1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 32 * $FreeBSD$ 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_netgraph.h" 38 #include "opt_mbuf_profiling.h" 39 #include "opt_rss.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/eventhandler.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/module.h> 50 #include <sys/mbuf.h> 51 #include <sys/proc.h> 52 #include <sys/priv.h> 53 #include <sys/random.h> 54 #include <sys/socket.h> 55 #include <sys/sockio.h> 56 #include <sys/sysctl.h> 57 #include <sys/uuid.h> 58 59 #include <net/ieee_oui.h> 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_arp.h> 63 #include <net/netisr.h> 64 #include <net/route.h> 65 #include <net/if_llc.h> 66 #include <net/if_dl.h> 67 #include <net/if_types.h> 68 #include <net/bpf.h> 69 #include <net/ethernet.h> 70 #include <net/if_bridgevar.h> 71 #include <net/if_vlan_var.h> 72 #include <net/if_llatbl.h> 73 #include <net/pfil.h> 74 #include <net/rss_config.h> 75 #include <net/vnet.h> 76 77 #include <netpfil/pf/pf_mtag.h> 78 79 #if defined(INET) || defined(INET6) 80 #include <netinet/in.h> 81 #include <netinet/in_var.h> 82 #include <netinet/if_ether.h> 83 #include <netinet/ip_carp.h> 84 #include <netinet/ip_var.h> 85 #endif 86 #ifdef INET6 87 #include <netinet6/nd6.h> 88 #endif 89 #include <security/mac/mac_framework.h> 90 91 #include <crypto/sha1.h> 92 93 #ifdef CTASSERT 94 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 95 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 96 #endif 97 98 VNET_DEFINE(pfil_head_t, link_pfil_head); /* Packet filter hooks */ 99 100 /* netgraph node hooks for ng_ether(4) */ 101 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 102 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 103 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 104 void (*ng_ether_attach_p)(struct ifnet *ifp); 105 void (*ng_ether_detach_p)(struct ifnet *ifp); 106 107 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 108 109 /* if_bridge(4) support */ 110 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 111 112 /* if_lagg(4) support */ 113 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 114 115 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 116 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 117 118 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 119 struct sockaddr *); 120 #ifdef VIMAGE 121 static void ether_reassign(struct ifnet *, struct vnet *, char *); 122 #endif 123 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 124 125 126 #define senderr(e) do { error = (e); goto bad;} while (0) 127 128 static void 129 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 130 { 131 int csum_flags = 0; 132 133 if (src->m_pkthdr.csum_flags & CSUM_IP) 134 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 135 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 136 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 137 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 138 csum_flags |= CSUM_SCTP_VALID; 139 dst->m_pkthdr.csum_flags |= csum_flags; 140 if (csum_flags & CSUM_DATA_VALID) 141 dst->m_pkthdr.csum_data = 0xffff; 142 } 143 144 /* 145 * Handle link-layer encapsulation requests. 146 */ 147 static int 148 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 149 { 150 struct ether_header *eh; 151 struct arphdr *ah; 152 uint16_t etype; 153 const u_char *lladdr; 154 155 if (req->rtype != IFENCAP_LL) 156 return (EOPNOTSUPP); 157 158 if (req->bufsize < ETHER_HDR_LEN) 159 return (ENOMEM); 160 161 eh = (struct ether_header *)req->buf; 162 lladdr = req->lladdr; 163 req->lladdr_off = 0; 164 165 switch (req->family) { 166 case AF_INET: 167 etype = htons(ETHERTYPE_IP); 168 break; 169 case AF_INET6: 170 etype = htons(ETHERTYPE_IPV6); 171 break; 172 case AF_ARP: 173 ah = (struct arphdr *)req->hdata; 174 ah->ar_hrd = htons(ARPHRD_ETHER); 175 176 switch(ntohs(ah->ar_op)) { 177 case ARPOP_REVREQUEST: 178 case ARPOP_REVREPLY: 179 etype = htons(ETHERTYPE_REVARP); 180 break; 181 case ARPOP_REQUEST: 182 case ARPOP_REPLY: 183 default: 184 etype = htons(ETHERTYPE_ARP); 185 break; 186 } 187 188 if (req->flags & IFENCAP_FLAG_BROADCAST) 189 lladdr = ifp->if_broadcastaddr; 190 break; 191 default: 192 return (EAFNOSUPPORT); 193 } 194 195 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 196 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 197 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 198 req->bufsize = sizeof(struct ether_header); 199 200 return (0); 201 } 202 203 204 static int 205 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 206 const struct sockaddr *dst, struct route *ro, u_char *phdr, 207 uint32_t *pflags, struct llentry **plle) 208 { 209 struct ether_header *eh; 210 uint32_t lleflags = 0; 211 int error = 0; 212 #if defined(INET) || defined(INET6) 213 uint16_t etype; 214 #endif 215 216 if (plle) 217 *plle = NULL; 218 eh = (struct ether_header *)phdr; 219 220 switch (dst->sa_family) { 221 #ifdef INET 222 case AF_INET: 223 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 224 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, 225 plle); 226 else { 227 if (m->m_flags & M_BCAST) 228 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 229 ETHER_ADDR_LEN); 230 else { 231 const struct in_addr *a; 232 a = &(((const struct sockaddr_in *)dst)->sin_addr); 233 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 234 } 235 etype = htons(ETHERTYPE_IP); 236 memcpy(&eh->ether_type, &etype, sizeof(etype)); 237 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 238 } 239 break; 240 #endif 241 #ifdef INET6 242 case AF_INET6: 243 if ((m->m_flags & M_MCAST) == 0) 244 error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags, 245 plle); 246 else { 247 const struct in6_addr *a6; 248 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 249 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 250 etype = htons(ETHERTYPE_IPV6); 251 memcpy(&eh->ether_type, &etype, sizeof(etype)); 252 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 253 } 254 break; 255 #endif 256 default: 257 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 258 if (m != NULL) 259 m_freem(m); 260 return (EAFNOSUPPORT); 261 } 262 263 if (error == EHOSTDOWN) { 264 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) 265 error = EHOSTUNREACH; 266 } 267 268 if (error != 0) 269 return (error); 270 271 *pflags = RT_MAY_LOOP; 272 if (lleflags & LLE_IFADDR) 273 *pflags |= RT_L2_ME; 274 275 return (0); 276 } 277 278 /* 279 * Ethernet output routine. 280 * Encapsulate a packet of type family for the local net. 281 * Use trailer local net encapsulation if enough data in first 282 * packet leaves a multiple of 512 bytes of data in remainder. 283 */ 284 int 285 ether_output(struct ifnet *ifp, struct mbuf *m, 286 const struct sockaddr *dst, struct route *ro) 287 { 288 int error = 0; 289 char linkhdr[ETHER_HDR_LEN], *phdr; 290 struct ether_header *eh; 291 struct pf_mtag *t; 292 int loop_copy = 1; 293 int hlen; /* link layer header length */ 294 uint32_t pflags; 295 struct llentry *lle = NULL; 296 int addref = 0; 297 298 phdr = NULL; 299 pflags = 0; 300 if (ro != NULL) { 301 /* XXX BPF uses ro_prepend */ 302 if (ro->ro_prepend != NULL) { 303 phdr = ro->ro_prepend; 304 hlen = ro->ro_plen; 305 } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { 306 if ((ro->ro_flags & RT_LLE_CACHE) != 0) { 307 lle = ro->ro_lle; 308 if (lle != NULL && 309 (lle->la_flags & LLE_VALID) == 0) { 310 LLE_FREE(lle); 311 lle = NULL; /* redundant */ 312 ro->ro_lle = NULL; 313 } 314 if (lle == NULL) { 315 /* if we lookup, keep cache */ 316 addref = 1; 317 } else 318 /* 319 * Notify LLE code that 320 * the entry was used 321 * by datapath. 322 */ 323 llentry_mark_used(lle); 324 } 325 if (lle != NULL) { 326 phdr = lle->r_linkdata; 327 hlen = lle->r_hdrlen; 328 pflags = lle->r_flags; 329 } 330 } 331 } 332 333 #ifdef MAC 334 error = mac_ifnet_check_transmit(ifp, m); 335 if (error) 336 senderr(error); 337 #endif 338 339 M_PROFILE(m); 340 if (ifp->if_flags & IFF_MONITOR) 341 senderr(ENETDOWN); 342 if (!((ifp->if_flags & IFF_UP) && 343 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 344 senderr(ENETDOWN); 345 346 if (phdr == NULL) { 347 /* No prepend data supplied. Try to calculate ourselves. */ 348 phdr = linkhdr; 349 hlen = ETHER_HDR_LEN; 350 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags, 351 addref ? &lle : NULL); 352 if (addref && lle != NULL) 353 ro->ro_lle = lle; 354 if (error != 0) 355 return (error == EWOULDBLOCK ? 0 : error); 356 } 357 358 if ((pflags & RT_L2_ME) != 0) { 359 update_mbuf_csumflags(m, m); 360 return (if_simloop(ifp, m, dst->sa_family, 0)); 361 } 362 loop_copy = pflags & RT_MAY_LOOP; 363 364 /* 365 * Add local net header. If no space in first mbuf, 366 * allocate another. 367 * 368 * Note that we do prepend regardless of RT_HAS_HEADER flag. 369 * This is done because BPF code shifts m_data pointer 370 * to the end of ethernet header prior to calling if_output(). 371 */ 372 M_PREPEND(m, hlen, M_NOWAIT); 373 if (m == NULL) 374 senderr(ENOBUFS); 375 if ((pflags & RT_HAS_HEADER) == 0) { 376 eh = mtod(m, struct ether_header *); 377 memcpy(eh, phdr, hlen); 378 } 379 380 /* 381 * If a simplex interface, and the packet is being sent to our 382 * Ethernet address or a broadcast address, loopback a copy. 383 * XXX To make a simplex device behave exactly like a duplex 384 * device, we should copy in the case of sending to our own 385 * ethernet address (thus letting the original actually appear 386 * on the wire). However, we don't do that here for security 387 * reasons and compatibility with the original behavior. 388 */ 389 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 390 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 391 struct mbuf *n; 392 393 /* 394 * Because if_simloop() modifies the packet, we need a 395 * writable copy through m_dup() instead of a readonly 396 * one as m_copy[m] would give us. The alternative would 397 * be to modify if_simloop() to handle the readonly mbuf, 398 * but performancewise it is mostly equivalent (trading 399 * extra data copying vs. extra locking). 400 * 401 * XXX This is a local workaround. A number of less 402 * often used kernel parts suffer from the same bug. 403 * See PR kern/105943 for a proposed general solution. 404 */ 405 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 406 update_mbuf_csumflags(m, n); 407 (void)if_simloop(ifp, n, dst->sa_family, hlen); 408 } else 409 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 410 } 411 412 /* 413 * Bridges require special output handling. 414 */ 415 if (ifp->if_bridge) { 416 BRIDGE_OUTPUT(ifp, m, error); 417 return (error); 418 } 419 420 #if defined(INET) || defined(INET6) 421 if (ifp->if_carp && 422 (error = (*carp_output_p)(ifp, m, dst))) 423 goto bad; 424 #endif 425 426 /* Handle ng_ether(4) processing, if any */ 427 if (ifp->if_l2com != NULL) { 428 KASSERT(ng_ether_output_p != NULL, 429 ("ng_ether_output_p is NULL")); 430 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 431 bad: if (m != NULL) 432 m_freem(m); 433 return (error); 434 } 435 if (m == NULL) 436 return (0); 437 } 438 439 /* Continue with link-layer output */ 440 return ether_output_frame(ifp, m); 441 } 442 443 static bool 444 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp) 445 { 446 struct ether_header *eh; 447 448 eh = mtod(*mp, struct ether_header *); 449 if (ntohs(eh->ether_type) == ETHERTYPE_VLAN || 450 ether_8021q_frame(mp, ifp, ifp, 0, pcp)) 451 return (true); 452 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 453 return (false); 454 } 455 456 /* 457 * Ethernet link layer output routine to send a raw frame to the device. 458 * 459 * This assumes that the 14 byte Ethernet header is present and contiguous 460 * in the first mbuf (if BRIDGE'ing). 461 */ 462 int 463 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 464 { 465 uint8_t pcp; 466 467 pcp = ifp->if_pcp; 468 if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN && 469 !ether_set_pcp(&m, ifp, pcp)) 470 return (0); 471 472 if (PFIL_HOOKED_OUT(V_link_pfil_head)) 473 switch (pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_OUT, 474 NULL)) { 475 case PFIL_DROPPED: 476 return (EACCES); 477 case PFIL_CONSUMED: 478 return (0); 479 } 480 481 #ifdef EXPERIMENTAL 482 #if defined(INET6) && defined(INET) 483 /* draft-ietf-6man-ipv6only-flag */ 484 /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ 485 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { 486 struct ether_header *eh; 487 488 eh = mtod(m, struct ether_header *); 489 switch (ntohs(eh->ether_type)) { 490 case ETHERTYPE_IP: 491 case ETHERTYPE_ARP: 492 case ETHERTYPE_REVARP: 493 m_freem(m); 494 return (EAFNOSUPPORT); 495 /* NOTREACHED */ 496 break; 497 }; 498 } 499 #endif 500 #endif 501 502 /* 503 * Queue message on interface, update output statistics if 504 * successful, and start output if interface not yet active. 505 */ 506 return ((ifp->if_transmit)(ifp, m)); 507 } 508 509 /* 510 * Process a received Ethernet packet; the packet is in the 511 * mbuf chain m with the ethernet header at the front. 512 */ 513 static void 514 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 515 { 516 struct ether_header *eh; 517 u_short etype; 518 519 if ((ifp->if_flags & IFF_UP) == 0) { 520 m_freem(m); 521 return; 522 } 523 #ifdef DIAGNOSTIC 524 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 525 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 526 m_freem(m); 527 return; 528 } 529 #endif 530 if (m->m_len < ETHER_HDR_LEN) { 531 /* XXX maybe should pullup? */ 532 if_printf(ifp, "discard frame w/o leading ethernet " 533 "header (len %u pkt len %u)\n", 534 m->m_len, m->m_pkthdr.len); 535 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 536 m_freem(m); 537 return; 538 } 539 eh = mtod(m, struct ether_header *); 540 etype = ntohs(eh->ether_type); 541 random_harvest_queue_ether(m, sizeof(*m)); 542 543 #ifdef EXPERIMENTAL 544 #if defined(INET6) && defined(INET) 545 /* draft-ietf-6man-ipv6only-flag */ 546 /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ 547 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { 548 549 switch (etype) { 550 case ETHERTYPE_IP: 551 case ETHERTYPE_ARP: 552 case ETHERTYPE_REVARP: 553 m_freem(m); 554 return; 555 /* NOTREACHED */ 556 break; 557 }; 558 } 559 #endif 560 #endif 561 562 CURVNET_SET_QUIET(ifp->if_vnet); 563 564 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 565 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 566 m->m_flags |= M_BCAST; 567 else 568 m->m_flags |= M_MCAST; 569 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 570 } 571 572 #ifdef MAC 573 /* 574 * Tag the mbuf with an appropriate MAC label before any other 575 * consumers can get to it. 576 */ 577 mac_ifnet_create_mbuf(ifp, m); 578 #endif 579 580 /* 581 * Give bpf a chance at the packet. 582 */ 583 ETHER_BPF_MTAP(ifp, m); 584 585 /* 586 * If the CRC is still on the packet, trim it off. We do this once 587 * and once only in case we are re-entered. Nothing else on the 588 * Ethernet receive path expects to see the FCS. 589 */ 590 if (m->m_flags & M_HASFCS) { 591 m_adj(m, -ETHER_CRC_LEN); 592 m->m_flags &= ~M_HASFCS; 593 } 594 595 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 596 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 597 598 /* Allow monitor mode to claim this frame, after stats are updated. */ 599 if (ifp->if_flags & IFF_MONITOR) { 600 m_freem(m); 601 CURVNET_RESTORE(); 602 return; 603 } 604 605 /* Handle input from a lagg(4) port */ 606 if (ifp->if_type == IFT_IEEE8023ADLAG) { 607 KASSERT(lagg_input_p != NULL, 608 ("%s: if_lagg not loaded!", __func__)); 609 m = (*lagg_input_p)(ifp, m); 610 if (m != NULL) 611 ifp = m->m_pkthdr.rcvif; 612 else { 613 CURVNET_RESTORE(); 614 return; 615 } 616 } 617 618 /* 619 * If the hardware did not process an 802.1Q tag, do this now, 620 * to allow 802.1P priority frames to be passed to the main input 621 * path correctly. 622 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 623 */ 624 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 625 struct ether_vlan_header *evl; 626 627 if (m->m_len < sizeof(*evl) && 628 (m = m_pullup(m, sizeof(*evl))) == NULL) { 629 #ifdef DIAGNOSTIC 630 if_printf(ifp, "cannot pullup VLAN header\n"); 631 #endif 632 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 633 CURVNET_RESTORE(); 634 return; 635 } 636 637 evl = mtod(m, struct ether_vlan_header *); 638 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 639 m->m_flags |= M_VLANTAG; 640 641 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 642 ETHER_HDR_LEN - ETHER_TYPE_LEN); 643 m_adj(m, ETHER_VLAN_ENCAP_LEN); 644 eh = mtod(m, struct ether_header *); 645 } 646 647 M_SETFIB(m, ifp->if_fib); 648 649 /* Allow ng_ether(4) to claim this frame. */ 650 if (ifp->if_l2com != NULL) { 651 KASSERT(ng_ether_input_p != NULL, 652 ("%s: ng_ether_input_p is NULL", __func__)); 653 m->m_flags &= ~M_PROMISC; 654 (*ng_ether_input_p)(ifp, &m); 655 if (m == NULL) { 656 CURVNET_RESTORE(); 657 return; 658 } 659 eh = mtod(m, struct ether_header *); 660 } 661 662 /* 663 * Allow if_bridge(4) to claim this frame. 664 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 665 * and the frame should be delivered locally. 666 */ 667 if (ifp->if_bridge != NULL) { 668 m->m_flags &= ~M_PROMISC; 669 BRIDGE_INPUT(ifp, m); 670 if (m == NULL) { 671 CURVNET_RESTORE(); 672 return; 673 } 674 eh = mtod(m, struct ether_header *); 675 } 676 677 #if defined(INET) || defined(INET6) 678 /* 679 * Clear M_PROMISC on frame so that carp(4) will see it when the 680 * mbuf flows up to Layer 3. 681 * FreeBSD's implementation of carp(4) uses the inprotosw 682 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 683 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 684 * is outside the scope of the M_PROMISC test below. 685 * TODO: Maintain a hash table of ethernet addresses other than 686 * ether_dhost which may be active on this ifp. 687 */ 688 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 689 m->m_flags &= ~M_PROMISC; 690 } else 691 #endif 692 { 693 /* 694 * If the frame received was not for our MAC address, set the 695 * M_PROMISC flag on the mbuf chain. The frame may need to 696 * be seen by the rest of the Ethernet input path in case of 697 * re-entry (e.g. bridge, vlan, netgraph) but should not be 698 * seen by upper protocol layers. 699 */ 700 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 701 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 702 m->m_flags |= M_PROMISC; 703 } 704 705 ether_demux(ifp, m); 706 CURVNET_RESTORE(); 707 } 708 709 /* 710 * Ethernet input dispatch; by default, direct dispatch here regardless of 711 * global configuration. However, if RSS is enabled, hook up RSS affinity 712 * so that when deferred or hybrid dispatch is enabled, we can redistribute 713 * load based on RSS. 714 * 715 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 716 * not it had already done work distribution via multi-queue. Then we could 717 * direct dispatch in the event load balancing was already complete and 718 * handle the case of interfaces with different capabilities better. 719 * 720 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 721 * at multiple layers? 722 * 723 * XXXRW: For now, enable all this only if RSS is compiled in, although it 724 * works fine without RSS. Need to characterise the performance overhead 725 * of the detour through the netisr code in the event the result is always 726 * direct dispatch. 727 */ 728 static void 729 ether_nh_input(struct mbuf *m) 730 { 731 732 M_ASSERTPKTHDR(m); 733 KASSERT(m->m_pkthdr.rcvif != NULL, 734 ("%s: NULL interface pointer", __func__)); 735 ether_input_internal(m->m_pkthdr.rcvif, m); 736 } 737 738 static struct netisr_handler ether_nh = { 739 .nh_name = "ether", 740 .nh_handler = ether_nh_input, 741 .nh_proto = NETISR_ETHER, 742 #ifdef RSS 743 .nh_policy = NETISR_POLICY_CPU, 744 .nh_dispatch = NETISR_DISPATCH_DIRECT, 745 .nh_m2cpuid = rss_m2cpuid, 746 #else 747 .nh_policy = NETISR_POLICY_SOURCE, 748 .nh_dispatch = NETISR_DISPATCH_DIRECT, 749 #endif 750 }; 751 752 static void 753 ether_init(__unused void *arg) 754 { 755 756 netisr_register(ðer_nh); 757 } 758 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 759 760 static void 761 vnet_ether_init(__unused void *arg) 762 { 763 struct pfil_head_args args; 764 765 args.pa_version = PFIL_VERSION; 766 args.pa_flags = PFIL_IN | PFIL_OUT; 767 args.pa_type = PFIL_TYPE_ETHERNET; 768 args.pa_headname = PFIL_ETHER_NAME; 769 V_link_pfil_head = pfil_head_register(&args); 770 771 #ifdef VIMAGE 772 netisr_register_vnet(ðer_nh); 773 #endif 774 } 775 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 776 vnet_ether_init, NULL); 777 778 #ifdef VIMAGE 779 static void 780 vnet_ether_pfil_destroy(__unused void *arg) 781 { 782 783 pfil_head_unregister(V_link_pfil_head); 784 } 785 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY, 786 vnet_ether_pfil_destroy, NULL); 787 788 static void 789 vnet_ether_destroy(__unused void *arg) 790 { 791 792 netisr_unregister_vnet(ðer_nh); 793 } 794 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 795 vnet_ether_destroy, NULL); 796 #endif 797 798 799 800 static void 801 ether_input(struct ifnet *ifp, struct mbuf *m) 802 { 803 struct epoch_tracker et; 804 struct mbuf *mn; 805 bool needs_epoch; 806 807 needs_epoch = !(ifp->if_flags & IFF_KNOWSEPOCH); 808 809 /* 810 * The drivers are allowed to pass in a chain of packets linked with 811 * m_nextpkt. We split them up into separate packets here and pass 812 * them up. This allows the drivers to amortize the receive lock. 813 */ 814 CURVNET_SET_QUIET(ifp->if_vnet); 815 if (__predict_false(needs_epoch)) 816 NET_EPOCH_ENTER(et); 817 while (m) { 818 mn = m->m_nextpkt; 819 m->m_nextpkt = NULL; 820 821 /* 822 * We will rely on rcvif being set properly in the deferred 823 * context, so assert it is correct here. 824 */ 825 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 826 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p " 827 "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp)); 828 netisr_dispatch(NETISR_ETHER, m); 829 m = mn; 830 } 831 if (__predict_false(needs_epoch)) 832 NET_EPOCH_EXIT(et); 833 CURVNET_RESTORE(); 834 } 835 836 /* 837 * Upper layer processing for a received Ethernet packet. 838 */ 839 void 840 ether_demux(struct ifnet *ifp, struct mbuf *m) 841 { 842 struct ether_header *eh; 843 int i, isr; 844 u_short ether_type; 845 846 NET_EPOCH_ASSERT(); 847 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 848 849 /* Do not grab PROMISC frames in case we are re-entered. */ 850 if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) { 851 i = pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_IN, NULL); 852 if (i != 0 || m == NULL) 853 return; 854 } 855 856 eh = mtod(m, struct ether_header *); 857 ether_type = ntohs(eh->ether_type); 858 859 /* 860 * If this frame has a VLAN tag other than 0, call vlan_input() 861 * if its module is loaded. Otherwise, drop. 862 */ 863 if ((m->m_flags & M_VLANTAG) && 864 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 865 if (ifp->if_vlantrunk == NULL) { 866 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 867 m_freem(m); 868 return; 869 } 870 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 871 __func__)); 872 /* Clear before possibly re-entering ether_input(). */ 873 m->m_flags &= ~M_PROMISC; 874 (*vlan_input_p)(ifp, m); 875 return; 876 } 877 878 /* 879 * Pass promiscuously received frames to the upper layer if the user 880 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 881 */ 882 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 883 m_freem(m); 884 return; 885 } 886 887 /* 888 * Reset layer specific mbuf flags to avoid confusing upper layers. 889 * Strip off Ethernet header. 890 */ 891 m->m_flags &= ~M_VLANTAG; 892 m_clrprotoflags(m); 893 m_adj(m, ETHER_HDR_LEN); 894 895 /* 896 * Dispatch frame to upper layer. 897 */ 898 switch (ether_type) { 899 #ifdef INET 900 case ETHERTYPE_IP: 901 isr = NETISR_IP; 902 break; 903 904 case ETHERTYPE_ARP: 905 if (ifp->if_flags & IFF_NOARP) { 906 /* Discard packet if ARP is disabled on interface */ 907 m_freem(m); 908 return; 909 } 910 isr = NETISR_ARP; 911 break; 912 #endif 913 #ifdef INET6 914 case ETHERTYPE_IPV6: 915 isr = NETISR_IPV6; 916 break; 917 #endif 918 default: 919 goto discard; 920 } 921 netisr_dispatch(isr, m); 922 return; 923 924 discard: 925 /* 926 * Packet is to be discarded. If netgraph is present, 927 * hand the packet to it for last chance processing; 928 * otherwise dispose of it. 929 */ 930 if (ifp->if_l2com != NULL) { 931 KASSERT(ng_ether_input_orphan_p != NULL, 932 ("ng_ether_input_orphan_p is NULL")); 933 /* 934 * Put back the ethernet header so netgraph has a 935 * consistent view of inbound packets. 936 */ 937 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 938 (*ng_ether_input_orphan_p)(ifp, m); 939 return; 940 } 941 m_freem(m); 942 } 943 944 /* 945 * Convert Ethernet address to printable (loggable) representation. 946 * This routine is for compatibility; it's better to just use 947 * 948 * printf("%6D", <pointer to address>, ":"); 949 * 950 * since there's no static buffer involved. 951 */ 952 char * 953 ether_sprintf(const u_char *ap) 954 { 955 static char etherbuf[18]; 956 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 957 return (etherbuf); 958 } 959 960 /* 961 * Perform common duties while attaching to interface list 962 */ 963 void 964 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 965 { 966 int i; 967 struct ifaddr *ifa; 968 struct sockaddr_dl *sdl; 969 970 ifp->if_addrlen = ETHER_ADDR_LEN; 971 ifp->if_hdrlen = ETHER_HDR_LEN; 972 if_attach(ifp); 973 ifp->if_mtu = ETHERMTU; 974 ifp->if_output = ether_output; 975 ifp->if_input = ether_input; 976 ifp->if_resolvemulti = ether_resolvemulti; 977 ifp->if_requestencap = ether_requestencap; 978 #ifdef VIMAGE 979 ifp->if_reassign = ether_reassign; 980 #endif 981 if (ifp->if_baudrate == 0) 982 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 983 ifp->if_broadcastaddr = etherbroadcastaddr; 984 985 ifa = ifp->if_addr; 986 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 987 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 988 sdl->sdl_type = IFT_ETHER; 989 sdl->sdl_alen = ifp->if_addrlen; 990 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 991 992 if (ifp->if_hw_addr != NULL) 993 bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen); 994 995 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 996 if (ng_ether_attach_p != NULL) 997 (*ng_ether_attach_p)(ifp); 998 999 /* Announce Ethernet MAC address if non-zero. */ 1000 for (i = 0; i < ifp->if_addrlen; i++) 1001 if (lla[i] != 0) 1002 break; 1003 if (i != ifp->if_addrlen) 1004 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 1005 1006 uuid_ether_add(LLADDR(sdl)); 1007 1008 /* Add necessary bits are setup; announce it now. */ 1009 EVENTHANDLER_INVOKE(ether_ifattach_event, ifp); 1010 if (IS_DEFAULT_VNET(curvnet)) 1011 devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL); 1012 } 1013 1014 /* 1015 * Perform common duties while detaching an Ethernet interface 1016 */ 1017 void 1018 ether_ifdetach(struct ifnet *ifp) 1019 { 1020 struct sockaddr_dl *sdl; 1021 1022 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 1023 uuid_ether_del(LLADDR(sdl)); 1024 1025 if (ifp->if_l2com != NULL) { 1026 KASSERT(ng_ether_detach_p != NULL, 1027 ("ng_ether_detach_p is NULL")); 1028 (*ng_ether_detach_p)(ifp); 1029 } 1030 1031 bpfdetach(ifp); 1032 if_detach(ifp); 1033 } 1034 1035 #ifdef VIMAGE 1036 void 1037 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 1038 { 1039 1040 if (ifp->if_l2com != NULL) { 1041 KASSERT(ng_ether_detach_p != NULL, 1042 ("ng_ether_detach_p is NULL")); 1043 (*ng_ether_detach_p)(ifp); 1044 } 1045 1046 if (ng_ether_attach_p != NULL) { 1047 CURVNET_SET_QUIET(new_vnet); 1048 (*ng_ether_attach_p)(ifp); 1049 CURVNET_RESTORE(); 1050 } 1051 } 1052 #endif 1053 1054 SYSCTL_DECL(_net_link); 1055 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1056 "Ethernet"); 1057 1058 #if 0 1059 /* 1060 * This is for reference. We have a table-driven version 1061 * of the little-endian crc32 generator, which is faster 1062 * than the double-loop. 1063 */ 1064 uint32_t 1065 ether_crc32_le(const uint8_t *buf, size_t len) 1066 { 1067 size_t i; 1068 uint32_t crc; 1069 int bit; 1070 uint8_t data; 1071 1072 crc = 0xffffffff; /* initial value */ 1073 1074 for (i = 0; i < len; i++) { 1075 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1076 carry = (crc ^ data) & 1; 1077 crc >>= 1; 1078 if (carry) 1079 crc = (crc ^ ETHER_CRC_POLY_LE); 1080 } 1081 } 1082 1083 return (crc); 1084 } 1085 #else 1086 uint32_t 1087 ether_crc32_le(const uint8_t *buf, size_t len) 1088 { 1089 static const uint32_t crctab[] = { 1090 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1091 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1092 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1093 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1094 }; 1095 size_t i; 1096 uint32_t crc; 1097 1098 crc = 0xffffffff; /* initial value */ 1099 1100 for (i = 0; i < len; i++) { 1101 crc ^= buf[i]; 1102 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1103 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1104 } 1105 1106 return (crc); 1107 } 1108 #endif 1109 1110 uint32_t 1111 ether_crc32_be(const uint8_t *buf, size_t len) 1112 { 1113 size_t i; 1114 uint32_t crc, carry; 1115 int bit; 1116 uint8_t data; 1117 1118 crc = 0xffffffff; /* initial value */ 1119 1120 for (i = 0; i < len; i++) { 1121 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1122 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1123 crc <<= 1; 1124 if (carry) 1125 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1126 } 1127 } 1128 1129 return (crc); 1130 } 1131 1132 int 1133 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1134 { 1135 struct ifaddr *ifa = (struct ifaddr *) data; 1136 struct ifreq *ifr = (struct ifreq *) data; 1137 int error = 0; 1138 1139 switch (command) { 1140 case SIOCSIFADDR: 1141 ifp->if_flags |= IFF_UP; 1142 1143 switch (ifa->ifa_addr->sa_family) { 1144 #ifdef INET 1145 case AF_INET: 1146 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1147 arp_ifinit(ifp, ifa); 1148 break; 1149 #endif 1150 default: 1151 ifp->if_init(ifp->if_softc); 1152 break; 1153 } 1154 break; 1155 1156 case SIOCGIFADDR: 1157 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 1158 ETHER_ADDR_LEN); 1159 break; 1160 1161 case SIOCSIFMTU: 1162 /* 1163 * Set the interface MTU. 1164 */ 1165 if (ifr->ifr_mtu > ETHERMTU) { 1166 error = EINVAL; 1167 } else { 1168 ifp->if_mtu = ifr->ifr_mtu; 1169 } 1170 break; 1171 1172 case SIOCSLANPCP: 1173 error = priv_check(curthread, PRIV_NET_SETLANPCP); 1174 if (error != 0) 1175 break; 1176 if (ifr->ifr_lan_pcp > 7 && 1177 ifr->ifr_lan_pcp != IFNET_PCP_NONE) { 1178 error = EINVAL; 1179 } else { 1180 ifp->if_pcp = ifr->ifr_lan_pcp; 1181 /* broadcast event about PCP change */ 1182 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 1183 } 1184 break; 1185 1186 case SIOCGLANPCP: 1187 ifr->ifr_lan_pcp = ifp->if_pcp; 1188 break; 1189 1190 default: 1191 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1192 break; 1193 } 1194 return (error); 1195 } 1196 1197 static int 1198 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1199 struct sockaddr *sa) 1200 { 1201 struct sockaddr_dl *sdl; 1202 #ifdef INET 1203 struct sockaddr_in *sin; 1204 #endif 1205 #ifdef INET6 1206 struct sockaddr_in6 *sin6; 1207 #endif 1208 u_char *e_addr; 1209 1210 switch(sa->sa_family) { 1211 case AF_LINK: 1212 /* 1213 * No mapping needed. Just check that it's a valid MC address. 1214 */ 1215 sdl = (struct sockaddr_dl *)sa; 1216 e_addr = LLADDR(sdl); 1217 if (!ETHER_IS_MULTICAST(e_addr)) 1218 return EADDRNOTAVAIL; 1219 *llsa = NULL; 1220 return 0; 1221 1222 #ifdef INET 1223 case AF_INET: 1224 sin = (struct sockaddr_in *)sa; 1225 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1226 return EADDRNOTAVAIL; 1227 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1228 sdl->sdl_alen = ETHER_ADDR_LEN; 1229 e_addr = LLADDR(sdl); 1230 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1231 *llsa = (struct sockaddr *)sdl; 1232 return 0; 1233 #endif 1234 #ifdef INET6 1235 case AF_INET6: 1236 sin6 = (struct sockaddr_in6 *)sa; 1237 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1238 /* 1239 * An IP6 address of 0 means listen to all 1240 * of the Ethernet multicast address used for IP6. 1241 * (This is used for multicast routers.) 1242 */ 1243 ifp->if_flags |= IFF_ALLMULTI; 1244 *llsa = NULL; 1245 return 0; 1246 } 1247 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1248 return EADDRNOTAVAIL; 1249 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1250 sdl->sdl_alen = ETHER_ADDR_LEN; 1251 e_addr = LLADDR(sdl); 1252 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1253 *llsa = (struct sockaddr *)sdl; 1254 return 0; 1255 #endif 1256 1257 default: 1258 /* 1259 * Well, the text isn't quite right, but it's the name 1260 * that counts... 1261 */ 1262 return EAFNOSUPPORT; 1263 } 1264 } 1265 1266 static moduledata_t ether_mod = { 1267 .name = "ether", 1268 }; 1269 1270 void 1271 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1272 { 1273 struct ether_vlan_header vlan; 1274 struct mbuf mv, mb; 1275 1276 KASSERT((m->m_flags & M_VLANTAG) != 0, 1277 ("%s: vlan information not present", __func__)); 1278 KASSERT(m->m_len >= sizeof(struct ether_header), 1279 ("%s: mbuf not large enough for header", __func__)); 1280 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1281 vlan.evl_proto = vlan.evl_encap_proto; 1282 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1283 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1284 m->m_len -= sizeof(struct ether_header); 1285 m->m_data += sizeof(struct ether_header); 1286 /* 1287 * If a data link has been supplied by the caller, then we will need to 1288 * re-create a stack allocated mbuf chain with the following structure: 1289 * 1290 * (1) mbuf #1 will contain the supplied data link 1291 * (2) mbuf #2 will contain the vlan header 1292 * (3) mbuf #3 will contain the original mbuf's packet data 1293 * 1294 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1295 */ 1296 if (data != NULL) { 1297 mv.m_next = m; 1298 mv.m_data = (caddr_t)&vlan; 1299 mv.m_len = sizeof(vlan); 1300 mb.m_next = &mv; 1301 mb.m_data = data; 1302 mb.m_len = dlen; 1303 bpf_mtap(bp, &mb); 1304 } else 1305 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1306 m->m_len += sizeof(struct ether_header); 1307 m->m_data -= sizeof(struct ether_header); 1308 } 1309 1310 struct mbuf * 1311 ether_vlanencap(struct mbuf *m, uint16_t tag) 1312 { 1313 struct ether_vlan_header *evl; 1314 1315 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1316 if (m == NULL) 1317 return (NULL); 1318 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1319 1320 if (m->m_len < sizeof(*evl)) { 1321 m = m_pullup(m, sizeof(*evl)); 1322 if (m == NULL) 1323 return (NULL); 1324 } 1325 1326 /* 1327 * Transform the Ethernet header into an Ethernet header 1328 * with 802.1Q encapsulation. 1329 */ 1330 evl = mtod(m, struct ether_vlan_header *); 1331 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1332 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1333 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1334 evl->evl_tag = htons(tag); 1335 return (m); 1336 } 1337 1338 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1339 "IEEE 802.1Q VLAN"); 1340 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, 1341 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1342 "for consistency"); 1343 1344 VNET_DEFINE_STATIC(int, soft_pad); 1345 #define V_soft_pad VNET(soft_pad) 1346 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET, 1347 &VNET_NAME(soft_pad), 0, 1348 "pad short frames before tagging"); 1349 1350 /* 1351 * For now, make preserving PCP via an mbuf tag optional, as it increases 1352 * per-packet memory allocations and frees. In the future, it would be 1353 * preferable to reuse ether_vtag for this, or similar. 1354 */ 1355 int vlan_mtag_pcp = 0; 1356 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW, 1357 &vlan_mtag_pcp, 0, 1358 "Retain VLAN PCP information as packets are passed up the stack"); 1359 1360 bool 1361 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p, 1362 uint16_t vid, uint8_t pcp) 1363 { 1364 struct m_tag *mtag; 1365 int n; 1366 uint16_t tag; 1367 static const char pad[8]; /* just zeros */ 1368 1369 /* 1370 * Pad the frame to the minimum size allowed if told to. 1371 * This option is in accord with IEEE Std 802.1Q, 2003 Ed., 1372 * paragraph C.4.4.3.b. It can help to work around buggy 1373 * bridges that violate paragraph C.4.4.3.a from the same 1374 * document, i.e., fail to pad short frames after untagging. 1375 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but 1376 * untagging it will produce a 62-byte frame, which is a runt 1377 * and requires padding. There are VLAN-enabled network 1378 * devices that just discard such runts instead or mishandle 1379 * them somehow. 1380 */ 1381 if (V_soft_pad && p->if_type == IFT_ETHER) { 1382 for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len; 1383 n > 0; n -= sizeof(pad)) { 1384 if (!m_append(*mp, min(n, sizeof(pad)), pad)) 1385 break; 1386 } 1387 if (n > 0) { 1388 m_freem(*mp); 1389 *mp = NULL; 1390 if_printf(ife, "cannot pad short frame"); 1391 return (false); 1392 } 1393 } 1394 1395 /* 1396 * If underlying interface can do VLAN tag insertion itself, 1397 * just pass the packet along. However, we need some way to 1398 * tell the interface where the packet came from so that it 1399 * knows how to find the VLAN tag to use, so we attach a 1400 * packet tag that holds it. 1401 */ 1402 if (vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q, 1403 MTAG_8021Q_PCP_OUT, NULL)) != NULL) 1404 tag = EVL_MAKETAG(vid, *(uint8_t *)(mtag + 1), 0); 1405 else 1406 tag = EVL_MAKETAG(vid, pcp, 0); 1407 if (p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1408 (*mp)->m_pkthdr.ether_vtag = tag; 1409 (*mp)->m_flags |= M_VLANTAG; 1410 } else { 1411 *mp = ether_vlanencap(*mp, tag); 1412 if (*mp == NULL) { 1413 if_printf(ife, "unable to prepend 802.1Q header"); 1414 return (false); 1415 } 1416 } 1417 return (true); 1418 } 1419 1420 /* 1421 * Allocate an address from the FreeBSD Foundation OUI. This uses a 1422 * cryptographic hash function on the containing jail's UUID and the interface 1423 * name to attempt to provide a unique but stable address. Pseudo-interfaces 1424 * which require a MAC address should use this function to allocate 1425 * non-locally-administered addresses. 1426 */ 1427 void 1428 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr) 1429 { 1430 #define ETHER_GEN_ADDR_BUFSIZ HOSTUUIDLEN + IFNAMSIZ + 2 1431 SHA1_CTX ctx; 1432 char buf[ETHER_GEN_ADDR_BUFSIZ]; 1433 char uuid[HOSTUUIDLEN + 1]; 1434 uint64_t addr; 1435 int i, sz; 1436 char digest[SHA1_RESULTLEN]; 1437 1438 getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid)); 1439 sz = snprintf(buf, ETHER_GEN_ADDR_BUFSIZ, "%s-%s", uuid, ifp->if_xname); 1440 SHA1Init(&ctx); 1441 SHA1Update(&ctx, buf, sz); 1442 SHA1Final(digest, &ctx); 1443 1444 addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) & 1445 OUI_FREEBSD_GENERATED_MASK; 1446 addr = OUI_FREEBSD(addr); 1447 for (i = 0; i < ETHER_ADDR_LEN; ++i) { 1448 hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) & 1449 0xFF; 1450 } 1451 } 1452 1453 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1454 MODULE_VERSION(ether, 1); 1455