1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_compat.h" 35 #include "opt_mpath.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rwlock.h> 50 #include <sys/signalvar.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/if_llatbl.h> 60 #include <net/if_types.h> 61 #include <net/netisr.h> 62 #include <net/raw_cb.h> 63 #include <net/route.h> 64 #include <net/route_var.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/if_ether.h> 69 #include <netinet/ip_carp.h> 70 #ifdef INET6 71 #include <netinet6/ip6_var.h> 72 #include <netinet6/scope6_var.h> 73 #endif 74 75 #ifdef COMPAT_FREEBSD32 76 #include <sys/mount.h> 77 #include <compat/freebsd32/freebsd32.h> 78 79 struct if_msghdr32 { 80 uint16_t ifm_msglen; 81 uint8_t ifm_version; 82 uint8_t ifm_type; 83 int32_t ifm_addrs; 84 int32_t ifm_flags; 85 uint16_t ifm_index; 86 struct if_data ifm_data; 87 }; 88 89 struct if_msghdrl32 { 90 uint16_t ifm_msglen; 91 uint8_t ifm_version; 92 uint8_t ifm_type; 93 int32_t ifm_addrs; 94 int32_t ifm_flags; 95 uint16_t ifm_index; 96 uint16_t _ifm_spare1; 97 uint16_t ifm_len; 98 uint16_t ifm_data_off; 99 struct if_data ifm_data; 100 }; 101 102 struct ifa_msghdrl32 { 103 uint16_t ifam_msglen; 104 uint8_t ifam_version; 105 uint8_t ifam_type; 106 int32_t ifam_addrs; 107 int32_t ifam_flags; 108 uint16_t ifam_index; 109 uint16_t _ifam_spare1; 110 uint16_t ifam_len; 111 uint16_t ifam_data_off; 112 int32_t ifam_metric; 113 struct if_data ifam_data; 114 }; 115 116 #define SA_SIZE32(sa) \ 117 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 118 sizeof(int) : \ 119 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 120 121 #endif /* COMPAT_FREEBSD32 */ 122 123 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 124 125 /* NB: these are not modified */ 126 static struct sockaddr route_src = { 2, PF_ROUTE, }; 127 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 128 129 /* These are external hooks for CARP. */ 130 int (*carp_get_vhid_p)(struct ifaddr *); 131 132 /* 133 * Used by rtsock/raw_input callback code to decide whether to filter the update 134 * notification to a socket bound to a particular FIB. 135 */ 136 #define RTS_FILTER_FIB M_PROTO8 137 138 typedef struct { 139 int ip_count; /* attached w/ AF_INET */ 140 int ip6_count; /* attached w/ AF_INET6 */ 141 int any_count; /* total attached */ 142 } route_cb_t; 143 static VNET_DEFINE(route_cb_t, route_cb); 144 #define V_route_cb VNET(route_cb) 145 146 struct mtx rtsock_mtx; 147 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 148 149 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 150 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 151 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 152 153 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 154 155 struct walkarg { 156 int w_tmemsize; 157 int w_op, w_arg; 158 caddr_t w_tmem; 159 struct sysctl_req *w_req; 160 }; 161 162 static void rts_input(struct mbuf *m); 163 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 164 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 165 struct walkarg *w, int *plen); 166 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 167 struct rt_addrinfo *rtinfo); 168 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 169 static int sysctl_iflist(int af, struct walkarg *w); 170 static int sysctl_ifmalist(int af, struct walkarg *w); 171 static int route_output(struct mbuf *m, struct socket *so, ...); 172 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 173 static void rt_dispatch(struct mbuf *, sa_family_t); 174 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 175 struct sockaddr *smask, struct sockaddr_storage *dmask); 176 177 static struct netisr_handler rtsock_nh = { 178 .nh_name = "rtsock", 179 .nh_handler = rts_input, 180 .nh_proto = NETISR_ROUTE, 181 .nh_policy = NETISR_POLICY_SOURCE, 182 }; 183 184 static int 185 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 186 { 187 int error, qlimit; 188 189 netisr_getqlimit(&rtsock_nh, &qlimit); 190 error = sysctl_handle_int(oidp, &qlimit, 0, req); 191 if (error || !req->newptr) 192 return (error); 193 if (qlimit < 1) 194 return (EINVAL); 195 return (netisr_setqlimit(&rtsock_nh, qlimit)); 196 } 197 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 198 0, 0, sysctl_route_netisr_maxqlen, "I", 199 "maximum routing socket dispatch queue length"); 200 201 static void 202 vnet_rts_init(void) 203 { 204 int tmp; 205 206 if (IS_DEFAULT_VNET(curvnet)) { 207 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 208 rtsock_nh.nh_qlimit = tmp; 209 netisr_register(&rtsock_nh); 210 } 211 #ifdef VIMAGE 212 else 213 netisr_register_vnet(&rtsock_nh); 214 #endif 215 } 216 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 217 vnet_rts_init, 0); 218 219 #ifdef VIMAGE 220 static void 221 vnet_rts_uninit(void) 222 { 223 224 netisr_unregister_vnet(&rtsock_nh); 225 } 226 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 227 vnet_rts_uninit, 0); 228 #endif 229 230 static int 231 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 232 struct rawcb *rp) 233 { 234 int fibnum; 235 236 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 237 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 238 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 239 240 /* No filtering requested. */ 241 if ((m->m_flags & RTS_FILTER_FIB) == 0) 242 return (0); 243 244 /* Check if it is a rts and the fib matches the one of the socket. */ 245 fibnum = M_GETFIB(m); 246 if (proto->sp_family != PF_ROUTE || 247 rp->rcb_socket == NULL || 248 rp->rcb_socket->so_fibnum == fibnum) 249 return (0); 250 251 /* Filtering requested and no match, the socket shall be skipped. */ 252 return (1); 253 } 254 255 static void 256 rts_input(struct mbuf *m) 257 { 258 struct sockproto route_proto; 259 unsigned short *family; 260 struct m_tag *tag; 261 262 route_proto.sp_family = PF_ROUTE; 263 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 264 if (tag != NULL) { 265 family = (unsigned short *)(tag + 1); 266 route_proto.sp_protocol = *family; 267 m_tag_delete(m, tag); 268 } else 269 route_proto.sp_protocol = 0; 270 271 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 272 } 273 274 /* 275 * It really doesn't make any sense at all for this code to share much 276 * with raw_usrreq.c, since its functionality is so restricted. XXX 277 */ 278 static void 279 rts_abort(struct socket *so) 280 { 281 282 raw_usrreqs.pru_abort(so); 283 } 284 285 static void 286 rts_close(struct socket *so) 287 { 288 289 raw_usrreqs.pru_close(so); 290 } 291 292 /* pru_accept is EOPNOTSUPP */ 293 294 static int 295 rts_attach(struct socket *so, int proto, struct thread *td) 296 { 297 struct rawcb *rp; 298 int error; 299 300 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 301 302 /* XXX */ 303 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 304 305 so->so_pcb = (caddr_t)rp; 306 so->so_fibnum = td->td_proc->p_fibnum; 307 error = raw_attach(so, proto); 308 rp = sotorawcb(so); 309 if (error) { 310 so->so_pcb = NULL; 311 free(rp, M_PCB); 312 return error; 313 } 314 RTSOCK_LOCK(); 315 switch(rp->rcb_proto.sp_protocol) { 316 case AF_INET: 317 V_route_cb.ip_count++; 318 break; 319 case AF_INET6: 320 V_route_cb.ip6_count++; 321 break; 322 } 323 V_route_cb.any_count++; 324 RTSOCK_UNLOCK(); 325 soisconnected(so); 326 so->so_options |= SO_USELOOPBACK; 327 return 0; 328 } 329 330 static int 331 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 332 { 333 334 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 335 } 336 337 static int 338 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 339 { 340 341 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 342 } 343 344 /* pru_connect2 is EOPNOTSUPP */ 345 /* pru_control is EOPNOTSUPP */ 346 347 static void 348 rts_detach(struct socket *so) 349 { 350 struct rawcb *rp = sotorawcb(so); 351 352 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 353 354 RTSOCK_LOCK(); 355 switch(rp->rcb_proto.sp_protocol) { 356 case AF_INET: 357 V_route_cb.ip_count--; 358 break; 359 case AF_INET6: 360 V_route_cb.ip6_count--; 361 break; 362 } 363 V_route_cb.any_count--; 364 RTSOCK_UNLOCK(); 365 raw_usrreqs.pru_detach(so); 366 } 367 368 static int 369 rts_disconnect(struct socket *so) 370 { 371 372 return (raw_usrreqs.pru_disconnect(so)); 373 } 374 375 /* pru_listen is EOPNOTSUPP */ 376 377 static int 378 rts_peeraddr(struct socket *so, struct sockaddr **nam) 379 { 380 381 return (raw_usrreqs.pru_peeraddr(so, nam)); 382 } 383 384 /* pru_rcvd is EOPNOTSUPP */ 385 /* pru_rcvoob is EOPNOTSUPP */ 386 387 static int 388 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 389 struct mbuf *control, struct thread *td) 390 { 391 392 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 393 } 394 395 /* pru_sense is null */ 396 397 static int 398 rts_shutdown(struct socket *so) 399 { 400 401 return (raw_usrreqs.pru_shutdown(so)); 402 } 403 404 static int 405 rts_sockaddr(struct socket *so, struct sockaddr **nam) 406 { 407 408 return (raw_usrreqs.pru_sockaddr(so, nam)); 409 } 410 411 static struct pr_usrreqs route_usrreqs = { 412 .pru_abort = rts_abort, 413 .pru_attach = rts_attach, 414 .pru_bind = rts_bind, 415 .pru_connect = rts_connect, 416 .pru_detach = rts_detach, 417 .pru_disconnect = rts_disconnect, 418 .pru_peeraddr = rts_peeraddr, 419 .pru_send = rts_send, 420 .pru_shutdown = rts_shutdown, 421 .pru_sockaddr = rts_sockaddr, 422 .pru_close = rts_close, 423 }; 424 425 #ifndef _SOCKADDR_UNION_DEFINED 426 #define _SOCKADDR_UNION_DEFINED 427 /* 428 * The union of all possible address formats we handle. 429 */ 430 union sockaddr_union { 431 struct sockaddr sa; 432 struct sockaddr_in sin; 433 struct sockaddr_in6 sin6; 434 }; 435 #endif /* _SOCKADDR_UNION_DEFINED */ 436 437 static int 438 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 439 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 440 { 441 442 /* First, see if the returned address is part of the jail. */ 443 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 444 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 445 return (0); 446 } 447 448 switch (info->rti_info[RTAX_DST]->sa_family) { 449 #ifdef INET 450 case AF_INET: 451 { 452 struct in_addr ia; 453 struct ifaddr *ifa; 454 int found; 455 456 found = 0; 457 /* 458 * Try to find an address on the given outgoing interface 459 * that belongs to the jail. 460 */ 461 IF_ADDR_RLOCK(ifp); 462 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 463 struct sockaddr *sa; 464 sa = ifa->ifa_addr; 465 if (sa->sa_family != AF_INET) 466 continue; 467 ia = ((struct sockaddr_in *)sa)->sin_addr; 468 if (prison_check_ip4(cred, &ia) == 0) { 469 found = 1; 470 break; 471 } 472 } 473 IF_ADDR_RUNLOCK(ifp); 474 if (!found) { 475 /* 476 * As a last resort return the 'default' jail address. 477 */ 478 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 479 sin_addr; 480 if (prison_get_ip4(cred, &ia) != 0) 481 return (ESRCH); 482 } 483 bzero(&saun->sin, sizeof(struct sockaddr_in)); 484 saun->sin.sin_len = sizeof(struct sockaddr_in); 485 saun->sin.sin_family = AF_INET; 486 saun->sin.sin_addr.s_addr = ia.s_addr; 487 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 488 break; 489 } 490 #endif 491 #ifdef INET6 492 case AF_INET6: 493 { 494 struct in6_addr ia6; 495 struct ifaddr *ifa; 496 int found; 497 498 found = 0; 499 /* 500 * Try to find an address on the given outgoing interface 501 * that belongs to the jail. 502 */ 503 IF_ADDR_RLOCK(ifp); 504 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 505 struct sockaddr *sa; 506 sa = ifa->ifa_addr; 507 if (sa->sa_family != AF_INET6) 508 continue; 509 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 510 &ia6, sizeof(struct in6_addr)); 511 if (prison_check_ip6(cred, &ia6) == 0) { 512 found = 1; 513 break; 514 } 515 } 516 IF_ADDR_RUNLOCK(ifp); 517 if (!found) { 518 /* 519 * As a last resort return the 'default' jail address. 520 */ 521 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 522 sin6_addr; 523 if (prison_get_ip6(cred, &ia6) != 0) 524 return (ESRCH); 525 } 526 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 527 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 528 saun->sin6.sin6_family = AF_INET6; 529 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 530 if (sa6_recoverscope(&saun->sin6) != 0) 531 return (ESRCH); 532 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 533 break; 534 } 535 #endif 536 default: 537 return (ESRCH); 538 } 539 return (0); 540 } 541 542 /*ARGSUSED*/ 543 static int 544 route_output(struct mbuf *m, struct socket *so, ...) 545 { 546 struct rt_msghdr *rtm = NULL; 547 struct rtentry *rt = NULL; 548 struct rib_head *rnh; 549 struct rt_addrinfo info; 550 struct sockaddr_storage ss; 551 #ifdef INET6 552 struct sockaddr_in6 *sin6; 553 int i, rti_need_deembed = 0; 554 #endif 555 int alloc_len = 0, len, error = 0, fibnum; 556 struct ifnet *ifp = NULL; 557 union sockaddr_union saun; 558 sa_family_t saf = AF_UNSPEC; 559 struct rawcb *rp = NULL; 560 struct walkarg w; 561 562 fibnum = so->so_fibnum; 563 564 #define senderr(e) { error = e; goto flush;} 565 if (m == NULL || ((m->m_len < sizeof(long)) && 566 (m = m_pullup(m, sizeof(long))) == NULL)) 567 return (ENOBUFS); 568 if ((m->m_flags & M_PKTHDR) == 0) 569 panic("route_output"); 570 len = m->m_pkthdr.len; 571 if (len < sizeof(*rtm) || 572 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 573 senderr(EINVAL); 574 575 /* 576 * Most of current messages are in range 200-240 bytes, 577 * minimize possible re-allocation on reply using larger size 578 * buffer aligned on 1k boundaty. 579 */ 580 alloc_len = roundup2(len, 1024); 581 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 582 senderr(ENOBUFS); 583 584 m_copydata(m, 0, len, (caddr_t)rtm); 585 bzero(&info, sizeof(info)); 586 bzero(&w, sizeof(w)); 587 588 if (rtm->rtm_version != RTM_VERSION) { 589 /* Do not touch message since format is unknown */ 590 free(rtm, M_TEMP); 591 rtm = NULL; 592 senderr(EPROTONOSUPPORT); 593 } 594 595 /* 596 * Starting from here, it is possible 597 * to alter original message and insert 598 * caller PID and error value. 599 */ 600 601 rtm->rtm_pid = curproc->p_pid; 602 info.rti_addrs = rtm->rtm_addrs; 603 604 info.rti_mflags = rtm->rtm_inits; 605 info.rti_rmx = &rtm->rtm_rmx; 606 607 /* 608 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 609 * link-local address because rtrequest requires addresses with 610 * embedded scope id. 611 */ 612 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 613 senderr(EINVAL); 614 615 info.rti_flags = rtm->rtm_flags; 616 if (info.rti_info[RTAX_DST] == NULL || 617 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 618 (info.rti_info[RTAX_GATEWAY] != NULL && 619 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 620 senderr(EINVAL); 621 saf = info.rti_info[RTAX_DST]->sa_family; 622 /* 623 * Verify that the caller has the appropriate privilege; RTM_GET 624 * is the only operation the non-superuser is allowed. 625 */ 626 if (rtm->rtm_type != RTM_GET) { 627 error = priv_check(curthread, PRIV_NET_ROUTE); 628 if (error) 629 senderr(error); 630 } 631 632 /* 633 * The given gateway address may be an interface address. 634 * For example, issuing a "route change" command on a route 635 * entry that was created from a tunnel, and the gateway 636 * address given is the local end point. In this case the 637 * RTF_GATEWAY flag must be cleared or the destination will 638 * not be reachable even though there is no error message. 639 */ 640 if (info.rti_info[RTAX_GATEWAY] != NULL && 641 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 642 struct rt_addrinfo ginfo; 643 struct sockaddr *gdst; 644 645 bzero(&ginfo, sizeof(ginfo)); 646 bzero(&ss, sizeof(ss)); 647 ss.ss_len = sizeof(ss); 648 649 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 650 gdst = info.rti_info[RTAX_GATEWAY]; 651 652 /* 653 * A host route through the loopback interface is 654 * installed for each interface adddress. In pre 8.0 655 * releases the interface address of a PPP link type 656 * is not reachable locally. This behavior is fixed as 657 * part of the new L2/L3 redesign and rewrite work. The 658 * signature of this interface address route is the 659 * AF_LINK sa_family type of the rt_gateway, and the 660 * rt_ifp has the IFF_LOOPBACK flag set. 661 */ 662 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 663 if (ss.ss_family == AF_LINK && 664 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 665 info.rti_flags &= ~RTF_GATEWAY; 666 info.rti_flags |= RTF_GWFLAG_COMPAT; 667 } 668 rib_free_info(&ginfo); 669 } 670 } 671 672 switch (rtm->rtm_type) { 673 struct rtentry *saved_nrt; 674 675 case RTM_ADD: 676 case RTM_CHANGE: 677 if (info.rti_info[RTAX_GATEWAY] == NULL) 678 senderr(EINVAL); 679 saved_nrt = NULL; 680 681 /* support for new ARP code */ 682 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 683 (rtm->rtm_flags & RTF_LLDATA) != 0) { 684 error = lla_rt_output(rtm, &info); 685 #ifdef INET6 686 if (error == 0) 687 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 688 #endif 689 break; 690 } 691 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 692 fibnum); 693 if (error == 0 && saved_nrt != NULL) { 694 #ifdef INET6 695 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 696 #endif 697 RT_LOCK(saved_nrt); 698 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 699 RT_REMREF(saved_nrt); 700 RT_UNLOCK(saved_nrt); 701 } 702 break; 703 704 case RTM_DELETE: 705 saved_nrt = NULL; 706 /* support for new ARP code */ 707 if (info.rti_info[RTAX_GATEWAY] && 708 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 709 (rtm->rtm_flags & RTF_LLDATA) != 0) { 710 error = lla_rt_output(rtm, &info); 711 #ifdef INET6 712 if (error == 0) 713 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 714 #endif 715 break; 716 } 717 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 718 if (error == 0) { 719 RT_LOCK(saved_nrt); 720 rt = saved_nrt; 721 goto report; 722 } 723 #ifdef INET6 724 /* rt_msg2() will not be used when RTM_DELETE fails. */ 725 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 726 #endif 727 break; 728 729 case RTM_GET: 730 rnh = rt_tables_get_rnh(fibnum, saf); 731 if (rnh == NULL) 732 senderr(EAFNOSUPPORT); 733 734 RIB_RLOCK(rnh); 735 736 if (info.rti_info[RTAX_NETMASK] == NULL && 737 rtm->rtm_type == RTM_GET) { 738 /* 739 * Provide longest prefix match for 740 * address lookup (no mask). 741 * 'route -n get addr' 742 */ 743 rt = (struct rtentry *) rnh->rnh_matchaddr( 744 info.rti_info[RTAX_DST], &rnh->head); 745 } else 746 rt = (struct rtentry *) rnh->rnh_lookup( 747 info.rti_info[RTAX_DST], 748 info.rti_info[RTAX_NETMASK], &rnh->head); 749 750 if (rt == NULL) { 751 RIB_RUNLOCK(rnh); 752 senderr(ESRCH); 753 } 754 #ifdef RADIX_MPATH 755 /* 756 * for RTM_CHANGE/LOCK, if we got multipath routes, 757 * we require users to specify a matching RTAX_GATEWAY. 758 * 759 * for RTM_GET, gate is optional even with multipath. 760 * if gate == NULL the first match is returned. 761 * (no need to call rt_mpath_matchgate if gate == NULL) 762 */ 763 if (rt_mpath_capable(rnh) && 764 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 765 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 766 if (!rt) { 767 RIB_RUNLOCK(rnh); 768 senderr(ESRCH); 769 } 770 } 771 #endif 772 /* 773 * If performing proxied L2 entry insertion, and 774 * the actual PPP host entry is found, perform 775 * another search to retrieve the prefix route of 776 * the local end point of the PPP link. 777 */ 778 if (rtm->rtm_flags & RTF_ANNOUNCE) { 779 struct sockaddr laddr; 780 781 if (rt->rt_ifp != NULL && 782 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 783 struct ifaddr *ifa; 784 785 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 786 RT_ALL_FIBS); 787 if (ifa != NULL) 788 rt_maskedcopy(ifa->ifa_addr, 789 &laddr, 790 ifa->ifa_netmask); 791 } else 792 rt_maskedcopy(rt->rt_ifa->ifa_addr, 793 &laddr, 794 rt->rt_ifa->ifa_netmask); 795 /* 796 * refactor rt and no lock operation necessary 797 */ 798 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 799 &rnh->head); 800 if (rt == NULL) { 801 RIB_RUNLOCK(rnh); 802 senderr(ESRCH); 803 } 804 } 805 RT_LOCK(rt); 806 RT_ADDREF(rt); 807 RIB_RUNLOCK(rnh); 808 809 report: 810 RT_LOCK_ASSERT(rt); 811 if ((rt->rt_flags & RTF_HOST) == 0 812 ? jailed_without_vnet(curthread->td_ucred) 813 : prison_if(curthread->td_ucred, 814 rt_key(rt)) != 0) { 815 RT_UNLOCK(rt); 816 senderr(ESRCH); 817 } 818 info.rti_info[RTAX_DST] = rt_key(rt); 819 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 820 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 821 rt_mask(rt), &ss); 822 info.rti_info[RTAX_GENMASK] = 0; 823 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 824 ifp = rt->rt_ifp; 825 if (ifp) { 826 info.rti_info[RTAX_IFP] = 827 ifp->if_addr->ifa_addr; 828 error = rtm_get_jailed(&info, ifp, rt, 829 &saun, curthread->td_ucred); 830 if (error != 0) { 831 RT_UNLOCK(rt); 832 senderr(error); 833 } 834 if (ifp->if_flags & IFF_POINTOPOINT) 835 info.rti_info[RTAX_BRD] = 836 rt->rt_ifa->ifa_dstaddr; 837 rtm->rtm_index = ifp->if_index; 838 } else { 839 info.rti_info[RTAX_IFP] = NULL; 840 info.rti_info[RTAX_IFA] = NULL; 841 } 842 } else if ((ifp = rt->rt_ifp) != NULL) { 843 rtm->rtm_index = ifp->if_index; 844 } 845 846 /* Check if we need to realloc storage */ 847 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 848 if (len > alloc_len) { 849 struct rt_msghdr *new_rtm; 850 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 851 if (new_rtm == NULL) { 852 RT_UNLOCK(rt); 853 senderr(ENOBUFS); 854 } 855 bcopy(rtm, new_rtm, rtm->rtm_msglen); 856 free(rtm, M_TEMP); 857 rtm = new_rtm; 858 alloc_len = len; 859 } 860 861 w.w_tmem = (caddr_t)rtm; 862 w.w_tmemsize = alloc_len; 863 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 864 865 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 866 rtm->rtm_flags = RTF_GATEWAY | 867 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 868 else 869 rtm->rtm_flags = rt->rt_flags; 870 rt_getmetrics(rt, &rtm->rtm_rmx); 871 rtm->rtm_addrs = info.rti_addrs; 872 873 RT_UNLOCK(rt); 874 break; 875 876 default: 877 senderr(EOPNOTSUPP); 878 } 879 880 flush: 881 if (rt != NULL) 882 RTFREE(rt); 883 /* 884 * Check to see if we don't want our own messages. 885 */ 886 if ((so->so_options & SO_USELOOPBACK) == 0) { 887 if (V_route_cb.any_count <= 1) { 888 if (rtm != NULL) 889 free(rtm, M_TEMP); 890 m_freem(m); 891 return (error); 892 } 893 /* There is another listener, so construct message */ 894 rp = sotorawcb(so); 895 } 896 897 if (rtm != NULL) { 898 #ifdef INET6 899 if (rti_need_deembed) { 900 /* sin6_scope_id is recovered before sending rtm. */ 901 sin6 = (struct sockaddr_in6 *)&ss; 902 for (i = 0; i < RTAX_MAX; i++) { 903 if (info.rti_info[i] == NULL) 904 continue; 905 if (info.rti_info[i]->sa_family != AF_INET6) 906 continue; 907 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 908 if (sa6_recoverscope(sin6) == 0) 909 bcopy(sin6, info.rti_info[i], 910 sizeof(*sin6)); 911 } 912 } 913 #endif 914 if (error != 0) 915 rtm->rtm_errno = error; 916 else 917 rtm->rtm_flags |= RTF_DONE; 918 919 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 920 if (m->m_pkthdr.len < rtm->rtm_msglen) { 921 m_freem(m); 922 m = NULL; 923 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 924 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 925 926 free(rtm, M_TEMP); 927 } 928 if (m != NULL) { 929 M_SETFIB(m, fibnum); 930 m->m_flags |= RTS_FILTER_FIB; 931 if (rp) { 932 /* 933 * XXX insure we don't get a copy by 934 * invalidating our protocol 935 */ 936 unsigned short family = rp->rcb_proto.sp_family; 937 rp->rcb_proto.sp_family = 0; 938 rt_dispatch(m, saf); 939 rp->rcb_proto.sp_family = family; 940 } else 941 rt_dispatch(m, saf); 942 } 943 944 return (error); 945 } 946 947 static void 948 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 949 { 950 951 bzero(out, sizeof(*out)); 952 out->rmx_mtu = rt->rt_mtu; 953 out->rmx_weight = rt->rt_weight; 954 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 955 /* Kernel -> userland timebase conversion. */ 956 out->rmx_expire = rt->rt_expire ? 957 rt->rt_expire - time_uptime + time_second : 0; 958 } 959 960 /* 961 * Extract the addresses of the passed sockaddrs. 962 * Do a little sanity checking so as to avoid bad memory references. 963 * This data is derived straight from userland. 964 */ 965 static int 966 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 967 { 968 struct sockaddr *sa; 969 int i; 970 971 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 972 if ((rtinfo->rti_addrs & (1 << i)) == 0) 973 continue; 974 sa = (struct sockaddr *)cp; 975 /* 976 * It won't fit. 977 */ 978 if (cp + sa->sa_len > cplim) 979 return (EINVAL); 980 /* 981 * there are no more.. quit now 982 * If there are more bits, they are in error. 983 * I've seen this. route(1) can evidently generate these. 984 * This causes kernel to core dump. 985 * for compatibility, If we see this, point to a safe address. 986 */ 987 if (sa->sa_len == 0) { 988 rtinfo->rti_info[i] = &sa_zero; 989 return (0); /* should be EINVAL but for compat */ 990 } 991 /* accept it */ 992 #ifdef INET6 993 if (sa->sa_family == AF_INET6) 994 sa6_embedscope((struct sockaddr_in6 *)sa, 995 V_ip6_use_defzone); 996 #endif 997 rtinfo->rti_info[i] = sa; 998 cp += SA_SIZE(sa); 999 } 1000 return (0); 1001 } 1002 1003 /* 1004 * Fill in @dmask with valid netmask leaving original @smask 1005 * intact. Mostly used with radix netmasks. 1006 */ 1007 static struct sockaddr * 1008 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 1009 struct sockaddr_storage *dmask) 1010 { 1011 if (dst == NULL || smask == NULL) 1012 return (NULL); 1013 1014 memset(dmask, 0, dst->sa_len); 1015 memcpy(dmask, smask, smask->sa_len); 1016 dmask->ss_len = dst->sa_len; 1017 dmask->ss_family = dst->sa_family; 1018 1019 return ((struct sockaddr *)dmask); 1020 } 1021 1022 /* 1023 * Writes information related to @rtinfo object to newly-allocated mbuf. 1024 * Assumes MCLBYTES is enough to construct any message. 1025 * Used for OS notifications of vaious events (if/ifa announces,etc) 1026 * 1027 * Returns allocated mbuf or NULL on failure. 1028 */ 1029 static struct mbuf * 1030 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1031 { 1032 struct rt_msghdr *rtm; 1033 struct mbuf *m; 1034 int i; 1035 struct sockaddr *sa; 1036 #ifdef INET6 1037 struct sockaddr_storage ss; 1038 struct sockaddr_in6 *sin6; 1039 #endif 1040 int len, dlen; 1041 1042 switch (type) { 1043 1044 case RTM_DELADDR: 1045 case RTM_NEWADDR: 1046 len = sizeof(struct ifa_msghdr); 1047 break; 1048 1049 case RTM_DELMADDR: 1050 case RTM_NEWMADDR: 1051 len = sizeof(struct ifma_msghdr); 1052 break; 1053 1054 case RTM_IFINFO: 1055 len = sizeof(struct if_msghdr); 1056 break; 1057 1058 case RTM_IFANNOUNCE: 1059 case RTM_IEEE80211: 1060 len = sizeof(struct if_announcemsghdr); 1061 break; 1062 1063 default: 1064 len = sizeof(struct rt_msghdr); 1065 } 1066 1067 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1068 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1069 if (len > MHLEN) 1070 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1071 else 1072 m = m_gethdr(M_NOWAIT, MT_DATA); 1073 if (m == NULL) 1074 return (m); 1075 1076 m->m_pkthdr.len = m->m_len = len; 1077 rtm = mtod(m, struct rt_msghdr *); 1078 bzero((caddr_t)rtm, len); 1079 for (i = 0; i < RTAX_MAX; i++) { 1080 if ((sa = rtinfo->rti_info[i]) == NULL) 1081 continue; 1082 rtinfo->rti_addrs |= (1 << i); 1083 dlen = SA_SIZE(sa); 1084 #ifdef INET6 1085 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1086 sin6 = (struct sockaddr_in6 *)&ss; 1087 bcopy(sa, sin6, sizeof(*sin6)); 1088 if (sa6_recoverscope(sin6) == 0) 1089 sa = (struct sockaddr *)sin6; 1090 } 1091 #endif 1092 m_copyback(m, len, dlen, (caddr_t)sa); 1093 len += dlen; 1094 } 1095 if (m->m_pkthdr.len != len) { 1096 m_freem(m); 1097 return (NULL); 1098 } 1099 rtm->rtm_msglen = len; 1100 rtm->rtm_version = RTM_VERSION; 1101 rtm->rtm_type = type; 1102 return (m); 1103 } 1104 1105 /* 1106 * Writes information related to @rtinfo object to preallocated buffer. 1107 * Stores needed size in @plen. If @w is NULL, calculates size without 1108 * writing. 1109 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1110 * 1111 * Returns 0 on success. 1112 * 1113 */ 1114 static int 1115 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1116 { 1117 int i; 1118 int len, buflen = 0, dlen; 1119 caddr_t cp = NULL; 1120 struct rt_msghdr *rtm = NULL; 1121 #ifdef INET6 1122 struct sockaddr_storage ss; 1123 struct sockaddr_in6 *sin6; 1124 #endif 1125 #ifdef COMPAT_FREEBSD32 1126 bool compat32 = false; 1127 #endif 1128 1129 switch (type) { 1130 1131 case RTM_DELADDR: 1132 case RTM_NEWADDR: 1133 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1134 #ifdef COMPAT_FREEBSD32 1135 if (w->w_req->flags & SCTL_MASK32) { 1136 len = sizeof(struct ifa_msghdrl32); 1137 compat32 = true; 1138 } else 1139 #endif 1140 len = sizeof(struct ifa_msghdrl); 1141 } else 1142 len = sizeof(struct ifa_msghdr); 1143 break; 1144 1145 case RTM_IFINFO: 1146 #ifdef COMPAT_FREEBSD32 1147 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1148 if (w->w_op == NET_RT_IFLISTL) 1149 len = sizeof(struct if_msghdrl32); 1150 else 1151 len = sizeof(struct if_msghdr32); 1152 compat32 = true; 1153 break; 1154 } 1155 #endif 1156 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1157 len = sizeof(struct if_msghdrl); 1158 else 1159 len = sizeof(struct if_msghdr); 1160 break; 1161 1162 case RTM_NEWMADDR: 1163 len = sizeof(struct ifma_msghdr); 1164 break; 1165 1166 default: 1167 len = sizeof(struct rt_msghdr); 1168 } 1169 1170 if (w != NULL) { 1171 rtm = (struct rt_msghdr *)w->w_tmem; 1172 buflen = w->w_tmemsize - len; 1173 cp = (caddr_t)w->w_tmem + len; 1174 } 1175 1176 rtinfo->rti_addrs = 0; 1177 for (i = 0; i < RTAX_MAX; i++) { 1178 struct sockaddr *sa; 1179 1180 if ((sa = rtinfo->rti_info[i]) == NULL) 1181 continue; 1182 rtinfo->rti_addrs |= (1 << i); 1183 #ifdef COMPAT_FREEBSD32 1184 if (compat32) 1185 dlen = SA_SIZE32(sa); 1186 else 1187 #endif 1188 dlen = SA_SIZE(sa); 1189 if (cp != NULL && buflen >= dlen) { 1190 #ifdef INET6 1191 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1192 sin6 = (struct sockaddr_in6 *)&ss; 1193 bcopy(sa, sin6, sizeof(*sin6)); 1194 if (sa6_recoverscope(sin6) == 0) 1195 sa = (struct sockaddr *)sin6; 1196 } 1197 #endif 1198 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1199 cp += dlen; 1200 buflen -= dlen; 1201 } else if (cp != NULL) { 1202 /* 1203 * Buffer too small. Count needed size 1204 * and return with error. 1205 */ 1206 cp = NULL; 1207 } 1208 1209 len += dlen; 1210 } 1211 1212 if (cp != NULL) { 1213 dlen = ALIGN(len) - len; 1214 if (buflen < dlen) 1215 cp = NULL; 1216 else 1217 buflen -= dlen; 1218 } 1219 len = ALIGN(len); 1220 1221 if (cp != NULL) { 1222 /* fill header iff buffer is large enough */ 1223 rtm->rtm_version = RTM_VERSION; 1224 rtm->rtm_type = type; 1225 rtm->rtm_msglen = len; 1226 } 1227 1228 *plen = len; 1229 1230 if (w != NULL && cp == NULL) 1231 return (ENOBUFS); 1232 1233 return (0); 1234 } 1235 1236 /* 1237 * This routine is called to generate a message from the routing 1238 * socket indicating that a redirect has occurred, a routing lookup 1239 * has failed, or that a protocol has detected timeouts to a particular 1240 * destination. 1241 */ 1242 void 1243 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1244 int fibnum) 1245 { 1246 struct rt_msghdr *rtm; 1247 struct mbuf *m; 1248 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1249 1250 if (V_route_cb.any_count == 0) 1251 return; 1252 m = rtsock_msg_mbuf(type, rtinfo); 1253 if (m == NULL) 1254 return; 1255 1256 if (fibnum != RT_ALL_FIBS) { 1257 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1258 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1259 M_SETFIB(m, fibnum); 1260 m->m_flags |= RTS_FILTER_FIB; 1261 } 1262 1263 rtm = mtod(m, struct rt_msghdr *); 1264 rtm->rtm_flags = RTF_DONE | flags; 1265 rtm->rtm_errno = error; 1266 rtm->rtm_addrs = rtinfo->rti_addrs; 1267 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1268 } 1269 1270 void 1271 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1272 { 1273 1274 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1275 } 1276 1277 /* 1278 * This routine is called to generate a message from the routing 1279 * socket indicating that the status of a network interface has changed. 1280 */ 1281 void 1282 rt_ifmsg(struct ifnet *ifp) 1283 { 1284 struct if_msghdr *ifm; 1285 struct mbuf *m; 1286 struct rt_addrinfo info; 1287 1288 if (V_route_cb.any_count == 0) 1289 return; 1290 bzero((caddr_t)&info, sizeof(info)); 1291 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1292 if (m == NULL) 1293 return; 1294 ifm = mtod(m, struct if_msghdr *); 1295 ifm->ifm_index = ifp->if_index; 1296 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1297 if_data_copy(ifp, &ifm->ifm_data); 1298 ifm->ifm_addrs = 0; 1299 rt_dispatch(m, AF_UNSPEC); 1300 } 1301 1302 /* 1303 * Announce interface address arrival/withdraw. 1304 * Please do not call directly, use rt_addrmsg(). 1305 * Assume input data to be valid. 1306 * Returns 0 on success. 1307 */ 1308 int 1309 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1310 { 1311 struct rt_addrinfo info; 1312 struct sockaddr *sa; 1313 int ncmd; 1314 struct mbuf *m; 1315 struct ifa_msghdr *ifam; 1316 struct ifnet *ifp = ifa->ifa_ifp; 1317 struct sockaddr_storage ss; 1318 1319 if (V_route_cb.any_count == 0) 1320 return (0); 1321 1322 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1323 1324 bzero((caddr_t)&info, sizeof(info)); 1325 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1326 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1327 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1328 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1329 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1330 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1331 return (ENOBUFS); 1332 ifam = mtod(m, struct ifa_msghdr *); 1333 ifam->ifam_index = ifp->if_index; 1334 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1335 ifam->ifam_flags = ifa->ifa_flags; 1336 ifam->ifam_addrs = info.rti_addrs; 1337 1338 if (fibnum != RT_ALL_FIBS) { 1339 M_SETFIB(m, fibnum); 1340 m->m_flags |= RTS_FILTER_FIB; 1341 } 1342 1343 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1344 1345 return (0); 1346 } 1347 1348 /* 1349 * Announce route addition/removal. 1350 * Please do not call directly, use rt_routemsg(). 1351 * Note that @rt data MAY be inconsistent/invalid: 1352 * if some userland app sends us "invalid" route message (invalid mask, 1353 * no dst, wrong address families, etc...) we need to pass it back 1354 * to app (and any other rtsock consumers) with rtm_errno field set to 1355 * non-zero value. 1356 * 1357 * Returns 0 on success. 1358 */ 1359 int 1360 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1361 int fibnum) 1362 { 1363 struct rt_addrinfo info; 1364 struct sockaddr *sa; 1365 struct mbuf *m; 1366 struct rt_msghdr *rtm; 1367 struct sockaddr_storage ss; 1368 1369 if (V_route_cb.any_count == 0) 1370 return (0); 1371 1372 bzero((caddr_t)&info, sizeof(info)); 1373 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1374 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1375 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1376 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1377 return (ENOBUFS); 1378 rtm = mtod(m, struct rt_msghdr *); 1379 rtm->rtm_index = ifp->if_index; 1380 rtm->rtm_flags |= rt->rt_flags; 1381 rtm->rtm_errno = error; 1382 rtm->rtm_addrs = info.rti_addrs; 1383 1384 if (fibnum != RT_ALL_FIBS) { 1385 M_SETFIB(m, fibnum); 1386 m->m_flags |= RTS_FILTER_FIB; 1387 } 1388 1389 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1390 1391 return (0); 1392 } 1393 1394 /* 1395 * This is the analogue to the rt_newaddrmsg which performs the same 1396 * function but for multicast group memberhips. This is easier since 1397 * there is no route state to worry about. 1398 */ 1399 void 1400 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1401 { 1402 struct rt_addrinfo info; 1403 struct mbuf *m = NULL; 1404 struct ifnet *ifp = ifma->ifma_ifp; 1405 struct ifma_msghdr *ifmam; 1406 1407 if (V_route_cb.any_count == 0) 1408 return; 1409 1410 bzero((caddr_t)&info, sizeof(info)); 1411 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1412 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1413 /* 1414 * If a link-layer address is present, present it as a ``gateway'' 1415 * (similarly to how ARP entries, e.g., are presented). 1416 */ 1417 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1418 m = rtsock_msg_mbuf(cmd, &info); 1419 if (m == NULL) 1420 return; 1421 ifmam = mtod(m, struct ifma_msghdr *); 1422 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1423 __func__)); 1424 ifmam->ifmam_index = ifp->if_index; 1425 ifmam->ifmam_addrs = info.rti_addrs; 1426 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1427 } 1428 1429 static struct mbuf * 1430 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1431 struct rt_addrinfo *info) 1432 { 1433 struct if_announcemsghdr *ifan; 1434 struct mbuf *m; 1435 1436 if (V_route_cb.any_count == 0) 1437 return NULL; 1438 bzero((caddr_t)info, sizeof(*info)); 1439 m = rtsock_msg_mbuf(type, info); 1440 if (m != NULL) { 1441 ifan = mtod(m, struct if_announcemsghdr *); 1442 ifan->ifan_index = ifp->if_index; 1443 strlcpy(ifan->ifan_name, ifp->if_xname, 1444 sizeof(ifan->ifan_name)); 1445 ifan->ifan_what = what; 1446 } 1447 return m; 1448 } 1449 1450 /* 1451 * This is called to generate routing socket messages indicating 1452 * IEEE80211 wireless events. 1453 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1454 */ 1455 void 1456 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1457 { 1458 struct mbuf *m; 1459 struct rt_addrinfo info; 1460 1461 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1462 if (m != NULL) { 1463 /* 1464 * Append the ieee80211 data. Try to stick it in the 1465 * mbuf containing the ifannounce msg; otherwise allocate 1466 * a new mbuf and append. 1467 * 1468 * NB: we assume m is a single mbuf. 1469 */ 1470 if (data_len > M_TRAILINGSPACE(m)) { 1471 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1472 if (n == NULL) { 1473 m_freem(m); 1474 return; 1475 } 1476 bcopy(data, mtod(n, void *), data_len); 1477 n->m_len = data_len; 1478 m->m_next = n; 1479 } else if (data_len > 0) { 1480 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1481 m->m_len += data_len; 1482 } 1483 if (m->m_flags & M_PKTHDR) 1484 m->m_pkthdr.len += data_len; 1485 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1486 rt_dispatch(m, AF_UNSPEC); 1487 } 1488 } 1489 1490 /* 1491 * This is called to generate routing socket messages indicating 1492 * network interface arrival and departure. 1493 */ 1494 void 1495 rt_ifannouncemsg(struct ifnet *ifp, int what) 1496 { 1497 struct mbuf *m; 1498 struct rt_addrinfo info; 1499 1500 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1501 if (m != NULL) 1502 rt_dispatch(m, AF_UNSPEC); 1503 } 1504 1505 static void 1506 rt_dispatch(struct mbuf *m, sa_family_t saf) 1507 { 1508 struct m_tag *tag; 1509 1510 /* 1511 * Preserve the family from the sockaddr, if any, in an m_tag for 1512 * use when injecting the mbuf into the routing socket buffer from 1513 * the netisr. 1514 */ 1515 if (saf != AF_UNSPEC) { 1516 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1517 M_NOWAIT); 1518 if (tag == NULL) { 1519 m_freem(m); 1520 return; 1521 } 1522 *(unsigned short *)(tag + 1) = saf; 1523 m_tag_prepend(m, tag); 1524 } 1525 #ifdef VIMAGE 1526 if (V_loif) 1527 m->m_pkthdr.rcvif = V_loif; 1528 else { 1529 m_freem(m); 1530 return; 1531 } 1532 #endif 1533 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1534 } 1535 1536 /* 1537 * This is used in dumping the kernel table via sysctl(). 1538 */ 1539 static int 1540 sysctl_dumpentry(struct radix_node *rn, void *vw) 1541 { 1542 struct walkarg *w = vw; 1543 struct rtentry *rt = (struct rtentry *)rn; 1544 int error = 0, size; 1545 struct rt_addrinfo info; 1546 struct sockaddr_storage ss; 1547 1548 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1549 return 0; 1550 if ((rt->rt_flags & RTF_HOST) == 0 1551 ? jailed_without_vnet(w->w_req->td->td_ucred) 1552 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1553 return (0); 1554 bzero((caddr_t)&info, sizeof(info)); 1555 info.rti_info[RTAX_DST] = rt_key(rt); 1556 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1557 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1558 rt_mask(rt), &ss); 1559 info.rti_info[RTAX_GENMASK] = 0; 1560 if (rt->rt_ifp) { 1561 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1562 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1563 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1564 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1565 } 1566 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1567 return (error); 1568 if (w->w_req && w->w_tmem) { 1569 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1570 1571 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1572 rtm->rtm_flags = RTF_GATEWAY | 1573 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1574 else 1575 rtm->rtm_flags = rt->rt_flags; 1576 rt_getmetrics(rt, &rtm->rtm_rmx); 1577 rtm->rtm_index = rt->rt_ifp->if_index; 1578 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1579 rtm->rtm_addrs = info.rti_addrs; 1580 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1581 return (error); 1582 } 1583 return (error); 1584 } 1585 1586 static int 1587 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1588 struct rt_addrinfo *info, struct walkarg *w, int len) 1589 { 1590 struct if_msghdrl *ifm; 1591 struct if_data *ifd; 1592 1593 ifm = (struct if_msghdrl *)w->w_tmem; 1594 1595 #ifdef COMPAT_FREEBSD32 1596 if (w->w_req->flags & SCTL_MASK32) { 1597 struct if_msghdrl32 *ifm32; 1598 1599 ifm32 = (struct if_msghdrl32 *)ifm; 1600 ifm32->ifm_addrs = info->rti_addrs; 1601 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1602 ifm32->ifm_index = ifp->if_index; 1603 ifm32->_ifm_spare1 = 0; 1604 ifm32->ifm_len = sizeof(*ifm32); 1605 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1606 ifd = &ifm32->ifm_data; 1607 } else 1608 #endif 1609 { 1610 ifm->ifm_addrs = info->rti_addrs; 1611 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1612 ifm->ifm_index = ifp->if_index; 1613 ifm->_ifm_spare1 = 0; 1614 ifm->ifm_len = sizeof(*ifm); 1615 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1616 ifd = &ifm->ifm_data; 1617 } 1618 1619 memcpy(ifd, src_ifd, sizeof(*ifd)); 1620 1621 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1622 } 1623 1624 static int 1625 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1626 struct rt_addrinfo *info, struct walkarg *w, int len) 1627 { 1628 struct if_msghdr *ifm; 1629 struct if_data *ifd; 1630 1631 ifm = (struct if_msghdr *)w->w_tmem; 1632 1633 #ifdef COMPAT_FREEBSD32 1634 if (w->w_req->flags & SCTL_MASK32) { 1635 struct if_msghdr32 *ifm32; 1636 1637 ifm32 = (struct if_msghdr32 *)ifm; 1638 ifm32->ifm_addrs = info->rti_addrs; 1639 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1640 ifm32->ifm_index = ifp->if_index; 1641 ifd = &ifm32->ifm_data; 1642 } else 1643 #endif 1644 { 1645 ifm->ifm_addrs = info->rti_addrs; 1646 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1647 ifm->ifm_index = ifp->if_index; 1648 ifd = &ifm->ifm_data; 1649 } 1650 1651 memcpy(ifd, src_ifd, sizeof(*ifd)); 1652 1653 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1654 } 1655 1656 static int 1657 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1658 struct walkarg *w, int len) 1659 { 1660 struct ifa_msghdrl *ifam; 1661 struct if_data *ifd; 1662 1663 ifam = (struct ifa_msghdrl *)w->w_tmem; 1664 1665 #ifdef COMPAT_FREEBSD32 1666 if (w->w_req->flags & SCTL_MASK32) { 1667 struct ifa_msghdrl32 *ifam32; 1668 1669 ifam32 = (struct ifa_msghdrl32 *)ifam; 1670 ifam32->ifam_addrs = info->rti_addrs; 1671 ifam32->ifam_flags = ifa->ifa_flags; 1672 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1673 ifam32->_ifam_spare1 = 0; 1674 ifam32->ifam_len = sizeof(*ifam32); 1675 ifam32->ifam_data_off = 1676 offsetof(struct ifa_msghdrl32, ifam_data); 1677 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1678 ifd = &ifam32->ifam_data; 1679 } else 1680 #endif 1681 { 1682 ifam->ifam_addrs = info->rti_addrs; 1683 ifam->ifam_flags = ifa->ifa_flags; 1684 ifam->ifam_index = ifa->ifa_ifp->if_index; 1685 ifam->_ifam_spare1 = 0; 1686 ifam->ifam_len = sizeof(*ifam); 1687 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1688 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1689 ifd = &ifam->ifam_data; 1690 } 1691 1692 bzero(ifd, sizeof(*ifd)); 1693 ifd->ifi_datalen = sizeof(struct if_data); 1694 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1695 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1696 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1697 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1698 1699 /* Fixup if_data carp(4) vhid. */ 1700 if (carp_get_vhid_p != NULL) 1701 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1702 1703 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1704 } 1705 1706 static int 1707 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1708 struct walkarg *w, int len) 1709 { 1710 struct ifa_msghdr *ifam; 1711 1712 ifam = (struct ifa_msghdr *)w->w_tmem; 1713 ifam->ifam_addrs = info->rti_addrs; 1714 ifam->ifam_flags = ifa->ifa_flags; 1715 ifam->ifam_index = ifa->ifa_ifp->if_index; 1716 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1717 1718 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1719 } 1720 1721 static int 1722 sysctl_iflist(int af, struct walkarg *w) 1723 { 1724 struct ifnet *ifp; 1725 struct ifaddr *ifa; 1726 struct if_data ifd; 1727 struct rt_addrinfo info; 1728 int len, error = 0; 1729 struct sockaddr_storage ss; 1730 1731 bzero((caddr_t)&info, sizeof(info)); 1732 bzero(&ifd, sizeof(ifd)); 1733 IFNET_RLOCK_NOSLEEP(); 1734 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1735 if (w->w_arg && w->w_arg != ifp->if_index) 1736 continue; 1737 if_data_copy(ifp, &ifd); 1738 IF_ADDR_RLOCK(ifp); 1739 ifa = ifp->if_addr; 1740 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1741 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1742 if (error != 0) 1743 goto done; 1744 info.rti_info[RTAX_IFP] = NULL; 1745 if (w->w_req && w->w_tmem) { 1746 if (w->w_op == NET_RT_IFLISTL) 1747 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1748 len); 1749 else 1750 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1751 len); 1752 if (error) 1753 goto done; 1754 } 1755 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1756 if (af && af != ifa->ifa_addr->sa_family) 1757 continue; 1758 if (prison_if(w->w_req->td->td_ucred, 1759 ifa->ifa_addr) != 0) 1760 continue; 1761 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1762 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1763 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1764 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1765 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1766 if (error != 0) 1767 goto done; 1768 if (w->w_req && w->w_tmem) { 1769 if (w->w_op == NET_RT_IFLISTL) 1770 error = sysctl_iflist_ifaml(ifa, &info, 1771 w, len); 1772 else 1773 error = sysctl_iflist_ifam(ifa, &info, 1774 w, len); 1775 if (error) 1776 goto done; 1777 } 1778 } 1779 IF_ADDR_RUNLOCK(ifp); 1780 info.rti_info[RTAX_IFA] = NULL; 1781 info.rti_info[RTAX_NETMASK] = NULL; 1782 info.rti_info[RTAX_BRD] = NULL; 1783 } 1784 done: 1785 if (ifp != NULL) 1786 IF_ADDR_RUNLOCK(ifp); 1787 IFNET_RUNLOCK_NOSLEEP(); 1788 return (error); 1789 } 1790 1791 static int 1792 sysctl_ifmalist(int af, struct walkarg *w) 1793 { 1794 struct rt_addrinfo info; 1795 struct ifaddr *ifa; 1796 struct ifmultiaddr *ifma; 1797 struct ifnet *ifp; 1798 int error, len; 1799 1800 error = 0; 1801 bzero((caddr_t)&info, sizeof(info)); 1802 1803 IFNET_RLOCK_NOSLEEP(); 1804 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1805 if (w->w_arg && w->w_arg != ifp->if_index) 1806 continue; 1807 ifa = ifp->if_addr; 1808 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1809 IF_ADDR_RLOCK(ifp); 1810 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1811 if (af && af != ifma->ifma_addr->sa_family) 1812 continue; 1813 if (prison_if(w->w_req->td->td_ucred, 1814 ifma->ifma_addr) != 0) 1815 continue; 1816 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1817 info.rti_info[RTAX_GATEWAY] = 1818 (ifma->ifma_addr->sa_family != AF_LINK) ? 1819 ifma->ifma_lladdr : NULL; 1820 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1821 if (error != 0) 1822 break; 1823 if (w->w_req && w->w_tmem) { 1824 struct ifma_msghdr *ifmam; 1825 1826 ifmam = (struct ifma_msghdr *)w->w_tmem; 1827 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1828 ifmam->ifmam_flags = 0; 1829 ifmam->ifmam_addrs = info.rti_addrs; 1830 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1831 if (error != 0) 1832 break; 1833 } 1834 } 1835 IF_ADDR_RUNLOCK(ifp); 1836 if (error != 0) 1837 break; 1838 } 1839 IFNET_RUNLOCK_NOSLEEP(); 1840 return (error); 1841 } 1842 1843 static int 1844 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1845 { 1846 int *name = (int *)arg1; 1847 u_int namelen = arg2; 1848 struct rib_head *rnh = NULL; /* silence compiler. */ 1849 int i, lim, error = EINVAL; 1850 int fib = 0; 1851 u_char af; 1852 struct walkarg w; 1853 1854 name ++; 1855 namelen--; 1856 if (req->newptr) 1857 return (EPERM); 1858 if (name[1] == NET_RT_DUMP) { 1859 if (namelen == 3) 1860 fib = req->td->td_proc->p_fibnum; 1861 else if (namelen == 4) 1862 fib = (name[3] == RT_ALL_FIBS) ? 1863 req->td->td_proc->p_fibnum : name[3]; 1864 else 1865 return ((namelen < 3) ? EISDIR : ENOTDIR); 1866 if (fib < 0 || fib >= rt_numfibs) 1867 return (EINVAL); 1868 } else if (namelen != 3) 1869 return ((namelen < 3) ? EISDIR : ENOTDIR); 1870 af = name[0]; 1871 if (af > AF_MAX) 1872 return (EINVAL); 1873 bzero(&w, sizeof(w)); 1874 w.w_op = name[1]; 1875 w.w_arg = name[2]; 1876 w.w_req = req; 1877 1878 error = sysctl_wire_old_buffer(req, 0); 1879 if (error) 1880 return (error); 1881 1882 /* 1883 * Allocate reply buffer in advance. 1884 * All rtsock messages has maximum length of u_short. 1885 */ 1886 w.w_tmemsize = 65536; 1887 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1888 1889 switch (w.w_op) { 1890 1891 case NET_RT_DUMP: 1892 case NET_RT_FLAGS: 1893 if (af == 0) { /* dump all tables */ 1894 i = 1; 1895 lim = AF_MAX; 1896 } else /* dump only one table */ 1897 i = lim = af; 1898 1899 /* 1900 * take care of llinfo entries, the caller must 1901 * specify an AF 1902 */ 1903 if (w.w_op == NET_RT_FLAGS && 1904 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1905 if (af != 0) 1906 error = lltable_sysctl_dumparp(af, w.w_req); 1907 else 1908 error = EINVAL; 1909 break; 1910 } 1911 /* 1912 * take care of routing entries 1913 */ 1914 for (error = 0; error == 0 && i <= lim; i++) { 1915 rnh = rt_tables_get_rnh(fib, i); 1916 if (rnh != NULL) { 1917 RIB_RLOCK(rnh); 1918 error = rnh->rnh_walktree(&rnh->head, 1919 sysctl_dumpentry, &w); 1920 RIB_RUNLOCK(rnh); 1921 } else if (af != 0) 1922 error = EAFNOSUPPORT; 1923 } 1924 break; 1925 1926 case NET_RT_IFLIST: 1927 case NET_RT_IFLISTL: 1928 error = sysctl_iflist(af, &w); 1929 break; 1930 1931 case NET_RT_IFMALIST: 1932 error = sysctl_ifmalist(af, &w); 1933 break; 1934 } 1935 1936 free(w.w_tmem, M_TEMP); 1937 return (error); 1938 } 1939 1940 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1941 1942 /* 1943 * Definitions of protocols supported in the ROUTE domain. 1944 */ 1945 1946 static struct domain routedomain; /* or at least forward */ 1947 1948 static struct protosw routesw[] = { 1949 { 1950 .pr_type = SOCK_RAW, 1951 .pr_domain = &routedomain, 1952 .pr_flags = PR_ATOMIC|PR_ADDR, 1953 .pr_output = route_output, 1954 .pr_ctlinput = raw_ctlinput, 1955 .pr_init = raw_init, 1956 .pr_usrreqs = &route_usrreqs 1957 } 1958 }; 1959 1960 static struct domain routedomain = { 1961 .dom_family = PF_ROUTE, 1962 .dom_name = "route", 1963 .dom_protosw = routesw, 1964 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 1965 }; 1966 1967 VNET_DOMAIN_SET(route); 1968