xref: /freebsd/sys/net/rtsock.c (revision eb69d1f144a6fcc765d1b9d44a5ae8082353e70b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_compat.h"
35 #include "opt_mpath.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rwlock.h>
50 #include <sys/signalvar.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_dl.h>
59 #include <net/if_llatbl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62 #include <net/raw_cb.h>
63 #include <net/route.h>
64 #include <net/route_var.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/if_ether.h>
69 #include <netinet/ip_carp.h>
70 #ifdef INET6
71 #include <netinet6/ip6_var.h>
72 #include <netinet6/scope6_var.h>
73 #endif
74 
75 #ifdef COMPAT_FREEBSD32
76 #include <sys/mount.h>
77 #include <compat/freebsd32/freebsd32.h>
78 
79 struct if_msghdr32 {
80 	uint16_t ifm_msglen;
81 	uint8_t	ifm_version;
82 	uint8_t	ifm_type;
83 	int32_t	ifm_addrs;
84 	int32_t	ifm_flags;
85 	uint16_t ifm_index;
86 	struct	if_data ifm_data;
87 };
88 
89 struct if_msghdrl32 {
90 	uint16_t ifm_msglen;
91 	uint8_t	ifm_version;
92 	uint8_t	ifm_type;
93 	int32_t	ifm_addrs;
94 	int32_t	ifm_flags;
95 	uint16_t ifm_index;
96 	uint16_t _ifm_spare1;
97 	uint16_t ifm_len;
98 	uint16_t ifm_data_off;
99 	struct	if_data ifm_data;
100 };
101 
102 struct ifa_msghdrl32 {
103 	uint16_t ifam_msglen;
104 	uint8_t	ifam_version;
105 	uint8_t	ifam_type;
106 	int32_t	ifam_addrs;
107 	int32_t	ifam_flags;
108 	uint16_t ifam_index;
109 	uint16_t _ifam_spare1;
110 	uint16_t ifam_len;
111 	uint16_t ifam_data_off;
112 	int32_t	ifam_metric;
113 	struct	if_data ifam_data;
114 };
115 
116 #define SA_SIZE32(sa)						\
117     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
118 	sizeof(int)		:				\
119 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
120 
121 #endif /* COMPAT_FREEBSD32 */
122 
123 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
124 
125 /* NB: these are not modified */
126 static struct	sockaddr route_src = { 2, PF_ROUTE, };
127 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
128 
129 /* These are external hooks for CARP. */
130 int	(*carp_get_vhid_p)(struct ifaddr *);
131 
132 /*
133  * Used by rtsock/raw_input callback code to decide whether to filter the update
134  * notification to a socket bound to a particular FIB.
135  */
136 #define	RTS_FILTER_FIB	M_PROTO8
137 
138 typedef struct {
139 	int	ip_count;	/* attached w/ AF_INET */
140 	int	ip6_count;	/* attached w/ AF_INET6 */
141 	int	any_count;	/* total attached */
142 } route_cb_t;
143 static VNET_DEFINE(route_cb_t, route_cb);
144 #define	V_route_cb VNET(route_cb)
145 
146 struct mtx rtsock_mtx;
147 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
148 
149 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
150 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
151 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
152 
153 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
154 
155 struct walkarg {
156 	int	w_tmemsize;
157 	int	w_op, w_arg;
158 	caddr_t	w_tmem;
159 	struct sysctl_req *w_req;
160 };
161 
162 static void	rts_input(struct mbuf *m);
163 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
164 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
165 			struct walkarg *w, int *plen);
166 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
167 			struct rt_addrinfo *rtinfo);
168 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
169 static int	sysctl_iflist(int af, struct walkarg *w);
170 static int	sysctl_ifmalist(int af, struct walkarg *w);
171 static int	route_output(struct mbuf *m, struct socket *so, ...);
172 static void	rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
173 static void	rt_dispatch(struct mbuf *, sa_family_t);
174 static struct sockaddr	*rtsock_fix_netmask(struct sockaddr *dst,
175 			struct sockaddr *smask, struct sockaddr_storage *dmask);
176 
177 static struct netisr_handler rtsock_nh = {
178 	.nh_name = "rtsock",
179 	.nh_handler = rts_input,
180 	.nh_proto = NETISR_ROUTE,
181 	.nh_policy = NETISR_POLICY_SOURCE,
182 };
183 
184 static int
185 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
186 {
187 	int error, qlimit;
188 
189 	netisr_getqlimit(&rtsock_nh, &qlimit);
190 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
191         if (error || !req->newptr)
192                 return (error);
193 	if (qlimit < 1)
194 		return (EINVAL);
195 	return (netisr_setqlimit(&rtsock_nh, qlimit));
196 }
197 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
198     0, 0, sysctl_route_netisr_maxqlen, "I",
199     "maximum routing socket dispatch queue length");
200 
201 static void
202 vnet_rts_init(void)
203 {
204 	int tmp;
205 
206 	if (IS_DEFAULT_VNET(curvnet)) {
207 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
208 			rtsock_nh.nh_qlimit = tmp;
209 		netisr_register(&rtsock_nh);
210 	}
211 #ifdef VIMAGE
212 	 else
213 		netisr_register_vnet(&rtsock_nh);
214 #endif
215 }
216 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
217     vnet_rts_init, 0);
218 
219 #ifdef VIMAGE
220 static void
221 vnet_rts_uninit(void)
222 {
223 
224 	netisr_unregister_vnet(&rtsock_nh);
225 }
226 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
227     vnet_rts_uninit, 0);
228 #endif
229 
230 static int
231 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
232     struct rawcb *rp)
233 {
234 	int fibnum;
235 
236 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
237 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
238 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
239 
240 	/* No filtering requested. */
241 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
242 		return (0);
243 
244 	/* Check if it is a rts and the fib matches the one of the socket. */
245 	fibnum = M_GETFIB(m);
246 	if (proto->sp_family != PF_ROUTE ||
247 	    rp->rcb_socket == NULL ||
248 	    rp->rcb_socket->so_fibnum == fibnum)
249 		return (0);
250 
251 	/* Filtering requested and no match, the socket shall be skipped. */
252 	return (1);
253 }
254 
255 static void
256 rts_input(struct mbuf *m)
257 {
258 	struct sockproto route_proto;
259 	unsigned short *family;
260 	struct m_tag *tag;
261 
262 	route_proto.sp_family = PF_ROUTE;
263 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
264 	if (tag != NULL) {
265 		family = (unsigned short *)(tag + 1);
266 		route_proto.sp_protocol = *family;
267 		m_tag_delete(m, tag);
268 	} else
269 		route_proto.sp_protocol = 0;
270 
271 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
272 }
273 
274 /*
275  * It really doesn't make any sense at all for this code to share much
276  * with raw_usrreq.c, since its functionality is so restricted.  XXX
277  */
278 static void
279 rts_abort(struct socket *so)
280 {
281 
282 	raw_usrreqs.pru_abort(so);
283 }
284 
285 static void
286 rts_close(struct socket *so)
287 {
288 
289 	raw_usrreqs.pru_close(so);
290 }
291 
292 /* pru_accept is EOPNOTSUPP */
293 
294 static int
295 rts_attach(struct socket *so, int proto, struct thread *td)
296 {
297 	struct rawcb *rp;
298 	int error;
299 
300 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
301 
302 	/* XXX */
303 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
304 
305 	so->so_pcb = (caddr_t)rp;
306 	so->so_fibnum = td->td_proc->p_fibnum;
307 	error = raw_attach(so, proto);
308 	rp = sotorawcb(so);
309 	if (error) {
310 		so->so_pcb = NULL;
311 		free(rp, M_PCB);
312 		return error;
313 	}
314 	RTSOCK_LOCK();
315 	switch(rp->rcb_proto.sp_protocol) {
316 	case AF_INET:
317 		V_route_cb.ip_count++;
318 		break;
319 	case AF_INET6:
320 		V_route_cb.ip6_count++;
321 		break;
322 	}
323 	V_route_cb.any_count++;
324 	RTSOCK_UNLOCK();
325 	soisconnected(so);
326 	so->so_options |= SO_USELOOPBACK;
327 	return 0;
328 }
329 
330 static int
331 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
332 {
333 
334 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
335 }
336 
337 static int
338 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
339 {
340 
341 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
342 }
343 
344 /* pru_connect2 is EOPNOTSUPP */
345 /* pru_control is EOPNOTSUPP */
346 
347 static void
348 rts_detach(struct socket *so)
349 {
350 	struct rawcb *rp = sotorawcb(so);
351 
352 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
353 
354 	RTSOCK_LOCK();
355 	switch(rp->rcb_proto.sp_protocol) {
356 	case AF_INET:
357 		V_route_cb.ip_count--;
358 		break;
359 	case AF_INET6:
360 		V_route_cb.ip6_count--;
361 		break;
362 	}
363 	V_route_cb.any_count--;
364 	RTSOCK_UNLOCK();
365 	raw_usrreqs.pru_detach(so);
366 }
367 
368 static int
369 rts_disconnect(struct socket *so)
370 {
371 
372 	return (raw_usrreqs.pru_disconnect(so));
373 }
374 
375 /* pru_listen is EOPNOTSUPP */
376 
377 static int
378 rts_peeraddr(struct socket *so, struct sockaddr **nam)
379 {
380 
381 	return (raw_usrreqs.pru_peeraddr(so, nam));
382 }
383 
384 /* pru_rcvd is EOPNOTSUPP */
385 /* pru_rcvoob is EOPNOTSUPP */
386 
387 static int
388 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
389 	 struct mbuf *control, struct thread *td)
390 {
391 
392 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
393 }
394 
395 /* pru_sense is null */
396 
397 static int
398 rts_shutdown(struct socket *so)
399 {
400 
401 	return (raw_usrreqs.pru_shutdown(so));
402 }
403 
404 static int
405 rts_sockaddr(struct socket *so, struct sockaddr **nam)
406 {
407 
408 	return (raw_usrreqs.pru_sockaddr(so, nam));
409 }
410 
411 static struct pr_usrreqs route_usrreqs = {
412 	.pru_abort =		rts_abort,
413 	.pru_attach =		rts_attach,
414 	.pru_bind =		rts_bind,
415 	.pru_connect =		rts_connect,
416 	.pru_detach =		rts_detach,
417 	.pru_disconnect =	rts_disconnect,
418 	.pru_peeraddr =		rts_peeraddr,
419 	.pru_send =		rts_send,
420 	.pru_shutdown =		rts_shutdown,
421 	.pru_sockaddr =		rts_sockaddr,
422 	.pru_close =		rts_close,
423 };
424 
425 #ifndef _SOCKADDR_UNION_DEFINED
426 #define	_SOCKADDR_UNION_DEFINED
427 /*
428  * The union of all possible address formats we handle.
429  */
430 union sockaddr_union {
431 	struct sockaddr		sa;
432 	struct sockaddr_in	sin;
433 	struct sockaddr_in6	sin6;
434 };
435 #endif /* _SOCKADDR_UNION_DEFINED */
436 
437 static int
438 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
439     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
440 {
441 
442 	/* First, see if the returned address is part of the jail. */
443 	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
444 		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
445 		return (0);
446 	}
447 
448 	switch (info->rti_info[RTAX_DST]->sa_family) {
449 #ifdef INET
450 	case AF_INET:
451 	{
452 		struct in_addr ia;
453 		struct ifaddr *ifa;
454 		int found;
455 
456 		found = 0;
457 		/*
458 		 * Try to find an address on the given outgoing interface
459 		 * that belongs to the jail.
460 		 */
461 		IF_ADDR_RLOCK(ifp);
462 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
463 			struct sockaddr *sa;
464 			sa = ifa->ifa_addr;
465 			if (sa->sa_family != AF_INET)
466 				continue;
467 			ia = ((struct sockaddr_in *)sa)->sin_addr;
468 			if (prison_check_ip4(cred, &ia) == 0) {
469 				found = 1;
470 				break;
471 			}
472 		}
473 		IF_ADDR_RUNLOCK(ifp);
474 		if (!found) {
475 			/*
476 			 * As a last resort return the 'default' jail address.
477 			 */
478 			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
479 			    sin_addr;
480 			if (prison_get_ip4(cred, &ia) != 0)
481 				return (ESRCH);
482 		}
483 		bzero(&saun->sin, sizeof(struct sockaddr_in));
484 		saun->sin.sin_len = sizeof(struct sockaddr_in);
485 		saun->sin.sin_family = AF_INET;
486 		saun->sin.sin_addr.s_addr = ia.s_addr;
487 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
488 		break;
489 	}
490 #endif
491 #ifdef INET6
492 	case AF_INET6:
493 	{
494 		struct in6_addr ia6;
495 		struct ifaddr *ifa;
496 		int found;
497 
498 		found = 0;
499 		/*
500 		 * Try to find an address on the given outgoing interface
501 		 * that belongs to the jail.
502 		 */
503 		IF_ADDR_RLOCK(ifp);
504 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
505 			struct sockaddr *sa;
506 			sa = ifa->ifa_addr;
507 			if (sa->sa_family != AF_INET6)
508 				continue;
509 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
510 			    &ia6, sizeof(struct in6_addr));
511 			if (prison_check_ip6(cred, &ia6) == 0) {
512 				found = 1;
513 				break;
514 			}
515 		}
516 		IF_ADDR_RUNLOCK(ifp);
517 		if (!found) {
518 			/*
519 			 * As a last resort return the 'default' jail address.
520 			 */
521 			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
522 			    sin6_addr;
523 			if (prison_get_ip6(cred, &ia6) != 0)
524 				return (ESRCH);
525 		}
526 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
527 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
528 		saun->sin6.sin6_family = AF_INET6;
529 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
530 		if (sa6_recoverscope(&saun->sin6) != 0)
531 			return (ESRCH);
532 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
533 		break;
534 	}
535 #endif
536 	default:
537 		return (ESRCH);
538 	}
539 	return (0);
540 }
541 
542 /*ARGSUSED*/
543 static int
544 route_output(struct mbuf *m, struct socket *so, ...)
545 {
546 	struct rt_msghdr *rtm = NULL;
547 	struct rtentry *rt = NULL;
548 	struct rib_head *rnh;
549 	struct rt_addrinfo info;
550 	struct sockaddr_storage ss;
551 #ifdef INET6
552 	struct sockaddr_in6 *sin6;
553 	int i, rti_need_deembed = 0;
554 #endif
555 	int alloc_len = 0, len, error = 0, fibnum;
556 	struct ifnet *ifp = NULL;
557 	union sockaddr_union saun;
558 	sa_family_t saf = AF_UNSPEC;
559 	struct rawcb *rp = NULL;
560 	struct walkarg w;
561 
562 	fibnum = so->so_fibnum;
563 
564 #define senderr(e) { error = e; goto flush;}
565 	if (m == NULL || ((m->m_len < sizeof(long)) &&
566 		       (m = m_pullup(m, sizeof(long))) == NULL))
567 		return (ENOBUFS);
568 	if ((m->m_flags & M_PKTHDR) == 0)
569 		panic("route_output");
570 	len = m->m_pkthdr.len;
571 	if (len < sizeof(*rtm) ||
572 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
573 		senderr(EINVAL);
574 
575 	/*
576 	 * Most of current messages are in range 200-240 bytes,
577 	 * minimize possible re-allocation on reply using larger size
578 	 * buffer aligned on 1k boundaty.
579 	 */
580 	alloc_len = roundup2(len, 1024);
581 	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
582 		senderr(ENOBUFS);
583 
584 	m_copydata(m, 0, len, (caddr_t)rtm);
585 	bzero(&info, sizeof(info));
586 	bzero(&w, sizeof(w));
587 
588 	if (rtm->rtm_version != RTM_VERSION) {
589 		/* Do not touch message since format is unknown */
590 		free(rtm, M_TEMP);
591 		rtm = NULL;
592 		senderr(EPROTONOSUPPORT);
593 	}
594 
595 	/*
596 	 * Starting from here, it is possible
597 	 * to alter original message and insert
598 	 * caller PID and error value.
599 	 */
600 
601 	rtm->rtm_pid = curproc->p_pid;
602 	info.rti_addrs = rtm->rtm_addrs;
603 
604 	info.rti_mflags = rtm->rtm_inits;
605 	info.rti_rmx = &rtm->rtm_rmx;
606 
607 	/*
608 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
609 	 * link-local address because rtrequest requires addresses with
610 	 * embedded scope id.
611 	 */
612 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info))
613 		senderr(EINVAL);
614 
615 	info.rti_flags = rtm->rtm_flags;
616 	if (info.rti_info[RTAX_DST] == NULL ||
617 	    info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
618 	    (info.rti_info[RTAX_GATEWAY] != NULL &&
619 	     info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
620 		senderr(EINVAL);
621 	saf = info.rti_info[RTAX_DST]->sa_family;
622 	/*
623 	 * Verify that the caller has the appropriate privilege; RTM_GET
624 	 * is the only operation the non-superuser is allowed.
625 	 */
626 	if (rtm->rtm_type != RTM_GET) {
627 		error = priv_check(curthread, PRIV_NET_ROUTE);
628 		if (error)
629 			senderr(error);
630 	}
631 
632 	/*
633 	 * The given gateway address may be an interface address.
634 	 * For example, issuing a "route change" command on a route
635 	 * entry that was created from a tunnel, and the gateway
636 	 * address given is the local end point. In this case the
637 	 * RTF_GATEWAY flag must be cleared or the destination will
638 	 * not be reachable even though there is no error message.
639 	 */
640 	if (info.rti_info[RTAX_GATEWAY] != NULL &&
641 	    info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
642 		struct rt_addrinfo ginfo;
643 		struct sockaddr *gdst;
644 
645 		bzero(&ginfo, sizeof(ginfo));
646 		bzero(&ss, sizeof(ss));
647 		ss.ss_len = sizeof(ss);
648 
649 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
650 		gdst = info.rti_info[RTAX_GATEWAY];
651 
652 		/*
653 		 * A host route through the loopback interface is
654 		 * installed for each interface adddress. In pre 8.0
655 		 * releases the interface address of a PPP link type
656 		 * is not reachable locally. This behavior is fixed as
657 		 * part of the new L2/L3 redesign and rewrite work. The
658 		 * signature of this interface address route is the
659 		 * AF_LINK sa_family type of the rt_gateway, and the
660 		 * rt_ifp has the IFF_LOOPBACK flag set.
661 		 */
662 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
663 			if (ss.ss_family == AF_LINK &&
664 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
665 				info.rti_flags &= ~RTF_GATEWAY;
666 				info.rti_flags |= RTF_GWFLAG_COMPAT;
667 			}
668 			rib_free_info(&ginfo);
669 		}
670 	}
671 
672 	switch (rtm->rtm_type) {
673 		struct rtentry *saved_nrt;
674 
675 	case RTM_ADD:
676 	case RTM_CHANGE:
677 		if (info.rti_info[RTAX_GATEWAY] == NULL)
678 			senderr(EINVAL);
679 		saved_nrt = NULL;
680 
681 		/* support for new ARP code */
682 		if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK &&
683 		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
684 			error = lla_rt_output(rtm, &info);
685 #ifdef INET6
686 			if (error == 0)
687 				rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
688 #endif
689 			break;
690 		}
691 		error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
692 		    fibnum);
693 		if (error == 0 && saved_nrt != NULL) {
694 #ifdef INET6
695 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
696 #endif
697 			RT_LOCK(saved_nrt);
698 			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
699 			RT_REMREF(saved_nrt);
700 			RT_UNLOCK(saved_nrt);
701 		}
702 		break;
703 
704 	case RTM_DELETE:
705 		saved_nrt = NULL;
706 		/* support for new ARP code */
707 		if (info.rti_info[RTAX_GATEWAY] &&
708 		    (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
709 		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
710 			error = lla_rt_output(rtm, &info);
711 #ifdef INET6
712 			if (error == 0)
713 				rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
714 #endif
715 			break;
716 		}
717 		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
718 		if (error == 0) {
719 			RT_LOCK(saved_nrt);
720 			rt = saved_nrt;
721 			goto report;
722 		}
723 #ifdef INET6
724 		/* rt_msg2() will not be used when RTM_DELETE fails. */
725 		rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
726 #endif
727 		break;
728 
729 	case RTM_GET:
730 		rnh = rt_tables_get_rnh(fibnum, saf);
731 		if (rnh == NULL)
732 			senderr(EAFNOSUPPORT);
733 
734 		RIB_RLOCK(rnh);
735 
736 		if (info.rti_info[RTAX_NETMASK] == NULL &&
737 		    rtm->rtm_type == RTM_GET) {
738 			/*
739 			 * Provide longest prefix match for
740 			 * address lookup (no mask).
741 			 * 'route -n get addr'
742 			 */
743 			rt = (struct rtentry *) rnh->rnh_matchaddr(
744 			    info.rti_info[RTAX_DST], &rnh->head);
745 		} else
746 			rt = (struct rtentry *) rnh->rnh_lookup(
747 			    info.rti_info[RTAX_DST],
748 			    info.rti_info[RTAX_NETMASK], &rnh->head);
749 
750 		if (rt == NULL) {
751 			RIB_RUNLOCK(rnh);
752 			senderr(ESRCH);
753 		}
754 #ifdef RADIX_MPATH
755 		/*
756 		 * for RTM_CHANGE/LOCK, if we got multipath routes,
757 		 * we require users to specify a matching RTAX_GATEWAY.
758 		 *
759 		 * for RTM_GET, gate is optional even with multipath.
760 		 * if gate == NULL the first match is returned.
761 		 * (no need to call rt_mpath_matchgate if gate == NULL)
762 		 */
763 		if (rt_mpath_capable(rnh) &&
764 		    (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
765 			rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
766 			if (!rt) {
767 				RIB_RUNLOCK(rnh);
768 				senderr(ESRCH);
769 			}
770 		}
771 #endif
772 		/*
773 		 * If performing proxied L2 entry insertion, and
774 		 * the actual PPP host entry is found, perform
775 		 * another search to retrieve the prefix route of
776 		 * the local end point of the PPP link.
777 		 */
778 		if (rtm->rtm_flags & RTF_ANNOUNCE) {
779 			struct sockaddr laddr;
780 
781 			if (rt->rt_ifp != NULL &&
782 			    rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
783 				struct ifaddr *ifa;
784 
785 				ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1,
786 						RT_ALL_FIBS);
787 				if (ifa != NULL)
788 					rt_maskedcopy(ifa->ifa_addr,
789 						      &laddr,
790 						      ifa->ifa_netmask);
791 			} else
792 				rt_maskedcopy(rt->rt_ifa->ifa_addr,
793 					      &laddr,
794 					      rt->rt_ifa->ifa_netmask);
795 			/*
796 			 * refactor rt and no lock operation necessary
797 			 */
798 			rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
799 			    &rnh->head);
800 			if (rt == NULL) {
801 				RIB_RUNLOCK(rnh);
802 				senderr(ESRCH);
803 			}
804 		}
805 		RT_LOCK(rt);
806 		RT_ADDREF(rt);
807 		RIB_RUNLOCK(rnh);
808 
809 report:
810 		RT_LOCK_ASSERT(rt);
811 		if ((rt->rt_flags & RTF_HOST) == 0
812 		    ? jailed_without_vnet(curthread->td_ucred)
813 		    : prison_if(curthread->td_ucred,
814 		    rt_key(rt)) != 0) {
815 			RT_UNLOCK(rt);
816 			senderr(ESRCH);
817 		}
818 		info.rti_info[RTAX_DST] = rt_key(rt);
819 		info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
820 		info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
821 		    rt_mask(rt), &ss);
822 		info.rti_info[RTAX_GENMASK] = 0;
823 		if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
824 			ifp = rt->rt_ifp;
825 			if (ifp) {
826 				info.rti_info[RTAX_IFP] =
827 				    ifp->if_addr->ifa_addr;
828 				error = rtm_get_jailed(&info, ifp, rt,
829 				    &saun, curthread->td_ucred);
830 				if (error != 0) {
831 					RT_UNLOCK(rt);
832 					senderr(error);
833 				}
834 				if (ifp->if_flags & IFF_POINTOPOINT)
835 					info.rti_info[RTAX_BRD] =
836 					    rt->rt_ifa->ifa_dstaddr;
837 				rtm->rtm_index = ifp->if_index;
838 			} else {
839 				info.rti_info[RTAX_IFP] = NULL;
840 				info.rti_info[RTAX_IFA] = NULL;
841 			}
842 		} else if ((ifp = rt->rt_ifp) != NULL) {
843 			rtm->rtm_index = ifp->if_index;
844 		}
845 
846 		/* Check if we need to realloc storage */
847 		rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len);
848 		if (len > alloc_len) {
849 			struct rt_msghdr *new_rtm;
850 			new_rtm = malloc(len, M_TEMP, M_NOWAIT);
851 			if (new_rtm == NULL) {
852 				RT_UNLOCK(rt);
853 				senderr(ENOBUFS);
854 			}
855 			bcopy(rtm, new_rtm, rtm->rtm_msglen);
856 			free(rtm, M_TEMP);
857 			rtm = new_rtm;
858 			alloc_len = len;
859 		}
860 
861 		w.w_tmem = (caddr_t)rtm;
862 		w.w_tmemsize = alloc_len;
863 		rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len);
864 
865 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
866 			rtm->rtm_flags = RTF_GATEWAY |
867 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
868 		else
869 			rtm->rtm_flags = rt->rt_flags;
870 		rt_getmetrics(rt, &rtm->rtm_rmx);
871 		rtm->rtm_addrs = info.rti_addrs;
872 
873 		RT_UNLOCK(rt);
874 		break;
875 
876 	default:
877 		senderr(EOPNOTSUPP);
878 	}
879 
880 flush:
881 	if (rt != NULL)
882 		RTFREE(rt);
883 	/*
884 	 * Check to see if we don't want our own messages.
885 	 */
886 	if ((so->so_options & SO_USELOOPBACK) == 0) {
887 		if (V_route_cb.any_count <= 1) {
888 			if (rtm != NULL)
889 				free(rtm, M_TEMP);
890 			m_freem(m);
891 			return (error);
892 		}
893 		/* There is another listener, so construct message */
894 		rp = sotorawcb(so);
895 	}
896 
897 	if (rtm != NULL) {
898 #ifdef INET6
899 		if (rti_need_deembed) {
900 			/* sin6_scope_id is recovered before sending rtm. */
901 			sin6 = (struct sockaddr_in6 *)&ss;
902 			for (i = 0; i < RTAX_MAX; i++) {
903 				if (info.rti_info[i] == NULL)
904 					continue;
905 				if (info.rti_info[i]->sa_family != AF_INET6)
906 					continue;
907 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
908 				if (sa6_recoverscope(sin6) == 0)
909 					bcopy(sin6, info.rti_info[i],
910 						    sizeof(*sin6));
911 			}
912 		}
913 #endif
914 		if (error != 0)
915 			rtm->rtm_errno = error;
916 		else
917 			rtm->rtm_flags |= RTF_DONE;
918 
919 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
920 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
921 			m_freem(m);
922 			m = NULL;
923 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
924 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
925 
926 		free(rtm, M_TEMP);
927 	}
928 	if (m != NULL) {
929 		M_SETFIB(m, fibnum);
930 		m->m_flags |= RTS_FILTER_FIB;
931 		if (rp) {
932 			/*
933 			 * XXX insure we don't get a copy by
934 			 * invalidating our protocol
935 			 */
936 			unsigned short family = rp->rcb_proto.sp_family;
937 			rp->rcb_proto.sp_family = 0;
938 			rt_dispatch(m, saf);
939 			rp->rcb_proto.sp_family = family;
940 		} else
941 			rt_dispatch(m, saf);
942 	}
943 
944 	return (error);
945 }
946 
947 static void
948 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
949 {
950 
951 	bzero(out, sizeof(*out));
952 	out->rmx_mtu = rt->rt_mtu;
953 	out->rmx_weight = rt->rt_weight;
954 	out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
955 	/* Kernel -> userland timebase conversion. */
956 	out->rmx_expire = rt->rt_expire ?
957 	    rt->rt_expire - time_uptime + time_second : 0;
958 }
959 
960 /*
961  * Extract the addresses of the passed sockaddrs.
962  * Do a little sanity checking so as to avoid bad memory references.
963  * This data is derived straight from userland.
964  */
965 static int
966 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
967 {
968 	struct sockaddr *sa;
969 	int i;
970 
971 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
972 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
973 			continue;
974 		sa = (struct sockaddr *)cp;
975 		/*
976 		 * It won't fit.
977 		 */
978 		if (cp + sa->sa_len > cplim)
979 			return (EINVAL);
980 		/*
981 		 * there are no more.. quit now
982 		 * If there are more bits, they are in error.
983 		 * I've seen this. route(1) can evidently generate these.
984 		 * This causes kernel to core dump.
985 		 * for compatibility, If we see this, point to a safe address.
986 		 */
987 		if (sa->sa_len == 0) {
988 			rtinfo->rti_info[i] = &sa_zero;
989 			return (0); /* should be EINVAL but for compat */
990 		}
991 		/* accept it */
992 #ifdef INET6
993 		if (sa->sa_family == AF_INET6)
994 			sa6_embedscope((struct sockaddr_in6 *)sa,
995 			    V_ip6_use_defzone);
996 #endif
997 		rtinfo->rti_info[i] = sa;
998 		cp += SA_SIZE(sa);
999 	}
1000 	return (0);
1001 }
1002 
1003 /*
1004  * Fill in @dmask with valid netmask leaving original @smask
1005  * intact. Mostly used with radix netmasks.
1006  */
1007 static struct sockaddr *
1008 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask,
1009     struct sockaddr_storage *dmask)
1010 {
1011 	if (dst == NULL || smask == NULL)
1012 		return (NULL);
1013 
1014 	memset(dmask, 0, dst->sa_len);
1015 	memcpy(dmask, smask, smask->sa_len);
1016 	dmask->ss_len = dst->sa_len;
1017 	dmask->ss_family = dst->sa_family;
1018 
1019 	return ((struct sockaddr *)dmask);
1020 }
1021 
1022 /*
1023  * Writes information related to @rtinfo object to newly-allocated mbuf.
1024  * Assumes MCLBYTES is enough to construct any message.
1025  * Used for OS notifications of vaious events (if/ifa announces,etc)
1026  *
1027  * Returns allocated mbuf or NULL on failure.
1028  */
1029 static struct mbuf *
1030 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1031 {
1032 	struct rt_msghdr *rtm;
1033 	struct mbuf *m;
1034 	int i;
1035 	struct sockaddr *sa;
1036 #ifdef INET6
1037 	struct sockaddr_storage ss;
1038 	struct sockaddr_in6 *sin6;
1039 #endif
1040 	int len, dlen;
1041 
1042 	switch (type) {
1043 
1044 	case RTM_DELADDR:
1045 	case RTM_NEWADDR:
1046 		len = sizeof(struct ifa_msghdr);
1047 		break;
1048 
1049 	case RTM_DELMADDR:
1050 	case RTM_NEWMADDR:
1051 		len = sizeof(struct ifma_msghdr);
1052 		break;
1053 
1054 	case RTM_IFINFO:
1055 		len = sizeof(struct if_msghdr);
1056 		break;
1057 
1058 	case RTM_IFANNOUNCE:
1059 	case RTM_IEEE80211:
1060 		len = sizeof(struct if_announcemsghdr);
1061 		break;
1062 
1063 	default:
1064 		len = sizeof(struct rt_msghdr);
1065 	}
1066 
1067 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1068 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1069 	if (len > MHLEN)
1070 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1071 	else
1072 		m = m_gethdr(M_NOWAIT, MT_DATA);
1073 	if (m == NULL)
1074 		return (m);
1075 
1076 	m->m_pkthdr.len = m->m_len = len;
1077 	rtm = mtod(m, struct rt_msghdr *);
1078 	bzero((caddr_t)rtm, len);
1079 	for (i = 0; i < RTAX_MAX; i++) {
1080 		if ((sa = rtinfo->rti_info[i]) == NULL)
1081 			continue;
1082 		rtinfo->rti_addrs |= (1 << i);
1083 		dlen = SA_SIZE(sa);
1084 #ifdef INET6
1085 		if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1086 			sin6 = (struct sockaddr_in6 *)&ss;
1087 			bcopy(sa, sin6, sizeof(*sin6));
1088 			if (sa6_recoverscope(sin6) == 0)
1089 				sa = (struct sockaddr *)sin6;
1090 		}
1091 #endif
1092 		m_copyback(m, len, dlen, (caddr_t)sa);
1093 		len += dlen;
1094 	}
1095 	if (m->m_pkthdr.len != len) {
1096 		m_freem(m);
1097 		return (NULL);
1098 	}
1099 	rtm->rtm_msglen = len;
1100 	rtm->rtm_version = RTM_VERSION;
1101 	rtm->rtm_type = type;
1102 	return (m);
1103 }
1104 
1105 /*
1106  * Writes information related to @rtinfo object to preallocated buffer.
1107  * Stores needed size in @plen. If @w is NULL, calculates size without
1108  * writing.
1109  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1110  *
1111  * Returns 0 on success.
1112  *
1113  */
1114 static int
1115 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1116 {
1117 	int i;
1118 	int len, buflen = 0, dlen;
1119 	caddr_t cp = NULL;
1120 	struct rt_msghdr *rtm = NULL;
1121 #ifdef INET6
1122 	struct sockaddr_storage ss;
1123 	struct sockaddr_in6 *sin6;
1124 #endif
1125 #ifdef COMPAT_FREEBSD32
1126 	bool compat32 = false;
1127 #endif
1128 
1129 	switch (type) {
1130 
1131 	case RTM_DELADDR:
1132 	case RTM_NEWADDR:
1133 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1134 #ifdef COMPAT_FREEBSD32
1135 			if (w->w_req->flags & SCTL_MASK32) {
1136 				len = sizeof(struct ifa_msghdrl32);
1137 				compat32 = true;
1138 			} else
1139 #endif
1140 				len = sizeof(struct ifa_msghdrl);
1141 		} else
1142 			len = sizeof(struct ifa_msghdr);
1143 		break;
1144 
1145 	case RTM_IFINFO:
1146 #ifdef COMPAT_FREEBSD32
1147 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1148 			if (w->w_op == NET_RT_IFLISTL)
1149 				len = sizeof(struct if_msghdrl32);
1150 			else
1151 				len = sizeof(struct if_msghdr32);
1152 			compat32 = true;
1153 			break;
1154 		}
1155 #endif
1156 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1157 			len = sizeof(struct if_msghdrl);
1158 		else
1159 			len = sizeof(struct if_msghdr);
1160 		break;
1161 
1162 	case RTM_NEWMADDR:
1163 		len = sizeof(struct ifma_msghdr);
1164 		break;
1165 
1166 	default:
1167 		len = sizeof(struct rt_msghdr);
1168 	}
1169 
1170 	if (w != NULL) {
1171 		rtm = (struct rt_msghdr *)w->w_tmem;
1172 		buflen = w->w_tmemsize - len;
1173 		cp = (caddr_t)w->w_tmem + len;
1174 	}
1175 
1176 	rtinfo->rti_addrs = 0;
1177 	for (i = 0; i < RTAX_MAX; i++) {
1178 		struct sockaddr *sa;
1179 
1180 		if ((sa = rtinfo->rti_info[i]) == NULL)
1181 			continue;
1182 		rtinfo->rti_addrs |= (1 << i);
1183 #ifdef COMPAT_FREEBSD32
1184 		if (compat32)
1185 			dlen = SA_SIZE32(sa);
1186 		else
1187 #endif
1188 			dlen = SA_SIZE(sa);
1189 		if (cp != NULL && buflen >= dlen) {
1190 #ifdef INET6
1191 			if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1192 				sin6 = (struct sockaddr_in6 *)&ss;
1193 				bcopy(sa, sin6, sizeof(*sin6));
1194 				if (sa6_recoverscope(sin6) == 0)
1195 					sa = (struct sockaddr *)sin6;
1196 			}
1197 #endif
1198 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1199 			cp += dlen;
1200 			buflen -= dlen;
1201 		} else if (cp != NULL) {
1202 			/*
1203 			 * Buffer too small. Count needed size
1204 			 * and return with error.
1205 			 */
1206 			cp = NULL;
1207 		}
1208 
1209 		len += dlen;
1210 	}
1211 
1212 	if (cp != NULL) {
1213 		dlen = ALIGN(len) - len;
1214 		if (buflen < dlen)
1215 			cp = NULL;
1216 		else
1217 			buflen -= dlen;
1218 	}
1219 	len = ALIGN(len);
1220 
1221 	if (cp != NULL) {
1222 		/* fill header iff buffer is large enough */
1223 		rtm->rtm_version = RTM_VERSION;
1224 		rtm->rtm_type = type;
1225 		rtm->rtm_msglen = len;
1226 	}
1227 
1228 	*plen = len;
1229 
1230 	if (w != NULL && cp == NULL)
1231 		return (ENOBUFS);
1232 
1233 	return (0);
1234 }
1235 
1236 /*
1237  * This routine is called to generate a message from the routing
1238  * socket indicating that a redirect has occurred, a routing lookup
1239  * has failed, or that a protocol has detected timeouts to a particular
1240  * destination.
1241  */
1242 void
1243 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1244     int fibnum)
1245 {
1246 	struct rt_msghdr *rtm;
1247 	struct mbuf *m;
1248 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1249 
1250 	if (V_route_cb.any_count == 0)
1251 		return;
1252 	m = rtsock_msg_mbuf(type, rtinfo);
1253 	if (m == NULL)
1254 		return;
1255 
1256 	if (fibnum != RT_ALL_FIBS) {
1257 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1258 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1259 		M_SETFIB(m, fibnum);
1260 		m->m_flags |= RTS_FILTER_FIB;
1261 	}
1262 
1263 	rtm = mtod(m, struct rt_msghdr *);
1264 	rtm->rtm_flags = RTF_DONE | flags;
1265 	rtm->rtm_errno = error;
1266 	rtm->rtm_addrs = rtinfo->rti_addrs;
1267 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1268 }
1269 
1270 void
1271 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1272 {
1273 
1274 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1275 }
1276 
1277 /*
1278  * This routine is called to generate a message from the routing
1279  * socket indicating that the status of a network interface has changed.
1280  */
1281 void
1282 rt_ifmsg(struct ifnet *ifp)
1283 {
1284 	struct if_msghdr *ifm;
1285 	struct mbuf *m;
1286 	struct rt_addrinfo info;
1287 
1288 	if (V_route_cb.any_count == 0)
1289 		return;
1290 	bzero((caddr_t)&info, sizeof(info));
1291 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1292 	if (m == NULL)
1293 		return;
1294 	ifm = mtod(m, struct if_msghdr *);
1295 	ifm->ifm_index = ifp->if_index;
1296 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1297 	if_data_copy(ifp, &ifm->ifm_data);
1298 	ifm->ifm_addrs = 0;
1299 	rt_dispatch(m, AF_UNSPEC);
1300 }
1301 
1302 /*
1303  * Announce interface address arrival/withdraw.
1304  * Please do not call directly, use rt_addrmsg().
1305  * Assume input data to be valid.
1306  * Returns 0 on success.
1307  */
1308 int
1309 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1310 {
1311 	struct rt_addrinfo info;
1312 	struct sockaddr *sa;
1313 	int ncmd;
1314 	struct mbuf *m;
1315 	struct ifa_msghdr *ifam;
1316 	struct ifnet *ifp = ifa->ifa_ifp;
1317 	struct sockaddr_storage ss;
1318 
1319 	if (V_route_cb.any_count == 0)
1320 		return (0);
1321 
1322 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1323 
1324 	bzero((caddr_t)&info, sizeof(info));
1325 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1326 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1327 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1328 	    info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss);
1329 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1330 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1331 		return (ENOBUFS);
1332 	ifam = mtod(m, struct ifa_msghdr *);
1333 	ifam->ifam_index = ifp->if_index;
1334 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1335 	ifam->ifam_flags = ifa->ifa_flags;
1336 	ifam->ifam_addrs = info.rti_addrs;
1337 
1338 	if (fibnum != RT_ALL_FIBS) {
1339 		M_SETFIB(m, fibnum);
1340 		m->m_flags |= RTS_FILTER_FIB;
1341 	}
1342 
1343 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1344 
1345 	return (0);
1346 }
1347 
1348 /*
1349  * Announce route addition/removal.
1350  * Please do not call directly, use rt_routemsg().
1351  * Note that @rt data MAY be inconsistent/invalid:
1352  * if some userland app sends us "invalid" route message (invalid mask,
1353  * no dst, wrong address families, etc...) we need to pass it back
1354  * to app (and any other rtsock consumers) with rtm_errno field set to
1355  * non-zero value.
1356  *
1357  * Returns 0 on success.
1358  */
1359 int
1360 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt,
1361     int fibnum)
1362 {
1363 	struct rt_addrinfo info;
1364 	struct sockaddr *sa;
1365 	struct mbuf *m;
1366 	struct rt_msghdr *rtm;
1367 	struct sockaddr_storage ss;
1368 
1369 	if (V_route_cb.any_count == 0)
1370 		return (0);
1371 
1372 	bzero((caddr_t)&info, sizeof(info));
1373 	info.rti_info[RTAX_DST] = sa = rt_key(rt);
1374 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss);
1375 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1376 	if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL)
1377 		return (ENOBUFS);
1378 	rtm = mtod(m, struct rt_msghdr *);
1379 	rtm->rtm_index = ifp->if_index;
1380 	rtm->rtm_flags |= rt->rt_flags;
1381 	rtm->rtm_errno = error;
1382 	rtm->rtm_addrs = info.rti_addrs;
1383 
1384 	if (fibnum != RT_ALL_FIBS) {
1385 		M_SETFIB(m, fibnum);
1386 		m->m_flags |= RTS_FILTER_FIB;
1387 	}
1388 
1389 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1390 
1391 	return (0);
1392 }
1393 
1394 /*
1395  * This is the analogue to the rt_newaddrmsg which performs the same
1396  * function but for multicast group memberhips.  This is easier since
1397  * there is no route state to worry about.
1398  */
1399 void
1400 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1401 {
1402 	struct rt_addrinfo info;
1403 	struct mbuf *m = NULL;
1404 	struct ifnet *ifp = ifma->ifma_ifp;
1405 	struct ifma_msghdr *ifmam;
1406 
1407 	if (V_route_cb.any_count == 0)
1408 		return;
1409 
1410 	bzero((caddr_t)&info, sizeof(info));
1411 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1412 	info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
1413 	/*
1414 	 * If a link-layer address is present, present it as a ``gateway''
1415 	 * (similarly to how ARP entries, e.g., are presented).
1416 	 */
1417 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1418 	m = rtsock_msg_mbuf(cmd, &info);
1419 	if (m == NULL)
1420 		return;
1421 	ifmam = mtod(m, struct ifma_msghdr *);
1422 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1423 	    __func__));
1424 	ifmam->ifmam_index = ifp->if_index;
1425 	ifmam->ifmam_addrs = info.rti_addrs;
1426 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1427 }
1428 
1429 static struct mbuf *
1430 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1431 	struct rt_addrinfo *info)
1432 {
1433 	struct if_announcemsghdr *ifan;
1434 	struct mbuf *m;
1435 
1436 	if (V_route_cb.any_count == 0)
1437 		return NULL;
1438 	bzero((caddr_t)info, sizeof(*info));
1439 	m = rtsock_msg_mbuf(type, info);
1440 	if (m != NULL) {
1441 		ifan = mtod(m, struct if_announcemsghdr *);
1442 		ifan->ifan_index = ifp->if_index;
1443 		strlcpy(ifan->ifan_name, ifp->if_xname,
1444 			sizeof(ifan->ifan_name));
1445 		ifan->ifan_what = what;
1446 	}
1447 	return m;
1448 }
1449 
1450 /*
1451  * This is called to generate routing socket messages indicating
1452  * IEEE80211 wireless events.
1453  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1454  */
1455 void
1456 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1457 {
1458 	struct mbuf *m;
1459 	struct rt_addrinfo info;
1460 
1461 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1462 	if (m != NULL) {
1463 		/*
1464 		 * Append the ieee80211 data.  Try to stick it in the
1465 		 * mbuf containing the ifannounce msg; otherwise allocate
1466 		 * a new mbuf and append.
1467 		 *
1468 		 * NB: we assume m is a single mbuf.
1469 		 */
1470 		if (data_len > M_TRAILINGSPACE(m)) {
1471 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1472 			if (n == NULL) {
1473 				m_freem(m);
1474 				return;
1475 			}
1476 			bcopy(data, mtod(n, void *), data_len);
1477 			n->m_len = data_len;
1478 			m->m_next = n;
1479 		} else if (data_len > 0) {
1480 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1481 			m->m_len += data_len;
1482 		}
1483 		if (m->m_flags & M_PKTHDR)
1484 			m->m_pkthdr.len += data_len;
1485 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1486 		rt_dispatch(m, AF_UNSPEC);
1487 	}
1488 }
1489 
1490 /*
1491  * This is called to generate routing socket messages indicating
1492  * network interface arrival and departure.
1493  */
1494 void
1495 rt_ifannouncemsg(struct ifnet *ifp, int what)
1496 {
1497 	struct mbuf *m;
1498 	struct rt_addrinfo info;
1499 
1500 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1501 	if (m != NULL)
1502 		rt_dispatch(m, AF_UNSPEC);
1503 }
1504 
1505 static void
1506 rt_dispatch(struct mbuf *m, sa_family_t saf)
1507 {
1508 	struct m_tag *tag;
1509 
1510 	/*
1511 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1512 	 * use when injecting the mbuf into the routing socket buffer from
1513 	 * the netisr.
1514 	 */
1515 	if (saf != AF_UNSPEC) {
1516 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1517 		    M_NOWAIT);
1518 		if (tag == NULL) {
1519 			m_freem(m);
1520 			return;
1521 		}
1522 		*(unsigned short *)(tag + 1) = saf;
1523 		m_tag_prepend(m, tag);
1524 	}
1525 #ifdef VIMAGE
1526 	if (V_loif)
1527 		m->m_pkthdr.rcvif = V_loif;
1528 	else {
1529 		m_freem(m);
1530 		return;
1531 	}
1532 #endif
1533 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1534 }
1535 
1536 /*
1537  * This is used in dumping the kernel table via sysctl().
1538  */
1539 static int
1540 sysctl_dumpentry(struct radix_node *rn, void *vw)
1541 {
1542 	struct walkarg *w = vw;
1543 	struct rtentry *rt = (struct rtentry *)rn;
1544 	int error = 0, size;
1545 	struct rt_addrinfo info;
1546 	struct sockaddr_storage ss;
1547 
1548 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1549 		return 0;
1550 	if ((rt->rt_flags & RTF_HOST) == 0
1551 	    ? jailed_without_vnet(w->w_req->td->td_ucred)
1552 	    : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
1553 		return (0);
1554 	bzero((caddr_t)&info, sizeof(info));
1555 	info.rti_info[RTAX_DST] = rt_key(rt);
1556 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1557 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1558 	    rt_mask(rt), &ss);
1559 	info.rti_info[RTAX_GENMASK] = 0;
1560 	if (rt->rt_ifp) {
1561 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1562 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1563 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1564 			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1565 	}
1566 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1567 		return (error);
1568 	if (w->w_req && w->w_tmem) {
1569 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1570 
1571 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1572 			rtm->rtm_flags = RTF_GATEWAY |
1573 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1574 		else
1575 			rtm->rtm_flags = rt->rt_flags;
1576 		rt_getmetrics(rt, &rtm->rtm_rmx);
1577 		rtm->rtm_index = rt->rt_ifp->if_index;
1578 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1579 		rtm->rtm_addrs = info.rti_addrs;
1580 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1581 		return (error);
1582 	}
1583 	return (error);
1584 }
1585 
1586 static int
1587 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1588     struct rt_addrinfo *info, struct walkarg *w, int len)
1589 {
1590 	struct if_msghdrl *ifm;
1591 	struct if_data *ifd;
1592 
1593 	ifm = (struct if_msghdrl *)w->w_tmem;
1594 
1595 #ifdef COMPAT_FREEBSD32
1596 	if (w->w_req->flags & SCTL_MASK32) {
1597 		struct if_msghdrl32 *ifm32;
1598 
1599 		ifm32 = (struct if_msghdrl32 *)ifm;
1600 		ifm32->ifm_addrs = info->rti_addrs;
1601 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1602 		ifm32->ifm_index = ifp->if_index;
1603 		ifm32->_ifm_spare1 = 0;
1604 		ifm32->ifm_len = sizeof(*ifm32);
1605 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1606 		ifd = &ifm32->ifm_data;
1607 	} else
1608 #endif
1609 	{
1610 		ifm->ifm_addrs = info->rti_addrs;
1611 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1612 		ifm->ifm_index = ifp->if_index;
1613 		ifm->_ifm_spare1 = 0;
1614 		ifm->ifm_len = sizeof(*ifm);
1615 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1616 		ifd = &ifm->ifm_data;
1617 	}
1618 
1619 	memcpy(ifd, src_ifd, sizeof(*ifd));
1620 
1621 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1622 }
1623 
1624 static int
1625 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1626     struct rt_addrinfo *info, struct walkarg *w, int len)
1627 {
1628 	struct if_msghdr *ifm;
1629 	struct if_data *ifd;
1630 
1631 	ifm = (struct if_msghdr *)w->w_tmem;
1632 
1633 #ifdef COMPAT_FREEBSD32
1634 	if (w->w_req->flags & SCTL_MASK32) {
1635 		struct if_msghdr32 *ifm32;
1636 
1637 		ifm32 = (struct if_msghdr32 *)ifm;
1638 		ifm32->ifm_addrs = info->rti_addrs;
1639 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1640 		ifm32->ifm_index = ifp->if_index;
1641 		ifd = &ifm32->ifm_data;
1642 	} else
1643 #endif
1644 	{
1645 		ifm->ifm_addrs = info->rti_addrs;
1646 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1647 		ifm->ifm_index = ifp->if_index;
1648 		ifd = &ifm->ifm_data;
1649 	}
1650 
1651 	memcpy(ifd, src_ifd, sizeof(*ifd));
1652 
1653 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1654 }
1655 
1656 static int
1657 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1658     struct walkarg *w, int len)
1659 {
1660 	struct ifa_msghdrl *ifam;
1661 	struct if_data *ifd;
1662 
1663 	ifam = (struct ifa_msghdrl *)w->w_tmem;
1664 
1665 #ifdef COMPAT_FREEBSD32
1666 	if (w->w_req->flags & SCTL_MASK32) {
1667 		struct ifa_msghdrl32 *ifam32;
1668 
1669 		ifam32 = (struct ifa_msghdrl32 *)ifam;
1670 		ifam32->ifam_addrs = info->rti_addrs;
1671 		ifam32->ifam_flags = ifa->ifa_flags;
1672 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1673 		ifam32->_ifam_spare1 = 0;
1674 		ifam32->ifam_len = sizeof(*ifam32);
1675 		ifam32->ifam_data_off =
1676 		    offsetof(struct ifa_msghdrl32, ifam_data);
1677 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1678 		ifd = &ifam32->ifam_data;
1679 	} else
1680 #endif
1681 	{
1682 		ifam->ifam_addrs = info->rti_addrs;
1683 		ifam->ifam_flags = ifa->ifa_flags;
1684 		ifam->ifam_index = ifa->ifa_ifp->if_index;
1685 		ifam->_ifam_spare1 = 0;
1686 		ifam->ifam_len = sizeof(*ifam);
1687 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1688 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1689 		ifd = &ifam->ifam_data;
1690 	}
1691 
1692 	bzero(ifd, sizeof(*ifd));
1693 	ifd->ifi_datalen = sizeof(struct if_data);
1694 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1695 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1696 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1697 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1698 
1699 	/* Fixup if_data carp(4) vhid. */
1700 	if (carp_get_vhid_p != NULL)
1701 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1702 
1703 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1704 }
1705 
1706 static int
1707 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1708     struct walkarg *w, int len)
1709 {
1710 	struct ifa_msghdr *ifam;
1711 
1712 	ifam = (struct ifa_msghdr *)w->w_tmem;
1713 	ifam->ifam_addrs = info->rti_addrs;
1714 	ifam->ifam_flags = ifa->ifa_flags;
1715 	ifam->ifam_index = ifa->ifa_ifp->if_index;
1716 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1717 
1718 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1719 }
1720 
1721 static int
1722 sysctl_iflist(int af, struct walkarg *w)
1723 {
1724 	struct ifnet *ifp;
1725 	struct ifaddr *ifa;
1726 	struct if_data ifd;
1727 	struct rt_addrinfo info;
1728 	int len, error = 0;
1729 	struct sockaddr_storage ss;
1730 
1731 	bzero((caddr_t)&info, sizeof(info));
1732 	bzero(&ifd, sizeof(ifd));
1733 	IFNET_RLOCK_NOSLEEP();
1734 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1735 		if (w->w_arg && w->w_arg != ifp->if_index)
1736 			continue;
1737 		if_data_copy(ifp, &ifd);
1738 		IF_ADDR_RLOCK(ifp);
1739 		ifa = ifp->if_addr;
1740 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1741 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1742 		if (error != 0)
1743 			goto done;
1744 		info.rti_info[RTAX_IFP] = NULL;
1745 		if (w->w_req && w->w_tmem) {
1746 			if (w->w_op == NET_RT_IFLISTL)
1747 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1748 				    len);
1749 			else
1750 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1751 				    len);
1752 			if (error)
1753 				goto done;
1754 		}
1755 		while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1756 			if (af && af != ifa->ifa_addr->sa_family)
1757 				continue;
1758 			if (prison_if(w->w_req->td->td_ucred,
1759 			    ifa->ifa_addr) != 0)
1760 				continue;
1761 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1762 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1763 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
1764 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1765 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1766 			if (error != 0)
1767 				goto done;
1768 			if (w->w_req && w->w_tmem) {
1769 				if (w->w_op == NET_RT_IFLISTL)
1770 					error = sysctl_iflist_ifaml(ifa, &info,
1771 					    w, len);
1772 				else
1773 					error = sysctl_iflist_ifam(ifa, &info,
1774 					    w, len);
1775 				if (error)
1776 					goto done;
1777 			}
1778 		}
1779 		IF_ADDR_RUNLOCK(ifp);
1780 		info.rti_info[RTAX_IFA] = NULL;
1781 		info.rti_info[RTAX_NETMASK] = NULL;
1782 		info.rti_info[RTAX_BRD] = NULL;
1783 	}
1784 done:
1785 	if (ifp != NULL)
1786 		IF_ADDR_RUNLOCK(ifp);
1787 	IFNET_RUNLOCK_NOSLEEP();
1788 	return (error);
1789 }
1790 
1791 static int
1792 sysctl_ifmalist(int af, struct walkarg *w)
1793 {
1794 	struct rt_addrinfo info;
1795 	struct ifaddr *ifa;
1796 	struct ifmultiaddr *ifma;
1797 	struct ifnet *ifp;
1798 	int error, len;
1799 
1800 	error = 0;
1801 	bzero((caddr_t)&info, sizeof(info));
1802 
1803 	IFNET_RLOCK_NOSLEEP();
1804 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1805 		if (w->w_arg && w->w_arg != ifp->if_index)
1806 			continue;
1807 		ifa = ifp->if_addr;
1808 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1809 		IF_ADDR_RLOCK(ifp);
1810 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1811 			if (af && af != ifma->ifma_addr->sa_family)
1812 				continue;
1813 			if (prison_if(w->w_req->td->td_ucred,
1814 			    ifma->ifma_addr) != 0)
1815 				continue;
1816 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1817 			info.rti_info[RTAX_GATEWAY] =
1818 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1819 			    ifma->ifma_lladdr : NULL;
1820 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1821 			if (error != 0)
1822 				break;
1823 			if (w->w_req && w->w_tmem) {
1824 				struct ifma_msghdr *ifmam;
1825 
1826 				ifmam = (struct ifma_msghdr *)w->w_tmem;
1827 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1828 				ifmam->ifmam_flags = 0;
1829 				ifmam->ifmam_addrs = info.rti_addrs;
1830 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1831 				if (error != 0)
1832 					break;
1833 			}
1834 		}
1835 		IF_ADDR_RUNLOCK(ifp);
1836 		if (error != 0)
1837 			break;
1838 	}
1839 	IFNET_RUNLOCK_NOSLEEP();
1840 	return (error);
1841 }
1842 
1843 static int
1844 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1845 {
1846 	int	*name = (int *)arg1;
1847 	u_int	namelen = arg2;
1848 	struct rib_head *rnh = NULL; /* silence compiler. */
1849 	int	i, lim, error = EINVAL;
1850 	int	fib = 0;
1851 	u_char	af;
1852 	struct	walkarg w;
1853 
1854 	name ++;
1855 	namelen--;
1856 	if (req->newptr)
1857 		return (EPERM);
1858 	if (name[1] == NET_RT_DUMP) {
1859 		if (namelen == 3)
1860 			fib = req->td->td_proc->p_fibnum;
1861 		else if (namelen == 4)
1862 			fib = (name[3] == RT_ALL_FIBS) ?
1863 			    req->td->td_proc->p_fibnum : name[3];
1864 		else
1865 			return ((namelen < 3) ? EISDIR : ENOTDIR);
1866 		if (fib < 0 || fib >= rt_numfibs)
1867 			return (EINVAL);
1868 	} else if (namelen != 3)
1869 		return ((namelen < 3) ? EISDIR : ENOTDIR);
1870 	af = name[0];
1871 	if (af > AF_MAX)
1872 		return (EINVAL);
1873 	bzero(&w, sizeof(w));
1874 	w.w_op = name[1];
1875 	w.w_arg = name[2];
1876 	w.w_req = req;
1877 
1878 	error = sysctl_wire_old_buffer(req, 0);
1879 	if (error)
1880 		return (error);
1881 
1882 	/*
1883 	 * Allocate reply buffer in advance.
1884 	 * All rtsock messages has maximum length of u_short.
1885 	 */
1886 	w.w_tmemsize = 65536;
1887 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
1888 
1889 	switch (w.w_op) {
1890 
1891 	case NET_RT_DUMP:
1892 	case NET_RT_FLAGS:
1893 		if (af == 0) {			/* dump all tables */
1894 			i = 1;
1895 			lim = AF_MAX;
1896 		} else				/* dump only one table */
1897 			i = lim = af;
1898 
1899 		/*
1900 		 * take care of llinfo entries, the caller must
1901 		 * specify an AF
1902 		 */
1903 		if (w.w_op == NET_RT_FLAGS &&
1904 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
1905 			if (af != 0)
1906 				error = lltable_sysctl_dumparp(af, w.w_req);
1907 			else
1908 				error = EINVAL;
1909 			break;
1910 		}
1911 		/*
1912 		 * take care of routing entries
1913 		 */
1914 		for (error = 0; error == 0 && i <= lim; i++) {
1915 			rnh = rt_tables_get_rnh(fib, i);
1916 			if (rnh != NULL) {
1917 				RIB_RLOCK(rnh);
1918 			    	error = rnh->rnh_walktree(&rnh->head,
1919 				    sysctl_dumpentry, &w);
1920 				RIB_RUNLOCK(rnh);
1921 			} else if (af != 0)
1922 				error = EAFNOSUPPORT;
1923 		}
1924 		break;
1925 
1926 	case NET_RT_IFLIST:
1927 	case NET_RT_IFLISTL:
1928 		error = sysctl_iflist(af, &w);
1929 		break;
1930 
1931 	case NET_RT_IFMALIST:
1932 		error = sysctl_ifmalist(af, &w);
1933 		break;
1934 	}
1935 
1936 	free(w.w_tmem, M_TEMP);
1937 	return (error);
1938 }
1939 
1940 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1941 
1942 /*
1943  * Definitions of protocols supported in the ROUTE domain.
1944  */
1945 
1946 static struct domain routedomain;		/* or at least forward */
1947 
1948 static struct protosw routesw[] = {
1949 {
1950 	.pr_type =		SOCK_RAW,
1951 	.pr_domain =		&routedomain,
1952 	.pr_flags =		PR_ATOMIC|PR_ADDR,
1953 	.pr_output =		route_output,
1954 	.pr_ctlinput =		raw_ctlinput,
1955 	.pr_init =		raw_init,
1956 	.pr_usrreqs =		&route_usrreqs
1957 }
1958 };
1959 
1960 static struct domain routedomain = {
1961 	.dom_family =		PF_ROUTE,
1962 	.dom_name =		 "route",
1963 	.dom_protosw =		routesw,
1964 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
1965 };
1966 
1967 VNET_DOMAIN_SET(route);
1968