1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/socket.h> 42 #include <sys/sbuf.h> 43 44 #include <machine/stdarg.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 #include <net/ethernet.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #include <net80211/ieee80211_ratectl.h> 59 #include <net80211/ieee80211_vht.h> 60 61 #include <net/bpf.h> 62 63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 64 [IEEE80211_MODE_AUTO] = "auto", 65 [IEEE80211_MODE_11A] = "11a", 66 [IEEE80211_MODE_11B] = "11b", 67 [IEEE80211_MODE_11G] = "11g", 68 [IEEE80211_MODE_FH] = "FH", 69 [IEEE80211_MODE_TURBO_A] = "turboA", 70 [IEEE80211_MODE_TURBO_G] = "turboG", 71 [IEEE80211_MODE_STURBO_A] = "sturboA", 72 [IEEE80211_MODE_HALF] = "half", 73 [IEEE80211_MODE_QUARTER] = "quarter", 74 [IEEE80211_MODE_11NA] = "11na", 75 [IEEE80211_MODE_11NG] = "11ng", 76 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 77 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 78 }; 79 /* map ieee80211_opmode to the corresponding capability bit */ 80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 81 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 82 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 83 [IEEE80211_M_STA] = IEEE80211_C_STA, 84 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 85 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 86 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 87 #ifdef IEEE80211_SUPPORT_MESH 88 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 89 #endif 90 }; 91 92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 93 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 94 95 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 98 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 99 static int ieee80211_media_setup(struct ieee80211com *ic, 100 struct ifmedia *media, int caps, int addsta, 101 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 102 static int media_status(enum ieee80211_opmode, 103 const struct ieee80211_channel *); 104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 105 106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 107 108 /* 109 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 110 */ 111 #define B(r) ((r) | IEEE80211_RATE_BASIC) 112 static const struct ieee80211_rateset ieee80211_rateset_11a = 113 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 114 static const struct ieee80211_rateset ieee80211_rateset_half = 115 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 116 static const struct ieee80211_rateset ieee80211_rateset_quarter = 117 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 118 static const struct ieee80211_rateset ieee80211_rateset_11b = 119 { 4, { B(2), B(4), B(11), B(22) } }; 120 /* NB: OFDM rates are handled specially based on mode */ 121 static const struct ieee80211_rateset ieee80211_rateset_11g = 122 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 123 #undef B 124 125 static int set_vht_extchan(struct ieee80211_channel *c); 126 127 /* 128 * Fill in 802.11 available channel set, mark 129 * all available channels as active, and pick 130 * a default channel if not already specified. 131 */ 132 void 133 ieee80211_chan_init(struct ieee80211com *ic) 134 { 135 #define DEFAULTRATES(m, def) do { \ 136 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 137 ic->ic_sup_rates[m] = def; \ 138 } while (0) 139 struct ieee80211_channel *c; 140 int i; 141 142 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 143 ("invalid number of channels specified: %u", ic->ic_nchans)); 144 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 145 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 146 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 147 for (i = 0; i < ic->ic_nchans; i++) { 148 c = &ic->ic_channels[i]; 149 KASSERT(c->ic_flags != 0, ("channel with no flags")); 150 /* 151 * Help drivers that work only with frequencies by filling 152 * in IEEE channel #'s if not already calculated. Note this 153 * mimics similar work done in ieee80211_setregdomain when 154 * changing regulatory state. 155 */ 156 if (c->ic_ieee == 0) 157 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 158 159 /* 160 * Setup the HT40/VHT40 upper/lower bits. 161 * The VHT80 math is done elsewhere. 162 */ 163 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 164 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 165 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 166 c->ic_flags); 167 168 /* Update VHT math */ 169 /* 170 * XXX VHT again, note that this assumes VHT80 channels 171 * are legit already 172 */ 173 set_vht_extchan(c); 174 175 /* default max tx power to max regulatory */ 176 if (c->ic_maxpower == 0) 177 c->ic_maxpower = 2*c->ic_maxregpower; 178 setbit(ic->ic_chan_avail, c->ic_ieee); 179 /* 180 * Identify mode capabilities. 181 */ 182 if (IEEE80211_IS_CHAN_A(c)) 183 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 184 if (IEEE80211_IS_CHAN_B(c)) 185 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 186 if (IEEE80211_IS_CHAN_ANYG(c)) 187 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 188 if (IEEE80211_IS_CHAN_FHSS(c)) 189 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 190 if (IEEE80211_IS_CHAN_108A(c)) 191 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 192 if (IEEE80211_IS_CHAN_108G(c)) 193 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 194 if (IEEE80211_IS_CHAN_ST(c)) 195 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 196 if (IEEE80211_IS_CHAN_HALF(c)) 197 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 198 if (IEEE80211_IS_CHAN_QUARTER(c)) 199 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 200 if (IEEE80211_IS_CHAN_HTA(c)) 201 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 202 if (IEEE80211_IS_CHAN_HTG(c)) 203 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 204 if (IEEE80211_IS_CHAN_VHTA(c)) 205 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 206 if (IEEE80211_IS_CHAN_VHTG(c)) 207 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 208 } 209 /* initialize candidate channels to all available */ 210 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 211 sizeof(ic->ic_chan_avail)); 212 213 /* sort channel table to allow lookup optimizations */ 214 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 215 216 /* invalidate any previous state */ 217 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 218 ic->ic_prevchan = NULL; 219 ic->ic_csa_newchan = NULL; 220 /* arbitrarily pick the first channel */ 221 ic->ic_curchan = &ic->ic_channels[0]; 222 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 223 224 /* fillin well-known rate sets if driver has not specified */ 225 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 226 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 227 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 230 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 231 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 232 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 233 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 234 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 236 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 237 238 /* 239 * Setup required information to fill the mcsset field, if driver did 240 * not. Assume a 2T2R setup for historic reasons. 241 */ 242 if (ic->ic_rxstream == 0) 243 ic->ic_rxstream = 2; 244 if (ic->ic_txstream == 0) 245 ic->ic_txstream = 2; 246 247 ieee80211_init_suphtrates(ic); 248 249 /* 250 * Set auto mode to reset active channel state and any desired channel. 251 */ 252 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 253 #undef DEFAULTRATES 254 } 255 256 static void 257 null_update_mcast(struct ieee80211com *ic) 258 { 259 260 ic_printf(ic, "need multicast update callback\n"); 261 } 262 263 static void 264 null_update_promisc(struct ieee80211com *ic) 265 { 266 267 ic_printf(ic, "need promiscuous mode update callback\n"); 268 } 269 270 static void 271 null_update_chw(struct ieee80211com *ic) 272 { 273 274 ic_printf(ic, "%s: need callback\n", __func__); 275 } 276 277 int 278 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 279 { 280 va_list ap; 281 int retval; 282 283 retval = printf("%s: ", ic->ic_name); 284 va_start(ap, fmt); 285 retval += vprintf(fmt, ap); 286 va_end(ap); 287 return (retval); 288 } 289 290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 291 static struct mtx ic_list_mtx; 292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 293 294 static int 295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 296 { 297 struct ieee80211com *ic; 298 struct sbuf sb; 299 char *sp; 300 int error; 301 302 error = sysctl_wire_old_buffer(req, 0); 303 if (error) 304 return (error); 305 sbuf_new_for_sysctl(&sb, NULL, 8, req); 306 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 307 sp = ""; 308 mtx_lock(&ic_list_mtx); 309 LIST_FOREACH(ic, &ic_head, ic_next) { 310 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 311 sp = " "; 312 } 313 mtx_unlock(&ic_list_mtx); 314 error = sbuf_finish(&sb); 315 sbuf_delete(&sb); 316 return (error); 317 } 318 319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 321 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 322 323 /* 324 * Attach/setup the common net80211 state. Called by 325 * the driver on attach to prior to creating any vap's. 326 */ 327 void 328 ieee80211_ifattach(struct ieee80211com *ic) 329 { 330 331 IEEE80211_LOCK_INIT(ic, ic->ic_name); 332 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 333 TAILQ_INIT(&ic->ic_vaps); 334 335 /* Create a taskqueue for all state changes */ 336 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 337 taskqueue_thread_enqueue, &ic->ic_tq); 338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 339 ic->ic_name); 340 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 341 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 342 /* 343 * Fill in 802.11 available channel set, mark all 344 * available channels as active, and pick a default 345 * channel if not already specified. 346 */ 347 ieee80211_chan_init(ic); 348 349 ic->ic_update_mcast = null_update_mcast; 350 ic->ic_update_promisc = null_update_promisc; 351 ic->ic_update_chw = null_update_chw; 352 353 ic->ic_hash_key = arc4random(); 354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 355 ic->ic_lintval = ic->ic_bintval; 356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 357 358 ieee80211_crypto_attach(ic); 359 ieee80211_node_attach(ic); 360 ieee80211_power_attach(ic); 361 ieee80211_proto_attach(ic); 362 #ifdef IEEE80211_SUPPORT_SUPERG 363 ieee80211_superg_attach(ic); 364 #endif 365 ieee80211_ht_attach(ic); 366 ieee80211_vht_attach(ic); 367 ieee80211_scan_attach(ic); 368 ieee80211_regdomain_attach(ic); 369 ieee80211_dfs_attach(ic); 370 371 ieee80211_sysctl_attach(ic); 372 373 mtx_lock(&ic_list_mtx); 374 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 375 mtx_unlock(&ic_list_mtx); 376 } 377 378 /* 379 * Detach net80211 state on device detach. Tear down 380 * all vap's and reclaim all common state prior to the 381 * device state going away. Note we may call back into 382 * driver; it must be prepared for this. 383 */ 384 void 385 ieee80211_ifdetach(struct ieee80211com *ic) 386 { 387 struct ieee80211vap *vap; 388 389 /* 390 * We use this as an indicator that ifattach never had a chance to be 391 * called, e.g. early driver attach failed and ifdetach was called 392 * during subsequent detach. Never fear, for we have nothing to do 393 * here. 394 */ 395 if (ic->ic_tq == NULL) 396 return; 397 398 mtx_lock(&ic_list_mtx); 399 LIST_REMOVE(ic, ic_next); 400 mtx_unlock(&ic_list_mtx); 401 402 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 403 404 /* 405 * The VAP is responsible for setting and clearing 406 * the VIMAGE context. 407 */ 408 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 409 ieee80211_vap_destroy(vap); 410 ieee80211_waitfor_parent(ic); 411 412 ieee80211_sysctl_detach(ic); 413 ieee80211_dfs_detach(ic); 414 ieee80211_regdomain_detach(ic); 415 ieee80211_scan_detach(ic); 416 #ifdef IEEE80211_SUPPORT_SUPERG 417 ieee80211_superg_detach(ic); 418 #endif 419 ieee80211_vht_detach(ic); 420 ieee80211_ht_detach(ic); 421 /* NB: must be called before ieee80211_node_detach */ 422 ieee80211_proto_detach(ic); 423 ieee80211_crypto_detach(ic); 424 ieee80211_power_detach(ic); 425 ieee80211_node_detach(ic); 426 427 counter_u64_free(ic->ic_ierrors); 428 counter_u64_free(ic->ic_oerrors); 429 430 taskqueue_free(ic->ic_tq); 431 IEEE80211_TX_LOCK_DESTROY(ic); 432 IEEE80211_LOCK_DESTROY(ic); 433 } 434 435 struct ieee80211com * 436 ieee80211_find_com(const char *name) 437 { 438 struct ieee80211com *ic; 439 440 mtx_lock(&ic_list_mtx); 441 LIST_FOREACH(ic, &ic_head, ic_next) 442 if (strcmp(ic->ic_name, name) == 0) 443 break; 444 mtx_unlock(&ic_list_mtx); 445 446 return (ic); 447 } 448 449 void 450 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 451 { 452 struct ieee80211com *ic; 453 454 mtx_lock(&ic_list_mtx); 455 LIST_FOREACH(ic, &ic_head, ic_next) 456 (*f)(arg, ic); 457 mtx_unlock(&ic_list_mtx); 458 } 459 460 /* 461 * Default reset method for use with the ioctl support. This 462 * method is invoked after any state change in the 802.11 463 * layer that should be propagated to the hardware but not 464 * require re-initialization of the 802.11 state machine (e.g 465 * rescanning for an ap). We always return ENETRESET which 466 * should cause the driver to re-initialize the device. Drivers 467 * can override this method to implement more optimized support. 468 */ 469 static int 470 default_reset(struct ieee80211vap *vap, u_long cmd) 471 { 472 return ENETRESET; 473 } 474 475 /* 476 * Default for updating the VAP default TX key index. 477 * 478 * Drivers that support TX offload as well as hardware encryption offload 479 * may need to be informed of key index changes separate from the key 480 * update. 481 */ 482 static void 483 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 484 { 485 486 /* XXX assert validity */ 487 /* XXX assert we're in a key update block */ 488 vap->iv_def_txkey = kid; 489 } 490 491 /* 492 * Add underlying device errors to vap errors. 493 */ 494 static uint64_t 495 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 496 { 497 struct ieee80211vap *vap = ifp->if_softc; 498 struct ieee80211com *ic = vap->iv_ic; 499 uint64_t rv; 500 501 rv = if_get_counter_default(ifp, cnt); 502 switch (cnt) { 503 case IFCOUNTER_OERRORS: 504 rv += counter_u64_fetch(ic->ic_oerrors); 505 break; 506 case IFCOUNTER_IERRORS: 507 rv += counter_u64_fetch(ic->ic_ierrors); 508 break; 509 default: 510 break; 511 } 512 513 return (rv); 514 } 515 516 /* 517 * Prepare a vap for use. Drivers use this call to 518 * setup net80211 state in new vap's prior attaching 519 * them with ieee80211_vap_attach (below). 520 */ 521 int 522 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 523 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 524 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 525 { 526 struct ifnet *ifp; 527 528 ifp = if_alloc(IFT_ETHER); 529 if (ifp == NULL) { 530 ic_printf(ic, "%s: unable to allocate ifnet\n", 531 __func__); 532 return ENOMEM; 533 } 534 if_initname(ifp, name, unit); 535 ifp->if_softc = vap; /* back pointer */ 536 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 537 ifp->if_transmit = ieee80211_vap_transmit; 538 ifp->if_qflush = ieee80211_vap_qflush; 539 ifp->if_ioctl = ieee80211_ioctl; 540 ifp->if_init = ieee80211_init; 541 ifp->if_get_counter = ieee80211_get_counter; 542 543 vap->iv_ifp = ifp; 544 vap->iv_ic = ic; 545 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 546 vap->iv_flags_ext = ic->ic_flags_ext; 547 vap->iv_flags_ven = ic->ic_flags_ven; 548 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 549 550 /* 11n capabilities - XXX methodize */ 551 vap->iv_htcaps = ic->ic_htcaps; 552 vap->iv_htextcaps = ic->ic_htextcaps; 553 554 /* 11ac capabilities - XXX methodize */ 555 vap->iv_vhtcaps = ic->ic_vhtcaps; 556 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 557 558 vap->iv_opmode = opmode; 559 vap->iv_caps |= ieee80211_opcap[opmode]; 560 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 561 switch (opmode) { 562 case IEEE80211_M_WDS: 563 /* 564 * WDS links must specify the bssid of the far end. 565 * For legacy operation this is a static relationship. 566 * For non-legacy operation the station must associate 567 * and be authorized to pass traffic. Plumbing the 568 * vap to the proper node happens when the vap 569 * transitions to RUN state. 570 */ 571 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 572 vap->iv_flags |= IEEE80211_F_DESBSSID; 573 if (flags & IEEE80211_CLONE_WDSLEGACY) 574 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 575 break; 576 #ifdef IEEE80211_SUPPORT_TDMA 577 case IEEE80211_M_AHDEMO: 578 if (flags & IEEE80211_CLONE_TDMA) { 579 /* NB: checked before clone operation allowed */ 580 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 581 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 582 /* 583 * Propagate TDMA capability to mark vap; this 584 * cannot be removed and is used to distinguish 585 * regular ahdemo operation from ahdemo+tdma. 586 */ 587 vap->iv_caps |= IEEE80211_C_TDMA; 588 } 589 break; 590 #endif 591 default: 592 break; 593 } 594 /* auto-enable s/w beacon miss support */ 595 if (flags & IEEE80211_CLONE_NOBEACONS) 596 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 597 /* auto-generated or user supplied MAC address */ 598 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 599 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 600 /* 601 * Enable various functionality by default if we're 602 * capable; the driver can override us if it knows better. 603 */ 604 if (vap->iv_caps & IEEE80211_C_WME) 605 vap->iv_flags |= IEEE80211_F_WME; 606 if (vap->iv_caps & IEEE80211_C_BURST) 607 vap->iv_flags |= IEEE80211_F_BURST; 608 /* NB: bg scanning only makes sense for station mode right now */ 609 if (vap->iv_opmode == IEEE80211_M_STA && 610 (vap->iv_caps & IEEE80211_C_BGSCAN)) 611 vap->iv_flags |= IEEE80211_F_BGSCAN; 612 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 613 /* NB: DFS support only makes sense for ap mode right now */ 614 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 615 (vap->iv_caps & IEEE80211_C_DFS)) 616 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 617 618 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 619 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 620 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 621 /* 622 * Install a default reset method for the ioctl support; 623 * the driver can override this. 624 */ 625 vap->iv_reset = default_reset; 626 627 /* 628 * Install a default crypto key update method, the driver 629 * can override this. 630 */ 631 vap->iv_update_deftxkey = default_update_deftxkey; 632 633 ieee80211_sysctl_vattach(vap); 634 ieee80211_crypto_vattach(vap); 635 ieee80211_node_vattach(vap); 636 ieee80211_power_vattach(vap); 637 ieee80211_proto_vattach(vap); 638 #ifdef IEEE80211_SUPPORT_SUPERG 639 ieee80211_superg_vattach(vap); 640 #endif 641 ieee80211_ht_vattach(vap); 642 ieee80211_vht_vattach(vap); 643 ieee80211_scan_vattach(vap); 644 ieee80211_regdomain_vattach(vap); 645 ieee80211_radiotap_vattach(vap); 646 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 647 648 return 0; 649 } 650 651 /* 652 * Activate a vap. State should have been prepared with a 653 * call to ieee80211_vap_setup and by the driver. On return 654 * from this call the vap is ready for use. 655 */ 656 int 657 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 658 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 659 { 660 struct ifnet *ifp = vap->iv_ifp; 661 struct ieee80211com *ic = vap->iv_ic; 662 struct ifmediareq imr; 663 int maxrate; 664 665 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 666 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 667 __func__, ieee80211_opmode_name[vap->iv_opmode], 668 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 669 670 /* 671 * Do late attach work that cannot happen until after 672 * the driver has had a chance to override defaults. 673 */ 674 ieee80211_node_latevattach(vap); 675 ieee80211_power_latevattach(vap); 676 677 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 678 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 679 ieee80211_media_status(ifp, &imr); 680 /* NB: strip explicit mode; we're actually in autoselect */ 681 ifmedia_set(&vap->iv_media, 682 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 683 if (maxrate) 684 ifp->if_baudrate = IF_Mbps(maxrate); 685 686 ether_ifattach(ifp, macaddr); 687 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 688 /* hook output method setup by ether_ifattach */ 689 vap->iv_output = ifp->if_output; 690 ifp->if_output = ieee80211_output; 691 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 692 693 IEEE80211_LOCK(ic); 694 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 695 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 696 #ifdef IEEE80211_SUPPORT_SUPERG 697 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 698 #endif 699 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 700 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 701 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 702 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 703 704 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 705 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 706 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 707 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 708 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 709 IEEE80211_UNLOCK(ic); 710 711 return 1; 712 } 713 714 /* 715 * Tear down vap state and reclaim the ifnet. 716 * The driver is assumed to have prepared for 717 * this; e.g. by turning off interrupts for the 718 * underlying device. 719 */ 720 void 721 ieee80211_vap_detach(struct ieee80211vap *vap) 722 { 723 struct ieee80211com *ic = vap->iv_ic; 724 struct ifnet *ifp = vap->iv_ifp; 725 726 CURVNET_SET(ifp->if_vnet); 727 728 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 729 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 730 731 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 732 ether_ifdetach(ifp); 733 734 ieee80211_stop(vap); 735 736 /* 737 * Flush any deferred vap tasks. 738 */ 739 ieee80211_draintask(ic, &vap->iv_nstate_task); 740 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 741 ieee80211_draintask(ic, &vap->iv_wme_task); 742 ieee80211_draintask(ic, &ic->ic_parent_task); 743 744 /* XXX band-aid until ifnet handles this for us */ 745 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 746 747 IEEE80211_LOCK(ic); 748 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 749 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 750 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 751 #ifdef IEEE80211_SUPPORT_SUPERG 752 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 753 #endif 754 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 755 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 756 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 757 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 758 759 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 760 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 761 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 762 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 763 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 764 765 /* NB: this handles the bpfdetach done below */ 766 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 767 if (vap->iv_ifflags & IFF_PROMISC) 768 ieee80211_promisc(vap, false); 769 if (vap->iv_ifflags & IFF_ALLMULTI) 770 ieee80211_allmulti(vap, false); 771 IEEE80211_UNLOCK(ic); 772 773 ifmedia_removeall(&vap->iv_media); 774 775 ieee80211_radiotap_vdetach(vap); 776 ieee80211_regdomain_vdetach(vap); 777 ieee80211_scan_vdetach(vap); 778 #ifdef IEEE80211_SUPPORT_SUPERG 779 ieee80211_superg_vdetach(vap); 780 #endif 781 ieee80211_vht_vdetach(vap); 782 ieee80211_ht_vdetach(vap); 783 /* NB: must be before ieee80211_node_vdetach */ 784 ieee80211_proto_vdetach(vap); 785 ieee80211_crypto_vdetach(vap); 786 ieee80211_power_vdetach(vap); 787 ieee80211_node_vdetach(vap); 788 ieee80211_sysctl_vdetach(vap); 789 790 if_free(ifp); 791 792 CURVNET_RESTORE(); 793 } 794 795 /* 796 * Count number of vaps in promisc, and issue promisc on 797 * parent respectively. 798 */ 799 void 800 ieee80211_promisc(struct ieee80211vap *vap, bool on) 801 { 802 struct ieee80211com *ic = vap->iv_ic; 803 804 IEEE80211_LOCK_ASSERT(ic); 805 806 if (on) { 807 if (++ic->ic_promisc == 1) 808 ieee80211_runtask(ic, &ic->ic_promisc_task); 809 } else { 810 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 811 __func__, ic)); 812 if (--ic->ic_promisc == 0) 813 ieee80211_runtask(ic, &ic->ic_promisc_task); 814 } 815 } 816 817 /* 818 * Count number of vaps in allmulti, and issue allmulti on 819 * parent respectively. 820 */ 821 void 822 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 823 { 824 struct ieee80211com *ic = vap->iv_ic; 825 826 IEEE80211_LOCK_ASSERT(ic); 827 828 if (on) { 829 if (++ic->ic_allmulti == 1) 830 ieee80211_runtask(ic, &ic->ic_mcast_task); 831 } else { 832 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 833 __func__, ic)); 834 if (--ic->ic_allmulti == 0) 835 ieee80211_runtask(ic, &ic->ic_mcast_task); 836 } 837 } 838 839 /* 840 * Synchronize flag bit state in the com structure 841 * according to the state of all vap's. This is used, 842 * for example, to handle state changes via ioctls. 843 */ 844 static void 845 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 846 { 847 struct ieee80211vap *vap; 848 int bit; 849 850 IEEE80211_LOCK_ASSERT(ic); 851 852 bit = 0; 853 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 854 if (vap->iv_flags & flag) { 855 bit = 1; 856 break; 857 } 858 if (bit) 859 ic->ic_flags |= flag; 860 else 861 ic->ic_flags &= ~flag; 862 } 863 864 void 865 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 866 { 867 struct ieee80211com *ic = vap->iv_ic; 868 869 IEEE80211_LOCK(ic); 870 if (flag < 0) { 871 flag = -flag; 872 vap->iv_flags &= ~flag; 873 } else 874 vap->iv_flags |= flag; 875 ieee80211_syncflag_locked(ic, flag); 876 IEEE80211_UNLOCK(ic); 877 } 878 879 /* 880 * Synchronize flags_ht bit state in the com structure 881 * according to the state of all vap's. This is used, 882 * for example, to handle state changes via ioctls. 883 */ 884 static void 885 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 886 { 887 struct ieee80211vap *vap; 888 int bit; 889 890 IEEE80211_LOCK_ASSERT(ic); 891 892 bit = 0; 893 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 894 if (vap->iv_flags_ht & flag) { 895 bit = 1; 896 break; 897 } 898 if (bit) 899 ic->ic_flags_ht |= flag; 900 else 901 ic->ic_flags_ht &= ~flag; 902 } 903 904 void 905 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 906 { 907 struct ieee80211com *ic = vap->iv_ic; 908 909 IEEE80211_LOCK(ic); 910 if (flag < 0) { 911 flag = -flag; 912 vap->iv_flags_ht &= ~flag; 913 } else 914 vap->iv_flags_ht |= flag; 915 ieee80211_syncflag_ht_locked(ic, flag); 916 IEEE80211_UNLOCK(ic); 917 } 918 919 /* 920 * Synchronize flags_vht bit state in the com structure 921 * according to the state of all vap's. This is used, 922 * for example, to handle state changes via ioctls. 923 */ 924 static void 925 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 926 { 927 struct ieee80211vap *vap; 928 int bit; 929 930 IEEE80211_LOCK_ASSERT(ic); 931 932 bit = 0; 933 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 934 if (vap->iv_flags_vht & flag) { 935 bit = 1; 936 break; 937 } 938 if (bit) 939 ic->ic_flags_vht |= flag; 940 else 941 ic->ic_flags_vht &= ~flag; 942 } 943 944 void 945 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 946 { 947 struct ieee80211com *ic = vap->iv_ic; 948 949 IEEE80211_LOCK(ic); 950 if (flag < 0) { 951 flag = -flag; 952 vap->iv_flags_vht &= ~flag; 953 } else 954 vap->iv_flags_vht |= flag; 955 ieee80211_syncflag_vht_locked(ic, flag); 956 IEEE80211_UNLOCK(ic); 957 } 958 959 /* 960 * Synchronize flags_ext bit state in the com structure 961 * according to the state of all vap's. This is used, 962 * for example, to handle state changes via ioctls. 963 */ 964 static void 965 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 966 { 967 struct ieee80211vap *vap; 968 int bit; 969 970 IEEE80211_LOCK_ASSERT(ic); 971 972 bit = 0; 973 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 974 if (vap->iv_flags_ext & flag) { 975 bit = 1; 976 break; 977 } 978 if (bit) 979 ic->ic_flags_ext |= flag; 980 else 981 ic->ic_flags_ext &= ~flag; 982 } 983 984 void 985 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 986 { 987 struct ieee80211com *ic = vap->iv_ic; 988 989 IEEE80211_LOCK(ic); 990 if (flag < 0) { 991 flag = -flag; 992 vap->iv_flags_ext &= ~flag; 993 } else 994 vap->iv_flags_ext |= flag; 995 ieee80211_syncflag_ext_locked(ic, flag); 996 IEEE80211_UNLOCK(ic); 997 } 998 999 static __inline int 1000 mapgsm(u_int freq, u_int flags) 1001 { 1002 freq *= 10; 1003 if (flags & IEEE80211_CHAN_QUARTER) 1004 freq += 5; 1005 else if (flags & IEEE80211_CHAN_HALF) 1006 freq += 10; 1007 else 1008 freq += 20; 1009 /* NB: there is no 907/20 wide but leave room */ 1010 return (freq - 906*10) / 5; 1011 } 1012 1013 static __inline int 1014 mappsb(u_int freq, u_int flags) 1015 { 1016 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1017 } 1018 1019 /* 1020 * Convert MHz frequency to IEEE channel number. 1021 */ 1022 int 1023 ieee80211_mhz2ieee(u_int freq, u_int flags) 1024 { 1025 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1026 if (flags & IEEE80211_CHAN_GSM) 1027 return mapgsm(freq, flags); 1028 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1029 if (freq == 2484) 1030 return 14; 1031 if (freq < 2484) 1032 return ((int) freq - 2407) / 5; 1033 else 1034 return 15 + ((freq - 2512) / 20); 1035 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1036 if (freq <= 5000) { 1037 /* XXX check regdomain? */ 1038 if (IS_FREQ_IN_PSB(freq)) 1039 return mappsb(freq, flags); 1040 return (freq - 4000) / 5; 1041 } else 1042 return (freq - 5000) / 5; 1043 } else { /* either, guess */ 1044 if (freq == 2484) 1045 return 14; 1046 if (freq < 2484) { 1047 if (907 <= freq && freq <= 922) 1048 return mapgsm(freq, flags); 1049 return ((int) freq - 2407) / 5; 1050 } 1051 if (freq < 5000) { 1052 if (IS_FREQ_IN_PSB(freq)) 1053 return mappsb(freq, flags); 1054 else if (freq > 4900) 1055 return (freq - 4000) / 5; 1056 else 1057 return 15 + ((freq - 2512) / 20); 1058 } 1059 return (freq - 5000) / 5; 1060 } 1061 #undef IS_FREQ_IN_PSB 1062 } 1063 1064 /* 1065 * Convert channel to IEEE channel number. 1066 */ 1067 int 1068 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1069 { 1070 if (c == NULL) { 1071 ic_printf(ic, "invalid channel (NULL)\n"); 1072 return 0; /* XXX */ 1073 } 1074 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1075 } 1076 1077 /* 1078 * Convert IEEE channel number to MHz frequency. 1079 */ 1080 u_int 1081 ieee80211_ieee2mhz(u_int chan, u_int flags) 1082 { 1083 if (flags & IEEE80211_CHAN_GSM) 1084 return 907 + 5 * (chan / 10); 1085 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1086 if (chan == 14) 1087 return 2484; 1088 if (chan < 14) 1089 return 2407 + chan*5; 1090 else 1091 return 2512 + ((chan-15)*20); 1092 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1093 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1094 chan -= 37; 1095 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1096 } 1097 return 5000 + (chan*5); 1098 } else { /* either, guess */ 1099 /* XXX can't distinguish PSB+GSM channels */ 1100 if (chan == 14) 1101 return 2484; 1102 if (chan < 14) /* 0-13 */ 1103 return 2407 + chan*5; 1104 if (chan < 27) /* 15-26 */ 1105 return 2512 + ((chan-15)*20); 1106 return 5000 + (chan*5); 1107 } 1108 } 1109 1110 static __inline void 1111 set_extchan(struct ieee80211_channel *c) 1112 { 1113 1114 /* 1115 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1116 * "the secondary channel number shall be 'N + [1,-1] * 4' 1117 */ 1118 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1119 c->ic_extieee = c->ic_ieee + 4; 1120 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1121 c->ic_extieee = c->ic_ieee - 4; 1122 else 1123 c->ic_extieee = 0; 1124 } 1125 1126 /* 1127 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1128 * 1129 * This for now uses a hard-coded list of 80MHz wide channels. 1130 * 1131 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1132 * wide channel we've already decided upon. 1133 * 1134 * For VHT80 and VHT160, there are only a small number of fixed 1135 * 80/160MHz wide channels, so we just use those. 1136 * 1137 * This is all likely very very wrong - both the regulatory code 1138 * and this code needs to ensure that all four channels are 1139 * available and valid before the VHT80 (and eight for VHT160) channel 1140 * is created. 1141 */ 1142 1143 struct vht_chan_range { 1144 uint16_t freq_start; 1145 uint16_t freq_end; 1146 }; 1147 1148 struct vht_chan_range vht80_chan_ranges[] = { 1149 { 5170, 5250 }, 1150 { 5250, 5330 }, 1151 { 5490, 5570 }, 1152 { 5570, 5650 }, 1153 { 5650, 5730 }, 1154 { 5735, 5815 }, 1155 { 0, 0, } 1156 }; 1157 1158 static int 1159 set_vht_extchan(struct ieee80211_channel *c) 1160 { 1161 int i; 1162 1163 if (! IEEE80211_IS_CHAN_VHT(c)) { 1164 return (0); 1165 } 1166 1167 if (IEEE80211_IS_CHAN_VHT20(c)) { 1168 c->ic_vht_ch_freq1 = c->ic_ieee; 1169 return (1); 1170 } 1171 1172 if (IEEE80211_IS_CHAN_VHT40(c)) { 1173 if (IEEE80211_IS_CHAN_HT40U(c)) 1174 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1175 else if (IEEE80211_IS_CHAN_HT40D(c)) 1176 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1177 else 1178 return (0); 1179 return (1); 1180 } 1181 1182 if (IEEE80211_IS_CHAN_VHT80(c)) { 1183 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1184 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1185 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1186 int midpoint; 1187 1188 midpoint = vht80_chan_ranges[i].freq_start + 40; 1189 c->ic_vht_ch_freq1 = 1190 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1191 c->ic_vht_ch_freq2 = 0; 1192 #if 0 1193 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1194 __func__, c->ic_ieee, c->ic_freq, midpoint, 1195 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1196 #endif 1197 return (1); 1198 } 1199 } 1200 return (0); 1201 } 1202 1203 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1204 __func__, 1205 c->ic_ieee, 1206 c->ic_flags); 1207 1208 return (0); 1209 } 1210 1211 /* 1212 * Return whether the current channel could possibly be a part of 1213 * a VHT80 channel. 1214 * 1215 * This doesn't check that the whole range is in the allowed list 1216 * according to regulatory. 1217 */ 1218 static int 1219 is_vht80_valid_freq(uint16_t freq) 1220 { 1221 int i; 1222 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1223 if (freq >= vht80_chan_ranges[i].freq_start && 1224 freq < vht80_chan_ranges[i].freq_end) 1225 return (1); 1226 } 1227 return (0); 1228 } 1229 1230 static int 1231 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1232 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1233 { 1234 struct ieee80211_channel *c; 1235 1236 if (*nchans >= maxchans) 1237 return (ENOBUFS); 1238 1239 #if 0 1240 printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n", 1241 __func__, 1242 *nchans, 1243 ieee, 1244 freq, 1245 flags); 1246 #endif 1247 1248 c = &chans[(*nchans)++]; 1249 c->ic_ieee = ieee; 1250 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1251 c->ic_maxregpower = maxregpower; 1252 c->ic_maxpower = 2 * maxregpower; 1253 c->ic_flags = flags; 1254 c->ic_vht_ch_freq1 = 0; 1255 c->ic_vht_ch_freq2 = 0; 1256 set_extchan(c); 1257 set_vht_extchan(c); 1258 1259 return (0); 1260 } 1261 1262 static int 1263 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1264 uint32_t flags) 1265 { 1266 struct ieee80211_channel *c; 1267 1268 KASSERT(*nchans > 0, ("channel list is empty\n")); 1269 1270 if (*nchans >= maxchans) 1271 return (ENOBUFS); 1272 1273 #if 0 1274 printf("%s: %d: flags=0x%08x\n", 1275 __func__, 1276 *nchans, 1277 flags); 1278 #endif 1279 1280 c = &chans[(*nchans)++]; 1281 c[0] = c[-1]; 1282 c->ic_flags = flags; 1283 c->ic_vht_ch_freq1 = 0; 1284 c->ic_vht_ch_freq2 = 0; 1285 set_extchan(c); 1286 set_vht_extchan(c); 1287 1288 return (0); 1289 } 1290 1291 /* 1292 * XXX VHT-2GHz 1293 */ 1294 static void 1295 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40) 1296 { 1297 int nmodes; 1298 1299 nmodes = 0; 1300 if (isset(bands, IEEE80211_MODE_11B)) 1301 flags[nmodes++] = IEEE80211_CHAN_B; 1302 if (isset(bands, IEEE80211_MODE_11G)) 1303 flags[nmodes++] = IEEE80211_CHAN_G; 1304 if (isset(bands, IEEE80211_MODE_11NG)) 1305 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1306 if (ht40) { 1307 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1308 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1309 } 1310 flags[nmodes] = 0; 1311 } 1312 1313 static void 1314 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1315 { 1316 int nmodes; 1317 1318 /* 1319 * the addchan_list function seems to expect the flags array to 1320 * be in channel width order, so the VHT bits are interspersed 1321 * as appropriate to maintain said order. 1322 * 1323 * It also assumes HT40U is before HT40D. 1324 */ 1325 nmodes = 0; 1326 1327 /* 20MHz */ 1328 if (isset(bands, IEEE80211_MODE_11A)) 1329 flags[nmodes++] = IEEE80211_CHAN_A; 1330 if (isset(bands, IEEE80211_MODE_11NA)) 1331 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1332 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1333 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1334 IEEE80211_CHAN_VHT20; 1335 } 1336 1337 /* 40MHz */ 1338 if (ht40) { 1339 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1340 } 1341 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1342 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U 1343 | IEEE80211_CHAN_VHT40U; 1344 } 1345 if (ht40) { 1346 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1347 } 1348 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1349 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D 1350 | IEEE80211_CHAN_VHT40D; 1351 } 1352 1353 /* 80MHz */ 1354 if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1355 flags[nmodes++] = IEEE80211_CHAN_A | 1356 IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; 1357 flags[nmodes++] = IEEE80211_CHAN_A | 1358 IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; 1359 } 1360 1361 /* XXX VHT80+80 */ 1362 /* XXX VHT160 */ 1363 flags[nmodes] = 0; 1364 } 1365 1366 static void 1367 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1368 { 1369 1370 flags[0] = 0; 1371 if (isset(bands, IEEE80211_MODE_11A) || 1372 isset(bands, IEEE80211_MODE_11NA) || 1373 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1374 if (isset(bands, IEEE80211_MODE_11B) || 1375 isset(bands, IEEE80211_MODE_11G) || 1376 isset(bands, IEEE80211_MODE_11NG) || 1377 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1378 return; 1379 1380 getflags_5ghz(bands, flags, ht40, vht80); 1381 } else 1382 getflags_2ghz(bands, flags, ht40); 1383 } 1384 1385 /* 1386 * Add one 20 MHz channel into specified channel list. 1387 */ 1388 /* XXX VHT */ 1389 int 1390 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1391 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1392 uint32_t chan_flags, const uint8_t bands[]) 1393 { 1394 uint32_t flags[IEEE80211_MODE_MAX]; 1395 int i, error; 1396 1397 getflags(bands, flags, 0, 0); 1398 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1399 1400 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1401 flags[0] | chan_flags); 1402 for (i = 1; flags[i] != 0 && error == 0; i++) { 1403 error = copychan_prev(chans, maxchans, nchans, 1404 flags[i] | chan_flags); 1405 } 1406 1407 return (error); 1408 } 1409 1410 static struct ieee80211_channel * 1411 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1412 uint32_t flags) 1413 { 1414 struct ieee80211_channel *c; 1415 int i; 1416 1417 flags &= IEEE80211_CHAN_ALLTURBO; 1418 /* brute force search */ 1419 for (i = 0; i < nchans; i++) { 1420 c = &chans[i]; 1421 if (c->ic_freq == freq && 1422 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1423 return c; 1424 } 1425 return NULL; 1426 } 1427 1428 /* 1429 * Add 40 MHz channel pair into specified channel list. 1430 */ 1431 /* XXX VHT */ 1432 int 1433 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1434 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1435 { 1436 struct ieee80211_channel *cent, *extc; 1437 uint16_t freq; 1438 int error; 1439 1440 freq = ieee80211_ieee2mhz(ieee, flags); 1441 1442 /* 1443 * Each entry defines an HT40 channel pair; find the 1444 * center channel, then the extension channel above. 1445 */ 1446 flags |= IEEE80211_CHAN_HT20; 1447 cent = findchannel(chans, *nchans, freq, flags); 1448 if (cent == NULL) 1449 return (EINVAL); 1450 1451 extc = findchannel(chans, *nchans, freq + 20, flags); 1452 if (extc == NULL) 1453 return (ENOENT); 1454 1455 flags &= ~IEEE80211_CHAN_HT; 1456 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1457 maxregpower, flags | IEEE80211_CHAN_HT40U); 1458 if (error != 0) 1459 return (error); 1460 1461 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1462 maxregpower, flags | IEEE80211_CHAN_HT40D); 1463 1464 return (error); 1465 } 1466 1467 /* 1468 * Fetch the center frequency for the primary channel. 1469 */ 1470 uint32_t 1471 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1472 { 1473 1474 return (c->ic_freq); 1475 } 1476 1477 /* 1478 * Fetch the center frequency for the primary BAND channel. 1479 * 1480 * For 5, 10, 20MHz channels it'll be the normally configured channel 1481 * frequency. 1482 * 1483 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the 1484 * wide channel, not the centre of the primary channel (that's ic_freq). 1485 * 1486 * For 80+80MHz channels this will be the centre of the primary 1487 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1488 */ 1489 uint32_t 1490 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1491 { 1492 1493 /* 1494 * VHT - use the pre-calculated centre frequency 1495 * of the given channel. 1496 */ 1497 if (IEEE80211_IS_CHAN_VHT(c)) 1498 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1499 1500 if (IEEE80211_IS_CHAN_HT40U(c)) { 1501 return (c->ic_freq + 10); 1502 } 1503 if (IEEE80211_IS_CHAN_HT40D(c)) { 1504 return (c->ic_freq - 10); 1505 } 1506 1507 return (c->ic_freq); 1508 } 1509 1510 /* 1511 * For now, no 80+80 support; it will likely always return 0. 1512 */ 1513 uint32_t 1514 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1515 { 1516 1517 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1518 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1519 1520 return (0); 1521 } 1522 1523 /* 1524 * Adds channels into specified channel list (ieee[] array must be sorted). 1525 * Channels are already sorted. 1526 */ 1527 static int 1528 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1529 const uint8_t ieee[], int nieee, uint32_t flags[]) 1530 { 1531 uint16_t freq; 1532 int i, j, error; 1533 int is_vht; 1534 1535 for (i = 0; i < nieee; i++) { 1536 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1537 for (j = 0; flags[j] != 0; j++) { 1538 /* 1539 * Notes: 1540 * + HT40 and VHT40 channels occur together, so 1541 * we need to be careful that we actually allow that. 1542 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1543 * make sure it's not skipped because of the overlap 1544 * check used for (V)HT40. 1545 */ 1546 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1547 1548 /* 1549 * Test for VHT80. 1550 * XXX This is all very broken right now. 1551 * What we /should/ do is: 1552 * 1553 * + check that the frequency is in the list of 1554 * allowed VHT80 ranges; and 1555 * + the other 3 channels in the list are actually 1556 * also available. 1557 */ 1558 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1559 if (! is_vht80_valid_freq(freq)) 1560 continue; 1561 1562 /* 1563 * Test for (V)HT40. 1564 * 1565 * This is also a fall through from VHT80; as we only 1566 * allow a VHT80 channel if the VHT40 combination is 1567 * also valid. If the VHT40 form is not valid then 1568 * we certainly can't do VHT80.. 1569 */ 1570 if (flags[j] & IEEE80211_CHAN_HT40D) 1571 /* 1572 * Can't have a "lower" channel if we are the 1573 * first channel. 1574 * 1575 * Can't have a "lower" channel if it's below/ 1576 * within 20MHz of the first channel. 1577 * 1578 * Can't have a "lower" channel if the channel 1579 * below it is not 20MHz away. 1580 */ 1581 if (i == 0 || ieee[i] < ieee[0] + 4 || 1582 freq - 20 != 1583 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1584 continue; 1585 if (flags[j] & IEEE80211_CHAN_HT40U) 1586 /* 1587 * Can't have an "upper" channel if we are 1588 * the last channel. 1589 * 1590 * Can't have an "upper" channel be above the 1591 * last channel in the list. 1592 * 1593 * Can't have an "upper" channel if the next 1594 * channel according to the math isn't 20MHz 1595 * away. (Likely for channel 13/14.) 1596 */ 1597 if (i == nieee - 1 || 1598 ieee[i] + 4 > ieee[nieee - 1] || 1599 freq + 20 != 1600 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1601 continue; 1602 1603 if (j == 0) { 1604 error = addchan(chans, maxchans, nchans, 1605 ieee[i], freq, 0, flags[j]); 1606 } else { 1607 error = copychan_prev(chans, maxchans, nchans, 1608 flags[j]); 1609 } 1610 if (error != 0) 1611 return (error); 1612 } 1613 } 1614 1615 return (0); 1616 } 1617 1618 int 1619 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1620 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1621 int ht40) 1622 { 1623 uint32_t flags[IEEE80211_MODE_MAX]; 1624 1625 /* XXX no VHT for now */ 1626 getflags_2ghz(bands, flags, ht40); 1627 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1628 1629 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1630 } 1631 1632 int 1633 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1634 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1635 int ht40) 1636 { 1637 uint32_t flags[IEEE80211_MODE_MAX]; 1638 int vht80 = 0; 1639 1640 /* 1641 * For now, assume VHT == VHT80 support as a minimum. 1642 */ 1643 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1644 vht80 = 1; 1645 1646 getflags_5ghz(bands, flags, ht40, vht80); 1647 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1648 1649 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1650 } 1651 1652 /* 1653 * Locate a channel given a frequency+flags. We cache 1654 * the previous lookup to optimize switching between two 1655 * channels--as happens with dynamic turbo. 1656 */ 1657 struct ieee80211_channel * 1658 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1659 { 1660 struct ieee80211_channel *c; 1661 1662 flags &= IEEE80211_CHAN_ALLTURBO; 1663 c = ic->ic_prevchan; 1664 if (c != NULL && c->ic_freq == freq && 1665 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1666 return c; 1667 /* brute force search */ 1668 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1669 } 1670 1671 /* 1672 * Locate a channel given a channel number+flags. We cache 1673 * the previous lookup to optimize switching between two 1674 * channels--as happens with dynamic turbo. 1675 */ 1676 struct ieee80211_channel * 1677 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1678 { 1679 struct ieee80211_channel *c; 1680 int i; 1681 1682 flags &= IEEE80211_CHAN_ALLTURBO; 1683 c = ic->ic_prevchan; 1684 if (c != NULL && c->ic_ieee == ieee && 1685 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1686 return c; 1687 /* brute force search */ 1688 for (i = 0; i < ic->ic_nchans; i++) { 1689 c = &ic->ic_channels[i]; 1690 if (c->ic_ieee == ieee && 1691 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1692 return c; 1693 } 1694 return NULL; 1695 } 1696 1697 /* 1698 * Lookup a channel suitable for the given rx status. 1699 * 1700 * This is used to find a channel for a frame (eg beacon, probe 1701 * response) based purely on the received PHY information. 1702 * 1703 * For now it tries to do it based on R_FREQ / R_IEEE. 1704 * This is enough for 11bg and 11a (and thus 11ng/11na) 1705 * but it will not be enough for GSM, PSB channels and the 1706 * like. It also doesn't know about legacy-turbog and 1707 * legacy-turbo modes, which some offload NICs actually 1708 * support in weird ways. 1709 * 1710 * Takes the ic and rxstatus; returns the channel or NULL 1711 * if not found. 1712 * 1713 * XXX TODO: Add support for that when the need arises. 1714 */ 1715 struct ieee80211_channel * 1716 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1717 const struct ieee80211_rx_stats *rxs) 1718 { 1719 struct ieee80211com *ic = vap->iv_ic; 1720 uint32_t flags; 1721 struct ieee80211_channel *c; 1722 1723 if (rxs == NULL) 1724 return (NULL); 1725 1726 /* 1727 * Strictly speaking we only use freq for now, 1728 * however later on we may wish to just store 1729 * the ieee for verification. 1730 */ 1731 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1732 return (NULL); 1733 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1734 return (NULL); 1735 1736 /* 1737 * If the rx status contains a valid ieee/freq, then 1738 * ensure we populate the correct channel information 1739 * in rxchan before passing it up to the scan infrastructure. 1740 * Offload NICs will pass up beacons from all channels 1741 * during background scans. 1742 */ 1743 1744 /* Determine a band */ 1745 /* XXX should be done by the driver? */ 1746 if (rxs->c_freq < 3000) { 1747 flags = IEEE80211_CHAN_G; 1748 } else { 1749 flags = IEEE80211_CHAN_A; 1750 } 1751 1752 /* Channel lookup */ 1753 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1754 1755 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1756 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1757 __func__, 1758 (int) rxs->c_freq, 1759 (int) rxs->c_ieee, 1760 flags, 1761 c); 1762 1763 return (c); 1764 } 1765 1766 static void 1767 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1768 { 1769 #define ADD(_ic, _s, _o) \ 1770 ifmedia_add(media, \ 1771 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1772 static const u_int mopts[IEEE80211_MODE_MAX] = { 1773 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1774 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1775 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1776 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1777 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1778 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1779 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1780 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1781 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1782 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1783 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1784 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1785 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1786 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1787 }; 1788 u_int mopt; 1789 1790 mopt = mopts[mode]; 1791 if (addsta) 1792 ADD(ic, mword, mopt); /* STA mode has no cap */ 1793 if (caps & IEEE80211_C_IBSS) 1794 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1795 if (caps & IEEE80211_C_HOSTAP) 1796 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1797 if (caps & IEEE80211_C_AHDEMO) 1798 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1799 if (caps & IEEE80211_C_MONITOR) 1800 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1801 if (caps & IEEE80211_C_WDS) 1802 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1803 if (caps & IEEE80211_C_MBSS) 1804 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1805 #undef ADD 1806 } 1807 1808 /* 1809 * Setup the media data structures according to the channel and 1810 * rate tables. 1811 */ 1812 static int 1813 ieee80211_media_setup(struct ieee80211com *ic, 1814 struct ifmedia *media, int caps, int addsta, 1815 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1816 { 1817 int i, j, rate, maxrate, mword, r; 1818 enum ieee80211_phymode mode; 1819 const struct ieee80211_rateset *rs; 1820 struct ieee80211_rateset allrates; 1821 1822 /* 1823 * Fill in media characteristics. 1824 */ 1825 ifmedia_init(media, 0, media_change, media_stat); 1826 maxrate = 0; 1827 /* 1828 * Add media for legacy operating modes. 1829 */ 1830 memset(&allrates, 0, sizeof(allrates)); 1831 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1832 if (isclr(ic->ic_modecaps, mode)) 1833 continue; 1834 addmedia(media, caps, addsta, mode, IFM_AUTO); 1835 if (mode == IEEE80211_MODE_AUTO) 1836 continue; 1837 rs = &ic->ic_sup_rates[mode]; 1838 for (i = 0; i < rs->rs_nrates; i++) { 1839 rate = rs->rs_rates[i]; 1840 mword = ieee80211_rate2media(ic, rate, mode); 1841 if (mword == 0) 1842 continue; 1843 addmedia(media, caps, addsta, mode, mword); 1844 /* 1845 * Add legacy rate to the collection of all rates. 1846 */ 1847 r = rate & IEEE80211_RATE_VAL; 1848 for (j = 0; j < allrates.rs_nrates; j++) 1849 if (allrates.rs_rates[j] == r) 1850 break; 1851 if (j == allrates.rs_nrates) { 1852 /* unique, add to the set */ 1853 allrates.rs_rates[j] = r; 1854 allrates.rs_nrates++; 1855 } 1856 rate = (rate & IEEE80211_RATE_VAL) / 2; 1857 if (rate > maxrate) 1858 maxrate = rate; 1859 } 1860 } 1861 for (i = 0; i < allrates.rs_nrates; i++) { 1862 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1863 IEEE80211_MODE_AUTO); 1864 if (mword == 0) 1865 continue; 1866 /* NB: remove media options from mword */ 1867 addmedia(media, caps, addsta, 1868 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1869 } 1870 /* 1871 * Add HT/11n media. Note that we do not have enough 1872 * bits in the media subtype to express the MCS so we 1873 * use a "placeholder" media subtype and any fixed MCS 1874 * must be specified with a different mechanism. 1875 */ 1876 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1877 if (isclr(ic->ic_modecaps, mode)) 1878 continue; 1879 addmedia(media, caps, addsta, mode, IFM_AUTO); 1880 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1881 } 1882 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1883 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1884 addmedia(media, caps, addsta, 1885 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1886 i = ic->ic_txstream * 8 - 1; 1887 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1888 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1889 rate = ieee80211_htrates[i].ht40_rate_400ns; 1890 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1891 rate = ieee80211_htrates[i].ht40_rate_800ns; 1892 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1893 rate = ieee80211_htrates[i].ht20_rate_400ns; 1894 else 1895 rate = ieee80211_htrates[i].ht20_rate_800ns; 1896 if (rate > maxrate) 1897 maxrate = rate; 1898 } 1899 1900 /* 1901 * Add VHT media. 1902 */ 1903 for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) { 1904 if (isclr(ic->ic_modecaps, mode)) 1905 continue; 1906 addmedia(media, caps, addsta, mode, IFM_AUTO); 1907 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 1908 1909 /* XXX TODO: VHT maxrate */ 1910 } 1911 1912 return maxrate; 1913 } 1914 1915 /* XXX inline or eliminate? */ 1916 const struct ieee80211_rateset * 1917 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1918 { 1919 /* XXX does this work for 11ng basic rates? */ 1920 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1921 } 1922 1923 /* XXX inline or eliminate? */ 1924 const struct ieee80211_htrateset * 1925 ieee80211_get_suphtrates(struct ieee80211com *ic, 1926 const struct ieee80211_channel *c) 1927 { 1928 return &ic->ic_sup_htrates; 1929 } 1930 1931 void 1932 ieee80211_announce(struct ieee80211com *ic) 1933 { 1934 int i, rate, mword; 1935 enum ieee80211_phymode mode; 1936 const struct ieee80211_rateset *rs; 1937 1938 /* NB: skip AUTO since it has no rates */ 1939 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1940 if (isclr(ic->ic_modecaps, mode)) 1941 continue; 1942 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1943 rs = &ic->ic_sup_rates[mode]; 1944 for (i = 0; i < rs->rs_nrates; i++) { 1945 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1946 if (mword == 0) 1947 continue; 1948 rate = ieee80211_media2rate(mword); 1949 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1950 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1951 } 1952 printf("\n"); 1953 } 1954 ieee80211_ht_announce(ic); 1955 ieee80211_vht_announce(ic); 1956 } 1957 1958 void 1959 ieee80211_announce_channels(struct ieee80211com *ic) 1960 { 1961 const struct ieee80211_channel *c; 1962 char type; 1963 int i, cw; 1964 1965 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1966 for (i = 0; i < ic->ic_nchans; i++) { 1967 c = &ic->ic_channels[i]; 1968 if (IEEE80211_IS_CHAN_ST(c)) 1969 type = 'S'; 1970 else if (IEEE80211_IS_CHAN_108A(c)) 1971 type = 'T'; 1972 else if (IEEE80211_IS_CHAN_108G(c)) 1973 type = 'G'; 1974 else if (IEEE80211_IS_CHAN_HT(c)) 1975 type = 'n'; 1976 else if (IEEE80211_IS_CHAN_A(c)) 1977 type = 'a'; 1978 else if (IEEE80211_IS_CHAN_ANYG(c)) 1979 type = 'g'; 1980 else if (IEEE80211_IS_CHAN_B(c)) 1981 type = 'b'; 1982 else 1983 type = 'f'; 1984 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1985 cw = 40; 1986 else if (IEEE80211_IS_CHAN_HALF(c)) 1987 cw = 10; 1988 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1989 cw = 5; 1990 else 1991 cw = 20; 1992 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1993 , c->ic_ieee, c->ic_freq, type 1994 , cw 1995 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1996 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1997 , c->ic_maxregpower 1998 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1999 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2000 ); 2001 } 2002 } 2003 2004 static int 2005 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2006 { 2007 switch (IFM_MODE(ime->ifm_media)) { 2008 case IFM_IEEE80211_11A: 2009 *mode = IEEE80211_MODE_11A; 2010 break; 2011 case IFM_IEEE80211_11B: 2012 *mode = IEEE80211_MODE_11B; 2013 break; 2014 case IFM_IEEE80211_11G: 2015 *mode = IEEE80211_MODE_11G; 2016 break; 2017 case IFM_IEEE80211_FH: 2018 *mode = IEEE80211_MODE_FH; 2019 break; 2020 case IFM_IEEE80211_11NA: 2021 *mode = IEEE80211_MODE_11NA; 2022 break; 2023 case IFM_IEEE80211_11NG: 2024 *mode = IEEE80211_MODE_11NG; 2025 break; 2026 case IFM_AUTO: 2027 *mode = IEEE80211_MODE_AUTO; 2028 break; 2029 default: 2030 return 0; 2031 } 2032 /* 2033 * Turbo mode is an ``option''. 2034 * XXX does not apply to AUTO 2035 */ 2036 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2037 if (*mode == IEEE80211_MODE_11A) { 2038 if (flags & IEEE80211_F_TURBOP) 2039 *mode = IEEE80211_MODE_TURBO_A; 2040 else 2041 *mode = IEEE80211_MODE_STURBO_A; 2042 } else if (*mode == IEEE80211_MODE_11G) 2043 *mode = IEEE80211_MODE_TURBO_G; 2044 else 2045 return 0; 2046 } 2047 /* XXX HT40 +/- */ 2048 return 1; 2049 } 2050 2051 /* 2052 * Handle a media change request on the vap interface. 2053 */ 2054 int 2055 ieee80211_media_change(struct ifnet *ifp) 2056 { 2057 struct ieee80211vap *vap = ifp->if_softc; 2058 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2059 uint16_t newmode; 2060 2061 if (!media2mode(ime, vap->iv_flags, &newmode)) 2062 return EINVAL; 2063 if (vap->iv_des_mode != newmode) { 2064 vap->iv_des_mode = newmode; 2065 /* XXX kick state machine if up+running */ 2066 } 2067 return 0; 2068 } 2069 2070 /* 2071 * Common code to calculate the media status word 2072 * from the operating mode and channel state. 2073 */ 2074 static int 2075 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2076 { 2077 int status; 2078 2079 status = IFM_IEEE80211; 2080 switch (opmode) { 2081 case IEEE80211_M_STA: 2082 break; 2083 case IEEE80211_M_IBSS: 2084 status |= IFM_IEEE80211_ADHOC; 2085 break; 2086 case IEEE80211_M_HOSTAP: 2087 status |= IFM_IEEE80211_HOSTAP; 2088 break; 2089 case IEEE80211_M_MONITOR: 2090 status |= IFM_IEEE80211_MONITOR; 2091 break; 2092 case IEEE80211_M_AHDEMO: 2093 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2094 break; 2095 case IEEE80211_M_WDS: 2096 status |= IFM_IEEE80211_WDS; 2097 break; 2098 case IEEE80211_M_MBSS: 2099 status |= IFM_IEEE80211_MBSS; 2100 break; 2101 } 2102 if (IEEE80211_IS_CHAN_HTA(chan)) { 2103 status |= IFM_IEEE80211_11NA; 2104 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2105 status |= IFM_IEEE80211_11NG; 2106 } else if (IEEE80211_IS_CHAN_A(chan)) { 2107 status |= IFM_IEEE80211_11A; 2108 } else if (IEEE80211_IS_CHAN_B(chan)) { 2109 status |= IFM_IEEE80211_11B; 2110 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2111 status |= IFM_IEEE80211_11G; 2112 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2113 status |= IFM_IEEE80211_FH; 2114 } 2115 /* XXX else complain? */ 2116 2117 if (IEEE80211_IS_CHAN_TURBO(chan)) 2118 status |= IFM_IEEE80211_TURBO; 2119 #if 0 2120 if (IEEE80211_IS_CHAN_HT20(chan)) 2121 status |= IFM_IEEE80211_HT20; 2122 if (IEEE80211_IS_CHAN_HT40(chan)) 2123 status |= IFM_IEEE80211_HT40; 2124 #endif 2125 return status; 2126 } 2127 2128 void 2129 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2130 { 2131 struct ieee80211vap *vap = ifp->if_softc; 2132 struct ieee80211com *ic = vap->iv_ic; 2133 enum ieee80211_phymode mode; 2134 2135 imr->ifm_status = IFM_AVALID; 2136 /* 2137 * NB: use the current channel's mode to lock down a xmit 2138 * rate only when running; otherwise we may have a mismatch 2139 * in which case the rate will not be convertible. 2140 */ 2141 if (vap->iv_state == IEEE80211_S_RUN || 2142 vap->iv_state == IEEE80211_S_SLEEP) { 2143 imr->ifm_status |= IFM_ACTIVE; 2144 mode = ieee80211_chan2mode(ic->ic_curchan); 2145 } else 2146 mode = IEEE80211_MODE_AUTO; 2147 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2148 /* 2149 * Calculate a current rate if possible. 2150 */ 2151 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2152 /* 2153 * A fixed rate is set, report that. 2154 */ 2155 imr->ifm_active |= ieee80211_rate2media(ic, 2156 vap->iv_txparms[mode].ucastrate, mode); 2157 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2158 /* 2159 * In station mode report the current transmit rate. 2160 */ 2161 imr->ifm_active |= ieee80211_rate2media(ic, 2162 vap->iv_bss->ni_txrate, mode); 2163 } else 2164 imr->ifm_active |= IFM_AUTO; 2165 if (imr->ifm_status & IFM_ACTIVE) 2166 imr->ifm_current = imr->ifm_active; 2167 } 2168 2169 /* 2170 * Set the current phy mode and recalculate the active channel 2171 * set based on the available channels for this mode. Also 2172 * select a new default/current channel if the current one is 2173 * inappropriate for this mode. 2174 */ 2175 int 2176 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2177 { 2178 /* 2179 * Adjust basic rates in 11b/11g supported rate set. 2180 * Note that if operating on a hal/quarter rate channel 2181 * this is a noop as those rates sets are different 2182 * and used instead. 2183 */ 2184 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2185 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2186 2187 ic->ic_curmode = mode; 2188 ieee80211_reset_erp(ic); /* reset ERP state */ 2189 2190 return 0; 2191 } 2192 2193 /* 2194 * Return the phy mode for with the specified channel. 2195 */ 2196 enum ieee80211_phymode 2197 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2198 { 2199 2200 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2201 return IEEE80211_MODE_VHT_2GHZ; 2202 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2203 return IEEE80211_MODE_VHT_5GHZ; 2204 else if (IEEE80211_IS_CHAN_HTA(chan)) 2205 return IEEE80211_MODE_11NA; 2206 else if (IEEE80211_IS_CHAN_HTG(chan)) 2207 return IEEE80211_MODE_11NG; 2208 else if (IEEE80211_IS_CHAN_108G(chan)) 2209 return IEEE80211_MODE_TURBO_G; 2210 else if (IEEE80211_IS_CHAN_ST(chan)) 2211 return IEEE80211_MODE_STURBO_A; 2212 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2213 return IEEE80211_MODE_TURBO_A; 2214 else if (IEEE80211_IS_CHAN_HALF(chan)) 2215 return IEEE80211_MODE_HALF; 2216 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2217 return IEEE80211_MODE_QUARTER; 2218 else if (IEEE80211_IS_CHAN_A(chan)) 2219 return IEEE80211_MODE_11A; 2220 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2221 return IEEE80211_MODE_11G; 2222 else if (IEEE80211_IS_CHAN_B(chan)) 2223 return IEEE80211_MODE_11B; 2224 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2225 return IEEE80211_MODE_FH; 2226 2227 /* NB: should not get here */ 2228 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2229 __func__, chan->ic_freq, chan->ic_flags); 2230 return IEEE80211_MODE_11B; 2231 } 2232 2233 struct ratemedia { 2234 u_int match; /* rate + mode */ 2235 u_int media; /* if_media rate */ 2236 }; 2237 2238 static int 2239 findmedia(const struct ratemedia rates[], int n, u_int match) 2240 { 2241 int i; 2242 2243 for (i = 0; i < n; i++) 2244 if (rates[i].match == match) 2245 return rates[i].media; 2246 return IFM_AUTO; 2247 } 2248 2249 /* 2250 * Convert IEEE80211 rate value to ifmedia subtype. 2251 * Rate is either a legacy rate in units of 0.5Mbps 2252 * or an MCS index. 2253 */ 2254 int 2255 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2256 { 2257 static const struct ratemedia rates[] = { 2258 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2259 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2260 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2261 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2262 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2263 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2264 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2265 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2266 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2267 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2268 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2269 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2270 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2271 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2272 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2273 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2274 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2275 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2276 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2277 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2278 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2279 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2280 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2281 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2282 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2283 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2284 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2285 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2286 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2287 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2288 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2289 }; 2290 static const struct ratemedia htrates[] = { 2291 { 0, IFM_IEEE80211_MCS }, 2292 { 1, IFM_IEEE80211_MCS }, 2293 { 2, IFM_IEEE80211_MCS }, 2294 { 3, IFM_IEEE80211_MCS }, 2295 { 4, IFM_IEEE80211_MCS }, 2296 { 5, IFM_IEEE80211_MCS }, 2297 { 6, IFM_IEEE80211_MCS }, 2298 { 7, IFM_IEEE80211_MCS }, 2299 { 8, IFM_IEEE80211_MCS }, 2300 { 9, IFM_IEEE80211_MCS }, 2301 { 10, IFM_IEEE80211_MCS }, 2302 { 11, IFM_IEEE80211_MCS }, 2303 { 12, IFM_IEEE80211_MCS }, 2304 { 13, IFM_IEEE80211_MCS }, 2305 { 14, IFM_IEEE80211_MCS }, 2306 { 15, IFM_IEEE80211_MCS }, 2307 { 16, IFM_IEEE80211_MCS }, 2308 { 17, IFM_IEEE80211_MCS }, 2309 { 18, IFM_IEEE80211_MCS }, 2310 { 19, IFM_IEEE80211_MCS }, 2311 { 20, IFM_IEEE80211_MCS }, 2312 { 21, IFM_IEEE80211_MCS }, 2313 { 22, IFM_IEEE80211_MCS }, 2314 { 23, IFM_IEEE80211_MCS }, 2315 { 24, IFM_IEEE80211_MCS }, 2316 { 25, IFM_IEEE80211_MCS }, 2317 { 26, IFM_IEEE80211_MCS }, 2318 { 27, IFM_IEEE80211_MCS }, 2319 { 28, IFM_IEEE80211_MCS }, 2320 { 29, IFM_IEEE80211_MCS }, 2321 { 30, IFM_IEEE80211_MCS }, 2322 { 31, IFM_IEEE80211_MCS }, 2323 { 32, IFM_IEEE80211_MCS }, 2324 { 33, IFM_IEEE80211_MCS }, 2325 { 34, IFM_IEEE80211_MCS }, 2326 { 35, IFM_IEEE80211_MCS }, 2327 { 36, IFM_IEEE80211_MCS }, 2328 { 37, IFM_IEEE80211_MCS }, 2329 { 38, IFM_IEEE80211_MCS }, 2330 { 39, IFM_IEEE80211_MCS }, 2331 { 40, IFM_IEEE80211_MCS }, 2332 { 41, IFM_IEEE80211_MCS }, 2333 { 42, IFM_IEEE80211_MCS }, 2334 { 43, IFM_IEEE80211_MCS }, 2335 { 44, IFM_IEEE80211_MCS }, 2336 { 45, IFM_IEEE80211_MCS }, 2337 { 46, IFM_IEEE80211_MCS }, 2338 { 47, IFM_IEEE80211_MCS }, 2339 { 48, IFM_IEEE80211_MCS }, 2340 { 49, IFM_IEEE80211_MCS }, 2341 { 50, IFM_IEEE80211_MCS }, 2342 { 51, IFM_IEEE80211_MCS }, 2343 { 52, IFM_IEEE80211_MCS }, 2344 { 53, IFM_IEEE80211_MCS }, 2345 { 54, IFM_IEEE80211_MCS }, 2346 { 55, IFM_IEEE80211_MCS }, 2347 { 56, IFM_IEEE80211_MCS }, 2348 { 57, IFM_IEEE80211_MCS }, 2349 { 58, IFM_IEEE80211_MCS }, 2350 { 59, IFM_IEEE80211_MCS }, 2351 { 60, IFM_IEEE80211_MCS }, 2352 { 61, IFM_IEEE80211_MCS }, 2353 { 62, IFM_IEEE80211_MCS }, 2354 { 63, IFM_IEEE80211_MCS }, 2355 { 64, IFM_IEEE80211_MCS }, 2356 { 65, IFM_IEEE80211_MCS }, 2357 { 66, IFM_IEEE80211_MCS }, 2358 { 67, IFM_IEEE80211_MCS }, 2359 { 68, IFM_IEEE80211_MCS }, 2360 { 69, IFM_IEEE80211_MCS }, 2361 { 70, IFM_IEEE80211_MCS }, 2362 { 71, IFM_IEEE80211_MCS }, 2363 { 72, IFM_IEEE80211_MCS }, 2364 { 73, IFM_IEEE80211_MCS }, 2365 { 74, IFM_IEEE80211_MCS }, 2366 { 75, IFM_IEEE80211_MCS }, 2367 { 76, IFM_IEEE80211_MCS }, 2368 }; 2369 int m; 2370 2371 /* 2372 * Check 11n rates first for match as an MCS. 2373 */ 2374 if (mode == IEEE80211_MODE_11NA) { 2375 if (rate & IEEE80211_RATE_MCS) { 2376 rate &= ~IEEE80211_RATE_MCS; 2377 m = findmedia(htrates, nitems(htrates), rate); 2378 if (m != IFM_AUTO) 2379 return m | IFM_IEEE80211_11NA; 2380 } 2381 } else if (mode == IEEE80211_MODE_11NG) { 2382 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2383 if (rate & IEEE80211_RATE_MCS) { 2384 rate &= ~IEEE80211_RATE_MCS; 2385 m = findmedia(htrates, nitems(htrates), rate); 2386 if (m != IFM_AUTO) 2387 return m | IFM_IEEE80211_11NG; 2388 } 2389 } 2390 rate &= IEEE80211_RATE_VAL; 2391 switch (mode) { 2392 case IEEE80211_MODE_11A: 2393 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2394 case IEEE80211_MODE_QUARTER: 2395 case IEEE80211_MODE_11NA: 2396 case IEEE80211_MODE_TURBO_A: 2397 case IEEE80211_MODE_STURBO_A: 2398 return findmedia(rates, nitems(rates), 2399 rate | IFM_IEEE80211_11A); 2400 case IEEE80211_MODE_11B: 2401 return findmedia(rates, nitems(rates), 2402 rate | IFM_IEEE80211_11B); 2403 case IEEE80211_MODE_FH: 2404 return findmedia(rates, nitems(rates), 2405 rate | IFM_IEEE80211_FH); 2406 case IEEE80211_MODE_AUTO: 2407 /* NB: ic may be NULL for some drivers */ 2408 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2409 return findmedia(rates, nitems(rates), 2410 rate | IFM_IEEE80211_FH); 2411 /* NB: hack, 11g matches both 11b+11a rates */ 2412 /* fall thru... */ 2413 case IEEE80211_MODE_11G: 2414 case IEEE80211_MODE_11NG: 2415 case IEEE80211_MODE_TURBO_G: 2416 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2417 case IEEE80211_MODE_VHT_2GHZ: 2418 case IEEE80211_MODE_VHT_5GHZ: 2419 /* XXX TODO: need to figure out mapping for VHT rates */ 2420 return IFM_AUTO; 2421 } 2422 return IFM_AUTO; 2423 } 2424 2425 int 2426 ieee80211_media2rate(int mword) 2427 { 2428 static const int ieeerates[] = { 2429 -1, /* IFM_AUTO */ 2430 0, /* IFM_MANUAL */ 2431 0, /* IFM_NONE */ 2432 2, /* IFM_IEEE80211_FH1 */ 2433 4, /* IFM_IEEE80211_FH2 */ 2434 2, /* IFM_IEEE80211_DS1 */ 2435 4, /* IFM_IEEE80211_DS2 */ 2436 11, /* IFM_IEEE80211_DS5 */ 2437 22, /* IFM_IEEE80211_DS11 */ 2438 44, /* IFM_IEEE80211_DS22 */ 2439 12, /* IFM_IEEE80211_OFDM6 */ 2440 18, /* IFM_IEEE80211_OFDM9 */ 2441 24, /* IFM_IEEE80211_OFDM12 */ 2442 36, /* IFM_IEEE80211_OFDM18 */ 2443 48, /* IFM_IEEE80211_OFDM24 */ 2444 72, /* IFM_IEEE80211_OFDM36 */ 2445 96, /* IFM_IEEE80211_OFDM48 */ 2446 108, /* IFM_IEEE80211_OFDM54 */ 2447 144, /* IFM_IEEE80211_OFDM72 */ 2448 0, /* IFM_IEEE80211_DS354k */ 2449 0, /* IFM_IEEE80211_DS512k */ 2450 6, /* IFM_IEEE80211_OFDM3 */ 2451 9, /* IFM_IEEE80211_OFDM4 */ 2452 54, /* IFM_IEEE80211_OFDM27 */ 2453 -1, /* IFM_IEEE80211_MCS */ 2454 -1, /* IFM_IEEE80211_VHT */ 2455 }; 2456 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2457 ieeerates[IFM_SUBTYPE(mword)] : 0; 2458 } 2459 2460 /* 2461 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2462 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2463 */ 2464 #define mix(a, b, c) \ 2465 do { \ 2466 a -= b; a -= c; a ^= (c >> 13); \ 2467 b -= c; b -= a; b ^= (a << 8); \ 2468 c -= a; c -= b; c ^= (b >> 13); \ 2469 a -= b; a -= c; a ^= (c >> 12); \ 2470 b -= c; b -= a; b ^= (a << 16); \ 2471 c -= a; c -= b; c ^= (b >> 5); \ 2472 a -= b; a -= c; a ^= (c >> 3); \ 2473 b -= c; b -= a; b ^= (a << 10); \ 2474 c -= a; c -= b; c ^= (b >> 15); \ 2475 } while (/*CONSTCOND*/0) 2476 2477 uint32_t 2478 ieee80211_mac_hash(const struct ieee80211com *ic, 2479 const uint8_t addr[IEEE80211_ADDR_LEN]) 2480 { 2481 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2482 2483 b += addr[5] << 8; 2484 b += addr[4]; 2485 a += addr[3] << 24; 2486 a += addr[2] << 16; 2487 a += addr[1] << 8; 2488 a += addr[0]; 2489 2490 mix(a, b, c); 2491 2492 return c; 2493 } 2494 #undef mix 2495 2496 char 2497 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2498 { 2499 if (IEEE80211_IS_CHAN_ST(c)) 2500 return 'S'; 2501 if (IEEE80211_IS_CHAN_108A(c)) 2502 return 'T'; 2503 if (IEEE80211_IS_CHAN_108G(c)) 2504 return 'G'; 2505 if (IEEE80211_IS_CHAN_VHT(c)) 2506 return 'v'; 2507 if (IEEE80211_IS_CHAN_HT(c)) 2508 return 'n'; 2509 if (IEEE80211_IS_CHAN_A(c)) 2510 return 'a'; 2511 if (IEEE80211_IS_CHAN_ANYG(c)) 2512 return 'g'; 2513 if (IEEE80211_IS_CHAN_B(c)) 2514 return 'b'; 2515 return 'f'; 2516 } 2517