1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004-2009 University of Zagreb 5 * Copyright (c) 2006-2009 FreeBSD Foundation 6 * All rights reserved. 7 * 8 * This software was developed by the University of Zagreb and the 9 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 10 * FreeBSD Foundation. 11 * 12 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 13 * Copyright (c) 2009 Robert N. M. Watson 14 * All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_kdb.h" 43 44 #include <sys/param.h> 45 #include <sys/kdb.h> 46 #include <sys/kernel.h> 47 #include <sys/jail.h> 48 #include <sys/sdt.h> 49 #include <sys/systm.h> 50 #include <sys/sysctl.h> 51 #include <sys/eventhandler.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/proc.h> 55 #include <sys/socket.h> 56 #include <sys/sx.h> 57 #include <sys/sysctl.h> 58 59 #include <machine/stdarg.h> 60 61 #ifdef DDB 62 #include <ddb/ddb.h> 63 #include <ddb/db_sym.h> 64 #endif 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 70 /*- 71 * This file implements core functions for virtual network stacks: 72 * 73 * - Virtual network stack management functions. 74 * 75 * - Virtual network stack memory allocator, which virtualizes global 76 * variables in the network stack 77 * 78 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 79 * to register startup/shutdown events to be run for each virtual network 80 * stack instance. 81 */ 82 83 FEATURE(vimage, "VIMAGE kernel virtualization"); 84 85 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 86 87 /* 88 * The virtual network stack list has two read-write locks, one sleepable and 89 * the other not, so that the list can be stablized and walked in a variety 90 * of network stack contexts. Both must be acquired exclusively to modify 91 * the list, but a read lock of either lock is sufficient to walk the list. 92 */ 93 struct rwlock vnet_rwlock; 94 struct sx vnet_sxlock; 95 96 #define VNET_LIST_WLOCK() do { \ 97 sx_xlock(&vnet_sxlock); \ 98 rw_wlock(&vnet_rwlock); \ 99 } while (0) 100 101 #define VNET_LIST_WUNLOCK() do { \ 102 rw_wunlock(&vnet_rwlock); \ 103 sx_xunlock(&vnet_sxlock); \ 104 } while (0) 105 106 struct vnet_list_head vnet_head; 107 struct vnet *vnet0; 108 109 /* 110 * The virtual network stack allocator provides storage for virtualized 111 * global variables. These variables are defined/declared using the 112 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 113 * linker set. The details of the implementation are somewhat subtle, but 114 * allow the majority of most network subsystems to maintain 115 * virtualization-agnostic. 116 * 117 * The virtual network stack allocator handles variables in the base kernel 118 * vs. modules in similar but different ways. In both cases, virtualized 119 * global variables are marked as such by being declared to be part of the 120 * vnet linker set. These "master" copies of global variables serve two 121 * functions: 122 * 123 * (1) They contain static initialization or "default" values for global 124 * variables which will be propagated to each virtual network stack 125 * instance when created. As with normal global variables, they default 126 * to zero-filled. 127 * 128 * (2) They act as unique global names by which the variable can be referred 129 * to, regardless of network stack instance. The single global symbol 130 * will be used to calculate the location of a per-virtual instance 131 * variable at run-time. 132 * 133 * Each virtual network stack instance has a complete copy of each 134 * virtualized global variable, stored in a malloc'd block of memory 135 * referred to by vnet->vnet_data_mem. Critical to the design is that each 136 * per-instance memory block is laid out identically to the master block so 137 * that the offset of each global variable is the same across all blocks. To 138 * optimize run-time access, a precalculated 'base' address, 139 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 140 * be added to the address of a 'master' instance of a variable to get to the 141 * per-vnet instance. 142 * 143 * Virtualized global variables are handled in a similar manner, but as each 144 * module has its own 'set_vnet' linker set, and we want to keep all 145 * virtualized globals togther, we reserve space in the kernel's linker set 146 * for potential module variables using a per-vnet character array, 147 * 'modspace'. The virtual network stack allocator maintains a free list to 148 * track what space in the array is free (all, initially) and as modules are 149 * linked, allocates portions of the space to specific globals. The kernel 150 * module linker queries the virtual network stack allocator and will 151 * bind references of the global to the location during linking. It also 152 * calls into the virtual network stack allocator, once the memory is 153 * initialized, in order to propagate the new static initializations to all 154 * existing virtual network stack instances so that the soon-to-be executing 155 * module will find every network stack instance with proper default values. 156 */ 157 158 /* 159 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 160 * size of all kernel virtualized global variables, and the malloc(9) type 161 * that will be used to allocate it. 162 */ 163 #define VNET_BYTES (VNET_STOP - VNET_START) 164 165 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 166 167 /* 168 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 169 * global variables across all loaded modules. As this actually sizes an 170 * array declared as a virtualized global variable in the kernel itself, and 171 * we want the virtualized global variable space to be page-sized, we may 172 * have more space than that in practice. 173 */ 174 #define VNET_MODMIN (8 * PAGE_SIZE) 175 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 176 177 /* 178 * Space to store virtualized global variables from loadable kernel modules, 179 * and the free list to manage it. 180 */ 181 VNET_DEFINE_STATIC(char, modspace[VNET_MODMIN] __aligned(__alignof(void *))); 182 183 /* 184 * Global lists of subsystem constructor and destructors for vnets. They are 185 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 186 * protected by the vnet_sysinit_sxlock global lock. 187 */ 188 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 189 TAILQ_HEAD_INITIALIZER(vnet_constructors); 190 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 191 TAILQ_HEAD_INITIALIZER(vnet_destructors); 192 193 struct sx vnet_sysinit_sxlock; 194 195 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 196 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 197 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 198 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 199 200 struct vnet_data_free { 201 uintptr_t vnd_start; 202 int vnd_len; 203 TAILQ_ENTRY(vnet_data_free) vnd_link; 204 }; 205 206 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", 207 "VNET resource accounting"); 208 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 209 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 210 static struct sx vnet_data_free_lock; 211 212 SDT_PROVIDER_DEFINE(vnet); 213 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 214 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", 215 "struct vnet *"); 216 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, 217 "int", "struct vnet *"); 218 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, 219 "int", "struct vnet *"); 220 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, 221 "int"); 222 223 #ifdef DDB 224 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 225 #endif 226 227 /* 228 * Allocate a virtual network stack. 229 */ 230 struct vnet * 231 vnet_alloc(void) 232 { 233 struct vnet *vnet; 234 235 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 236 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 237 vnet->vnet_magic_n = VNET_MAGIC_N; 238 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 239 240 /* 241 * Allocate storage for virtualized global variables and copy in 242 * initial values form our 'master' copy. 243 */ 244 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 245 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 246 247 /* 248 * All use of vnet-specific data will immediately subtract VNET_START 249 * from the base memory pointer, so pre-calculate that now to avoid 250 * it on each use. 251 */ 252 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 253 254 /* Initialize / attach vnet module instances. */ 255 CURVNET_SET_QUIET(vnet); 256 vnet_sysinit(); 257 CURVNET_RESTORE(); 258 259 VNET_LIST_WLOCK(); 260 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 261 VNET_LIST_WUNLOCK(); 262 263 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 264 return (vnet); 265 } 266 267 /* 268 * Destroy a virtual network stack. 269 */ 270 void 271 vnet_destroy(struct vnet *vnet) 272 { 273 274 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 275 KASSERT(vnet->vnet_sockcnt == 0, 276 ("%s: vnet still has sockets", __func__)); 277 278 VNET_LIST_WLOCK(); 279 LIST_REMOVE(vnet, vnet_le); 280 VNET_LIST_WUNLOCK(); 281 282 /* Signal that VNET is being shutdown. */ 283 vnet->vnet_shutdown = true; 284 285 CURVNET_SET_QUIET(vnet); 286 sx_xlock(&ifnet_detach_sxlock); 287 vnet_sysuninit(); 288 sx_xunlock(&ifnet_detach_sxlock); 289 CURVNET_RESTORE(); 290 291 /* 292 * Release storage for the virtual network stack instance. 293 */ 294 free(vnet->vnet_data_mem, M_VNET_DATA); 295 vnet->vnet_data_mem = NULL; 296 vnet->vnet_data_base = 0; 297 vnet->vnet_magic_n = 0xdeadbeef; 298 free(vnet, M_VNET); 299 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 300 } 301 302 /* 303 * Boot time initialization and allocation of virtual network stacks. 304 */ 305 static void 306 vnet_init_prelink(void *arg __unused) 307 { 308 309 rw_init(&vnet_rwlock, "vnet_rwlock"); 310 sx_init(&vnet_sxlock, "vnet_sxlock"); 311 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 312 LIST_INIT(&vnet_head); 313 } 314 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 315 vnet_init_prelink, NULL); 316 317 static void 318 vnet0_init(void *arg __unused) 319 { 320 321 if (bootverbose) 322 printf("VIMAGE (virtualized network stack) enabled\n"); 323 324 /* 325 * We MUST clear curvnet in vi_init_done() before going SMP, 326 * otherwise CURVNET_SET() macros would scream about unnecessary 327 * curvnet recursions. 328 */ 329 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 330 } 331 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 332 333 static void 334 vnet_init_done(void *unused __unused) 335 { 336 337 curvnet = NULL; 338 } 339 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_init_done, 340 NULL); 341 342 /* 343 * Once on boot, initialize the modspace freelist to entirely cover modspace. 344 */ 345 static void 346 vnet_data_startup(void *dummy __unused) 347 { 348 struct vnet_data_free *df; 349 350 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 351 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 352 df->vnd_len = VNET_MODMIN; 353 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 354 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 355 } 356 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, NULL); 357 358 /* Dummy VNET_SYSINIT to make sure we always reach the final end state. */ 359 static void 360 vnet_sysinit_done(void *unused __unused) 361 { 362 363 return; 364 } 365 VNET_SYSINIT(vnet_sysinit_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, 366 vnet_sysinit_done, NULL); 367 368 /* 369 * When a module is loaded and requires storage for a virtualized global 370 * variable, allocate space from the modspace free list. This interface 371 * should be used only by the kernel linker. 372 */ 373 void * 374 vnet_data_alloc(int size) 375 { 376 struct vnet_data_free *df; 377 void *s; 378 379 s = NULL; 380 size = roundup2(size, sizeof(void *)); 381 sx_xlock(&vnet_data_free_lock); 382 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 383 if (df->vnd_len < size) 384 continue; 385 if (df->vnd_len == size) { 386 s = (void *)df->vnd_start; 387 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 388 free(df, M_VNET_DATA_FREE); 389 break; 390 } 391 s = (void *)df->vnd_start; 392 df->vnd_len -= size; 393 df->vnd_start = df->vnd_start + size; 394 break; 395 } 396 sx_xunlock(&vnet_data_free_lock); 397 398 return (s); 399 } 400 401 /* 402 * Free space for a virtualized global variable on module unload. 403 */ 404 void 405 vnet_data_free(void *start_arg, int size) 406 { 407 struct vnet_data_free *df; 408 struct vnet_data_free *dn; 409 uintptr_t start; 410 uintptr_t end; 411 412 size = roundup2(size, sizeof(void *)); 413 start = (uintptr_t)start_arg; 414 end = start + size; 415 /* 416 * Free a region of space and merge it with as many neighbors as 417 * possible. Keeping the list sorted simplifies this operation. 418 */ 419 sx_xlock(&vnet_data_free_lock); 420 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 421 if (df->vnd_start > end) 422 break; 423 /* 424 * If we expand at the end of an entry we may have to merge 425 * it with the one following it as well. 426 */ 427 if (df->vnd_start + df->vnd_len == start) { 428 df->vnd_len += size; 429 dn = TAILQ_NEXT(df, vnd_link); 430 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 431 df->vnd_len += dn->vnd_len; 432 TAILQ_REMOVE(&vnet_data_free_head, dn, 433 vnd_link); 434 free(dn, M_VNET_DATA_FREE); 435 } 436 sx_xunlock(&vnet_data_free_lock); 437 return; 438 } 439 if (df->vnd_start == end) { 440 df->vnd_start = start; 441 df->vnd_len += size; 442 sx_xunlock(&vnet_data_free_lock); 443 return; 444 } 445 } 446 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 447 dn->vnd_start = start; 448 dn->vnd_len = size; 449 if (df) 450 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 451 else 452 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 453 sx_xunlock(&vnet_data_free_lock); 454 } 455 456 /* 457 * When a new virtualized global variable has been allocated, propagate its 458 * initial value to each already-allocated virtual network stack instance. 459 */ 460 void 461 vnet_data_copy(void *start, int size) 462 { 463 struct vnet *vnet; 464 465 VNET_LIST_RLOCK(); 466 LIST_FOREACH(vnet, &vnet_head, vnet_le) 467 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 468 (uintptr_t)start), start, size); 469 VNET_LIST_RUNLOCK(); 470 } 471 472 /* 473 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 474 * and VNET_SYSUNINIT(). 475 */ 476 void 477 vnet_register_sysinit(void *arg) 478 { 479 struct vnet_sysinit *vs, *vs2; 480 struct vnet *vnet; 481 482 vs = arg; 483 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 484 485 /* Add the constructor to the global list of vnet constructors. */ 486 VNET_SYSINIT_WLOCK(); 487 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 488 if (vs2->subsystem > vs->subsystem) 489 break; 490 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 491 break; 492 } 493 if (vs2 != NULL) 494 TAILQ_INSERT_BEFORE(vs2, vs, link); 495 else 496 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 497 498 /* 499 * Invoke the constructor on all the existing vnets when it is 500 * registered. 501 */ 502 VNET_FOREACH(vnet) { 503 CURVNET_SET_QUIET(vnet); 504 vs->func(vs->arg); 505 CURVNET_RESTORE(); 506 } 507 VNET_SYSINIT_WUNLOCK(); 508 } 509 510 void 511 vnet_deregister_sysinit(void *arg) 512 { 513 struct vnet_sysinit *vs; 514 515 vs = arg; 516 517 /* Remove the constructor from the global list of vnet constructors. */ 518 VNET_SYSINIT_WLOCK(); 519 TAILQ_REMOVE(&vnet_constructors, vs, link); 520 VNET_SYSINIT_WUNLOCK(); 521 } 522 523 void 524 vnet_register_sysuninit(void *arg) 525 { 526 struct vnet_sysinit *vs, *vs2; 527 528 vs = arg; 529 530 /* Add the destructor to the global list of vnet destructors. */ 531 VNET_SYSINIT_WLOCK(); 532 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 533 if (vs2->subsystem > vs->subsystem) 534 break; 535 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 536 break; 537 } 538 if (vs2 != NULL) 539 TAILQ_INSERT_BEFORE(vs2, vs, link); 540 else 541 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 542 VNET_SYSINIT_WUNLOCK(); 543 } 544 545 void 546 vnet_deregister_sysuninit(void *arg) 547 { 548 struct vnet_sysinit *vs; 549 struct vnet *vnet; 550 551 vs = arg; 552 553 /* 554 * Invoke the destructor on all the existing vnets when it is 555 * deregistered. 556 */ 557 VNET_SYSINIT_WLOCK(); 558 VNET_FOREACH(vnet) { 559 CURVNET_SET_QUIET(vnet); 560 vs->func(vs->arg); 561 CURVNET_RESTORE(); 562 } 563 564 /* Remove the destructor from the global list of vnet destructors. */ 565 TAILQ_REMOVE(&vnet_destructors, vs, link); 566 VNET_SYSINIT_WUNLOCK(); 567 } 568 569 /* 570 * Invoke all registered vnet constructors on the current vnet. Used during 571 * vnet construction. The caller is responsible for ensuring the new vnet is 572 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 573 */ 574 void 575 vnet_sysinit(void) 576 { 577 struct vnet_sysinit *vs; 578 579 VNET_SYSINIT_RLOCK(); 580 TAILQ_FOREACH(vs, &vnet_constructors, link) { 581 curvnet->vnet_state = vs->subsystem; 582 vs->func(vs->arg); 583 } 584 VNET_SYSINIT_RUNLOCK(); 585 } 586 587 /* 588 * Invoke all registered vnet destructors on the current vnet. Used during 589 * vnet destruction. The caller is responsible for ensuring the dying vnet 590 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 591 */ 592 void 593 vnet_sysuninit(void) 594 { 595 struct vnet_sysinit *vs; 596 597 VNET_SYSINIT_RLOCK(); 598 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 599 link) { 600 curvnet->vnet_state = vs->subsystem; 601 vs->func(vs->arg); 602 } 603 VNET_SYSINIT_RUNLOCK(); 604 } 605 606 /* 607 * EVENTHANDLER(9) extensions. 608 */ 609 /* 610 * Invoke the eventhandler function originally registered with the possibly 611 * registered argument for all virtual network stack instances. 612 * 613 * This iterator can only be used for eventhandlers that do not take any 614 * additional arguments, as we do ignore the variadic arguments from the 615 * EVENTHANDLER_INVOKE() call. 616 */ 617 void 618 vnet_global_eventhandler_iterator_func(void *arg, ...) 619 { 620 VNET_ITERATOR_DECL(vnet_iter); 621 struct eventhandler_entry_vimage *v_ee; 622 623 /* 624 * There is a bug here in that we should actually cast things to 625 * (struct eventhandler_entry_ ## name *) but that's not easily 626 * possible in here so just re-using the variadic version we 627 * defined for the generic vimage case. 628 */ 629 v_ee = arg; 630 VNET_LIST_RLOCK(); 631 VNET_FOREACH(vnet_iter) { 632 CURVNET_SET(vnet_iter); 633 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 634 CURVNET_RESTORE(); 635 } 636 VNET_LIST_RUNLOCK(); 637 } 638 639 #ifdef VNET_DEBUG 640 struct vnet_recursion { 641 SLIST_ENTRY(vnet_recursion) vnr_le; 642 const char *prev_fn; 643 const char *where_fn; 644 int where_line; 645 struct vnet *old_vnet; 646 struct vnet *new_vnet; 647 }; 648 649 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 650 SLIST_HEAD_INITIALIZER(vnet_recursions); 651 652 static void 653 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 654 { 655 656 if (!brief) 657 printf("CURVNET_SET() recursion in "); 658 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 659 vnr->prev_fn); 660 if (brief) 661 printf(", "); 662 else 663 printf("\n "); 664 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 665 } 666 667 void 668 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 669 { 670 struct vnet_recursion *vnr; 671 672 /* Skip already logged recursion events. */ 673 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 674 if (vnr->prev_fn == old_fn && 675 vnr->where_fn == curthread->td_vnet_lpush && 676 vnr->where_line == line && 677 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 678 return; 679 680 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 681 if (vnr == NULL) 682 panic("%s: malloc failed", __func__); 683 vnr->prev_fn = old_fn; 684 vnr->where_fn = curthread->td_vnet_lpush; 685 vnr->where_line = line; 686 vnr->old_vnet = old_vnet; 687 vnr->new_vnet = curvnet; 688 689 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 690 691 vnet_print_recursion(vnr, 0); 692 #ifdef KDB 693 kdb_backtrace(); 694 #endif 695 } 696 #endif /* VNET_DEBUG */ 697 698 /* 699 * DDB(4). 700 */ 701 #ifdef DDB 702 static void 703 db_vnet_print(struct vnet *vnet) 704 { 705 706 db_printf("vnet = %p\n", vnet); 707 db_printf(" vnet_magic_n = %#08x (%s, orig %#08x)\n", 708 vnet->vnet_magic_n, 709 (vnet->vnet_magic_n == VNET_MAGIC_N) ? 710 "ok" : "mismatch", VNET_MAGIC_N); 711 db_printf(" vnet_ifcnt = %u\n", vnet->vnet_ifcnt); 712 db_printf(" vnet_sockcnt = %u\n", vnet->vnet_sockcnt); 713 db_printf(" vnet_data_mem = %p\n", vnet->vnet_data_mem); 714 db_printf(" vnet_data_base = %#jx\n", 715 (uintmax_t)vnet->vnet_data_base); 716 db_printf(" vnet_state = %#08x\n", vnet->vnet_state); 717 db_printf(" vnet_shutdown = %#03x\n", vnet->vnet_shutdown); 718 db_printf("\n"); 719 } 720 721 DB_SHOW_ALL_COMMAND(vnets, db_show_all_vnets) 722 { 723 VNET_ITERATOR_DECL(vnet_iter); 724 725 VNET_FOREACH(vnet_iter) { 726 db_vnet_print(vnet_iter); 727 if (db_pager_quit) 728 break; 729 } 730 } 731 732 DB_SHOW_COMMAND(vnet, db_show_vnet) 733 { 734 735 if (!have_addr) { 736 db_printf("usage: show vnet <struct vnet *>\n"); 737 return; 738 } 739 740 db_vnet_print((struct vnet *)addr); 741 } 742 743 static void 744 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 745 { 746 const char *vsname, *funcname; 747 c_db_sym_t sym; 748 db_expr_t offset; 749 750 #define xprint(...) \ 751 if (ddb) \ 752 db_printf(__VA_ARGS__); \ 753 else \ 754 printf(__VA_ARGS__) 755 756 if (vs == NULL) { 757 xprint("%s: no vnet_sysinit * given\n", __func__); 758 return; 759 } 760 761 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 762 db_symbol_values(sym, &vsname, NULL); 763 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 764 db_symbol_values(sym, &funcname, NULL); 765 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 766 xprint(" %#08x %#08x\n", vs->subsystem, vs->order); 767 xprint(" %p(%s)(%p)\n", 768 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 769 #undef xprint 770 } 771 772 DB_SHOW_COMMAND(vnet_sysinit, db_show_vnet_sysinit) 773 { 774 struct vnet_sysinit *vs; 775 776 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 777 db_printf(" Subsystem Order\n"); 778 db_printf(" Function(Name)(Arg)\n"); 779 TAILQ_FOREACH(vs, &vnet_constructors, link) { 780 db_show_vnet_print_vs(vs, 1); 781 if (db_pager_quit) 782 break; 783 } 784 } 785 786 DB_SHOW_COMMAND(vnet_sysuninit, db_show_vnet_sysuninit) 787 { 788 struct vnet_sysinit *vs; 789 790 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 791 db_printf(" Subsystem Order\n"); 792 db_printf(" Function(Name)(Arg)\n"); 793 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 794 link) { 795 db_show_vnet_print_vs(vs, 1); 796 if (db_pager_quit) 797 break; 798 } 799 } 800 801 #ifdef VNET_DEBUG 802 DB_SHOW_COMMAND(vnetrcrs, db_show_vnetrcrs) 803 { 804 struct vnet_recursion *vnr; 805 806 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 807 vnet_print_recursion(vnr, 1); 808 } 809 #endif 810 #endif /* DDB */ 811