xref: /freebsd/sys/kern/vfs_vnops.c (revision eb69d1f144a6fcc765d1b9d44a5ae8082353e70b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/stat.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/mman.h>
63 #include <sys/mount.h>
64 #include <sys/mutex.h>
65 #include <sys/namei.h>
66 #include <sys/vnode.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/filio.h>
70 #include <sys/resourcevar.h>
71 #include <sys/rwlock.h>
72 #include <sys/sx.h>
73 #include <sys/sysctl.h>
74 #include <sys/ttycom.h>
75 #include <sys/conf.h>
76 #include <sys/syslog.h>
77 #include <sys/unistd.h>
78 #include <sys/user.h>
79 
80 #include <security/audit/audit.h>
81 #include <security/mac/mac_framework.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_extern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vnode_pager.h>
90 
91 #ifdef HWPMC_HOOKS
92 #include <sys/pmckern.h>
93 #endif
94 
95 static fo_rdwr_t	vn_read;
96 static fo_rdwr_t	vn_write;
97 static fo_rdwr_t	vn_io_fault;
98 static fo_truncate_t	vn_truncate;
99 static fo_ioctl_t	vn_ioctl;
100 static fo_poll_t	vn_poll;
101 static fo_kqfilter_t	vn_kqfilter;
102 static fo_stat_t	vn_statfile;
103 static fo_close_t	vn_closefile;
104 static fo_mmap_t	vn_mmap;
105 
106 struct 	fileops vnops = {
107 	.fo_read = vn_io_fault,
108 	.fo_write = vn_io_fault,
109 	.fo_truncate = vn_truncate,
110 	.fo_ioctl = vn_ioctl,
111 	.fo_poll = vn_poll,
112 	.fo_kqfilter = vn_kqfilter,
113 	.fo_stat = vn_statfile,
114 	.fo_close = vn_closefile,
115 	.fo_chmod = vn_chmod,
116 	.fo_chown = vn_chown,
117 	.fo_sendfile = vn_sendfile,
118 	.fo_seek = vn_seek,
119 	.fo_fill_kinfo = vn_fill_kinfo,
120 	.fo_mmap = vn_mmap,
121 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
122 };
123 
124 static const int io_hold_cnt = 16;
125 static int vn_io_fault_enable = 1;
126 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
127     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
128 static int vn_io_fault_prefault = 0;
129 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
130     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
131 static u_long vn_io_faults_cnt;
132 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
133     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
134 
135 /*
136  * Returns true if vn_io_fault mode of handling the i/o request should
137  * be used.
138  */
139 static bool
140 do_vn_io_fault(struct vnode *vp, struct uio *uio)
141 {
142 	struct mount *mp;
143 
144 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
145 	    (mp = vp->v_mount) != NULL &&
146 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
147 }
148 
149 /*
150  * Structure used to pass arguments to vn_io_fault1(), to do either
151  * file- or vnode-based I/O calls.
152  */
153 struct vn_io_fault_args {
154 	enum {
155 		VN_IO_FAULT_FOP,
156 		VN_IO_FAULT_VOP
157 	} kind;
158 	struct ucred *cred;
159 	int flags;
160 	union {
161 		struct fop_args_tag {
162 			struct file *fp;
163 			fo_rdwr_t *doio;
164 		} fop_args;
165 		struct vop_args_tag {
166 			struct vnode *vp;
167 		} vop_args;
168 	} args;
169 };
170 
171 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
172     struct vn_io_fault_args *args, struct thread *td);
173 
174 int
175 vn_open(ndp, flagp, cmode, fp)
176 	struct nameidata *ndp;
177 	int *flagp, cmode;
178 	struct file *fp;
179 {
180 	struct thread *td = ndp->ni_cnd.cn_thread;
181 
182 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
183 }
184 
185 /*
186  * Common code for vnode open operations via a name lookup.
187  * Lookup the vnode and invoke VOP_CREATE if needed.
188  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
189  *
190  * Note that this does NOT free nameidata for the successful case,
191  * due to the NDINIT being done elsewhere.
192  */
193 int
194 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
195     struct ucred *cred, struct file *fp)
196 {
197 	struct vnode *vp;
198 	struct mount *mp;
199 	struct thread *td = ndp->ni_cnd.cn_thread;
200 	struct vattr vat;
201 	struct vattr *vap = &vat;
202 	int fmode, error;
203 
204 restart:
205 	fmode = *flagp;
206 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
207 	    O_EXCL | O_DIRECTORY))
208 		return (EINVAL);
209 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
210 		ndp->ni_cnd.cn_nameiop = CREATE;
211 		/*
212 		 * Set NOCACHE to avoid flushing the cache when
213 		 * rolling in many files at once.
214 		*/
215 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
216 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
217 			ndp->ni_cnd.cn_flags |= FOLLOW;
218 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
219 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
220 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
221 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
222 		bwillwrite();
223 		if ((error = namei(ndp)) != 0)
224 			return (error);
225 		if (ndp->ni_vp == NULL) {
226 			VATTR_NULL(vap);
227 			vap->va_type = VREG;
228 			vap->va_mode = cmode;
229 			if (fmode & O_EXCL)
230 				vap->va_vaflags |= VA_EXCLUSIVE;
231 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
232 				NDFREE(ndp, NDF_ONLY_PNBUF);
233 				vput(ndp->ni_dvp);
234 				if ((error = vn_start_write(NULL, &mp,
235 				    V_XSLEEP | PCATCH)) != 0)
236 					return (error);
237 				goto restart;
238 			}
239 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
240 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
241 #ifdef MAC
242 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
243 			    &ndp->ni_cnd, vap);
244 			if (error == 0)
245 #endif
246 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
247 						   &ndp->ni_cnd, vap);
248 			vput(ndp->ni_dvp);
249 			vn_finished_write(mp);
250 			if (error) {
251 				NDFREE(ndp, NDF_ONLY_PNBUF);
252 				return (error);
253 			}
254 			fmode &= ~O_TRUNC;
255 			vp = ndp->ni_vp;
256 		} else {
257 			if (ndp->ni_dvp == ndp->ni_vp)
258 				vrele(ndp->ni_dvp);
259 			else
260 				vput(ndp->ni_dvp);
261 			ndp->ni_dvp = NULL;
262 			vp = ndp->ni_vp;
263 			if (fmode & O_EXCL) {
264 				error = EEXIST;
265 				goto bad;
266 			}
267 			fmode &= ~O_CREAT;
268 		}
269 	} else {
270 		ndp->ni_cnd.cn_nameiop = LOOKUP;
271 		ndp->ni_cnd.cn_flags = ISOPEN |
272 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
273 		if (!(fmode & FWRITE))
274 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
275 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
276 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
277 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
278 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
279 		if ((error = namei(ndp)) != 0)
280 			return (error);
281 		vp = ndp->ni_vp;
282 	}
283 	error = vn_open_vnode(vp, fmode, cred, td, fp);
284 	if (error)
285 		goto bad;
286 	*flagp = fmode;
287 	return (0);
288 bad:
289 	NDFREE(ndp, NDF_ONLY_PNBUF);
290 	vput(vp);
291 	*flagp = fmode;
292 	ndp->ni_vp = NULL;
293 	return (error);
294 }
295 
296 /*
297  * Common code for vnode open operations once a vnode is located.
298  * Check permissions, and call the VOP_OPEN routine.
299  */
300 int
301 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
302     struct thread *td, struct file *fp)
303 {
304 	accmode_t accmode;
305 	struct flock lf;
306 	int error, lock_flags, type;
307 
308 	if (vp->v_type == VLNK)
309 		return (EMLINK);
310 	if (vp->v_type == VSOCK)
311 		return (EOPNOTSUPP);
312 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
313 		return (ENOTDIR);
314 	accmode = 0;
315 	if (fmode & (FWRITE | O_TRUNC)) {
316 		if (vp->v_type == VDIR)
317 			return (EISDIR);
318 		accmode |= VWRITE;
319 	}
320 	if (fmode & FREAD)
321 		accmode |= VREAD;
322 	if (fmode & FEXEC)
323 		accmode |= VEXEC;
324 	if ((fmode & O_APPEND) && (fmode & FWRITE))
325 		accmode |= VAPPEND;
326 #ifdef MAC
327 	if (fmode & O_CREAT)
328 		accmode |= VCREAT;
329 	if (fmode & O_VERIFY)
330 		accmode |= VVERIFY;
331 	error = mac_vnode_check_open(cred, vp, accmode);
332 	if (error)
333 		return (error);
334 
335 	accmode &= ~(VCREAT | VVERIFY);
336 #endif
337 	if ((fmode & O_CREAT) == 0) {
338 		if (accmode & VWRITE) {
339 			error = vn_writechk(vp);
340 			if (error)
341 				return (error);
342 		}
343 		if (accmode) {
344 		        error = VOP_ACCESS(vp, accmode, cred, td);
345 			if (error)
346 				return (error);
347 		}
348 	}
349 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
350 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
351 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
352 		return (error);
353 
354 	while ((fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
355 		KASSERT(fp != NULL, ("open with flock requires fp"));
356 		if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) {
357 			error = EOPNOTSUPP;
358 			break;
359 		}
360 		lock_flags = VOP_ISLOCKED(vp);
361 		VOP_UNLOCK(vp, 0);
362 		lf.l_whence = SEEK_SET;
363 		lf.l_start = 0;
364 		lf.l_len = 0;
365 		if (fmode & O_EXLOCK)
366 			lf.l_type = F_WRLCK;
367 		else
368 			lf.l_type = F_RDLCK;
369 		type = F_FLOCK;
370 		if ((fmode & FNONBLOCK) == 0)
371 			type |= F_WAIT;
372 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
373 		if (error == 0)
374 			fp->f_flag |= FHASLOCK;
375 		vn_lock(vp, lock_flags | LK_RETRY);
376 		if (error != 0)
377 			break;
378 		if ((vp->v_iflag & VI_DOOMED) != 0) {
379 			error = ENOENT;
380 			break;
381 		}
382 
383 		/*
384 		 * Another thread might have used this vnode as an
385 		 * executable while the vnode lock was dropped.
386 		 * Ensure the vnode is still able to be opened for
387 		 * writing after the lock has been obtained.
388 		 */
389 		if ((accmode & VWRITE) != 0)
390 			error = vn_writechk(vp);
391 		break;
392 	}
393 
394 	if (error != 0) {
395 		fp->f_flag |= FOPENFAILED;
396 		fp->f_vnode = vp;
397 		if (fp->f_ops == &badfileops) {
398 			fp->f_type = DTYPE_VNODE;
399 			fp->f_ops = &vnops;
400 		}
401 		vref(vp);
402 	} else if  ((fmode & FWRITE) != 0) {
403 		VOP_ADD_WRITECOUNT(vp, 1);
404 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
405 		    __func__, vp, vp->v_writecount);
406 	}
407 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
408 	return (error);
409 }
410 
411 /*
412  * Check for write permissions on the specified vnode.
413  * Prototype text segments cannot be written.
414  */
415 int
416 vn_writechk(struct vnode *vp)
417 {
418 
419 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
420 	/*
421 	 * If there's shared text associated with
422 	 * the vnode, try to free it up once.  If
423 	 * we fail, we can't allow writing.
424 	 */
425 	if (VOP_IS_TEXT(vp))
426 		return (ETXTBSY);
427 
428 	return (0);
429 }
430 
431 /*
432  * Vnode close call
433  */
434 static int
435 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
436     struct thread *td, bool keep_ref)
437 {
438 	struct mount *mp;
439 	int error, lock_flags;
440 
441 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
442 	    MNT_EXTENDED_SHARED(vp->v_mount))
443 		lock_flags = LK_SHARED;
444 	else
445 		lock_flags = LK_EXCLUSIVE;
446 
447 	vn_start_write(vp, &mp, V_WAIT);
448 	vn_lock(vp, lock_flags | LK_RETRY);
449 	AUDIT_ARG_VNODE1(vp);
450 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
451 		VNASSERT(vp->v_writecount > 0, vp,
452 		    ("vn_close: negative writecount"));
453 		VOP_ADD_WRITECOUNT(vp, -1);
454 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
455 		    __func__, vp, vp->v_writecount);
456 	}
457 	error = VOP_CLOSE(vp, flags, file_cred, td);
458 	if (keep_ref)
459 		VOP_UNLOCK(vp, 0);
460 	else
461 		vput(vp);
462 	vn_finished_write(mp);
463 	return (error);
464 }
465 
466 int
467 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
468     struct thread *td)
469 {
470 
471 	return (vn_close1(vp, flags, file_cred, td, false));
472 }
473 
474 /*
475  * Heuristic to detect sequential operation.
476  */
477 static int
478 sequential_heuristic(struct uio *uio, struct file *fp)
479 {
480 
481 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
482 	if (fp->f_flag & FRDAHEAD)
483 		return (fp->f_seqcount << IO_SEQSHIFT);
484 
485 	/*
486 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
487 	 * that the first I/O is normally considered to be slightly
488 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
489 	 * unless previous seeks have reduced f_seqcount to 0, in which
490 	 * case offset 0 is not special.
491 	 */
492 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
493 	    uio->uio_offset == fp->f_nextoff) {
494 		/*
495 		 * f_seqcount is in units of fixed-size blocks so that it
496 		 * depends mainly on the amount of sequential I/O and not
497 		 * much on the number of sequential I/O's.  The fixed size
498 		 * of 16384 is hard-coded here since it is (not quite) just
499 		 * a magic size that works well here.  This size is more
500 		 * closely related to the best I/O size for real disks than
501 		 * to any block size used by software.
502 		 */
503 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
504 		if (fp->f_seqcount > IO_SEQMAX)
505 			fp->f_seqcount = IO_SEQMAX;
506 		return (fp->f_seqcount << IO_SEQSHIFT);
507 	}
508 
509 	/* Not sequential.  Quickly draw-down sequentiality. */
510 	if (fp->f_seqcount > 1)
511 		fp->f_seqcount = 1;
512 	else
513 		fp->f_seqcount = 0;
514 	return (0);
515 }
516 
517 /*
518  * Package up an I/O request on a vnode into a uio and do it.
519  */
520 int
521 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
522     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
523     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
524 {
525 	struct uio auio;
526 	struct iovec aiov;
527 	struct mount *mp;
528 	struct ucred *cred;
529 	void *rl_cookie;
530 	struct vn_io_fault_args args;
531 	int error, lock_flags;
532 
533 	auio.uio_iov = &aiov;
534 	auio.uio_iovcnt = 1;
535 	aiov.iov_base = base;
536 	aiov.iov_len = len;
537 	auio.uio_resid = len;
538 	auio.uio_offset = offset;
539 	auio.uio_segflg = segflg;
540 	auio.uio_rw = rw;
541 	auio.uio_td = td;
542 	error = 0;
543 
544 	if ((ioflg & IO_NODELOCKED) == 0) {
545 		if ((ioflg & IO_RANGELOCKED) == 0) {
546 			if (rw == UIO_READ) {
547 				rl_cookie = vn_rangelock_rlock(vp, offset,
548 				    offset + len);
549 			} else {
550 				rl_cookie = vn_rangelock_wlock(vp, offset,
551 				    offset + len);
552 			}
553 		} else
554 			rl_cookie = NULL;
555 		mp = NULL;
556 		if (rw == UIO_WRITE) {
557 			if (vp->v_type != VCHR &&
558 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
559 			    != 0)
560 				goto out;
561 			if (MNT_SHARED_WRITES(mp) ||
562 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
563 				lock_flags = LK_SHARED;
564 			else
565 				lock_flags = LK_EXCLUSIVE;
566 		} else
567 			lock_flags = LK_SHARED;
568 		vn_lock(vp, lock_flags | LK_RETRY);
569 	} else
570 		rl_cookie = NULL;
571 
572 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
573 #ifdef MAC
574 	if ((ioflg & IO_NOMACCHECK) == 0) {
575 		if (rw == UIO_READ)
576 			error = mac_vnode_check_read(active_cred, file_cred,
577 			    vp);
578 		else
579 			error = mac_vnode_check_write(active_cred, file_cred,
580 			    vp);
581 	}
582 #endif
583 	if (error == 0) {
584 		if (file_cred != NULL)
585 			cred = file_cred;
586 		else
587 			cred = active_cred;
588 		if (do_vn_io_fault(vp, &auio)) {
589 			args.kind = VN_IO_FAULT_VOP;
590 			args.cred = cred;
591 			args.flags = ioflg;
592 			args.args.vop_args.vp = vp;
593 			error = vn_io_fault1(vp, &auio, &args, td);
594 		} else if (rw == UIO_READ) {
595 			error = VOP_READ(vp, &auio, ioflg, cred);
596 		} else /* if (rw == UIO_WRITE) */ {
597 			error = VOP_WRITE(vp, &auio, ioflg, cred);
598 		}
599 	}
600 	if (aresid)
601 		*aresid = auio.uio_resid;
602 	else
603 		if (auio.uio_resid && error == 0)
604 			error = EIO;
605 	if ((ioflg & IO_NODELOCKED) == 0) {
606 		VOP_UNLOCK(vp, 0);
607 		if (mp != NULL)
608 			vn_finished_write(mp);
609 	}
610  out:
611 	if (rl_cookie != NULL)
612 		vn_rangelock_unlock(vp, rl_cookie);
613 	return (error);
614 }
615 
616 /*
617  * Package up an I/O request on a vnode into a uio and do it.  The I/O
618  * request is split up into smaller chunks and we try to avoid saturating
619  * the buffer cache while potentially holding a vnode locked, so we
620  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
621  * to give other processes a chance to lock the vnode (either other processes
622  * core'ing the same binary, or unrelated processes scanning the directory).
623  */
624 int
625 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
626     file_cred, aresid, td)
627 	enum uio_rw rw;
628 	struct vnode *vp;
629 	void *base;
630 	size_t len;
631 	off_t offset;
632 	enum uio_seg segflg;
633 	int ioflg;
634 	struct ucred *active_cred;
635 	struct ucred *file_cred;
636 	size_t *aresid;
637 	struct thread *td;
638 {
639 	int error = 0;
640 	ssize_t iaresid;
641 
642 	do {
643 		int chunk;
644 
645 		/*
646 		 * Force `offset' to a multiple of MAXBSIZE except possibly
647 		 * for the first chunk, so that filesystems only need to
648 		 * write full blocks except possibly for the first and last
649 		 * chunks.
650 		 */
651 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
652 
653 		if (chunk > len)
654 			chunk = len;
655 		if (rw != UIO_READ && vp->v_type == VREG)
656 			bwillwrite();
657 		iaresid = 0;
658 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
659 		    ioflg, active_cred, file_cred, &iaresid, td);
660 		len -= chunk;	/* aresid calc already includes length */
661 		if (error)
662 			break;
663 		offset += chunk;
664 		base = (char *)base + chunk;
665 		kern_yield(PRI_USER);
666 	} while (len);
667 	if (aresid)
668 		*aresid = len + iaresid;
669 	return (error);
670 }
671 
672 off_t
673 foffset_lock(struct file *fp, int flags)
674 {
675 	struct mtx *mtxp;
676 	off_t res;
677 
678 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
679 
680 #if OFF_MAX <= LONG_MAX
681 	/*
682 	 * Caller only wants the current f_offset value.  Assume that
683 	 * the long and shorter integer types reads are atomic.
684 	 */
685 	if ((flags & FOF_NOLOCK) != 0)
686 		return (fp->f_offset);
687 #endif
688 
689 	/*
690 	 * According to McKusick the vn lock was protecting f_offset here.
691 	 * It is now protected by the FOFFSET_LOCKED flag.
692 	 */
693 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
694 	mtx_lock(mtxp);
695 	if ((flags & FOF_NOLOCK) == 0) {
696 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
697 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
698 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
699 			    "vofflock", 0);
700 		}
701 		fp->f_vnread_flags |= FOFFSET_LOCKED;
702 	}
703 	res = fp->f_offset;
704 	mtx_unlock(mtxp);
705 	return (res);
706 }
707 
708 void
709 foffset_unlock(struct file *fp, off_t val, int flags)
710 {
711 	struct mtx *mtxp;
712 
713 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
714 
715 #if OFF_MAX <= LONG_MAX
716 	if ((flags & FOF_NOLOCK) != 0) {
717 		if ((flags & FOF_NOUPDATE) == 0)
718 			fp->f_offset = val;
719 		if ((flags & FOF_NEXTOFF) != 0)
720 			fp->f_nextoff = val;
721 		return;
722 	}
723 #endif
724 
725 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
726 	mtx_lock(mtxp);
727 	if ((flags & FOF_NOUPDATE) == 0)
728 		fp->f_offset = val;
729 	if ((flags & FOF_NEXTOFF) != 0)
730 		fp->f_nextoff = val;
731 	if ((flags & FOF_NOLOCK) == 0) {
732 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
733 		    ("Lost FOFFSET_LOCKED"));
734 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
735 			wakeup(&fp->f_vnread_flags);
736 		fp->f_vnread_flags = 0;
737 	}
738 	mtx_unlock(mtxp);
739 }
740 
741 void
742 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
743 {
744 
745 	if ((flags & FOF_OFFSET) == 0)
746 		uio->uio_offset = foffset_lock(fp, flags);
747 }
748 
749 void
750 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
751 {
752 
753 	if ((flags & FOF_OFFSET) == 0)
754 		foffset_unlock(fp, uio->uio_offset, flags);
755 }
756 
757 static int
758 get_advice(struct file *fp, struct uio *uio)
759 {
760 	struct mtx *mtxp;
761 	int ret;
762 
763 	ret = POSIX_FADV_NORMAL;
764 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
765 		return (ret);
766 
767 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
768 	mtx_lock(mtxp);
769 	if (fp->f_advice != NULL &&
770 	    uio->uio_offset >= fp->f_advice->fa_start &&
771 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
772 		ret = fp->f_advice->fa_advice;
773 	mtx_unlock(mtxp);
774 	return (ret);
775 }
776 
777 /*
778  * File table vnode read routine.
779  */
780 static int
781 vn_read(fp, uio, active_cred, flags, td)
782 	struct file *fp;
783 	struct uio *uio;
784 	struct ucred *active_cred;
785 	int flags;
786 	struct thread *td;
787 {
788 	struct vnode *vp;
789 	off_t orig_offset;
790 	int error, ioflag;
791 	int advice;
792 
793 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
794 	    uio->uio_td, td));
795 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
796 	vp = fp->f_vnode;
797 	ioflag = 0;
798 	if (fp->f_flag & FNONBLOCK)
799 		ioflag |= IO_NDELAY;
800 	if (fp->f_flag & O_DIRECT)
801 		ioflag |= IO_DIRECT;
802 	advice = get_advice(fp, uio);
803 	vn_lock(vp, LK_SHARED | LK_RETRY);
804 
805 	switch (advice) {
806 	case POSIX_FADV_NORMAL:
807 	case POSIX_FADV_SEQUENTIAL:
808 	case POSIX_FADV_NOREUSE:
809 		ioflag |= sequential_heuristic(uio, fp);
810 		break;
811 	case POSIX_FADV_RANDOM:
812 		/* Disable read-ahead for random I/O. */
813 		break;
814 	}
815 	orig_offset = uio->uio_offset;
816 
817 #ifdef MAC
818 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
819 	if (error == 0)
820 #endif
821 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
822 	fp->f_nextoff = uio->uio_offset;
823 	VOP_UNLOCK(vp, 0);
824 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
825 	    orig_offset != uio->uio_offset)
826 		/*
827 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
828 		 * for the backing file after a POSIX_FADV_NOREUSE
829 		 * read(2).
830 		 */
831 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
832 		    POSIX_FADV_DONTNEED);
833 	return (error);
834 }
835 
836 /*
837  * File table vnode write routine.
838  */
839 static int
840 vn_write(fp, uio, active_cred, flags, td)
841 	struct file *fp;
842 	struct uio *uio;
843 	struct ucred *active_cred;
844 	int flags;
845 	struct thread *td;
846 {
847 	struct vnode *vp;
848 	struct mount *mp;
849 	off_t orig_offset;
850 	int error, ioflag, lock_flags;
851 	int advice;
852 
853 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
854 	    uio->uio_td, td));
855 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
856 	vp = fp->f_vnode;
857 	if (vp->v_type == VREG)
858 		bwillwrite();
859 	ioflag = IO_UNIT;
860 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
861 		ioflag |= IO_APPEND;
862 	if (fp->f_flag & FNONBLOCK)
863 		ioflag |= IO_NDELAY;
864 	if (fp->f_flag & O_DIRECT)
865 		ioflag |= IO_DIRECT;
866 	if ((fp->f_flag & O_FSYNC) ||
867 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
868 		ioflag |= IO_SYNC;
869 	mp = NULL;
870 	if (vp->v_type != VCHR &&
871 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
872 		goto unlock;
873 
874 	advice = get_advice(fp, uio);
875 
876 	if (MNT_SHARED_WRITES(mp) ||
877 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
878 		lock_flags = LK_SHARED;
879 	} else {
880 		lock_flags = LK_EXCLUSIVE;
881 	}
882 
883 	vn_lock(vp, lock_flags | LK_RETRY);
884 	switch (advice) {
885 	case POSIX_FADV_NORMAL:
886 	case POSIX_FADV_SEQUENTIAL:
887 	case POSIX_FADV_NOREUSE:
888 		ioflag |= sequential_heuristic(uio, fp);
889 		break;
890 	case POSIX_FADV_RANDOM:
891 		/* XXX: Is this correct? */
892 		break;
893 	}
894 	orig_offset = uio->uio_offset;
895 
896 #ifdef MAC
897 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
898 	if (error == 0)
899 #endif
900 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
901 	fp->f_nextoff = uio->uio_offset;
902 	VOP_UNLOCK(vp, 0);
903 	if (vp->v_type != VCHR)
904 		vn_finished_write(mp);
905 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
906 	    orig_offset != uio->uio_offset)
907 		/*
908 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
909 		 * for the backing file after a POSIX_FADV_NOREUSE
910 		 * write(2).
911 		 */
912 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
913 		    POSIX_FADV_DONTNEED);
914 unlock:
915 	return (error);
916 }
917 
918 /*
919  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
920  * prevent the following deadlock:
921  *
922  * Assume that the thread A reads from the vnode vp1 into userspace
923  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
924  * currently not resident, then system ends up with the call chain
925  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
926  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
927  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
928  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
929  * backed by the pages of vnode vp1, and some page in buf2 is not
930  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
931  *
932  * To prevent the lock order reversal and deadlock, vn_io_fault() does
933  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
934  * Instead, it first tries to do the whole range i/o with pagefaults
935  * disabled. If all pages in the i/o buffer are resident and mapped,
936  * VOP will succeed (ignoring the genuine filesystem errors).
937  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
938  * i/o in chunks, with all pages in the chunk prefaulted and held
939  * using vm_fault_quick_hold_pages().
940  *
941  * Filesystems using this deadlock avoidance scheme should use the
942  * array of the held pages from uio, saved in the curthread->td_ma,
943  * instead of doing uiomove().  A helper function
944  * vn_io_fault_uiomove() converts uiomove request into
945  * uiomove_fromphys() over td_ma array.
946  *
947  * Since vnode locks do not cover the whole i/o anymore, rangelocks
948  * make the current i/o request atomic with respect to other i/os and
949  * truncations.
950  */
951 
952 /*
953  * Decode vn_io_fault_args and perform the corresponding i/o.
954  */
955 static int
956 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
957     struct thread *td)
958 {
959 
960 	switch (args->kind) {
961 	case VN_IO_FAULT_FOP:
962 		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
963 		    uio, args->cred, args->flags, td));
964 	case VN_IO_FAULT_VOP:
965 		if (uio->uio_rw == UIO_READ) {
966 			return (VOP_READ(args->args.vop_args.vp, uio,
967 			    args->flags, args->cred));
968 		} else if (uio->uio_rw == UIO_WRITE) {
969 			return (VOP_WRITE(args->args.vop_args.vp, uio,
970 			    args->flags, args->cred));
971 		}
972 		break;
973 	}
974 	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
975 	    uio->uio_rw);
976 }
977 
978 static int
979 vn_io_fault_touch(char *base, const struct uio *uio)
980 {
981 	int r;
982 
983 	r = fubyte(base);
984 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
985 		return (EFAULT);
986 	return (0);
987 }
988 
989 static int
990 vn_io_fault_prefault_user(const struct uio *uio)
991 {
992 	char *base;
993 	const struct iovec *iov;
994 	size_t len;
995 	ssize_t resid;
996 	int error, i;
997 
998 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
999 	    ("vn_io_fault_prefault userspace"));
1000 
1001 	error = i = 0;
1002 	iov = uio->uio_iov;
1003 	resid = uio->uio_resid;
1004 	base = iov->iov_base;
1005 	len = iov->iov_len;
1006 	while (resid > 0) {
1007 		error = vn_io_fault_touch(base, uio);
1008 		if (error != 0)
1009 			break;
1010 		if (len < PAGE_SIZE) {
1011 			if (len != 0) {
1012 				error = vn_io_fault_touch(base + len - 1, uio);
1013 				if (error != 0)
1014 					break;
1015 				resid -= len;
1016 			}
1017 			if (++i >= uio->uio_iovcnt)
1018 				break;
1019 			iov = uio->uio_iov + i;
1020 			base = iov->iov_base;
1021 			len = iov->iov_len;
1022 		} else {
1023 			len -= PAGE_SIZE;
1024 			base += PAGE_SIZE;
1025 			resid -= PAGE_SIZE;
1026 		}
1027 	}
1028 	return (error);
1029 }
1030 
1031 /*
1032  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1033  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1034  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1035  * into args and call vn_io_fault1() to handle faults during the user
1036  * mode buffer accesses.
1037  */
1038 static int
1039 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1040     struct thread *td)
1041 {
1042 	vm_page_t ma[io_hold_cnt + 2];
1043 	struct uio *uio_clone, short_uio;
1044 	struct iovec short_iovec[1];
1045 	vm_page_t *prev_td_ma;
1046 	vm_prot_t prot;
1047 	vm_offset_t addr, end;
1048 	size_t len, resid;
1049 	ssize_t adv;
1050 	int error, cnt, save, saveheld, prev_td_ma_cnt;
1051 
1052 	if (vn_io_fault_prefault) {
1053 		error = vn_io_fault_prefault_user(uio);
1054 		if (error != 0)
1055 			return (error); /* Or ignore ? */
1056 	}
1057 
1058 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1059 
1060 	/*
1061 	 * The UFS follows IO_UNIT directive and replays back both
1062 	 * uio_offset and uio_resid if an error is encountered during the
1063 	 * operation.  But, since the iovec may be already advanced,
1064 	 * uio is still in an inconsistent state.
1065 	 *
1066 	 * Cache a copy of the original uio, which is advanced to the redo
1067 	 * point using UIO_NOCOPY below.
1068 	 */
1069 	uio_clone = cloneuio(uio);
1070 	resid = uio->uio_resid;
1071 
1072 	short_uio.uio_segflg = UIO_USERSPACE;
1073 	short_uio.uio_rw = uio->uio_rw;
1074 	short_uio.uio_td = uio->uio_td;
1075 
1076 	save = vm_fault_disable_pagefaults();
1077 	error = vn_io_fault_doio(args, uio, td);
1078 	if (error != EFAULT)
1079 		goto out;
1080 
1081 	atomic_add_long(&vn_io_faults_cnt, 1);
1082 	uio_clone->uio_segflg = UIO_NOCOPY;
1083 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1084 	uio_clone->uio_segflg = uio->uio_segflg;
1085 
1086 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1087 	prev_td_ma = td->td_ma;
1088 	prev_td_ma_cnt = td->td_ma_cnt;
1089 
1090 	while (uio_clone->uio_resid != 0) {
1091 		len = uio_clone->uio_iov->iov_len;
1092 		if (len == 0) {
1093 			KASSERT(uio_clone->uio_iovcnt >= 1,
1094 			    ("iovcnt underflow"));
1095 			uio_clone->uio_iov++;
1096 			uio_clone->uio_iovcnt--;
1097 			continue;
1098 		}
1099 		if (len > io_hold_cnt * PAGE_SIZE)
1100 			len = io_hold_cnt * PAGE_SIZE;
1101 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1102 		end = round_page(addr + len);
1103 		if (end < addr) {
1104 			error = EFAULT;
1105 			break;
1106 		}
1107 		cnt = atop(end - trunc_page(addr));
1108 		/*
1109 		 * A perfectly misaligned address and length could cause
1110 		 * both the start and the end of the chunk to use partial
1111 		 * page.  +2 accounts for such a situation.
1112 		 */
1113 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1114 		    addr, len, prot, ma, io_hold_cnt + 2);
1115 		if (cnt == -1) {
1116 			error = EFAULT;
1117 			break;
1118 		}
1119 		short_uio.uio_iov = &short_iovec[0];
1120 		short_iovec[0].iov_base = (void *)addr;
1121 		short_uio.uio_iovcnt = 1;
1122 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1123 		short_uio.uio_offset = uio_clone->uio_offset;
1124 		td->td_ma = ma;
1125 		td->td_ma_cnt = cnt;
1126 
1127 		error = vn_io_fault_doio(args, &short_uio, td);
1128 		vm_page_unhold_pages(ma, cnt);
1129 		adv = len - short_uio.uio_resid;
1130 
1131 		uio_clone->uio_iov->iov_base =
1132 		    (char *)uio_clone->uio_iov->iov_base + adv;
1133 		uio_clone->uio_iov->iov_len -= adv;
1134 		uio_clone->uio_resid -= adv;
1135 		uio_clone->uio_offset += adv;
1136 
1137 		uio->uio_resid -= adv;
1138 		uio->uio_offset += adv;
1139 
1140 		if (error != 0 || adv == 0)
1141 			break;
1142 	}
1143 	td->td_ma = prev_td_ma;
1144 	td->td_ma_cnt = prev_td_ma_cnt;
1145 	curthread_pflags_restore(saveheld);
1146 out:
1147 	vm_fault_enable_pagefaults(save);
1148 	free(uio_clone, M_IOV);
1149 	return (error);
1150 }
1151 
1152 static int
1153 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1154     int flags, struct thread *td)
1155 {
1156 	fo_rdwr_t *doio;
1157 	struct vnode *vp;
1158 	void *rl_cookie;
1159 	struct vn_io_fault_args args;
1160 	int error;
1161 
1162 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1163 	vp = fp->f_vnode;
1164 	foffset_lock_uio(fp, uio, flags);
1165 	if (do_vn_io_fault(vp, uio)) {
1166 		args.kind = VN_IO_FAULT_FOP;
1167 		args.args.fop_args.fp = fp;
1168 		args.args.fop_args.doio = doio;
1169 		args.cred = active_cred;
1170 		args.flags = flags | FOF_OFFSET;
1171 		if (uio->uio_rw == UIO_READ) {
1172 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1173 			    uio->uio_offset + uio->uio_resid);
1174 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1175 		    (flags & FOF_OFFSET) == 0) {
1176 			/* For appenders, punt and lock the whole range. */
1177 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1178 		} else {
1179 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1180 			    uio->uio_offset + uio->uio_resid);
1181 		}
1182 		error = vn_io_fault1(vp, uio, &args, td);
1183 		vn_rangelock_unlock(vp, rl_cookie);
1184 	} else {
1185 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1186 	}
1187 	foffset_unlock_uio(fp, uio, flags);
1188 	return (error);
1189 }
1190 
1191 /*
1192  * Helper function to perform the requested uiomove operation using
1193  * the held pages for io->uio_iov[0].iov_base buffer instead of
1194  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1195  * instead of iov_base prevents page faults that could occur due to
1196  * pmap_collect() invalidating the mapping created by
1197  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1198  * object cleanup revoking the write access from page mappings.
1199  *
1200  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1201  * instead of plain uiomove().
1202  */
1203 int
1204 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1205 {
1206 	struct uio transp_uio;
1207 	struct iovec transp_iov[1];
1208 	struct thread *td;
1209 	size_t adv;
1210 	int error, pgadv;
1211 
1212 	td = curthread;
1213 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1214 	    uio->uio_segflg != UIO_USERSPACE)
1215 		return (uiomove(data, xfersize, uio));
1216 
1217 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1218 	transp_iov[0].iov_base = data;
1219 	transp_uio.uio_iov = &transp_iov[0];
1220 	transp_uio.uio_iovcnt = 1;
1221 	if (xfersize > uio->uio_resid)
1222 		xfersize = uio->uio_resid;
1223 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1224 	transp_uio.uio_offset = 0;
1225 	transp_uio.uio_segflg = UIO_SYSSPACE;
1226 	/*
1227 	 * Since transp_iov points to data, and td_ma page array
1228 	 * corresponds to original uio->uio_iov, we need to invert the
1229 	 * direction of the i/o operation as passed to
1230 	 * uiomove_fromphys().
1231 	 */
1232 	switch (uio->uio_rw) {
1233 	case UIO_WRITE:
1234 		transp_uio.uio_rw = UIO_READ;
1235 		break;
1236 	case UIO_READ:
1237 		transp_uio.uio_rw = UIO_WRITE;
1238 		break;
1239 	}
1240 	transp_uio.uio_td = uio->uio_td;
1241 	error = uiomove_fromphys(td->td_ma,
1242 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1243 	    xfersize, &transp_uio);
1244 	adv = xfersize - transp_uio.uio_resid;
1245 	pgadv =
1246 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1247 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1248 	td->td_ma += pgadv;
1249 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1250 	    pgadv));
1251 	td->td_ma_cnt -= pgadv;
1252 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1253 	uio->uio_iov->iov_len -= adv;
1254 	uio->uio_resid -= adv;
1255 	uio->uio_offset += adv;
1256 	return (error);
1257 }
1258 
1259 int
1260 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1261     struct uio *uio)
1262 {
1263 	struct thread *td;
1264 	vm_offset_t iov_base;
1265 	int cnt, pgadv;
1266 
1267 	td = curthread;
1268 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1269 	    uio->uio_segflg != UIO_USERSPACE)
1270 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1271 
1272 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1273 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1274 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1275 	switch (uio->uio_rw) {
1276 	case UIO_WRITE:
1277 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1278 		    offset, cnt);
1279 		break;
1280 	case UIO_READ:
1281 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1282 		    cnt);
1283 		break;
1284 	}
1285 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1286 	td->td_ma += pgadv;
1287 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1288 	    pgadv));
1289 	td->td_ma_cnt -= pgadv;
1290 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1291 	uio->uio_iov->iov_len -= cnt;
1292 	uio->uio_resid -= cnt;
1293 	uio->uio_offset += cnt;
1294 	return (0);
1295 }
1296 
1297 
1298 /*
1299  * File table truncate routine.
1300  */
1301 static int
1302 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1303     struct thread *td)
1304 {
1305 	struct vattr vattr;
1306 	struct mount *mp;
1307 	struct vnode *vp;
1308 	void *rl_cookie;
1309 	int error;
1310 
1311 	vp = fp->f_vnode;
1312 
1313 	/*
1314 	 * Lock the whole range for truncation.  Otherwise split i/o
1315 	 * might happen partly before and partly after the truncation.
1316 	 */
1317 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1318 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1319 	if (error)
1320 		goto out1;
1321 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1322 	AUDIT_ARG_VNODE1(vp);
1323 	if (vp->v_type == VDIR) {
1324 		error = EISDIR;
1325 		goto out;
1326 	}
1327 #ifdef MAC
1328 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1329 	if (error)
1330 		goto out;
1331 #endif
1332 	error = vn_writechk(vp);
1333 	if (error == 0) {
1334 		VATTR_NULL(&vattr);
1335 		vattr.va_size = length;
1336 		if ((fp->f_flag & O_FSYNC) != 0)
1337 			vattr.va_vaflags |= VA_SYNC;
1338 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1339 	}
1340 out:
1341 	VOP_UNLOCK(vp, 0);
1342 	vn_finished_write(mp);
1343 out1:
1344 	vn_rangelock_unlock(vp, rl_cookie);
1345 	return (error);
1346 }
1347 
1348 /*
1349  * File table vnode stat routine.
1350  */
1351 static int
1352 vn_statfile(fp, sb, active_cred, td)
1353 	struct file *fp;
1354 	struct stat *sb;
1355 	struct ucred *active_cred;
1356 	struct thread *td;
1357 {
1358 	struct vnode *vp = fp->f_vnode;
1359 	int error;
1360 
1361 	vn_lock(vp, LK_SHARED | LK_RETRY);
1362 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1363 	VOP_UNLOCK(vp, 0);
1364 
1365 	return (error);
1366 }
1367 
1368 /*
1369  * Stat a vnode; implementation for the stat syscall
1370  */
1371 int
1372 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
1373     struct ucred *file_cred, struct thread *td)
1374 {
1375 	struct vattr vattr;
1376 	struct vattr *vap;
1377 	int error;
1378 	u_short mode;
1379 
1380 	AUDIT_ARG_VNODE1(vp);
1381 #ifdef MAC
1382 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1383 	if (error)
1384 		return (error);
1385 #endif
1386 
1387 	vap = &vattr;
1388 
1389 	/*
1390 	 * Initialize defaults for new and unusual fields, so that file
1391 	 * systems which don't support these fields don't need to know
1392 	 * about them.
1393 	 */
1394 	vap->va_birthtime.tv_sec = -1;
1395 	vap->va_birthtime.tv_nsec = 0;
1396 	vap->va_fsid = VNOVAL;
1397 	vap->va_rdev = NODEV;
1398 
1399 	error = VOP_GETATTR(vp, vap, active_cred);
1400 	if (error)
1401 		return (error);
1402 
1403 	/*
1404 	 * Zero the spare stat fields
1405 	 */
1406 	bzero(sb, sizeof *sb);
1407 
1408 	/*
1409 	 * Copy from vattr table
1410 	 */
1411 	if (vap->va_fsid != VNOVAL)
1412 		sb->st_dev = vap->va_fsid;
1413 	else
1414 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1415 	sb->st_ino = vap->va_fileid;
1416 	mode = vap->va_mode;
1417 	switch (vap->va_type) {
1418 	case VREG:
1419 		mode |= S_IFREG;
1420 		break;
1421 	case VDIR:
1422 		mode |= S_IFDIR;
1423 		break;
1424 	case VBLK:
1425 		mode |= S_IFBLK;
1426 		break;
1427 	case VCHR:
1428 		mode |= S_IFCHR;
1429 		break;
1430 	case VLNK:
1431 		mode |= S_IFLNK;
1432 		break;
1433 	case VSOCK:
1434 		mode |= S_IFSOCK;
1435 		break;
1436 	case VFIFO:
1437 		mode |= S_IFIFO;
1438 		break;
1439 	default:
1440 		return (EBADF);
1441 	}
1442 	sb->st_mode = mode;
1443 	sb->st_nlink = vap->va_nlink;
1444 	sb->st_uid = vap->va_uid;
1445 	sb->st_gid = vap->va_gid;
1446 	sb->st_rdev = vap->va_rdev;
1447 	if (vap->va_size > OFF_MAX)
1448 		return (EOVERFLOW);
1449 	sb->st_size = vap->va_size;
1450 	sb->st_atim = vap->va_atime;
1451 	sb->st_mtim = vap->va_mtime;
1452 	sb->st_ctim = vap->va_ctime;
1453 	sb->st_birthtim = vap->va_birthtime;
1454 
1455         /*
1456 	 * According to www.opengroup.org, the meaning of st_blksize is
1457 	 *   "a filesystem-specific preferred I/O block size for this
1458 	 *    object.  In some filesystem types, this may vary from file
1459 	 *    to file"
1460 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1461 	 */
1462 
1463 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1464 
1465 	sb->st_flags = vap->va_flags;
1466 	if (priv_check(td, PRIV_VFS_GENERATION))
1467 		sb->st_gen = 0;
1468 	else
1469 		sb->st_gen = vap->va_gen;
1470 
1471 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1472 	return (0);
1473 }
1474 
1475 /*
1476  * File table vnode ioctl routine.
1477  */
1478 static int
1479 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1480     struct thread *td)
1481 {
1482 	struct vattr vattr;
1483 	struct vnode *vp;
1484 	int error;
1485 
1486 	vp = fp->f_vnode;
1487 	switch (vp->v_type) {
1488 	case VDIR:
1489 	case VREG:
1490 		switch (com) {
1491 		case FIONREAD:
1492 			vn_lock(vp, LK_SHARED | LK_RETRY);
1493 			error = VOP_GETATTR(vp, &vattr, active_cred);
1494 			VOP_UNLOCK(vp, 0);
1495 			if (error == 0)
1496 				*(int *)data = vattr.va_size - fp->f_offset;
1497 			return (error);
1498 		case FIONBIO:
1499 		case FIOASYNC:
1500 			return (0);
1501 		default:
1502 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1503 			    active_cred, td));
1504 		}
1505 		break;
1506 	case VCHR:
1507 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1508 		    active_cred, td));
1509 	default:
1510 		return (ENOTTY);
1511 	}
1512 }
1513 
1514 /*
1515  * File table vnode poll routine.
1516  */
1517 static int
1518 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1519     struct thread *td)
1520 {
1521 	struct vnode *vp;
1522 	int error;
1523 
1524 	vp = fp->f_vnode;
1525 #ifdef MAC
1526 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1527 	AUDIT_ARG_VNODE1(vp);
1528 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1529 	VOP_UNLOCK(vp, 0);
1530 	if (!error)
1531 #endif
1532 
1533 	error = VOP_POLL(vp, events, fp->f_cred, td);
1534 	return (error);
1535 }
1536 
1537 /*
1538  * Acquire the requested lock and then check for validity.  LK_RETRY
1539  * permits vn_lock to return doomed vnodes.
1540  */
1541 int
1542 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1543 {
1544 	int error;
1545 
1546 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1547 	    ("vn_lock: no locktype"));
1548 	VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
1549 retry:
1550 	error = VOP_LOCK1(vp, flags, file, line);
1551 	flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1552 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1553 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1554 
1555 	if ((flags & LK_RETRY) == 0) {
1556 		if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
1557 			VOP_UNLOCK(vp, 0);
1558 			error = ENOENT;
1559 		}
1560 	} else if (error != 0)
1561 		goto retry;
1562 	return (error);
1563 }
1564 
1565 /*
1566  * File table vnode close routine.
1567  */
1568 static int
1569 vn_closefile(struct file *fp, struct thread *td)
1570 {
1571 	struct vnode *vp;
1572 	struct flock lf;
1573 	int error;
1574 	bool ref;
1575 
1576 	vp = fp->f_vnode;
1577 	fp->f_ops = &badfileops;
1578 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1579 
1580 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1581 
1582 	if (__predict_false(ref)) {
1583 		lf.l_whence = SEEK_SET;
1584 		lf.l_start = 0;
1585 		lf.l_len = 0;
1586 		lf.l_type = F_UNLCK;
1587 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1588 		vrele(vp);
1589 	}
1590 	return (error);
1591 }
1592 
1593 static bool
1594 vn_suspendable(struct mount *mp)
1595 {
1596 
1597 	return (mp->mnt_op->vfs_susp_clean != NULL);
1598 }
1599 
1600 /*
1601  * Preparing to start a filesystem write operation. If the operation is
1602  * permitted, then we bump the count of operations in progress and
1603  * proceed. If a suspend request is in progress, we wait until the
1604  * suspension is over, and then proceed.
1605  */
1606 static int
1607 vn_start_write_locked(struct mount *mp, int flags)
1608 {
1609 	int error, mflags;
1610 
1611 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1612 	error = 0;
1613 
1614 	/*
1615 	 * Check on status of suspension.
1616 	 */
1617 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1618 	    mp->mnt_susp_owner != curthread) {
1619 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1620 		    (flags & PCATCH) : 0) | (PUSER - 1);
1621 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1622 			if (flags & V_NOWAIT) {
1623 				error = EWOULDBLOCK;
1624 				goto unlock;
1625 			}
1626 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1627 			    "suspfs", 0);
1628 			if (error)
1629 				goto unlock;
1630 		}
1631 	}
1632 	if (flags & V_XSLEEP)
1633 		goto unlock;
1634 	mp->mnt_writeopcount++;
1635 unlock:
1636 	if (error != 0 || (flags & V_XSLEEP) != 0)
1637 		MNT_REL(mp);
1638 	MNT_IUNLOCK(mp);
1639 	return (error);
1640 }
1641 
1642 int
1643 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1644 {
1645 	struct mount *mp;
1646 	int error;
1647 
1648 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1649 	    ("V_MNTREF requires mp"));
1650 
1651 	error = 0;
1652 	/*
1653 	 * If a vnode is provided, get and return the mount point that
1654 	 * to which it will write.
1655 	 */
1656 	if (vp != NULL) {
1657 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1658 			*mpp = NULL;
1659 			if (error != EOPNOTSUPP)
1660 				return (error);
1661 			return (0);
1662 		}
1663 	}
1664 	if ((mp = *mpp) == NULL)
1665 		return (0);
1666 
1667 	if (!vn_suspendable(mp)) {
1668 		if (vp != NULL || (flags & V_MNTREF) != 0)
1669 			vfs_rel(mp);
1670 		return (0);
1671 	}
1672 
1673 	/*
1674 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1675 	 * a vfs_ref().
1676 	 * As long as a vnode is not provided we need to acquire a
1677 	 * refcount for the provided mountpoint too, in order to
1678 	 * emulate a vfs_ref().
1679 	 */
1680 	MNT_ILOCK(mp);
1681 	if (vp == NULL && (flags & V_MNTREF) == 0)
1682 		MNT_REF(mp);
1683 
1684 	return (vn_start_write_locked(mp, flags));
1685 }
1686 
1687 /*
1688  * Secondary suspension. Used by operations such as vop_inactive
1689  * routines that are needed by the higher level functions. These
1690  * are allowed to proceed until all the higher level functions have
1691  * completed (indicated by mnt_writeopcount dropping to zero). At that
1692  * time, these operations are halted until the suspension is over.
1693  */
1694 int
1695 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1696 {
1697 	struct mount *mp;
1698 	int error;
1699 
1700 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1701 	    ("V_MNTREF requires mp"));
1702 
1703  retry:
1704 	if (vp != NULL) {
1705 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1706 			*mpp = NULL;
1707 			if (error != EOPNOTSUPP)
1708 				return (error);
1709 			return (0);
1710 		}
1711 	}
1712 	/*
1713 	 * If we are not suspended or have not yet reached suspended
1714 	 * mode, then let the operation proceed.
1715 	 */
1716 	if ((mp = *mpp) == NULL)
1717 		return (0);
1718 
1719 	if (!vn_suspendable(mp)) {
1720 		if (vp != NULL || (flags & V_MNTREF) != 0)
1721 			vfs_rel(mp);
1722 		return (0);
1723 	}
1724 
1725 	/*
1726 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1727 	 * a vfs_ref().
1728 	 * As long as a vnode is not provided we need to acquire a
1729 	 * refcount for the provided mountpoint too, in order to
1730 	 * emulate a vfs_ref().
1731 	 */
1732 	MNT_ILOCK(mp);
1733 	if (vp == NULL && (flags & V_MNTREF) == 0)
1734 		MNT_REF(mp);
1735 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1736 		mp->mnt_secondary_writes++;
1737 		mp->mnt_secondary_accwrites++;
1738 		MNT_IUNLOCK(mp);
1739 		return (0);
1740 	}
1741 	if (flags & V_NOWAIT) {
1742 		MNT_REL(mp);
1743 		MNT_IUNLOCK(mp);
1744 		return (EWOULDBLOCK);
1745 	}
1746 	/*
1747 	 * Wait for the suspension to finish.
1748 	 */
1749 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1750 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1751 	    "suspfs", 0);
1752 	vfs_rel(mp);
1753 	if (error == 0)
1754 		goto retry;
1755 	return (error);
1756 }
1757 
1758 /*
1759  * Filesystem write operation has completed. If we are suspending and this
1760  * operation is the last one, notify the suspender that the suspension is
1761  * now in effect.
1762  */
1763 void
1764 vn_finished_write(struct mount *mp)
1765 {
1766 	if (mp == NULL || !vn_suspendable(mp))
1767 		return;
1768 	MNT_ILOCK(mp);
1769 	MNT_REL(mp);
1770 	mp->mnt_writeopcount--;
1771 	if (mp->mnt_writeopcount < 0)
1772 		panic("vn_finished_write: neg cnt");
1773 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1774 	    mp->mnt_writeopcount <= 0)
1775 		wakeup(&mp->mnt_writeopcount);
1776 	MNT_IUNLOCK(mp);
1777 }
1778 
1779 
1780 /*
1781  * Filesystem secondary write operation has completed. If we are
1782  * suspending and this operation is the last one, notify the suspender
1783  * that the suspension is now in effect.
1784  */
1785 void
1786 vn_finished_secondary_write(struct mount *mp)
1787 {
1788 	if (mp == NULL || !vn_suspendable(mp))
1789 		return;
1790 	MNT_ILOCK(mp);
1791 	MNT_REL(mp);
1792 	mp->mnt_secondary_writes--;
1793 	if (mp->mnt_secondary_writes < 0)
1794 		panic("vn_finished_secondary_write: neg cnt");
1795 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1796 	    mp->mnt_secondary_writes <= 0)
1797 		wakeup(&mp->mnt_secondary_writes);
1798 	MNT_IUNLOCK(mp);
1799 }
1800 
1801 
1802 
1803 /*
1804  * Request a filesystem to suspend write operations.
1805  */
1806 int
1807 vfs_write_suspend(struct mount *mp, int flags)
1808 {
1809 	int error;
1810 
1811 	MPASS(vn_suspendable(mp));
1812 
1813 	MNT_ILOCK(mp);
1814 	if (mp->mnt_susp_owner == curthread) {
1815 		MNT_IUNLOCK(mp);
1816 		return (EALREADY);
1817 	}
1818 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1819 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1820 
1821 	/*
1822 	 * Unmount holds a write reference on the mount point.  If we
1823 	 * own busy reference and drain for writers, we deadlock with
1824 	 * the reference draining in the unmount path.  Callers of
1825 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1826 	 * vfs_busy() reference is owned and caller is not in the
1827 	 * unmount context.
1828 	 */
1829 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1830 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1831 		MNT_IUNLOCK(mp);
1832 		return (EBUSY);
1833 	}
1834 
1835 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1836 	mp->mnt_susp_owner = curthread;
1837 	if (mp->mnt_writeopcount > 0)
1838 		(void) msleep(&mp->mnt_writeopcount,
1839 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1840 	else
1841 		MNT_IUNLOCK(mp);
1842 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1843 		vfs_write_resume(mp, 0);
1844 	return (error);
1845 }
1846 
1847 /*
1848  * Request a filesystem to resume write operations.
1849  */
1850 void
1851 vfs_write_resume(struct mount *mp, int flags)
1852 {
1853 
1854 	MPASS(vn_suspendable(mp));
1855 
1856 	MNT_ILOCK(mp);
1857 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1858 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1859 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1860 				       MNTK_SUSPENDED);
1861 		mp->mnt_susp_owner = NULL;
1862 		wakeup(&mp->mnt_writeopcount);
1863 		wakeup(&mp->mnt_flag);
1864 		curthread->td_pflags &= ~TDP_IGNSUSP;
1865 		if ((flags & VR_START_WRITE) != 0) {
1866 			MNT_REF(mp);
1867 			mp->mnt_writeopcount++;
1868 		}
1869 		MNT_IUNLOCK(mp);
1870 		if ((flags & VR_NO_SUSPCLR) == 0)
1871 			VFS_SUSP_CLEAN(mp);
1872 	} else if ((flags & VR_START_WRITE) != 0) {
1873 		MNT_REF(mp);
1874 		vn_start_write_locked(mp, 0);
1875 	} else {
1876 		MNT_IUNLOCK(mp);
1877 	}
1878 }
1879 
1880 /*
1881  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1882  * methods.
1883  */
1884 int
1885 vfs_write_suspend_umnt(struct mount *mp)
1886 {
1887 	int error;
1888 
1889 	MPASS(vn_suspendable(mp));
1890 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1891 	    ("vfs_write_suspend_umnt: recursed"));
1892 
1893 	/* dounmount() already called vn_start_write(). */
1894 	for (;;) {
1895 		vn_finished_write(mp);
1896 		error = vfs_write_suspend(mp, 0);
1897 		if (error != 0) {
1898 			vn_start_write(NULL, &mp, V_WAIT);
1899 			return (error);
1900 		}
1901 		MNT_ILOCK(mp);
1902 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1903 			break;
1904 		MNT_IUNLOCK(mp);
1905 		vn_start_write(NULL, &mp, V_WAIT);
1906 	}
1907 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1908 	wakeup(&mp->mnt_flag);
1909 	MNT_IUNLOCK(mp);
1910 	curthread->td_pflags |= TDP_IGNSUSP;
1911 	return (0);
1912 }
1913 
1914 /*
1915  * Implement kqueues for files by translating it to vnode operation.
1916  */
1917 static int
1918 vn_kqfilter(struct file *fp, struct knote *kn)
1919 {
1920 
1921 	return (VOP_KQFILTER(fp->f_vnode, kn));
1922 }
1923 
1924 /*
1925  * Simplified in-kernel wrapper calls for extended attribute access.
1926  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1927  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1928  */
1929 int
1930 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1931     const char *attrname, int *buflen, char *buf, struct thread *td)
1932 {
1933 	struct uio	auio;
1934 	struct iovec	iov;
1935 	int	error;
1936 
1937 	iov.iov_len = *buflen;
1938 	iov.iov_base = buf;
1939 
1940 	auio.uio_iov = &iov;
1941 	auio.uio_iovcnt = 1;
1942 	auio.uio_rw = UIO_READ;
1943 	auio.uio_segflg = UIO_SYSSPACE;
1944 	auio.uio_td = td;
1945 	auio.uio_offset = 0;
1946 	auio.uio_resid = *buflen;
1947 
1948 	if ((ioflg & IO_NODELOCKED) == 0)
1949 		vn_lock(vp, LK_SHARED | LK_RETRY);
1950 
1951 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1952 
1953 	/* authorize attribute retrieval as kernel */
1954 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1955 	    td);
1956 
1957 	if ((ioflg & IO_NODELOCKED) == 0)
1958 		VOP_UNLOCK(vp, 0);
1959 
1960 	if (error == 0) {
1961 		*buflen = *buflen - auio.uio_resid;
1962 	}
1963 
1964 	return (error);
1965 }
1966 
1967 /*
1968  * XXX failure mode if partially written?
1969  */
1970 int
1971 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1972     const char *attrname, int buflen, char *buf, struct thread *td)
1973 {
1974 	struct uio	auio;
1975 	struct iovec	iov;
1976 	struct mount	*mp;
1977 	int	error;
1978 
1979 	iov.iov_len = buflen;
1980 	iov.iov_base = buf;
1981 
1982 	auio.uio_iov = &iov;
1983 	auio.uio_iovcnt = 1;
1984 	auio.uio_rw = UIO_WRITE;
1985 	auio.uio_segflg = UIO_SYSSPACE;
1986 	auio.uio_td = td;
1987 	auio.uio_offset = 0;
1988 	auio.uio_resid = buflen;
1989 
1990 	if ((ioflg & IO_NODELOCKED) == 0) {
1991 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1992 			return (error);
1993 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1994 	}
1995 
1996 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1997 
1998 	/* authorize attribute setting as kernel */
1999 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2000 
2001 	if ((ioflg & IO_NODELOCKED) == 0) {
2002 		vn_finished_write(mp);
2003 		VOP_UNLOCK(vp, 0);
2004 	}
2005 
2006 	return (error);
2007 }
2008 
2009 int
2010 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2011     const char *attrname, struct thread *td)
2012 {
2013 	struct mount	*mp;
2014 	int	error;
2015 
2016 	if ((ioflg & IO_NODELOCKED) == 0) {
2017 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2018 			return (error);
2019 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2020 	}
2021 
2022 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2023 
2024 	/* authorize attribute removal as kernel */
2025 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2026 	if (error == EOPNOTSUPP)
2027 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2028 		    NULL, td);
2029 
2030 	if ((ioflg & IO_NODELOCKED) == 0) {
2031 		vn_finished_write(mp);
2032 		VOP_UNLOCK(vp, 0);
2033 	}
2034 
2035 	return (error);
2036 }
2037 
2038 static int
2039 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2040     struct vnode **rvp)
2041 {
2042 
2043 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2044 }
2045 
2046 int
2047 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2048 {
2049 
2050 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2051 	    lkflags, rvp));
2052 }
2053 
2054 int
2055 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2056     int lkflags, struct vnode **rvp)
2057 {
2058 	struct mount *mp;
2059 	int ltype, error;
2060 
2061 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2062 	mp = vp->v_mount;
2063 	ltype = VOP_ISLOCKED(vp);
2064 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2065 	    ("vn_vget_ino: vp not locked"));
2066 	error = vfs_busy(mp, MBF_NOWAIT);
2067 	if (error != 0) {
2068 		vfs_ref(mp);
2069 		VOP_UNLOCK(vp, 0);
2070 		error = vfs_busy(mp, 0);
2071 		vn_lock(vp, ltype | LK_RETRY);
2072 		vfs_rel(mp);
2073 		if (error != 0)
2074 			return (ENOENT);
2075 		if (vp->v_iflag & VI_DOOMED) {
2076 			vfs_unbusy(mp);
2077 			return (ENOENT);
2078 		}
2079 	}
2080 	VOP_UNLOCK(vp, 0);
2081 	error = alloc(mp, alloc_arg, lkflags, rvp);
2082 	vfs_unbusy(mp);
2083 	if (*rvp != vp)
2084 		vn_lock(vp, ltype | LK_RETRY);
2085 	if (vp->v_iflag & VI_DOOMED) {
2086 		if (error == 0) {
2087 			if (*rvp == vp)
2088 				vunref(vp);
2089 			else
2090 				vput(*rvp);
2091 		}
2092 		error = ENOENT;
2093 	}
2094 	return (error);
2095 }
2096 
2097 int
2098 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2099     struct thread *td)
2100 {
2101 
2102 	if (vp->v_type != VREG || td == NULL)
2103 		return (0);
2104 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2105 	    lim_cur(td, RLIMIT_FSIZE)) {
2106 		PROC_LOCK(td->td_proc);
2107 		kern_psignal(td->td_proc, SIGXFSZ);
2108 		PROC_UNLOCK(td->td_proc);
2109 		return (EFBIG);
2110 	}
2111 	return (0);
2112 }
2113 
2114 int
2115 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2116     struct thread *td)
2117 {
2118 	struct vnode *vp;
2119 
2120 	vp = fp->f_vnode;
2121 #ifdef AUDIT
2122 	vn_lock(vp, LK_SHARED | LK_RETRY);
2123 	AUDIT_ARG_VNODE1(vp);
2124 	VOP_UNLOCK(vp, 0);
2125 #endif
2126 	return (setfmode(td, active_cred, vp, mode));
2127 }
2128 
2129 int
2130 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2131     struct thread *td)
2132 {
2133 	struct vnode *vp;
2134 
2135 	vp = fp->f_vnode;
2136 #ifdef AUDIT
2137 	vn_lock(vp, LK_SHARED | LK_RETRY);
2138 	AUDIT_ARG_VNODE1(vp);
2139 	VOP_UNLOCK(vp, 0);
2140 #endif
2141 	return (setfown(td, active_cred, vp, uid, gid));
2142 }
2143 
2144 void
2145 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2146 {
2147 	vm_object_t object;
2148 
2149 	if ((object = vp->v_object) == NULL)
2150 		return;
2151 	VM_OBJECT_WLOCK(object);
2152 	vm_object_page_remove(object, start, end, 0);
2153 	VM_OBJECT_WUNLOCK(object);
2154 }
2155 
2156 int
2157 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2158 {
2159 	struct vattr va;
2160 	daddr_t bn, bnp;
2161 	uint64_t bsize;
2162 	off_t noff;
2163 	int error;
2164 
2165 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2166 	    ("Wrong command %lu", cmd));
2167 
2168 	if (vn_lock(vp, LK_SHARED) != 0)
2169 		return (EBADF);
2170 	if (vp->v_type != VREG) {
2171 		error = ENOTTY;
2172 		goto unlock;
2173 	}
2174 	error = VOP_GETATTR(vp, &va, cred);
2175 	if (error != 0)
2176 		goto unlock;
2177 	noff = *off;
2178 	if (noff >= va.va_size) {
2179 		error = ENXIO;
2180 		goto unlock;
2181 	}
2182 	bsize = vp->v_mount->mnt_stat.f_iosize;
2183 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2184 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2185 		if (error == EOPNOTSUPP) {
2186 			error = ENOTTY;
2187 			goto unlock;
2188 		}
2189 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2190 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2191 			noff = bn * bsize;
2192 			if (noff < *off)
2193 				noff = *off;
2194 			goto unlock;
2195 		}
2196 	}
2197 	if (noff > va.va_size)
2198 		noff = va.va_size;
2199 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2200 	if (cmd == FIOSEEKDATA)
2201 		error = ENXIO;
2202 unlock:
2203 	VOP_UNLOCK(vp, 0);
2204 	if (error == 0)
2205 		*off = noff;
2206 	return (error);
2207 }
2208 
2209 int
2210 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2211 {
2212 	struct ucred *cred;
2213 	struct vnode *vp;
2214 	struct vattr vattr;
2215 	off_t foffset, size;
2216 	int error, noneg;
2217 
2218 	cred = td->td_ucred;
2219 	vp = fp->f_vnode;
2220 	foffset = foffset_lock(fp, 0);
2221 	noneg = (vp->v_type != VCHR);
2222 	error = 0;
2223 	switch (whence) {
2224 	case L_INCR:
2225 		if (noneg &&
2226 		    (foffset < 0 ||
2227 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2228 			error = EOVERFLOW;
2229 			break;
2230 		}
2231 		offset += foffset;
2232 		break;
2233 	case L_XTND:
2234 		vn_lock(vp, LK_SHARED | LK_RETRY);
2235 		error = VOP_GETATTR(vp, &vattr, cred);
2236 		VOP_UNLOCK(vp, 0);
2237 		if (error)
2238 			break;
2239 
2240 		/*
2241 		 * If the file references a disk device, then fetch
2242 		 * the media size and use that to determine the ending
2243 		 * offset.
2244 		 */
2245 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2246 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2247 			vattr.va_size = size;
2248 		if (noneg &&
2249 		    (vattr.va_size > OFF_MAX ||
2250 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2251 			error = EOVERFLOW;
2252 			break;
2253 		}
2254 		offset += vattr.va_size;
2255 		break;
2256 	case L_SET:
2257 		break;
2258 	case SEEK_DATA:
2259 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2260 		break;
2261 	case SEEK_HOLE:
2262 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2263 		break;
2264 	default:
2265 		error = EINVAL;
2266 	}
2267 	if (error == 0 && noneg && offset < 0)
2268 		error = EINVAL;
2269 	if (error != 0)
2270 		goto drop;
2271 	VFS_KNOTE_UNLOCKED(vp, 0);
2272 	td->td_uretoff.tdu_off = offset;
2273 drop:
2274 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2275 	return (error);
2276 }
2277 
2278 int
2279 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2280     struct thread *td)
2281 {
2282 	int error;
2283 
2284 	/*
2285 	 * Grant permission if the caller is the owner of the file, or
2286 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2287 	 * on the file.  If the time pointer is null, then write
2288 	 * permission on the file is also sufficient.
2289 	 *
2290 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2291 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2292 	 * will be allowed to set the times [..] to the current
2293 	 * server time.
2294 	 */
2295 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2296 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2297 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2298 	return (error);
2299 }
2300 
2301 int
2302 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2303 {
2304 	struct vnode *vp;
2305 	int error;
2306 
2307 	if (fp->f_type == DTYPE_FIFO)
2308 		kif->kf_type = KF_TYPE_FIFO;
2309 	else
2310 		kif->kf_type = KF_TYPE_VNODE;
2311 	vp = fp->f_vnode;
2312 	vref(vp);
2313 	FILEDESC_SUNLOCK(fdp);
2314 	error = vn_fill_kinfo_vnode(vp, kif);
2315 	vrele(vp);
2316 	FILEDESC_SLOCK(fdp);
2317 	return (error);
2318 }
2319 
2320 static inline void
2321 vn_fill_junk(struct kinfo_file *kif)
2322 {
2323 	size_t len, olen;
2324 
2325 	/*
2326 	 * Simulate vn_fullpath returning changing values for a given
2327 	 * vp during e.g. coredump.
2328 	 */
2329 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2330 	olen = strlen(kif->kf_path);
2331 	if (len < olen)
2332 		strcpy(&kif->kf_path[len - 1], "$");
2333 	else
2334 		for (; olen < len; olen++)
2335 			strcpy(&kif->kf_path[olen], "A");
2336 }
2337 
2338 int
2339 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2340 {
2341 	struct vattr va;
2342 	char *fullpath, *freepath;
2343 	int error;
2344 
2345 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2346 	freepath = NULL;
2347 	fullpath = "-";
2348 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2349 	if (error == 0) {
2350 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2351 	}
2352 	if (freepath != NULL)
2353 		free(freepath, M_TEMP);
2354 
2355 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2356 		vn_fill_junk(kif);
2357 	);
2358 
2359 	/*
2360 	 * Retrieve vnode attributes.
2361 	 */
2362 	va.va_fsid = VNOVAL;
2363 	va.va_rdev = NODEV;
2364 	vn_lock(vp, LK_SHARED | LK_RETRY);
2365 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2366 	VOP_UNLOCK(vp, 0);
2367 	if (error != 0)
2368 		return (error);
2369 	if (va.va_fsid != VNOVAL)
2370 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2371 	else
2372 		kif->kf_un.kf_file.kf_file_fsid =
2373 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2374 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2375 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2376 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2377 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2378 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2379 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2380 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2381 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2382 	return (0);
2383 }
2384 
2385 int
2386 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2387     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2388     struct thread *td)
2389 {
2390 #ifdef HWPMC_HOOKS
2391 	struct pmckern_map_in pkm;
2392 #endif
2393 	struct mount *mp;
2394 	struct vnode *vp;
2395 	vm_object_t object;
2396 	vm_prot_t maxprot;
2397 	boolean_t writecounted;
2398 	int error;
2399 
2400 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2401     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2402 	/*
2403 	 * POSIX shared-memory objects are defined to have
2404 	 * kernel persistence, and are not defined to support
2405 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2406 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2407 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2408 	 * flag to request this behavior.
2409 	 */
2410 	if ((fp->f_flag & FPOSIXSHM) != 0)
2411 		flags |= MAP_NOSYNC;
2412 #endif
2413 	vp = fp->f_vnode;
2414 
2415 	/*
2416 	 * Ensure that file and memory protections are
2417 	 * compatible.  Note that we only worry about
2418 	 * writability if mapping is shared; in this case,
2419 	 * current and max prot are dictated by the open file.
2420 	 * XXX use the vnode instead?  Problem is: what
2421 	 * credentials do we use for determination? What if
2422 	 * proc does a setuid?
2423 	 */
2424 	mp = vp->v_mount;
2425 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2426 		maxprot = VM_PROT_NONE;
2427 		if ((prot & VM_PROT_EXECUTE) != 0)
2428 			return (EACCES);
2429 	} else
2430 		maxprot = VM_PROT_EXECUTE;
2431 	if ((fp->f_flag & FREAD) != 0)
2432 		maxprot |= VM_PROT_READ;
2433 	else if ((prot & VM_PROT_READ) != 0)
2434 		return (EACCES);
2435 
2436 	/*
2437 	 * If we are sharing potential changes via MAP_SHARED and we
2438 	 * are trying to get write permission although we opened it
2439 	 * without asking for it, bail out.
2440 	 */
2441 	if ((flags & MAP_SHARED) != 0) {
2442 		if ((fp->f_flag & FWRITE) != 0)
2443 			maxprot |= VM_PROT_WRITE;
2444 		else if ((prot & VM_PROT_WRITE) != 0)
2445 			return (EACCES);
2446 	} else {
2447 		maxprot |= VM_PROT_WRITE;
2448 		cap_maxprot |= VM_PROT_WRITE;
2449 	}
2450 	maxprot &= cap_maxprot;
2451 
2452 	/*
2453 	 * For regular files and shared memory, POSIX requires that
2454 	 * the value of foff be a legitimate offset within the data
2455 	 * object.  In particular, negative offsets are invalid.
2456 	 * Blocking negative offsets and overflows here avoids
2457 	 * possible wraparound or user-level access into reserved
2458 	 * ranges of the data object later.  In contrast, POSIX does
2459 	 * not dictate how offsets are used by device drivers, so in
2460 	 * the case of a device mapping a negative offset is passed
2461 	 * on.
2462 	 */
2463 	if (
2464 #ifdef _LP64
2465 	    size > OFF_MAX ||
2466 #endif
2467 	    foff < 0 || foff > OFF_MAX - size)
2468 		return (EINVAL);
2469 
2470 	writecounted = FALSE;
2471 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2472 	    &foff, &object, &writecounted);
2473 	if (error != 0)
2474 		return (error);
2475 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2476 	    foff, writecounted, td);
2477 	if (error != 0) {
2478 		/*
2479 		 * If this mapping was accounted for in the vnode's
2480 		 * writecount, then undo that now.
2481 		 */
2482 		if (writecounted)
2483 			vnode_pager_release_writecount(object, 0, size);
2484 		vm_object_deallocate(object);
2485 	}
2486 #ifdef HWPMC_HOOKS
2487 	/* Inform hwpmc(4) if an executable is being mapped. */
2488 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2489 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2490 			pkm.pm_file = vp;
2491 			pkm.pm_address = (uintptr_t) *addr;
2492 			PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
2493 		}
2494 	}
2495 #endif
2496 	return (error);
2497 }
2498 
2499 void
2500 vn_fsid(struct vnode *vp, struct vattr *va)
2501 {
2502 	fsid_t *f;
2503 
2504 	f = &vp->v_mount->mnt_stat.f_fsid;
2505 	va->va_fsid = (uint32_t)f->val[1];
2506 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2507 	va->va_fsid += (uint32_t)f->val[0];
2508 }
2509