1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rmlock.h> 49 #include <sys/rwlock.h> 50 #include <sys/signalvar.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/if_llatbl.h> 60 #include <net/if_types.h> 61 #include <net/netisr.h> 62 #include <net/raw_cb.h> 63 #include <net/route.h> 64 #include <net/route_var.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/if_ether.h> 69 #include <netinet/ip_carp.h> 70 #ifdef INET6 71 #include <netinet6/ip6_var.h> 72 #include <netinet6/scope6_var.h> 73 #endif 74 75 #ifdef COMPAT_FREEBSD32 76 #include <sys/mount.h> 77 #include <compat/freebsd32/freebsd32.h> 78 79 struct if_msghdr32 { 80 uint16_t ifm_msglen; 81 uint8_t ifm_version; 82 uint8_t ifm_type; 83 int32_t ifm_addrs; 84 int32_t ifm_flags; 85 uint16_t ifm_index; 86 uint16_t _ifm_spare1; 87 struct if_data ifm_data; 88 }; 89 90 struct if_msghdrl32 { 91 uint16_t ifm_msglen; 92 uint8_t ifm_version; 93 uint8_t ifm_type; 94 int32_t ifm_addrs; 95 int32_t ifm_flags; 96 uint16_t ifm_index; 97 uint16_t _ifm_spare1; 98 uint16_t ifm_len; 99 uint16_t ifm_data_off; 100 uint32_t _ifm_spare2; 101 struct if_data ifm_data; 102 }; 103 104 struct ifa_msghdrl32 { 105 uint16_t ifam_msglen; 106 uint8_t ifam_version; 107 uint8_t ifam_type; 108 int32_t ifam_addrs; 109 int32_t ifam_flags; 110 uint16_t ifam_index; 111 uint16_t _ifam_spare1; 112 uint16_t ifam_len; 113 uint16_t ifam_data_off; 114 int32_t ifam_metric; 115 struct if_data ifam_data; 116 }; 117 118 #define SA_SIZE32(sa) \ 119 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 120 sizeof(int) : \ 121 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 122 123 #endif /* COMPAT_FREEBSD32 */ 124 125 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 126 127 /* NB: these are not modified */ 128 static struct sockaddr route_src = { 2, PF_ROUTE, }; 129 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 130 131 /* These are external hooks for CARP. */ 132 int (*carp_get_vhid_p)(struct ifaddr *); 133 134 /* 135 * Used by rtsock/raw_input callback code to decide whether to filter the update 136 * notification to a socket bound to a particular FIB. 137 */ 138 #define RTS_FILTER_FIB M_PROTO8 139 140 typedef struct { 141 int ip_count; /* attached w/ AF_INET */ 142 int ip6_count; /* attached w/ AF_INET6 */ 143 int any_count; /* total attached */ 144 } route_cb_t; 145 VNET_DEFINE_STATIC(route_cb_t, route_cb); 146 #define V_route_cb VNET(route_cb) 147 148 struct mtx rtsock_mtx; 149 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 150 151 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 152 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 153 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 154 155 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 156 157 struct walkarg { 158 int w_tmemsize; 159 int w_op, w_arg; 160 caddr_t w_tmem; 161 struct sysctl_req *w_req; 162 }; 163 164 static void rts_input(struct mbuf *m); 165 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 166 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 167 struct walkarg *w, int *plen); 168 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 169 struct rt_addrinfo *rtinfo); 170 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 171 static int sysctl_iflist(int af, struct walkarg *w); 172 static int sysctl_ifmalist(int af, struct walkarg *w); 173 static int route_output(struct mbuf *m, struct socket *so, ...); 174 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 175 static void rt_dispatch(struct mbuf *, sa_family_t); 176 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 177 struct sockaddr *smask, struct sockaddr_storage *dmask); 178 179 static struct netisr_handler rtsock_nh = { 180 .nh_name = "rtsock", 181 .nh_handler = rts_input, 182 .nh_proto = NETISR_ROUTE, 183 .nh_policy = NETISR_POLICY_SOURCE, 184 }; 185 186 static int 187 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 188 { 189 int error, qlimit; 190 191 netisr_getqlimit(&rtsock_nh, &qlimit); 192 error = sysctl_handle_int(oidp, &qlimit, 0, req); 193 if (error || !req->newptr) 194 return (error); 195 if (qlimit < 1) 196 return (EINVAL); 197 return (netisr_setqlimit(&rtsock_nh, qlimit)); 198 } 199 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 200 0, 0, sysctl_route_netisr_maxqlen, "I", 201 "maximum routing socket dispatch queue length"); 202 203 static void 204 vnet_rts_init(void) 205 { 206 int tmp; 207 208 if (IS_DEFAULT_VNET(curvnet)) { 209 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 210 rtsock_nh.nh_qlimit = tmp; 211 netisr_register(&rtsock_nh); 212 } 213 #ifdef VIMAGE 214 else 215 netisr_register_vnet(&rtsock_nh); 216 #endif 217 } 218 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 219 vnet_rts_init, 0); 220 221 #ifdef VIMAGE 222 static void 223 vnet_rts_uninit(void) 224 { 225 226 netisr_unregister_vnet(&rtsock_nh); 227 } 228 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 229 vnet_rts_uninit, 0); 230 #endif 231 232 static int 233 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 234 struct rawcb *rp) 235 { 236 int fibnum; 237 238 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 239 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 240 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 241 242 /* No filtering requested. */ 243 if ((m->m_flags & RTS_FILTER_FIB) == 0) 244 return (0); 245 246 /* Check if it is a rts and the fib matches the one of the socket. */ 247 fibnum = M_GETFIB(m); 248 if (proto->sp_family != PF_ROUTE || 249 rp->rcb_socket == NULL || 250 rp->rcb_socket->so_fibnum == fibnum) 251 return (0); 252 253 /* Filtering requested and no match, the socket shall be skipped. */ 254 return (1); 255 } 256 257 static void 258 rts_input(struct mbuf *m) 259 { 260 struct sockproto route_proto; 261 unsigned short *family; 262 struct m_tag *tag; 263 264 route_proto.sp_family = PF_ROUTE; 265 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 266 if (tag != NULL) { 267 family = (unsigned short *)(tag + 1); 268 route_proto.sp_protocol = *family; 269 m_tag_delete(m, tag); 270 } else 271 route_proto.sp_protocol = 0; 272 273 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 274 } 275 276 /* 277 * It really doesn't make any sense at all for this code to share much 278 * with raw_usrreq.c, since its functionality is so restricted. XXX 279 */ 280 static void 281 rts_abort(struct socket *so) 282 { 283 284 raw_usrreqs.pru_abort(so); 285 } 286 287 static void 288 rts_close(struct socket *so) 289 { 290 291 raw_usrreqs.pru_close(so); 292 } 293 294 /* pru_accept is EOPNOTSUPP */ 295 296 static int 297 rts_attach(struct socket *so, int proto, struct thread *td) 298 { 299 struct rawcb *rp; 300 int error; 301 302 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 303 304 /* XXX */ 305 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 306 307 so->so_pcb = (caddr_t)rp; 308 so->so_fibnum = td->td_proc->p_fibnum; 309 error = raw_attach(so, proto); 310 rp = sotorawcb(so); 311 if (error) { 312 so->so_pcb = NULL; 313 free(rp, M_PCB); 314 return error; 315 } 316 RTSOCK_LOCK(); 317 switch(rp->rcb_proto.sp_protocol) { 318 case AF_INET: 319 V_route_cb.ip_count++; 320 break; 321 case AF_INET6: 322 V_route_cb.ip6_count++; 323 break; 324 } 325 V_route_cb.any_count++; 326 RTSOCK_UNLOCK(); 327 soisconnected(so); 328 so->so_options |= SO_USELOOPBACK; 329 return 0; 330 } 331 332 static int 333 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 334 { 335 336 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 337 } 338 339 static int 340 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 341 { 342 343 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 344 } 345 346 /* pru_connect2 is EOPNOTSUPP */ 347 /* pru_control is EOPNOTSUPP */ 348 349 static void 350 rts_detach(struct socket *so) 351 { 352 struct rawcb *rp = sotorawcb(so); 353 354 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 355 356 RTSOCK_LOCK(); 357 switch(rp->rcb_proto.sp_protocol) { 358 case AF_INET: 359 V_route_cb.ip_count--; 360 break; 361 case AF_INET6: 362 V_route_cb.ip6_count--; 363 break; 364 } 365 V_route_cb.any_count--; 366 RTSOCK_UNLOCK(); 367 raw_usrreqs.pru_detach(so); 368 } 369 370 static int 371 rts_disconnect(struct socket *so) 372 { 373 374 return (raw_usrreqs.pru_disconnect(so)); 375 } 376 377 /* pru_listen is EOPNOTSUPP */ 378 379 static int 380 rts_peeraddr(struct socket *so, struct sockaddr **nam) 381 { 382 383 return (raw_usrreqs.pru_peeraddr(so, nam)); 384 } 385 386 /* pru_rcvd is EOPNOTSUPP */ 387 /* pru_rcvoob is EOPNOTSUPP */ 388 389 static int 390 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 391 struct mbuf *control, struct thread *td) 392 { 393 394 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 395 } 396 397 /* pru_sense is null */ 398 399 static int 400 rts_shutdown(struct socket *so) 401 { 402 403 return (raw_usrreqs.pru_shutdown(so)); 404 } 405 406 static int 407 rts_sockaddr(struct socket *so, struct sockaddr **nam) 408 { 409 410 return (raw_usrreqs.pru_sockaddr(so, nam)); 411 } 412 413 static struct pr_usrreqs route_usrreqs = { 414 .pru_abort = rts_abort, 415 .pru_attach = rts_attach, 416 .pru_bind = rts_bind, 417 .pru_connect = rts_connect, 418 .pru_detach = rts_detach, 419 .pru_disconnect = rts_disconnect, 420 .pru_peeraddr = rts_peeraddr, 421 .pru_send = rts_send, 422 .pru_shutdown = rts_shutdown, 423 .pru_sockaddr = rts_sockaddr, 424 .pru_close = rts_close, 425 }; 426 427 #ifndef _SOCKADDR_UNION_DEFINED 428 #define _SOCKADDR_UNION_DEFINED 429 /* 430 * The union of all possible address formats we handle. 431 */ 432 union sockaddr_union { 433 struct sockaddr sa; 434 struct sockaddr_in sin; 435 struct sockaddr_in6 sin6; 436 }; 437 #endif /* _SOCKADDR_UNION_DEFINED */ 438 439 static int 440 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 441 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 442 { 443 #if defined(INET) || defined(INET6) 444 struct epoch_tracker et; 445 #endif 446 447 /* First, see if the returned address is part of the jail. */ 448 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 449 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 450 return (0); 451 } 452 453 switch (info->rti_info[RTAX_DST]->sa_family) { 454 #ifdef INET 455 case AF_INET: 456 { 457 struct in_addr ia; 458 struct ifaddr *ifa; 459 int found; 460 461 found = 0; 462 /* 463 * Try to find an address on the given outgoing interface 464 * that belongs to the jail. 465 */ 466 NET_EPOCH_ENTER(et); 467 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 468 struct sockaddr *sa; 469 sa = ifa->ifa_addr; 470 if (sa->sa_family != AF_INET) 471 continue; 472 ia = ((struct sockaddr_in *)sa)->sin_addr; 473 if (prison_check_ip4(cred, &ia) == 0) { 474 found = 1; 475 break; 476 } 477 } 478 NET_EPOCH_EXIT(et); 479 if (!found) { 480 /* 481 * As a last resort return the 'default' jail address. 482 */ 483 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 484 sin_addr; 485 if (prison_get_ip4(cred, &ia) != 0) 486 return (ESRCH); 487 } 488 bzero(&saun->sin, sizeof(struct sockaddr_in)); 489 saun->sin.sin_len = sizeof(struct sockaddr_in); 490 saun->sin.sin_family = AF_INET; 491 saun->sin.sin_addr.s_addr = ia.s_addr; 492 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 493 break; 494 } 495 #endif 496 #ifdef INET6 497 case AF_INET6: 498 { 499 struct in6_addr ia6; 500 struct ifaddr *ifa; 501 int found; 502 503 found = 0; 504 /* 505 * Try to find an address on the given outgoing interface 506 * that belongs to the jail. 507 */ 508 NET_EPOCH_ENTER(et); 509 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 510 struct sockaddr *sa; 511 sa = ifa->ifa_addr; 512 if (sa->sa_family != AF_INET6) 513 continue; 514 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 515 &ia6, sizeof(struct in6_addr)); 516 if (prison_check_ip6(cred, &ia6) == 0) { 517 found = 1; 518 break; 519 } 520 } 521 NET_EPOCH_EXIT(et); 522 if (!found) { 523 /* 524 * As a last resort return the 'default' jail address. 525 */ 526 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 527 sin6_addr; 528 if (prison_get_ip6(cred, &ia6) != 0) 529 return (ESRCH); 530 } 531 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 532 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 533 saun->sin6.sin6_family = AF_INET6; 534 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 535 if (sa6_recoverscope(&saun->sin6) != 0) 536 return (ESRCH); 537 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 538 break; 539 } 540 #endif 541 default: 542 return (ESRCH); 543 } 544 return (0); 545 } 546 547 /*ARGSUSED*/ 548 static int 549 route_output(struct mbuf *m, struct socket *so, ...) 550 { 551 RIB_RLOCK_TRACKER; 552 struct rt_msghdr *rtm = NULL; 553 struct rtentry *rt = NULL; 554 struct rib_head *rnh; 555 struct rt_addrinfo info; 556 struct sockaddr_storage ss; 557 #ifdef INET6 558 struct sockaddr_in6 *sin6; 559 int i, rti_need_deembed = 0; 560 #endif 561 int alloc_len = 0, len, error = 0, fibnum; 562 struct ifnet *ifp = NULL; 563 union sockaddr_union saun; 564 sa_family_t saf = AF_UNSPEC; 565 struct rawcb *rp = NULL; 566 struct walkarg w; 567 568 fibnum = so->so_fibnum; 569 570 #define senderr(e) { error = e; goto flush;} 571 if (m == NULL || ((m->m_len < sizeof(long)) && 572 (m = m_pullup(m, sizeof(long))) == NULL)) 573 return (ENOBUFS); 574 if ((m->m_flags & M_PKTHDR) == 0) 575 panic("route_output"); 576 len = m->m_pkthdr.len; 577 if (len < sizeof(*rtm) || 578 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 579 senderr(EINVAL); 580 581 /* 582 * Most of current messages are in range 200-240 bytes, 583 * minimize possible re-allocation on reply using larger size 584 * buffer aligned on 1k boundaty. 585 */ 586 alloc_len = roundup2(len, 1024); 587 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 588 senderr(ENOBUFS); 589 590 m_copydata(m, 0, len, (caddr_t)rtm); 591 bzero(&info, sizeof(info)); 592 bzero(&w, sizeof(w)); 593 594 if (rtm->rtm_version != RTM_VERSION) { 595 /* Do not touch message since format is unknown */ 596 free(rtm, M_TEMP); 597 rtm = NULL; 598 senderr(EPROTONOSUPPORT); 599 } 600 601 /* 602 * Starting from here, it is possible 603 * to alter original message and insert 604 * caller PID and error value. 605 */ 606 607 rtm->rtm_pid = curproc->p_pid; 608 info.rti_addrs = rtm->rtm_addrs; 609 610 info.rti_mflags = rtm->rtm_inits; 611 info.rti_rmx = &rtm->rtm_rmx; 612 613 /* 614 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 615 * link-local address because rtrequest requires addresses with 616 * embedded scope id. 617 */ 618 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 619 senderr(EINVAL); 620 621 if (rtm->rtm_flags & RTF_RNH_LOCKED) 622 senderr(EINVAL); 623 info.rti_flags = rtm->rtm_flags; 624 if (info.rti_info[RTAX_DST] == NULL || 625 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 626 (info.rti_info[RTAX_GATEWAY] != NULL && 627 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 628 senderr(EINVAL); 629 saf = info.rti_info[RTAX_DST]->sa_family; 630 /* 631 * Verify that the caller has the appropriate privilege; RTM_GET 632 * is the only operation the non-superuser is allowed. 633 */ 634 if (rtm->rtm_type != RTM_GET) { 635 error = priv_check(curthread, PRIV_NET_ROUTE); 636 if (error) 637 senderr(error); 638 } 639 640 /* 641 * The given gateway address may be an interface address. 642 * For example, issuing a "route change" command on a route 643 * entry that was created from a tunnel, and the gateway 644 * address given is the local end point. In this case the 645 * RTF_GATEWAY flag must be cleared or the destination will 646 * not be reachable even though there is no error message. 647 */ 648 if (info.rti_info[RTAX_GATEWAY] != NULL && 649 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 650 struct rt_addrinfo ginfo; 651 struct sockaddr *gdst; 652 653 bzero(&ginfo, sizeof(ginfo)); 654 bzero(&ss, sizeof(ss)); 655 ss.ss_len = sizeof(ss); 656 657 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 658 gdst = info.rti_info[RTAX_GATEWAY]; 659 660 /* 661 * A host route through the loopback interface is 662 * installed for each interface adddress. In pre 8.0 663 * releases the interface address of a PPP link type 664 * is not reachable locally. This behavior is fixed as 665 * part of the new L2/L3 redesign and rewrite work. The 666 * signature of this interface address route is the 667 * AF_LINK sa_family type of the rt_gateway, and the 668 * rt_ifp has the IFF_LOOPBACK flag set. 669 */ 670 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 671 if (ss.ss_family == AF_LINK && 672 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 673 info.rti_flags &= ~RTF_GATEWAY; 674 info.rti_flags |= RTF_GWFLAG_COMPAT; 675 } 676 rib_free_info(&ginfo); 677 } 678 } 679 680 switch (rtm->rtm_type) { 681 struct rtentry *saved_nrt; 682 683 case RTM_ADD: 684 case RTM_CHANGE: 685 if (rtm->rtm_type == RTM_ADD) { 686 if (info.rti_info[RTAX_GATEWAY] == NULL) 687 senderr(EINVAL); 688 } 689 saved_nrt = NULL; 690 691 /* support for new ARP code */ 692 if (info.rti_info[RTAX_GATEWAY] != NULL && 693 info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 694 (rtm->rtm_flags & RTF_LLDATA) != 0) { 695 error = lla_rt_output(rtm, &info); 696 #ifdef INET6 697 if (error == 0) 698 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 699 #endif 700 break; 701 } 702 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 703 fibnum); 704 if (error == 0 && saved_nrt != NULL) { 705 #ifdef INET6 706 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 707 #endif 708 RT_LOCK(saved_nrt); 709 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 710 RT_REMREF(saved_nrt); 711 RT_UNLOCK(saved_nrt); 712 } 713 break; 714 715 case RTM_DELETE: 716 saved_nrt = NULL; 717 /* support for new ARP code */ 718 if (info.rti_info[RTAX_GATEWAY] && 719 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 720 (rtm->rtm_flags & RTF_LLDATA) != 0) { 721 error = lla_rt_output(rtm, &info); 722 #ifdef INET6 723 if (error == 0) 724 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 725 #endif 726 break; 727 } 728 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 729 if (error == 0) { 730 RT_LOCK(saved_nrt); 731 rt = saved_nrt; 732 goto report; 733 } 734 #ifdef INET6 735 /* rt_msg2() will not be used when RTM_DELETE fails. */ 736 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 737 #endif 738 break; 739 740 case RTM_GET: 741 rnh = rt_tables_get_rnh(fibnum, saf); 742 if (rnh == NULL) 743 senderr(EAFNOSUPPORT); 744 745 RIB_RLOCK(rnh); 746 747 if (info.rti_info[RTAX_NETMASK] == NULL && 748 rtm->rtm_type == RTM_GET) { 749 /* 750 * Provide longest prefix match for 751 * address lookup (no mask). 752 * 'route -n get addr' 753 */ 754 rt = (struct rtentry *) rnh->rnh_matchaddr( 755 info.rti_info[RTAX_DST], &rnh->head); 756 } else 757 rt = (struct rtentry *) rnh->rnh_lookup( 758 info.rti_info[RTAX_DST], 759 info.rti_info[RTAX_NETMASK], &rnh->head); 760 761 if (rt == NULL) { 762 RIB_RUNLOCK(rnh); 763 senderr(ESRCH); 764 } 765 #ifdef RADIX_MPATH 766 /* 767 * for RTM_CHANGE/LOCK, if we got multipath routes, 768 * we require users to specify a matching RTAX_GATEWAY. 769 * 770 * for RTM_GET, gate is optional even with multipath. 771 * if gate == NULL the first match is returned. 772 * (no need to call rt_mpath_matchgate if gate == NULL) 773 */ 774 if (rt_mpath_capable(rnh) && 775 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 776 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 777 if (!rt) { 778 RIB_RUNLOCK(rnh); 779 senderr(ESRCH); 780 } 781 } 782 #endif 783 /* 784 * If performing proxied L2 entry insertion, and 785 * the actual PPP host entry is found, perform 786 * another search to retrieve the prefix route of 787 * the local end point of the PPP link. 788 */ 789 if (rtm->rtm_flags & RTF_ANNOUNCE) { 790 struct sockaddr laddr; 791 792 if (rt->rt_ifp != NULL && 793 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 794 struct epoch_tracker et; 795 struct ifaddr *ifa; 796 797 NET_EPOCH_ENTER(et); 798 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 799 RT_ALL_FIBS); 800 if (ifa != NULL) 801 rt_maskedcopy(ifa->ifa_addr, 802 &laddr, 803 ifa->ifa_netmask); 804 NET_EPOCH_EXIT(et); 805 } else 806 rt_maskedcopy(rt->rt_ifa->ifa_addr, 807 &laddr, 808 rt->rt_ifa->ifa_netmask); 809 /* 810 * refactor rt and no lock operation necessary 811 */ 812 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 813 &rnh->head); 814 if (rt == NULL) { 815 RIB_RUNLOCK(rnh); 816 senderr(ESRCH); 817 } 818 } 819 RT_LOCK(rt); 820 RT_ADDREF(rt); 821 RIB_RUNLOCK(rnh); 822 823 report: 824 RT_LOCK_ASSERT(rt); 825 if ((rt->rt_flags & RTF_HOST) == 0 826 ? jailed_without_vnet(curthread->td_ucred) 827 : prison_if(curthread->td_ucred, 828 rt_key(rt)) != 0) { 829 RT_UNLOCK(rt); 830 senderr(ESRCH); 831 } 832 info.rti_info[RTAX_DST] = rt_key(rt); 833 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 834 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 835 rt_mask(rt), &ss); 836 info.rti_info[RTAX_GENMASK] = 0; 837 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 838 ifp = rt->rt_ifp; 839 if (ifp) { 840 info.rti_info[RTAX_IFP] = 841 ifp->if_addr->ifa_addr; 842 error = rtm_get_jailed(&info, ifp, rt, 843 &saun, curthread->td_ucred); 844 if (error != 0) { 845 RT_UNLOCK(rt); 846 senderr(error); 847 } 848 if (ifp->if_flags & IFF_POINTOPOINT) 849 info.rti_info[RTAX_BRD] = 850 rt->rt_ifa->ifa_dstaddr; 851 rtm->rtm_index = ifp->if_index; 852 } else { 853 info.rti_info[RTAX_IFP] = NULL; 854 info.rti_info[RTAX_IFA] = NULL; 855 } 856 } else if ((ifp = rt->rt_ifp) != NULL) { 857 rtm->rtm_index = ifp->if_index; 858 } 859 860 /* Check if we need to realloc storage */ 861 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 862 if (len > alloc_len) { 863 struct rt_msghdr *new_rtm; 864 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 865 if (new_rtm == NULL) { 866 RT_UNLOCK(rt); 867 senderr(ENOBUFS); 868 } 869 bcopy(rtm, new_rtm, rtm->rtm_msglen); 870 free(rtm, M_TEMP); 871 rtm = new_rtm; 872 alloc_len = len; 873 } 874 875 w.w_tmem = (caddr_t)rtm; 876 w.w_tmemsize = alloc_len; 877 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 878 879 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 880 rtm->rtm_flags = RTF_GATEWAY | 881 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 882 else 883 rtm->rtm_flags = rt->rt_flags; 884 rt_getmetrics(rt, &rtm->rtm_rmx); 885 rtm->rtm_addrs = info.rti_addrs; 886 887 RT_UNLOCK(rt); 888 break; 889 890 default: 891 senderr(EOPNOTSUPP); 892 } 893 894 flush: 895 if (rt != NULL) 896 RTFREE(rt); 897 /* 898 * Check to see if we don't want our own messages. 899 */ 900 if ((so->so_options & SO_USELOOPBACK) == 0) { 901 if (V_route_cb.any_count <= 1) { 902 if (rtm != NULL) 903 free(rtm, M_TEMP); 904 m_freem(m); 905 return (error); 906 } 907 /* There is another listener, so construct message */ 908 rp = sotorawcb(so); 909 } 910 911 if (rtm != NULL) { 912 #ifdef INET6 913 if (rti_need_deembed) { 914 /* sin6_scope_id is recovered before sending rtm. */ 915 sin6 = (struct sockaddr_in6 *)&ss; 916 for (i = 0; i < RTAX_MAX; i++) { 917 if (info.rti_info[i] == NULL) 918 continue; 919 if (info.rti_info[i]->sa_family != AF_INET6) 920 continue; 921 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 922 if (sa6_recoverscope(sin6) == 0) 923 bcopy(sin6, info.rti_info[i], 924 sizeof(*sin6)); 925 } 926 } 927 #endif 928 if (error != 0) 929 rtm->rtm_errno = error; 930 else 931 rtm->rtm_flags |= RTF_DONE; 932 933 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 934 if (m->m_pkthdr.len < rtm->rtm_msglen) { 935 m_freem(m); 936 m = NULL; 937 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 938 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 939 940 free(rtm, M_TEMP); 941 } 942 if (m != NULL) { 943 M_SETFIB(m, fibnum); 944 m->m_flags |= RTS_FILTER_FIB; 945 if (rp) { 946 /* 947 * XXX insure we don't get a copy by 948 * invalidating our protocol 949 */ 950 unsigned short family = rp->rcb_proto.sp_family; 951 rp->rcb_proto.sp_family = 0; 952 rt_dispatch(m, saf); 953 rp->rcb_proto.sp_family = family; 954 } else 955 rt_dispatch(m, saf); 956 } 957 958 return (error); 959 } 960 961 static void 962 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 963 { 964 965 bzero(out, sizeof(*out)); 966 out->rmx_mtu = rt->rt_mtu; 967 out->rmx_weight = rt->rt_weight; 968 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 969 /* Kernel -> userland timebase conversion. */ 970 out->rmx_expire = rt->rt_expire ? 971 rt->rt_expire - time_uptime + time_second : 0; 972 } 973 974 /* 975 * Extract the addresses of the passed sockaddrs. 976 * Do a little sanity checking so as to avoid bad memory references. 977 * This data is derived straight from userland. 978 */ 979 static int 980 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 981 { 982 struct sockaddr *sa; 983 int i; 984 985 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 986 if ((rtinfo->rti_addrs & (1 << i)) == 0) 987 continue; 988 sa = (struct sockaddr *)cp; 989 /* 990 * It won't fit. 991 */ 992 if (cp + sa->sa_len > cplim) 993 return (EINVAL); 994 /* 995 * there are no more.. quit now 996 * If there are more bits, they are in error. 997 * I've seen this. route(1) can evidently generate these. 998 * This causes kernel to core dump. 999 * for compatibility, If we see this, point to a safe address. 1000 */ 1001 if (sa->sa_len == 0) { 1002 rtinfo->rti_info[i] = &sa_zero; 1003 return (0); /* should be EINVAL but for compat */ 1004 } 1005 /* accept it */ 1006 #ifdef INET6 1007 if (sa->sa_family == AF_INET6) 1008 sa6_embedscope((struct sockaddr_in6 *)sa, 1009 V_ip6_use_defzone); 1010 #endif 1011 rtinfo->rti_info[i] = sa; 1012 cp += SA_SIZE(sa); 1013 } 1014 return (0); 1015 } 1016 1017 /* 1018 * Fill in @dmask with valid netmask leaving original @smask 1019 * intact. Mostly used with radix netmasks. 1020 */ 1021 static struct sockaddr * 1022 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 1023 struct sockaddr_storage *dmask) 1024 { 1025 if (dst == NULL || smask == NULL) 1026 return (NULL); 1027 1028 memset(dmask, 0, dst->sa_len); 1029 memcpy(dmask, smask, smask->sa_len); 1030 dmask->ss_len = dst->sa_len; 1031 dmask->ss_family = dst->sa_family; 1032 1033 return ((struct sockaddr *)dmask); 1034 } 1035 1036 /* 1037 * Writes information related to @rtinfo object to newly-allocated mbuf. 1038 * Assumes MCLBYTES is enough to construct any message. 1039 * Used for OS notifications of vaious events (if/ifa announces,etc) 1040 * 1041 * Returns allocated mbuf or NULL on failure. 1042 */ 1043 static struct mbuf * 1044 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1045 { 1046 struct rt_msghdr *rtm; 1047 struct mbuf *m; 1048 int i; 1049 struct sockaddr *sa; 1050 #ifdef INET6 1051 struct sockaddr_storage ss; 1052 struct sockaddr_in6 *sin6; 1053 #endif 1054 int len, dlen; 1055 1056 switch (type) { 1057 1058 case RTM_DELADDR: 1059 case RTM_NEWADDR: 1060 len = sizeof(struct ifa_msghdr); 1061 break; 1062 1063 case RTM_DELMADDR: 1064 case RTM_NEWMADDR: 1065 len = sizeof(struct ifma_msghdr); 1066 break; 1067 1068 case RTM_IFINFO: 1069 len = sizeof(struct if_msghdr); 1070 break; 1071 1072 case RTM_IFANNOUNCE: 1073 case RTM_IEEE80211: 1074 len = sizeof(struct if_announcemsghdr); 1075 break; 1076 1077 default: 1078 len = sizeof(struct rt_msghdr); 1079 } 1080 1081 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1082 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1083 if (len > MHLEN) 1084 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1085 else 1086 m = m_gethdr(M_NOWAIT, MT_DATA); 1087 if (m == NULL) 1088 return (m); 1089 1090 m->m_pkthdr.len = m->m_len = len; 1091 rtm = mtod(m, struct rt_msghdr *); 1092 bzero((caddr_t)rtm, len); 1093 for (i = 0; i < RTAX_MAX; i++) { 1094 if ((sa = rtinfo->rti_info[i]) == NULL) 1095 continue; 1096 rtinfo->rti_addrs |= (1 << i); 1097 dlen = SA_SIZE(sa); 1098 #ifdef INET6 1099 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1100 sin6 = (struct sockaddr_in6 *)&ss; 1101 bcopy(sa, sin6, sizeof(*sin6)); 1102 if (sa6_recoverscope(sin6) == 0) 1103 sa = (struct sockaddr *)sin6; 1104 } 1105 #endif 1106 m_copyback(m, len, dlen, (caddr_t)sa); 1107 len += dlen; 1108 } 1109 if (m->m_pkthdr.len != len) { 1110 m_freem(m); 1111 return (NULL); 1112 } 1113 rtm->rtm_msglen = len; 1114 rtm->rtm_version = RTM_VERSION; 1115 rtm->rtm_type = type; 1116 return (m); 1117 } 1118 1119 /* 1120 * Writes information related to @rtinfo object to preallocated buffer. 1121 * Stores needed size in @plen. If @w is NULL, calculates size without 1122 * writing. 1123 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1124 * 1125 * Returns 0 on success. 1126 * 1127 */ 1128 static int 1129 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1130 { 1131 int i; 1132 int len, buflen = 0, dlen; 1133 caddr_t cp = NULL; 1134 struct rt_msghdr *rtm = NULL; 1135 #ifdef INET6 1136 struct sockaddr_storage ss; 1137 struct sockaddr_in6 *sin6; 1138 #endif 1139 #ifdef COMPAT_FREEBSD32 1140 bool compat32 = false; 1141 #endif 1142 1143 switch (type) { 1144 1145 case RTM_DELADDR: 1146 case RTM_NEWADDR: 1147 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1148 #ifdef COMPAT_FREEBSD32 1149 if (w->w_req->flags & SCTL_MASK32) { 1150 len = sizeof(struct ifa_msghdrl32); 1151 compat32 = true; 1152 } else 1153 #endif 1154 len = sizeof(struct ifa_msghdrl); 1155 } else 1156 len = sizeof(struct ifa_msghdr); 1157 break; 1158 1159 case RTM_IFINFO: 1160 #ifdef COMPAT_FREEBSD32 1161 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1162 if (w->w_op == NET_RT_IFLISTL) 1163 len = sizeof(struct if_msghdrl32); 1164 else 1165 len = sizeof(struct if_msghdr32); 1166 compat32 = true; 1167 break; 1168 } 1169 #endif 1170 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1171 len = sizeof(struct if_msghdrl); 1172 else 1173 len = sizeof(struct if_msghdr); 1174 break; 1175 1176 case RTM_NEWMADDR: 1177 len = sizeof(struct ifma_msghdr); 1178 break; 1179 1180 default: 1181 len = sizeof(struct rt_msghdr); 1182 } 1183 1184 if (w != NULL) { 1185 rtm = (struct rt_msghdr *)w->w_tmem; 1186 buflen = w->w_tmemsize - len; 1187 cp = (caddr_t)w->w_tmem + len; 1188 } 1189 1190 rtinfo->rti_addrs = 0; 1191 for (i = 0; i < RTAX_MAX; i++) { 1192 struct sockaddr *sa; 1193 1194 if ((sa = rtinfo->rti_info[i]) == NULL) 1195 continue; 1196 rtinfo->rti_addrs |= (1 << i); 1197 #ifdef COMPAT_FREEBSD32 1198 if (compat32) 1199 dlen = SA_SIZE32(sa); 1200 else 1201 #endif 1202 dlen = SA_SIZE(sa); 1203 if (cp != NULL && buflen >= dlen) { 1204 #ifdef INET6 1205 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1206 sin6 = (struct sockaddr_in6 *)&ss; 1207 bcopy(sa, sin6, sizeof(*sin6)); 1208 if (sa6_recoverscope(sin6) == 0) 1209 sa = (struct sockaddr *)sin6; 1210 } 1211 #endif 1212 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1213 cp += dlen; 1214 buflen -= dlen; 1215 } else if (cp != NULL) { 1216 /* 1217 * Buffer too small. Count needed size 1218 * and return with error. 1219 */ 1220 cp = NULL; 1221 } 1222 1223 len += dlen; 1224 } 1225 1226 if (cp != NULL) { 1227 dlen = ALIGN(len) - len; 1228 if (buflen < dlen) 1229 cp = NULL; 1230 else { 1231 bzero(cp, dlen); 1232 cp += dlen; 1233 buflen -= dlen; 1234 } 1235 } 1236 len = ALIGN(len); 1237 1238 if (cp != NULL) { 1239 /* fill header iff buffer is large enough */ 1240 rtm->rtm_version = RTM_VERSION; 1241 rtm->rtm_type = type; 1242 rtm->rtm_msglen = len; 1243 } 1244 1245 *plen = len; 1246 1247 if (w != NULL && cp == NULL) 1248 return (ENOBUFS); 1249 1250 return (0); 1251 } 1252 1253 /* 1254 * This routine is called to generate a message from the routing 1255 * socket indicating that a redirect has occurred, a routing lookup 1256 * has failed, or that a protocol has detected timeouts to a particular 1257 * destination. 1258 */ 1259 void 1260 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1261 int fibnum) 1262 { 1263 struct rt_msghdr *rtm; 1264 struct mbuf *m; 1265 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1266 1267 if (V_route_cb.any_count == 0) 1268 return; 1269 m = rtsock_msg_mbuf(type, rtinfo); 1270 if (m == NULL) 1271 return; 1272 1273 if (fibnum != RT_ALL_FIBS) { 1274 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1275 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1276 M_SETFIB(m, fibnum); 1277 m->m_flags |= RTS_FILTER_FIB; 1278 } 1279 1280 rtm = mtod(m, struct rt_msghdr *); 1281 rtm->rtm_flags = RTF_DONE | flags; 1282 rtm->rtm_errno = error; 1283 rtm->rtm_addrs = rtinfo->rti_addrs; 1284 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1285 } 1286 1287 void 1288 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1289 { 1290 1291 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1292 } 1293 1294 /* 1295 * This routine is called to generate a message from the routing 1296 * socket indicating that the status of a network interface has changed. 1297 */ 1298 void 1299 rt_ifmsg(struct ifnet *ifp) 1300 { 1301 struct if_msghdr *ifm; 1302 struct mbuf *m; 1303 struct rt_addrinfo info; 1304 1305 if (V_route_cb.any_count == 0) 1306 return; 1307 bzero((caddr_t)&info, sizeof(info)); 1308 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1309 if (m == NULL) 1310 return; 1311 ifm = mtod(m, struct if_msghdr *); 1312 ifm->ifm_index = ifp->if_index; 1313 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1314 if_data_copy(ifp, &ifm->ifm_data); 1315 ifm->ifm_addrs = 0; 1316 rt_dispatch(m, AF_UNSPEC); 1317 } 1318 1319 /* 1320 * Announce interface address arrival/withdraw. 1321 * Please do not call directly, use rt_addrmsg(). 1322 * Assume input data to be valid. 1323 * Returns 0 on success. 1324 */ 1325 int 1326 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1327 { 1328 struct rt_addrinfo info; 1329 struct sockaddr *sa; 1330 int ncmd; 1331 struct mbuf *m; 1332 struct ifa_msghdr *ifam; 1333 struct ifnet *ifp = ifa->ifa_ifp; 1334 struct sockaddr_storage ss; 1335 1336 if (V_route_cb.any_count == 0) 1337 return (0); 1338 1339 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1340 1341 bzero((caddr_t)&info, sizeof(info)); 1342 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1343 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1344 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1345 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1346 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1347 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1348 return (ENOBUFS); 1349 ifam = mtod(m, struct ifa_msghdr *); 1350 ifam->ifam_index = ifp->if_index; 1351 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1352 ifam->ifam_flags = ifa->ifa_flags; 1353 ifam->ifam_addrs = info.rti_addrs; 1354 1355 if (fibnum != RT_ALL_FIBS) { 1356 M_SETFIB(m, fibnum); 1357 m->m_flags |= RTS_FILTER_FIB; 1358 } 1359 1360 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1361 1362 return (0); 1363 } 1364 1365 /* 1366 * Announce route addition/removal. 1367 * Please do not call directly, use rt_routemsg(). 1368 * Note that @rt data MAY be inconsistent/invalid: 1369 * if some userland app sends us "invalid" route message (invalid mask, 1370 * no dst, wrong address families, etc...) we need to pass it back 1371 * to app (and any other rtsock consumers) with rtm_errno field set to 1372 * non-zero value. 1373 * 1374 * Returns 0 on success. 1375 */ 1376 int 1377 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1378 int fibnum) 1379 { 1380 struct rt_addrinfo info; 1381 struct sockaddr *sa; 1382 struct mbuf *m; 1383 struct rt_msghdr *rtm; 1384 struct sockaddr_storage ss; 1385 1386 if (V_route_cb.any_count == 0) 1387 return (0); 1388 1389 bzero((caddr_t)&info, sizeof(info)); 1390 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1391 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1392 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1393 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1394 return (ENOBUFS); 1395 rtm = mtod(m, struct rt_msghdr *); 1396 rtm->rtm_index = ifp->if_index; 1397 rtm->rtm_flags |= rt->rt_flags; 1398 rtm->rtm_errno = error; 1399 rtm->rtm_addrs = info.rti_addrs; 1400 1401 if (fibnum != RT_ALL_FIBS) { 1402 M_SETFIB(m, fibnum); 1403 m->m_flags |= RTS_FILTER_FIB; 1404 } 1405 1406 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1407 1408 return (0); 1409 } 1410 1411 /* 1412 * This is the analogue to the rt_newaddrmsg which performs the same 1413 * function but for multicast group memberhips. This is easier since 1414 * there is no route state to worry about. 1415 */ 1416 void 1417 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1418 { 1419 struct rt_addrinfo info; 1420 struct mbuf *m = NULL; 1421 struct ifnet *ifp = ifma->ifma_ifp; 1422 struct ifma_msghdr *ifmam; 1423 1424 if (V_route_cb.any_count == 0) 1425 return; 1426 1427 bzero((caddr_t)&info, sizeof(info)); 1428 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1429 if (ifp && ifp->if_addr) 1430 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1431 else 1432 info.rti_info[RTAX_IFP] = NULL; 1433 /* 1434 * If a link-layer address is present, present it as a ``gateway'' 1435 * (similarly to how ARP entries, e.g., are presented). 1436 */ 1437 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1438 m = rtsock_msg_mbuf(cmd, &info); 1439 if (m == NULL) 1440 return; 1441 ifmam = mtod(m, struct ifma_msghdr *); 1442 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1443 __func__)); 1444 ifmam->ifmam_index = ifp->if_index; 1445 ifmam->ifmam_addrs = info.rti_addrs; 1446 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1447 } 1448 1449 static struct mbuf * 1450 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1451 struct rt_addrinfo *info) 1452 { 1453 struct if_announcemsghdr *ifan; 1454 struct mbuf *m; 1455 1456 if (V_route_cb.any_count == 0) 1457 return NULL; 1458 bzero((caddr_t)info, sizeof(*info)); 1459 m = rtsock_msg_mbuf(type, info); 1460 if (m != NULL) { 1461 ifan = mtod(m, struct if_announcemsghdr *); 1462 ifan->ifan_index = ifp->if_index; 1463 strlcpy(ifan->ifan_name, ifp->if_xname, 1464 sizeof(ifan->ifan_name)); 1465 ifan->ifan_what = what; 1466 } 1467 return m; 1468 } 1469 1470 /* 1471 * This is called to generate routing socket messages indicating 1472 * IEEE80211 wireless events. 1473 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1474 */ 1475 void 1476 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1477 { 1478 struct mbuf *m; 1479 struct rt_addrinfo info; 1480 1481 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1482 if (m != NULL) { 1483 /* 1484 * Append the ieee80211 data. Try to stick it in the 1485 * mbuf containing the ifannounce msg; otherwise allocate 1486 * a new mbuf and append. 1487 * 1488 * NB: we assume m is a single mbuf. 1489 */ 1490 if (data_len > M_TRAILINGSPACE(m)) { 1491 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1492 if (n == NULL) { 1493 m_freem(m); 1494 return; 1495 } 1496 bcopy(data, mtod(n, void *), data_len); 1497 n->m_len = data_len; 1498 m->m_next = n; 1499 } else if (data_len > 0) { 1500 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1501 m->m_len += data_len; 1502 } 1503 if (m->m_flags & M_PKTHDR) 1504 m->m_pkthdr.len += data_len; 1505 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1506 rt_dispatch(m, AF_UNSPEC); 1507 } 1508 } 1509 1510 /* 1511 * This is called to generate routing socket messages indicating 1512 * network interface arrival and departure. 1513 */ 1514 void 1515 rt_ifannouncemsg(struct ifnet *ifp, int what) 1516 { 1517 struct mbuf *m; 1518 struct rt_addrinfo info; 1519 1520 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1521 if (m != NULL) 1522 rt_dispatch(m, AF_UNSPEC); 1523 } 1524 1525 static void 1526 rt_dispatch(struct mbuf *m, sa_family_t saf) 1527 { 1528 struct m_tag *tag; 1529 1530 /* 1531 * Preserve the family from the sockaddr, if any, in an m_tag for 1532 * use when injecting the mbuf into the routing socket buffer from 1533 * the netisr. 1534 */ 1535 if (saf != AF_UNSPEC) { 1536 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1537 M_NOWAIT); 1538 if (tag == NULL) { 1539 m_freem(m); 1540 return; 1541 } 1542 *(unsigned short *)(tag + 1) = saf; 1543 m_tag_prepend(m, tag); 1544 } 1545 #ifdef VIMAGE 1546 if (V_loif) 1547 m->m_pkthdr.rcvif = V_loif; 1548 else { 1549 m_freem(m); 1550 return; 1551 } 1552 #endif 1553 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1554 } 1555 1556 /* 1557 * This is used in dumping the kernel table via sysctl(). 1558 */ 1559 static int 1560 sysctl_dumpentry(struct radix_node *rn, void *vw) 1561 { 1562 struct walkarg *w = vw; 1563 struct rtentry *rt = (struct rtentry *)rn; 1564 int error = 0, size; 1565 struct rt_addrinfo info; 1566 struct sockaddr_storage ss; 1567 1568 NET_EPOCH_ASSERT(); 1569 1570 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1571 return 0; 1572 if ((rt->rt_flags & RTF_HOST) == 0 1573 ? jailed_without_vnet(w->w_req->td->td_ucred) 1574 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1575 return (0); 1576 bzero((caddr_t)&info, sizeof(info)); 1577 info.rti_info[RTAX_DST] = rt_key(rt); 1578 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1579 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1580 rt_mask(rt), &ss); 1581 info.rti_info[RTAX_GENMASK] = 0; 1582 if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) { 1583 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1584 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1585 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1586 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1587 } 1588 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1589 return (error); 1590 if (w->w_req && w->w_tmem) { 1591 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1592 1593 bzero(&rtm->rtm_index, 1594 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1595 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1596 rtm->rtm_flags = RTF_GATEWAY | 1597 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1598 else 1599 rtm->rtm_flags = rt->rt_flags; 1600 rt_getmetrics(rt, &rtm->rtm_rmx); 1601 rtm->rtm_index = rt->rt_ifp->if_index; 1602 rtm->rtm_addrs = info.rti_addrs; 1603 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1604 return (error); 1605 } 1606 return (error); 1607 } 1608 1609 static int 1610 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1611 struct rt_addrinfo *info, struct walkarg *w, int len) 1612 { 1613 struct if_msghdrl *ifm; 1614 struct if_data *ifd; 1615 1616 ifm = (struct if_msghdrl *)w->w_tmem; 1617 1618 #ifdef COMPAT_FREEBSD32 1619 if (w->w_req->flags & SCTL_MASK32) { 1620 struct if_msghdrl32 *ifm32; 1621 1622 ifm32 = (struct if_msghdrl32 *)ifm; 1623 ifm32->ifm_addrs = info->rti_addrs; 1624 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1625 ifm32->ifm_index = ifp->if_index; 1626 ifm32->_ifm_spare1 = 0; 1627 ifm32->ifm_len = sizeof(*ifm32); 1628 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1629 ifm32->_ifm_spare2 = 0; 1630 ifd = &ifm32->ifm_data; 1631 } else 1632 #endif 1633 { 1634 ifm->ifm_addrs = info->rti_addrs; 1635 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1636 ifm->ifm_index = ifp->if_index; 1637 ifm->_ifm_spare1 = 0; 1638 ifm->ifm_len = sizeof(*ifm); 1639 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1640 ifm->_ifm_spare2 = 0; 1641 ifd = &ifm->ifm_data; 1642 } 1643 1644 memcpy(ifd, src_ifd, sizeof(*ifd)); 1645 1646 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1647 } 1648 1649 static int 1650 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1651 struct rt_addrinfo *info, struct walkarg *w, int len) 1652 { 1653 struct if_msghdr *ifm; 1654 struct if_data *ifd; 1655 1656 ifm = (struct if_msghdr *)w->w_tmem; 1657 1658 #ifdef COMPAT_FREEBSD32 1659 if (w->w_req->flags & SCTL_MASK32) { 1660 struct if_msghdr32 *ifm32; 1661 1662 ifm32 = (struct if_msghdr32 *)ifm; 1663 ifm32->ifm_addrs = info->rti_addrs; 1664 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1665 ifm32->ifm_index = ifp->if_index; 1666 ifm32->_ifm_spare1 = 0; 1667 ifd = &ifm32->ifm_data; 1668 } else 1669 #endif 1670 { 1671 ifm->ifm_addrs = info->rti_addrs; 1672 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1673 ifm->ifm_index = ifp->if_index; 1674 ifm->_ifm_spare1 = 0; 1675 ifd = &ifm->ifm_data; 1676 } 1677 1678 memcpy(ifd, src_ifd, sizeof(*ifd)); 1679 1680 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1681 } 1682 1683 static int 1684 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1685 struct walkarg *w, int len) 1686 { 1687 struct ifa_msghdrl *ifam; 1688 struct if_data *ifd; 1689 1690 ifam = (struct ifa_msghdrl *)w->w_tmem; 1691 1692 #ifdef COMPAT_FREEBSD32 1693 if (w->w_req->flags & SCTL_MASK32) { 1694 struct ifa_msghdrl32 *ifam32; 1695 1696 ifam32 = (struct ifa_msghdrl32 *)ifam; 1697 ifam32->ifam_addrs = info->rti_addrs; 1698 ifam32->ifam_flags = ifa->ifa_flags; 1699 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1700 ifam32->_ifam_spare1 = 0; 1701 ifam32->ifam_len = sizeof(*ifam32); 1702 ifam32->ifam_data_off = 1703 offsetof(struct ifa_msghdrl32, ifam_data); 1704 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1705 ifd = &ifam32->ifam_data; 1706 } else 1707 #endif 1708 { 1709 ifam->ifam_addrs = info->rti_addrs; 1710 ifam->ifam_flags = ifa->ifa_flags; 1711 ifam->ifam_index = ifa->ifa_ifp->if_index; 1712 ifam->_ifam_spare1 = 0; 1713 ifam->ifam_len = sizeof(*ifam); 1714 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1715 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1716 ifd = &ifam->ifam_data; 1717 } 1718 1719 bzero(ifd, sizeof(*ifd)); 1720 ifd->ifi_datalen = sizeof(struct if_data); 1721 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1722 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1723 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1724 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1725 1726 /* Fixup if_data carp(4) vhid. */ 1727 if (carp_get_vhid_p != NULL) 1728 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1729 1730 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1731 } 1732 1733 static int 1734 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1735 struct walkarg *w, int len) 1736 { 1737 struct ifa_msghdr *ifam; 1738 1739 ifam = (struct ifa_msghdr *)w->w_tmem; 1740 ifam->ifam_addrs = info->rti_addrs; 1741 ifam->ifam_flags = ifa->ifa_flags; 1742 ifam->ifam_index = ifa->ifa_ifp->if_index; 1743 ifam->_ifam_spare1 = 0; 1744 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1745 1746 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1747 } 1748 1749 static int 1750 sysctl_iflist(int af, struct walkarg *w) 1751 { 1752 struct ifnet *ifp; 1753 struct ifaddr *ifa; 1754 struct if_data ifd; 1755 struct rt_addrinfo info; 1756 int len, error = 0; 1757 struct sockaddr_storage ss; 1758 struct epoch_tracker et; 1759 1760 bzero((caddr_t)&info, sizeof(info)); 1761 bzero(&ifd, sizeof(ifd)); 1762 NET_EPOCH_ENTER(et); 1763 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1764 if (w->w_arg && w->w_arg != ifp->if_index) 1765 continue; 1766 if_data_copy(ifp, &ifd); 1767 ifa = ifp->if_addr; 1768 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1769 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1770 if (error != 0) 1771 goto done; 1772 info.rti_info[RTAX_IFP] = NULL; 1773 if (w->w_req && w->w_tmem) { 1774 if (w->w_op == NET_RT_IFLISTL) 1775 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1776 len); 1777 else 1778 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1779 len); 1780 if (error) 1781 goto done; 1782 } 1783 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1784 if (af && af != ifa->ifa_addr->sa_family) 1785 continue; 1786 if (prison_if(w->w_req->td->td_ucred, 1787 ifa->ifa_addr) != 0) 1788 continue; 1789 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1790 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1791 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1792 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1793 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1794 if (error != 0) 1795 goto done; 1796 if (w->w_req && w->w_tmem) { 1797 if (w->w_op == NET_RT_IFLISTL) 1798 error = sysctl_iflist_ifaml(ifa, &info, 1799 w, len); 1800 else 1801 error = sysctl_iflist_ifam(ifa, &info, 1802 w, len); 1803 if (error) 1804 goto done; 1805 } 1806 } 1807 info.rti_info[RTAX_IFA] = NULL; 1808 info.rti_info[RTAX_NETMASK] = NULL; 1809 info.rti_info[RTAX_BRD] = NULL; 1810 } 1811 done: 1812 NET_EPOCH_EXIT(et); 1813 return (error); 1814 } 1815 1816 static int 1817 sysctl_ifmalist(int af, struct walkarg *w) 1818 { 1819 struct rt_addrinfo info; 1820 struct epoch_tracker et; 1821 struct ifaddr *ifa; 1822 struct ifmultiaddr *ifma; 1823 struct ifnet *ifp; 1824 int error, len; 1825 1826 error = 0; 1827 bzero((caddr_t)&info, sizeof(info)); 1828 1829 NET_EPOCH_ENTER(et); 1830 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1831 if (w->w_arg && w->w_arg != ifp->if_index) 1832 continue; 1833 ifa = ifp->if_addr; 1834 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1835 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1836 if (af && af != ifma->ifma_addr->sa_family) 1837 continue; 1838 if (prison_if(w->w_req->td->td_ucred, 1839 ifma->ifma_addr) != 0) 1840 continue; 1841 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1842 info.rti_info[RTAX_GATEWAY] = 1843 (ifma->ifma_addr->sa_family != AF_LINK) ? 1844 ifma->ifma_lladdr : NULL; 1845 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1846 if (error != 0) 1847 break; 1848 if (w->w_req && w->w_tmem) { 1849 struct ifma_msghdr *ifmam; 1850 1851 ifmam = (struct ifma_msghdr *)w->w_tmem; 1852 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1853 ifmam->ifmam_flags = 0; 1854 ifmam->ifmam_addrs = info.rti_addrs; 1855 ifmam->_ifmam_spare1 = 0; 1856 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1857 if (error != 0) 1858 break; 1859 } 1860 } 1861 if (error != 0) 1862 break; 1863 } 1864 NET_EPOCH_EXIT(et); 1865 return (error); 1866 } 1867 1868 static int 1869 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1870 { 1871 RIB_RLOCK_TRACKER; 1872 int *name = (int *)arg1; 1873 u_int namelen = arg2; 1874 struct rib_head *rnh = NULL; /* silence compiler. */ 1875 int i, lim, error = EINVAL; 1876 int fib = 0; 1877 u_char af; 1878 struct walkarg w; 1879 1880 name ++; 1881 namelen--; 1882 if (req->newptr) 1883 return (EPERM); 1884 if (name[1] == NET_RT_DUMP) { 1885 if (namelen == 3) 1886 fib = req->td->td_proc->p_fibnum; 1887 else if (namelen == 4) 1888 fib = (name[3] == RT_ALL_FIBS) ? 1889 req->td->td_proc->p_fibnum : name[3]; 1890 else 1891 return ((namelen < 3) ? EISDIR : ENOTDIR); 1892 if (fib < 0 || fib >= rt_numfibs) 1893 return (EINVAL); 1894 } else if (namelen != 3) 1895 return ((namelen < 3) ? EISDIR : ENOTDIR); 1896 af = name[0]; 1897 if (af > AF_MAX) 1898 return (EINVAL); 1899 bzero(&w, sizeof(w)); 1900 w.w_op = name[1]; 1901 w.w_arg = name[2]; 1902 w.w_req = req; 1903 1904 error = sysctl_wire_old_buffer(req, 0); 1905 if (error) 1906 return (error); 1907 1908 /* 1909 * Allocate reply buffer in advance. 1910 * All rtsock messages has maximum length of u_short. 1911 */ 1912 w.w_tmemsize = 65536; 1913 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1914 1915 switch (w.w_op) { 1916 1917 case NET_RT_DUMP: 1918 case NET_RT_FLAGS: 1919 if (af == 0) { /* dump all tables */ 1920 i = 1; 1921 lim = AF_MAX; 1922 } else /* dump only one table */ 1923 i = lim = af; 1924 1925 /* 1926 * take care of llinfo entries, the caller must 1927 * specify an AF 1928 */ 1929 if (w.w_op == NET_RT_FLAGS && 1930 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1931 if (af != 0) 1932 error = lltable_sysctl_dumparp(af, w.w_req); 1933 else 1934 error = EINVAL; 1935 break; 1936 } 1937 /* 1938 * take care of routing entries 1939 */ 1940 for (error = 0; error == 0 && i <= lim; i++) { 1941 rnh = rt_tables_get_rnh(fib, i); 1942 if (rnh != NULL) { 1943 struct epoch_tracker et; 1944 1945 RIB_RLOCK(rnh); 1946 NET_EPOCH_ENTER(et); 1947 error = rnh->rnh_walktree(&rnh->head, 1948 sysctl_dumpentry, &w); 1949 NET_EPOCH_EXIT(et); 1950 RIB_RUNLOCK(rnh); 1951 } else if (af != 0) 1952 error = EAFNOSUPPORT; 1953 } 1954 break; 1955 1956 case NET_RT_IFLIST: 1957 case NET_RT_IFLISTL: 1958 error = sysctl_iflist(af, &w); 1959 break; 1960 1961 case NET_RT_IFMALIST: 1962 error = sysctl_ifmalist(af, &w); 1963 break; 1964 } 1965 1966 free(w.w_tmem, M_TEMP); 1967 return (error); 1968 } 1969 1970 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1971 1972 /* 1973 * Definitions of protocols supported in the ROUTE domain. 1974 */ 1975 1976 static struct domain routedomain; /* or at least forward */ 1977 1978 static struct protosw routesw[] = { 1979 { 1980 .pr_type = SOCK_RAW, 1981 .pr_domain = &routedomain, 1982 .pr_flags = PR_ATOMIC|PR_ADDR, 1983 .pr_output = route_output, 1984 .pr_ctlinput = raw_ctlinput, 1985 .pr_init = raw_init, 1986 .pr_usrreqs = &route_usrreqs 1987 } 1988 }; 1989 1990 static struct domain routedomain = { 1991 .dom_family = PF_ROUTE, 1992 .dom_name = "route", 1993 .dom_protosw = routesw, 1994 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 1995 }; 1996 1997 VNET_DOMAIN_SET(route); 1998