1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 53 #include <net/bpf.h> 54 55 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 56 [IEEE80211_MODE_AUTO] = "auto", 57 [IEEE80211_MODE_11A] = "11a", 58 [IEEE80211_MODE_11B] = "11b", 59 [IEEE80211_MODE_11G] = "11g", 60 [IEEE80211_MODE_FH] = "FH", 61 [IEEE80211_MODE_TURBO_A] = "turboA", 62 [IEEE80211_MODE_TURBO_G] = "turboG", 63 [IEEE80211_MODE_STURBO_A] = "sturboA", 64 [IEEE80211_MODE_HALF] = "half", 65 [IEEE80211_MODE_QUARTER] = "quarter", 66 [IEEE80211_MODE_11NA] = "11na", 67 [IEEE80211_MODE_11NG] = "11ng", 68 }; 69 /* map ieee80211_opmode to the corresponding capability bit */ 70 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 71 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 72 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 73 [IEEE80211_M_STA] = IEEE80211_C_STA, 74 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 75 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 76 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 77 }; 78 79 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 80 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 81 82 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 83 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 84 static int ieee80211_media_setup(struct ieee80211com *ic, 85 struct ifmedia *media, int caps, int addsta, 86 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 87 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 88 static int ieee80211com_media_change(struct ifnet *); 89 static int media_status(enum ieee80211_opmode, 90 const struct ieee80211_channel *); 91 92 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 93 94 /* 95 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 96 */ 97 #define B(r) ((r) | IEEE80211_RATE_BASIC) 98 static const struct ieee80211_rateset ieee80211_rateset_11a = 99 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 100 static const struct ieee80211_rateset ieee80211_rateset_half = 101 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 102 static const struct ieee80211_rateset ieee80211_rateset_quarter = 103 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 104 static const struct ieee80211_rateset ieee80211_rateset_11b = 105 { 4, { B(2), B(4), B(11), B(22) } }; 106 /* NB: OFDM rates are handled specially based on mode */ 107 static const struct ieee80211_rateset ieee80211_rateset_11g = 108 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 109 #undef B 110 111 /* 112 * Fill in 802.11 available channel set, mark 113 * all available channels as active, and pick 114 * a default channel if not already specified. 115 */ 116 static void 117 ieee80211_chan_init(struct ieee80211com *ic) 118 { 119 #define DEFAULTRATES(m, def) do { \ 120 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 121 ic->ic_sup_rates[m] = def; \ 122 } while (0) 123 struct ieee80211_channel *c; 124 int i; 125 126 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 127 ("invalid number of channels specified: %u", ic->ic_nchans)); 128 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 129 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 130 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 131 for (i = 0; i < ic->ic_nchans; i++) { 132 c = &ic->ic_channels[i]; 133 KASSERT(c->ic_flags != 0, ("channel with no flags")); 134 /* 135 * Help drivers that work only with frequencies by filling 136 * in IEEE channel #'s if not already calculated. Note this 137 * mimics similar work done in ieee80211_setregdomain when 138 * changing regulatory state. 139 */ 140 if (c->ic_ieee == 0) 141 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 142 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 143 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 144 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 145 c->ic_flags); 146 /* default max tx power to max regulatory */ 147 if (c->ic_maxpower == 0) 148 c->ic_maxpower = 2*c->ic_maxregpower; 149 setbit(ic->ic_chan_avail, c->ic_ieee); 150 /* 151 * Identify mode capabilities. 152 */ 153 if (IEEE80211_IS_CHAN_A(c)) 154 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 155 if (IEEE80211_IS_CHAN_B(c)) 156 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 157 if (IEEE80211_IS_CHAN_ANYG(c)) 158 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 159 if (IEEE80211_IS_CHAN_FHSS(c)) 160 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 161 if (IEEE80211_IS_CHAN_108A(c)) 162 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 163 if (IEEE80211_IS_CHAN_108G(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 165 if (IEEE80211_IS_CHAN_ST(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 167 if (IEEE80211_IS_CHAN_HALF(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 169 if (IEEE80211_IS_CHAN_QUARTER(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 171 if (IEEE80211_IS_CHAN_HTA(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 173 if (IEEE80211_IS_CHAN_HTG(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 175 } 176 /* initialize candidate channels to all available */ 177 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 178 sizeof(ic->ic_chan_avail)); 179 180 /* sort channel table to allow lookup optimizations */ 181 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 182 183 /* invalidate any previous state */ 184 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 185 ic->ic_prevchan = NULL; 186 ic->ic_csa_newchan = NULL; 187 /* arbitrarily pick the first channel */ 188 ic->ic_curchan = &ic->ic_channels[0]; 189 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 190 191 /* fillin well-known rate sets if driver has not specified */ 192 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 193 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 194 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 195 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 196 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 197 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 198 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 199 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 200 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 201 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 202 203 /* 204 * Set auto mode to reset active channel state and any desired channel. 205 */ 206 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 207 #undef DEFAULTRATES 208 } 209 210 static void 211 null_update_mcast(struct ifnet *ifp) 212 { 213 if_printf(ifp, "need multicast update callback\n"); 214 } 215 216 static void 217 null_update_promisc(struct ifnet *ifp) 218 { 219 if_printf(ifp, "need promiscuous mode update callback\n"); 220 } 221 222 static int 223 null_output(struct ifnet *ifp, struct mbuf *m, 224 struct sockaddr *dst, struct route *ro) 225 { 226 if_printf(ifp, "discard raw packet\n"); 227 m_freem(m); 228 return EIO; 229 } 230 231 static void 232 null_input(struct ifnet *ifp, struct mbuf *m) 233 { 234 if_printf(ifp, "if_input should not be called\n"); 235 m_freem(m); 236 } 237 238 /* 239 * Attach/setup the common net80211 state. Called by 240 * the driver on attach to prior to creating any vap's. 241 */ 242 void 243 ieee80211_ifattach(struct ieee80211com *ic, 244 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 245 { 246 struct ifnet *ifp = ic->ic_ifp; 247 struct sockaddr_dl *sdl; 248 struct ifaddr *ifa; 249 250 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 251 252 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 253 TAILQ_INIT(&ic->ic_vaps); 254 255 /* Create a taskqueue for all state changes */ 256 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 257 taskqueue_thread_enqueue, &ic->ic_tq); 258 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq", 259 ifp->if_xname); 260 /* 261 * Fill in 802.11 available channel set, mark all 262 * available channels as active, and pick a default 263 * channel if not already specified. 264 */ 265 ieee80211_media_init(ic); 266 267 ic->ic_update_mcast = null_update_mcast; 268 ic->ic_update_promisc = null_update_promisc; 269 270 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 271 ic->ic_lintval = ic->ic_bintval; 272 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 273 274 ieee80211_crypto_attach(ic); 275 ieee80211_node_attach(ic); 276 ieee80211_power_attach(ic); 277 ieee80211_proto_attach(ic); 278 #ifdef IEEE80211_SUPPORT_SUPERG 279 ieee80211_superg_attach(ic); 280 #endif 281 ieee80211_ht_attach(ic); 282 ieee80211_scan_attach(ic); 283 ieee80211_regdomain_attach(ic); 284 285 ieee80211_sysctl_attach(ic); 286 287 ifp->if_addrlen = IEEE80211_ADDR_LEN; 288 ifp->if_hdrlen = 0; 289 if_attach(ifp); 290 ifp->if_mtu = IEEE80211_MTU_MAX; 291 ifp->if_broadcastaddr = ieee80211broadcastaddr; 292 ifp->if_output = null_output; 293 ifp->if_input = null_input; /* just in case */ 294 ifp->if_resolvemulti = NULL; /* NB: callers check */ 295 296 ifa = ifaddr_byindex(ifp->if_index); 297 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 298 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 299 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 300 sdl->sdl_alen = IEEE80211_ADDR_LEN; 301 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 302 } 303 304 /* 305 * Detach net80211 state on device detach. Tear down 306 * all vap's and reclaim all common state prior to the 307 * device state going away. Note we may call back into 308 * driver; it must be prepared for this. 309 */ 310 void 311 ieee80211_ifdetach(struct ieee80211com *ic) 312 { 313 struct ifnet *ifp = ic->ic_ifp; 314 struct ieee80211vap *vap; 315 316 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 317 ieee80211_vap_destroy(vap); 318 ieee80211_waitfor_parent(ic); 319 320 ieee80211_sysctl_detach(ic); 321 ieee80211_regdomain_detach(ic); 322 ieee80211_scan_detach(ic); 323 #ifdef IEEE80211_SUPPORT_SUPERG 324 ieee80211_superg_detach(ic); 325 #endif 326 ieee80211_ht_detach(ic); 327 /* NB: must be called before ieee80211_node_detach */ 328 ieee80211_proto_detach(ic); 329 ieee80211_crypto_detach(ic); 330 ieee80211_power_detach(ic); 331 ieee80211_node_detach(ic); 332 ifmedia_removeall(&ic->ic_media); 333 334 taskqueue_free(ic->ic_tq); 335 IEEE80211_LOCK_DESTROY(ic); 336 if_detach(ifp); 337 } 338 339 /* 340 * Default reset method for use with the ioctl support. This 341 * method is invoked after any state change in the 802.11 342 * layer that should be propagated to the hardware but not 343 * require re-initialization of the 802.11 state machine (e.g 344 * rescanning for an ap). We always return ENETRESET which 345 * should cause the driver to re-initialize the device. Drivers 346 * can override this method to implement more optimized support. 347 */ 348 static int 349 default_reset(struct ieee80211vap *vap, u_long cmd) 350 { 351 return ENETRESET; 352 } 353 354 /* 355 * Prepare a vap for use. Drivers use this call to 356 * setup net80211 state in new vap's prior attaching 357 * them with ieee80211_vap_attach (below). 358 */ 359 int 360 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 361 const char name[IFNAMSIZ], int unit, int opmode, int flags, 362 const uint8_t bssid[IEEE80211_ADDR_LEN], 363 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 364 { 365 struct ifnet *ifp; 366 367 ifp = if_alloc(IFT_ETHER); 368 if (ifp == NULL) { 369 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 370 __func__); 371 return ENOMEM; 372 } 373 if_initname(ifp, name, unit); 374 ifp->if_softc = vap; /* back pointer */ 375 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 376 ifp->if_start = ieee80211_start; 377 ifp->if_ioctl = ieee80211_ioctl; 378 ifp->if_watchdog = NULL; /* NB: no watchdog routine */ 379 ifp->if_init = ieee80211_init; 380 /* NB: input+output filled in by ether_ifattach */ 381 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 382 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 383 IFQ_SET_READY(&ifp->if_snd); 384 385 vap->iv_ifp = ifp; 386 vap->iv_ic = ic; 387 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 388 vap->iv_flags_ext = ic->ic_flags_ext; 389 vap->iv_flags_ven = ic->ic_flags_ven; 390 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 391 vap->iv_htcaps = ic->ic_htcaps; 392 vap->iv_opmode = opmode; 393 vap->iv_caps |= ieee80211_opcap[opmode]; 394 switch (opmode) { 395 case IEEE80211_M_WDS: 396 /* 397 * WDS links must specify the bssid of the far end. 398 * For legacy operation this is a static relationship. 399 * For non-legacy operation the station must associate 400 * and be authorized to pass traffic. Plumbing the 401 * vap to the proper node happens when the vap 402 * transitions to RUN state. 403 */ 404 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 405 vap->iv_flags |= IEEE80211_F_DESBSSID; 406 if (flags & IEEE80211_CLONE_WDSLEGACY) 407 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 408 break; 409 #ifdef IEEE80211_SUPPORT_TDMA 410 case IEEE80211_M_AHDEMO: 411 if (flags & IEEE80211_CLONE_TDMA) { 412 /* NB: checked before clone operation allowed */ 413 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 414 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 415 /* 416 * Propagate TDMA capability to mark vap; this 417 * cannot be removed and is used to distinguish 418 * regular ahdemo operation from ahdemo+tdma. 419 */ 420 vap->iv_caps |= IEEE80211_C_TDMA; 421 } 422 break; 423 #endif 424 } 425 /* auto-enable s/w beacon miss support */ 426 if (flags & IEEE80211_CLONE_NOBEACONS) 427 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 428 /* 429 * Enable various functionality by default if we're 430 * capable; the driver can override us if it knows better. 431 */ 432 if (vap->iv_caps & IEEE80211_C_WME) 433 vap->iv_flags |= IEEE80211_F_WME; 434 if (vap->iv_caps & IEEE80211_C_BURST) 435 vap->iv_flags |= IEEE80211_F_BURST; 436 /* NB: bg scanning only makes sense for station mode right now */ 437 if (vap->iv_opmode == IEEE80211_M_STA && 438 (vap->iv_caps & IEEE80211_C_BGSCAN)) 439 vap->iv_flags |= IEEE80211_F_BGSCAN; 440 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 441 /* NB: DFS support only makes sense for ap mode right now */ 442 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 443 (vap->iv_caps & IEEE80211_C_DFS)) 444 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 445 446 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 447 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 448 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 449 /* 450 * Install a default reset method for the ioctl support; 451 * the driver can override this. 452 */ 453 vap->iv_reset = default_reset; 454 455 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 456 457 ieee80211_sysctl_vattach(vap); 458 ieee80211_crypto_vattach(vap); 459 ieee80211_node_vattach(vap); 460 ieee80211_power_vattach(vap); 461 ieee80211_proto_vattach(vap); 462 #ifdef IEEE80211_SUPPORT_SUPERG 463 ieee80211_superg_vattach(vap); 464 #endif 465 ieee80211_ht_vattach(vap); 466 ieee80211_scan_vattach(vap); 467 ieee80211_regdomain_vattach(vap); 468 ieee80211_radiotap_vattach(vap); 469 470 return 0; 471 } 472 473 /* 474 * Activate a vap. State should have been prepared with a 475 * call to ieee80211_vap_setup and by the driver. On return 476 * from this call the vap is ready for use. 477 */ 478 int 479 ieee80211_vap_attach(struct ieee80211vap *vap, 480 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 481 { 482 struct ifnet *ifp = vap->iv_ifp; 483 struct ieee80211com *ic = vap->iv_ic; 484 struct ifmediareq imr; 485 int maxrate; 486 487 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 488 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 489 __func__, ieee80211_opmode_name[vap->iv_opmode], 490 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 491 492 /* 493 * Do late attach work that cannot happen until after 494 * the driver has had a chance to override defaults. 495 */ 496 ieee80211_node_latevattach(vap); 497 ieee80211_power_latevattach(vap); 498 499 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 500 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 501 ieee80211_media_status(ifp, &imr); 502 /* NB: strip explicit mode; we're actually in autoselect */ 503 ifmedia_set(&vap->iv_media, 504 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 505 if (maxrate) 506 ifp->if_baudrate = IF_Mbps(maxrate); 507 508 ether_ifattach(ifp, vap->iv_myaddr); 509 /* hook output method setup by ether_ifattach */ 510 vap->iv_output = ifp->if_output; 511 ifp->if_output = ieee80211_output; 512 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 513 514 IEEE80211_LOCK(ic); 515 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 516 if (vap->iv_opmode == IEEE80211_M_MONITOR) 517 ic->ic_monvaps++; 518 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 519 #ifdef IEEE80211_SUPPORT_SUPERG 520 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 521 #endif 522 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 523 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 524 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT); 525 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40); 526 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 527 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 528 IEEE80211_UNLOCK(ic); 529 530 return 1; 531 } 532 533 /* 534 * Tear down vap state and reclaim the ifnet. 535 * The driver is assumed to have prepared for 536 * this; e.g. by turning off interrupts for the 537 * underlying device. 538 */ 539 void 540 ieee80211_vap_detach(struct ieee80211vap *vap) 541 { 542 struct ieee80211com *ic = vap->iv_ic; 543 struct ifnet *ifp = vap->iv_ifp; 544 545 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 546 __func__, ieee80211_opmode_name[vap->iv_opmode], 547 ic->ic_ifp->if_xname); 548 549 IEEE80211_LOCK(ic); 550 /* block traffic from above */ 551 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 552 /* 553 * Evil hack. Clear the backpointer from the ifnet to the 554 * vap so any requests from above will return an error or 555 * be ignored. In particular this short-circuits requests 556 * by the bridge to turn off promiscuous mode as a result 557 * of calling ether_ifdetach. 558 */ 559 ifp->if_softc = NULL; 560 /* 561 * Stop the vap before detaching the ifnet. Ideally we'd 562 * do this in the other order so the ifnet is inaccessible 563 * while we cleanup internal state but that is hard. 564 */ 565 ieee80211_stop_locked(vap); 566 IEEE80211_UNLOCK(ic); 567 568 /* 569 * Flush any deferred vap tasks. 570 * NB: must be before ether_ifdetach() and removal from ic_vaps list 571 */ 572 ieee80211_draintask(ic, &vap->iv_nstate_task); 573 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 574 575 IEEE80211_LOCK(ic); 576 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 577 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 578 if (vap->iv_opmode == IEEE80211_M_MONITOR) 579 ic->ic_monvaps--; 580 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 581 #ifdef IEEE80211_SUPPORT_SUPERG 582 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 583 #endif 584 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 585 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 586 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT); 587 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40); 588 /* NB: this handles the bpfdetach done below */ 589 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 590 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 591 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 592 IEEE80211_UNLOCK(ic); 593 594 /* XXX can't hold com lock */ 595 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 596 ether_ifdetach(ifp); 597 598 ifmedia_removeall(&vap->iv_media); 599 600 ieee80211_radiotap_vdetach(vap); 601 ieee80211_regdomain_vdetach(vap); 602 ieee80211_scan_vdetach(vap); 603 #ifdef IEEE80211_SUPPORT_SUPERG 604 ieee80211_superg_vdetach(vap); 605 #endif 606 ieee80211_ht_vdetach(vap); 607 /* NB: must be before ieee80211_node_vdetach */ 608 ieee80211_proto_vdetach(vap); 609 ieee80211_crypto_vdetach(vap); 610 ieee80211_power_vdetach(vap); 611 ieee80211_node_vdetach(vap); 612 ieee80211_sysctl_vdetach(vap); 613 614 if_free(ifp); 615 } 616 617 /* 618 * Synchronize flag bit state in the parent ifnet structure 619 * according to the state of all vap ifnet's. This is used, 620 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 621 */ 622 void 623 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 624 { 625 struct ifnet *ifp = ic->ic_ifp; 626 struct ieee80211vap *vap; 627 int bit, oflags; 628 629 IEEE80211_LOCK_ASSERT(ic); 630 631 bit = 0; 632 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 633 if (vap->iv_ifp->if_flags & flag) { 634 /* 635 * XXX the bridge sets PROMISC but we don't want to 636 * enable it on the device, discard here so all the 637 * drivers don't need to special-case it 638 */ 639 if (flag == IFF_PROMISC && 640 vap->iv_opmode == IEEE80211_M_HOSTAP) 641 continue; 642 bit = 1; 643 break; 644 } 645 oflags = ifp->if_flags; 646 if (bit) 647 ifp->if_flags |= flag; 648 else 649 ifp->if_flags &= ~flag; 650 if ((ifp->if_flags ^ oflags) & flag) { 651 /* XXX should we return 1/0 and let caller do this? */ 652 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 653 if (flag == IFF_PROMISC) 654 ieee80211_runtask(ic, &ic->ic_promisc_task); 655 else if (flag == IFF_ALLMULTI) 656 ieee80211_runtask(ic, &ic->ic_mcast_task); 657 } 658 } 659 } 660 661 /* 662 * Synchronize flag bit state in the com structure 663 * according to the state of all vap's. This is used, 664 * for example, to handle state changes via ioctls. 665 */ 666 static void 667 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 668 { 669 struct ieee80211vap *vap; 670 int bit; 671 672 IEEE80211_LOCK_ASSERT(ic); 673 674 bit = 0; 675 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 676 if (vap->iv_flags & flag) { 677 bit = 1; 678 break; 679 } 680 if (bit) 681 ic->ic_flags |= flag; 682 else 683 ic->ic_flags &= ~flag; 684 } 685 686 void 687 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 688 { 689 struct ieee80211com *ic = vap->iv_ic; 690 691 IEEE80211_LOCK(ic); 692 if (flag < 0) { 693 flag = -flag; 694 vap->iv_flags &= ~flag; 695 } else 696 vap->iv_flags |= flag; 697 ieee80211_syncflag_locked(ic, flag); 698 IEEE80211_UNLOCK(ic); 699 } 700 701 /* 702 * Synchronize flag bit state in the com structure 703 * according to the state of all vap's. This is used, 704 * for example, to handle state changes via ioctls. 705 */ 706 static void 707 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 708 { 709 struct ieee80211vap *vap; 710 int bit; 711 712 IEEE80211_LOCK_ASSERT(ic); 713 714 bit = 0; 715 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 716 if (vap->iv_flags_ext & flag) { 717 bit = 1; 718 break; 719 } 720 if (bit) 721 ic->ic_flags_ext |= flag; 722 else 723 ic->ic_flags_ext &= ~flag; 724 } 725 726 void 727 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 728 { 729 struct ieee80211com *ic = vap->iv_ic; 730 731 IEEE80211_LOCK(ic); 732 if (flag < 0) { 733 flag = -flag; 734 vap->iv_flags_ext &= ~flag; 735 } else 736 vap->iv_flags_ext |= flag; 737 ieee80211_syncflag_ext_locked(ic, flag); 738 IEEE80211_UNLOCK(ic); 739 } 740 741 static __inline int 742 mapgsm(u_int freq, u_int flags) 743 { 744 freq *= 10; 745 if (flags & IEEE80211_CHAN_QUARTER) 746 freq += 5; 747 else if (flags & IEEE80211_CHAN_HALF) 748 freq += 10; 749 else 750 freq += 20; 751 /* NB: there is no 907/20 wide but leave room */ 752 return (freq - 906*10) / 5; 753 } 754 755 static __inline int 756 mappsb(u_int freq, u_int flags) 757 { 758 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 759 } 760 761 /* 762 * Convert MHz frequency to IEEE channel number. 763 */ 764 int 765 ieee80211_mhz2ieee(u_int freq, u_int flags) 766 { 767 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 768 if (flags & IEEE80211_CHAN_GSM) 769 return mapgsm(freq, flags); 770 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 771 if (freq == 2484) 772 return 14; 773 if (freq < 2484) 774 return ((int) freq - 2407) / 5; 775 else 776 return 15 + ((freq - 2512) / 20); 777 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 778 if (freq <= 5000) { 779 /* XXX check regdomain? */ 780 if (IS_FREQ_IN_PSB(freq)) 781 return mappsb(freq, flags); 782 return (freq - 4000) / 5; 783 } else 784 return (freq - 5000) / 5; 785 } else { /* either, guess */ 786 if (freq == 2484) 787 return 14; 788 if (freq < 2484) { 789 if (907 <= freq && freq <= 922) 790 return mapgsm(freq, flags); 791 return ((int) freq - 2407) / 5; 792 } 793 if (freq < 5000) { 794 if (IS_FREQ_IN_PSB(freq)) 795 return mappsb(freq, flags); 796 else if (freq > 4900) 797 return (freq - 4000) / 5; 798 else 799 return 15 + ((freq - 2512) / 20); 800 } 801 return (freq - 5000) / 5; 802 } 803 #undef IS_FREQ_IN_PSB 804 } 805 806 /* 807 * Convert channel to IEEE channel number. 808 */ 809 int 810 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 811 { 812 if (c == NULL) { 813 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 814 return 0; /* XXX */ 815 } 816 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 817 } 818 819 /* 820 * Convert IEEE channel number to MHz frequency. 821 */ 822 u_int 823 ieee80211_ieee2mhz(u_int chan, u_int flags) 824 { 825 if (flags & IEEE80211_CHAN_GSM) 826 return 907 + 5 * (chan / 10); 827 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 828 if (chan == 14) 829 return 2484; 830 if (chan < 14) 831 return 2407 + chan*5; 832 else 833 return 2512 + ((chan-15)*20); 834 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 835 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 836 chan -= 37; 837 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 838 } 839 return 5000 + (chan*5); 840 } else { /* either, guess */ 841 /* XXX can't distinguish PSB+GSM channels */ 842 if (chan == 14) 843 return 2484; 844 if (chan < 14) /* 0-13 */ 845 return 2407 + chan*5; 846 if (chan < 27) /* 15-26 */ 847 return 2512 + ((chan-15)*20); 848 return 5000 + (chan*5); 849 } 850 } 851 852 /* 853 * Locate a channel given a frequency+flags. We cache 854 * the previous lookup to optimize switching between two 855 * channels--as happens with dynamic turbo. 856 */ 857 struct ieee80211_channel * 858 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 859 { 860 struct ieee80211_channel *c; 861 int i; 862 863 flags &= IEEE80211_CHAN_ALLTURBO; 864 c = ic->ic_prevchan; 865 if (c != NULL && c->ic_freq == freq && 866 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 867 return c; 868 /* brute force search */ 869 for (i = 0; i < ic->ic_nchans; i++) { 870 c = &ic->ic_channels[i]; 871 if (c->ic_freq == freq && 872 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 873 return c; 874 } 875 return NULL; 876 } 877 878 /* 879 * Locate a channel given a channel number+flags. We cache 880 * the previous lookup to optimize switching between two 881 * channels--as happens with dynamic turbo. 882 */ 883 struct ieee80211_channel * 884 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 885 { 886 struct ieee80211_channel *c; 887 int i; 888 889 flags &= IEEE80211_CHAN_ALLTURBO; 890 c = ic->ic_prevchan; 891 if (c != NULL && c->ic_ieee == ieee && 892 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 893 return c; 894 /* brute force search */ 895 for (i = 0; i < ic->ic_nchans; i++) { 896 c = &ic->ic_channels[i]; 897 if (c->ic_ieee == ieee && 898 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 899 return c; 900 } 901 return NULL; 902 } 903 904 static void 905 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 906 { 907 #define ADD(_ic, _s, _o) \ 908 ifmedia_add(media, \ 909 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 910 static const u_int mopts[IEEE80211_MODE_MAX] = { 911 [IEEE80211_MODE_AUTO] = IFM_AUTO, 912 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 913 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 914 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 915 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 916 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 917 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 918 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 919 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 920 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 921 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 922 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 923 }; 924 u_int mopt; 925 926 mopt = mopts[mode]; 927 if (addsta) 928 ADD(ic, mword, mopt); /* STA mode has no cap */ 929 if (caps & IEEE80211_C_IBSS) 930 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 931 if (caps & IEEE80211_C_HOSTAP) 932 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 933 if (caps & IEEE80211_C_AHDEMO) 934 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 935 if (caps & IEEE80211_C_MONITOR) 936 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 937 if (caps & IEEE80211_C_WDS) 938 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 939 #undef ADD 940 } 941 942 /* 943 * Setup the media data structures according to the channel and 944 * rate tables. 945 */ 946 static int 947 ieee80211_media_setup(struct ieee80211com *ic, 948 struct ifmedia *media, int caps, int addsta, 949 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 950 { 951 int i, j, mode, rate, maxrate, mword, r; 952 const struct ieee80211_rateset *rs; 953 struct ieee80211_rateset allrates; 954 955 /* 956 * Fill in media characteristics. 957 */ 958 ifmedia_init(media, 0, media_change, media_stat); 959 maxrate = 0; 960 /* 961 * Add media for legacy operating modes. 962 */ 963 memset(&allrates, 0, sizeof(allrates)); 964 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 965 if (isclr(ic->ic_modecaps, mode)) 966 continue; 967 addmedia(media, caps, addsta, mode, IFM_AUTO); 968 if (mode == IEEE80211_MODE_AUTO) 969 continue; 970 rs = &ic->ic_sup_rates[mode]; 971 for (i = 0; i < rs->rs_nrates; i++) { 972 rate = rs->rs_rates[i]; 973 mword = ieee80211_rate2media(ic, rate, mode); 974 if (mword == 0) 975 continue; 976 addmedia(media, caps, addsta, mode, mword); 977 /* 978 * Add legacy rate to the collection of all rates. 979 */ 980 r = rate & IEEE80211_RATE_VAL; 981 for (j = 0; j < allrates.rs_nrates; j++) 982 if (allrates.rs_rates[j] == r) 983 break; 984 if (j == allrates.rs_nrates) { 985 /* unique, add to the set */ 986 allrates.rs_rates[j] = r; 987 allrates.rs_nrates++; 988 } 989 rate = (rate & IEEE80211_RATE_VAL) / 2; 990 if (rate > maxrate) 991 maxrate = rate; 992 } 993 } 994 for (i = 0; i < allrates.rs_nrates; i++) { 995 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 996 IEEE80211_MODE_AUTO); 997 if (mword == 0) 998 continue; 999 /* NB: remove media options from mword */ 1000 addmedia(media, caps, addsta, 1001 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1002 } 1003 /* 1004 * Add HT/11n media. Note that we do not have enough 1005 * bits in the media subtype to express the MCS so we 1006 * use a "placeholder" media subtype and any fixed MCS 1007 * must be specified with a different mechanism. 1008 */ 1009 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1010 if (isclr(ic->ic_modecaps, mode)) 1011 continue; 1012 addmedia(media, caps, addsta, mode, IFM_AUTO); 1013 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1014 } 1015 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1016 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1017 addmedia(media, caps, addsta, 1018 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1019 /* XXX could walk htrates */ 1020 /* XXX known array size */ 1021 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1022 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1023 } 1024 return maxrate; 1025 } 1026 1027 void 1028 ieee80211_media_init(struct ieee80211com *ic) 1029 { 1030 struct ifnet *ifp = ic->ic_ifp; 1031 int maxrate; 1032 1033 /* NB: this works because the structure is initialized to zero */ 1034 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1035 /* 1036 * We are re-initializing the channel list; clear 1037 * the existing media state as the media routines 1038 * don't suppress duplicates. 1039 */ 1040 ifmedia_removeall(&ic->ic_media); 1041 } 1042 ieee80211_chan_init(ic); 1043 1044 /* 1045 * Recalculate media settings in case new channel list changes 1046 * the set of available modes. 1047 */ 1048 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1049 ieee80211com_media_change, ieee80211com_media_status); 1050 /* NB: strip explicit mode; we're actually in autoselect */ 1051 ifmedia_set(&ic->ic_media, 1052 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1053 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1054 if (maxrate) 1055 ifp->if_baudrate = IF_Mbps(maxrate); 1056 1057 /* XXX need to propagate new media settings to vap's */ 1058 } 1059 1060 /* XXX inline or eliminate? */ 1061 const struct ieee80211_rateset * 1062 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1063 { 1064 /* XXX does this work for 11ng basic rates? */ 1065 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1066 } 1067 1068 void 1069 ieee80211_announce(struct ieee80211com *ic) 1070 { 1071 struct ifnet *ifp = ic->ic_ifp; 1072 int i, mode, rate, mword; 1073 const struct ieee80211_rateset *rs; 1074 1075 /* NB: skip AUTO since it has no rates */ 1076 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1077 if (isclr(ic->ic_modecaps, mode)) 1078 continue; 1079 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1080 rs = &ic->ic_sup_rates[mode]; 1081 for (i = 0; i < rs->rs_nrates; i++) { 1082 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1083 if (mword == 0) 1084 continue; 1085 rate = ieee80211_media2rate(mword); 1086 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1087 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1088 } 1089 printf("\n"); 1090 } 1091 ieee80211_ht_announce(ic); 1092 } 1093 1094 void 1095 ieee80211_announce_channels(struct ieee80211com *ic) 1096 { 1097 const struct ieee80211_channel *c; 1098 char type; 1099 int i, cw; 1100 1101 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1102 for (i = 0; i < ic->ic_nchans; i++) { 1103 c = &ic->ic_channels[i]; 1104 if (IEEE80211_IS_CHAN_ST(c)) 1105 type = 'S'; 1106 else if (IEEE80211_IS_CHAN_108A(c)) 1107 type = 'T'; 1108 else if (IEEE80211_IS_CHAN_108G(c)) 1109 type = 'G'; 1110 else if (IEEE80211_IS_CHAN_HT(c)) 1111 type = 'n'; 1112 else if (IEEE80211_IS_CHAN_A(c)) 1113 type = 'a'; 1114 else if (IEEE80211_IS_CHAN_ANYG(c)) 1115 type = 'g'; 1116 else if (IEEE80211_IS_CHAN_B(c)) 1117 type = 'b'; 1118 else 1119 type = 'f'; 1120 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1121 cw = 40; 1122 else if (IEEE80211_IS_CHAN_HALF(c)) 1123 cw = 10; 1124 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1125 cw = 5; 1126 else 1127 cw = 20; 1128 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1129 , c->ic_ieee, c->ic_freq, type 1130 , cw 1131 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1132 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1133 , c->ic_maxregpower 1134 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1135 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1136 ); 1137 } 1138 } 1139 1140 static int 1141 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1142 { 1143 switch (IFM_MODE(ime->ifm_media)) { 1144 case IFM_IEEE80211_11A: 1145 *mode = IEEE80211_MODE_11A; 1146 break; 1147 case IFM_IEEE80211_11B: 1148 *mode = IEEE80211_MODE_11B; 1149 break; 1150 case IFM_IEEE80211_11G: 1151 *mode = IEEE80211_MODE_11G; 1152 break; 1153 case IFM_IEEE80211_FH: 1154 *mode = IEEE80211_MODE_FH; 1155 break; 1156 case IFM_IEEE80211_11NA: 1157 *mode = IEEE80211_MODE_11NA; 1158 break; 1159 case IFM_IEEE80211_11NG: 1160 *mode = IEEE80211_MODE_11NG; 1161 break; 1162 case IFM_AUTO: 1163 *mode = IEEE80211_MODE_AUTO; 1164 break; 1165 default: 1166 return 0; 1167 } 1168 /* 1169 * Turbo mode is an ``option''. 1170 * XXX does not apply to AUTO 1171 */ 1172 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1173 if (*mode == IEEE80211_MODE_11A) { 1174 if (flags & IEEE80211_F_TURBOP) 1175 *mode = IEEE80211_MODE_TURBO_A; 1176 else 1177 *mode = IEEE80211_MODE_STURBO_A; 1178 } else if (*mode == IEEE80211_MODE_11G) 1179 *mode = IEEE80211_MODE_TURBO_G; 1180 else 1181 return 0; 1182 } 1183 /* XXX HT40 +/- */ 1184 return 1; 1185 } 1186 1187 /* 1188 * Handle a media change request on the underlying interface. 1189 */ 1190 int 1191 ieee80211com_media_change(struct ifnet *ifp) 1192 { 1193 return EINVAL; 1194 } 1195 1196 /* 1197 * Handle a media change request on the vap interface. 1198 */ 1199 int 1200 ieee80211_media_change(struct ifnet *ifp) 1201 { 1202 struct ieee80211vap *vap = ifp->if_softc; 1203 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1204 uint16_t newmode; 1205 1206 if (!media2mode(ime, vap->iv_flags, &newmode)) 1207 return EINVAL; 1208 if (vap->iv_des_mode != newmode) { 1209 vap->iv_des_mode = newmode; 1210 return ENETRESET; 1211 } 1212 return 0; 1213 } 1214 1215 /* 1216 * Common code to calculate the media status word 1217 * from the operating mode and channel state. 1218 */ 1219 static int 1220 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1221 { 1222 int status; 1223 1224 status = IFM_IEEE80211; 1225 switch (opmode) { 1226 case IEEE80211_M_STA: 1227 break; 1228 case IEEE80211_M_IBSS: 1229 status |= IFM_IEEE80211_ADHOC; 1230 break; 1231 case IEEE80211_M_HOSTAP: 1232 status |= IFM_IEEE80211_HOSTAP; 1233 break; 1234 case IEEE80211_M_MONITOR: 1235 status |= IFM_IEEE80211_MONITOR; 1236 break; 1237 case IEEE80211_M_AHDEMO: 1238 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1239 break; 1240 case IEEE80211_M_WDS: 1241 status |= IFM_IEEE80211_WDS; 1242 break; 1243 } 1244 if (IEEE80211_IS_CHAN_HTA(chan)) { 1245 status |= IFM_IEEE80211_11NA; 1246 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1247 status |= IFM_IEEE80211_11NG; 1248 } else if (IEEE80211_IS_CHAN_A(chan)) { 1249 status |= IFM_IEEE80211_11A; 1250 } else if (IEEE80211_IS_CHAN_B(chan)) { 1251 status |= IFM_IEEE80211_11B; 1252 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1253 status |= IFM_IEEE80211_11G; 1254 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1255 status |= IFM_IEEE80211_FH; 1256 } 1257 /* XXX else complain? */ 1258 1259 if (IEEE80211_IS_CHAN_TURBO(chan)) 1260 status |= IFM_IEEE80211_TURBO; 1261 #if 0 1262 if (IEEE80211_IS_CHAN_HT20(chan)) 1263 status |= IFM_IEEE80211_HT20; 1264 if (IEEE80211_IS_CHAN_HT40(chan)) 1265 status |= IFM_IEEE80211_HT40; 1266 #endif 1267 return status; 1268 } 1269 1270 static void 1271 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1272 { 1273 struct ieee80211com *ic = ifp->if_l2com; 1274 struct ieee80211vap *vap; 1275 1276 imr->ifm_status = IFM_AVALID; 1277 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1278 if (vap->iv_ifp->if_flags & IFF_UP) { 1279 imr->ifm_status |= IFM_ACTIVE; 1280 break; 1281 } 1282 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1283 if (imr->ifm_status & IFM_ACTIVE) 1284 imr->ifm_current = imr->ifm_active; 1285 } 1286 1287 void 1288 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1289 { 1290 struct ieee80211vap *vap = ifp->if_softc; 1291 struct ieee80211com *ic = vap->iv_ic; 1292 enum ieee80211_phymode mode; 1293 1294 imr->ifm_status = IFM_AVALID; 1295 /* 1296 * NB: use the current channel's mode to lock down a xmit 1297 * rate only when running; otherwise we may have a mismatch 1298 * in which case the rate will not be convertible. 1299 */ 1300 if (vap->iv_state == IEEE80211_S_RUN) { 1301 imr->ifm_status |= IFM_ACTIVE; 1302 mode = ieee80211_chan2mode(ic->ic_curchan); 1303 } else 1304 mode = IEEE80211_MODE_AUTO; 1305 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1306 /* 1307 * Calculate a current rate if possible. 1308 */ 1309 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1310 /* 1311 * A fixed rate is set, report that. 1312 */ 1313 imr->ifm_active |= ieee80211_rate2media(ic, 1314 vap->iv_txparms[mode].ucastrate, mode); 1315 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1316 /* 1317 * In station mode report the current transmit rate. 1318 */ 1319 imr->ifm_active |= ieee80211_rate2media(ic, 1320 vap->iv_bss->ni_txrate, mode); 1321 } else 1322 imr->ifm_active |= IFM_AUTO; 1323 if (imr->ifm_status & IFM_ACTIVE) 1324 imr->ifm_current = imr->ifm_active; 1325 } 1326 1327 /* 1328 * Set the current phy mode and recalculate the active channel 1329 * set based on the available channels for this mode. Also 1330 * select a new default/current channel if the current one is 1331 * inappropriate for this mode. 1332 */ 1333 int 1334 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1335 { 1336 /* 1337 * Adjust basic rates in 11b/11g supported rate set. 1338 * Note that if operating on a hal/quarter rate channel 1339 * this is a noop as those rates sets are different 1340 * and used instead. 1341 */ 1342 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1343 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1344 1345 ic->ic_curmode = mode; 1346 ieee80211_reset_erp(ic); /* reset ERP state */ 1347 1348 return 0; 1349 } 1350 1351 /* 1352 * Return the phy mode for with the specified channel. 1353 */ 1354 enum ieee80211_phymode 1355 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1356 { 1357 1358 if (IEEE80211_IS_CHAN_HTA(chan)) 1359 return IEEE80211_MODE_11NA; 1360 else if (IEEE80211_IS_CHAN_HTG(chan)) 1361 return IEEE80211_MODE_11NG; 1362 else if (IEEE80211_IS_CHAN_108G(chan)) 1363 return IEEE80211_MODE_TURBO_G; 1364 else if (IEEE80211_IS_CHAN_ST(chan)) 1365 return IEEE80211_MODE_STURBO_A; 1366 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1367 return IEEE80211_MODE_TURBO_A; 1368 else if (IEEE80211_IS_CHAN_HALF(chan)) 1369 return IEEE80211_MODE_HALF; 1370 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1371 return IEEE80211_MODE_QUARTER; 1372 else if (IEEE80211_IS_CHAN_A(chan)) 1373 return IEEE80211_MODE_11A; 1374 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1375 return IEEE80211_MODE_11G; 1376 else if (IEEE80211_IS_CHAN_B(chan)) 1377 return IEEE80211_MODE_11B; 1378 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1379 return IEEE80211_MODE_FH; 1380 1381 /* NB: should not get here */ 1382 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1383 __func__, chan->ic_freq, chan->ic_flags); 1384 return IEEE80211_MODE_11B; 1385 } 1386 1387 struct ratemedia { 1388 u_int match; /* rate + mode */ 1389 u_int media; /* if_media rate */ 1390 }; 1391 1392 static int 1393 findmedia(const struct ratemedia rates[], int n, u_int match) 1394 { 1395 int i; 1396 1397 for (i = 0; i < n; i++) 1398 if (rates[i].match == match) 1399 return rates[i].media; 1400 return IFM_AUTO; 1401 } 1402 1403 /* 1404 * Convert IEEE80211 rate value to ifmedia subtype. 1405 * Rate is either a legacy rate in units of 0.5Mbps 1406 * or an MCS index. 1407 */ 1408 int 1409 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1410 { 1411 #define N(a) (sizeof(a) / sizeof(a[0])) 1412 static const struct ratemedia rates[] = { 1413 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1414 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1415 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1416 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1417 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1418 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1419 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1420 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1421 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1422 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1423 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1424 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1425 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1426 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1427 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1428 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1429 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1430 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1431 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1432 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1433 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1434 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1435 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1436 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1437 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1438 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1439 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1440 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1441 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1442 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1443 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1444 }; 1445 static const struct ratemedia htrates[] = { 1446 { 0, IFM_IEEE80211_MCS }, 1447 { 1, IFM_IEEE80211_MCS }, 1448 { 2, IFM_IEEE80211_MCS }, 1449 { 3, IFM_IEEE80211_MCS }, 1450 { 4, IFM_IEEE80211_MCS }, 1451 { 5, IFM_IEEE80211_MCS }, 1452 { 6, IFM_IEEE80211_MCS }, 1453 { 7, IFM_IEEE80211_MCS }, 1454 { 8, IFM_IEEE80211_MCS }, 1455 { 9, IFM_IEEE80211_MCS }, 1456 { 10, IFM_IEEE80211_MCS }, 1457 { 11, IFM_IEEE80211_MCS }, 1458 { 12, IFM_IEEE80211_MCS }, 1459 { 13, IFM_IEEE80211_MCS }, 1460 { 14, IFM_IEEE80211_MCS }, 1461 { 15, IFM_IEEE80211_MCS }, 1462 }; 1463 int m; 1464 1465 /* 1466 * Check 11n rates first for match as an MCS. 1467 */ 1468 if (mode == IEEE80211_MODE_11NA) { 1469 if (rate & IEEE80211_RATE_MCS) { 1470 rate &= ~IEEE80211_RATE_MCS; 1471 m = findmedia(htrates, N(htrates), rate); 1472 if (m != IFM_AUTO) 1473 return m | IFM_IEEE80211_11NA; 1474 } 1475 } else if (mode == IEEE80211_MODE_11NG) { 1476 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1477 if (rate & IEEE80211_RATE_MCS) { 1478 rate &= ~IEEE80211_RATE_MCS; 1479 m = findmedia(htrates, N(htrates), rate); 1480 if (m != IFM_AUTO) 1481 return m | IFM_IEEE80211_11NG; 1482 } 1483 } 1484 rate &= IEEE80211_RATE_VAL; 1485 switch (mode) { 1486 case IEEE80211_MODE_11A: 1487 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1488 case IEEE80211_MODE_QUARTER: 1489 case IEEE80211_MODE_11NA: 1490 case IEEE80211_MODE_TURBO_A: 1491 case IEEE80211_MODE_STURBO_A: 1492 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1493 case IEEE80211_MODE_11B: 1494 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1495 case IEEE80211_MODE_FH: 1496 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1497 case IEEE80211_MODE_AUTO: 1498 /* NB: ic may be NULL for some drivers */ 1499 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1500 return findmedia(rates, N(rates), 1501 rate | IFM_IEEE80211_FH); 1502 /* NB: hack, 11g matches both 11b+11a rates */ 1503 /* fall thru... */ 1504 case IEEE80211_MODE_11G: 1505 case IEEE80211_MODE_11NG: 1506 case IEEE80211_MODE_TURBO_G: 1507 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1508 } 1509 return IFM_AUTO; 1510 #undef N 1511 } 1512 1513 int 1514 ieee80211_media2rate(int mword) 1515 { 1516 #define N(a) (sizeof(a) / sizeof(a[0])) 1517 static const int ieeerates[] = { 1518 -1, /* IFM_AUTO */ 1519 0, /* IFM_MANUAL */ 1520 0, /* IFM_NONE */ 1521 2, /* IFM_IEEE80211_FH1 */ 1522 4, /* IFM_IEEE80211_FH2 */ 1523 2, /* IFM_IEEE80211_DS1 */ 1524 4, /* IFM_IEEE80211_DS2 */ 1525 11, /* IFM_IEEE80211_DS5 */ 1526 22, /* IFM_IEEE80211_DS11 */ 1527 44, /* IFM_IEEE80211_DS22 */ 1528 12, /* IFM_IEEE80211_OFDM6 */ 1529 18, /* IFM_IEEE80211_OFDM9 */ 1530 24, /* IFM_IEEE80211_OFDM12 */ 1531 36, /* IFM_IEEE80211_OFDM18 */ 1532 48, /* IFM_IEEE80211_OFDM24 */ 1533 72, /* IFM_IEEE80211_OFDM36 */ 1534 96, /* IFM_IEEE80211_OFDM48 */ 1535 108, /* IFM_IEEE80211_OFDM54 */ 1536 144, /* IFM_IEEE80211_OFDM72 */ 1537 0, /* IFM_IEEE80211_DS354k */ 1538 0, /* IFM_IEEE80211_DS512k */ 1539 6, /* IFM_IEEE80211_OFDM3 */ 1540 9, /* IFM_IEEE80211_OFDM4 */ 1541 54, /* IFM_IEEE80211_OFDM27 */ 1542 -1, /* IFM_IEEE80211_MCS */ 1543 }; 1544 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1545 ieeerates[IFM_SUBTYPE(mword)] : 0; 1546 #undef N 1547 } 1548