1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1990, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org> 7 * 8 * This code is derived from the Stanford/CMU enet packet filter, 9 * (net/enet.c) distributed as part of 4.3BSD, and code contributed 10 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence 11 * Berkeley Laboratory. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 #include "opt_bpf.h" 40 #include "opt_netgraph.h" 41 42 #include <sys/param.h> 43 #include <sys/conf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/fcntl.h> 46 #include <sys/jail.h> 47 #include <sys/ktr.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mbuf.h> 51 #include <sys/mutex.h> 52 #include <sys/time.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/signalvar.h> 56 #include <sys/filio.h> 57 #include <sys/sockio.h> 58 #include <sys/ttycom.h> 59 #include <sys/uio.h> 60 #include <sys/sysent.h> 61 #include <sys/systm.h> 62 63 #include <sys/event.h> 64 #include <sys/file.h> 65 #include <sys/poll.h> 66 #include <sys/proc.h> 67 68 #include <sys/socket.h> 69 70 #include <net/if.h> 71 #include <net/if_var.h> 72 #include <net/if_private.h> 73 #include <net/if_vlan_var.h> 74 #include <net/if_dl.h> 75 #include <net/bpf.h> 76 #include <net/bpf_buffer.h> 77 #ifdef BPF_JITTER 78 #include <net/bpf_jitter.h> 79 #endif 80 #include <net/bpf_zerocopy.h> 81 #include <net/bpfdesc.h> 82 #include <net/route.h> 83 #include <net/vnet.h> 84 85 #include <netinet/in.h> 86 #include <netinet/if_ether.h> 87 #include <sys/kernel.h> 88 #include <sys/sysctl.h> 89 90 #include <net80211/ieee80211_freebsd.h> 91 92 #include <security/mac/mac_framework.h> 93 94 MALLOC_DEFINE(M_BPF, "BPF", "BPF data"); 95 96 static const struct bpf_if_ext dead_bpf_if = { 97 .bif_dlist = CK_LIST_HEAD_INITIALIZER() 98 }; 99 100 struct bpf_if { 101 #define bif_next bif_ext.bif_next 102 #define bif_dlist bif_ext.bif_dlist 103 struct bpf_if_ext bif_ext; /* public members */ 104 u_int bif_dlt; /* link layer type */ 105 u_int bif_hdrlen; /* length of link header */ 106 struct bpfd_list bif_wlist; /* writer-only list */ 107 struct ifnet *bif_ifp; /* corresponding interface */ 108 struct bpf_if **bif_bpf; /* Pointer to pointer to us */ 109 volatile u_int bif_refcnt; 110 struct epoch_context epoch_ctx; 111 }; 112 113 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0); 114 115 struct bpf_program_buffer { 116 struct epoch_context epoch_ctx; 117 #ifdef BPF_JITTER 118 bpf_jit_filter *func; 119 #endif 120 void *buffer[0]; 121 }; 122 123 #if defined(DEV_BPF) || defined(NETGRAPH_BPF) 124 125 #define PRINET 26 /* interruptible */ 126 #define BPF_PRIO_MAX 7 127 128 #define SIZEOF_BPF_HDR(type) \ 129 (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen)) 130 131 #ifdef COMPAT_FREEBSD32 132 #include <sys/mount.h> 133 #include <compat/freebsd32/freebsd32.h> 134 #define BPF_ALIGNMENT32 sizeof(int32_t) 135 #define BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32) 136 137 #ifndef BURN_BRIDGES 138 /* 139 * 32-bit version of structure prepended to each packet. We use this header 140 * instead of the standard one for 32-bit streams. We mark the a stream as 141 * 32-bit the first time we see a 32-bit compat ioctl request. 142 */ 143 struct bpf_hdr32 { 144 struct timeval32 bh_tstamp; /* time stamp */ 145 uint32_t bh_caplen; /* length of captured portion */ 146 uint32_t bh_datalen; /* original length of packet */ 147 uint16_t bh_hdrlen; /* length of bpf header (this struct 148 plus alignment padding) */ 149 }; 150 #endif 151 152 struct bpf_program32 { 153 u_int bf_len; 154 uint32_t bf_insns; 155 }; 156 157 struct bpf_dltlist32 { 158 u_int bfl_len; 159 u_int bfl_list; 160 }; 161 162 #define BIOCSETF32 _IOW('B', 103, struct bpf_program32) 163 #define BIOCSRTIMEOUT32 _IOW('B', 109, struct timeval32) 164 #define BIOCGRTIMEOUT32 _IOR('B', 110, struct timeval32) 165 #define BIOCGDLTLIST32 _IOWR('B', 121, struct bpf_dltlist32) 166 #define BIOCSETWF32 _IOW('B', 123, struct bpf_program32) 167 #define BIOCSETFNR32 _IOW('B', 130, struct bpf_program32) 168 #endif 169 170 #define BPF_LOCK() sx_xlock(&bpf_sx) 171 #define BPF_UNLOCK() sx_xunlock(&bpf_sx) 172 #define BPF_LOCK_ASSERT() sx_assert(&bpf_sx, SA_XLOCKED) 173 /* 174 * bpf_iflist is a list of BPF interface structures, each corresponding to a 175 * specific DLT. The same network interface might have several BPF interface 176 * structures registered by different layers in the stack (i.e., 802.11 177 * frames, ethernet frames, etc). 178 */ 179 CK_LIST_HEAD(bpf_iflist, bpf_if); 180 static struct bpf_iflist bpf_iflist = CK_LIST_HEAD_INITIALIZER(); 181 static struct sx bpf_sx; /* bpf global lock */ 182 static int bpf_bpfd_cnt; 183 184 static void bpfif_ref(struct bpf_if *); 185 static void bpfif_rele(struct bpf_if *); 186 187 static void bpfd_ref(struct bpf_d *); 188 static void bpfd_rele(struct bpf_d *); 189 static void bpf_attachd(struct bpf_d *, struct bpf_if *); 190 static void bpf_detachd(struct bpf_d *, bool); 191 static void bpfd_free(epoch_context_t); 192 static int bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **, 193 struct sockaddr *, int *, struct bpf_d *); 194 static int bpf_setif(struct bpf_d *, struct ifreq *); 195 static void bpf_timed_out(void *); 196 static __inline void 197 bpf_wakeup(struct bpf_d *); 198 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int, 199 void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int), 200 struct bintime *); 201 static void reset_d(struct bpf_d *); 202 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd); 203 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *); 204 static int bpf_setdlt(struct bpf_d *, u_int); 205 static void filt_bpfdetach(struct knote *); 206 static int filt_bpfread(struct knote *, long); 207 static int filt_bpfwrite(struct knote *, long); 208 static void bpf_drvinit(void *); 209 static int bpf_stats_sysctl(SYSCTL_HANDLER_ARGS); 210 211 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 212 "bpf sysctl"); 213 int bpf_maxinsns = BPF_MAXINSNS; 214 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW, 215 &bpf_maxinsns, 0, "Maximum bpf program instructions"); 216 static int bpf_zerocopy_enable = 0; 217 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW, 218 &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions"); 219 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW, 220 bpf_stats_sysctl, "bpf statistics portal"); 221 222 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0; 223 #define V_bpf_optimize_writers VNET(bpf_optimize_writers) 224 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN, 225 &VNET_NAME(bpf_optimize_writers), 0, 226 "Do not send packets until BPF program is set"); 227 228 static d_open_t bpfopen; 229 static d_read_t bpfread; 230 static d_write_t bpfwrite; 231 static d_ioctl_t bpfioctl; 232 static d_poll_t bpfpoll; 233 static d_kqfilter_t bpfkqfilter; 234 235 static struct cdevsw bpf_cdevsw = { 236 .d_version = D_VERSION, 237 .d_open = bpfopen, 238 .d_read = bpfread, 239 .d_write = bpfwrite, 240 .d_ioctl = bpfioctl, 241 .d_poll = bpfpoll, 242 .d_name = "bpf", 243 .d_kqfilter = bpfkqfilter, 244 }; 245 246 static const struct filterops bpfread_filtops = { 247 .f_isfd = 1, 248 .f_detach = filt_bpfdetach, 249 .f_event = filt_bpfread, 250 .f_copy = knote_triv_copy, 251 }; 252 253 static const struct filterops bpfwrite_filtops = { 254 .f_isfd = 1, 255 .f_detach = filt_bpfdetach, 256 .f_event = filt_bpfwrite, 257 .f_copy = knote_triv_copy, 258 }; 259 260 /* 261 * LOCKING MODEL USED BY BPF 262 * 263 * Locks: 264 * 1) global lock (BPF_LOCK). Sx, used to protect some global counters, 265 * every bpf_iflist changes, serializes ioctl access to bpf descriptors. 266 * 2) Descriptor lock. Mutex, used to protect BPF buffers and various 267 * structure fields used by bpf_*tap* code. 268 * 269 * Lock order: global lock, then descriptor lock. 270 * 271 * There are several possible consumers: 272 * 273 * 1. The kernel registers interface pointer with bpfattach(). 274 * Each call allocates new bpf_if structure, references ifnet pointer 275 * and links bpf_if into bpf_iflist chain. This is protected with global 276 * lock. 277 * 278 * 2. An userland application uses ioctl() call to bpf_d descriptor. 279 * All such call are serialized with global lock. BPF filters can be 280 * changed, but pointer to old filter will be freed using NET_EPOCH_CALL(). 281 * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to 282 * filter pointers, even if change will happen during bpf_tap execution. 283 * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL(). 284 * 285 * 3. An userland application can write packets into bpf_d descriptor. 286 * There we need to be sure, that ifnet won't disappear during bpfwrite(). 287 * 288 * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to 289 * bif_dlist is protected with net_epoch_preempt section. So, it should 290 * be safe to make access to bpf_d descriptor inside the section. 291 * 292 * 5. The kernel invokes bpfdetach() on interface destroying. All lists 293 * are modified with global lock held and actual free() is done using 294 * NET_EPOCH_CALL(). 295 */ 296 297 static void 298 bpfif_free(epoch_context_t ctx) 299 { 300 struct bpf_if *bp; 301 302 bp = __containerof(ctx, struct bpf_if, epoch_ctx); 303 if_rele(bp->bif_ifp); 304 free(bp, M_BPF); 305 } 306 307 static void 308 bpfif_ref(struct bpf_if *bp) 309 { 310 311 refcount_acquire(&bp->bif_refcnt); 312 } 313 314 static void 315 bpfif_rele(struct bpf_if *bp) 316 { 317 318 if (!refcount_release(&bp->bif_refcnt)) 319 return; 320 NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx); 321 } 322 323 static void 324 bpfd_ref(struct bpf_d *d) 325 { 326 327 refcount_acquire(&d->bd_refcnt); 328 } 329 330 static void 331 bpfd_rele(struct bpf_d *d) 332 { 333 334 if (!refcount_release(&d->bd_refcnt)) 335 return; 336 NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx); 337 } 338 339 static struct bpf_program_buffer* 340 bpf_program_buffer_alloc(size_t size, int flags) 341 { 342 343 return (malloc(sizeof(struct bpf_program_buffer) + size, 344 M_BPF, flags)); 345 } 346 347 static void 348 bpf_program_buffer_free(epoch_context_t ctx) 349 { 350 struct bpf_program_buffer *ptr; 351 352 ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx); 353 #ifdef BPF_JITTER 354 if (ptr->func != NULL) 355 bpf_destroy_jit_filter(ptr->func); 356 #endif 357 free(ptr, M_BPF); 358 } 359 360 /* 361 * Wrapper functions for various buffering methods. If the set of buffer 362 * modes expands, we will probably want to introduce a switch data structure 363 * similar to protosw, et. 364 */ 365 static void 366 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src, 367 u_int len) 368 { 369 370 BPFD_LOCK_ASSERT(d); 371 372 switch (d->bd_bufmode) { 373 case BPF_BUFMODE_BUFFER: 374 return (bpf_buffer_append_bytes(d, buf, offset, src, len)); 375 376 case BPF_BUFMODE_ZBUF: 377 counter_u64_add(d->bd_zcopy, 1); 378 return (bpf_zerocopy_append_bytes(d, buf, offset, src, len)); 379 380 default: 381 panic("bpf_buf_append_bytes"); 382 } 383 } 384 385 static void 386 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src, 387 u_int len) 388 { 389 390 BPFD_LOCK_ASSERT(d); 391 392 switch (d->bd_bufmode) { 393 case BPF_BUFMODE_BUFFER: 394 return (bpf_buffer_append_mbuf(d, buf, offset, src, len)); 395 396 case BPF_BUFMODE_ZBUF: 397 counter_u64_add(d->bd_zcopy, 1); 398 return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len)); 399 400 default: 401 panic("bpf_buf_append_mbuf"); 402 } 403 } 404 405 /* 406 * This function gets called when the free buffer is re-assigned. 407 */ 408 static void 409 bpf_buf_reclaimed(struct bpf_d *d) 410 { 411 412 BPFD_LOCK_ASSERT(d); 413 414 switch (d->bd_bufmode) { 415 case BPF_BUFMODE_BUFFER: 416 return; 417 418 case BPF_BUFMODE_ZBUF: 419 bpf_zerocopy_buf_reclaimed(d); 420 return; 421 422 default: 423 panic("bpf_buf_reclaimed"); 424 } 425 } 426 427 /* 428 * If the buffer mechanism has a way to decide that a held buffer can be made 429 * free, then it is exposed via the bpf_canfreebuf() interface. (1) is 430 * returned if the buffer can be discarded, (0) is returned if it cannot. 431 */ 432 static int 433 bpf_canfreebuf(struct bpf_d *d) 434 { 435 436 BPFD_LOCK_ASSERT(d); 437 438 switch (d->bd_bufmode) { 439 case BPF_BUFMODE_ZBUF: 440 return (bpf_zerocopy_canfreebuf(d)); 441 } 442 return (0); 443 } 444 445 /* 446 * Allow the buffer model to indicate that the current store buffer is 447 * immutable, regardless of the appearance of space. Return (1) if the 448 * buffer is writable, and (0) if not. 449 */ 450 static int 451 bpf_canwritebuf(struct bpf_d *d) 452 { 453 BPFD_LOCK_ASSERT(d); 454 455 switch (d->bd_bufmode) { 456 case BPF_BUFMODE_ZBUF: 457 return (bpf_zerocopy_canwritebuf(d)); 458 } 459 return (1); 460 } 461 462 /* 463 * Notify buffer model that an attempt to write to the store buffer has 464 * resulted in a dropped packet, in which case the buffer may be considered 465 * full. 466 */ 467 static void 468 bpf_buffull(struct bpf_d *d) 469 { 470 471 BPFD_LOCK_ASSERT(d); 472 473 switch (d->bd_bufmode) { 474 case BPF_BUFMODE_ZBUF: 475 bpf_zerocopy_buffull(d); 476 break; 477 } 478 } 479 480 /* 481 * Notify the buffer model that a buffer has moved into the hold position. 482 */ 483 void 484 bpf_bufheld(struct bpf_d *d) 485 { 486 487 BPFD_LOCK_ASSERT(d); 488 489 switch (d->bd_bufmode) { 490 case BPF_BUFMODE_ZBUF: 491 bpf_zerocopy_bufheld(d); 492 break; 493 } 494 } 495 496 static void 497 bpf_free(struct bpf_d *d) 498 { 499 500 switch (d->bd_bufmode) { 501 case BPF_BUFMODE_BUFFER: 502 return (bpf_buffer_free(d)); 503 504 case BPF_BUFMODE_ZBUF: 505 return (bpf_zerocopy_free(d)); 506 507 default: 508 panic("bpf_buf_free"); 509 } 510 } 511 512 static int 513 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio) 514 { 515 516 if (d->bd_bufmode != BPF_BUFMODE_BUFFER) 517 return (EOPNOTSUPP); 518 return (bpf_buffer_uiomove(d, buf, len, uio)); 519 } 520 521 static int 522 bpf_ioctl_sblen(struct bpf_d *d, u_int *i) 523 { 524 525 if (d->bd_bufmode != BPF_BUFMODE_BUFFER) 526 return (EOPNOTSUPP); 527 return (bpf_buffer_ioctl_sblen(d, i)); 528 } 529 530 static int 531 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i) 532 { 533 534 if (d->bd_bufmode != BPF_BUFMODE_ZBUF) 535 return (EOPNOTSUPP); 536 return (bpf_zerocopy_ioctl_getzmax(td, d, i)); 537 } 538 539 static int 540 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz) 541 { 542 543 if (d->bd_bufmode != BPF_BUFMODE_ZBUF) 544 return (EOPNOTSUPP); 545 return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz)); 546 } 547 548 static int 549 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz) 550 { 551 552 if (d->bd_bufmode != BPF_BUFMODE_ZBUF) 553 return (EOPNOTSUPP); 554 return (bpf_zerocopy_ioctl_setzbuf(td, d, bz)); 555 } 556 557 /* 558 * General BPF functions. 559 */ 560 static int 561 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp, 562 struct sockaddr *sockp, int *hdrlen, struct bpf_d *d) 563 { 564 const struct ieee80211_bpf_params *p; 565 struct ether_header *eh; 566 struct mbuf *m; 567 int error; 568 int len; 569 int hlen; 570 int slen; 571 572 /* 573 * Build a sockaddr based on the data link layer type. 574 * We do this at this level because the ethernet header 575 * is copied directly into the data field of the sockaddr. 576 * In the case of SLIP, there is no header and the packet 577 * is forwarded as is. 578 * Also, we are careful to leave room at the front of the mbuf 579 * for the link level header. 580 */ 581 switch (linktype) { 582 case DLT_SLIP: 583 sockp->sa_family = AF_INET; 584 hlen = 0; 585 break; 586 587 case DLT_EN10MB: 588 sockp->sa_family = AF_UNSPEC; 589 /* XXX Would MAXLINKHDR be better? */ 590 hlen = ETHER_HDR_LEN; 591 break; 592 593 case DLT_FDDI: 594 sockp->sa_family = AF_IMPLINK; 595 hlen = 0; 596 break; 597 598 case DLT_RAW: 599 sockp->sa_family = AF_UNSPEC; 600 hlen = 0; 601 break; 602 603 case DLT_NULL: 604 /* 605 * null interface types require a 4 byte pseudo header which 606 * corresponds to the address family of the packet. 607 */ 608 sockp->sa_family = AF_UNSPEC; 609 hlen = 4; 610 break; 611 612 case DLT_ATM_RFC1483: 613 /* 614 * en atm driver requires 4-byte atm pseudo header. 615 * though it isn't standard, vpi:vci needs to be 616 * specified anyway. 617 */ 618 sockp->sa_family = AF_UNSPEC; 619 hlen = 12; /* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */ 620 break; 621 622 case DLT_PPP: 623 sockp->sa_family = AF_UNSPEC; 624 hlen = 4; /* This should match PPP_HDRLEN */ 625 break; 626 627 case DLT_IEEE802_11: /* IEEE 802.11 wireless */ 628 sockp->sa_family = AF_IEEE80211; 629 hlen = 0; 630 break; 631 632 case DLT_IEEE802_11_RADIO: /* IEEE 802.11 wireless w/ phy params */ 633 sockp->sa_family = AF_IEEE80211; 634 sockp->sa_len = 12; /* XXX != 0 */ 635 hlen = sizeof(struct ieee80211_bpf_params); 636 break; 637 638 default: 639 return (EIO); 640 } 641 642 len = uio->uio_resid; 643 if (len < hlen || len - hlen > ifp->if_mtu) 644 return (EMSGSIZE); 645 646 /* Allocate a mbuf, up to MJUM16BYTES bytes, for our write. */ 647 m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR); 648 if (m == NULL) 649 return (EIO); 650 m->m_pkthdr.len = m->m_len = len; 651 *mp = m; 652 653 error = uiomove(mtod(m, u_char *), len, uio); 654 if (error) 655 goto bad; 656 657 slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len); 658 if (slen == 0) { 659 error = EPERM; 660 goto bad; 661 } 662 663 /* Check for multicast destination */ 664 switch (linktype) { 665 case DLT_EN10MB: 666 eh = mtod(m, struct ether_header *); 667 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 668 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost, 669 ETHER_ADDR_LEN) == 0) 670 m->m_flags |= M_BCAST; 671 else 672 m->m_flags |= M_MCAST; 673 } 674 if (d->bd_hdrcmplt == 0) { 675 memcpy(eh->ether_shost, IF_LLADDR(ifp), 676 sizeof(eh->ether_shost)); 677 } 678 break; 679 } 680 681 /* 682 * Make room for link header, and copy it to sockaddr 683 */ 684 if (hlen != 0) { 685 if (sockp->sa_family == AF_IEEE80211) { 686 /* 687 * Collect true length from the parameter header 688 * NB: sockp is known to be zero'd so if we do a 689 * short copy unspecified parameters will be 690 * zero. 691 * NB: packet may not be aligned after stripping 692 * bpf params 693 * XXX check ibp_vers 694 */ 695 p = mtod(m, const struct ieee80211_bpf_params *); 696 hlen = p->ibp_len; 697 if (hlen > sizeof(sockp->sa_data)) { 698 error = EINVAL; 699 goto bad; 700 } 701 } 702 bcopy(mtod(m, const void *), sockp->sa_data, hlen); 703 } 704 *hdrlen = hlen; 705 706 return (0); 707 bad: 708 m_freem(m); 709 return (error); 710 } 711 712 /* 713 * Attach descriptor to the bpf interface, i.e. make d listen on bp, 714 * then reset its buffers and counters with reset_d(). 715 */ 716 static void 717 bpf_attachd(struct bpf_d *d, struct bpf_if *bp) 718 { 719 int op_w; 720 721 BPF_LOCK_ASSERT(); 722 723 /* 724 * Save sysctl value to protect from sysctl change 725 * between reads 726 */ 727 op_w = V_bpf_optimize_writers || d->bd_writer; 728 729 if (d->bd_bif != NULL) 730 bpf_detachd(d, false); 731 /* 732 * Point d at bp, and add d to the interface's list. 733 * Since there are many applications using BPF for 734 * sending raw packets only (dhcpd, cdpd are good examples) 735 * we can delay adding d to the list of active listeners until 736 * some filter is configured. 737 */ 738 739 BPFD_LOCK(d); 740 /* 741 * Hold reference to bpif while descriptor uses this interface. 742 */ 743 bpfif_ref(bp); 744 d->bd_bif = bp; 745 if (op_w != 0) { 746 /* Add to writers-only list */ 747 CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next); 748 /* 749 * We decrement bd_writer on every filter set operation. 750 * First BIOCSETF is done by pcap_open_live() to set up 751 * snap length. After that appliation usually sets its own 752 * filter. 753 */ 754 d->bd_writer = 2; 755 } else 756 CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next); 757 758 reset_d(d); 759 760 /* Trigger EVFILT_WRITE events. */ 761 bpf_wakeup(d); 762 763 BPFD_UNLOCK(d); 764 bpf_bpfd_cnt++; 765 766 CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list", 767 __func__, d->bd_pid, d->bd_writer ? "writer" : "active"); 768 769 if (op_w == 0) 770 EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1); 771 } 772 773 /* 774 * Check if we need to upgrade our descriptor @d from write-only mode. 775 */ 776 static int 777 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode, 778 int flen) 779 { 780 int is_snap, need_upgrade; 781 782 /* 783 * Check if we've already upgraded or new filter is empty. 784 */ 785 if (d->bd_writer == 0 || fcode == NULL) 786 return (0); 787 788 need_upgrade = 0; 789 790 /* 791 * Check if cmd looks like snaplen setting from 792 * pcap_bpf.c:pcap_open_live(). 793 * Note we're not checking .k value here: 794 * while pcap_open_live() definitely sets to non-zero value, 795 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g. 796 * do not consider upgrading immediately 797 */ 798 if (cmd == BIOCSETF && flen == 1 && 799 fcode[0].code == (BPF_RET | BPF_K)) 800 is_snap = 1; 801 else 802 is_snap = 0; 803 804 if (is_snap == 0) { 805 /* 806 * We're setting first filter and it doesn't look like 807 * setting snaplen. We're probably using bpf directly. 808 * Upgrade immediately. 809 */ 810 need_upgrade = 1; 811 } else { 812 /* 813 * Do not require upgrade by first BIOCSETF 814 * (used to set snaplen) by pcap_open_live(). 815 */ 816 817 if (--d->bd_writer == 0) { 818 /* 819 * First snaplen filter has already 820 * been set. This is probably catch-all 821 * filter 822 */ 823 need_upgrade = 1; 824 } 825 } 826 827 CTR5(KTR_NET, 828 "%s: filter function set by pid %d, " 829 "bd_writer counter %d, snap %d upgrade %d", 830 __func__, d->bd_pid, d->bd_writer, 831 is_snap, need_upgrade); 832 833 return (need_upgrade); 834 } 835 836 /* 837 * Detach a file from its interface. 838 */ 839 static void 840 bpf_detachd(struct bpf_d *d, bool detached_ifp) 841 { 842 struct bpf_if *bp; 843 struct ifnet *ifp; 844 int error; 845 846 BPF_LOCK_ASSERT(); 847 CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid); 848 849 /* Check if descriptor is attached */ 850 if ((bp = d->bd_bif) == NULL) 851 return; 852 853 BPFD_LOCK(d); 854 /* Remove d from the interface's descriptor list. */ 855 CK_LIST_REMOVE(d, bd_next); 856 /* Save bd_writer value */ 857 error = d->bd_writer; 858 ifp = bp->bif_ifp; 859 d->bd_bif = NULL; 860 if (detached_ifp) { 861 /* 862 * Notify descriptor as it's detached, so that any 863 * sleepers wake up and get ENXIO. 864 */ 865 bpf_wakeup(d); 866 } 867 BPFD_UNLOCK(d); 868 bpf_bpfd_cnt--; 869 870 /* Call event handler iff d is attached */ 871 if (error == 0) 872 EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0); 873 874 /* 875 * Check if this descriptor had requested promiscuous mode. 876 * If so and ifnet is not detached, turn it off. 877 */ 878 if (d->bd_promisc && !detached_ifp) { 879 d->bd_promisc = 0; 880 CURVNET_SET(ifp->if_vnet); 881 error = ifpromisc(ifp, 0); 882 CURVNET_RESTORE(); 883 if (error != 0 && error != ENXIO) { 884 /* 885 * ENXIO can happen if a pccard is unplugged 886 * Something is really wrong if we were able to put 887 * the driver into promiscuous mode, but can't 888 * take it out. 889 */ 890 if_printf(bp->bif_ifp, 891 "bpf_detach: ifpromisc failed (%d)\n", error); 892 } 893 } 894 bpfif_rele(bp); 895 } 896 897 /* 898 * Close the descriptor by detaching it from its interface, 899 * deallocating its buffers, and marking it free. 900 */ 901 static void 902 bpf_dtor(void *data) 903 { 904 struct bpf_d *d = data; 905 906 BPFD_LOCK(d); 907 if (d->bd_state == BPF_WAITING) 908 callout_stop(&d->bd_callout); 909 d->bd_state = BPF_IDLE; 910 BPFD_UNLOCK(d); 911 funsetown(&d->bd_sigio); 912 BPF_LOCK(); 913 bpf_detachd(d, false); 914 BPF_UNLOCK(); 915 #ifdef MAC 916 mac_bpfdesc_destroy(d); 917 #endif /* MAC */ 918 seldrain(&d->bd_sel); 919 knlist_destroy(&d->bd_sel.si_note); 920 callout_drain(&d->bd_callout); 921 bpfd_rele(d); 922 } 923 924 /* 925 * Open ethernet device. Returns ENXIO for illegal minor device number, 926 * EBUSY if file is open by another process. 927 */ 928 /* ARGSUSED */ 929 static int 930 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td) 931 { 932 struct bpf_d *d; 933 int error; 934 935 d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO); 936 error = devfs_set_cdevpriv(d, bpf_dtor); 937 if (error != 0) { 938 free(d, M_BPF); 939 return (error); 940 } 941 942 /* Setup counters */ 943 d->bd_rcount = counter_u64_alloc(M_WAITOK); 944 d->bd_dcount = counter_u64_alloc(M_WAITOK); 945 d->bd_fcount = counter_u64_alloc(M_WAITOK); 946 d->bd_wcount = counter_u64_alloc(M_WAITOK); 947 d->bd_wfcount = counter_u64_alloc(M_WAITOK); 948 d->bd_wdcount = counter_u64_alloc(M_WAITOK); 949 d->bd_zcopy = counter_u64_alloc(M_WAITOK); 950 951 /* 952 * For historical reasons, perform a one-time initialization call to 953 * the buffer routines, even though we're not yet committed to a 954 * particular buffer method. 955 */ 956 bpf_buffer_init(d); 957 if ((flags & FREAD) == 0) 958 d->bd_writer = 2; 959 d->bd_hbuf_in_use = 0; 960 d->bd_bufmode = BPF_BUFMODE_BUFFER; 961 d->bd_sig = SIGIO; 962 d->bd_direction = BPF_D_INOUT; 963 refcount_init(&d->bd_refcnt, 1); 964 BPF_PID_REFRESH(d, td); 965 #ifdef MAC 966 mac_bpfdesc_init(d); 967 mac_bpfdesc_create(td->td_ucred, d); 968 #endif 969 mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF); 970 callout_init_mtx(&d->bd_callout, &d->bd_lock, 0); 971 knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock); 972 973 /* Disable VLAN pcp tagging. */ 974 d->bd_pcp = 0; 975 976 return (0); 977 } 978 979 /* 980 * bpfread - read next chunk of packets from buffers 981 */ 982 static int 983 bpfread(struct cdev *dev, struct uio *uio, int ioflag) 984 { 985 struct bpf_d *d; 986 int error; 987 int non_block; 988 int timed_out; 989 990 error = devfs_get_cdevpriv((void **)&d); 991 if (error != 0) 992 return (error); 993 994 /* 995 * Restrict application to use a buffer the same size as 996 * as kernel buffers. 997 */ 998 if (uio->uio_resid != d->bd_bufsize) 999 return (EINVAL); 1000 1001 non_block = ((ioflag & O_NONBLOCK) != 0); 1002 1003 BPFD_LOCK(d); 1004 BPF_PID_REFRESH_CUR(d); 1005 if (d->bd_bufmode != BPF_BUFMODE_BUFFER) { 1006 BPFD_UNLOCK(d); 1007 return (EOPNOTSUPP); 1008 } 1009 if (d->bd_state == BPF_WAITING) 1010 callout_stop(&d->bd_callout); 1011 timed_out = (d->bd_state == BPF_TIMED_OUT); 1012 d->bd_state = BPF_IDLE; 1013 while (d->bd_hbuf_in_use) { 1014 error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, 1015 PRINET | PCATCH, "bd_hbuf", 0); 1016 if (error != 0) { 1017 BPFD_UNLOCK(d); 1018 return (error); 1019 } 1020 } 1021 /* 1022 * If the hold buffer is empty, then do a timed sleep, which 1023 * ends when the timeout expires or when enough packets 1024 * have arrived to fill the store buffer. 1025 */ 1026 while (d->bd_hbuf == NULL) { 1027 if (d->bd_slen != 0) { 1028 /* 1029 * A packet(s) either arrived since the previous 1030 * read or arrived while we were asleep. 1031 */ 1032 if (d->bd_immediate || non_block || timed_out) { 1033 /* 1034 * Rotate the buffers and return what's here 1035 * if we are in immediate mode, non-blocking 1036 * flag is set, or this descriptor timed out. 1037 */ 1038 ROTATE_BUFFERS(d); 1039 break; 1040 } 1041 } 1042 1043 /* 1044 * No data is available, check to see if the bpf device 1045 * is still pointed at a real interface. If not, return 1046 * ENXIO so that the userland process knows to rebind 1047 * it before using it again. 1048 */ 1049 if (d->bd_bif == NULL) { 1050 BPFD_UNLOCK(d); 1051 return (ENXIO); 1052 } 1053 1054 if (non_block) { 1055 BPFD_UNLOCK(d); 1056 return (EWOULDBLOCK); 1057 } 1058 error = msleep(d, &d->bd_lock, PRINET | PCATCH, 1059 "bpf", d->bd_rtout); 1060 if (error == EINTR || error == ERESTART) { 1061 BPFD_UNLOCK(d); 1062 return (error); 1063 } 1064 if (error == EWOULDBLOCK) { 1065 /* 1066 * On a timeout, return what's in the buffer, 1067 * which may be nothing. If there is something 1068 * in the store buffer, we can rotate the buffers. 1069 */ 1070 if (d->bd_hbuf) 1071 /* 1072 * We filled up the buffer in between 1073 * getting the timeout and arriving 1074 * here, so we don't need to rotate. 1075 */ 1076 break; 1077 1078 if (d->bd_slen == 0) { 1079 BPFD_UNLOCK(d); 1080 return (0); 1081 } 1082 ROTATE_BUFFERS(d); 1083 break; 1084 } 1085 } 1086 /* 1087 * At this point, we know we have something in the hold slot. 1088 */ 1089 d->bd_hbuf_in_use = 1; 1090 BPFD_UNLOCK(d); 1091 1092 /* 1093 * Move data from hold buffer into user space. 1094 * We know the entire buffer is transferred since 1095 * we checked above that the read buffer is bpf_bufsize bytes. 1096 * 1097 * We do not have to worry about simultaneous reads because 1098 * we waited for sole access to the hold buffer above. 1099 */ 1100 error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio); 1101 1102 BPFD_LOCK(d); 1103 if (d->bd_hbuf_in_use) { 1104 KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf")); 1105 d->bd_fbuf = d->bd_hbuf; 1106 d->bd_hbuf = NULL; 1107 d->bd_hlen = 0; 1108 bpf_buf_reclaimed(d); 1109 d->bd_hbuf_in_use = 0; 1110 wakeup(&d->bd_hbuf_in_use); 1111 } 1112 BPFD_UNLOCK(d); 1113 1114 return (error); 1115 } 1116 1117 /* 1118 * If there are processes sleeping on this descriptor, wake them up. 1119 */ 1120 static __inline void 1121 bpf_wakeup(struct bpf_d *d) 1122 { 1123 1124 BPFD_LOCK_ASSERT(d); 1125 if (d->bd_state == BPF_WAITING) { 1126 callout_stop(&d->bd_callout); 1127 d->bd_state = BPF_IDLE; 1128 } 1129 wakeup(d); 1130 if (d->bd_async && d->bd_sig && d->bd_sigio) 1131 pgsigio(&d->bd_sigio, d->bd_sig, 0); 1132 1133 selwakeuppri(&d->bd_sel, PRINET); 1134 KNOTE_LOCKED(&d->bd_sel.si_note, 0); 1135 } 1136 1137 static void 1138 bpf_timed_out(void *arg) 1139 { 1140 struct bpf_d *d = (struct bpf_d *)arg; 1141 1142 BPFD_LOCK_ASSERT(d); 1143 1144 if (callout_pending(&d->bd_callout) || 1145 !callout_active(&d->bd_callout)) 1146 return; 1147 if (d->bd_state == BPF_WAITING) { 1148 d->bd_state = BPF_TIMED_OUT; 1149 if (d->bd_slen != 0) 1150 bpf_wakeup(d); 1151 } 1152 } 1153 1154 static int 1155 bpf_ready(struct bpf_d *d) 1156 { 1157 1158 BPFD_LOCK_ASSERT(d); 1159 1160 if (!bpf_canfreebuf(d) && d->bd_hlen != 0) 1161 return (1); 1162 if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) && 1163 d->bd_slen != 0) 1164 return (1); 1165 return (0); 1166 } 1167 1168 static int 1169 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag) 1170 { 1171 struct route ro; 1172 struct sockaddr dst; 1173 struct epoch_tracker et; 1174 struct bpf_if *bp; 1175 struct bpf_d *d; 1176 struct ifnet *ifp; 1177 struct mbuf *m, *mc; 1178 int error, hlen; 1179 1180 error = devfs_get_cdevpriv((void **)&d); 1181 if (error != 0) 1182 return (error); 1183 1184 NET_EPOCH_ENTER(et); 1185 BPFD_LOCK(d); 1186 BPF_PID_REFRESH_CUR(d); 1187 counter_u64_add(d->bd_wcount, 1); 1188 if ((bp = d->bd_bif) == NULL) { 1189 error = ENXIO; 1190 goto out_locked; 1191 } 1192 1193 ifp = bp->bif_ifp; 1194 if ((ifp->if_flags & IFF_UP) == 0) { 1195 error = ENETDOWN; 1196 goto out_locked; 1197 } 1198 1199 if (uio->uio_resid == 0) 1200 goto out_locked; 1201 1202 bzero(&dst, sizeof(dst)); 1203 m = NULL; 1204 hlen = 0; 1205 1206 /* 1207 * Take extra reference, unlock d and exit from epoch section, 1208 * since bpf_movein() can sleep. 1209 */ 1210 bpfd_ref(d); 1211 NET_EPOCH_EXIT(et); 1212 BPFD_UNLOCK(d); 1213 1214 error = bpf_movein(uio, (int)bp->bif_dlt, ifp, 1215 &m, &dst, &hlen, d); 1216 1217 if (error != 0) { 1218 counter_u64_add(d->bd_wdcount, 1); 1219 bpfd_rele(d); 1220 return (error); 1221 } 1222 1223 BPFD_LOCK(d); 1224 /* 1225 * Check that descriptor is still attached to the interface. 1226 * This can happen on bpfdetach(). To avoid access to detached 1227 * ifnet, free mbuf and return ENXIO. 1228 */ 1229 if (d->bd_bif == NULL) { 1230 counter_u64_add(d->bd_wdcount, 1); 1231 BPFD_UNLOCK(d); 1232 bpfd_rele(d); 1233 m_freem(m); 1234 return (ENXIO); 1235 } 1236 counter_u64_add(d->bd_wfcount, 1); 1237 if (d->bd_hdrcmplt) 1238 dst.sa_family = pseudo_AF_HDRCMPLT; 1239 1240 if (d->bd_feedback) { 1241 mc = m_dup(m, M_NOWAIT); 1242 if (mc != NULL) 1243 mc->m_pkthdr.rcvif = ifp; 1244 /* Set M_PROMISC for outgoing packets to be discarded. */ 1245 if (d->bd_direction == BPF_D_INOUT) 1246 m->m_flags |= M_PROMISC; 1247 } else 1248 mc = NULL; 1249 1250 m->m_pkthdr.len -= hlen; 1251 m->m_len -= hlen; 1252 m->m_data += hlen; /* XXX */ 1253 1254 CURVNET_SET(ifp->if_vnet); 1255 #ifdef MAC 1256 mac_bpfdesc_create_mbuf(d, m); 1257 if (mc != NULL) 1258 mac_bpfdesc_create_mbuf(d, mc); 1259 #endif 1260 1261 bzero(&ro, sizeof(ro)); 1262 if (hlen != 0) { 1263 ro.ro_prepend = (u_char *)&dst.sa_data; 1264 ro.ro_plen = hlen; 1265 ro.ro_flags = RT_HAS_HEADER; 1266 } 1267 1268 if (d->bd_pcp != 0) 1269 vlan_set_pcp(m, d->bd_pcp); 1270 1271 /* Avoid possible recursion on BPFD_LOCK(). */ 1272 NET_EPOCH_ENTER(et); 1273 BPFD_UNLOCK(d); 1274 error = (*ifp->if_output)(ifp, m, &dst, &ro); 1275 if (error) 1276 counter_u64_add(d->bd_wdcount, 1); 1277 1278 if (mc != NULL) { 1279 if (error == 0) 1280 (*ifp->if_input)(ifp, mc); 1281 else 1282 m_freem(mc); 1283 } 1284 NET_EPOCH_EXIT(et); 1285 CURVNET_RESTORE(); 1286 bpfd_rele(d); 1287 return (error); 1288 1289 out_locked: 1290 counter_u64_add(d->bd_wdcount, 1); 1291 NET_EPOCH_EXIT(et); 1292 BPFD_UNLOCK(d); 1293 return (error); 1294 } 1295 1296 /* 1297 * Reset a descriptor by flushing its packet buffer and clearing the receive 1298 * and drop counts. This is doable for kernel-only buffers, but with 1299 * zero-copy buffers, we can't write to (or rotate) buffers that are 1300 * currently owned by userspace. It would be nice if we could encapsulate 1301 * this logic in the buffer code rather than here. 1302 */ 1303 static void 1304 reset_d(struct bpf_d *d) 1305 { 1306 1307 BPFD_LOCK_ASSERT(d); 1308 1309 while (d->bd_hbuf_in_use) 1310 mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET, 1311 "bd_hbuf", 0); 1312 if ((d->bd_hbuf != NULL) && 1313 (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) { 1314 /* Free the hold buffer. */ 1315 d->bd_fbuf = d->bd_hbuf; 1316 d->bd_hbuf = NULL; 1317 d->bd_hlen = 0; 1318 bpf_buf_reclaimed(d); 1319 } 1320 if (bpf_canwritebuf(d)) 1321 d->bd_slen = 0; 1322 counter_u64_zero(d->bd_rcount); 1323 counter_u64_zero(d->bd_dcount); 1324 counter_u64_zero(d->bd_fcount); 1325 counter_u64_zero(d->bd_wcount); 1326 counter_u64_zero(d->bd_wfcount); 1327 counter_u64_zero(d->bd_wdcount); 1328 counter_u64_zero(d->bd_zcopy); 1329 } 1330 1331 /* 1332 * FIONREAD Check for read packet available. 1333 * BIOCGBLEN Get buffer len [for read()]. 1334 * BIOCSETF Set read filter. 1335 * BIOCSETFNR Set read filter without resetting descriptor. 1336 * BIOCSETWF Set write filter. 1337 * BIOCFLUSH Flush read packet buffer. 1338 * BIOCPROMISC Put interface into promiscuous mode. 1339 * BIOCGDLT Get link layer type. 1340 * BIOCGETIF Get interface name. 1341 * BIOCSETIF Set interface. 1342 * BIOCSRTIMEOUT Set read timeout. 1343 * BIOCGRTIMEOUT Get read timeout. 1344 * BIOCGSTATS Get packet stats. 1345 * BIOCIMMEDIATE Set immediate mode. 1346 * BIOCVERSION Get filter language version. 1347 * BIOCGHDRCMPLT Get "header already complete" flag 1348 * BIOCSHDRCMPLT Set "header already complete" flag 1349 * BIOCGDIRECTION Get packet direction flag 1350 * BIOCSDIRECTION Set packet direction flag 1351 * BIOCGTSTAMP Get time stamp format and resolution. 1352 * BIOCSTSTAMP Set time stamp format and resolution. 1353 * BIOCLOCK Set "locked" flag 1354 * BIOCFEEDBACK Set packet feedback mode. 1355 * BIOCSETZBUF Set current zero-copy buffer locations. 1356 * BIOCGETZMAX Get maximum zero-copy buffer size. 1357 * BIOCROTZBUF Force rotation of zero-copy buffer 1358 * BIOCSETBUFMODE Set buffer mode. 1359 * BIOCGETBUFMODE Get current buffer mode. 1360 * BIOCSETVLANPCP Set VLAN PCP tag. 1361 */ 1362 /* ARGSUSED */ 1363 static int 1364 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags, 1365 struct thread *td) 1366 { 1367 struct bpf_d *d; 1368 int error; 1369 1370 error = devfs_get_cdevpriv((void **)&d); 1371 if (error != 0) 1372 return (error); 1373 1374 /* 1375 * Refresh PID associated with this descriptor. 1376 */ 1377 BPFD_LOCK(d); 1378 BPF_PID_REFRESH(d, td); 1379 if (d->bd_state == BPF_WAITING) 1380 callout_stop(&d->bd_callout); 1381 d->bd_state = BPF_IDLE; 1382 BPFD_UNLOCK(d); 1383 1384 if (d->bd_locked == 1) { 1385 switch (cmd) { 1386 case BIOCGBLEN: 1387 case BIOCFLUSH: 1388 case BIOCGDLT: 1389 case BIOCGDLTLIST: 1390 #ifdef COMPAT_FREEBSD32 1391 case BIOCGDLTLIST32: 1392 #endif 1393 case BIOCGETIF: 1394 case BIOCGRTIMEOUT: 1395 #if defined(COMPAT_FREEBSD32) && defined(__amd64__) 1396 case BIOCGRTIMEOUT32: 1397 #endif 1398 case BIOCGSTATS: 1399 case BIOCVERSION: 1400 case BIOCGRSIG: 1401 case BIOCGHDRCMPLT: 1402 case BIOCSTSTAMP: 1403 case BIOCFEEDBACK: 1404 case FIONREAD: 1405 case BIOCLOCK: 1406 case BIOCSRTIMEOUT: 1407 #if defined(COMPAT_FREEBSD32) && defined(__amd64__) 1408 case BIOCSRTIMEOUT32: 1409 #endif 1410 case BIOCIMMEDIATE: 1411 case TIOCGPGRP: 1412 case BIOCROTZBUF: 1413 break; 1414 default: 1415 return (EPERM); 1416 } 1417 } 1418 #ifdef COMPAT_FREEBSD32 1419 /* 1420 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so 1421 * that it will get 32-bit packet headers. 1422 */ 1423 switch (cmd) { 1424 case BIOCSETF32: 1425 case BIOCSETFNR32: 1426 case BIOCSETWF32: 1427 case BIOCGDLTLIST32: 1428 case BIOCGRTIMEOUT32: 1429 case BIOCSRTIMEOUT32: 1430 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1431 BPFD_LOCK(d); 1432 d->bd_compat32 = 1; 1433 BPFD_UNLOCK(d); 1434 } 1435 } 1436 #endif 1437 1438 CURVNET_SET(TD_TO_VNET(td)); 1439 switch (cmd) { 1440 default: 1441 error = EINVAL; 1442 break; 1443 1444 /* 1445 * Check for read packet available. 1446 */ 1447 case FIONREAD: 1448 { 1449 int n; 1450 1451 BPFD_LOCK(d); 1452 n = d->bd_slen; 1453 while (d->bd_hbuf_in_use) 1454 mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, 1455 PRINET, "bd_hbuf", 0); 1456 if (d->bd_hbuf) 1457 n += d->bd_hlen; 1458 BPFD_UNLOCK(d); 1459 1460 *(int *)addr = n; 1461 break; 1462 } 1463 1464 /* 1465 * Get buffer len [for read()]. 1466 */ 1467 case BIOCGBLEN: 1468 BPFD_LOCK(d); 1469 *(u_int *)addr = d->bd_bufsize; 1470 BPFD_UNLOCK(d); 1471 break; 1472 1473 /* 1474 * Set buffer length. 1475 */ 1476 case BIOCSBLEN: 1477 error = bpf_ioctl_sblen(d, (u_int *)addr); 1478 break; 1479 1480 /* 1481 * Set link layer read filter. 1482 */ 1483 case BIOCSETF: 1484 case BIOCSETFNR: 1485 case BIOCSETWF: 1486 #ifdef COMPAT_FREEBSD32 1487 case BIOCSETF32: 1488 case BIOCSETFNR32: 1489 case BIOCSETWF32: 1490 #endif 1491 error = bpf_setf(d, (struct bpf_program *)addr, cmd); 1492 break; 1493 1494 /* 1495 * Flush read packet buffer. 1496 */ 1497 case BIOCFLUSH: 1498 BPFD_LOCK(d); 1499 reset_d(d); 1500 BPFD_UNLOCK(d); 1501 break; 1502 1503 /* 1504 * Put interface into promiscuous mode. 1505 */ 1506 case BIOCPROMISC: 1507 BPF_LOCK(); 1508 if (d->bd_bif == NULL) { 1509 /* 1510 * No interface attached yet. 1511 */ 1512 error = EINVAL; 1513 } else if (d->bd_promisc == 0) { 1514 error = ifpromisc(d->bd_bif->bif_ifp, 1); 1515 if (error == 0) 1516 d->bd_promisc = 1; 1517 } 1518 BPF_UNLOCK(); 1519 break; 1520 1521 /* 1522 * Get current data link type. 1523 */ 1524 case BIOCGDLT: 1525 BPF_LOCK(); 1526 if (d->bd_bif == NULL) 1527 error = EINVAL; 1528 else 1529 *(u_int *)addr = d->bd_bif->bif_dlt; 1530 BPF_UNLOCK(); 1531 break; 1532 1533 /* 1534 * Get a list of supported data link types. 1535 */ 1536 #ifdef COMPAT_FREEBSD32 1537 case BIOCGDLTLIST32: 1538 { 1539 struct bpf_dltlist32 *list32; 1540 struct bpf_dltlist dltlist; 1541 1542 list32 = (struct bpf_dltlist32 *)addr; 1543 dltlist.bfl_len = list32->bfl_len; 1544 dltlist.bfl_list = PTRIN(list32->bfl_list); 1545 BPF_LOCK(); 1546 if (d->bd_bif == NULL) 1547 error = EINVAL; 1548 else { 1549 error = bpf_getdltlist(d, &dltlist); 1550 if (error == 0) 1551 list32->bfl_len = dltlist.bfl_len; 1552 } 1553 BPF_UNLOCK(); 1554 break; 1555 } 1556 #endif 1557 1558 case BIOCGDLTLIST: 1559 BPF_LOCK(); 1560 if (d->bd_bif == NULL) 1561 error = EINVAL; 1562 else 1563 error = bpf_getdltlist(d, (struct bpf_dltlist *)addr); 1564 BPF_UNLOCK(); 1565 break; 1566 1567 /* 1568 * Set data link type. 1569 */ 1570 case BIOCSDLT: 1571 BPF_LOCK(); 1572 if (d->bd_bif == NULL) 1573 error = EINVAL; 1574 else 1575 error = bpf_setdlt(d, *(u_int *)addr); 1576 BPF_UNLOCK(); 1577 break; 1578 1579 /* 1580 * Get interface name. 1581 */ 1582 case BIOCGETIF: 1583 BPF_LOCK(); 1584 if (d->bd_bif == NULL) 1585 error = EINVAL; 1586 else { 1587 struct ifnet *const ifp = d->bd_bif->bif_ifp; 1588 struct ifreq *const ifr = (struct ifreq *)addr; 1589 1590 strlcpy(ifr->ifr_name, ifp->if_xname, 1591 sizeof(ifr->ifr_name)); 1592 } 1593 BPF_UNLOCK(); 1594 break; 1595 1596 /* 1597 * Set interface. 1598 */ 1599 case BIOCSETIF: 1600 /* 1601 * Behavior here depends on the buffering model. If we're 1602 * using kernel memory buffers, then we can allocate them here. 1603 * If we're using zero-copy, then the user process must have 1604 * registered buffers by the time we get here. 1605 */ 1606 BPFD_LOCK(d); 1607 if (d->bd_bufmode == BPF_BUFMODE_BUFFER && 1608 d->bd_sbuf == NULL) { 1609 u_int size; 1610 1611 size = d->bd_bufsize; 1612 BPFD_UNLOCK(d); 1613 error = bpf_buffer_ioctl_sblen(d, &size); 1614 if (error != 0) 1615 break; 1616 } else 1617 BPFD_UNLOCK(d); 1618 BPF_LOCK(); 1619 error = bpf_setif(d, (struct ifreq *)addr); 1620 BPF_UNLOCK(); 1621 break; 1622 1623 /* 1624 * Set read timeout. 1625 */ 1626 case BIOCSRTIMEOUT: 1627 #if defined(COMPAT_FREEBSD32) && defined(__amd64__) 1628 case BIOCSRTIMEOUT32: 1629 #endif 1630 { 1631 struct timeval *tv = (struct timeval *)addr; 1632 #if defined(COMPAT_FREEBSD32) 1633 struct timeval32 *tv32; 1634 struct timeval tv64; 1635 1636 if (cmd == BIOCSRTIMEOUT32) { 1637 tv32 = (struct timeval32 *)addr; 1638 tv = &tv64; 1639 tv->tv_sec = tv32->tv_sec; 1640 tv->tv_usec = tv32->tv_usec; 1641 } else 1642 #endif 1643 tv = (struct timeval *)addr; 1644 1645 /* 1646 * Subtract 1 tick from tvtohz() since this isn't 1647 * a one-shot timer. 1648 */ 1649 if ((error = itimerfix(tv)) == 0) 1650 d->bd_rtout = tvtohz(tv) - 1; 1651 break; 1652 } 1653 1654 /* 1655 * Get read timeout. 1656 */ 1657 case BIOCGRTIMEOUT: 1658 #if defined(COMPAT_FREEBSD32) && defined(__amd64__) 1659 case BIOCGRTIMEOUT32: 1660 #endif 1661 { 1662 struct timeval *tv; 1663 #if defined(COMPAT_FREEBSD32) && defined(__amd64__) 1664 struct timeval32 *tv32; 1665 struct timeval tv64; 1666 1667 if (cmd == BIOCGRTIMEOUT32) 1668 tv = &tv64; 1669 else 1670 #endif 1671 tv = (struct timeval *)addr; 1672 1673 tv->tv_sec = d->bd_rtout / hz; 1674 tv->tv_usec = (d->bd_rtout % hz) * tick; 1675 #if defined(COMPAT_FREEBSD32) && defined(__amd64__) 1676 if (cmd == BIOCGRTIMEOUT32) { 1677 tv32 = (struct timeval32 *)addr; 1678 tv32->tv_sec = tv->tv_sec; 1679 tv32->tv_usec = tv->tv_usec; 1680 } 1681 #endif 1682 1683 break; 1684 } 1685 1686 /* 1687 * Get packet stats. 1688 */ 1689 case BIOCGSTATS: 1690 { 1691 struct bpf_stat *bs = (struct bpf_stat *)addr; 1692 1693 /* XXXCSJP overflow */ 1694 bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount); 1695 bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount); 1696 break; 1697 } 1698 1699 /* 1700 * Set immediate mode. 1701 */ 1702 case BIOCIMMEDIATE: 1703 BPFD_LOCK(d); 1704 d->bd_immediate = *(u_int *)addr; 1705 BPFD_UNLOCK(d); 1706 break; 1707 1708 case BIOCVERSION: 1709 { 1710 struct bpf_version *bv = (struct bpf_version *)addr; 1711 1712 bv->bv_major = BPF_MAJOR_VERSION; 1713 bv->bv_minor = BPF_MINOR_VERSION; 1714 break; 1715 } 1716 1717 /* 1718 * Get "header already complete" flag 1719 */ 1720 case BIOCGHDRCMPLT: 1721 BPFD_LOCK(d); 1722 *(u_int *)addr = d->bd_hdrcmplt; 1723 BPFD_UNLOCK(d); 1724 break; 1725 1726 /* 1727 * Set "header already complete" flag 1728 */ 1729 case BIOCSHDRCMPLT: 1730 BPFD_LOCK(d); 1731 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0; 1732 BPFD_UNLOCK(d); 1733 break; 1734 1735 /* 1736 * Get packet direction flag 1737 */ 1738 case BIOCGDIRECTION: 1739 BPFD_LOCK(d); 1740 *(u_int *)addr = d->bd_direction; 1741 BPFD_UNLOCK(d); 1742 break; 1743 1744 /* 1745 * Set packet direction flag 1746 */ 1747 case BIOCSDIRECTION: 1748 { 1749 u_int direction; 1750 1751 direction = *(u_int *)addr; 1752 switch (direction) { 1753 case BPF_D_IN: 1754 case BPF_D_INOUT: 1755 case BPF_D_OUT: 1756 BPFD_LOCK(d); 1757 d->bd_direction = direction; 1758 BPFD_UNLOCK(d); 1759 break; 1760 default: 1761 error = EINVAL; 1762 } 1763 } 1764 break; 1765 1766 /* 1767 * Get packet timestamp format and resolution. 1768 */ 1769 case BIOCGTSTAMP: 1770 BPFD_LOCK(d); 1771 *(u_int *)addr = d->bd_tstamp; 1772 BPFD_UNLOCK(d); 1773 break; 1774 1775 /* 1776 * Set packet timestamp format and resolution. 1777 */ 1778 case BIOCSTSTAMP: 1779 { 1780 u_int func; 1781 1782 func = *(u_int *)addr; 1783 if (BPF_T_VALID(func)) 1784 d->bd_tstamp = func; 1785 else 1786 error = EINVAL; 1787 } 1788 break; 1789 1790 case BIOCFEEDBACK: 1791 BPFD_LOCK(d); 1792 d->bd_feedback = *(u_int *)addr; 1793 BPFD_UNLOCK(d); 1794 break; 1795 1796 case BIOCLOCK: 1797 BPFD_LOCK(d); 1798 d->bd_locked = 1; 1799 BPFD_UNLOCK(d); 1800 break; 1801 1802 case FIONBIO: /* Non-blocking I/O */ 1803 break; 1804 1805 case FIOASYNC: /* Send signal on receive packets */ 1806 BPFD_LOCK(d); 1807 d->bd_async = *(int *)addr; 1808 BPFD_UNLOCK(d); 1809 break; 1810 1811 case FIOSETOWN: 1812 /* 1813 * XXX: Add some sort of locking here? 1814 * fsetown() can sleep. 1815 */ 1816 error = fsetown(*(int *)addr, &d->bd_sigio); 1817 break; 1818 1819 case FIOGETOWN: 1820 BPFD_LOCK(d); 1821 *(int *)addr = fgetown(&d->bd_sigio); 1822 BPFD_UNLOCK(d); 1823 break; 1824 1825 /* This is deprecated, FIOSETOWN should be used instead. */ 1826 case TIOCSPGRP: 1827 error = fsetown(-(*(int *)addr), &d->bd_sigio); 1828 break; 1829 1830 /* This is deprecated, FIOGETOWN should be used instead. */ 1831 case TIOCGPGRP: 1832 *(int *)addr = -fgetown(&d->bd_sigio); 1833 break; 1834 1835 case BIOCSRSIG: /* Set receive signal */ 1836 { 1837 u_int sig; 1838 1839 sig = *(u_int *)addr; 1840 1841 if (sig >= NSIG) 1842 error = EINVAL; 1843 else { 1844 BPFD_LOCK(d); 1845 d->bd_sig = sig; 1846 BPFD_UNLOCK(d); 1847 } 1848 break; 1849 } 1850 case BIOCGRSIG: 1851 BPFD_LOCK(d); 1852 *(u_int *)addr = d->bd_sig; 1853 BPFD_UNLOCK(d); 1854 break; 1855 1856 case BIOCGETBUFMODE: 1857 BPFD_LOCK(d); 1858 *(u_int *)addr = d->bd_bufmode; 1859 BPFD_UNLOCK(d); 1860 break; 1861 1862 case BIOCSETBUFMODE: 1863 /* 1864 * Allow the buffering mode to be changed as long as we 1865 * haven't yet committed to a particular mode. Our 1866 * definition of commitment, for now, is whether or not a 1867 * buffer has been allocated or an interface attached, since 1868 * that's the point where things get tricky. 1869 */ 1870 switch (*(u_int *)addr) { 1871 case BPF_BUFMODE_BUFFER: 1872 break; 1873 1874 case BPF_BUFMODE_ZBUF: 1875 if (bpf_zerocopy_enable) 1876 break; 1877 /* FALLSTHROUGH */ 1878 1879 default: 1880 CURVNET_RESTORE(); 1881 return (EINVAL); 1882 } 1883 1884 BPFD_LOCK(d); 1885 if (d->bd_sbuf != NULL || d->bd_hbuf != NULL || 1886 d->bd_fbuf != NULL || d->bd_bif != NULL) { 1887 BPFD_UNLOCK(d); 1888 CURVNET_RESTORE(); 1889 return (EBUSY); 1890 } 1891 d->bd_bufmode = *(u_int *)addr; 1892 BPFD_UNLOCK(d); 1893 break; 1894 1895 case BIOCGETZMAX: 1896 error = bpf_ioctl_getzmax(td, d, (size_t *)addr); 1897 break; 1898 1899 case BIOCSETZBUF: 1900 error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr); 1901 break; 1902 1903 case BIOCROTZBUF: 1904 error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr); 1905 break; 1906 1907 case BIOCSETVLANPCP: 1908 { 1909 u_int pcp; 1910 1911 pcp = *(u_int *)addr; 1912 if (pcp > BPF_PRIO_MAX || pcp < 0) { 1913 error = EINVAL; 1914 break; 1915 } 1916 d->bd_pcp = pcp; 1917 break; 1918 } 1919 } 1920 CURVNET_RESTORE(); 1921 return (error); 1922 } 1923 1924 /* 1925 * Set d's packet filter program to fp. If this file already has a filter, 1926 * free it and replace it. Returns EINVAL for bogus requests. 1927 * 1928 * Note we use global lock here to serialize bpf_setf() and bpf_setif() 1929 * calls. 1930 */ 1931 static int 1932 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd) 1933 { 1934 #ifdef COMPAT_FREEBSD32 1935 struct bpf_program fp_swab; 1936 struct bpf_program32 *fp32; 1937 #endif 1938 struct bpf_program_buffer *fcode; 1939 struct bpf_insn *filter; 1940 #ifdef BPF_JITTER 1941 bpf_jit_filter *jfunc; 1942 #endif 1943 size_t size; 1944 u_int flen; 1945 bool track_event; 1946 1947 #ifdef COMPAT_FREEBSD32 1948 switch (cmd) { 1949 case BIOCSETF32: 1950 case BIOCSETWF32: 1951 case BIOCSETFNR32: 1952 fp32 = (struct bpf_program32 *)fp; 1953 fp_swab.bf_len = fp32->bf_len; 1954 fp_swab.bf_insns = 1955 (struct bpf_insn *)(uintptr_t)fp32->bf_insns; 1956 fp = &fp_swab; 1957 switch (cmd) { 1958 case BIOCSETF32: 1959 cmd = BIOCSETF; 1960 break; 1961 case BIOCSETWF32: 1962 cmd = BIOCSETWF; 1963 break; 1964 } 1965 break; 1966 } 1967 #endif 1968 1969 filter = NULL; 1970 #ifdef BPF_JITTER 1971 jfunc = NULL; 1972 #endif 1973 /* 1974 * Check new filter validness before acquiring any locks. 1975 * Allocate memory for new filter, if needed. 1976 */ 1977 flen = fp->bf_len; 1978 if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0)) 1979 return (EINVAL); 1980 size = flen * sizeof(*fp->bf_insns); 1981 if (size > 0) { 1982 /* We're setting up new filter. Copy and check actual data. */ 1983 fcode = bpf_program_buffer_alloc(size, M_WAITOK); 1984 filter = (struct bpf_insn *)fcode->buffer; 1985 if (copyin(fp->bf_insns, filter, size) != 0 || 1986 !bpf_validate(filter, flen)) { 1987 free(fcode, M_BPF); 1988 return (EINVAL); 1989 } 1990 #ifdef BPF_JITTER 1991 if (cmd != BIOCSETWF) { 1992 /* 1993 * Filter is copied inside fcode and is 1994 * perfectly valid. 1995 */ 1996 jfunc = bpf_jitter(filter, flen); 1997 } 1998 #endif 1999 } 2000 2001 track_event = false; 2002 fcode = NULL; 2003 2004 BPF_LOCK(); 2005 BPFD_LOCK(d); 2006 /* Set up new filter. */ 2007 if (cmd == BIOCSETWF) { 2008 if (d->bd_wfilter != NULL) { 2009 fcode = __containerof((void *)d->bd_wfilter, 2010 struct bpf_program_buffer, buffer); 2011 #ifdef BPF_JITTER 2012 fcode->func = NULL; 2013 #endif 2014 } 2015 d->bd_wfilter = filter; 2016 } else { 2017 if (d->bd_rfilter != NULL) { 2018 fcode = __containerof((void *)d->bd_rfilter, 2019 struct bpf_program_buffer, buffer); 2020 #ifdef BPF_JITTER 2021 fcode->func = d->bd_bfilter; 2022 #endif 2023 } 2024 d->bd_rfilter = filter; 2025 #ifdef BPF_JITTER 2026 d->bd_bfilter = jfunc; 2027 #endif 2028 if (cmd == BIOCSETF) 2029 reset_d(d); 2030 2031 if (bpf_check_upgrade(cmd, d, filter, flen) != 0) { 2032 /* 2033 * Filter can be set several times without 2034 * specifying interface. In this case just mark d 2035 * as reader. 2036 */ 2037 d->bd_writer = 0; 2038 if (d->bd_bif != NULL) { 2039 /* 2040 * Remove descriptor from writers-only list 2041 * and add it to active readers list. 2042 */ 2043 CK_LIST_REMOVE(d, bd_next); 2044 CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist, 2045 d, bd_next); 2046 CTR2(KTR_NET, 2047 "%s: upgrade required by pid %d", 2048 __func__, d->bd_pid); 2049 track_event = true; 2050 } 2051 } 2052 } 2053 BPFD_UNLOCK(d); 2054 2055 if (fcode != NULL) 2056 NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx); 2057 2058 if (track_event) 2059 EVENTHANDLER_INVOKE(bpf_track, 2060 d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1); 2061 2062 BPF_UNLOCK(); 2063 return (0); 2064 } 2065 2066 /* 2067 * Detach a file from its current interface (if attached at all) and attach 2068 * to the interface indicated by the name stored in ifr. 2069 * Return an errno or 0. 2070 */ 2071 static int 2072 bpf_setif(struct bpf_d *d, struct ifreq *ifr) 2073 { 2074 struct bpf_if *bp; 2075 struct ifnet *theywant; 2076 2077 BPF_LOCK_ASSERT(); 2078 2079 theywant = ifunit(ifr->ifr_name); 2080 if (theywant == NULL) 2081 return (ENXIO); 2082 /* 2083 * Look through attached interfaces for the named one. 2084 */ 2085 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) { 2086 if (bp->bif_ifp == theywant && 2087 bp->bif_bpf == &theywant->if_bpf) 2088 break; 2089 } 2090 if (bp == NULL) 2091 return (ENXIO); 2092 2093 MPASS(bp == theywant->if_bpf); 2094 /* 2095 * At this point, we expect the buffer is already allocated. If not, 2096 * return an error. 2097 */ 2098 switch (d->bd_bufmode) { 2099 case BPF_BUFMODE_BUFFER: 2100 case BPF_BUFMODE_ZBUF: 2101 if (d->bd_sbuf == NULL) 2102 return (EINVAL); 2103 break; 2104 2105 default: 2106 panic("bpf_setif: bufmode %d", d->bd_bufmode); 2107 } 2108 if (bp != d->bd_bif) 2109 bpf_attachd(d, bp); 2110 else { 2111 BPFD_LOCK(d); 2112 reset_d(d); 2113 BPFD_UNLOCK(d); 2114 } 2115 return (0); 2116 } 2117 2118 /* 2119 * Support for select() and poll() system calls 2120 * 2121 * Return true iff the specific operation will not block indefinitely. 2122 * Otherwise, return false but make a note that a selwakeup() must be done. 2123 */ 2124 static int 2125 bpfpoll(struct cdev *dev, int events, struct thread *td) 2126 { 2127 struct bpf_d *d; 2128 int revents; 2129 2130 if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL) 2131 return (events & 2132 (POLLHUP | POLLIN | POLLRDNORM | POLLOUT | POLLWRNORM)); 2133 2134 /* 2135 * Refresh PID associated with this descriptor. 2136 */ 2137 revents = events & (POLLOUT | POLLWRNORM); 2138 BPFD_LOCK(d); 2139 BPF_PID_REFRESH(d, td); 2140 if (events & (POLLIN | POLLRDNORM)) { 2141 if (bpf_ready(d)) 2142 revents |= events & (POLLIN | POLLRDNORM); 2143 else { 2144 selrecord(td, &d->bd_sel); 2145 /* Start the read timeout if necessary. */ 2146 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) { 2147 callout_reset(&d->bd_callout, d->bd_rtout, 2148 bpf_timed_out, d); 2149 d->bd_state = BPF_WAITING; 2150 } 2151 } 2152 } 2153 BPFD_UNLOCK(d); 2154 return (revents); 2155 } 2156 2157 /* 2158 * Support for kevent() system call. Register EVFILT_READ filters and 2159 * reject all others. 2160 */ 2161 int 2162 bpfkqfilter(struct cdev *dev, struct knote *kn) 2163 { 2164 struct bpf_d *d; 2165 2166 if (devfs_get_cdevpriv((void **)&d) != 0) 2167 return (1); 2168 2169 switch (kn->kn_filter) { 2170 case EVFILT_READ: 2171 kn->kn_fop = &bpfread_filtops; 2172 break; 2173 2174 case EVFILT_WRITE: 2175 kn->kn_fop = &bpfwrite_filtops; 2176 break; 2177 2178 default: 2179 return (1); 2180 } 2181 2182 /* 2183 * Refresh PID associated with this descriptor. 2184 */ 2185 BPFD_LOCK(d); 2186 BPF_PID_REFRESH_CUR(d); 2187 kn->kn_hook = d; 2188 knlist_add(&d->bd_sel.si_note, kn, 1); 2189 BPFD_UNLOCK(d); 2190 2191 return (0); 2192 } 2193 2194 static void 2195 filt_bpfdetach(struct knote *kn) 2196 { 2197 struct bpf_d *d = (struct bpf_d *)kn->kn_hook; 2198 2199 knlist_remove(&d->bd_sel.si_note, kn, 0); 2200 } 2201 2202 static int 2203 filt_bpfread(struct knote *kn, long hint) 2204 { 2205 struct bpf_d *d = (struct bpf_d *)kn->kn_hook; 2206 int ready; 2207 2208 BPFD_LOCK_ASSERT(d); 2209 ready = bpf_ready(d); 2210 if (ready) { 2211 kn->kn_data = d->bd_slen; 2212 /* 2213 * Ignore the hold buffer if it is being copied to user space. 2214 */ 2215 if (!d->bd_hbuf_in_use && d->bd_hbuf) 2216 kn->kn_data += d->bd_hlen; 2217 } else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) { 2218 callout_reset(&d->bd_callout, d->bd_rtout, 2219 bpf_timed_out, d); 2220 d->bd_state = BPF_WAITING; 2221 } 2222 2223 return (ready); 2224 } 2225 2226 static int 2227 filt_bpfwrite(struct knote *kn, long hint) 2228 { 2229 struct bpf_d *d = (struct bpf_d *)kn->kn_hook; 2230 2231 BPFD_LOCK_ASSERT(d); 2232 2233 if (d->bd_bif == NULL) { 2234 kn->kn_data = 0; 2235 return (0); 2236 } else { 2237 kn->kn_data = d->bd_bif->bif_ifp->if_mtu; 2238 return (1); 2239 } 2240 } 2241 2242 #define BPF_TSTAMP_NONE 0 2243 #define BPF_TSTAMP_FAST 1 2244 #define BPF_TSTAMP_NORMAL 2 2245 #define BPF_TSTAMP_EXTERN 3 2246 2247 static int 2248 bpf_ts_quality(int tstype) 2249 { 2250 2251 if (tstype == BPF_T_NONE) 2252 return (BPF_TSTAMP_NONE); 2253 if ((tstype & BPF_T_FAST) != 0) 2254 return (BPF_TSTAMP_FAST); 2255 2256 return (BPF_TSTAMP_NORMAL); 2257 } 2258 2259 static int 2260 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m) 2261 { 2262 struct timespec ts; 2263 struct m_tag *tag; 2264 int quality; 2265 2266 quality = bpf_ts_quality(tstype); 2267 if (quality == BPF_TSTAMP_NONE) 2268 return (quality); 2269 2270 if (m != NULL) { 2271 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) { 2272 mbuf_tstmp2timespec(m, &ts); 2273 timespec2bintime(&ts, bt); 2274 return (BPF_TSTAMP_EXTERN); 2275 } 2276 tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL); 2277 if (tag != NULL) { 2278 *bt = *(struct bintime *)(tag + 1); 2279 return (BPF_TSTAMP_EXTERN); 2280 } 2281 } 2282 if (quality == BPF_TSTAMP_NORMAL) 2283 binuptime(bt); 2284 else 2285 getbinuptime(bt); 2286 2287 return (quality); 2288 } 2289 2290 /* 2291 * Incoming linkage from device drivers. Process the packet pkt, of length 2292 * pktlen, which is stored in a contiguous buffer. The packet is parsed 2293 * by each process' filter, and if accepted, stashed into the corresponding 2294 * buffer. 2295 */ 2296 void 2297 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen) 2298 { 2299 struct epoch_tracker et; 2300 struct bintime bt; 2301 struct bpf_d *d; 2302 #ifdef BPF_JITTER 2303 bpf_jit_filter *bf; 2304 #endif 2305 u_int slen; 2306 int gottime; 2307 2308 gottime = BPF_TSTAMP_NONE; 2309 NET_EPOCH_ENTER(et); 2310 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) { 2311 counter_u64_add(d->bd_rcount, 1); 2312 /* 2313 * NB: We dont call BPF_CHECK_DIRECTION() here since there 2314 * is no way for the caller to indiciate to us whether this 2315 * packet is inbound or outbound. In the bpf_mtap() routines, 2316 * we use the interface pointers on the mbuf to figure it out. 2317 */ 2318 #ifdef BPF_JITTER 2319 bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL; 2320 if (bf != NULL) 2321 slen = (*(bf->func))(pkt, pktlen, pktlen); 2322 else 2323 #endif 2324 slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen); 2325 if (slen != 0) { 2326 /* 2327 * Filter matches. Let's to acquire write lock. 2328 */ 2329 BPFD_LOCK(d); 2330 counter_u64_add(d->bd_fcount, 1); 2331 if (gottime < bpf_ts_quality(d->bd_tstamp)) 2332 gottime = bpf_gettime(&bt, d->bd_tstamp, 2333 NULL); 2334 #ifdef MAC 2335 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0) 2336 #endif 2337 catchpacket(d, pkt, pktlen, slen, 2338 bpf_append_bytes, &bt); 2339 BPFD_UNLOCK(d); 2340 } 2341 } 2342 NET_EPOCH_EXIT(et); 2343 } 2344 2345 void 2346 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen) 2347 { 2348 if (bpf_peers_present(ifp->if_bpf)) 2349 bpf_tap(ifp->if_bpf, pkt, pktlen); 2350 } 2351 2352 #define BPF_CHECK_DIRECTION(d, r, i) \ 2353 (((d)->bd_direction == BPF_D_IN && (r) != (i)) || \ 2354 ((d)->bd_direction == BPF_D_OUT && (r) == (i))) 2355 2356 /* 2357 * Incoming linkage from device drivers, when packet is in an mbuf chain. 2358 * Locking model is explained in bpf_tap(). 2359 */ 2360 void 2361 bpf_mtap(struct bpf_if *bp, struct mbuf *m) 2362 { 2363 struct epoch_tracker et; 2364 struct bintime bt; 2365 struct bpf_d *d; 2366 #ifdef BPF_JITTER 2367 bpf_jit_filter *bf; 2368 #endif 2369 u_int pktlen, slen; 2370 int gottime; 2371 2372 /* Skip outgoing duplicate packets. */ 2373 if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) { 2374 m->m_flags &= ~M_PROMISC; 2375 return; 2376 } 2377 2378 pktlen = m_length(m, NULL); 2379 gottime = BPF_TSTAMP_NONE; 2380 2381 NET_EPOCH_ENTER(et); 2382 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) { 2383 if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp)) 2384 continue; 2385 counter_u64_add(d->bd_rcount, 1); 2386 #ifdef BPF_JITTER 2387 bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL; 2388 /* XXX We cannot handle multiple mbufs. */ 2389 if (bf != NULL && m->m_next == NULL) 2390 slen = (*(bf->func))(mtod(m, u_char *), pktlen, 2391 pktlen); 2392 else 2393 #endif 2394 slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0); 2395 if (slen != 0) { 2396 BPFD_LOCK(d); 2397 2398 counter_u64_add(d->bd_fcount, 1); 2399 if (gottime < bpf_ts_quality(d->bd_tstamp)) 2400 gottime = bpf_gettime(&bt, d->bd_tstamp, m); 2401 #ifdef MAC 2402 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0) 2403 #endif 2404 catchpacket(d, (u_char *)m, pktlen, slen, 2405 bpf_append_mbuf, &bt); 2406 BPFD_UNLOCK(d); 2407 } 2408 } 2409 NET_EPOCH_EXIT(et); 2410 } 2411 2412 void 2413 bpf_mtap_if(if_t ifp, struct mbuf *m) 2414 { 2415 if (bpf_peers_present(ifp->if_bpf)) { 2416 M_ASSERTVALID(m); 2417 bpf_mtap(ifp->if_bpf, m); 2418 } 2419 } 2420 2421 /* 2422 * Incoming linkage from device drivers, when packet is in 2423 * an mbuf chain and to be prepended by a contiguous header. 2424 */ 2425 void 2426 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m) 2427 { 2428 struct epoch_tracker et; 2429 struct bintime bt; 2430 struct mbuf mb; 2431 struct bpf_d *d; 2432 u_int pktlen, slen; 2433 int gottime; 2434 2435 /* Skip outgoing duplicate packets. */ 2436 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) { 2437 m->m_flags &= ~M_PROMISC; 2438 return; 2439 } 2440 2441 pktlen = m_length(m, NULL); 2442 /* 2443 * Craft on-stack mbuf suitable for passing to bpf_filter. 2444 * Note that we cut corners here; we only setup what's 2445 * absolutely needed--this mbuf should never go anywhere else. 2446 */ 2447 mb.m_flags = 0; 2448 mb.m_next = m; 2449 mb.m_data = data; 2450 mb.m_len = dlen; 2451 pktlen += dlen; 2452 2453 gottime = BPF_TSTAMP_NONE; 2454 2455 NET_EPOCH_ENTER(et); 2456 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) { 2457 if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp)) 2458 continue; 2459 counter_u64_add(d->bd_rcount, 1); 2460 slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0); 2461 if (slen != 0) { 2462 BPFD_LOCK(d); 2463 2464 counter_u64_add(d->bd_fcount, 1); 2465 if (gottime < bpf_ts_quality(d->bd_tstamp)) 2466 gottime = bpf_gettime(&bt, d->bd_tstamp, m); 2467 #ifdef MAC 2468 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0) 2469 #endif 2470 catchpacket(d, (u_char *)&mb, pktlen, slen, 2471 bpf_append_mbuf, &bt); 2472 BPFD_UNLOCK(d); 2473 } 2474 } 2475 NET_EPOCH_EXIT(et); 2476 } 2477 2478 void 2479 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m) 2480 { 2481 if (bpf_peers_present(ifp->if_bpf)) { 2482 M_ASSERTVALID(m); 2483 bpf_mtap2(ifp->if_bpf, data, dlen, m); 2484 } 2485 } 2486 2487 #undef BPF_CHECK_DIRECTION 2488 #undef BPF_TSTAMP_NONE 2489 #undef BPF_TSTAMP_FAST 2490 #undef BPF_TSTAMP_NORMAL 2491 #undef BPF_TSTAMP_EXTERN 2492 2493 static int 2494 bpf_hdrlen(struct bpf_d *d) 2495 { 2496 int hdrlen; 2497 2498 hdrlen = d->bd_bif->bif_hdrlen; 2499 #ifndef BURN_BRIDGES 2500 if (d->bd_tstamp == BPF_T_NONE || 2501 BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME) 2502 #ifdef COMPAT_FREEBSD32 2503 if (d->bd_compat32) 2504 hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32); 2505 else 2506 #endif 2507 hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr); 2508 else 2509 #endif 2510 hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr); 2511 #ifdef COMPAT_FREEBSD32 2512 if (d->bd_compat32) 2513 hdrlen = BPF_WORDALIGN32(hdrlen); 2514 else 2515 #endif 2516 hdrlen = BPF_WORDALIGN(hdrlen); 2517 2518 return (hdrlen - d->bd_bif->bif_hdrlen); 2519 } 2520 2521 static void 2522 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype) 2523 { 2524 struct bintime bt2, boottimebin; 2525 struct timeval tsm; 2526 struct timespec tsn; 2527 2528 if ((tstype & BPF_T_MONOTONIC) == 0) { 2529 bt2 = *bt; 2530 getboottimebin(&boottimebin); 2531 bintime_add(&bt2, &boottimebin); 2532 bt = &bt2; 2533 } 2534 switch (BPF_T_FORMAT(tstype)) { 2535 case BPF_T_MICROTIME: 2536 bintime2timeval(bt, &tsm); 2537 ts->bt_sec = tsm.tv_sec; 2538 ts->bt_frac = tsm.tv_usec; 2539 break; 2540 case BPF_T_NANOTIME: 2541 bintime2timespec(bt, &tsn); 2542 ts->bt_sec = tsn.tv_sec; 2543 ts->bt_frac = tsn.tv_nsec; 2544 break; 2545 case BPF_T_BINTIME: 2546 ts->bt_sec = bt->sec; 2547 ts->bt_frac = bt->frac; 2548 break; 2549 } 2550 } 2551 2552 /* 2553 * Move the packet data from interface memory (pkt) into the 2554 * store buffer. "cpfn" is the routine called to do the actual data 2555 * transfer. bcopy is passed in to copy contiguous chunks, while 2556 * bpf_append_mbuf is passed in to copy mbuf chains. In the latter case, 2557 * pkt is really an mbuf. 2558 */ 2559 static void 2560 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen, 2561 void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int), 2562 struct bintime *bt) 2563 { 2564 static char zeroes[BPF_ALIGNMENT]; 2565 struct bpf_xhdr hdr; 2566 #ifndef BURN_BRIDGES 2567 struct bpf_hdr hdr_old; 2568 #ifdef COMPAT_FREEBSD32 2569 struct bpf_hdr32 hdr32_old; 2570 #endif 2571 #endif 2572 int caplen, curlen, hdrlen, pad, totlen; 2573 int do_wakeup = 0; 2574 int do_timestamp; 2575 int tstype; 2576 2577 BPFD_LOCK_ASSERT(d); 2578 if (d->bd_bif == NULL) { 2579 /* Descriptor was detached in concurrent thread */ 2580 counter_u64_add(d->bd_dcount, 1); 2581 return; 2582 } 2583 2584 /* 2585 * Detect whether user space has released a buffer back to us, and if 2586 * so, move it from being a hold buffer to a free buffer. This may 2587 * not be the best place to do it (for example, we might only want to 2588 * run this check if we need the space), but for now it's a reliable 2589 * spot to do it. 2590 */ 2591 if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) { 2592 d->bd_fbuf = d->bd_hbuf; 2593 d->bd_hbuf = NULL; 2594 d->bd_hlen = 0; 2595 bpf_buf_reclaimed(d); 2596 } 2597 2598 /* 2599 * Figure out how many bytes to move. If the packet is 2600 * greater or equal to the snapshot length, transfer that 2601 * much. Otherwise, transfer the whole packet (unless 2602 * we hit the buffer size limit). 2603 */ 2604 hdrlen = bpf_hdrlen(d); 2605 totlen = hdrlen + min(snaplen, pktlen); 2606 if (totlen > d->bd_bufsize) 2607 totlen = d->bd_bufsize; 2608 2609 /* 2610 * Round up the end of the previous packet to the next longword. 2611 * 2612 * Drop the packet if there's no room and no hope of room 2613 * If the packet would overflow the storage buffer or the storage 2614 * buffer is considered immutable by the buffer model, try to rotate 2615 * the buffer and wakeup pending processes. 2616 */ 2617 #ifdef COMPAT_FREEBSD32 2618 if (d->bd_compat32) 2619 curlen = BPF_WORDALIGN32(d->bd_slen); 2620 else 2621 #endif 2622 curlen = BPF_WORDALIGN(d->bd_slen); 2623 if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) { 2624 if (d->bd_fbuf == NULL) { 2625 /* 2626 * There's no room in the store buffer, and no 2627 * prospect of room, so drop the packet. Notify the 2628 * buffer model. 2629 */ 2630 bpf_buffull(d); 2631 counter_u64_add(d->bd_dcount, 1); 2632 return; 2633 } 2634 KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use")); 2635 ROTATE_BUFFERS(d); 2636 do_wakeup = 1; 2637 curlen = 0; 2638 } else { 2639 if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) { 2640 /* 2641 * Immediate mode is set, or the read timeout has 2642 * already expired during a select call. A packet 2643 * arrived, so the reader should be woken up. 2644 */ 2645 do_wakeup = 1; 2646 } 2647 pad = curlen - d->bd_slen; 2648 KASSERT(pad >= 0 && pad <= sizeof(zeroes), 2649 ("%s: invalid pad byte count %d", __func__, pad)); 2650 if (pad > 0) { 2651 /* Zero pad bytes. */ 2652 bpf_append_bytes(d, d->bd_sbuf, d->bd_slen, zeroes, 2653 pad); 2654 } 2655 } 2656 2657 caplen = totlen - hdrlen; 2658 tstype = d->bd_tstamp; 2659 do_timestamp = tstype != BPF_T_NONE; 2660 #ifndef BURN_BRIDGES 2661 if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) { 2662 struct bpf_ts ts; 2663 if (do_timestamp) 2664 bpf_bintime2ts(bt, &ts, tstype); 2665 #ifdef COMPAT_FREEBSD32 2666 if (d->bd_compat32) { 2667 bzero(&hdr32_old, sizeof(hdr32_old)); 2668 if (do_timestamp) { 2669 hdr32_old.bh_tstamp.tv_sec = ts.bt_sec; 2670 hdr32_old.bh_tstamp.tv_usec = ts.bt_frac; 2671 } 2672 hdr32_old.bh_datalen = pktlen; 2673 hdr32_old.bh_hdrlen = hdrlen; 2674 hdr32_old.bh_caplen = caplen; 2675 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old, 2676 sizeof(hdr32_old)); 2677 goto copy; 2678 } 2679 #endif 2680 bzero(&hdr_old, sizeof(hdr_old)); 2681 if (do_timestamp) { 2682 hdr_old.bh_tstamp.tv_sec = ts.bt_sec; 2683 hdr_old.bh_tstamp.tv_usec = ts.bt_frac; 2684 } 2685 hdr_old.bh_datalen = pktlen; 2686 hdr_old.bh_hdrlen = hdrlen; 2687 hdr_old.bh_caplen = caplen; 2688 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old, 2689 sizeof(hdr_old)); 2690 goto copy; 2691 } 2692 #endif 2693 2694 /* 2695 * Append the bpf header. Note we append the actual header size, but 2696 * move forward the length of the header plus padding. 2697 */ 2698 bzero(&hdr, sizeof(hdr)); 2699 if (do_timestamp) 2700 bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype); 2701 hdr.bh_datalen = pktlen; 2702 hdr.bh_hdrlen = hdrlen; 2703 hdr.bh_caplen = caplen; 2704 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr)); 2705 2706 /* 2707 * Copy the packet data into the store buffer and update its length. 2708 */ 2709 #ifndef BURN_BRIDGES 2710 copy: 2711 #endif 2712 (*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen); 2713 d->bd_slen = curlen + totlen; 2714 2715 if (do_wakeup) 2716 bpf_wakeup(d); 2717 } 2718 2719 /* 2720 * Free buffers currently in use by a descriptor. 2721 * Called on close. 2722 */ 2723 static void 2724 bpfd_free(epoch_context_t ctx) 2725 { 2726 struct bpf_d *d; 2727 struct bpf_program_buffer *p; 2728 2729 /* 2730 * We don't need to lock out interrupts since this descriptor has 2731 * been detached from its interface and it yet hasn't been marked 2732 * free. 2733 */ 2734 d = __containerof(ctx, struct bpf_d, epoch_ctx); 2735 bpf_free(d); 2736 if (d->bd_rfilter != NULL) { 2737 p = __containerof((void *)d->bd_rfilter, 2738 struct bpf_program_buffer, buffer); 2739 #ifdef BPF_JITTER 2740 p->func = d->bd_bfilter; 2741 #endif 2742 bpf_program_buffer_free(&p->epoch_ctx); 2743 } 2744 if (d->bd_wfilter != NULL) { 2745 p = __containerof((void *)d->bd_wfilter, 2746 struct bpf_program_buffer, buffer); 2747 #ifdef BPF_JITTER 2748 p->func = NULL; 2749 #endif 2750 bpf_program_buffer_free(&p->epoch_ctx); 2751 } 2752 2753 mtx_destroy(&d->bd_lock); 2754 counter_u64_free(d->bd_rcount); 2755 counter_u64_free(d->bd_dcount); 2756 counter_u64_free(d->bd_fcount); 2757 counter_u64_free(d->bd_wcount); 2758 counter_u64_free(d->bd_wfcount); 2759 counter_u64_free(d->bd_wdcount); 2760 counter_u64_free(d->bd_zcopy); 2761 free(d, M_BPF); 2762 } 2763 2764 /* 2765 * Attach an interface to bpf. dlt is the link layer type; hdrlen is the 2766 * fixed size of the link header (variable length headers not yet supported). 2767 */ 2768 void 2769 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen) 2770 { 2771 2772 bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf); 2773 } 2774 2775 /* 2776 * Attach an interface to bpf. ifp is a pointer to the structure 2777 * defining the interface to be attached, dlt is the link layer type, 2778 * and hdrlen is the fixed size of the link header (variable length 2779 * headers are not yet supporrted). 2780 */ 2781 void 2782 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, 2783 struct bpf_if **driverp) 2784 { 2785 struct bpf_if *bp; 2786 2787 KASSERT(*driverp == NULL, 2788 ("bpfattach2: driverp already initialized")); 2789 2790 bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO); 2791 2792 CK_LIST_INIT(&bp->bif_dlist); 2793 CK_LIST_INIT(&bp->bif_wlist); 2794 bp->bif_ifp = ifp; 2795 bp->bif_dlt = dlt; 2796 bp->bif_hdrlen = hdrlen; 2797 bp->bif_bpf = driverp; 2798 refcount_init(&bp->bif_refcnt, 1); 2799 *driverp = bp; 2800 /* 2801 * Reference ifnet pointer, so it won't freed until 2802 * we release it. 2803 */ 2804 if_ref(ifp); 2805 BPF_LOCK(); 2806 CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next); 2807 BPF_UNLOCK(); 2808 2809 if (bootverbose && IS_DEFAULT_VNET(curvnet)) 2810 if_printf(ifp, "bpf attached\n"); 2811 } 2812 2813 #ifdef VIMAGE 2814 /* 2815 * Detach descriptors on interface's vmove event. 2816 */ 2817 void 2818 bpf_ifdetach(struct ifnet *ifp) 2819 { 2820 struct bpf_if *bp; 2821 struct bpf_d *d; 2822 2823 BPF_LOCK(); 2824 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) { 2825 if (bp->bif_ifp != ifp) 2826 continue; 2827 2828 /* Detach common descriptors */ 2829 while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) { 2830 bpf_detachd(d, true); 2831 } 2832 2833 /* Detach writer-only descriptors */ 2834 while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) { 2835 bpf_detachd(d, true); 2836 } 2837 } 2838 BPF_UNLOCK(); 2839 } 2840 #endif 2841 2842 /* 2843 * Detach bpf from an interface. This involves detaching each descriptor 2844 * associated with the interface. Notify each descriptor as it's detached 2845 * so that any sleepers wake up and get ENXIO. 2846 */ 2847 void 2848 bpfdetach(struct ifnet *ifp) 2849 { 2850 struct bpf_if *bp, *bp_temp; 2851 struct bpf_d *d; 2852 2853 BPF_LOCK(); 2854 /* Find all bpf_if struct's which reference ifp and detach them. */ 2855 CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) { 2856 if (ifp != bp->bif_ifp) 2857 continue; 2858 2859 CK_LIST_REMOVE(bp, bif_next); 2860 *bp->bif_bpf = __DECONST(struct bpf_if *, &dead_bpf_if); 2861 2862 CTR4(KTR_NET, 2863 "%s: sheduling free for encap %d (%p) for if %p", 2864 __func__, bp->bif_dlt, bp, ifp); 2865 2866 /* Detach common descriptors */ 2867 while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) { 2868 bpf_detachd(d, true); 2869 } 2870 2871 /* Detach writer-only descriptors */ 2872 while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) { 2873 bpf_detachd(d, true); 2874 } 2875 bpfif_rele(bp); 2876 } 2877 BPF_UNLOCK(); 2878 } 2879 2880 bool 2881 bpf_peers_present_if(struct ifnet *ifp) 2882 { 2883 return (bpf_peers_present(ifp->if_bpf)); 2884 } 2885 2886 /* 2887 * Get a list of available data link type of the interface. 2888 */ 2889 static int 2890 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl) 2891 { 2892 struct ifnet *ifp; 2893 struct bpf_if *bp; 2894 u_int *lst; 2895 int error, n, n1; 2896 2897 BPF_LOCK_ASSERT(); 2898 2899 ifp = d->bd_bif->bif_ifp; 2900 n1 = 0; 2901 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) { 2902 if (bp->bif_ifp == ifp) 2903 n1++; 2904 } 2905 if (bfl->bfl_list == NULL) { 2906 bfl->bfl_len = n1; 2907 return (0); 2908 } 2909 if (n1 > bfl->bfl_len) 2910 return (ENOMEM); 2911 2912 lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK); 2913 n = 0; 2914 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) { 2915 if (bp->bif_ifp != ifp) 2916 continue; 2917 lst[n++] = bp->bif_dlt; 2918 } 2919 error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n); 2920 free(lst, M_TEMP); 2921 bfl->bfl_len = n; 2922 return (error); 2923 } 2924 2925 /* 2926 * Set the data link type of a BPF instance. 2927 */ 2928 static int 2929 bpf_setdlt(struct bpf_d *d, u_int dlt) 2930 { 2931 int error, opromisc; 2932 struct ifnet *ifp; 2933 struct bpf_if *bp; 2934 2935 BPF_LOCK_ASSERT(); 2936 MPASS(d->bd_bif != NULL); 2937 2938 /* 2939 * It is safe to check bd_bif without BPFD_LOCK, it can not be 2940 * changed while we hold global lock. 2941 */ 2942 if (d->bd_bif->bif_dlt == dlt) 2943 return (0); 2944 2945 ifp = d->bd_bif->bif_ifp; 2946 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) { 2947 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt) 2948 break; 2949 } 2950 if (bp == NULL) 2951 return (EINVAL); 2952 2953 opromisc = d->bd_promisc; 2954 bpf_attachd(d, bp); 2955 if (opromisc) { 2956 error = ifpromisc(bp->bif_ifp, 1); 2957 if (error) 2958 if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n", 2959 __func__, error); 2960 else 2961 d->bd_promisc = 1; 2962 } 2963 return (0); 2964 } 2965 2966 static void 2967 bpf_drvinit(void *unused) 2968 { 2969 struct cdev *dev; 2970 2971 sx_init(&bpf_sx, "bpf global lock"); 2972 dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf"); 2973 /* For compatibility */ 2974 make_dev_alias(dev, "bpf0"); 2975 } 2976 2977 /* 2978 * Zero out the various packet counters associated with all of the bpf 2979 * descriptors. At some point, we will probably want to get a bit more 2980 * granular and allow the user to specify descriptors to be zeroed. 2981 */ 2982 static void 2983 bpf_zero_counters(void) 2984 { 2985 struct bpf_if *bp; 2986 struct bpf_d *bd; 2987 2988 BPF_LOCK(); 2989 /* 2990 * We are protected by global lock here, interfaces and 2991 * descriptors can not be deleted while we hold it. 2992 */ 2993 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) { 2994 CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) { 2995 counter_u64_zero(bd->bd_rcount); 2996 counter_u64_zero(bd->bd_dcount); 2997 counter_u64_zero(bd->bd_fcount); 2998 counter_u64_zero(bd->bd_wcount); 2999 counter_u64_zero(bd->bd_wfcount); 3000 counter_u64_zero(bd->bd_zcopy); 3001 } 3002 } 3003 BPF_UNLOCK(); 3004 } 3005 3006 /* 3007 * Fill filter statistics 3008 */ 3009 static void 3010 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd) 3011 { 3012 3013 BPF_LOCK_ASSERT(); 3014 bzero(d, sizeof(*d)); 3015 d->bd_structsize = sizeof(*d); 3016 d->bd_immediate = bd->bd_immediate; 3017 d->bd_promisc = bd->bd_promisc; 3018 d->bd_hdrcmplt = bd->bd_hdrcmplt; 3019 d->bd_direction = bd->bd_direction; 3020 d->bd_feedback = bd->bd_feedback; 3021 d->bd_async = bd->bd_async; 3022 d->bd_rcount = counter_u64_fetch(bd->bd_rcount); 3023 d->bd_dcount = counter_u64_fetch(bd->bd_dcount); 3024 d->bd_fcount = counter_u64_fetch(bd->bd_fcount); 3025 d->bd_sig = bd->bd_sig; 3026 d->bd_slen = bd->bd_slen; 3027 d->bd_hlen = bd->bd_hlen; 3028 d->bd_bufsize = bd->bd_bufsize; 3029 d->bd_pid = bd->bd_pid; 3030 strlcpy(d->bd_ifname, 3031 bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ); 3032 d->bd_locked = bd->bd_locked; 3033 d->bd_wcount = counter_u64_fetch(bd->bd_wcount); 3034 d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount); 3035 d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount); 3036 d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy); 3037 d->bd_bufmode = bd->bd_bufmode; 3038 } 3039 3040 /* 3041 * Handle `netstat -B' stats request 3042 */ 3043 static int 3044 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS) 3045 { 3046 static const struct xbpf_d zerostats; 3047 struct xbpf_d *xbdbuf, *xbd, tempstats; 3048 int index, error; 3049 struct bpf_if *bp; 3050 struct bpf_d *bd; 3051 3052 /* 3053 * XXX This is not technically correct. It is possible for non 3054 * privileged users to open bpf devices. It would make sense 3055 * if the users who opened the devices were able to retrieve 3056 * the statistics for them, too. 3057 */ 3058 error = priv_check(req->td, PRIV_NET_BPF); 3059 if (error) 3060 return (error); 3061 /* 3062 * Check to see if the user is requesting that the counters be 3063 * zeroed out. Explicitly check that the supplied data is zeroed, 3064 * as we aren't allowing the user to set the counters currently. 3065 */ 3066 if (req->newptr != NULL) { 3067 if (req->newlen != sizeof(tempstats)) 3068 return (EINVAL); 3069 memset(&tempstats, 0, sizeof(tempstats)); 3070 error = SYSCTL_IN(req, &tempstats, sizeof(tempstats)); 3071 if (error) 3072 return (error); 3073 if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0) 3074 return (EINVAL); 3075 bpf_zero_counters(); 3076 return (0); 3077 } 3078 if (req->oldptr == NULL) 3079 return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd))); 3080 if (bpf_bpfd_cnt == 0) 3081 return (SYSCTL_OUT(req, 0, 0)); 3082 xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK); 3083 BPF_LOCK(); 3084 if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) { 3085 BPF_UNLOCK(); 3086 free(xbdbuf, M_BPF); 3087 return (ENOMEM); 3088 } 3089 index = 0; 3090 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) { 3091 /* Send writers-only first */ 3092 CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) { 3093 xbd = &xbdbuf[index++]; 3094 bpfstats_fill_xbpf(xbd, bd); 3095 } 3096 CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) { 3097 xbd = &xbdbuf[index++]; 3098 bpfstats_fill_xbpf(xbd, bd); 3099 } 3100 } 3101 BPF_UNLOCK(); 3102 error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd)); 3103 free(xbdbuf, M_BPF); 3104 return (error); 3105 } 3106 3107 SYSINIT(bpfdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, bpf_drvinit, NULL); 3108 3109 #else /* !DEV_BPF && !NETGRAPH_BPF */ 3110 3111 /* 3112 * NOP stubs to allow bpf-using drivers to load and function. 3113 * 3114 * A 'better' implementation would allow the core bpf functionality 3115 * to be loaded at runtime. 3116 */ 3117 3118 void 3119 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen) 3120 { 3121 } 3122 3123 void 3124 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen) 3125 { 3126 } 3127 3128 void 3129 bpf_mtap(struct bpf_if *bp, struct mbuf *m) 3130 { 3131 } 3132 3133 void 3134 bpf_mtap_if(if_t ifp, struct mbuf *m) 3135 { 3136 } 3137 3138 void 3139 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m) 3140 { 3141 } 3142 3143 void 3144 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m) 3145 { 3146 } 3147 3148 void 3149 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen) 3150 { 3151 3152 bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf); 3153 } 3154 3155 void 3156 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp) 3157 { 3158 3159 *driverp = __DECONST(struct bpf_if *, &dead_bpf_if); 3160 } 3161 3162 void 3163 bpfdetach(struct ifnet *ifp) 3164 { 3165 } 3166 3167 bool 3168 bpf_peers_present_if(struct ifnet *ifp) 3169 { 3170 return (false); 3171 } 3172 3173 u_int 3174 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen) 3175 { 3176 return (-1); /* "no filter" behaviour */ 3177 } 3178 3179 int 3180 bpf_validate(const struct bpf_insn *f, int len) 3181 { 3182 return (0); /* false */ 3183 } 3184 3185 #endif /* !DEV_BPF && !NETGRAPH_BPF */ 3186