1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/socket.h> 42 #include <sys/sbuf.h> 43 44 #include <machine/stdarg.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 #include <net/ethernet.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #include <net80211/ieee80211_ratectl.h> 59 #include <net80211/ieee80211_vht.h> 60 61 #include <net/bpf.h> 62 63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 64 [IEEE80211_MODE_AUTO] = "auto", 65 [IEEE80211_MODE_11A] = "11a", 66 [IEEE80211_MODE_11B] = "11b", 67 [IEEE80211_MODE_11G] = "11g", 68 [IEEE80211_MODE_FH] = "FH", 69 [IEEE80211_MODE_TURBO_A] = "turboA", 70 [IEEE80211_MODE_TURBO_G] = "turboG", 71 [IEEE80211_MODE_STURBO_A] = "sturboA", 72 [IEEE80211_MODE_HALF] = "half", 73 [IEEE80211_MODE_QUARTER] = "quarter", 74 [IEEE80211_MODE_11NA] = "11na", 75 [IEEE80211_MODE_11NG] = "11ng", 76 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 77 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 78 }; 79 /* map ieee80211_opmode to the corresponding capability bit */ 80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 81 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 82 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 83 [IEEE80211_M_STA] = IEEE80211_C_STA, 84 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 85 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 86 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 87 #ifdef IEEE80211_SUPPORT_MESH 88 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 89 #endif 90 }; 91 92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 93 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 94 95 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 98 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 99 static int ieee80211_media_setup(struct ieee80211com *ic, 100 struct ifmedia *media, int caps, int addsta, 101 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 102 static int media_status(enum ieee80211_opmode, 103 const struct ieee80211_channel *); 104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 105 106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 107 108 /* 109 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 110 */ 111 #define B(r) ((r) | IEEE80211_RATE_BASIC) 112 static const struct ieee80211_rateset ieee80211_rateset_11a = 113 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 114 static const struct ieee80211_rateset ieee80211_rateset_half = 115 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 116 static const struct ieee80211_rateset ieee80211_rateset_quarter = 117 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 118 static const struct ieee80211_rateset ieee80211_rateset_11b = 119 { 4, { B(2), B(4), B(11), B(22) } }; 120 /* NB: OFDM rates are handled specially based on mode */ 121 static const struct ieee80211_rateset ieee80211_rateset_11g = 122 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 123 #undef B 124 125 static int set_vht_extchan(struct ieee80211_channel *c); 126 127 /* 128 * Fill in 802.11 available channel set, mark 129 * all available channels as active, and pick 130 * a default channel if not already specified. 131 */ 132 void 133 ieee80211_chan_init(struct ieee80211com *ic) 134 { 135 #define DEFAULTRATES(m, def) do { \ 136 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 137 ic->ic_sup_rates[m] = def; \ 138 } while (0) 139 struct ieee80211_channel *c; 140 int i; 141 142 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 143 ("invalid number of channels specified: %u", ic->ic_nchans)); 144 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 145 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 146 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 147 for (i = 0; i < ic->ic_nchans; i++) { 148 c = &ic->ic_channels[i]; 149 KASSERT(c->ic_flags != 0, ("channel with no flags")); 150 /* 151 * Help drivers that work only with frequencies by filling 152 * in IEEE channel #'s if not already calculated. Note this 153 * mimics similar work done in ieee80211_setregdomain when 154 * changing regulatory state. 155 */ 156 if (c->ic_ieee == 0) 157 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 158 159 /* 160 * Setup the HT40/VHT40 upper/lower bits. 161 * The VHT80/... math is done elsewhere. 162 */ 163 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 164 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 165 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 166 c->ic_flags); 167 168 /* Update VHT math */ 169 /* 170 * XXX VHT again, note that this assumes VHT80/... channels 171 * are legit already. 172 */ 173 set_vht_extchan(c); 174 175 /* default max tx power to max regulatory */ 176 if (c->ic_maxpower == 0) 177 c->ic_maxpower = 2*c->ic_maxregpower; 178 setbit(ic->ic_chan_avail, c->ic_ieee); 179 /* 180 * Identify mode capabilities. 181 */ 182 if (IEEE80211_IS_CHAN_A(c)) 183 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 184 if (IEEE80211_IS_CHAN_B(c)) 185 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 186 if (IEEE80211_IS_CHAN_ANYG(c)) 187 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 188 if (IEEE80211_IS_CHAN_FHSS(c)) 189 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 190 if (IEEE80211_IS_CHAN_108A(c)) 191 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 192 if (IEEE80211_IS_CHAN_108G(c)) 193 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 194 if (IEEE80211_IS_CHAN_ST(c)) 195 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 196 if (IEEE80211_IS_CHAN_HALF(c)) 197 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 198 if (IEEE80211_IS_CHAN_QUARTER(c)) 199 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 200 if (IEEE80211_IS_CHAN_HTA(c)) 201 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 202 if (IEEE80211_IS_CHAN_HTG(c)) 203 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 204 if (IEEE80211_IS_CHAN_VHTA(c)) 205 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 206 if (IEEE80211_IS_CHAN_VHTG(c)) 207 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 208 } 209 /* initialize candidate channels to all available */ 210 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 211 sizeof(ic->ic_chan_avail)); 212 213 /* sort channel table to allow lookup optimizations */ 214 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 215 216 /* invalidate any previous state */ 217 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 218 ic->ic_prevchan = NULL; 219 ic->ic_csa_newchan = NULL; 220 /* arbitrarily pick the first channel */ 221 ic->ic_curchan = &ic->ic_channels[0]; 222 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 223 224 /* fillin well-known rate sets if driver has not specified */ 225 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 226 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 227 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 230 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 231 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 232 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 233 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 234 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 236 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 237 238 /* 239 * Setup required information to fill the mcsset field, if driver did 240 * not. Assume a 2T2R setup for historic reasons. 241 */ 242 if (ic->ic_rxstream == 0) 243 ic->ic_rxstream = 2; 244 if (ic->ic_txstream == 0) 245 ic->ic_txstream = 2; 246 247 ieee80211_init_suphtrates(ic); 248 249 /* 250 * Set auto mode to reset active channel state and any desired channel. 251 */ 252 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 253 #undef DEFAULTRATES 254 } 255 256 static void 257 null_update_mcast(struct ieee80211com *ic) 258 { 259 260 ic_printf(ic, "need multicast update callback\n"); 261 } 262 263 static void 264 null_update_promisc(struct ieee80211com *ic) 265 { 266 267 ic_printf(ic, "need promiscuous mode update callback\n"); 268 } 269 270 static void 271 null_update_chw(struct ieee80211com *ic) 272 { 273 274 ic_printf(ic, "%s: need callback\n", __func__); 275 } 276 277 int 278 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 279 { 280 va_list ap; 281 int retval; 282 283 retval = printf("%s: ", ic->ic_name); 284 va_start(ap, fmt); 285 retval += vprintf(fmt, ap); 286 va_end(ap); 287 return (retval); 288 } 289 290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 291 static struct mtx ic_list_mtx; 292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 293 294 static int 295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 296 { 297 struct ieee80211com *ic; 298 struct sbuf sb; 299 char *sp; 300 int error; 301 302 error = sysctl_wire_old_buffer(req, 0); 303 if (error) 304 return (error); 305 sbuf_new_for_sysctl(&sb, NULL, 8, req); 306 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 307 sp = ""; 308 mtx_lock(&ic_list_mtx); 309 LIST_FOREACH(ic, &ic_head, ic_next) { 310 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 311 sp = " "; 312 } 313 mtx_unlock(&ic_list_mtx); 314 error = sbuf_finish(&sb); 315 sbuf_delete(&sb); 316 return (error); 317 } 318 319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 321 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 322 323 /* 324 * Attach/setup the common net80211 state. Called by 325 * the driver on attach to prior to creating any vap's. 326 */ 327 void 328 ieee80211_ifattach(struct ieee80211com *ic) 329 { 330 331 IEEE80211_LOCK_INIT(ic, ic->ic_name); 332 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 333 TAILQ_INIT(&ic->ic_vaps); 334 335 /* Create a taskqueue for all state changes */ 336 ic->ic_tq = taskqueue_create("ic_taskq", 337 IEEE80211_M_WAITOK | IEEE80211_M_ZERO, 338 taskqueue_thread_enqueue, &ic->ic_tq); 339 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 340 ic->ic_name); 341 ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK); 342 ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK); 343 /* 344 * Fill in 802.11 available channel set, mark all 345 * available channels as active, and pick a default 346 * channel if not already specified. 347 */ 348 ieee80211_chan_init(ic); 349 350 ic->ic_update_mcast = null_update_mcast; 351 ic->ic_update_promisc = null_update_promisc; 352 ic->ic_update_chw = null_update_chw; 353 354 ic->ic_hash_key = arc4random(); 355 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 356 ic->ic_lintval = ic->ic_bintval; 357 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 358 359 ieee80211_crypto_attach(ic); 360 ieee80211_node_attach(ic); 361 ieee80211_power_attach(ic); 362 ieee80211_proto_attach(ic); 363 #ifdef IEEE80211_SUPPORT_SUPERG 364 ieee80211_superg_attach(ic); 365 #endif 366 ieee80211_ht_attach(ic); 367 ieee80211_vht_attach(ic); 368 ieee80211_scan_attach(ic); 369 ieee80211_regdomain_attach(ic); 370 ieee80211_dfs_attach(ic); 371 372 ieee80211_sysctl_attach(ic); 373 374 mtx_lock(&ic_list_mtx); 375 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 376 mtx_unlock(&ic_list_mtx); 377 } 378 379 /* 380 * Detach net80211 state on device detach. Tear down 381 * all vap's and reclaim all common state prior to the 382 * device state going away. Note we may call back into 383 * driver; it must be prepared for this. 384 */ 385 void 386 ieee80211_ifdetach(struct ieee80211com *ic) 387 { 388 struct ieee80211vap *vap; 389 390 /* 391 * We use this as an indicator that ifattach never had a chance to be 392 * called, e.g. early driver attach failed and ifdetach was called 393 * during subsequent detach. Never fear, for we have nothing to do 394 * here. 395 */ 396 if (ic->ic_tq == NULL) 397 return; 398 399 mtx_lock(&ic_list_mtx); 400 LIST_REMOVE(ic, ic_next); 401 mtx_unlock(&ic_list_mtx); 402 403 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 404 405 /* 406 * The VAP is responsible for setting and clearing 407 * the VIMAGE context. 408 */ 409 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 410 ieee80211_com_vdetach(vap); 411 ieee80211_vap_destroy(vap); 412 } 413 ieee80211_waitfor_parent(ic); 414 415 ieee80211_sysctl_detach(ic); 416 ieee80211_dfs_detach(ic); 417 ieee80211_regdomain_detach(ic); 418 ieee80211_scan_detach(ic); 419 #ifdef IEEE80211_SUPPORT_SUPERG 420 ieee80211_superg_detach(ic); 421 #endif 422 ieee80211_vht_detach(ic); 423 ieee80211_ht_detach(ic); 424 /* NB: must be called before ieee80211_node_detach */ 425 ieee80211_proto_detach(ic); 426 ieee80211_crypto_detach(ic); 427 ieee80211_power_detach(ic); 428 ieee80211_node_detach(ic); 429 430 counter_u64_free(ic->ic_ierrors); 431 counter_u64_free(ic->ic_oerrors); 432 433 taskqueue_free(ic->ic_tq); 434 IEEE80211_TX_LOCK_DESTROY(ic); 435 IEEE80211_LOCK_DESTROY(ic); 436 } 437 438 struct ieee80211com * 439 ieee80211_find_com(const char *name) 440 { 441 struct ieee80211com *ic; 442 443 mtx_lock(&ic_list_mtx); 444 LIST_FOREACH(ic, &ic_head, ic_next) 445 if (strcmp(ic->ic_name, name) == 0) 446 break; 447 mtx_unlock(&ic_list_mtx); 448 449 return (ic); 450 } 451 452 void 453 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 454 { 455 struct ieee80211com *ic; 456 457 mtx_lock(&ic_list_mtx); 458 LIST_FOREACH(ic, &ic_head, ic_next) 459 (*f)(arg, ic); 460 mtx_unlock(&ic_list_mtx); 461 } 462 463 /* 464 * Default reset method for use with the ioctl support. This 465 * method is invoked after any state change in the 802.11 466 * layer that should be propagated to the hardware but not 467 * require re-initialization of the 802.11 state machine (e.g 468 * rescanning for an ap). We always return ENETRESET which 469 * should cause the driver to re-initialize the device. Drivers 470 * can override this method to implement more optimized support. 471 */ 472 static int 473 default_reset(struct ieee80211vap *vap, u_long cmd) 474 { 475 return ENETRESET; 476 } 477 478 /* 479 * Default for updating the VAP default TX key index. 480 * 481 * Drivers that support TX offload as well as hardware encryption offload 482 * may need to be informed of key index changes separate from the key 483 * update. 484 */ 485 static void 486 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 487 { 488 489 /* XXX assert validity */ 490 /* XXX assert we're in a key update block */ 491 vap->iv_def_txkey = kid; 492 } 493 494 /* 495 * Add underlying device errors to vap errors. 496 */ 497 static uint64_t 498 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 499 { 500 struct ieee80211vap *vap = ifp->if_softc; 501 struct ieee80211com *ic = vap->iv_ic; 502 uint64_t rv; 503 504 rv = if_get_counter_default(ifp, cnt); 505 switch (cnt) { 506 case IFCOUNTER_OERRORS: 507 rv += counter_u64_fetch(ic->ic_oerrors); 508 break; 509 case IFCOUNTER_IERRORS: 510 rv += counter_u64_fetch(ic->ic_ierrors); 511 break; 512 default: 513 break; 514 } 515 516 return (rv); 517 } 518 519 /* 520 * Prepare a vap for use. Drivers use this call to 521 * setup net80211 state in new vap's prior attaching 522 * them with ieee80211_vap_attach (below). 523 */ 524 int 525 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 526 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 527 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 528 { 529 struct ifnet *ifp; 530 531 ifp = if_alloc(IFT_ETHER); 532 if (ifp == NULL) { 533 ic_printf(ic, "%s: unable to allocate ifnet\n", __func__); 534 return ENOMEM; 535 } 536 if_initname(ifp, name, unit); 537 ifp->if_softc = vap; /* back pointer */ 538 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 539 ifp->if_transmit = ieee80211_vap_transmit; 540 ifp->if_qflush = ieee80211_vap_qflush; 541 ifp->if_ioctl = ieee80211_ioctl; 542 ifp->if_init = ieee80211_init; 543 ifp->if_get_counter = ieee80211_get_counter; 544 545 vap->iv_ifp = ifp; 546 vap->iv_ic = ic; 547 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 548 vap->iv_flags_ext = ic->ic_flags_ext; 549 vap->iv_flags_ven = ic->ic_flags_ven; 550 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 551 552 /* 11n capabilities - XXX methodize */ 553 vap->iv_htcaps = ic->ic_htcaps; 554 vap->iv_htextcaps = ic->ic_htextcaps; 555 556 /* 11ac capabilities - XXX methodize */ 557 vap->iv_vhtcaps = ic->ic_vhtcaps; 558 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 559 560 vap->iv_opmode = opmode; 561 vap->iv_caps |= ieee80211_opcap[opmode]; 562 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 563 switch (opmode) { 564 case IEEE80211_M_WDS: 565 /* 566 * WDS links must specify the bssid of the far end. 567 * For legacy operation this is a static relationship. 568 * For non-legacy operation the station must associate 569 * and be authorized to pass traffic. Plumbing the 570 * vap to the proper node happens when the vap 571 * transitions to RUN state. 572 */ 573 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 574 vap->iv_flags |= IEEE80211_F_DESBSSID; 575 if (flags & IEEE80211_CLONE_WDSLEGACY) 576 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 577 break; 578 #ifdef IEEE80211_SUPPORT_TDMA 579 case IEEE80211_M_AHDEMO: 580 if (flags & IEEE80211_CLONE_TDMA) { 581 /* NB: checked before clone operation allowed */ 582 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 583 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 584 /* 585 * Propagate TDMA capability to mark vap; this 586 * cannot be removed and is used to distinguish 587 * regular ahdemo operation from ahdemo+tdma. 588 */ 589 vap->iv_caps |= IEEE80211_C_TDMA; 590 } 591 break; 592 #endif 593 default: 594 break; 595 } 596 /* auto-enable s/w beacon miss support */ 597 if (flags & IEEE80211_CLONE_NOBEACONS) 598 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 599 /* auto-generated or user supplied MAC address */ 600 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 601 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 602 /* 603 * Enable various functionality by default if we're 604 * capable; the driver can override us if it knows better. 605 */ 606 if (vap->iv_caps & IEEE80211_C_WME) 607 vap->iv_flags |= IEEE80211_F_WME; 608 if (vap->iv_caps & IEEE80211_C_BURST) 609 vap->iv_flags |= IEEE80211_F_BURST; 610 /* NB: bg scanning only makes sense for station mode right now */ 611 if (vap->iv_opmode == IEEE80211_M_STA && 612 (vap->iv_caps & IEEE80211_C_BGSCAN)) 613 vap->iv_flags |= IEEE80211_F_BGSCAN; 614 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 615 /* NB: DFS support only makes sense for ap mode right now */ 616 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 617 (vap->iv_caps & IEEE80211_C_DFS)) 618 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 619 /* NB: only flip on U-APSD for hostap/sta for now */ 620 if ((vap->iv_opmode == IEEE80211_M_STA) 621 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { 622 if (vap->iv_caps & IEEE80211_C_UAPSD) 623 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; 624 } 625 626 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 627 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 628 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 629 /* 630 * Install a default reset method for the ioctl support; 631 * the driver can override this. 632 */ 633 vap->iv_reset = default_reset; 634 635 /* 636 * Install a default crypto key update method, the driver 637 * can override this. 638 */ 639 vap->iv_update_deftxkey = default_update_deftxkey; 640 641 ieee80211_sysctl_vattach(vap); 642 ieee80211_crypto_vattach(vap); 643 ieee80211_node_vattach(vap); 644 ieee80211_power_vattach(vap); 645 ieee80211_proto_vattach(vap); 646 #ifdef IEEE80211_SUPPORT_SUPERG 647 ieee80211_superg_vattach(vap); 648 #endif 649 ieee80211_ht_vattach(vap); 650 ieee80211_vht_vattach(vap); 651 ieee80211_scan_vattach(vap); 652 ieee80211_regdomain_vattach(vap); 653 ieee80211_radiotap_vattach(vap); 654 ieee80211_vap_reset_erp(vap); 655 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 656 657 return 0; 658 } 659 660 /* 661 * Activate a vap. State should have been prepared with a 662 * call to ieee80211_vap_setup and by the driver. On return 663 * from this call the vap is ready for use. 664 */ 665 int 666 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 667 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 668 { 669 struct ifnet *ifp = vap->iv_ifp; 670 struct ieee80211com *ic = vap->iv_ic; 671 struct ifmediareq imr; 672 int maxrate; 673 674 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 675 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 676 __func__, ieee80211_opmode_name[vap->iv_opmode], 677 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 678 679 /* 680 * Do late attach work that cannot happen until after 681 * the driver has had a chance to override defaults. 682 */ 683 ieee80211_node_latevattach(vap); 684 ieee80211_power_latevattach(vap); 685 686 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 687 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 688 ieee80211_media_status(ifp, &imr); 689 /* NB: strip explicit mode; we're actually in autoselect */ 690 ifmedia_set(&vap->iv_media, 691 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 692 if (maxrate) 693 ifp->if_baudrate = IF_Mbps(maxrate); 694 695 ether_ifattach(ifp, macaddr); 696 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 697 /* hook output method setup by ether_ifattach */ 698 vap->iv_output = ifp->if_output; 699 ifp->if_output = ieee80211_output; 700 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 701 702 IEEE80211_LOCK(ic); 703 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 704 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 705 #ifdef IEEE80211_SUPPORT_SUPERG 706 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 707 #endif 708 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 709 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 710 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 711 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 712 713 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 714 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 715 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 716 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 717 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 718 IEEE80211_UNLOCK(ic); 719 720 return 1; 721 } 722 723 /* 724 * Tear down vap state and reclaim the ifnet. 725 * The driver is assumed to have prepared for 726 * this; e.g. by turning off interrupts for the 727 * underlying device. 728 */ 729 void 730 ieee80211_vap_detach(struct ieee80211vap *vap) 731 { 732 struct ieee80211com *ic = vap->iv_ic; 733 struct ifnet *ifp = vap->iv_ifp; 734 735 CURVNET_SET(ifp->if_vnet); 736 737 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 738 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 739 740 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 741 ether_ifdetach(ifp); 742 743 ieee80211_stop(vap); 744 745 /* 746 * Flush any deferred vap tasks. 747 */ 748 ieee80211_draintask(ic, &vap->iv_nstate_task); 749 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 750 ieee80211_draintask(ic, &vap->iv_wme_task); 751 ieee80211_draintask(ic, &ic->ic_parent_task); 752 753 /* XXX band-aid until ifnet handles this for us */ 754 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 755 756 IEEE80211_LOCK(ic); 757 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 758 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 759 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 760 #ifdef IEEE80211_SUPPORT_SUPERG 761 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 762 #endif 763 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 764 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 765 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 766 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 767 768 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 769 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 770 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 771 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 772 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 773 774 /* NB: this handles the bpfdetach done below */ 775 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 776 if (vap->iv_ifflags & IFF_PROMISC) 777 ieee80211_promisc(vap, false); 778 if (vap->iv_ifflags & IFF_ALLMULTI) 779 ieee80211_allmulti(vap, false); 780 IEEE80211_UNLOCK(ic); 781 782 ifmedia_removeall(&vap->iv_media); 783 784 ieee80211_radiotap_vdetach(vap); 785 ieee80211_regdomain_vdetach(vap); 786 ieee80211_scan_vdetach(vap); 787 #ifdef IEEE80211_SUPPORT_SUPERG 788 ieee80211_superg_vdetach(vap); 789 #endif 790 ieee80211_vht_vdetach(vap); 791 ieee80211_ht_vdetach(vap); 792 /* NB: must be before ieee80211_node_vdetach */ 793 ieee80211_proto_vdetach(vap); 794 ieee80211_crypto_vdetach(vap); 795 ieee80211_power_vdetach(vap); 796 ieee80211_node_vdetach(vap); 797 ieee80211_sysctl_vdetach(vap); 798 799 if_free(ifp); 800 801 CURVNET_RESTORE(); 802 } 803 804 /* 805 * Count number of vaps in promisc, and issue promisc on 806 * parent respectively. 807 */ 808 void 809 ieee80211_promisc(struct ieee80211vap *vap, bool on) 810 { 811 struct ieee80211com *ic = vap->iv_ic; 812 813 IEEE80211_LOCK_ASSERT(ic); 814 815 if (on) { 816 if (++ic->ic_promisc == 1) 817 ieee80211_runtask(ic, &ic->ic_promisc_task); 818 } else { 819 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 820 __func__, ic)); 821 if (--ic->ic_promisc == 0) 822 ieee80211_runtask(ic, &ic->ic_promisc_task); 823 } 824 } 825 826 /* 827 * Count number of vaps in allmulti, and issue allmulti on 828 * parent respectively. 829 */ 830 void 831 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 832 { 833 struct ieee80211com *ic = vap->iv_ic; 834 835 IEEE80211_LOCK_ASSERT(ic); 836 837 if (on) { 838 if (++ic->ic_allmulti == 1) 839 ieee80211_runtask(ic, &ic->ic_mcast_task); 840 } else { 841 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 842 __func__, ic)); 843 if (--ic->ic_allmulti == 0) 844 ieee80211_runtask(ic, &ic->ic_mcast_task); 845 } 846 } 847 848 /* 849 * Synchronize flag bit state in the com structure 850 * according to the state of all vap's. This is used, 851 * for example, to handle state changes via ioctls. 852 */ 853 static void 854 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 855 { 856 struct ieee80211vap *vap; 857 int bit; 858 859 IEEE80211_LOCK_ASSERT(ic); 860 861 bit = 0; 862 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 863 if (vap->iv_flags & flag) { 864 bit = 1; 865 break; 866 } 867 if (bit) 868 ic->ic_flags |= flag; 869 else 870 ic->ic_flags &= ~flag; 871 } 872 873 void 874 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 875 { 876 struct ieee80211com *ic = vap->iv_ic; 877 878 IEEE80211_LOCK(ic); 879 if (flag < 0) { 880 flag = -flag; 881 vap->iv_flags &= ~flag; 882 } else 883 vap->iv_flags |= flag; 884 ieee80211_syncflag_locked(ic, flag); 885 IEEE80211_UNLOCK(ic); 886 } 887 888 /* 889 * Synchronize flags_ht bit state in the com structure 890 * according to the state of all vap's. This is used, 891 * for example, to handle state changes via ioctls. 892 */ 893 static void 894 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 895 { 896 struct ieee80211vap *vap; 897 int bit; 898 899 IEEE80211_LOCK_ASSERT(ic); 900 901 bit = 0; 902 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 903 if (vap->iv_flags_ht & flag) { 904 bit = 1; 905 break; 906 } 907 if (bit) 908 ic->ic_flags_ht |= flag; 909 else 910 ic->ic_flags_ht &= ~flag; 911 } 912 913 void 914 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 915 { 916 struct ieee80211com *ic = vap->iv_ic; 917 918 IEEE80211_LOCK(ic); 919 if (flag < 0) { 920 flag = -flag; 921 vap->iv_flags_ht &= ~flag; 922 } else 923 vap->iv_flags_ht |= flag; 924 ieee80211_syncflag_ht_locked(ic, flag); 925 IEEE80211_UNLOCK(ic); 926 } 927 928 /* 929 * Synchronize flags_vht bit state in the com structure 930 * according to the state of all vap's. This is used, 931 * for example, to handle state changes via ioctls. 932 */ 933 static void 934 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 935 { 936 struct ieee80211vap *vap; 937 int bit; 938 939 IEEE80211_LOCK_ASSERT(ic); 940 941 bit = 0; 942 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 943 if (vap->iv_flags_vht & flag) { 944 bit = 1; 945 break; 946 } 947 if (bit) 948 ic->ic_flags_vht |= flag; 949 else 950 ic->ic_flags_vht &= ~flag; 951 } 952 953 void 954 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 955 { 956 struct ieee80211com *ic = vap->iv_ic; 957 958 IEEE80211_LOCK(ic); 959 if (flag < 0) { 960 flag = -flag; 961 vap->iv_flags_vht &= ~flag; 962 } else 963 vap->iv_flags_vht |= flag; 964 ieee80211_syncflag_vht_locked(ic, flag); 965 IEEE80211_UNLOCK(ic); 966 } 967 968 /* 969 * Synchronize flags_ext bit state in the com structure 970 * according to the state of all vap's. This is used, 971 * for example, to handle state changes via ioctls. 972 */ 973 static void 974 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 975 { 976 struct ieee80211vap *vap; 977 int bit; 978 979 IEEE80211_LOCK_ASSERT(ic); 980 981 bit = 0; 982 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 983 if (vap->iv_flags_ext & flag) { 984 bit = 1; 985 break; 986 } 987 if (bit) 988 ic->ic_flags_ext |= flag; 989 else 990 ic->ic_flags_ext &= ~flag; 991 } 992 993 void 994 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 995 { 996 struct ieee80211com *ic = vap->iv_ic; 997 998 IEEE80211_LOCK(ic); 999 if (flag < 0) { 1000 flag = -flag; 1001 vap->iv_flags_ext &= ~flag; 1002 } else 1003 vap->iv_flags_ext |= flag; 1004 ieee80211_syncflag_ext_locked(ic, flag); 1005 IEEE80211_UNLOCK(ic); 1006 } 1007 1008 static __inline int 1009 mapgsm(u_int freq, u_int flags) 1010 { 1011 freq *= 10; 1012 if (flags & IEEE80211_CHAN_QUARTER) 1013 freq += 5; 1014 else if (flags & IEEE80211_CHAN_HALF) 1015 freq += 10; 1016 else 1017 freq += 20; 1018 /* NB: there is no 907/20 wide but leave room */ 1019 return (freq - 906*10) / 5; 1020 } 1021 1022 static __inline int 1023 mappsb(u_int freq, u_int flags) 1024 { 1025 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1026 } 1027 1028 /* 1029 * Convert MHz frequency to IEEE channel number. 1030 */ 1031 int 1032 ieee80211_mhz2ieee(u_int freq, u_int flags) 1033 { 1034 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1035 if (flags & IEEE80211_CHAN_GSM) 1036 return mapgsm(freq, flags); 1037 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1038 if (freq == 2484) 1039 return 14; 1040 if (freq < 2484) 1041 return ((int) freq - 2407) / 5; 1042 else 1043 return 15 + ((freq - 2512) / 20); 1044 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1045 if (freq <= 5000) { 1046 /* XXX check regdomain? */ 1047 if (IS_FREQ_IN_PSB(freq)) 1048 return mappsb(freq, flags); 1049 return (freq - 4000) / 5; 1050 } else 1051 return (freq - 5000) / 5; 1052 } else { /* either, guess */ 1053 if (freq == 2484) 1054 return 14; 1055 if (freq < 2484) { 1056 if (907 <= freq && freq <= 922) 1057 return mapgsm(freq, flags); 1058 return ((int) freq - 2407) / 5; 1059 } 1060 if (freq < 5000) { 1061 if (IS_FREQ_IN_PSB(freq)) 1062 return mappsb(freq, flags); 1063 else if (freq > 4900) 1064 return (freq - 4000) / 5; 1065 else 1066 return 15 + ((freq - 2512) / 20); 1067 } 1068 return (freq - 5000) / 5; 1069 } 1070 #undef IS_FREQ_IN_PSB 1071 } 1072 1073 /* 1074 * Convert channel to IEEE channel number. 1075 */ 1076 int 1077 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1078 { 1079 if (c == NULL) { 1080 ic_printf(ic, "invalid channel (NULL)\n"); 1081 return 0; /* XXX */ 1082 } 1083 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1084 } 1085 1086 /* 1087 * Convert IEEE channel number to MHz frequency. 1088 */ 1089 u_int 1090 ieee80211_ieee2mhz(u_int chan, u_int flags) 1091 { 1092 if (flags & IEEE80211_CHAN_GSM) 1093 return 907 + 5 * (chan / 10); 1094 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1095 if (chan == 14) 1096 return 2484; 1097 if (chan < 14) 1098 return 2407 + chan*5; 1099 else 1100 return 2512 + ((chan-15)*20); 1101 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1102 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1103 chan -= 37; 1104 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1105 } 1106 return 5000 + (chan*5); 1107 } else { /* either, guess */ 1108 /* XXX can't distinguish PSB+GSM channels */ 1109 if (chan == 14) 1110 return 2484; 1111 if (chan < 14) /* 0-13 */ 1112 return 2407 + chan*5; 1113 if (chan < 27) /* 15-26 */ 1114 return 2512 + ((chan-15)*20); 1115 return 5000 + (chan*5); 1116 } 1117 } 1118 1119 static __inline void 1120 set_extchan(struct ieee80211_channel *c) 1121 { 1122 1123 /* 1124 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1125 * "the secondary channel number shall be 'N + [1,-1] * 4' 1126 */ 1127 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1128 c->ic_extieee = c->ic_ieee + 4; 1129 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1130 c->ic_extieee = c->ic_ieee - 4; 1131 else 1132 c->ic_extieee = 0; 1133 } 1134 1135 /* 1136 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1137 * 1138 * This for now uses a hard-coded list of 80MHz wide channels. 1139 * 1140 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1141 * wide channel we've already decided upon. 1142 * 1143 * For VHT80 and VHT160, there are only a small number of fixed 1144 * 80/160MHz wide channels, so we just use those. 1145 * 1146 * This is all likely very very wrong - both the regulatory code 1147 * and this code needs to ensure that all four channels are 1148 * available and valid before the VHT80 (and eight for VHT160) channel 1149 * is created. 1150 */ 1151 1152 struct vht_chan_range { 1153 uint16_t freq_start; 1154 uint16_t freq_end; 1155 }; 1156 1157 struct vht_chan_range vht80_chan_ranges[] = { 1158 { 5170, 5250 }, 1159 { 5250, 5330 }, 1160 { 5490, 5570 }, 1161 { 5570, 5650 }, 1162 { 5650, 5730 }, 1163 { 5735, 5815 }, 1164 { 0, 0 } 1165 }; 1166 1167 struct vht_chan_range vht160_chan_ranges[] = { 1168 { 5170, 5330 }, 1169 { 5490, 5650 }, 1170 { 0, 0 } 1171 }; 1172 1173 static int 1174 set_vht_extchan(struct ieee80211_channel *c) 1175 { 1176 int i; 1177 1178 if (! IEEE80211_IS_CHAN_VHT(c)) 1179 return (0); 1180 1181 if (IEEE80211_IS_CHAN_VHT80P80(c)) { 1182 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", 1183 __func__, c->ic_ieee, c->ic_flags); 1184 } 1185 1186 if (IEEE80211_IS_CHAN_VHT160(c)) { 1187 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1188 if (c->ic_freq >= vht160_chan_ranges[i].freq_start && 1189 c->ic_freq < vht160_chan_ranges[i].freq_end) { 1190 int midpoint; 1191 1192 midpoint = vht160_chan_ranges[i].freq_start + 80; 1193 c->ic_vht_ch_freq1 = 1194 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1195 c->ic_vht_ch_freq2 = 0; 1196 #if 0 1197 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1198 __func__, c->ic_ieee, c->ic_freq, midpoint, 1199 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1200 #endif 1201 return (1); 1202 } 1203 } 1204 return (0); 1205 } 1206 1207 if (IEEE80211_IS_CHAN_VHT80(c)) { 1208 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1209 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1210 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1211 int midpoint; 1212 1213 midpoint = vht80_chan_ranges[i].freq_start + 40; 1214 c->ic_vht_ch_freq1 = 1215 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1216 c->ic_vht_ch_freq2 = 0; 1217 #if 0 1218 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1219 __func__, c->ic_ieee, c->ic_freq, midpoint, 1220 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1221 #endif 1222 return (1); 1223 } 1224 } 1225 return (0); 1226 } 1227 1228 if (IEEE80211_IS_CHAN_VHT40(c)) { 1229 if (IEEE80211_IS_CHAN_HT40U(c)) 1230 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1231 else if (IEEE80211_IS_CHAN_HT40D(c)) 1232 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1233 else 1234 return (0); 1235 return (1); 1236 } 1237 1238 if (IEEE80211_IS_CHAN_VHT20(c)) { 1239 c->ic_vht_ch_freq1 = c->ic_ieee; 1240 return (1); 1241 } 1242 1243 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1244 __func__, c->ic_ieee, c->ic_flags); 1245 1246 return (0); 1247 } 1248 1249 /* 1250 * Return whether the current channel could possibly be a part of 1251 * a VHT80/VHT160 channel. 1252 * 1253 * This doesn't check that the whole range is in the allowed list 1254 * according to regulatory. 1255 */ 1256 static bool 1257 is_vht160_valid_freq(uint16_t freq) 1258 { 1259 int i; 1260 1261 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1262 if (freq >= vht160_chan_ranges[i].freq_start && 1263 freq < vht160_chan_ranges[i].freq_end) 1264 return (true); 1265 } 1266 return (false); 1267 } 1268 1269 static int 1270 is_vht80_valid_freq(uint16_t freq) 1271 { 1272 int i; 1273 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1274 if (freq >= vht80_chan_ranges[i].freq_start && 1275 freq < vht80_chan_ranges[i].freq_end) 1276 return (1); 1277 } 1278 return (0); 1279 } 1280 1281 static int 1282 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1283 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1284 { 1285 struct ieee80211_channel *c; 1286 1287 if (*nchans >= maxchans) 1288 return (ENOBUFS); 1289 1290 #if 0 1291 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n", 1292 __func__, *nchans, maxchans, ieee, freq, flags); 1293 #endif 1294 1295 c = &chans[(*nchans)++]; 1296 c->ic_ieee = ieee; 1297 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1298 c->ic_maxregpower = maxregpower; 1299 c->ic_maxpower = 2 * maxregpower; 1300 c->ic_flags = flags; 1301 c->ic_vht_ch_freq1 = 0; 1302 c->ic_vht_ch_freq2 = 0; 1303 set_extchan(c); 1304 set_vht_extchan(c); 1305 1306 return (0); 1307 } 1308 1309 static int 1310 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1311 uint32_t flags) 1312 { 1313 struct ieee80211_channel *c; 1314 1315 KASSERT(*nchans > 0, ("channel list is empty\n")); 1316 1317 if (*nchans >= maxchans) 1318 return (ENOBUFS); 1319 1320 #if 0 1321 printf("%s: %d of %d: flags=0x%08x\n", 1322 __func__, *nchans, maxchans, flags); 1323 #endif 1324 1325 c = &chans[(*nchans)++]; 1326 c[0] = c[-1]; 1327 c->ic_flags = flags; 1328 c->ic_vht_ch_freq1 = 0; 1329 c->ic_vht_ch_freq2 = 0; 1330 set_extchan(c); 1331 set_vht_extchan(c); 1332 1333 return (0); 1334 } 1335 1336 /* 1337 * XXX VHT-2GHz 1338 */ 1339 static void 1340 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1341 { 1342 int nmodes; 1343 1344 nmodes = 0; 1345 if (isset(bands, IEEE80211_MODE_11B)) 1346 flags[nmodes++] = IEEE80211_CHAN_B; 1347 if (isset(bands, IEEE80211_MODE_11G)) 1348 flags[nmodes++] = IEEE80211_CHAN_G; 1349 if (isset(bands, IEEE80211_MODE_11NG)) 1350 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1351 if (cbw_flags & NET80211_CBW_FLAG_HT40) { 1352 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1353 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1354 } 1355 flags[nmodes] = 0; 1356 } 1357 1358 static void 1359 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1360 { 1361 int nmodes; 1362 1363 /* 1364 * The addchan_list() function seems to expect the flags array to 1365 * be in channel width order, so the VHT bits are interspersed 1366 * as appropriate to maintain said order. 1367 * 1368 * It also assumes HT40U is before HT40D. 1369 */ 1370 nmodes = 0; 1371 1372 /* 20MHz */ 1373 if (isset(bands, IEEE80211_MODE_11A)) 1374 flags[nmodes++] = IEEE80211_CHAN_A; 1375 if (isset(bands, IEEE80211_MODE_11NA)) 1376 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1377 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1378 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1379 IEEE80211_CHAN_VHT20; 1380 } 1381 1382 /* 40MHz */ 1383 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1384 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1385 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1386 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1387 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1388 IEEE80211_CHAN_VHT40U; 1389 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1390 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1391 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1392 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1393 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1394 IEEE80211_CHAN_VHT40D; 1395 1396 /* 80MHz */ 1397 if ((cbw_flags & NET80211_CBW_FLAG_VHT80) && 1398 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1399 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1400 IEEE80211_CHAN_VHT80; 1401 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1402 IEEE80211_CHAN_VHT80; 1403 } 1404 1405 /* VHT160 */ 1406 if ((cbw_flags & NET80211_CBW_FLAG_VHT160) && 1407 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1408 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1409 IEEE80211_CHAN_VHT160; 1410 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1411 IEEE80211_CHAN_VHT160; 1412 } 1413 1414 /* VHT80+80 */ 1415 if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) && 1416 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1417 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1418 IEEE80211_CHAN_VHT80P80; 1419 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1420 IEEE80211_CHAN_VHT80P80; 1421 } 1422 1423 flags[nmodes] = 0; 1424 } 1425 1426 static void 1427 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1428 { 1429 1430 flags[0] = 0; 1431 if (isset(bands, IEEE80211_MODE_11A) || 1432 isset(bands, IEEE80211_MODE_11NA) || 1433 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1434 if (isset(bands, IEEE80211_MODE_11B) || 1435 isset(bands, IEEE80211_MODE_11G) || 1436 isset(bands, IEEE80211_MODE_11NG) || 1437 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1438 return; 1439 1440 getflags_5ghz(bands, flags, cbw_flags); 1441 } else 1442 getflags_2ghz(bands, flags, cbw_flags); 1443 } 1444 1445 /* 1446 * Add one 20 MHz channel into specified channel list. 1447 * You MUST NOT mix bands when calling this. It will not add 5ghz 1448 * channels if you have any B/G/N band bit set. 1449 * The _cbw() variant does also support HT40/VHT80/160/80+80. 1450 */ 1451 int 1452 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans, 1453 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1454 uint32_t chan_flags, const uint8_t bands[], int cbw_flags) 1455 { 1456 uint32_t flags[IEEE80211_MODE_MAX]; 1457 int i, error; 1458 1459 getflags(bands, flags, cbw_flags); 1460 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1461 1462 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1463 flags[0] | chan_flags); 1464 for (i = 1; flags[i] != 0 && error == 0; i++) { 1465 error = copychan_prev(chans, maxchans, nchans, 1466 flags[i] | chan_flags); 1467 } 1468 1469 return (error); 1470 } 1471 1472 int 1473 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1474 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1475 uint32_t chan_flags, const uint8_t bands[]) 1476 { 1477 1478 return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq, 1479 maxregpower, chan_flags, bands, 0)); 1480 } 1481 1482 static struct ieee80211_channel * 1483 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1484 uint32_t flags) 1485 { 1486 struct ieee80211_channel *c; 1487 int i; 1488 1489 flags &= IEEE80211_CHAN_ALLTURBO; 1490 /* brute force search */ 1491 for (i = 0; i < nchans; i++) { 1492 c = &chans[i]; 1493 if (c->ic_freq == freq && 1494 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1495 return c; 1496 } 1497 return NULL; 1498 } 1499 1500 /* 1501 * Add 40 MHz channel pair into specified channel list. 1502 */ 1503 /* XXX VHT */ 1504 int 1505 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1506 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1507 { 1508 struct ieee80211_channel *cent, *extc; 1509 uint16_t freq; 1510 int error; 1511 1512 freq = ieee80211_ieee2mhz(ieee, flags); 1513 1514 /* 1515 * Each entry defines an HT40 channel pair; find the 1516 * center channel, then the extension channel above. 1517 */ 1518 flags |= IEEE80211_CHAN_HT20; 1519 cent = findchannel(chans, *nchans, freq, flags); 1520 if (cent == NULL) 1521 return (EINVAL); 1522 1523 extc = findchannel(chans, *nchans, freq + 20, flags); 1524 if (extc == NULL) 1525 return (ENOENT); 1526 1527 flags &= ~IEEE80211_CHAN_HT; 1528 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1529 maxregpower, flags | IEEE80211_CHAN_HT40U); 1530 if (error != 0) 1531 return (error); 1532 1533 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1534 maxregpower, flags | IEEE80211_CHAN_HT40D); 1535 1536 return (error); 1537 } 1538 1539 /* 1540 * Fetch the center frequency for the primary channel. 1541 */ 1542 uint32_t 1543 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1544 { 1545 1546 return (c->ic_freq); 1547 } 1548 1549 /* 1550 * Fetch the center frequency for the primary BAND channel. 1551 * 1552 * For 5, 10, 20MHz channels it'll be the normally configured channel 1553 * frequency. 1554 * 1555 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the 1556 * wide channel, not the centre of the primary channel (that's ic_freq). 1557 * 1558 * For 80+80MHz channels this will be the centre of the primary 1559 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1560 */ 1561 uint32_t 1562 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1563 { 1564 1565 /* 1566 * VHT - use the pre-calculated centre frequency 1567 * of the given channel. 1568 */ 1569 if (IEEE80211_IS_CHAN_VHT(c)) 1570 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1571 1572 if (IEEE80211_IS_CHAN_HT40U(c)) { 1573 return (c->ic_freq + 10); 1574 } 1575 if (IEEE80211_IS_CHAN_HT40D(c)) { 1576 return (c->ic_freq - 10); 1577 } 1578 1579 return (c->ic_freq); 1580 } 1581 1582 /* 1583 * For now, no 80+80 support; it will likely always return 0. 1584 */ 1585 uint32_t 1586 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1587 { 1588 1589 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1590 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1591 1592 return (0); 1593 } 1594 1595 /* 1596 * Adds channels into specified channel list (ieee[] array must be sorted). 1597 * Channels are already sorted. 1598 */ 1599 static int 1600 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1601 const uint8_t ieee[], int nieee, uint32_t flags[]) 1602 { 1603 uint16_t freq; 1604 int i, j, error; 1605 int is_vht; 1606 1607 for (i = 0; i < nieee; i++) { 1608 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1609 for (j = 0; flags[j] != 0; j++) { 1610 /* 1611 * Notes: 1612 * + HT40 and VHT40 channels occur together, so 1613 * we need to be careful that we actually allow that. 1614 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1615 * make sure it's not skipped because of the overlap 1616 * check used for (V)HT40. 1617 */ 1618 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1619 1620 /* XXX TODO FIXME VHT80P80. */ 1621 1622 /* Test for VHT160 analogue to the VHT80 below. */ 1623 if (is_vht && flags[j] & IEEE80211_CHAN_VHT160) 1624 if (! is_vht160_valid_freq(freq)) 1625 continue; 1626 1627 /* 1628 * Test for VHT80. 1629 * XXX This is all very broken right now. 1630 * What we /should/ do is: 1631 * 1632 * + check that the frequency is in the list of 1633 * allowed VHT80 ranges; and 1634 * + the other 3 channels in the list are actually 1635 * also available. 1636 */ 1637 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1638 if (! is_vht80_valid_freq(freq)) 1639 continue; 1640 1641 /* 1642 * Test for (V)HT40. 1643 * 1644 * This is also a fall through from VHT80; as we only 1645 * allow a VHT80 channel if the VHT40 combination is 1646 * also valid. If the VHT40 form is not valid then 1647 * we certainly can't do VHT80.. 1648 */ 1649 if (flags[j] & IEEE80211_CHAN_HT40D) 1650 /* 1651 * Can't have a "lower" channel if we are the 1652 * first channel. 1653 * 1654 * Can't have a "lower" channel if it's below/ 1655 * within 20MHz of the first channel. 1656 * 1657 * Can't have a "lower" channel if the channel 1658 * below it is not 20MHz away. 1659 */ 1660 if (i == 0 || ieee[i] < ieee[0] + 4 || 1661 freq - 20 != 1662 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1663 continue; 1664 if (flags[j] & IEEE80211_CHAN_HT40U) 1665 /* 1666 * Can't have an "upper" channel if we are 1667 * the last channel. 1668 * 1669 * Can't have an "upper" channel be above the 1670 * last channel in the list. 1671 * 1672 * Can't have an "upper" channel if the next 1673 * channel according to the math isn't 20MHz 1674 * away. (Likely for channel 13/14.) 1675 */ 1676 if (i == nieee - 1 || 1677 ieee[i] + 4 > ieee[nieee - 1] || 1678 freq + 20 != 1679 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1680 continue; 1681 1682 if (j == 0) { 1683 error = addchan(chans, maxchans, nchans, 1684 ieee[i], freq, 0, flags[j]); 1685 } else { 1686 error = copychan_prev(chans, maxchans, nchans, 1687 flags[j]); 1688 } 1689 if (error != 0) 1690 return (error); 1691 } 1692 } 1693 1694 return (0); 1695 } 1696 1697 int 1698 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1699 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1700 int cbw_flags) 1701 { 1702 uint32_t flags[IEEE80211_MODE_MAX]; 1703 1704 /* XXX no VHT for now */ 1705 getflags_2ghz(bands, flags, cbw_flags); 1706 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1707 1708 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1709 } 1710 1711 int 1712 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1713 int maxchans, int *nchans, const uint8_t bands[], int cbw_flags) 1714 { 1715 const uint8_t default_chan_list[] = 1716 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1717 1718 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1719 default_chan_list, nitems(default_chan_list), bands, cbw_flags)); 1720 } 1721 1722 int 1723 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1724 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1725 int cbw_flags) 1726 { 1727 /* 1728 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all 1729 * uses of IEEE80211_MODE_MAX and add a new #define name for array size. 1730 */ 1731 uint32_t flags[2 * IEEE80211_MODE_MAX]; 1732 1733 getflags_5ghz(bands, flags, cbw_flags); 1734 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1735 1736 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1737 } 1738 1739 /* 1740 * Locate a channel given a frequency+flags. We cache 1741 * the previous lookup to optimize switching between two 1742 * channels--as happens with dynamic turbo. 1743 */ 1744 struct ieee80211_channel * 1745 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1746 { 1747 struct ieee80211_channel *c; 1748 1749 flags &= IEEE80211_CHAN_ALLTURBO; 1750 c = ic->ic_prevchan; 1751 if (c != NULL && c->ic_freq == freq && 1752 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1753 return c; 1754 /* brute force search */ 1755 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1756 } 1757 1758 /* 1759 * Locate a channel given a channel number+flags. We cache 1760 * the previous lookup to optimize switching between two 1761 * channels--as happens with dynamic turbo. 1762 */ 1763 struct ieee80211_channel * 1764 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1765 { 1766 struct ieee80211_channel *c; 1767 int i; 1768 1769 flags &= IEEE80211_CHAN_ALLTURBO; 1770 c = ic->ic_prevchan; 1771 if (c != NULL && c->ic_ieee == ieee && 1772 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1773 return c; 1774 /* brute force search */ 1775 for (i = 0; i < ic->ic_nchans; i++) { 1776 c = &ic->ic_channels[i]; 1777 if (c->ic_ieee == ieee && 1778 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1779 return c; 1780 } 1781 return NULL; 1782 } 1783 1784 /* 1785 * Lookup a channel suitable for the given rx status. 1786 * 1787 * This is used to find a channel for a frame (eg beacon, probe 1788 * response) based purely on the received PHY information. 1789 * 1790 * For now it tries to do it based on R_FREQ / R_IEEE. 1791 * This is enough for 11bg and 11a (and thus 11ng/11na) 1792 * but it will not be enough for GSM, PSB channels and the 1793 * like. It also doesn't know about legacy-turbog and 1794 * legacy-turbo modes, which some offload NICs actually 1795 * support in weird ways. 1796 * 1797 * Takes the ic and rxstatus; returns the channel or NULL 1798 * if not found. 1799 * 1800 * XXX TODO: Add support for that when the need arises. 1801 */ 1802 struct ieee80211_channel * 1803 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1804 const struct ieee80211_rx_stats *rxs) 1805 { 1806 struct ieee80211com *ic = vap->iv_ic; 1807 uint32_t flags; 1808 struct ieee80211_channel *c; 1809 1810 if (rxs == NULL) 1811 return (NULL); 1812 1813 /* 1814 * Strictly speaking we only use freq for now, 1815 * however later on we may wish to just store 1816 * the ieee for verification. 1817 */ 1818 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1819 return (NULL); 1820 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1821 return (NULL); 1822 if ((rxs->r_flags & IEEE80211_R_BAND) == 0) 1823 return (NULL); 1824 1825 /* 1826 * If the rx status contains a valid ieee/freq, then 1827 * ensure we populate the correct channel information 1828 * in rxchan before passing it up to the scan infrastructure. 1829 * Offload NICs will pass up beacons from all channels 1830 * during background scans. 1831 */ 1832 1833 /* Determine a band */ 1834 switch (rxs->c_band) { 1835 case IEEE80211_CHAN_2GHZ: 1836 flags = IEEE80211_CHAN_G; 1837 break; 1838 case IEEE80211_CHAN_5GHZ: 1839 flags = IEEE80211_CHAN_A; 1840 break; 1841 default: 1842 if (rxs->c_freq < 3000) { 1843 flags = IEEE80211_CHAN_G; 1844 } else { 1845 flags = IEEE80211_CHAN_A; 1846 } 1847 break; 1848 } 1849 1850 /* Channel lookup */ 1851 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1852 1853 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1854 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1855 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); 1856 1857 return (c); 1858 } 1859 1860 static void 1861 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1862 { 1863 #define ADD(_ic, _s, _o) \ 1864 ifmedia_add(media, \ 1865 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1866 static const u_int mopts[IEEE80211_MODE_MAX] = { 1867 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1868 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1869 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1870 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1871 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1872 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1873 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1874 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1875 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1876 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1877 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1878 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1879 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1880 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1881 }; 1882 u_int mopt; 1883 1884 mopt = mopts[mode]; 1885 if (addsta) 1886 ADD(ic, mword, mopt); /* STA mode has no cap */ 1887 if (caps & IEEE80211_C_IBSS) 1888 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1889 if (caps & IEEE80211_C_HOSTAP) 1890 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1891 if (caps & IEEE80211_C_AHDEMO) 1892 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1893 if (caps & IEEE80211_C_MONITOR) 1894 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1895 if (caps & IEEE80211_C_WDS) 1896 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1897 if (caps & IEEE80211_C_MBSS) 1898 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1899 #undef ADD 1900 } 1901 1902 /* 1903 * Setup the media data structures according to the channel and 1904 * rate tables. 1905 */ 1906 static int 1907 ieee80211_media_setup(struct ieee80211com *ic, 1908 struct ifmedia *media, int caps, int addsta, 1909 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1910 { 1911 int i, j, rate, maxrate, mword, r; 1912 enum ieee80211_phymode mode; 1913 const struct ieee80211_rateset *rs; 1914 struct ieee80211_rateset allrates; 1915 1916 /* 1917 * Fill in media characteristics. 1918 */ 1919 ifmedia_init(media, 0, media_change, media_stat); 1920 maxrate = 0; 1921 /* 1922 * Add media for legacy operating modes. 1923 */ 1924 memset(&allrates, 0, sizeof(allrates)); 1925 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1926 if (isclr(ic->ic_modecaps, mode)) 1927 continue; 1928 addmedia(media, caps, addsta, mode, IFM_AUTO); 1929 if (mode == IEEE80211_MODE_AUTO) 1930 continue; 1931 rs = &ic->ic_sup_rates[mode]; 1932 for (i = 0; i < rs->rs_nrates; i++) { 1933 rate = rs->rs_rates[i]; 1934 mword = ieee80211_rate2media(ic, rate, mode); 1935 if (mword == 0) 1936 continue; 1937 addmedia(media, caps, addsta, mode, mword); 1938 /* 1939 * Add legacy rate to the collection of all rates. 1940 */ 1941 r = rate & IEEE80211_RATE_VAL; 1942 for (j = 0; j < allrates.rs_nrates; j++) 1943 if (allrates.rs_rates[j] == r) 1944 break; 1945 if (j == allrates.rs_nrates) { 1946 /* unique, add to the set */ 1947 allrates.rs_rates[j] = r; 1948 allrates.rs_nrates++; 1949 } 1950 rate = (rate & IEEE80211_RATE_VAL) / 2; 1951 if (rate > maxrate) 1952 maxrate = rate; 1953 } 1954 } 1955 for (i = 0; i < allrates.rs_nrates; i++) { 1956 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1957 IEEE80211_MODE_AUTO); 1958 if (mword == 0) 1959 continue; 1960 /* NB: remove media options from mword */ 1961 addmedia(media, caps, addsta, 1962 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1963 } 1964 /* 1965 * Add HT/11n media. Note that we do not have enough 1966 * bits in the media subtype to express the MCS so we 1967 * use a "placeholder" media subtype and any fixed MCS 1968 * must be specified with a different mechanism. 1969 */ 1970 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1971 if (isclr(ic->ic_modecaps, mode)) 1972 continue; 1973 addmedia(media, caps, addsta, mode, IFM_AUTO); 1974 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1975 } 1976 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1977 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1978 addmedia(media, caps, addsta, 1979 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1980 i = ic->ic_txstream * 8 - 1; 1981 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1982 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1983 rate = ieee80211_htrates[i].ht40_rate_400ns; 1984 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1985 rate = ieee80211_htrates[i].ht40_rate_800ns; 1986 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1987 rate = ieee80211_htrates[i].ht20_rate_400ns; 1988 else 1989 rate = ieee80211_htrates[i].ht20_rate_800ns; 1990 if (rate > maxrate) 1991 maxrate = rate; 1992 } 1993 1994 /* 1995 * Add VHT media. 1996 * XXX-BZ skip "VHT_2GHZ" for now. 1997 */ 1998 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; 1999 mode++) { 2000 if (isclr(ic->ic_modecaps, mode)) 2001 continue; 2002 addmedia(media, caps, addsta, mode, IFM_AUTO); 2003 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 2004 } 2005 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { 2006 addmedia(media, caps, addsta, 2007 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); 2008 2009 /* XXX TODO: VHT maxrate */ 2010 } 2011 2012 return maxrate; 2013 } 2014 2015 /* XXX inline or eliminate? */ 2016 const struct ieee80211_rateset * 2017 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 2018 { 2019 /* XXX does this work for 11ng basic rates? */ 2020 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 2021 } 2022 2023 /* XXX inline or eliminate? */ 2024 const struct ieee80211_htrateset * 2025 ieee80211_get_suphtrates(struct ieee80211com *ic, 2026 const struct ieee80211_channel *c) 2027 { 2028 return &ic->ic_sup_htrates; 2029 } 2030 2031 void 2032 ieee80211_announce(struct ieee80211com *ic) 2033 { 2034 int i, rate, mword; 2035 enum ieee80211_phymode mode; 2036 const struct ieee80211_rateset *rs; 2037 2038 /* NB: skip AUTO since it has no rates */ 2039 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 2040 if (isclr(ic->ic_modecaps, mode)) 2041 continue; 2042 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 2043 rs = &ic->ic_sup_rates[mode]; 2044 for (i = 0; i < rs->rs_nrates; i++) { 2045 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 2046 if (mword == 0) 2047 continue; 2048 rate = ieee80211_media2rate(mword); 2049 printf("%s%d%sMbps", (i != 0 ? " " : ""), 2050 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 2051 } 2052 printf("\n"); 2053 } 2054 ieee80211_ht_announce(ic); 2055 ieee80211_vht_announce(ic); 2056 } 2057 2058 void 2059 ieee80211_announce_channels(struct ieee80211com *ic) 2060 { 2061 const struct ieee80211_channel *c; 2062 char type; 2063 int i, cw; 2064 2065 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 2066 for (i = 0; i < ic->ic_nchans; i++) { 2067 c = &ic->ic_channels[i]; 2068 if (IEEE80211_IS_CHAN_ST(c)) 2069 type = 'S'; 2070 else if (IEEE80211_IS_CHAN_108A(c)) 2071 type = 'T'; 2072 else if (IEEE80211_IS_CHAN_108G(c)) 2073 type = 'G'; 2074 else if (IEEE80211_IS_CHAN_HT(c)) 2075 type = 'n'; 2076 else if (IEEE80211_IS_CHAN_A(c)) 2077 type = 'a'; 2078 else if (IEEE80211_IS_CHAN_ANYG(c)) 2079 type = 'g'; 2080 else if (IEEE80211_IS_CHAN_B(c)) 2081 type = 'b'; 2082 else 2083 type = 'f'; 2084 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2085 cw = 40; 2086 else if (IEEE80211_IS_CHAN_HALF(c)) 2087 cw = 10; 2088 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2089 cw = 5; 2090 else 2091 cw = 20; 2092 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2093 , c->ic_ieee, c->ic_freq, type 2094 , cw 2095 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2096 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2097 , c->ic_maxregpower 2098 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2099 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2100 ); 2101 } 2102 } 2103 2104 static int 2105 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2106 { 2107 switch (IFM_MODE(ime->ifm_media)) { 2108 case IFM_IEEE80211_11A: 2109 *mode = IEEE80211_MODE_11A; 2110 break; 2111 case IFM_IEEE80211_11B: 2112 *mode = IEEE80211_MODE_11B; 2113 break; 2114 case IFM_IEEE80211_11G: 2115 *mode = IEEE80211_MODE_11G; 2116 break; 2117 case IFM_IEEE80211_FH: 2118 *mode = IEEE80211_MODE_FH; 2119 break; 2120 case IFM_IEEE80211_11NA: 2121 *mode = IEEE80211_MODE_11NA; 2122 break; 2123 case IFM_IEEE80211_11NG: 2124 *mode = IEEE80211_MODE_11NG; 2125 break; 2126 case IFM_IEEE80211_VHT2G: 2127 *mode = IEEE80211_MODE_VHT_2GHZ; 2128 break; 2129 case IFM_IEEE80211_VHT5G: 2130 *mode = IEEE80211_MODE_VHT_5GHZ; 2131 break; 2132 case IFM_AUTO: 2133 *mode = IEEE80211_MODE_AUTO; 2134 break; 2135 default: 2136 return 0; 2137 } 2138 /* 2139 * Turbo mode is an ``option''. 2140 * XXX does not apply to AUTO 2141 */ 2142 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2143 if (*mode == IEEE80211_MODE_11A) { 2144 if (flags & IEEE80211_F_TURBOP) 2145 *mode = IEEE80211_MODE_TURBO_A; 2146 else 2147 *mode = IEEE80211_MODE_STURBO_A; 2148 } else if (*mode == IEEE80211_MODE_11G) 2149 *mode = IEEE80211_MODE_TURBO_G; 2150 else 2151 return 0; 2152 } 2153 /* XXX HT40 +/- */ 2154 return 1; 2155 } 2156 2157 /* 2158 * Handle a media change request on the vap interface. 2159 */ 2160 int 2161 ieee80211_media_change(struct ifnet *ifp) 2162 { 2163 struct ieee80211vap *vap = ifp->if_softc; 2164 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2165 uint16_t newmode; 2166 2167 if (!media2mode(ime, vap->iv_flags, &newmode)) 2168 return EINVAL; 2169 if (vap->iv_des_mode != newmode) { 2170 vap->iv_des_mode = newmode; 2171 /* XXX kick state machine if up+running */ 2172 } 2173 return 0; 2174 } 2175 2176 /* 2177 * Common code to calculate the media status word 2178 * from the operating mode and channel state. 2179 */ 2180 static int 2181 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2182 { 2183 int status; 2184 2185 status = IFM_IEEE80211; 2186 switch (opmode) { 2187 case IEEE80211_M_STA: 2188 break; 2189 case IEEE80211_M_IBSS: 2190 status |= IFM_IEEE80211_ADHOC; 2191 break; 2192 case IEEE80211_M_HOSTAP: 2193 status |= IFM_IEEE80211_HOSTAP; 2194 break; 2195 case IEEE80211_M_MONITOR: 2196 status |= IFM_IEEE80211_MONITOR; 2197 break; 2198 case IEEE80211_M_AHDEMO: 2199 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2200 break; 2201 case IEEE80211_M_WDS: 2202 status |= IFM_IEEE80211_WDS; 2203 break; 2204 case IEEE80211_M_MBSS: 2205 status |= IFM_IEEE80211_MBSS; 2206 break; 2207 } 2208 if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) { 2209 status |= IFM_IEEE80211_VHT5G; 2210 } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) { 2211 status |= IFM_IEEE80211_VHT2G; 2212 } else if (IEEE80211_IS_CHAN_HTA(chan)) { 2213 status |= IFM_IEEE80211_11NA; 2214 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2215 status |= IFM_IEEE80211_11NG; 2216 } else if (IEEE80211_IS_CHAN_A(chan)) { 2217 status |= IFM_IEEE80211_11A; 2218 } else if (IEEE80211_IS_CHAN_B(chan)) { 2219 status |= IFM_IEEE80211_11B; 2220 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2221 status |= IFM_IEEE80211_11G; 2222 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2223 status |= IFM_IEEE80211_FH; 2224 } 2225 /* XXX else complain? */ 2226 2227 if (IEEE80211_IS_CHAN_TURBO(chan)) 2228 status |= IFM_IEEE80211_TURBO; 2229 #if 0 2230 if (IEEE80211_IS_CHAN_HT20(chan)) 2231 status |= IFM_IEEE80211_HT20; 2232 if (IEEE80211_IS_CHAN_HT40(chan)) 2233 status |= IFM_IEEE80211_HT40; 2234 #endif 2235 return status; 2236 } 2237 2238 void 2239 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2240 { 2241 struct ieee80211vap *vap = ifp->if_softc; 2242 struct ieee80211com *ic = vap->iv_ic; 2243 enum ieee80211_phymode mode; 2244 2245 imr->ifm_status = IFM_AVALID; 2246 /* 2247 * NB: use the current channel's mode to lock down a xmit 2248 * rate only when running; otherwise we may have a mismatch 2249 * in which case the rate will not be convertible. 2250 */ 2251 if (vap->iv_state == IEEE80211_S_RUN || 2252 vap->iv_state == IEEE80211_S_SLEEP) { 2253 imr->ifm_status |= IFM_ACTIVE; 2254 mode = ieee80211_chan2mode(ic->ic_curchan); 2255 } else 2256 mode = IEEE80211_MODE_AUTO; 2257 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2258 /* 2259 * Calculate a current rate if possible. 2260 */ 2261 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2262 /* 2263 * A fixed rate is set, report that. 2264 */ 2265 imr->ifm_active |= ieee80211_rate2media(ic, 2266 vap->iv_txparms[mode].ucastrate, mode); 2267 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2268 /* 2269 * In station mode report the current transmit rate. 2270 */ 2271 imr->ifm_active |= ieee80211_rate2media(ic, 2272 vap->iv_bss->ni_txrate, mode); 2273 } else 2274 imr->ifm_active |= IFM_AUTO; 2275 if (imr->ifm_status & IFM_ACTIVE) 2276 imr->ifm_current = imr->ifm_active; 2277 } 2278 2279 /* 2280 * Set the current phy mode and recalculate the active channel 2281 * set based on the available channels for this mode. Also 2282 * select a new default/current channel if the current one is 2283 * inappropriate for this mode. 2284 */ 2285 int 2286 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2287 { 2288 /* 2289 * Adjust basic rates in 11b/11g supported rate set. 2290 * Note that if operating on a hal/quarter rate channel 2291 * this is a noop as those rates sets are different 2292 * and used instead. 2293 */ 2294 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2295 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2296 2297 ic->ic_curmode = mode; 2298 ieee80211_reset_erp(ic); /* reset global ERP state */ 2299 2300 return 0; 2301 } 2302 2303 /* 2304 * Return the phy mode for with the specified channel. 2305 */ 2306 enum ieee80211_phymode 2307 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2308 { 2309 2310 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2311 return IEEE80211_MODE_VHT_2GHZ; 2312 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2313 return IEEE80211_MODE_VHT_5GHZ; 2314 else if (IEEE80211_IS_CHAN_HTA(chan)) 2315 return IEEE80211_MODE_11NA; 2316 else if (IEEE80211_IS_CHAN_HTG(chan)) 2317 return IEEE80211_MODE_11NG; 2318 else if (IEEE80211_IS_CHAN_108G(chan)) 2319 return IEEE80211_MODE_TURBO_G; 2320 else if (IEEE80211_IS_CHAN_ST(chan)) 2321 return IEEE80211_MODE_STURBO_A; 2322 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2323 return IEEE80211_MODE_TURBO_A; 2324 else if (IEEE80211_IS_CHAN_HALF(chan)) 2325 return IEEE80211_MODE_HALF; 2326 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2327 return IEEE80211_MODE_QUARTER; 2328 else if (IEEE80211_IS_CHAN_A(chan)) 2329 return IEEE80211_MODE_11A; 2330 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2331 return IEEE80211_MODE_11G; 2332 else if (IEEE80211_IS_CHAN_B(chan)) 2333 return IEEE80211_MODE_11B; 2334 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2335 return IEEE80211_MODE_FH; 2336 2337 /* NB: should not get here */ 2338 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2339 __func__, chan->ic_freq, chan->ic_flags); 2340 return IEEE80211_MODE_11B; 2341 } 2342 2343 struct ratemedia { 2344 u_int match; /* rate + mode */ 2345 u_int media; /* if_media rate */ 2346 }; 2347 2348 static int 2349 findmedia(const struct ratemedia rates[], int n, u_int match) 2350 { 2351 int i; 2352 2353 for (i = 0; i < n; i++) 2354 if (rates[i].match == match) 2355 return rates[i].media; 2356 return IFM_AUTO; 2357 } 2358 2359 /* 2360 * Convert IEEE80211 rate value to ifmedia subtype. 2361 * Rate is either a legacy rate in units of 0.5Mbps 2362 * or an MCS index. 2363 */ 2364 int 2365 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2366 { 2367 static const struct ratemedia rates[] = { 2368 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2369 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2370 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2371 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2372 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2373 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2374 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2375 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2376 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2377 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2378 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2379 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2380 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2381 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2382 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2383 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2384 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2385 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2386 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2387 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2388 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2389 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2390 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2391 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2392 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2393 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2394 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2395 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2396 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2397 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2398 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2399 }; 2400 static const struct ratemedia htrates[] = { 2401 { 0, IFM_IEEE80211_MCS }, 2402 { 1, IFM_IEEE80211_MCS }, 2403 { 2, IFM_IEEE80211_MCS }, 2404 { 3, IFM_IEEE80211_MCS }, 2405 { 4, IFM_IEEE80211_MCS }, 2406 { 5, IFM_IEEE80211_MCS }, 2407 { 6, IFM_IEEE80211_MCS }, 2408 { 7, IFM_IEEE80211_MCS }, 2409 { 8, IFM_IEEE80211_MCS }, 2410 { 9, IFM_IEEE80211_MCS }, 2411 { 10, IFM_IEEE80211_MCS }, 2412 { 11, IFM_IEEE80211_MCS }, 2413 { 12, IFM_IEEE80211_MCS }, 2414 { 13, IFM_IEEE80211_MCS }, 2415 { 14, IFM_IEEE80211_MCS }, 2416 { 15, IFM_IEEE80211_MCS }, 2417 { 16, IFM_IEEE80211_MCS }, 2418 { 17, IFM_IEEE80211_MCS }, 2419 { 18, IFM_IEEE80211_MCS }, 2420 { 19, IFM_IEEE80211_MCS }, 2421 { 20, IFM_IEEE80211_MCS }, 2422 { 21, IFM_IEEE80211_MCS }, 2423 { 22, IFM_IEEE80211_MCS }, 2424 { 23, IFM_IEEE80211_MCS }, 2425 { 24, IFM_IEEE80211_MCS }, 2426 { 25, IFM_IEEE80211_MCS }, 2427 { 26, IFM_IEEE80211_MCS }, 2428 { 27, IFM_IEEE80211_MCS }, 2429 { 28, IFM_IEEE80211_MCS }, 2430 { 29, IFM_IEEE80211_MCS }, 2431 { 30, IFM_IEEE80211_MCS }, 2432 { 31, IFM_IEEE80211_MCS }, 2433 { 32, IFM_IEEE80211_MCS }, 2434 { 33, IFM_IEEE80211_MCS }, 2435 { 34, IFM_IEEE80211_MCS }, 2436 { 35, IFM_IEEE80211_MCS }, 2437 { 36, IFM_IEEE80211_MCS }, 2438 { 37, IFM_IEEE80211_MCS }, 2439 { 38, IFM_IEEE80211_MCS }, 2440 { 39, IFM_IEEE80211_MCS }, 2441 { 40, IFM_IEEE80211_MCS }, 2442 { 41, IFM_IEEE80211_MCS }, 2443 { 42, IFM_IEEE80211_MCS }, 2444 { 43, IFM_IEEE80211_MCS }, 2445 { 44, IFM_IEEE80211_MCS }, 2446 { 45, IFM_IEEE80211_MCS }, 2447 { 46, IFM_IEEE80211_MCS }, 2448 { 47, IFM_IEEE80211_MCS }, 2449 { 48, IFM_IEEE80211_MCS }, 2450 { 49, IFM_IEEE80211_MCS }, 2451 { 50, IFM_IEEE80211_MCS }, 2452 { 51, IFM_IEEE80211_MCS }, 2453 { 52, IFM_IEEE80211_MCS }, 2454 { 53, IFM_IEEE80211_MCS }, 2455 { 54, IFM_IEEE80211_MCS }, 2456 { 55, IFM_IEEE80211_MCS }, 2457 { 56, IFM_IEEE80211_MCS }, 2458 { 57, IFM_IEEE80211_MCS }, 2459 { 58, IFM_IEEE80211_MCS }, 2460 { 59, IFM_IEEE80211_MCS }, 2461 { 60, IFM_IEEE80211_MCS }, 2462 { 61, IFM_IEEE80211_MCS }, 2463 { 62, IFM_IEEE80211_MCS }, 2464 { 63, IFM_IEEE80211_MCS }, 2465 { 64, IFM_IEEE80211_MCS }, 2466 { 65, IFM_IEEE80211_MCS }, 2467 { 66, IFM_IEEE80211_MCS }, 2468 { 67, IFM_IEEE80211_MCS }, 2469 { 68, IFM_IEEE80211_MCS }, 2470 { 69, IFM_IEEE80211_MCS }, 2471 { 70, IFM_IEEE80211_MCS }, 2472 { 71, IFM_IEEE80211_MCS }, 2473 { 72, IFM_IEEE80211_MCS }, 2474 { 73, IFM_IEEE80211_MCS }, 2475 { 74, IFM_IEEE80211_MCS }, 2476 { 75, IFM_IEEE80211_MCS }, 2477 { 76, IFM_IEEE80211_MCS }, 2478 }; 2479 static const struct ratemedia vhtrates[] = { 2480 { 0, IFM_IEEE80211_VHT }, 2481 { 1, IFM_IEEE80211_VHT }, 2482 { 2, IFM_IEEE80211_VHT }, 2483 { 3, IFM_IEEE80211_VHT }, 2484 { 4, IFM_IEEE80211_VHT }, 2485 { 5, IFM_IEEE80211_VHT }, 2486 { 6, IFM_IEEE80211_VHT }, 2487 { 7, IFM_IEEE80211_VHT }, 2488 { 8, IFM_IEEE80211_VHT }, /* Optional. */ 2489 { 9, IFM_IEEE80211_VHT }, /* Optional. */ 2490 #if 0 2491 /* Some QCA and BRCM seem to support this; offspec. */ 2492 { 10, IFM_IEEE80211_VHT }, 2493 { 11, IFM_IEEE80211_VHT }, 2494 #endif 2495 }; 2496 int m; 2497 2498 /* 2499 * Check 11ac/11n rates first for match as an MCS. 2500 */ 2501 if (mode == IEEE80211_MODE_VHT_5GHZ) { 2502 if (rate & IFM_IEEE80211_VHT) { 2503 rate &= ~IFM_IEEE80211_VHT; 2504 m = findmedia(vhtrates, nitems(vhtrates), rate); 2505 if (m != IFM_AUTO) 2506 return (m | IFM_IEEE80211_VHT); 2507 } 2508 } else if (mode == IEEE80211_MODE_11NA) { 2509 if (rate & IEEE80211_RATE_MCS) { 2510 rate &= ~IEEE80211_RATE_MCS; 2511 m = findmedia(htrates, nitems(htrates), rate); 2512 if (m != IFM_AUTO) 2513 return m | IFM_IEEE80211_11NA; 2514 } 2515 } else if (mode == IEEE80211_MODE_11NG) { 2516 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2517 if (rate & IEEE80211_RATE_MCS) { 2518 rate &= ~IEEE80211_RATE_MCS; 2519 m = findmedia(htrates, nitems(htrates), rate); 2520 if (m != IFM_AUTO) 2521 return m | IFM_IEEE80211_11NG; 2522 } 2523 } 2524 rate &= IEEE80211_RATE_VAL; 2525 switch (mode) { 2526 case IEEE80211_MODE_11A: 2527 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2528 case IEEE80211_MODE_QUARTER: 2529 case IEEE80211_MODE_11NA: 2530 case IEEE80211_MODE_TURBO_A: 2531 case IEEE80211_MODE_STURBO_A: 2532 return findmedia(rates, nitems(rates), 2533 rate | IFM_IEEE80211_11A); 2534 case IEEE80211_MODE_11B: 2535 return findmedia(rates, nitems(rates), 2536 rate | IFM_IEEE80211_11B); 2537 case IEEE80211_MODE_FH: 2538 return findmedia(rates, nitems(rates), 2539 rate | IFM_IEEE80211_FH); 2540 case IEEE80211_MODE_AUTO: 2541 /* NB: ic may be NULL for some drivers */ 2542 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2543 return findmedia(rates, nitems(rates), 2544 rate | IFM_IEEE80211_FH); 2545 /* NB: hack, 11g matches both 11b+11a rates */ 2546 /* fall thru... */ 2547 case IEEE80211_MODE_11G: 2548 case IEEE80211_MODE_11NG: 2549 case IEEE80211_MODE_TURBO_G: 2550 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2551 case IEEE80211_MODE_VHT_2GHZ: 2552 case IEEE80211_MODE_VHT_5GHZ: 2553 /* XXX TODO: need to figure out mapping for VHT rates */ 2554 return IFM_AUTO; 2555 } 2556 return IFM_AUTO; 2557 } 2558 2559 int 2560 ieee80211_media2rate(int mword) 2561 { 2562 static const int ieeerates[] = { 2563 -1, /* IFM_AUTO */ 2564 0, /* IFM_MANUAL */ 2565 0, /* IFM_NONE */ 2566 2, /* IFM_IEEE80211_FH1 */ 2567 4, /* IFM_IEEE80211_FH2 */ 2568 2, /* IFM_IEEE80211_DS1 */ 2569 4, /* IFM_IEEE80211_DS2 */ 2570 11, /* IFM_IEEE80211_DS5 */ 2571 22, /* IFM_IEEE80211_DS11 */ 2572 44, /* IFM_IEEE80211_DS22 */ 2573 12, /* IFM_IEEE80211_OFDM6 */ 2574 18, /* IFM_IEEE80211_OFDM9 */ 2575 24, /* IFM_IEEE80211_OFDM12 */ 2576 36, /* IFM_IEEE80211_OFDM18 */ 2577 48, /* IFM_IEEE80211_OFDM24 */ 2578 72, /* IFM_IEEE80211_OFDM36 */ 2579 96, /* IFM_IEEE80211_OFDM48 */ 2580 108, /* IFM_IEEE80211_OFDM54 */ 2581 144, /* IFM_IEEE80211_OFDM72 */ 2582 0, /* IFM_IEEE80211_DS354k */ 2583 0, /* IFM_IEEE80211_DS512k */ 2584 6, /* IFM_IEEE80211_OFDM3 */ 2585 9, /* IFM_IEEE80211_OFDM4 */ 2586 54, /* IFM_IEEE80211_OFDM27 */ 2587 -1, /* IFM_IEEE80211_MCS */ 2588 -1, /* IFM_IEEE80211_VHT */ 2589 }; 2590 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2591 ieeerates[IFM_SUBTYPE(mword)] : 0; 2592 } 2593 2594 /* 2595 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2596 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2597 */ 2598 #define mix(a, b, c) \ 2599 do { \ 2600 a -= b; a -= c; a ^= (c >> 13); \ 2601 b -= c; b -= a; b ^= (a << 8); \ 2602 c -= a; c -= b; c ^= (b >> 13); \ 2603 a -= b; a -= c; a ^= (c >> 12); \ 2604 b -= c; b -= a; b ^= (a << 16); \ 2605 c -= a; c -= b; c ^= (b >> 5); \ 2606 a -= b; a -= c; a ^= (c >> 3); \ 2607 b -= c; b -= a; b ^= (a << 10); \ 2608 c -= a; c -= b; c ^= (b >> 15); \ 2609 } while (/*CONSTCOND*/0) 2610 2611 uint32_t 2612 ieee80211_mac_hash(const struct ieee80211com *ic, 2613 const uint8_t addr[IEEE80211_ADDR_LEN]) 2614 { 2615 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2616 2617 b += addr[5] << 8; 2618 b += addr[4]; 2619 a += addr[3] << 24; 2620 a += addr[2] << 16; 2621 a += addr[1] << 8; 2622 a += addr[0]; 2623 2624 mix(a, b, c); 2625 2626 return c; 2627 } 2628 #undef mix 2629 2630 char 2631 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2632 { 2633 if (IEEE80211_IS_CHAN_ST(c)) 2634 return 'S'; 2635 if (IEEE80211_IS_CHAN_108A(c)) 2636 return 'T'; 2637 if (IEEE80211_IS_CHAN_108G(c)) 2638 return 'G'; 2639 if (IEEE80211_IS_CHAN_VHT(c)) 2640 return 'v'; 2641 if (IEEE80211_IS_CHAN_HT(c)) 2642 return 'n'; 2643 if (IEEE80211_IS_CHAN_A(c)) 2644 return 'a'; 2645 if (IEEE80211_IS_CHAN_ANYG(c)) 2646 return 'g'; 2647 if (IEEE80211_IS_CHAN_B(c)) 2648 return 'b'; 2649 return 'f'; 2650 } 2651