1 /*- 2 * Copyright (C) 1997-2003 3 * Sony Computer Science Laboratories Inc. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $ 27 * $FreeBSD$ 28 */ 29 30 #include "opt_altq.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/param.h> 35 #include <sys/malloc.h> 36 #include <sys/mbuf.h> 37 #include <sys/systm.h> 38 #include <sys/proc.h> 39 #include <sys/socket.h> 40 #include <sys/socketvar.h> 41 #include <sys/kernel.h> 42 #include <sys/errno.h> 43 #include <sys/syslog.h> 44 #include <sys/sysctl.h> 45 #include <sys/queue.h> 46 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_dl.h> 50 #include <net/if_types.h> 51 #include <net/vnet.h> 52 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/ip.h> 56 #ifdef INET6 57 #include <netinet/ip6.h> 58 #endif 59 #include <netinet/tcp.h> 60 #include <netinet/udp.h> 61 62 #include <netpfil/pf/pf.h> 63 #include <netpfil/pf/pf_altq.h> 64 #include <net/altq/altq.h> 65 66 /* machine dependent clock related includes */ 67 #include <sys/bus.h> 68 #include <sys/cpu.h> 69 #include <sys/eventhandler.h> 70 #include <machine/clock.h> 71 #if defined(__amd64__) || defined(__i386__) 72 #include <machine/cpufunc.h> /* for pentium tsc */ 73 #include <machine/specialreg.h> /* for CPUID_TSC */ 74 #include <machine/md_var.h> /* for cpu_feature */ 75 #endif /* __amd64 || __i386__ */ 76 77 /* 78 * internal function prototypes 79 */ 80 static void tbr_timeout(void *); 81 int (*altq_input)(struct mbuf *, int) = NULL; 82 static struct mbuf *tbr_dequeue(struct ifaltq *, int); 83 static int tbr_timer = 0; /* token bucket regulator timer */ 84 #if !defined(__FreeBSD__) || (__FreeBSD_version < 600000) 85 static struct callout tbr_callout = CALLOUT_INITIALIZER; 86 #else 87 static struct callout tbr_callout; 88 #endif 89 90 #ifdef ALTQ3_CLFIER_COMPAT 91 static int extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *); 92 #ifdef INET6 93 static int extract_ports6(struct mbuf *, struct ip6_hdr *, 94 struct flowinfo_in6 *); 95 #endif 96 static int apply_filter4(u_int32_t, struct flow_filter *, 97 struct flowinfo_in *); 98 static int apply_ppfilter4(u_int32_t, struct flow_filter *, 99 struct flowinfo_in *); 100 #ifdef INET6 101 static int apply_filter6(u_int32_t, struct flow_filter6 *, 102 struct flowinfo_in6 *); 103 #endif 104 static int apply_tosfilter4(u_int32_t, struct flow_filter *, 105 struct flowinfo_in *); 106 static u_long get_filt_handle(struct acc_classifier *, int); 107 static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long); 108 static u_int32_t filt2fibmask(struct flow_filter *); 109 110 static void ip4f_cache(struct ip *, struct flowinfo_in *); 111 static int ip4f_lookup(struct ip *, struct flowinfo_in *); 112 static int ip4f_init(void); 113 static struct ip4_frag *ip4f_alloc(void); 114 static void ip4f_free(struct ip4_frag *); 115 #endif /* ALTQ3_CLFIER_COMPAT */ 116 117 /* 118 * alternate queueing support routines 119 */ 120 121 /* look up the queue state by the interface name and the queueing type. */ 122 void * 123 altq_lookup(name, type) 124 char *name; 125 int type; 126 { 127 struct ifnet *ifp; 128 129 if ((ifp = ifunit(name)) != NULL) { 130 /* read if_snd unlocked */ 131 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type) 132 return (ifp->if_snd.altq_disc); 133 } 134 135 return NULL; 136 } 137 138 int 139 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify) 140 struct ifaltq *ifq; 141 int type; 142 void *discipline; 143 int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *); 144 struct mbuf *(*dequeue)(struct ifaltq *, int); 145 int (*request)(struct ifaltq *, int, void *); 146 void *clfier; 147 void *(*classify)(void *, struct mbuf *, int); 148 { 149 IFQ_LOCK(ifq); 150 if (!ALTQ_IS_READY(ifq)) { 151 IFQ_UNLOCK(ifq); 152 return ENXIO; 153 } 154 155 ifq->altq_type = type; 156 ifq->altq_disc = discipline; 157 ifq->altq_enqueue = enqueue; 158 ifq->altq_dequeue = dequeue; 159 ifq->altq_request = request; 160 ifq->altq_clfier = clfier; 161 ifq->altq_classify = classify; 162 ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED); 163 IFQ_UNLOCK(ifq); 164 return 0; 165 } 166 167 int 168 altq_detach(ifq) 169 struct ifaltq *ifq; 170 { 171 IFQ_LOCK(ifq); 172 173 if (!ALTQ_IS_READY(ifq)) { 174 IFQ_UNLOCK(ifq); 175 return ENXIO; 176 } 177 if (ALTQ_IS_ENABLED(ifq)) { 178 IFQ_UNLOCK(ifq); 179 return EBUSY; 180 } 181 if (!ALTQ_IS_ATTACHED(ifq)) { 182 IFQ_UNLOCK(ifq); 183 return (0); 184 } 185 186 ifq->altq_type = ALTQT_NONE; 187 ifq->altq_disc = NULL; 188 ifq->altq_enqueue = NULL; 189 ifq->altq_dequeue = NULL; 190 ifq->altq_request = NULL; 191 ifq->altq_clfier = NULL; 192 ifq->altq_classify = NULL; 193 ifq->altq_flags &= ALTQF_CANTCHANGE; 194 195 IFQ_UNLOCK(ifq); 196 return 0; 197 } 198 199 int 200 altq_enable(ifq) 201 struct ifaltq *ifq; 202 { 203 int s; 204 205 IFQ_LOCK(ifq); 206 207 if (!ALTQ_IS_READY(ifq)) { 208 IFQ_UNLOCK(ifq); 209 return ENXIO; 210 } 211 if (ALTQ_IS_ENABLED(ifq)) { 212 IFQ_UNLOCK(ifq); 213 return 0; 214 } 215 216 s = splnet(); 217 IFQ_PURGE_NOLOCK(ifq); 218 ASSERT(ifq->ifq_len == 0); 219 ifq->ifq_drv_maxlen = 0; /* disable bulk dequeue */ 220 ifq->altq_flags |= ALTQF_ENABLED; 221 if (ifq->altq_clfier != NULL) 222 ifq->altq_flags |= ALTQF_CLASSIFY; 223 splx(s); 224 225 IFQ_UNLOCK(ifq); 226 return 0; 227 } 228 229 int 230 altq_disable(ifq) 231 struct ifaltq *ifq; 232 { 233 int s; 234 235 IFQ_LOCK(ifq); 236 if (!ALTQ_IS_ENABLED(ifq)) { 237 IFQ_UNLOCK(ifq); 238 return 0; 239 } 240 241 s = splnet(); 242 IFQ_PURGE_NOLOCK(ifq); 243 ASSERT(ifq->ifq_len == 0); 244 ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY); 245 splx(s); 246 247 IFQ_UNLOCK(ifq); 248 return 0; 249 } 250 251 #ifdef ALTQ_DEBUG 252 void 253 altq_assert(file, line, failedexpr) 254 const char *file, *failedexpr; 255 int line; 256 { 257 (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n", 258 failedexpr, file, line); 259 panic("altq assertion"); 260 /* NOTREACHED */ 261 } 262 #endif 263 264 /* 265 * internal representation of token bucket parameters 266 * rate: (byte_per_unittime << TBR_SHIFT) / machclk_freq 267 * (((bits_per_sec) / 8) << TBR_SHIFT) / machclk_freq 268 * depth: byte << TBR_SHIFT 269 * 270 */ 271 #define TBR_SHIFT 29 272 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT) 273 #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT) 274 275 static struct mbuf * 276 tbr_dequeue(ifq, op) 277 struct ifaltq *ifq; 278 int op; 279 { 280 struct tb_regulator *tbr; 281 struct mbuf *m; 282 int64_t interval; 283 u_int64_t now; 284 285 IFQ_LOCK_ASSERT(ifq); 286 tbr = ifq->altq_tbr; 287 if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) { 288 /* if this is a remove after poll, bypass tbr check */ 289 } else { 290 /* update token only when it is negative */ 291 if (tbr->tbr_token <= 0) { 292 now = read_machclk(); 293 interval = now - tbr->tbr_last; 294 if (interval >= tbr->tbr_filluptime) 295 tbr->tbr_token = tbr->tbr_depth; 296 else { 297 tbr->tbr_token += interval * tbr->tbr_rate; 298 if (tbr->tbr_token > tbr->tbr_depth) 299 tbr->tbr_token = tbr->tbr_depth; 300 } 301 tbr->tbr_last = now; 302 } 303 /* if token is still negative, don't allow dequeue */ 304 if (tbr->tbr_token <= 0) 305 return (NULL); 306 } 307 308 if (ALTQ_IS_ENABLED(ifq)) 309 m = (*ifq->altq_dequeue)(ifq, op); 310 else { 311 if (op == ALTDQ_POLL) 312 _IF_POLL(ifq, m); 313 else 314 _IF_DEQUEUE(ifq, m); 315 } 316 317 if (m != NULL && op == ALTDQ_REMOVE) 318 tbr->tbr_token -= TBR_SCALE(m_pktlen(m)); 319 tbr->tbr_lastop = op; 320 return (m); 321 } 322 323 /* 324 * set a token bucket regulator. 325 * if the specified rate is zero, the token bucket regulator is deleted. 326 */ 327 int 328 tbr_set(ifq, profile) 329 struct ifaltq *ifq; 330 struct tb_profile *profile; 331 { 332 struct tb_regulator *tbr, *otbr; 333 334 if (tbr_dequeue_ptr == NULL) 335 tbr_dequeue_ptr = tbr_dequeue; 336 337 if (machclk_freq == 0) 338 init_machclk(); 339 if (machclk_freq == 0) { 340 printf("tbr_set: no cpu clock available!\n"); 341 return (ENXIO); 342 } 343 344 IFQ_LOCK(ifq); 345 if (profile->rate == 0) { 346 /* delete this tbr */ 347 if ((tbr = ifq->altq_tbr) == NULL) { 348 IFQ_UNLOCK(ifq); 349 return (ENOENT); 350 } 351 ifq->altq_tbr = NULL; 352 free(tbr, M_DEVBUF); 353 IFQ_UNLOCK(ifq); 354 return (0); 355 } 356 357 tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO); 358 if (tbr == NULL) { 359 IFQ_UNLOCK(ifq); 360 return (ENOMEM); 361 } 362 363 tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq; 364 tbr->tbr_depth = TBR_SCALE(profile->depth); 365 if (tbr->tbr_rate > 0) 366 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate; 367 else 368 tbr->tbr_filluptime = LLONG_MAX; 369 /* 370 * The longest time between tbr_dequeue() calls will be about 1 371 * system tick, as the callout that drives it is scheduled once per 372 * tick. The refill-time detection logic in tbr_dequeue() can only 373 * properly detect the passage of up to LLONG_MAX machclk ticks. 374 * Therefore, in order for this logic to function properly in the 375 * extreme case, the maximum value of tbr_filluptime should be 376 * LLONG_MAX less one system tick's worth of machclk ticks less 377 * some additional slop factor (here one more system tick's worth 378 * of machclk ticks). 379 */ 380 if (tbr->tbr_filluptime > (LLONG_MAX - 2 * machclk_per_tick)) 381 tbr->tbr_filluptime = LLONG_MAX - 2 * machclk_per_tick; 382 tbr->tbr_token = tbr->tbr_depth; 383 tbr->tbr_last = read_machclk(); 384 tbr->tbr_lastop = ALTDQ_REMOVE; 385 386 otbr = ifq->altq_tbr; 387 ifq->altq_tbr = tbr; /* set the new tbr */ 388 389 if (otbr != NULL) 390 free(otbr, M_DEVBUF); 391 else { 392 if (tbr_timer == 0) { 393 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0); 394 tbr_timer = 1; 395 } 396 } 397 IFQ_UNLOCK(ifq); 398 return (0); 399 } 400 401 /* 402 * tbr_timeout goes through the interface list, and kicks the drivers 403 * if necessary. 404 * 405 * MPSAFE 406 */ 407 static void 408 tbr_timeout(arg) 409 void *arg; 410 { 411 VNET_ITERATOR_DECL(vnet_iter); 412 struct ifnet *ifp; 413 struct epoch_tracker et; 414 int active; 415 416 active = 0; 417 NET_EPOCH_ENTER(et); 418 VNET_LIST_RLOCK_NOSLEEP(); 419 VNET_FOREACH(vnet_iter) { 420 CURVNET_SET(vnet_iter); 421 for (ifp = CK_STAILQ_FIRST(&V_ifnet); ifp; 422 ifp = CK_STAILQ_NEXT(ifp, if_link)) { 423 /* read from if_snd unlocked */ 424 if (!TBR_IS_ENABLED(&ifp->if_snd)) 425 continue; 426 active++; 427 if (!IFQ_IS_EMPTY(&ifp->if_snd) && 428 ifp->if_start != NULL) 429 (*ifp->if_start)(ifp); 430 } 431 CURVNET_RESTORE(); 432 } 433 VNET_LIST_RUNLOCK_NOSLEEP(); 434 NET_EPOCH_EXIT(et); 435 if (active > 0) 436 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0); 437 else 438 tbr_timer = 0; /* don't need tbr_timer anymore */ 439 } 440 441 /* 442 * attach a discipline to the interface. if one already exists, it is 443 * overridden. 444 * Locking is done in the discipline specific attach functions. Basically 445 * they call back to altq_attach which takes care of the attach and locking. 446 */ 447 int 448 altq_pfattach(struct pf_altq *a) 449 { 450 int error = 0; 451 452 switch (a->scheduler) { 453 case ALTQT_NONE: 454 break; 455 #ifdef ALTQ_CBQ 456 case ALTQT_CBQ: 457 error = cbq_pfattach(a); 458 break; 459 #endif 460 #ifdef ALTQ_PRIQ 461 case ALTQT_PRIQ: 462 error = priq_pfattach(a); 463 break; 464 #endif 465 #ifdef ALTQ_HFSC 466 case ALTQT_HFSC: 467 error = hfsc_pfattach(a); 468 break; 469 #endif 470 #ifdef ALTQ_FAIRQ 471 case ALTQT_FAIRQ: 472 error = fairq_pfattach(a); 473 break; 474 #endif 475 #ifdef ALTQ_CODEL 476 case ALTQT_CODEL: 477 error = codel_pfattach(a); 478 break; 479 #endif 480 default: 481 error = ENXIO; 482 } 483 484 return (error); 485 } 486 487 /* 488 * detach a discipline from the interface. 489 * it is possible that the discipline was already overridden by another 490 * discipline. 491 */ 492 int 493 altq_pfdetach(struct pf_altq *a) 494 { 495 struct ifnet *ifp; 496 int s, error = 0; 497 498 if ((ifp = ifunit(a->ifname)) == NULL) 499 return (EINVAL); 500 501 /* if this discipline is no longer referenced, just return */ 502 /* read unlocked from if_snd */ 503 if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc) 504 return (0); 505 506 s = splnet(); 507 /* read unlocked from if_snd, _disable and _detach take care */ 508 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 509 error = altq_disable(&ifp->if_snd); 510 if (error == 0) 511 error = altq_detach(&ifp->if_snd); 512 splx(s); 513 514 return (error); 515 } 516 517 /* 518 * add a discipline or a queue 519 * Locking is done in the discipline specific functions with regards to 520 * malloc with WAITOK, also it is not yet clear which lock to use. 521 */ 522 int 523 altq_add(struct ifnet *ifp, struct pf_altq *a) 524 { 525 int error = 0; 526 527 if (a->qname[0] != 0) 528 return (altq_add_queue(a)); 529 530 if (machclk_freq == 0) 531 init_machclk(); 532 if (machclk_freq == 0) 533 panic("altq_add: no cpu clock"); 534 535 switch (a->scheduler) { 536 #ifdef ALTQ_CBQ 537 case ALTQT_CBQ: 538 error = cbq_add_altq(ifp, a); 539 break; 540 #endif 541 #ifdef ALTQ_PRIQ 542 case ALTQT_PRIQ: 543 error = priq_add_altq(ifp, a); 544 break; 545 #endif 546 #ifdef ALTQ_HFSC 547 case ALTQT_HFSC: 548 error = hfsc_add_altq(ifp, a); 549 break; 550 #endif 551 #ifdef ALTQ_FAIRQ 552 case ALTQT_FAIRQ: 553 error = fairq_add_altq(ifp, a); 554 break; 555 #endif 556 #ifdef ALTQ_CODEL 557 case ALTQT_CODEL: 558 error = codel_add_altq(ifp, a); 559 break; 560 #endif 561 default: 562 error = ENXIO; 563 } 564 565 return (error); 566 } 567 568 /* 569 * remove a discipline or a queue 570 * It is yet unclear what lock to use to protect this operation, the 571 * discipline specific functions will determine and grab it 572 */ 573 int 574 altq_remove(struct pf_altq *a) 575 { 576 int error = 0; 577 578 if (a->qname[0] != 0) 579 return (altq_remove_queue(a)); 580 581 switch (a->scheduler) { 582 #ifdef ALTQ_CBQ 583 case ALTQT_CBQ: 584 error = cbq_remove_altq(a); 585 break; 586 #endif 587 #ifdef ALTQ_PRIQ 588 case ALTQT_PRIQ: 589 error = priq_remove_altq(a); 590 break; 591 #endif 592 #ifdef ALTQ_HFSC 593 case ALTQT_HFSC: 594 error = hfsc_remove_altq(a); 595 break; 596 #endif 597 #ifdef ALTQ_FAIRQ 598 case ALTQT_FAIRQ: 599 error = fairq_remove_altq(a); 600 break; 601 #endif 602 #ifdef ALTQ_CODEL 603 case ALTQT_CODEL: 604 error = codel_remove_altq(a); 605 break; 606 #endif 607 default: 608 error = ENXIO; 609 } 610 611 return (error); 612 } 613 614 /* 615 * add a queue to the discipline 616 * It is yet unclear what lock to use to protect this operation, the 617 * discipline specific functions will determine and grab it 618 */ 619 int 620 altq_add_queue(struct pf_altq *a) 621 { 622 int error = 0; 623 624 switch (a->scheduler) { 625 #ifdef ALTQ_CBQ 626 case ALTQT_CBQ: 627 error = cbq_add_queue(a); 628 break; 629 #endif 630 #ifdef ALTQ_PRIQ 631 case ALTQT_PRIQ: 632 error = priq_add_queue(a); 633 break; 634 #endif 635 #ifdef ALTQ_HFSC 636 case ALTQT_HFSC: 637 error = hfsc_add_queue(a); 638 break; 639 #endif 640 #ifdef ALTQ_FAIRQ 641 case ALTQT_FAIRQ: 642 error = fairq_add_queue(a); 643 break; 644 #endif 645 default: 646 error = ENXIO; 647 } 648 649 return (error); 650 } 651 652 /* 653 * remove a queue from the discipline 654 * It is yet unclear what lock to use to protect this operation, the 655 * discipline specific functions will determine and grab it 656 */ 657 int 658 altq_remove_queue(struct pf_altq *a) 659 { 660 int error = 0; 661 662 switch (a->scheduler) { 663 #ifdef ALTQ_CBQ 664 case ALTQT_CBQ: 665 error = cbq_remove_queue(a); 666 break; 667 #endif 668 #ifdef ALTQ_PRIQ 669 case ALTQT_PRIQ: 670 error = priq_remove_queue(a); 671 break; 672 #endif 673 #ifdef ALTQ_HFSC 674 case ALTQT_HFSC: 675 error = hfsc_remove_queue(a); 676 break; 677 #endif 678 #ifdef ALTQ_FAIRQ 679 case ALTQT_FAIRQ: 680 error = fairq_remove_queue(a); 681 break; 682 #endif 683 default: 684 error = ENXIO; 685 } 686 687 return (error); 688 } 689 690 /* 691 * get queue statistics 692 * Locking is done in the discipline specific functions with regards to 693 * copyout operations, also it is not yet clear which lock to use. 694 */ 695 int 696 altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes, int version) 697 { 698 int error = 0; 699 700 switch (a->scheduler) { 701 #ifdef ALTQ_CBQ 702 case ALTQT_CBQ: 703 error = cbq_getqstats(a, ubuf, nbytes, version); 704 break; 705 #endif 706 #ifdef ALTQ_PRIQ 707 case ALTQT_PRIQ: 708 error = priq_getqstats(a, ubuf, nbytes, version); 709 break; 710 #endif 711 #ifdef ALTQ_HFSC 712 case ALTQT_HFSC: 713 error = hfsc_getqstats(a, ubuf, nbytes, version); 714 break; 715 #endif 716 #ifdef ALTQ_FAIRQ 717 case ALTQT_FAIRQ: 718 error = fairq_getqstats(a, ubuf, nbytes, version); 719 break; 720 #endif 721 #ifdef ALTQ_CODEL 722 case ALTQT_CODEL: 723 error = codel_getqstats(a, ubuf, nbytes, version); 724 break; 725 #endif 726 default: 727 error = ENXIO; 728 } 729 730 return (error); 731 } 732 733 /* 734 * read and write diffserv field in IPv4 or IPv6 header 735 */ 736 u_int8_t 737 read_dsfield(m, pktattr) 738 struct mbuf *m; 739 struct altq_pktattr *pktattr; 740 { 741 struct mbuf *m0; 742 u_int8_t ds_field = 0; 743 744 if (pktattr == NULL || 745 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6)) 746 return ((u_int8_t)0); 747 748 /* verify that pattr_hdr is within the mbuf data */ 749 for (m0 = m; m0 != NULL; m0 = m0->m_next) 750 if ((pktattr->pattr_hdr >= m0->m_data) && 751 (pktattr->pattr_hdr < m0->m_data + m0->m_len)) 752 break; 753 if (m0 == NULL) { 754 /* ick, pattr_hdr is stale */ 755 pktattr->pattr_af = AF_UNSPEC; 756 #ifdef ALTQ_DEBUG 757 printf("read_dsfield: can't locate header!\n"); 758 #endif 759 return ((u_int8_t)0); 760 } 761 762 if (pktattr->pattr_af == AF_INET) { 763 struct ip *ip = (struct ip *)pktattr->pattr_hdr; 764 765 if (ip->ip_v != 4) 766 return ((u_int8_t)0); /* version mismatch! */ 767 ds_field = ip->ip_tos; 768 } 769 #ifdef INET6 770 else if (pktattr->pattr_af == AF_INET6) { 771 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr; 772 u_int32_t flowlabel; 773 774 flowlabel = ntohl(ip6->ip6_flow); 775 if ((flowlabel >> 28) != 6) 776 return ((u_int8_t)0); /* version mismatch! */ 777 ds_field = (flowlabel >> 20) & 0xff; 778 } 779 #endif 780 return (ds_field); 781 } 782 783 void 784 write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield) 785 { 786 struct mbuf *m0; 787 788 if (pktattr == NULL || 789 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6)) 790 return; 791 792 /* verify that pattr_hdr is within the mbuf data */ 793 for (m0 = m; m0 != NULL; m0 = m0->m_next) 794 if ((pktattr->pattr_hdr >= m0->m_data) && 795 (pktattr->pattr_hdr < m0->m_data + m0->m_len)) 796 break; 797 if (m0 == NULL) { 798 /* ick, pattr_hdr is stale */ 799 pktattr->pattr_af = AF_UNSPEC; 800 #ifdef ALTQ_DEBUG 801 printf("write_dsfield: can't locate header!\n"); 802 #endif 803 return; 804 } 805 806 if (pktattr->pattr_af == AF_INET) { 807 struct ip *ip = (struct ip *)pktattr->pattr_hdr; 808 u_int8_t old; 809 int32_t sum; 810 811 if (ip->ip_v != 4) 812 return; /* version mismatch! */ 813 old = ip->ip_tos; 814 dsfield |= old & 3; /* leave CU bits */ 815 if (old == dsfield) 816 return; 817 ip->ip_tos = dsfield; 818 /* 819 * update checksum (from RFC1624) 820 * HC' = ~(~HC + ~m + m') 821 */ 822 sum = ~ntohs(ip->ip_sum) & 0xffff; 823 sum += 0xff00 + (~old & 0xff) + dsfield; 824 sum = (sum >> 16) + (sum & 0xffff); 825 sum += (sum >> 16); /* add carry */ 826 827 ip->ip_sum = htons(~sum & 0xffff); 828 } 829 #ifdef INET6 830 else if (pktattr->pattr_af == AF_INET6) { 831 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr; 832 u_int32_t flowlabel; 833 834 flowlabel = ntohl(ip6->ip6_flow); 835 if ((flowlabel >> 28) != 6) 836 return; /* version mismatch! */ 837 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20); 838 ip6->ip6_flow = htonl(flowlabel); 839 } 840 #endif 841 return; 842 } 843 844 /* 845 * high resolution clock support taking advantage of a machine dependent 846 * high resolution time counter (e.g., timestamp counter of intel pentium). 847 * we assume 848 * - 64-bit-long monotonically-increasing counter 849 * - frequency range is 100M-4GHz (CPU speed) 850 */ 851 /* if pcc is not available or disabled, emulate 256MHz using microtime() */ 852 #define MACHCLK_SHIFT 8 853 854 int machclk_usepcc; 855 u_int32_t machclk_freq; 856 u_int32_t machclk_per_tick; 857 858 #if defined(__i386__) && defined(__NetBSD__) 859 extern u_int64_t cpu_tsc_freq; 860 #endif 861 862 #if (__FreeBSD_version >= 700035) 863 /* Update TSC freq with the value indicated by the caller. */ 864 static void 865 tsc_freq_changed(void *arg, const struct cf_level *level, int status) 866 { 867 /* If there was an error during the transition, don't do anything. */ 868 if (status != 0) 869 return; 870 871 #if (__FreeBSD_version >= 701102) && (defined(__amd64__) || defined(__i386__)) 872 /* If TSC is P-state invariant, don't do anything. */ 873 if (tsc_is_invariant) 874 return; 875 #endif 876 877 /* Total setting for this level gives the new frequency in MHz. */ 878 init_machclk(); 879 } 880 EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL, 881 EVENTHANDLER_PRI_LAST); 882 #endif /* __FreeBSD_version >= 700035 */ 883 884 static void 885 init_machclk_setup(void) 886 { 887 #if (__FreeBSD_version >= 600000) 888 callout_init(&tbr_callout, 0); 889 #endif 890 891 machclk_usepcc = 1; 892 893 #if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC) 894 machclk_usepcc = 0; 895 #endif 896 #if defined(__FreeBSD__) && defined(SMP) 897 machclk_usepcc = 0; 898 #endif 899 #if defined(__NetBSD__) && defined(MULTIPROCESSOR) 900 machclk_usepcc = 0; 901 #endif 902 #if defined(__amd64__) || defined(__i386__) 903 /* check if TSC is available */ 904 if ((cpu_feature & CPUID_TSC) == 0 || 905 atomic_load_acq_64(&tsc_freq) == 0) 906 machclk_usepcc = 0; 907 #endif 908 } 909 910 void 911 init_machclk(void) 912 { 913 static int called; 914 915 /* Call one-time initialization function. */ 916 if (!called) { 917 init_machclk_setup(); 918 called = 1; 919 } 920 921 if (machclk_usepcc == 0) { 922 /* emulate 256MHz using microtime() */ 923 machclk_freq = 1000000 << MACHCLK_SHIFT; 924 machclk_per_tick = machclk_freq / hz; 925 #ifdef ALTQ_DEBUG 926 printf("altq: emulate %uHz cpu clock\n", machclk_freq); 927 #endif 928 return; 929 } 930 931 /* 932 * if the clock frequency (of Pentium TSC or Alpha PCC) is 933 * accessible, just use it. 934 */ 935 #if defined(__amd64__) || defined(__i386__) 936 machclk_freq = atomic_load_acq_64(&tsc_freq); 937 #endif 938 939 /* 940 * if we don't know the clock frequency, measure it. 941 */ 942 if (machclk_freq == 0) { 943 static int wait; 944 struct timeval tv_start, tv_end; 945 u_int64_t start, end, diff; 946 int timo; 947 948 microtime(&tv_start); 949 start = read_machclk(); 950 timo = hz; /* 1 sec */ 951 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo); 952 microtime(&tv_end); 953 end = read_machclk(); 954 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000 955 + tv_end.tv_usec - tv_start.tv_usec; 956 if (diff != 0) 957 machclk_freq = (u_int)((end - start) * 1000000 / diff); 958 } 959 960 machclk_per_tick = machclk_freq / hz; 961 962 #ifdef ALTQ_DEBUG 963 printf("altq: CPU clock: %uHz\n", machclk_freq); 964 #endif 965 } 966 967 #if defined(__OpenBSD__) && defined(__i386__) 968 static __inline u_int64_t 969 rdtsc(void) 970 { 971 u_int64_t rv; 972 __asm __volatile(".byte 0x0f, 0x31" : "=A" (rv)); 973 return (rv); 974 } 975 #endif /* __OpenBSD__ && __i386__ */ 976 977 u_int64_t 978 read_machclk(void) 979 { 980 u_int64_t val; 981 982 if (machclk_usepcc) { 983 #if defined(__amd64__) || defined(__i386__) 984 val = rdtsc(); 985 #else 986 panic("read_machclk"); 987 #endif 988 } else { 989 struct timeval tv, boottime; 990 991 microtime(&tv); 992 getboottime(&boottime); 993 val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000 994 + tv.tv_usec) << MACHCLK_SHIFT); 995 } 996 return (val); 997 } 998 999 #ifdef ALTQ3_CLFIER_COMPAT 1000 1001 #ifndef IPPROTO_ESP 1002 #define IPPROTO_ESP 50 /* encapsulating security payload */ 1003 #endif 1004 #ifndef IPPROTO_AH 1005 #define IPPROTO_AH 51 /* authentication header */ 1006 #endif 1007 1008 /* 1009 * extract flow information from a given packet. 1010 * filt_mask shows flowinfo fields required. 1011 * we assume the ip header is in one mbuf, and addresses and ports are 1012 * in network byte order. 1013 */ 1014 int 1015 altq_extractflow(m, af, flow, filt_bmask) 1016 struct mbuf *m; 1017 int af; 1018 struct flowinfo *flow; 1019 u_int32_t filt_bmask; 1020 { 1021 1022 switch (af) { 1023 case PF_INET: { 1024 struct flowinfo_in *fin; 1025 struct ip *ip; 1026 1027 ip = mtod(m, struct ip *); 1028 1029 if (ip->ip_v != 4) 1030 break; 1031 1032 fin = (struct flowinfo_in *)flow; 1033 fin->fi_len = sizeof(struct flowinfo_in); 1034 fin->fi_family = AF_INET; 1035 1036 fin->fi_proto = ip->ip_p; 1037 fin->fi_tos = ip->ip_tos; 1038 1039 fin->fi_src.s_addr = ip->ip_src.s_addr; 1040 fin->fi_dst.s_addr = ip->ip_dst.s_addr; 1041 1042 if (filt_bmask & FIMB4_PORTS) 1043 /* if port info is required, extract port numbers */ 1044 extract_ports4(m, ip, fin); 1045 else { 1046 fin->fi_sport = 0; 1047 fin->fi_dport = 0; 1048 fin->fi_gpi = 0; 1049 } 1050 return (1); 1051 } 1052 1053 #ifdef INET6 1054 case PF_INET6: { 1055 struct flowinfo_in6 *fin6; 1056 struct ip6_hdr *ip6; 1057 1058 ip6 = mtod(m, struct ip6_hdr *); 1059 /* should we check the ip version? */ 1060 1061 fin6 = (struct flowinfo_in6 *)flow; 1062 fin6->fi6_len = sizeof(struct flowinfo_in6); 1063 fin6->fi6_family = AF_INET6; 1064 1065 fin6->fi6_proto = ip6->ip6_nxt; 1066 fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff; 1067 1068 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff); 1069 fin6->fi6_src = ip6->ip6_src; 1070 fin6->fi6_dst = ip6->ip6_dst; 1071 1072 if ((filt_bmask & FIMB6_PORTS) || 1073 ((filt_bmask & FIMB6_PROTO) 1074 && ip6->ip6_nxt > IPPROTO_IPV6)) 1075 /* 1076 * if port info is required, or proto is required 1077 * but there are option headers, extract port 1078 * and protocol numbers. 1079 */ 1080 extract_ports6(m, ip6, fin6); 1081 else { 1082 fin6->fi6_sport = 0; 1083 fin6->fi6_dport = 0; 1084 fin6->fi6_gpi = 0; 1085 } 1086 return (1); 1087 } 1088 #endif /* INET6 */ 1089 1090 default: 1091 break; 1092 } 1093 1094 /* failed */ 1095 flow->fi_len = sizeof(struct flowinfo); 1096 flow->fi_family = AF_UNSPEC; 1097 return (0); 1098 } 1099 1100 /* 1101 * helper routine to extract port numbers 1102 */ 1103 /* structure for ipsec and ipv6 option header template */ 1104 struct _opt6 { 1105 u_int8_t opt6_nxt; /* next header */ 1106 u_int8_t opt6_hlen; /* header extension length */ 1107 u_int16_t _pad; 1108 u_int32_t ah_spi; /* security parameter index 1109 for authentication header */ 1110 }; 1111 1112 /* 1113 * extract port numbers from a ipv4 packet. 1114 */ 1115 static int 1116 extract_ports4(m, ip, fin) 1117 struct mbuf *m; 1118 struct ip *ip; 1119 struct flowinfo_in *fin; 1120 { 1121 struct mbuf *m0; 1122 u_short ip_off; 1123 u_int8_t proto; 1124 int off; 1125 1126 fin->fi_sport = 0; 1127 fin->fi_dport = 0; 1128 fin->fi_gpi = 0; 1129 1130 ip_off = ntohs(ip->ip_off); 1131 /* if it is a fragment, try cached fragment info */ 1132 if (ip_off & IP_OFFMASK) { 1133 ip4f_lookup(ip, fin); 1134 return (1); 1135 } 1136 1137 /* locate the mbuf containing the protocol header */ 1138 for (m0 = m; m0 != NULL; m0 = m0->m_next) 1139 if (((caddr_t)ip >= m0->m_data) && 1140 ((caddr_t)ip < m0->m_data + m0->m_len)) 1141 break; 1142 if (m0 == NULL) { 1143 #ifdef ALTQ_DEBUG 1144 printf("extract_ports4: can't locate header! ip=%p\n", ip); 1145 #endif 1146 return (0); 1147 } 1148 off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2); 1149 proto = ip->ip_p; 1150 1151 #ifdef ALTQ_IPSEC 1152 again: 1153 #endif 1154 while (off >= m0->m_len) { 1155 off -= m0->m_len; 1156 m0 = m0->m_next; 1157 if (m0 == NULL) 1158 return (0); /* bogus ip_hl! */ 1159 } 1160 if (m0->m_len < off + 4) 1161 return (0); 1162 1163 switch (proto) { 1164 case IPPROTO_TCP: 1165 case IPPROTO_UDP: { 1166 struct udphdr *udp; 1167 1168 udp = (struct udphdr *)(mtod(m0, caddr_t) + off); 1169 fin->fi_sport = udp->uh_sport; 1170 fin->fi_dport = udp->uh_dport; 1171 fin->fi_proto = proto; 1172 } 1173 break; 1174 1175 #ifdef ALTQ_IPSEC 1176 case IPPROTO_ESP: 1177 if (fin->fi_gpi == 0){ 1178 u_int32_t *gpi; 1179 1180 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off); 1181 fin->fi_gpi = *gpi; 1182 } 1183 fin->fi_proto = proto; 1184 break; 1185 1186 case IPPROTO_AH: { 1187 /* get next header and header length */ 1188 struct _opt6 *opt6; 1189 1190 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off); 1191 proto = opt6->opt6_nxt; 1192 off += 8 + (opt6->opt6_hlen * 4); 1193 if (fin->fi_gpi == 0 && m0->m_len >= off + 8) 1194 fin->fi_gpi = opt6->ah_spi; 1195 } 1196 /* goto the next header */ 1197 goto again; 1198 #endif /* ALTQ_IPSEC */ 1199 1200 default: 1201 fin->fi_proto = proto; 1202 return (0); 1203 } 1204 1205 /* if this is a first fragment, cache it. */ 1206 if (ip_off & IP_MF) 1207 ip4f_cache(ip, fin); 1208 1209 return (1); 1210 } 1211 1212 #ifdef INET6 1213 static int 1214 extract_ports6(m, ip6, fin6) 1215 struct mbuf *m; 1216 struct ip6_hdr *ip6; 1217 struct flowinfo_in6 *fin6; 1218 { 1219 struct mbuf *m0; 1220 int off; 1221 u_int8_t proto; 1222 1223 fin6->fi6_gpi = 0; 1224 fin6->fi6_sport = 0; 1225 fin6->fi6_dport = 0; 1226 1227 /* locate the mbuf containing the protocol header */ 1228 for (m0 = m; m0 != NULL; m0 = m0->m_next) 1229 if (((caddr_t)ip6 >= m0->m_data) && 1230 ((caddr_t)ip6 < m0->m_data + m0->m_len)) 1231 break; 1232 if (m0 == NULL) { 1233 #ifdef ALTQ_DEBUG 1234 printf("extract_ports6: can't locate header! ip6=%p\n", ip6); 1235 #endif 1236 return (0); 1237 } 1238 off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr); 1239 1240 proto = ip6->ip6_nxt; 1241 do { 1242 while (off >= m0->m_len) { 1243 off -= m0->m_len; 1244 m0 = m0->m_next; 1245 if (m0 == NULL) 1246 return (0); 1247 } 1248 if (m0->m_len < off + 4) 1249 return (0); 1250 1251 switch (proto) { 1252 case IPPROTO_TCP: 1253 case IPPROTO_UDP: { 1254 struct udphdr *udp; 1255 1256 udp = (struct udphdr *)(mtod(m0, caddr_t) + off); 1257 fin6->fi6_sport = udp->uh_sport; 1258 fin6->fi6_dport = udp->uh_dport; 1259 fin6->fi6_proto = proto; 1260 } 1261 return (1); 1262 1263 case IPPROTO_ESP: 1264 if (fin6->fi6_gpi == 0) { 1265 u_int32_t *gpi; 1266 1267 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off); 1268 fin6->fi6_gpi = *gpi; 1269 } 1270 fin6->fi6_proto = proto; 1271 return (1); 1272 1273 case IPPROTO_AH: { 1274 /* get next header and header length */ 1275 struct _opt6 *opt6; 1276 1277 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off); 1278 if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8) 1279 fin6->fi6_gpi = opt6->ah_spi; 1280 proto = opt6->opt6_nxt; 1281 off += 8 + (opt6->opt6_hlen * 4); 1282 /* goto the next header */ 1283 break; 1284 } 1285 1286 case IPPROTO_HOPOPTS: 1287 case IPPROTO_ROUTING: 1288 case IPPROTO_DSTOPTS: { 1289 /* get next header and header length */ 1290 struct _opt6 *opt6; 1291 1292 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off); 1293 proto = opt6->opt6_nxt; 1294 off += (opt6->opt6_hlen + 1) * 8; 1295 /* goto the next header */ 1296 break; 1297 } 1298 1299 case IPPROTO_FRAGMENT: 1300 /* ipv6 fragmentations are not supported yet */ 1301 default: 1302 fin6->fi6_proto = proto; 1303 return (0); 1304 } 1305 } while (1); 1306 /*NOTREACHED*/ 1307 } 1308 #endif /* INET6 */ 1309 1310 /* 1311 * altq common classifier 1312 */ 1313 int 1314 acc_add_filter(classifier, filter, class, phandle) 1315 struct acc_classifier *classifier; 1316 struct flow_filter *filter; 1317 void *class; 1318 u_long *phandle; 1319 { 1320 struct acc_filter *afp, *prev, *tmp; 1321 int i, s; 1322 1323 #ifdef INET6 1324 if (filter->ff_flow.fi_family != AF_INET && 1325 filter->ff_flow.fi_family != AF_INET6) 1326 return (EINVAL); 1327 #else 1328 if (filter->ff_flow.fi_family != AF_INET) 1329 return (EINVAL); 1330 #endif 1331 1332 afp = malloc(sizeof(struct acc_filter), 1333 M_DEVBUF, M_WAITOK); 1334 if (afp == NULL) 1335 return (ENOMEM); 1336 bzero(afp, sizeof(struct acc_filter)); 1337 1338 afp->f_filter = *filter; 1339 afp->f_class = class; 1340 1341 i = ACC_WILDCARD_INDEX; 1342 if (filter->ff_flow.fi_family == AF_INET) { 1343 struct flow_filter *filter4 = &afp->f_filter; 1344 1345 /* 1346 * if address is 0, it's a wildcard. if address mask 1347 * isn't set, use full mask. 1348 */ 1349 if (filter4->ff_flow.fi_dst.s_addr == 0) 1350 filter4->ff_mask.mask_dst.s_addr = 0; 1351 else if (filter4->ff_mask.mask_dst.s_addr == 0) 1352 filter4->ff_mask.mask_dst.s_addr = 0xffffffff; 1353 if (filter4->ff_flow.fi_src.s_addr == 0) 1354 filter4->ff_mask.mask_src.s_addr = 0; 1355 else if (filter4->ff_mask.mask_src.s_addr == 0) 1356 filter4->ff_mask.mask_src.s_addr = 0xffffffff; 1357 1358 /* clear extra bits in addresses */ 1359 filter4->ff_flow.fi_dst.s_addr &= 1360 filter4->ff_mask.mask_dst.s_addr; 1361 filter4->ff_flow.fi_src.s_addr &= 1362 filter4->ff_mask.mask_src.s_addr; 1363 1364 /* 1365 * if dst address is a wildcard, use hash-entry 1366 * ACC_WILDCARD_INDEX. 1367 */ 1368 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff) 1369 i = ACC_WILDCARD_INDEX; 1370 else 1371 i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr); 1372 } 1373 #ifdef INET6 1374 else if (filter->ff_flow.fi_family == AF_INET6) { 1375 struct flow_filter6 *filter6 = 1376 (struct flow_filter6 *)&afp->f_filter; 1377 #ifndef IN6MASK0 /* taken from kame ipv6 */ 1378 #define IN6MASK0 {{{ 0, 0, 0, 0 }}} 1379 #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}} 1380 const struct in6_addr in6mask0 = IN6MASK0; 1381 const struct in6_addr in6mask128 = IN6MASK128; 1382 #endif 1383 1384 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst)) 1385 filter6->ff_mask6.mask6_dst = in6mask0; 1386 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst)) 1387 filter6->ff_mask6.mask6_dst = in6mask128; 1388 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src)) 1389 filter6->ff_mask6.mask6_src = in6mask0; 1390 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src)) 1391 filter6->ff_mask6.mask6_src = in6mask128; 1392 1393 /* clear extra bits in addresses */ 1394 for (i = 0; i < 16; i++) 1395 filter6->ff_flow6.fi6_dst.s6_addr[i] &= 1396 filter6->ff_mask6.mask6_dst.s6_addr[i]; 1397 for (i = 0; i < 16; i++) 1398 filter6->ff_flow6.fi6_src.s6_addr[i] &= 1399 filter6->ff_mask6.mask6_src.s6_addr[i]; 1400 1401 if (filter6->ff_flow6.fi6_flowlabel == 0) 1402 i = ACC_WILDCARD_INDEX; 1403 else 1404 i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel); 1405 } 1406 #endif /* INET6 */ 1407 1408 afp->f_handle = get_filt_handle(classifier, i); 1409 1410 /* update filter bitmask */ 1411 afp->f_fbmask = filt2fibmask(filter); 1412 classifier->acc_fbmask |= afp->f_fbmask; 1413 1414 /* 1415 * add this filter to the filter list. 1416 * filters are ordered from the highest rule number. 1417 */ 1418 s = splnet(); 1419 prev = NULL; 1420 LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) { 1421 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno) 1422 prev = tmp; 1423 else 1424 break; 1425 } 1426 if (prev == NULL) 1427 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain); 1428 else 1429 LIST_INSERT_AFTER(prev, afp, f_chain); 1430 splx(s); 1431 1432 *phandle = afp->f_handle; 1433 return (0); 1434 } 1435 1436 int 1437 acc_delete_filter(classifier, handle) 1438 struct acc_classifier *classifier; 1439 u_long handle; 1440 { 1441 struct acc_filter *afp; 1442 int s; 1443 1444 if ((afp = filth_to_filtp(classifier, handle)) == NULL) 1445 return (EINVAL); 1446 1447 s = splnet(); 1448 LIST_REMOVE(afp, f_chain); 1449 splx(s); 1450 1451 free(afp, M_DEVBUF); 1452 1453 /* todo: update filt_bmask */ 1454 1455 return (0); 1456 } 1457 1458 /* 1459 * delete filters referencing to the specified class. 1460 * if the all flag is not 0, delete all the filters. 1461 */ 1462 int 1463 acc_discard_filters(classifier, class, all) 1464 struct acc_classifier *classifier; 1465 void *class; 1466 int all; 1467 { 1468 struct acc_filter *afp; 1469 int i, s; 1470 1471 s = splnet(); 1472 for (i = 0; i < ACC_FILTER_TABLESIZE; i++) { 1473 do { 1474 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) 1475 if (all || afp->f_class == class) { 1476 LIST_REMOVE(afp, f_chain); 1477 free(afp, M_DEVBUF); 1478 /* start again from the head */ 1479 break; 1480 } 1481 } while (afp != NULL); 1482 } 1483 splx(s); 1484 1485 if (all) 1486 classifier->acc_fbmask = 0; 1487 1488 return (0); 1489 } 1490 1491 void * 1492 acc_classify(clfier, m, af) 1493 void *clfier; 1494 struct mbuf *m; 1495 int af; 1496 { 1497 struct acc_classifier *classifier; 1498 struct flowinfo flow; 1499 struct acc_filter *afp; 1500 int i; 1501 1502 classifier = (struct acc_classifier *)clfier; 1503 altq_extractflow(m, af, &flow, classifier->acc_fbmask); 1504 1505 if (flow.fi_family == AF_INET) { 1506 struct flowinfo_in *fp = (struct flowinfo_in *)&flow; 1507 1508 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) { 1509 /* only tos is used */ 1510 LIST_FOREACH(afp, 1511 &classifier->acc_filters[ACC_WILDCARD_INDEX], 1512 f_chain) 1513 if (apply_tosfilter4(afp->f_fbmask, 1514 &afp->f_filter, fp)) 1515 /* filter matched */ 1516 return (afp->f_class); 1517 } else if ((classifier->acc_fbmask & 1518 (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL)) 1519 == 0) { 1520 /* only proto and ports are used */ 1521 LIST_FOREACH(afp, 1522 &classifier->acc_filters[ACC_WILDCARD_INDEX], 1523 f_chain) 1524 if (apply_ppfilter4(afp->f_fbmask, 1525 &afp->f_filter, fp)) 1526 /* filter matched */ 1527 return (afp->f_class); 1528 } else { 1529 /* get the filter hash entry from its dest address */ 1530 i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr); 1531 do { 1532 /* 1533 * go through this loop twice. first for dst 1534 * hash, second for wildcards. 1535 */ 1536 LIST_FOREACH(afp, &classifier->acc_filters[i], 1537 f_chain) 1538 if (apply_filter4(afp->f_fbmask, 1539 &afp->f_filter, fp)) 1540 /* filter matched */ 1541 return (afp->f_class); 1542 1543 /* 1544 * check again for filters with a dst addr 1545 * wildcard. 1546 * (daddr == 0 || dmask != 0xffffffff). 1547 */ 1548 if (i != ACC_WILDCARD_INDEX) 1549 i = ACC_WILDCARD_INDEX; 1550 else 1551 break; 1552 } while (1); 1553 } 1554 } 1555 #ifdef INET6 1556 else if (flow.fi_family == AF_INET6) { 1557 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow; 1558 1559 /* get the filter hash entry from its flow ID */ 1560 if (fp6->fi6_flowlabel != 0) 1561 i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel); 1562 else 1563 /* flowlable can be zero */ 1564 i = ACC_WILDCARD_INDEX; 1565 1566 /* go through this loop twice. first for flow hash, second 1567 for wildcards. */ 1568 do { 1569 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) 1570 if (apply_filter6(afp->f_fbmask, 1571 (struct flow_filter6 *)&afp->f_filter, 1572 fp6)) 1573 /* filter matched */ 1574 return (afp->f_class); 1575 1576 /* 1577 * check again for filters with a wildcard. 1578 */ 1579 if (i != ACC_WILDCARD_INDEX) 1580 i = ACC_WILDCARD_INDEX; 1581 else 1582 break; 1583 } while (1); 1584 } 1585 #endif /* INET6 */ 1586 1587 /* no filter matched */ 1588 return (NULL); 1589 } 1590 1591 static int 1592 apply_filter4(fbmask, filt, pkt) 1593 u_int32_t fbmask; 1594 struct flow_filter *filt; 1595 struct flowinfo_in *pkt; 1596 { 1597 if (filt->ff_flow.fi_family != AF_INET) 1598 return (0); 1599 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport) 1600 return (0); 1601 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport) 1602 return (0); 1603 if ((fbmask & FIMB4_DADDR) && 1604 filt->ff_flow.fi_dst.s_addr != 1605 (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr)) 1606 return (0); 1607 if ((fbmask & FIMB4_SADDR) && 1608 filt->ff_flow.fi_src.s_addr != 1609 (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr)) 1610 return (0); 1611 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto) 1612 return (0); 1613 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos != 1614 (pkt->fi_tos & filt->ff_mask.mask_tos)) 1615 return (0); 1616 if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi)) 1617 return (0); 1618 /* match */ 1619 return (1); 1620 } 1621 1622 /* 1623 * filter matching function optimized for a common case that checks 1624 * only protocol and port numbers 1625 */ 1626 static int 1627 apply_ppfilter4(fbmask, filt, pkt) 1628 u_int32_t fbmask; 1629 struct flow_filter *filt; 1630 struct flowinfo_in *pkt; 1631 { 1632 if (filt->ff_flow.fi_family != AF_INET) 1633 return (0); 1634 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport) 1635 return (0); 1636 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport) 1637 return (0); 1638 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto) 1639 return (0); 1640 /* match */ 1641 return (1); 1642 } 1643 1644 /* 1645 * filter matching function only for tos field. 1646 */ 1647 static int 1648 apply_tosfilter4(fbmask, filt, pkt) 1649 u_int32_t fbmask; 1650 struct flow_filter *filt; 1651 struct flowinfo_in *pkt; 1652 { 1653 if (filt->ff_flow.fi_family != AF_INET) 1654 return (0); 1655 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos != 1656 (pkt->fi_tos & filt->ff_mask.mask_tos)) 1657 return (0); 1658 /* match */ 1659 return (1); 1660 } 1661 1662 #ifdef INET6 1663 static int 1664 apply_filter6(fbmask, filt, pkt) 1665 u_int32_t fbmask; 1666 struct flow_filter6 *filt; 1667 struct flowinfo_in6 *pkt; 1668 { 1669 int i; 1670 1671 if (filt->ff_flow6.fi6_family != AF_INET6) 1672 return (0); 1673 if ((fbmask & FIMB6_FLABEL) && 1674 filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel) 1675 return (0); 1676 if ((fbmask & FIMB6_PROTO) && 1677 filt->ff_flow6.fi6_proto != pkt->fi6_proto) 1678 return (0); 1679 if ((fbmask & FIMB6_SPORT) && 1680 filt->ff_flow6.fi6_sport != pkt->fi6_sport) 1681 return (0); 1682 if ((fbmask & FIMB6_DPORT) && 1683 filt->ff_flow6.fi6_dport != pkt->fi6_dport) 1684 return (0); 1685 if (fbmask & FIMB6_SADDR) { 1686 for (i = 0; i < 4; i++) 1687 if (filt->ff_flow6.fi6_src.s6_addr32[i] != 1688 (pkt->fi6_src.s6_addr32[i] & 1689 filt->ff_mask6.mask6_src.s6_addr32[i])) 1690 return (0); 1691 } 1692 if (fbmask & FIMB6_DADDR) { 1693 for (i = 0; i < 4; i++) 1694 if (filt->ff_flow6.fi6_dst.s6_addr32[i] != 1695 (pkt->fi6_dst.s6_addr32[i] & 1696 filt->ff_mask6.mask6_dst.s6_addr32[i])) 1697 return (0); 1698 } 1699 if ((fbmask & FIMB6_TCLASS) && 1700 filt->ff_flow6.fi6_tclass != 1701 (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass)) 1702 return (0); 1703 if ((fbmask & FIMB6_GPI) && 1704 filt->ff_flow6.fi6_gpi != pkt->fi6_gpi) 1705 return (0); 1706 /* match */ 1707 return (1); 1708 } 1709 #endif /* INET6 */ 1710 1711 /* 1712 * filter handle: 1713 * bit 20-28: index to the filter hash table 1714 * bit 0-19: unique id in the hash bucket. 1715 */ 1716 static u_long 1717 get_filt_handle(classifier, i) 1718 struct acc_classifier *classifier; 1719 int i; 1720 { 1721 static u_long handle_number = 1; 1722 u_long handle; 1723 struct acc_filter *afp; 1724 1725 while (1) { 1726 handle = handle_number++ & 0x000fffff; 1727 1728 if (LIST_EMPTY(&classifier->acc_filters[i])) 1729 break; 1730 1731 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) 1732 if ((afp->f_handle & 0x000fffff) == handle) 1733 break; 1734 if (afp == NULL) 1735 break; 1736 /* this handle is already used, try again */ 1737 } 1738 1739 return ((i << 20) | handle); 1740 } 1741 1742 /* convert filter handle to filter pointer */ 1743 static struct acc_filter * 1744 filth_to_filtp(classifier, handle) 1745 struct acc_classifier *classifier; 1746 u_long handle; 1747 { 1748 struct acc_filter *afp; 1749 int i; 1750 1751 i = ACC_GET_HINDEX(handle); 1752 1753 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) 1754 if (afp->f_handle == handle) 1755 return (afp); 1756 1757 return (NULL); 1758 } 1759 1760 /* create flowinfo bitmask */ 1761 static u_int32_t 1762 filt2fibmask(filt) 1763 struct flow_filter *filt; 1764 { 1765 u_int32_t mask = 0; 1766 #ifdef INET6 1767 struct flow_filter6 *filt6; 1768 #endif 1769 1770 switch (filt->ff_flow.fi_family) { 1771 case AF_INET: 1772 if (filt->ff_flow.fi_proto != 0) 1773 mask |= FIMB4_PROTO; 1774 if (filt->ff_flow.fi_tos != 0) 1775 mask |= FIMB4_TOS; 1776 if (filt->ff_flow.fi_dst.s_addr != 0) 1777 mask |= FIMB4_DADDR; 1778 if (filt->ff_flow.fi_src.s_addr != 0) 1779 mask |= FIMB4_SADDR; 1780 if (filt->ff_flow.fi_sport != 0) 1781 mask |= FIMB4_SPORT; 1782 if (filt->ff_flow.fi_dport != 0) 1783 mask |= FIMB4_DPORT; 1784 if (filt->ff_flow.fi_gpi != 0) 1785 mask |= FIMB4_GPI; 1786 break; 1787 #ifdef INET6 1788 case AF_INET6: 1789 filt6 = (struct flow_filter6 *)filt; 1790 1791 if (filt6->ff_flow6.fi6_proto != 0) 1792 mask |= FIMB6_PROTO; 1793 if (filt6->ff_flow6.fi6_tclass != 0) 1794 mask |= FIMB6_TCLASS; 1795 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst)) 1796 mask |= FIMB6_DADDR; 1797 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src)) 1798 mask |= FIMB6_SADDR; 1799 if (filt6->ff_flow6.fi6_sport != 0) 1800 mask |= FIMB6_SPORT; 1801 if (filt6->ff_flow6.fi6_dport != 0) 1802 mask |= FIMB6_DPORT; 1803 if (filt6->ff_flow6.fi6_gpi != 0) 1804 mask |= FIMB6_GPI; 1805 if (filt6->ff_flow6.fi6_flowlabel != 0) 1806 mask |= FIMB6_FLABEL; 1807 break; 1808 #endif /* INET6 */ 1809 } 1810 return (mask); 1811 } 1812 1813 /* 1814 * helper functions to handle IPv4 fragments. 1815 * currently only in-sequence fragments are handled. 1816 * - fragment info is cached in a LRU list. 1817 * - when a first fragment is found, cache its flow info. 1818 * - when a non-first fragment is found, lookup the cache. 1819 */ 1820 1821 struct ip4_frag { 1822 TAILQ_ENTRY(ip4_frag) ip4f_chain; 1823 char ip4f_valid; 1824 u_short ip4f_id; 1825 struct flowinfo_in ip4f_info; 1826 }; 1827 1828 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */ 1829 1830 #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */ 1831 1832 static void 1833 ip4f_cache(ip, fin) 1834 struct ip *ip; 1835 struct flowinfo_in *fin; 1836 { 1837 struct ip4_frag *fp; 1838 1839 if (TAILQ_EMPTY(&ip4f_list)) { 1840 /* first time call, allocate fragment cache entries. */ 1841 if (ip4f_init() < 0) 1842 /* allocation failed! */ 1843 return; 1844 } 1845 1846 fp = ip4f_alloc(); 1847 fp->ip4f_id = ip->ip_id; 1848 fp->ip4f_info.fi_proto = ip->ip_p; 1849 fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr; 1850 fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr; 1851 1852 /* save port numbers */ 1853 fp->ip4f_info.fi_sport = fin->fi_sport; 1854 fp->ip4f_info.fi_dport = fin->fi_dport; 1855 fp->ip4f_info.fi_gpi = fin->fi_gpi; 1856 } 1857 1858 static int 1859 ip4f_lookup(ip, fin) 1860 struct ip *ip; 1861 struct flowinfo_in *fin; 1862 { 1863 struct ip4_frag *fp; 1864 1865 for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid; 1866 fp = TAILQ_NEXT(fp, ip4f_chain)) 1867 if (ip->ip_id == fp->ip4f_id && 1868 ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr && 1869 ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr && 1870 ip->ip_p == fp->ip4f_info.fi_proto) { 1871 /* found the matching entry */ 1872 fin->fi_sport = fp->ip4f_info.fi_sport; 1873 fin->fi_dport = fp->ip4f_info.fi_dport; 1874 fin->fi_gpi = fp->ip4f_info.fi_gpi; 1875 1876 if ((ntohs(ip->ip_off) & IP_MF) == 0) 1877 /* this is the last fragment, 1878 release the entry. */ 1879 ip4f_free(fp); 1880 1881 return (1); 1882 } 1883 1884 /* no matching entry found */ 1885 return (0); 1886 } 1887 1888 static int 1889 ip4f_init(void) 1890 { 1891 struct ip4_frag *fp; 1892 int i; 1893 1894 TAILQ_INIT(&ip4f_list); 1895 for (i=0; i<IP4F_TABSIZE; i++) { 1896 fp = malloc(sizeof(struct ip4_frag), 1897 M_DEVBUF, M_NOWAIT); 1898 if (fp == NULL) { 1899 printf("ip4f_init: can't alloc %dth entry!\n", i); 1900 if (i == 0) 1901 return (-1); 1902 return (0); 1903 } 1904 fp->ip4f_valid = 0; 1905 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain); 1906 } 1907 return (0); 1908 } 1909 1910 static struct ip4_frag * 1911 ip4f_alloc(void) 1912 { 1913 struct ip4_frag *fp; 1914 1915 /* reclaim an entry at the tail, put it at the head */ 1916 fp = TAILQ_LAST(&ip4f_list, ip4f_list); 1917 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain); 1918 fp->ip4f_valid = 1; 1919 TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain); 1920 return (fp); 1921 } 1922 1923 static void 1924 ip4f_free(fp) 1925 struct ip4_frag *fp; 1926 { 1927 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain); 1928 fp->ip4f_valid = 0; 1929 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain); 1930 } 1931 1932 #endif /* ALTQ3_CLFIER_COMPAT */ 1933