1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)radix.c 8.5 (Berkeley) 5/19/95 32 * $FreeBSD$ 33 */ 34 35 /* 36 * Routines to build and maintain radix trees for routing lookups. 37 */ 38 #include <sys/param.h> 39 #ifdef _KERNEL 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/rmlock.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/syslog.h> 46 #include <net/radix.h> 47 #else /* !_KERNEL */ 48 #include <stdio.h> 49 #include <strings.h> 50 #include <stdlib.h> 51 #define log(x, arg...) fprintf(stderr, ## arg) 52 #define panic(x) fprintf(stderr, "PANIC: %s", x), exit(1) 53 #define min(a, b) ((a) < (b) ? (a) : (b) ) 54 #include <net/radix.h> 55 #endif /* !_KERNEL */ 56 57 static struct radix_node 58 *rn_insert(void *, struct radix_head *, int *, 59 struct radix_node [2]), 60 *rn_newpair(void *, int, struct radix_node[2]), 61 *rn_search(void *, struct radix_node *), 62 *rn_search_m(void *, struct radix_node *, void *); 63 static struct radix_node *rn_addmask(void *, struct radix_mask_head *, int,int); 64 65 static void rn_detachhead_internal(struct radix_head *); 66 67 #define RADIX_MAX_KEY_LEN 32 68 69 static char rn_zeros[RADIX_MAX_KEY_LEN]; 70 static char rn_ones[RADIX_MAX_KEY_LEN] = { 71 -1, -1, -1, -1, -1, -1, -1, -1, 72 -1, -1, -1, -1, -1, -1, -1, -1, 73 -1, -1, -1, -1, -1, -1, -1, -1, 74 -1, -1, -1, -1, -1, -1, -1, -1, 75 }; 76 77 static int rn_lexobetter(void *m_arg, void *n_arg); 78 static struct radix_mask * 79 rn_new_radix_mask(struct radix_node *tt, 80 struct radix_mask *next); 81 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, 82 int skip); 83 84 /* 85 * The data structure for the keys is a radix tree with one way 86 * branching removed. The index rn_bit at an internal node n represents a bit 87 * position to be tested. The tree is arranged so that all descendants 88 * of a node n have keys whose bits all agree up to position rn_bit - 1. 89 * (We say the index of n is rn_bit.) 90 * 91 * There is at least one descendant which has a one bit at position rn_bit, 92 * and at least one with a zero there. 93 * 94 * A route is determined by a pair of key and mask. We require that the 95 * bit-wise logical and of the key and mask to be the key. 96 * We define the index of a route to associated with the mask to be 97 * the first bit number in the mask where 0 occurs (with bit number 0 98 * representing the highest order bit). 99 * 100 * We say a mask is normal if every bit is 0, past the index of the mask. 101 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, 102 * and m is a normal mask, then the route applies to every descendant of n. 103 * If the index(m) < rn_bit, this implies the trailing last few bits of k 104 * before bit b are all 0, (and hence consequently true of every descendant 105 * of n), so the route applies to all descendants of the node as well. 106 * 107 * Similar logic shows that a non-normal mask m such that 108 * index(m) <= index(n) could potentially apply to many children of n. 109 * Thus, for each non-host route, we attach its mask to a list at an internal 110 * node as high in the tree as we can go. 111 * 112 * The present version of the code makes use of normal routes in short- 113 * circuiting an explict mask and compare operation when testing whether 114 * a key satisfies a normal route, and also in remembering the unique leaf 115 * that governs a subtree. 116 */ 117 118 /* 119 * Most of the functions in this code assume that the key/mask arguments 120 * are sockaddr-like structures, where the first byte is an u_char 121 * indicating the size of the entire structure. 122 * 123 * To make the assumption more explicit, we use the LEN() macro to access 124 * this field. It is safe to pass an expression with side effects 125 * to LEN() as the argument is evaluated only once. 126 * We cast the result to int as this is the dominant usage. 127 */ 128 #define LEN(x) ( (int) (*(const u_char *)(x)) ) 129 130 /* 131 * XXX THIS NEEDS TO BE FIXED 132 * In the code, pointers to keys and masks are passed as either 133 * 'void *' (because callers use to pass pointers of various kinds), or 134 * 'caddr_t' (which is fine for pointer arithmetics, but not very 135 * clean when you dereference it to access data). Furthermore, caddr_t 136 * is really 'char *', while the natural type to operate on keys and 137 * masks would be 'u_char'. This mismatch require a lot of casts and 138 * intermediate variables to adapt types that clutter the code. 139 */ 140 141 /* 142 * Search a node in the tree matching the key. 143 */ 144 static struct radix_node * 145 rn_search(void *v_arg, struct radix_node *head) 146 { 147 struct radix_node *x; 148 caddr_t v; 149 150 for (x = head, v = v_arg; x->rn_bit >= 0;) { 151 if (x->rn_bmask & v[x->rn_offset]) 152 x = x->rn_right; 153 else 154 x = x->rn_left; 155 } 156 return (x); 157 } 158 159 /* 160 * Same as above, but with an additional mask. 161 * XXX note this function is used only once. 162 */ 163 static struct radix_node * 164 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg) 165 { 166 struct radix_node *x; 167 caddr_t v = v_arg, m = m_arg; 168 169 for (x = head; x->rn_bit >= 0;) { 170 if ((x->rn_bmask & m[x->rn_offset]) && 171 (x->rn_bmask & v[x->rn_offset])) 172 x = x->rn_right; 173 else 174 x = x->rn_left; 175 } 176 return (x); 177 } 178 179 int 180 rn_refines(void *m_arg, void *n_arg) 181 { 182 caddr_t m = m_arg, n = n_arg; 183 caddr_t lim, lim2 = lim = n + LEN(n); 184 int longer = LEN(n++) - LEN(m++); 185 int masks_are_equal = 1; 186 187 if (longer > 0) 188 lim -= longer; 189 while (n < lim) { 190 if (*n & ~(*m)) 191 return (0); 192 if (*n++ != *m++) 193 masks_are_equal = 0; 194 } 195 while (n < lim2) 196 if (*n++) 197 return (0); 198 if (masks_are_equal && (longer < 0)) 199 for (lim2 = m - longer; m < lim2; ) 200 if (*m++) 201 return (1); 202 return (!masks_are_equal); 203 } 204 205 /* 206 * Search for exact match in given @head. 207 * Assume host bits are cleared in @v_arg if @m_arg is not NULL 208 * Note that prefixes with /32 or /128 masks are treated differently 209 * from host routes. 210 */ 211 struct radix_node * 212 rn_lookup(void *v_arg, void *m_arg, struct radix_head *head) 213 { 214 struct radix_node *x; 215 caddr_t netmask; 216 217 if (m_arg != NULL) { 218 /* 219 * Most common case: search exact prefix/mask 220 */ 221 x = rn_addmask(m_arg, head->rnh_masks, 1, 222 head->rnh_treetop->rn_offset); 223 if (x == NULL) 224 return (NULL); 225 netmask = x->rn_key; 226 227 x = rn_match(v_arg, head); 228 229 while (x != NULL && x->rn_mask != netmask) 230 x = x->rn_dupedkey; 231 232 return (x); 233 } 234 235 /* 236 * Search for host address. 237 */ 238 if ((x = rn_match(v_arg, head)) == NULL) 239 return (NULL); 240 241 /* Check if found key is the same */ 242 if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg))) 243 return (NULL); 244 245 /* Check if this is not host route */ 246 if (x->rn_mask != NULL) 247 return (NULL); 248 249 return (x); 250 } 251 252 static int 253 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip) 254 { 255 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 256 char *cplim; 257 int length = min(LEN(cp), LEN(cp2)); 258 259 if (cp3 == NULL) 260 cp3 = rn_ones; 261 else 262 length = min(length, LEN(cp3)); 263 cplim = cp + length; cp3 += skip; cp2 += skip; 264 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 265 if ((*cp ^ *cp2) & *cp3) 266 return (0); 267 return (1); 268 } 269 270 /* 271 * Search for longest-prefix match in given @head 272 */ 273 struct radix_node * 274 rn_match(void *v_arg, struct radix_head *head) 275 { 276 caddr_t v = v_arg; 277 struct radix_node *t = head->rnh_treetop, *x; 278 caddr_t cp = v, cp2; 279 caddr_t cplim; 280 struct radix_node *saved_t, *top = t; 281 int off = t->rn_offset, vlen = LEN(cp), matched_off; 282 int test, b, rn_bit; 283 284 /* 285 * Open code rn_search(v, top) to avoid overhead of extra 286 * subroutine call. 287 */ 288 for (; t->rn_bit >= 0; ) { 289 if (t->rn_bmask & cp[t->rn_offset]) 290 t = t->rn_right; 291 else 292 t = t->rn_left; 293 } 294 /* 295 * See if we match exactly as a host destination 296 * or at least learn how many bits match, for normal mask finesse. 297 * 298 * It doesn't hurt us to limit how many bytes to check 299 * to the length of the mask, since if it matches we had a genuine 300 * match and the leaf we have is the most specific one anyway; 301 * if it didn't match with a shorter length it would fail 302 * with a long one. This wins big for class B&C netmasks which 303 * are probably the most common case... 304 */ 305 if (t->rn_mask) 306 vlen = *(u_char *)t->rn_mask; 307 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 308 for (; cp < cplim; cp++, cp2++) 309 if (*cp != *cp2) 310 goto on1; 311 /* 312 * This extra grot is in case we are explicitly asked 313 * to look up the default. Ugh! 314 * 315 * Never return the root node itself, it seems to cause a 316 * lot of confusion. 317 */ 318 if (t->rn_flags & RNF_ROOT) 319 t = t->rn_dupedkey; 320 return (t); 321 on1: 322 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 323 for (b = 7; (test >>= 1) > 0;) 324 b--; 325 matched_off = cp - v; 326 b += matched_off << 3; 327 rn_bit = -1 - b; 328 /* 329 * If there is a host route in a duped-key chain, it will be first. 330 */ 331 if ((saved_t = t)->rn_mask == 0) 332 t = t->rn_dupedkey; 333 for (; t; t = t->rn_dupedkey) 334 /* 335 * Even if we don't match exactly as a host, 336 * we may match if the leaf we wound up at is 337 * a route to a net. 338 */ 339 if (t->rn_flags & RNF_NORMAL) { 340 if (rn_bit <= t->rn_bit) 341 return (t); 342 } else if (rn_satisfies_leaf(v, t, matched_off)) 343 return (t); 344 t = saved_t; 345 /* start searching up the tree */ 346 do { 347 struct radix_mask *m; 348 t = t->rn_parent; 349 m = t->rn_mklist; 350 /* 351 * If non-contiguous masks ever become important 352 * we can restore the masking and open coding of 353 * the search and satisfaction test and put the 354 * calculation of "off" back before the "do". 355 */ 356 while (m) { 357 if (m->rm_flags & RNF_NORMAL) { 358 if (rn_bit <= m->rm_bit) 359 return (m->rm_leaf); 360 } else { 361 off = min(t->rn_offset, matched_off); 362 x = rn_search_m(v, t, m->rm_mask); 363 while (x && x->rn_mask != m->rm_mask) 364 x = x->rn_dupedkey; 365 if (x && rn_satisfies_leaf(v, x, off)) 366 return (x); 367 } 368 m = m->rm_mklist; 369 } 370 } while (t != top); 371 return (0); 372 } 373 374 /* 375 * Returns the next (wider) prefix for the key defined by @rn 376 * if exists. 377 */ 378 struct radix_node * 379 rn_nextprefix(struct radix_node *rn) 380 { 381 for (rn = rn->rn_dupedkey; rn != NULL; rn = rn->rn_dupedkey) { 382 if (!(rn->rn_flags & RNF_ROOT)) 383 return (rn); 384 } 385 return (NULL); 386 } 387 388 #ifdef RN_DEBUG 389 int rn_nodenum; 390 struct radix_node *rn_clist; 391 int rn_saveinfo; 392 int rn_debug = 1; 393 #endif 394 395 /* 396 * Whenever we add a new leaf to the tree, we also add a parent node, 397 * so we allocate them as an array of two elements: the first one must be 398 * the leaf (see RNTORT() in route.c), the second one is the parent. 399 * This routine initializes the relevant fields of the nodes, so that 400 * the leaf is the left child of the parent node, and both nodes have 401 * (almost) all all fields filled as appropriate. 402 * (XXX some fields are left unset, see the '#if 0' section). 403 * The function returns a pointer to the parent node. 404 */ 405 406 static struct radix_node * 407 rn_newpair(void *v, int b, struct radix_node nodes[2]) 408 { 409 struct radix_node *tt = nodes, *t = tt + 1; 410 t->rn_bit = b; 411 t->rn_bmask = 0x80 >> (b & 7); 412 t->rn_left = tt; 413 t->rn_offset = b >> 3; 414 415 #if 0 /* XXX perhaps we should fill these fields as well. */ 416 t->rn_parent = t->rn_right = NULL; 417 418 tt->rn_mask = NULL; 419 tt->rn_dupedkey = NULL; 420 tt->rn_bmask = 0; 421 #endif 422 tt->rn_bit = -1; 423 tt->rn_key = (caddr_t)v; 424 tt->rn_parent = t; 425 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 426 tt->rn_mklist = t->rn_mklist = 0; 427 #ifdef RN_DEBUG 428 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 429 tt->rn_twin = t; 430 tt->rn_ybro = rn_clist; 431 rn_clist = tt; 432 #endif 433 return (t); 434 } 435 436 static struct radix_node * 437 rn_insert(void *v_arg, struct radix_head *head, int *dupentry, 438 struct radix_node nodes[2]) 439 { 440 caddr_t v = v_arg; 441 struct radix_node *top = head->rnh_treetop; 442 int head_off = top->rn_offset, vlen = LEN(v); 443 struct radix_node *t = rn_search(v_arg, top); 444 caddr_t cp = v + head_off; 445 unsigned b; 446 struct radix_node *p, *tt, *x; 447 /* 448 * Find first bit at which v and t->rn_key differ 449 */ 450 caddr_t cp2 = t->rn_key + head_off; 451 int cmp_res; 452 caddr_t cplim = v + vlen; 453 454 while (cp < cplim) 455 if (*cp2++ != *cp++) 456 goto on1; 457 *dupentry = 1; 458 return (t); 459 on1: 460 *dupentry = 0; 461 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 462 for (b = (cp - v) << 3; cmp_res; b--) 463 cmp_res >>= 1; 464 465 x = top; 466 cp = v; 467 do { 468 p = x; 469 if (cp[x->rn_offset] & x->rn_bmask) 470 x = x->rn_right; 471 else 472 x = x->rn_left; 473 } while (b > (unsigned) x->rn_bit); 474 /* x->rn_bit < b && x->rn_bit >= 0 */ 475 #ifdef RN_DEBUG 476 if (rn_debug) 477 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 478 #endif 479 t = rn_newpair(v_arg, b, nodes); 480 tt = t->rn_left; 481 if ((cp[p->rn_offset] & p->rn_bmask) == 0) 482 p->rn_left = t; 483 else 484 p->rn_right = t; 485 x->rn_parent = t; 486 t->rn_parent = p; /* frees x, p as temp vars below */ 487 if ((cp[t->rn_offset] & t->rn_bmask) == 0) { 488 t->rn_right = x; 489 } else { 490 t->rn_right = tt; 491 t->rn_left = x; 492 } 493 #ifdef RN_DEBUG 494 if (rn_debug) 495 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 496 #endif 497 return (tt); 498 } 499 500 static struct radix_node * 501 rn_addmask(void *n_arg, struct radix_mask_head *maskhead, int search, int skip) 502 { 503 unsigned char *netmask = n_arg; 504 unsigned char *cp, *cplim; 505 struct radix_node *x; 506 int b = 0, mlen, j; 507 int maskduplicated, isnormal; 508 struct radix_node *saved_x; 509 unsigned char addmask_key[RADIX_MAX_KEY_LEN]; 510 511 if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN) 512 mlen = RADIX_MAX_KEY_LEN; 513 if (skip == 0) 514 skip = 1; 515 if (mlen <= skip) 516 return (maskhead->mask_nodes); 517 518 bzero(addmask_key, RADIX_MAX_KEY_LEN); 519 if (skip > 1) 520 bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 521 bcopy(netmask + skip, addmask_key + skip, mlen - skip); 522 /* 523 * Trim trailing zeroes. 524 */ 525 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 526 cp--; 527 mlen = cp - addmask_key; 528 if (mlen <= skip) 529 return (maskhead->mask_nodes); 530 *addmask_key = mlen; 531 x = rn_search(addmask_key, maskhead->head.rnh_treetop); 532 if (bcmp(addmask_key, x->rn_key, mlen) != 0) 533 x = NULL; 534 if (x || search) 535 return (x); 536 R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x)); 537 if ((saved_x = x) == NULL) 538 return (0); 539 netmask = cp = (unsigned char *)(x + 2); 540 bcopy(addmask_key, cp, mlen); 541 x = rn_insert(cp, &maskhead->head, &maskduplicated, x); 542 if (maskduplicated) { 543 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 544 R_Free(saved_x); 545 return (x); 546 } 547 /* 548 * Calculate index of mask, and check for normalcy. 549 * First find the first byte with a 0 bit, then if there are 550 * more bits left (remember we already trimmed the trailing 0's), 551 * the bits should be contiguous, otherwise we have got 552 * a non-contiguous mask. 553 */ 554 #define CONTIG(_c) (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1)) 555 cplim = netmask + mlen; 556 isnormal = 1; 557 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) 558 cp++; 559 if (cp != cplim) { 560 for (j = 0x80; (j & *cp) != 0; j >>= 1) 561 b++; 562 if (!CONTIG(*cp) || cp != (cplim - 1)) 563 isnormal = 0; 564 } 565 b += (cp - netmask) << 3; 566 x->rn_bit = -1 - b; 567 if (isnormal) 568 x->rn_flags |= RNF_NORMAL; 569 return (x); 570 } 571 572 static int /* XXX: arbitrary ordering for non-contiguous masks */ 573 rn_lexobetter(void *m_arg, void *n_arg) 574 { 575 u_char *mp = m_arg, *np = n_arg, *lim; 576 577 if (LEN(mp) > LEN(np)) 578 return (1); /* not really, but need to check longer one first */ 579 if (LEN(mp) == LEN(np)) 580 for (lim = mp + LEN(mp); mp < lim;) 581 if (*mp++ > *np++) 582 return (1); 583 return (0); 584 } 585 586 static struct radix_mask * 587 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) 588 { 589 struct radix_mask *m; 590 591 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); 592 if (m == NULL) { 593 log(LOG_ERR, "Failed to allocate route mask\n"); 594 return (0); 595 } 596 bzero(m, sizeof(*m)); 597 m->rm_bit = tt->rn_bit; 598 m->rm_flags = tt->rn_flags; 599 if (tt->rn_flags & RNF_NORMAL) 600 m->rm_leaf = tt; 601 else 602 m->rm_mask = tt->rn_mask; 603 m->rm_mklist = next; 604 tt->rn_mklist = m; 605 return (m); 606 } 607 608 struct radix_node * 609 rn_addroute(void *v_arg, void *n_arg, struct radix_head *head, 610 struct radix_node treenodes[2]) 611 { 612 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; 613 struct radix_node *t, *x = NULL, *tt; 614 struct radix_node *saved_tt, *top = head->rnh_treetop; 615 short b = 0, b_leaf = 0; 616 int keyduplicated; 617 caddr_t mmask; 618 struct radix_mask *m, **mp; 619 620 /* 621 * In dealing with non-contiguous masks, there may be 622 * many different routes which have the same mask. 623 * We will find it useful to have a unique pointer to 624 * the mask to speed avoiding duplicate references at 625 * nodes and possibly save time in calculating indices. 626 */ 627 if (netmask) { 628 x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset); 629 if (x == NULL) 630 return (0); 631 b_leaf = x->rn_bit; 632 b = -1 - x->rn_bit; 633 netmask = x->rn_key; 634 } 635 /* 636 * Deal with duplicated keys: attach node to previous instance 637 */ 638 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 639 if (keyduplicated) { 640 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 641 if (tt->rn_mask == netmask) 642 return (0); 643 if (netmask == 0 || 644 (tt->rn_mask && 645 ((b_leaf < tt->rn_bit) /* index(netmask) > node */ 646 || rn_refines(netmask, tt->rn_mask) 647 || rn_lexobetter(netmask, tt->rn_mask)))) 648 break; 649 } 650 /* 651 * If the mask is not duplicated, we wouldn't 652 * find it among possible duplicate key entries 653 * anyway, so the above test doesn't hurt. 654 * 655 * We sort the masks for a duplicated key the same way as 656 * in a masklist -- most specific to least specific. 657 * This may require the unfortunate nuisance of relocating 658 * the head of the list. 659 * 660 * We also reverse, or doubly link the list through the 661 * parent pointer. 662 */ 663 if (tt == saved_tt) { 664 struct radix_node *xx = x; 665 /* link in at head of list */ 666 (tt = treenodes)->rn_dupedkey = t; 667 tt->rn_flags = t->rn_flags; 668 tt->rn_parent = x = t->rn_parent; 669 t->rn_parent = tt; /* parent */ 670 if (x->rn_left == t) 671 x->rn_left = tt; 672 else 673 x->rn_right = tt; 674 saved_tt = tt; x = xx; 675 } else { 676 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 677 t->rn_dupedkey = tt; 678 tt->rn_parent = t; /* parent */ 679 if (tt->rn_dupedkey) /* parent */ 680 tt->rn_dupedkey->rn_parent = tt; /* parent */ 681 } 682 #ifdef RN_DEBUG 683 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 684 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 685 #endif 686 tt->rn_key = (caddr_t) v; 687 tt->rn_bit = -1; 688 tt->rn_flags = RNF_ACTIVE; 689 } 690 /* 691 * Put mask in tree. 692 */ 693 if (netmask) { 694 tt->rn_mask = netmask; 695 tt->rn_bit = x->rn_bit; 696 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 697 } 698 t = saved_tt->rn_parent; 699 if (keyduplicated) 700 goto on2; 701 b_leaf = -1 - t->rn_bit; 702 if (t->rn_right == saved_tt) 703 x = t->rn_left; 704 else 705 x = t->rn_right; 706 /* Promote general routes from below */ 707 if (x->rn_bit < 0) { 708 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 709 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { 710 *mp = m = rn_new_radix_mask(x, 0); 711 if (m) 712 mp = &m->rm_mklist; 713 } 714 } else if (x->rn_mklist) { 715 /* 716 * Skip over masks whose index is > that of new node 717 */ 718 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 719 if (m->rm_bit >= b_leaf) 720 break; 721 t->rn_mklist = m; *mp = NULL; 722 } 723 on2: 724 /* Add new route to highest possible ancestor's list */ 725 if ((netmask == 0) || (b > t->rn_bit )) 726 return (tt); /* can't lift at all */ 727 b_leaf = tt->rn_bit; 728 do { 729 x = t; 730 t = t->rn_parent; 731 } while (b <= t->rn_bit && x != top); 732 /* 733 * Search through routes associated with node to 734 * insert new route according to index. 735 * Need same criteria as when sorting dupedkeys to avoid 736 * double loop on deletion. 737 */ 738 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 739 if (m->rm_bit < b_leaf) 740 continue; 741 if (m->rm_bit > b_leaf) 742 break; 743 if (m->rm_flags & RNF_NORMAL) { 744 mmask = m->rm_leaf->rn_mask; 745 if (tt->rn_flags & RNF_NORMAL) { 746 log(LOG_ERR, 747 "Non-unique normal route, mask not entered\n"); 748 return (tt); 749 } 750 } else 751 mmask = m->rm_mask; 752 if (mmask == netmask) { 753 m->rm_refs++; 754 tt->rn_mklist = m; 755 return (tt); 756 } 757 if (rn_refines(netmask, mmask) 758 || rn_lexobetter(netmask, mmask)) 759 break; 760 } 761 *mp = rn_new_radix_mask(tt, *mp); 762 return (tt); 763 } 764 765 struct radix_node * 766 rn_delete(void *v_arg, void *netmask_arg, struct radix_head *head) 767 { 768 struct radix_node *t, *p, *x, *tt; 769 struct radix_mask *m, *saved_m, **mp; 770 struct radix_node *dupedkey, *saved_tt, *top; 771 caddr_t v, netmask; 772 int b, head_off, vlen; 773 774 v = v_arg; 775 netmask = netmask_arg; 776 x = head->rnh_treetop; 777 tt = rn_search(v, x); 778 head_off = x->rn_offset; 779 vlen = LEN(v); 780 saved_tt = tt; 781 top = x; 782 if (tt == NULL || 783 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 784 return (0); 785 /* 786 * Delete our route from mask lists. 787 */ 788 if (netmask) { 789 x = rn_addmask(netmask, head->rnh_masks, 1, head_off); 790 if (x == NULL) 791 return (0); 792 netmask = x->rn_key; 793 while (tt->rn_mask != netmask) 794 if ((tt = tt->rn_dupedkey) == NULL) 795 return (0); 796 } 797 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL) 798 goto on1; 799 if (tt->rn_flags & RNF_NORMAL) { 800 if (m->rm_leaf != tt || m->rm_refs > 0) { 801 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 802 return (0); /* dangling ref could cause disaster */ 803 } 804 } else { 805 if (m->rm_mask != tt->rn_mask) { 806 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 807 goto on1; 808 } 809 if (--m->rm_refs >= 0) 810 goto on1; 811 } 812 b = -1 - tt->rn_bit; 813 t = saved_tt->rn_parent; 814 if (b > t->rn_bit) 815 goto on1; /* Wasn't lifted at all */ 816 do { 817 x = t; 818 t = t->rn_parent; 819 } while (b <= t->rn_bit && x != top); 820 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 821 if (m == saved_m) { 822 *mp = m->rm_mklist; 823 R_Free(m); 824 break; 825 } 826 if (m == NULL) { 827 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 828 if (tt->rn_flags & RNF_NORMAL) 829 return (0); /* Dangling ref to us */ 830 } 831 on1: 832 /* 833 * Eliminate us from tree 834 */ 835 if (tt->rn_flags & RNF_ROOT) 836 return (0); 837 #ifdef RN_DEBUG 838 /* Get us out of the creation list */ 839 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 840 if (t) t->rn_ybro = tt->rn_ybro; 841 #endif 842 t = tt->rn_parent; 843 dupedkey = saved_tt->rn_dupedkey; 844 if (dupedkey) { 845 /* 846 * Here, tt is the deletion target and 847 * saved_tt is the head of the dupekey chain. 848 */ 849 if (tt == saved_tt) { 850 /* remove from head of chain */ 851 x = dupedkey; x->rn_parent = t; 852 if (t->rn_left == tt) 853 t->rn_left = x; 854 else 855 t->rn_right = x; 856 } else { 857 /* find node in front of tt on the chain */ 858 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 859 p = p->rn_dupedkey; 860 if (p) { 861 p->rn_dupedkey = tt->rn_dupedkey; 862 if (tt->rn_dupedkey) /* parent */ 863 tt->rn_dupedkey->rn_parent = p; 864 /* parent */ 865 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 866 } 867 t = tt + 1; 868 if (t->rn_flags & RNF_ACTIVE) { 869 #ifndef RN_DEBUG 870 *++x = *t; 871 p = t->rn_parent; 872 #else 873 b = t->rn_info; 874 *++x = *t; 875 t->rn_info = b; 876 p = t->rn_parent; 877 #endif 878 if (p->rn_left == t) 879 p->rn_left = x; 880 else 881 p->rn_right = x; 882 x->rn_left->rn_parent = x; 883 x->rn_right->rn_parent = x; 884 } 885 goto out; 886 } 887 if (t->rn_left == tt) 888 x = t->rn_right; 889 else 890 x = t->rn_left; 891 p = t->rn_parent; 892 if (p->rn_right == t) 893 p->rn_right = x; 894 else 895 p->rn_left = x; 896 x->rn_parent = p; 897 /* 898 * Demote routes attached to us. 899 */ 900 if (t->rn_mklist) { 901 if (x->rn_bit >= 0) { 902 for (mp = &x->rn_mklist; (m = *mp);) 903 mp = &m->rm_mklist; 904 *mp = t->rn_mklist; 905 } else { 906 /* If there are any key,mask pairs in a sibling 907 duped-key chain, some subset will appear sorted 908 in the same order attached to our mklist */ 909 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 910 if (m == x->rn_mklist) { 911 struct radix_mask *mm = m->rm_mklist; 912 x->rn_mklist = 0; 913 if (--(m->rm_refs) < 0) 914 R_Free(m); 915 m = mm; 916 } 917 if (m) 918 log(LOG_ERR, 919 "rn_delete: Orphaned Mask %p at %p\n", 920 m, x); 921 } 922 } 923 /* 924 * We may be holding an active internal node in the tree. 925 */ 926 x = tt + 1; 927 if (t != x) { 928 #ifndef RN_DEBUG 929 *t = *x; 930 #else 931 b = t->rn_info; 932 *t = *x; 933 t->rn_info = b; 934 #endif 935 t->rn_left->rn_parent = t; 936 t->rn_right->rn_parent = t; 937 p = x->rn_parent; 938 if (p->rn_left == x) 939 p->rn_left = t; 940 else 941 p->rn_right = t; 942 } 943 out: 944 tt->rn_flags &= ~RNF_ACTIVE; 945 tt[1].rn_flags &= ~RNF_ACTIVE; 946 return (tt); 947 } 948 949 /* 950 * This is the same as rn_walktree() except for the parameters and the 951 * exit. 952 */ 953 int 954 rn_walktree_from(struct radix_head *h, void *a, void *m, 955 walktree_f_t *f, void *w) 956 { 957 int error; 958 struct radix_node *base, *next; 959 u_char *xa = (u_char *)a; 960 u_char *xm = (u_char *)m; 961 struct radix_node *rn, *last = NULL; /* shut up gcc */ 962 int stopping = 0; 963 int lastb; 964 965 KASSERT(m != NULL, ("%s: mask needs to be specified", __func__)); 966 967 /* 968 * rn_search_m is sort-of-open-coded here. We cannot use the 969 * function because we need to keep track of the last node seen. 970 */ 971 /* printf("about to search\n"); */ 972 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { 973 last = rn; 974 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n", 975 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */ 976 if (!(rn->rn_bmask & xm[rn->rn_offset])) { 977 break; 978 } 979 if (rn->rn_bmask & xa[rn->rn_offset]) { 980 rn = rn->rn_right; 981 } else { 982 rn = rn->rn_left; 983 } 984 } 985 /* printf("done searching\n"); */ 986 987 /* 988 * Two cases: either we stepped off the end of our mask, 989 * in which case last == rn, or we reached a leaf, in which 990 * case we want to start from the leaf. 991 */ 992 if (rn->rn_bit >= 0) 993 rn = last; 994 lastb = last->rn_bit; 995 996 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 997 998 /* 999 * This gets complicated because we may delete the node 1000 * while applying the function f to it, so we need to calculate 1001 * the successor node in advance. 1002 */ 1003 while (rn->rn_bit >= 0) 1004 rn = rn->rn_left; 1005 1006 while (!stopping) { 1007 /* printf("node %p (%d)\n", rn, rn->rn_bit); */ 1008 base = rn; 1009 /* If at right child go back up, otherwise, go right */ 1010 while (rn->rn_parent->rn_right == rn 1011 && !(rn->rn_flags & RNF_ROOT)) { 1012 rn = rn->rn_parent; 1013 1014 /* if went up beyond last, stop */ 1015 if (rn->rn_bit <= lastb) { 1016 stopping = 1; 1017 /* printf("up too far\n"); */ 1018 /* 1019 * XXX we should jump to the 'Process leaves' 1020 * part, because the values of 'rn' and 'next' 1021 * we compute will not be used. Not a big deal 1022 * because this loop will terminate, but it is 1023 * inefficient and hard to understand! 1024 */ 1025 } 1026 } 1027 1028 /* 1029 * At the top of the tree, no need to traverse the right 1030 * half, prevent the traversal of the entire tree in the 1031 * case of default route. 1032 */ 1033 if (rn->rn_parent->rn_flags & RNF_ROOT) 1034 stopping = 1; 1035 1036 /* Find the next *leaf* since next node might vanish, too */ 1037 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1038 rn = rn->rn_left; 1039 next = rn; 1040 /* Process leaves */ 1041 while ((rn = base) != NULL) { 1042 base = rn->rn_dupedkey; 1043 /* printf("leaf %p\n", rn); */ 1044 if (!(rn->rn_flags & RNF_ROOT) 1045 && (error = (*f)(rn, w))) 1046 return (error); 1047 } 1048 rn = next; 1049 1050 if (rn->rn_flags & RNF_ROOT) { 1051 /* printf("root, stopping"); */ 1052 stopping = 1; 1053 } 1054 } 1055 return (0); 1056 } 1057 1058 int 1059 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w) 1060 { 1061 int error; 1062 struct radix_node *base, *next; 1063 struct radix_node *rn = h->rnh_treetop; 1064 /* 1065 * This gets complicated because we may delete the node 1066 * while applying the function f to it, so we need to calculate 1067 * the successor node in advance. 1068 */ 1069 1070 /* First time through node, go left */ 1071 while (rn->rn_bit >= 0) 1072 rn = rn->rn_left; 1073 for (;;) { 1074 base = rn; 1075 /* If at right child go back up, otherwise, go right */ 1076 while (rn->rn_parent->rn_right == rn 1077 && (rn->rn_flags & RNF_ROOT) == 0) 1078 rn = rn->rn_parent; 1079 /* Find the next *leaf* since next node might vanish, too */ 1080 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1081 rn = rn->rn_left; 1082 next = rn; 1083 /* Process leaves */ 1084 while ((rn = base)) { 1085 base = rn->rn_dupedkey; 1086 if (!(rn->rn_flags & RNF_ROOT) 1087 && (error = (*f)(rn, w))) 1088 return (error); 1089 } 1090 rn = next; 1091 if (rn->rn_flags & RNF_ROOT) 1092 return (0); 1093 } 1094 /* NOTREACHED */ 1095 } 1096 1097 /* 1098 * Initialize an empty tree. This has 3 nodes, which are passed 1099 * via base_nodes (in the order <left,root,right>) and are 1100 * marked RNF_ROOT so they cannot be freed. 1101 * The leaves have all-zero and all-one keys, with significant 1102 * bits starting at 'off'. 1103 */ 1104 void 1105 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off) 1106 { 1107 struct radix_node *t, *tt, *ttt; 1108 1109 t = rn_newpair(rn_zeros, off, base_nodes); 1110 ttt = base_nodes + 2; 1111 t->rn_right = ttt; 1112 t->rn_parent = t; 1113 tt = t->rn_left; /* ... which in turn is base_nodes */ 1114 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1115 tt->rn_bit = -1 - off; 1116 *ttt = *tt; 1117 ttt->rn_key = rn_ones; 1118 1119 rh->rnh_treetop = t; 1120 } 1121 1122 static void 1123 rn_detachhead_internal(struct radix_head *head) 1124 { 1125 1126 KASSERT((head != NULL), 1127 ("%s: head already freed", __func__)); 1128 1129 /* Free <left,root,right> nodes. */ 1130 R_Free(head); 1131 } 1132 1133 /* Functions used by 'struct radix_node_head' users */ 1134 1135 int 1136 rn_inithead(void **head, int off) 1137 { 1138 struct radix_node_head *rnh; 1139 struct radix_mask_head *rmh; 1140 1141 rnh = *head; 1142 rmh = NULL; 1143 1144 if (*head != NULL) 1145 return (1); 1146 1147 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1148 R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh)); 1149 if (rnh == NULL || rmh == NULL) { 1150 if (rnh != NULL) 1151 R_Free(rnh); 1152 if (rmh != NULL) 1153 R_Free(rmh); 1154 return (0); 1155 } 1156 1157 /* Init trees */ 1158 rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off); 1159 rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0); 1160 *head = rnh; 1161 rnh->rh.rnh_masks = rmh; 1162 1163 /* Finally, set base callbacks */ 1164 rnh->rnh_addaddr = rn_addroute; 1165 rnh->rnh_deladdr = rn_delete; 1166 rnh->rnh_matchaddr = rn_match; 1167 rnh->rnh_lookup = rn_lookup; 1168 rnh->rnh_walktree = rn_walktree; 1169 rnh->rnh_walktree_from = rn_walktree_from; 1170 1171 return (1); 1172 } 1173 1174 static int 1175 rn_freeentry(struct radix_node *rn, void *arg) 1176 { 1177 struct radix_head * const rnh = arg; 1178 struct radix_node *x; 1179 1180 x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh); 1181 if (x != NULL) 1182 R_Free(x); 1183 return (0); 1184 } 1185 1186 int 1187 rn_detachhead(void **head) 1188 { 1189 struct radix_node_head *rnh; 1190 1191 KASSERT((head != NULL && *head != NULL), 1192 ("%s: head already freed", __func__)); 1193 1194 rnh = (struct radix_node_head *)(*head); 1195 1196 rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks); 1197 rn_detachhead_internal(&rnh->rh.rnh_masks->head); 1198 rn_detachhead_internal(&rnh->rh); 1199 1200 *head = NULL; 1201 1202 return (1); 1203 } 1204