with software MIC is an important 329 * combination; we handle it by flagging each key, 330 * the cipher modules honor it. 331 */ 332 if (cipher == IEEE80211_CIPHER_TKIP && 333 (ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIPMIC) == 0) { 334 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 335 "%s: no h/w support for TKIP MIC, falling back to s/w\n", 336 __func__); 337 flags |= IEEE80211_KEY_SWMIC; 338 } 339 340 /* 341 * Bind cipher to key instance. Note we do this 342 * after checking the device capabilities so the 343 * cipher module can optimize space usage based on 344 * whether or not it needs to do the cipher work. 345 */ 346 if (key->wk_cipher != cip || key->wk_flags != flags) { 347 /* 348 * Fillin the flags so cipher modules can see s/w 349 * crypto requirements and potentially allocate 350 * different state and/or attach different method 351 * pointers. 352 */ 353 key->wk_flags = flags; 354 keyctx = cip->ic_attach(vap, key); 355 if (keyctx == NULL) { 356 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 357 "%s: unable to attach cipher %s\n", 358 __func__, cip->ic_name); 359 key->wk_flags = oflags; /* restore old flags */ 360 vap->iv_stats.is_crypto_attachfail++; 361 return 0; 362 } 363 cipher_detach(key); 364 key->wk_cipher = cip; /* XXX refcnt? */ 365 key->wk_private = keyctx; 366 } 367 368 /* 369 * Ask the driver for a key index if we don't have one. 370 * Note that entries in the global key table always have 371 * an index; this means it's safe to call this routine 372 * for these entries just to setup the reference to the 373 * cipher template. Note also that when using software 374 * crypto we also call the driver to give us a key index. 375 */ 376 if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) { 377 if (!dev_key_alloc(vap, key, &keyix, &rxkeyix)) { 378 /* 379 * Unable to setup driver state. 380 */ 381 vap->iv_stats.is_crypto_keyfail++; 382 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 383 "%s: unable to setup cipher %s\n", 384 __func__, cip->ic_name); 385 return 0; 386 } 387 if (key->wk_flags != flags) { 388 /* 389 * Driver overrode flags we setup; typically because 390 * resources were unavailable to handle _this_ key. 391 * Re-attach the cipher context to allow cipher 392 * modules to handle differing requirements. 393 */ 394 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 395 "%s: driver override for cipher %s, flags " 396 "0x%x -> 0x%x\n", __func__, cip->ic_name, 397 oflags, key->wk_flags); 398 keyctx = cip->ic_attach(vap, key); 399 if (keyctx == NULL) { 400 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 401 "%s: unable to attach cipher %s with " 402 "flags 0x%x\n", __func__, cip->ic_name, 403 key->wk_flags); 404 key->wk_flags = oflags; /* restore old flags */ 405 vap->iv_stats.is_crypto_attachfail++; 406 return 0; 407 } 408 cipher_detach(key); 409 key->wk_cipher = cip; /* XXX refcnt? */ 410 key->wk_private = keyctx; 411 } 412 key->wk_keyix = keyix; 413 key->wk_rxkeyix = rxkeyix; 414 key->wk_flags |= IEEE80211_KEY_DEVKEY; 415 } 416 return 1; 417 } 418 419 /* 420 * Remove the key (no locking, for internal use). 421 */ 422 static int 423 _ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key) 424 { 425 KASSERT(key->wk_cipher != NULL, ("No cipher!")); 426 427 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 428 "%s: %s keyix %u flags 0x%x rsc %ju tsc %ju len %u\n", 429 __func__, key->wk_cipher->ic_name, 430 key->wk_keyix, key->wk_flags, 431 key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc, 432 key->wk_keylen); 433 434 if (key->wk_flags & IEEE80211_KEY_DEVKEY) { 435 /* 436 * Remove hardware entry. 437 */ 438 /* XXX key cache */ 439 if (!dev_key_delete(vap, key)) { 440 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 441 "%s: driver did not delete key index %u\n", 442 __func__, key->wk_keyix); 443 vap->iv_stats.is_crypto_delkey++; 444 /* XXX recovery? */ 445 } 446 } 447 cipher_detach(key); 448 memset(key, 0, sizeof(*key)); 449 ieee80211_crypto_resetkey(vap, key, IEEE80211_KEYIX_NONE); 450 return 1; 451 } 452 453 /* 454 * Remove the specified key. 455 */ 456 int 457 ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key) 458 { 459 int status; 460 461 ieee80211_key_update_begin(vap); 462 status = _ieee80211_crypto_delkey(vap, key); 463 ieee80211_key_update_end(vap); 464 return status; 465 } 466 467 /* 468 * Clear the global key table. 469 */ 470 void 471 ieee80211_crypto_delglobalkeys(struct ieee80211vap *vap) 472 { 473 int i; 474 475 ieee80211_key_update_begin(vap); 476 for (i = 0; i < IEEE80211_WEP_NKID; i++) 477 (void) _ieee80211_crypto_delkey(vap, &vap->iv_nw_keys[i]); 478 ieee80211_key_update_end(vap); 479 } 480 481 /* 482 * Set the contents of the specified key. 483 * 484 * Locking must be handled by the caller using: 485 * ieee80211_key_update_begin(vap); 486 * ieee80211_key_update_end(vap); 487 */ 488 int 489 ieee80211_crypto_setkey(struct ieee80211vap *vap, struct ieee80211_key *key) 490 { 491 const struct ieee80211_cipher *cip = key->wk_cipher; 492 493 KASSERT(cip != NULL, ("No cipher!")); 494 495 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 496 "%s: %s keyix %u flags 0x%x mac %s rsc %ju tsc %ju len %u\n", 497 __func__, cip->ic_name, key->wk_keyix, 498 key->wk_flags, ether_sprintf(key->wk_macaddr), 499 key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc, 500 key->wk_keylen); 501 502 if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) { 503 /* XXX nothing allocated, should not happen */ 504 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 505 "%s: no device key setup done; should not happen!\n", 506 __func__); 507 vap->iv_stats.is_crypto_setkey_nokey++; 508 return 0; 509 } 510 /* 511 * Give cipher a chance to validate key contents. 512 * XXX should happen before modifying state. 513 */ 514 if (!cip->ic_setkey(key)) { 515 IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, 516 "%s: cipher %s rejected key index %u len %u flags 0x%x\n", 517 __func__, cip->ic_name, key->wk_keyix, 518 key->wk_keylen, key->wk_flags); 519 vap->iv_stats.is_crypto_setkey_cipher++; 520 return 0; 521 } 522 return dev_key_set(vap, key); 523 } 524 525 /* 526 * Return index if the key is a WEP key (0..3); -1 otherwise. 527 * 528 * This is different to "get_keyid" which defaults to returning 529 * 0 for unicast keys; it assumes that it won't be used for WEP. 530 */ 531 int 532 ieee80211_crypto_get_key_wepidx(const struct ieee80211vap *vap, 533 const struct ieee80211_key *k) 534 { 535 536 if (k >= &vap->iv_nw_keys[0] && 537 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) 538 return (k - vap->iv_nw_keys); 539 return (-1); 540 } 541 542 /* 543 * Note: only supports a single unicast key (0). 544 */ 545 uint8_t 546 ieee80211_crypto_get_keyid(struct ieee80211vap *vap, struct ieee80211_key *k) 547 { 548 if (k >= &vap->iv_nw_keys[0] && 549 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) 550 return (k - vap->iv_nw_keys); 551 else 552 return (0); 553 } 554 555 struct ieee80211_key * 556 ieee80211_crypto_get_txkey(struct ieee80211_node *ni, struct mbuf *m) 557 { 558 struct ieee80211vap *vap = ni->ni_vap; 559 struct ieee80211_frame *wh; 560 561 /* 562 * Multicast traffic always uses the multicast key. 563 * 564 * Historically we would fall back to the default 565 * transmit key if there was no unicast key. This 566 * behaviour was documented up to IEEE Std 802.11-2016, 567 * 12.9.2.2 Per-MSDU/Per-A-MSDU Tx pseudocode, in the 568 * 'else' case but is no longer in later versions of 569 * the standard. Additionally falling back to the 570 * group key for unicast was a security risk. 571 */ 572 wh = mtod(m, struct ieee80211_frame *); 573 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 574 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE) { 575 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 576 wh->i_addr1, 577 "no default transmit key (%s) deftxkey %u", 578 __func__, vap->iv_def_txkey); 579 vap->iv_stats.is_tx_nodefkey++; 580 return NULL; 581 } 582 return &vap->iv_nw_keys[vap->iv_def_txkey]; 583 } 584 585 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) 586 return NULL; 587 return &ni->ni_ucastkey; 588 } 589 590 /* 591 * Add privacy headers appropriate for the specified key. 592 */ 593 struct ieee80211_key * 594 ieee80211_crypto_encap(struct ieee80211_node *ni, struct mbuf *m) 595 { 596 struct ieee80211_key *k; 597 const struct ieee80211_cipher *cip; 598 599 if ((k = ieee80211_crypto_get_txkey(ni, m)) != NULL) { 600 cip = k->wk_cipher; 601 return (cip->ic_encap(k, m) ? k : NULL); 602 } 603 604 return NULL; 605 } 606 607 /* 608 * Validate and strip privacy headers (and trailer) for a 609 * received frame that has the WEP/Privacy bit set. 610 */ 611 int 612 ieee80211_crypto_decap(struct ieee80211_node *ni, struct mbuf *m, int hdrlen, 613 struct ieee80211_key **key) 614 { 615 #define IEEE80211_WEP_HDRLEN (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN) 616 #define IEEE80211_WEP_MINLEN \ 617 (sizeof(struct ieee80211_frame) + \ 618 IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN) 619 struct ieee80211vap *vap = ni->ni_vap; 620 struct ieee80211_key *k; 621 struct ieee80211_frame *wh; 622 const struct ieee80211_rx_stats *rxs; 623 const struct ieee80211_cipher *cip; 624 uint8_t keyid; 625 626 /* 627 * Check for hardware decryption and IV stripping. 628 * If the IV is stripped then we definitely can't find a key. 629 * Set the key to NULL but return true; upper layers 630 * will need to handle a NULL key for a successful 631 * decrypt. 632 */ 633 rxs = ieee80211_get_rx_params_ptr(m); 634 if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) { 635 if (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP) { 636 /* 637 * Hardware decrypted, IV stripped. 638 * We can't find a key with a stripped IV. 639 * Return successful. 640 */ 641 *key = NULL; 642 return (1); 643 } 644 } 645 646 /* NB: this minimum size data frame could be bigger */ 647 if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) { 648 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 649 "%s: WEP data frame too short, len %u\n", 650 __func__, m->m_pkthdr.len); 651 vap->iv_stats.is_rx_tooshort++; /* XXX need unique stat? */ 652 *key = NULL; 653 return (0); 654 } 655 656 /* 657 * Locate the key. If unicast and there is no unicast 658 * key then we fall back to the key id in the header. 659 * This assumes unicast keys are only configured when 660 * the key id in the header is meaningless (typically 0). 661 */ 662 wh = mtod(m, struct ieee80211_frame *); 663 m_copydata(m, hdrlen + IEEE80211_WEP_IVLEN, sizeof(keyid), &keyid); 664 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 665 IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) 666 k = &vap->iv_nw_keys[keyid >> 6]; 667 else 668 k = &ni->ni_ucastkey; 669 670 /* 671 * Insure crypto header is contiguous and long enough for all 672 * decap work. 673 */ 674 cip = k->wk_cipher; 675 if (m->m_len < hdrlen + cip->ic_header) { 676 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, 677 "frame is too short (%d < %u) for crypto decap", 678 cip->ic_name, m->m_len, hdrlen + cip->ic_header); 679 vap->iv_stats.is_rx_tooshort++; 680 *key = NULL; 681 return (0); 682 } 683 684 /* 685 * Attempt decryption. 686 * 687 * If we fail then don't return the key - return NULL 688 * and an error. 689 */ 690 if (cip->ic_decap(k, m, hdrlen)) { 691 /* success */ 692 *key = k; 693 return (1); 694 } 695 696 /* Failure */ 697 *key = NULL; 698 return (0); 699 #undef IEEE80211_WEP_MINLEN 700 #undef IEEE80211_WEP_HDRLEN 701 } 702 703 /* 704 * Check and remove any MIC. 705 */ 706 int 707 ieee80211_crypto_demic(struct ieee80211vap *vap, struct ieee80211_key *k, 708 struct mbuf *m, int force) 709 { 710 const struct ieee80211_cipher *cip; 711 const struct ieee80211_rx_stats *rxs; 712 struct ieee80211_frame *wh; 713 714 rxs = ieee80211_get_rx_params_ptr(m); 715 wh = mtod(m, struct ieee80211_frame *); 716 717 /* 718 * Handle demic / mic errors from hardware-decrypted offload devices. 719 */ 720 if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) { 721 if (rxs->c_pktflags & IEEE80211_RX_F_FAIL_MIC) { 722 /* 723 * Hardware has said MIC failed. We don't care about 724 * whether it was stripped or not. 725 * 726 * Eventually - teach the demic methods in crypto 727 * modules to handle a NULL key and not to dereference 728 * it. 729 */ 730 ieee80211_notify_michael_failure(vap, wh, -1); 731 return (0); 732 } 733 734 if (rxs->c_pktflags & IEEE80211_RX_F_MMIC_STRIP) { 735 /* 736 * Hardware has decrypted and not indicated a 737 * MIC failure and has stripped the MIC. 738 * We may not have a key, so for now just 739 * return OK. 740 */ 741 return (1); 742 } 743 } 744 745 /* 746 * If we don't have a key at this point then we don't 747 * have to demic anything. 748 */ 749 if (k == NULL) 750 return (1); 751 752 cip = k->wk_cipher; 753 return (cip->ic_miclen > 0 ? cip->ic_demic(k, m, force) : 1); 754 } 755 756 static void 757 load_ucastkey(void *arg, struct ieee80211_node *ni) 758 { 759 struct ieee80211vap *vap = ni->ni_vap; 760 struct ieee80211_key *k; 761 762 if (vap->iv_state != IEEE80211_S_RUN) 763 return; 764 k = &ni->ni_ucastkey; 765 if (k->wk_flags & IEEE80211_KEY_DEVKEY) 766 dev_key_set(vap, k); 767 } 768 769 /* 770 * Re-load all keys known to the 802.11 layer that may 771 * have hardware state backing them. This is used by 772 * drivers on resume to push keys down into the device. 773 */ 774 void 775 ieee80211_crypto_reload_keys(struct ieee80211com *ic) 776 { 777 struct ieee80211vap *vap; 778 int i; 779 780 /* 781 * Keys in the global key table of each vap. 782 */ 783 /* NB: used only during resume so don't lock for now */ 784 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 785 if (vap->iv_state != IEEE80211_S_RUN) 786 continue; 787 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 788 const struct ieee80211_key *k = &vap->iv_nw_keys[i]; 789 if (k->wk_flags & IEEE80211_KEY_DEVKEY) 790 dev_key_set(vap, k); 791 } 792 } 793 /* 794 * Unicast keys. 795 */ 796 ieee80211_iterate_nodes(&ic->ic_sta, load_ucastkey, NULL); 797 } 798 799 /* 800 * Set the default key index for WEP, or KEYIX_NONE for no default TX key. 801 * 802 * This should be done as part of a key update block (iv_key_update_begin / 803 * iv_key_update_end.) 804 */ 805 void 806 ieee80211_crypto_set_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 807 { 808 809 /* XXX TODO: assert we're in a key update block */ 810 811 vap->iv_update_deftxkey(vap, kid); 812 } 813