1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org> 13 * Copyright (c) 2013, 2014 The FreeBSD Foundation 14 * 15 * Portions of this software were developed by Konstantin Belousov 16 * under sponsorship from the FreeBSD Foundation. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 1. Redistributions of source code must retain the above copyright 22 * notice, this list of conditions and the following disclaimer. 23 * 2. Redistributions in binary form must reproduce the above copyright 24 * notice, this list of conditions and the following disclaimer in the 25 * documentation and/or other materials provided with the distribution. 26 * 3. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_hwpmc_hooks.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/disk.h> 53 #include <sys/fail.h> 54 #include <sys/fcntl.h> 55 #include <sys/file.h> 56 #include <sys/kdb.h> 57 #include <sys/ktr.h> 58 #include <sys/stat.h> 59 #include <sys/priv.h> 60 #include <sys/proc.h> 61 #include <sys/limits.h> 62 #include <sys/lock.h> 63 #include <sys/mman.h> 64 #include <sys/mount.h> 65 #include <sys/mutex.h> 66 #include <sys/namei.h> 67 #include <sys/vnode.h> 68 #include <sys/bio.h> 69 #include <sys/buf.h> 70 #include <sys/filio.h> 71 #include <sys/resourcevar.h> 72 #include <sys/rwlock.h> 73 #include <sys/prng.h> 74 #include <sys/sx.h> 75 #include <sys/sleepqueue.h> 76 #include <sys/sysctl.h> 77 #include <sys/ttycom.h> 78 #include <sys/conf.h> 79 #include <sys/syslog.h> 80 #include <sys/unistd.h> 81 #include <sys/user.h> 82 #include <sys/ktrace.h> 83 84 #include <security/audit/audit.h> 85 #include <security/mac/mac_framework.h> 86 87 #include <vm/vm.h> 88 #include <vm/vm_extern.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pager.h> 94 95 #ifdef HWPMC_HOOKS 96 #include <sys/pmckern.h> 97 #endif 98 99 static fo_rdwr_t vn_read; 100 static fo_rdwr_t vn_write; 101 static fo_rdwr_t vn_io_fault; 102 static fo_truncate_t vn_truncate; 103 static fo_ioctl_t vn_ioctl; 104 static fo_poll_t vn_poll; 105 static fo_kqfilter_t vn_kqfilter; 106 static fo_close_t vn_closefile; 107 static fo_mmap_t vn_mmap; 108 static fo_fallocate_t vn_fallocate; 109 static fo_fspacectl_t vn_fspacectl; 110 111 struct fileops vnops = { 112 .fo_read = vn_io_fault, 113 .fo_write = vn_io_fault, 114 .fo_truncate = vn_truncate, 115 .fo_ioctl = vn_ioctl, 116 .fo_poll = vn_poll, 117 .fo_kqfilter = vn_kqfilter, 118 .fo_stat = vn_statfile, 119 .fo_close = vn_closefile, 120 .fo_chmod = vn_chmod, 121 .fo_chown = vn_chown, 122 .fo_sendfile = vn_sendfile, 123 .fo_seek = vn_seek, 124 .fo_fill_kinfo = vn_fill_kinfo, 125 .fo_mmap = vn_mmap, 126 .fo_fallocate = vn_fallocate, 127 .fo_fspacectl = vn_fspacectl, 128 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE 129 }; 130 131 const u_int io_hold_cnt = 16; 132 static int vn_io_fault_enable = 1; 133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN, 134 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance"); 135 static int vn_io_fault_prefault = 0; 136 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN, 137 &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting"); 138 static int vn_io_pgcache_read_enable = 1; 139 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN, 140 &vn_io_pgcache_read_enable, 0, 141 "Enable copying from page cache for reads, avoiding fs"); 142 static u_long vn_io_faults_cnt; 143 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD, 144 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers"); 145 146 static int vfs_allow_read_dir = 0; 147 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW, 148 &vfs_allow_read_dir, 0, 149 "Enable read(2) of directory by root for filesystems that support it"); 150 151 /* 152 * Returns true if vn_io_fault mode of handling the i/o request should 153 * be used. 154 */ 155 static bool 156 do_vn_io_fault(struct vnode *vp, struct uio *uio) 157 { 158 struct mount *mp; 159 160 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG && 161 (mp = vp->v_mount) != NULL && 162 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable); 163 } 164 165 /* 166 * Structure used to pass arguments to vn_io_fault1(), to do either 167 * file- or vnode-based I/O calls. 168 */ 169 struct vn_io_fault_args { 170 enum { 171 VN_IO_FAULT_FOP, 172 VN_IO_FAULT_VOP 173 } kind; 174 struct ucred *cred; 175 int flags; 176 union { 177 struct fop_args_tag { 178 struct file *fp; 179 fo_rdwr_t *doio; 180 } fop_args; 181 struct vop_args_tag { 182 struct vnode *vp; 183 } vop_args; 184 } args; 185 }; 186 187 static int vn_io_fault1(struct vnode *vp, struct uio *uio, 188 struct vn_io_fault_args *args, struct thread *td); 189 190 int 191 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp) 192 { 193 struct thread *td = curthread; 194 195 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp)); 196 } 197 198 static uint64_t 199 open2nameif(int fmode, u_int vn_open_flags) 200 { 201 uint64_t res; 202 203 res = ISOPEN | LOCKLEAF; 204 if ((fmode & O_RESOLVE_BENEATH) != 0) 205 res |= RBENEATH; 206 if ((fmode & O_EMPTY_PATH) != 0) 207 res |= EMPTYPATH; 208 if ((fmode & FREAD) != 0) 209 res |= OPENREAD; 210 if ((fmode & FWRITE) != 0) 211 res |= OPENWRITE; 212 if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0) 213 res |= AUDITVNODE1; 214 if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0) 215 res |= NOCAPCHECK; 216 if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0) 217 res |= WANTIOCTLCAPS; 218 return (res); 219 } 220 221 /* 222 * Common code for vnode open operations via a name lookup. 223 * Lookup the vnode and invoke VOP_CREATE if needed. 224 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine. 225 * 226 * Note that this does NOT free nameidata for the successful case, 227 * due to the NDINIT being done elsewhere. 228 */ 229 int 230 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, 231 struct ucred *cred, struct file *fp) 232 { 233 struct vnode *vp; 234 struct mount *mp; 235 struct vattr vat; 236 struct vattr *vap = &vat; 237 int fmode, error; 238 bool first_open; 239 240 restart: 241 first_open = false; 242 fmode = *flagp; 243 if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT | 244 O_EXCL | O_DIRECTORY) || 245 (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH)) 246 return (EINVAL); 247 else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) { 248 ndp->ni_cnd.cn_nameiop = CREATE; 249 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags); 250 /* 251 * Set NOCACHE to avoid flushing the cache when 252 * rolling in many files at once. 253 * 254 * Set NC_KEEPPOSENTRY to keep positive entries if they already 255 * exist despite NOCACHE. 256 */ 257 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY; 258 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0) 259 ndp->ni_cnd.cn_flags |= FOLLOW; 260 if ((vn_open_flags & VN_OPEN_INVFS) == 0) 261 bwillwrite(); 262 if ((error = namei(ndp)) != 0) 263 return (error); 264 if (ndp->ni_vp == NULL) { 265 VATTR_NULL(vap); 266 vap->va_type = VREG; 267 vap->va_mode = cmode; 268 if (fmode & O_EXCL) 269 vap->va_vaflags |= VA_EXCLUSIVE; 270 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) { 271 NDFREE_PNBUF(ndp); 272 vput(ndp->ni_dvp); 273 if ((error = vn_start_write(NULL, &mp, 274 V_XSLEEP | V_PCATCH)) != 0) 275 return (error); 276 NDREINIT(ndp); 277 goto restart; 278 } 279 if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0) 280 ndp->ni_cnd.cn_flags |= MAKEENTRY; 281 #ifdef MAC 282 error = mac_vnode_check_create(cred, ndp->ni_dvp, 283 &ndp->ni_cnd, vap); 284 if (error == 0) 285 #endif 286 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp, 287 &ndp->ni_cnd, vap); 288 vp = ndp->ni_vp; 289 if (error == 0 && (fmode & O_EXCL) != 0 && 290 (fmode & (O_EXLOCK | O_SHLOCK)) != 0) { 291 VI_LOCK(vp); 292 vp->v_iflag |= VI_FOPENING; 293 VI_UNLOCK(vp); 294 first_open = true; 295 } 296 VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL, 297 false); 298 vn_finished_write(mp); 299 if (error) { 300 NDFREE_PNBUF(ndp); 301 if (error == ERELOOKUP) { 302 NDREINIT(ndp); 303 goto restart; 304 } 305 return (error); 306 } 307 fmode &= ~O_TRUNC; 308 } else { 309 if (ndp->ni_dvp == ndp->ni_vp) 310 vrele(ndp->ni_dvp); 311 else 312 vput(ndp->ni_dvp); 313 ndp->ni_dvp = NULL; 314 vp = ndp->ni_vp; 315 if (fmode & O_EXCL) { 316 error = EEXIST; 317 goto bad; 318 } 319 if (vp->v_type == VDIR) { 320 error = EISDIR; 321 goto bad; 322 } 323 fmode &= ~O_CREAT; 324 } 325 } else { 326 ndp->ni_cnd.cn_nameiop = LOOKUP; 327 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags); 328 ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW : 329 FOLLOW; 330 if ((fmode & FWRITE) == 0) 331 ndp->ni_cnd.cn_flags |= LOCKSHARED; 332 if ((error = namei(ndp)) != 0) 333 return (error); 334 vp = ndp->ni_vp; 335 } 336 error = vn_open_vnode(vp, fmode, cred, curthread, fp); 337 if (first_open) { 338 VI_LOCK(vp); 339 vp->v_iflag &= ~VI_FOPENING; 340 wakeup(vp); 341 VI_UNLOCK(vp); 342 } 343 if (error) 344 goto bad; 345 *flagp = fmode; 346 return (0); 347 bad: 348 NDFREE_PNBUF(ndp); 349 vput(vp); 350 *flagp = fmode; 351 ndp->ni_vp = NULL; 352 return (error); 353 } 354 355 static int 356 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp) 357 { 358 struct flock lf; 359 int error, lock_flags, type; 360 361 ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock"); 362 if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0) 363 return (0); 364 KASSERT(fp != NULL, ("open with flock requires fp")); 365 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) 366 return (EOPNOTSUPP); 367 368 lock_flags = VOP_ISLOCKED(vp); 369 VOP_UNLOCK(vp); 370 371 lf.l_whence = SEEK_SET; 372 lf.l_start = 0; 373 lf.l_len = 0; 374 lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK; 375 type = F_FLOCK; 376 if ((fmode & FNONBLOCK) == 0) 377 type |= F_WAIT; 378 if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 379 type |= F_FIRSTOPEN; 380 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type); 381 if (error == 0) 382 fp->f_flag |= FHASLOCK; 383 384 vn_lock(vp, lock_flags | LK_RETRY); 385 return (error); 386 } 387 388 /* 389 * Common code for vnode open operations once a vnode is located. 390 * Check permissions, and call the VOP_OPEN routine. 391 */ 392 int 393 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, 394 struct thread *td, struct file *fp) 395 { 396 accmode_t accmode; 397 int error; 398 399 if (vp->v_type == VLNK) { 400 if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0) 401 return (EMLINK); 402 } 403 if (vp->v_type != VDIR && fmode & O_DIRECTORY) 404 return (ENOTDIR); 405 406 accmode = 0; 407 if ((fmode & O_PATH) == 0) { 408 if (vp->v_type == VSOCK) 409 return (EOPNOTSUPP); 410 if ((fmode & (FWRITE | O_TRUNC)) != 0) { 411 if (vp->v_type == VDIR) 412 return (EISDIR); 413 accmode |= VWRITE; 414 } 415 if ((fmode & FREAD) != 0) 416 accmode |= VREAD; 417 if ((fmode & O_APPEND) && (fmode & FWRITE)) 418 accmode |= VAPPEND; 419 #ifdef MAC 420 if ((fmode & O_CREAT) != 0) 421 accmode |= VCREAT; 422 #endif 423 } 424 if ((fmode & FEXEC) != 0) 425 accmode |= VEXEC; 426 #ifdef MAC 427 if ((fmode & O_VERIFY) != 0) 428 accmode |= VVERIFY; 429 error = mac_vnode_check_open(cred, vp, accmode); 430 if (error != 0) 431 return (error); 432 433 accmode &= ~(VCREAT | VVERIFY); 434 #endif 435 if ((fmode & O_CREAT) == 0 && accmode != 0) { 436 error = VOP_ACCESS(vp, accmode, cred, td); 437 if (error != 0) 438 return (error); 439 } 440 if ((fmode & O_PATH) != 0) { 441 if (vp->v_type != VFIFO && vp->v_type != VSOCK && 442 VOP_ACCESS(vp, VREAD, cred, td) == 0) 443 fp->f_flag |= FKQALLOWED; 444 return (0); 445 } 446 447 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 448 vn_lock(vp, LK_UPGRADE | LK_RETRY); 449 error = VOP_OPEN(vp, fmode, cred, td, fp); 450 if (error != 0) 451 return (error); 452 453 error = vn_open_vnode_advlock(vp, fmode, fp); 454 if (error == 0 && (fmode & FWRITE) != 0) { 455 error = VOP_ADD_WRITECOUNT(vp, 1); 456 if (error == 0) { 457 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 458 __func__, vp, vp->v_writecount); 459 } 460 } 461 462 /* 463 * Error from advlock or VOP_ADD_WRITECOUNT() still requires 464 * calling VOP_CLOSE() to pair with earlier VOP_OPEN(). 465 */ 466 if (error != 0) { 467 if (fp != NULL) { 468 /* 469 * Arrange the call by having fdrop() to use 470 * vn_closefile(). This is to satisfy 471 * filesystems like devfs or tmpfs, which 472 * override fo_close(). 473 */ 474 fp->f_flag |= FOPENFAILED; 475 fp->f_vnode = vp; 476 if (fp->f_ops == &badfileops) { 477 fp->f_type = DTYPE_VNODE; 478 fp->f_ops = &vnops; 479 } 480 vref(vp); 481 } else { 482 /* 483 * If there is no fp, due to kernel-mode open, 484 * we can call VOP_CLOSE() now. 485 */ 486 if (vp->v_type != VFIFO && (fmode & FWRITE) != 0 && 487 !MNT_EXTENDED_SHARED(vp->v_mount) && 488 VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 489 vn_lock(vp, LK_UPGRADE | LK_RETRY); 490 (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC), 491 cred, td); 492 } 493 } 494 495 ASSERT_VOP_LOCKED(vp, "vn_open_vnode"); 496 return (error); 497 498 } 499 500 /* 501 * Check for write permissions on the specified vnode. 502 * Prototype text segments cannot be written. 503 * It is racy. 504 */ 505 int 506 vn_writechk(struct vnode *vp) 507 { 508 509 ASSERT_VOP_LOCKED(vp, "vn_writechk"); 510 /* 511 * If there's shared text associated with 512 * the vnode, try to free it up once. If 513 * we fail, we can't allow writing. 514 */ 515 if (VOP_IS_TEXT(vp)) 516 return (ETXTBSY); 517 518 return (0); 519 } 520 521 /* 522 * Vnode close call 523 */ 524 static int 525 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred, 526 struct thread *td, bool keep_ref) 527 { 528 struct mount *mp; 529 int error, lock_flags; 530 531 if (vp->v_type != VFIFO && (flags & FWRITE) == 0 && 532 MNT_EXTENDED_SHARED(vp->v_mount)) 533 lock_flags = LK_SHARED; 534 else 535 lock_flags = LK_EXCLUSIVE; 536 537 vn_start_write(vp, &mp, V_WAIT); 538 vn_lock(vp, lock_flags | LK_RETRY); 539 AUDIT_ARG_VNODE1(vp); 540 if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) { 541 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 542 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 543 __func__, vp, vp->v_writecount); 544 } 545 error = VOP_CLOSE(vp, flags, file_cred, td); 546 if (keep_ref) 547 VOP_UNLOCK(vp); 548 else 549 vput(vp); 550 vn_finished_write(mp); 551 return (error); 552 } 553 554 int 555 vn_close(struct vnode *vp, int flags, struct ucred *file_cred, 556 struct thread *td) 557 { 558 559 return (vn_close1(vp, flags, file_cred, td, false)); 560 } 561 562 /* 563 * Heuristic to detect sequential operation. 564 */ 565 static int 566 sequential_heuristic(struct uio *uio, struct file *fp) 567 { 568 enum uio_rw rw; 569 570 ASSERT_VOP_LOCKED(fp->f_vnode, __func__); 571 572 rw = uio->uio_rw; 573 if (fp->f_flag & FRDAHEAD) 574 return (fp->f_seqcount[rw] << IO_SEQSHIFT); 575 576 /* 577 * Offset 0 is handled specially. open() sets f_seqcount to 1 so 578 * that the first I/O is normally considered to be slightly 579 * sequential. Seeking to offset 0 doesn't change sequentiality 580 * unless previous seeks have reduced f_seqcount to 0, in which 581 * case offset 0 is not special. 582 */ 583 if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) || 584 uio->uio_offset == fp->f_nextoff[rw]) { 585 /* 586 * f_seqcount is in units of fixed-size blocks so that it 587 * depends mainly on the amount of sequential I/O and not 588 * much on the number of sequential I/O's. The fixed size 589 * of 16384 is hard-coded here since it is (not quite) just 590 * a magic size that works well here. This size is more 591 * closely related to the best I/O size for real disks than 592 * to any block size used by software. 593 */ 594 if (uio->uio_resid >= IO_SEQMAX * 16384) 595 fp->f_seqcount[rw] = IO_SEQMAX; 596 else { 597 fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384); 598 if (fp->f_seqcount[rw] > IO_SEQMAX) 599 fp->f_seqcount[rw] = IO_SEQMAX; 600 } 601 return (fp->f_seqcount[rw] << IO_SEQSHIFT); 602 } 603 604 /* Not sequential. Quickly draw-down sequentiality. */ 605 if (fp->f_seqcount[rw] > 1) 606 fp->f_seqcount[rw] = 1; 607 else 608 fp->f_seqcount[rw] = 0; 609 return (0); 610 } 611 612 /* 613 * Package up an I/O request on a vnode into a uio and do it. 614 */ 615 int 616 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, 617 enum uio_seg segflg, int ioflg, struct ucred *active_cred, 618 struct ucred *file_cred, ssize_t *aresid, struct thread *td) 619 { 620 struct uio auio; 621 struct iovec aiov; 622 struct mount *mp; 623 struct ucred *cred; 624 void *rl_cookie; 625 struct vn_io_fault_args args; 626 int error, lock_flags; 627 628 if (offset < 0 && vp->v_type != VCHR) 629 return (EINVAL); 630 auio.uio_iov = &aiov; 631 auio.uio_iovcnt = 1; 632 aiov.iov_base = base; 633 aiov.iov_len = len; 634 auio.uio_resid = len; 635 auio.uio_offset = offset; 636 auio.uio_segflg = segflg; 637 auio.uio_rw = rw; 638 auio.uio_td = td; 639 error = 0; 640 641 if ((ioflg & IO_NODELOCKED) == 0) { 642 if ((ioflg & IO_RANGELOCKED) == 0) { 643 if (rw == UIO_READ) { 644 rl_cookie = vn_rangelock_rlock(vp, offset, 645 offset + len); 646 } else if ((ioflg & IO_APPEND) != 0) { 647 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 648 } else { 649 rl_cookie = vn_rangelock_wlock(vp, offset, 650 offset + len); 651 } 652 } else 653 rl_cookie = NULL; 654 mp = NULL; 655 if (rw == UIO_WRITE) { 656 if (vp->v_type != VCHR && 657 (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH)) 658 != 0) 659 goto out; 660 lock_flags = vn_lktype_write(mp, vp); 661 } else 662 lock_flags = LK_SHARED; 663 vn_lock(vp, lock_flags | LK_RETRY); 664 } else 665 rl_cookie = NULL; 666 667 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 668 #ifdef MAC 669 if ((ioflg & IO_NOMACCHECK) == 0) { 670 if (rw == UIO_READ) 671 error = mac_vnode_check_read(active_cred, file_cred, 672 vp); 673 else 674 error = mac_vnode_check_write(active_cred, file_cred, 675 vp); 676 } 677 #endif 678 if (error == 0) { 679 if (file_cred != NULL) 680 cred = file_cred; 681 else 682 cred = active_cred; 683 if (do_vn_io_fault(vp, &auio)) { 684 args.kind = VN_IO_FAULT_VOP; 685 args.cred = cred; 686 args.flags = ioflg; 687 args.args.vop_args.vp = vp; 688 error = vn_io_fault1(vp, &auio, &args, td); 689 } else if (rw == UIO_READ) { 690 error = VOP_READ(vp, &auio, ioflg, cred); 691 } else /* if (rw == UIO_WRITE) */ { 692 error = VOP_WRITE(vp, &auio, ioflg, cred); 693 } 694 } 695 if (aresid) 696 *aresid = auio.uio_resid; 697 else 698 if (auio.uio_resid && error == 0) 699 error = EIO; 700 if ((ioflg & IO_NODELOCKED) == 0) { 701 VOP_UNLOCK(vp); 702 if (mp != NULL) 703 vn_finished_write(mp); 704 } 705 out: 706 if (rl_cookie != NULL) 707 vn_rangelock_unlock(vp, rl_cookie); 708 return (error); 709 } 710 711 /* 712 * Package up an I/O request on a vnode into a uio and do it. The I/O 713 * request is split up into smaller chunks and we try to avoid saturating 714 * the buffer cache while potentially holding a vnode locked, so we 715 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield() 716 * to give other processes a chance to lock the vnode (either other processes 717 * core'ing the same binary, or unrelated processes scanning the directory). 718 */ 719 int 720 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len, 721 off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, 722 struct ucred *file_cred, size_t *aresid, struct thread *td) 723 { 724 int error = 0; 725 ssize_t iaresid; 726 727 do { 728 int chunk; 729 730 /* 731 * Force `offset' to a multiple of MAXBSIZE except possibly 732 * for the first chunk, so that filesystems only need to 733 * write full blocks except possibly for the first and last 734 * chunks. 735 */ 736 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; 737 738 if (chunk > len) 739 chunk = len; 740 if (rw != UIO_READ && vp->v_type == VREG) 741 bwillwrite(); 742 iaresid = 0; 743 error = vn_rdwr(rw, vp, base, chunk, offset, segflg, 744 ioflg, active_cred, file_cred, &iaresid, td); 745 len -= chunk; /* aresid calc already includes length */ 746 if (error) 747 break; 748 offset += chunk; 749 base = (char *)base + chunk; 750 kern_yield(PRI_USER); 751 } while (len); 752 if (aresid) 753 *aresid = len + iaresid; 754 return (error); 755 } 756 757 #if OFF_MAX <= LONG_MAX 758 off_t 759 foffset_lock(struct file *fp, int flags) 760 { 761 volatile short *flagsp; 762 off_t res; 763 short state; 764 765 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 766 767 if ((flags & FOF_NOLOCK) != 0) 768 return (atomic_load_long(&fp->f_offset)); 769 770 /* 771 * According to McKusick the vn lock was protecting f_offset here. 772 * It is now protected by the FOFFSET_LOCKED flag. 773 */ 774 flagsp = &fp->f_vnread_flags; 775 if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED)) 776 return (atomic_load_long(&fp->f_offset)); 777 778 sleepq_lock(&fp->f_vnread_flags); 779 state = atomic_load_16(flagsp); 780 for (;;) { 781 if ((state & FOFFSET_LOCKED) == 0) { 782 if (!atomic_fcmpset_acq_16(flagsp, &state, 783 FOFFSET_LOCKED)) 784 continue; 785 break; 786 } 787 if ((state & FOFFSET_LOCK_WAITING) == 0) { 788 if (!atomic_fcmpset_acq_16(flagsp, &state, 789 state | FOFFSET_LOCK_WAITING)) 790 continue; 791 } 792 DROP_GIANT(); 793 sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0); 794 sleepq_wait(&fp->f_vnread_flags, PUSER -1); 795 PICKUP_GIANT(); 796 sleepq_lock(&fp->f_vnread_flags); 797 state = atomic_load_16(flagsp); 798 } 799 res = atomic_load_long(&fp->f_offset); 800 sleepq_release(&fp->f_vnread_flags); 801 return (res); 802 } 803 804 void 805 foffset_unlock(struct file *fp, off_t val, int flags) 806 { 807 volatile short *flagsp; 808 short state; 809 810 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 811 812 if ((flags & FOF_NOUPDATE) == 0) 813 atomic_store_long(&fp->f_offset, val); 814 if ((flags & FOF_NEXTOFF_R) != 0) 815 fp->f_nextoff[UIO_READ] = val; 816 if ((flags & FOF_NEXTOFF_W) != 0) 817 fp->f_nextoff[UIO_WRITE] = val; 818 819 if ((flags & FOF_NOLOCK) != 0) 820 return; 821 822 flagsp = &fp->f_vnread_flags; 823 state = atomic_load_16(flagsp); 824 if ((state & FOFFSET_LOCK_WAITING) == 0 && 825 atomic_cmpset_rel_16(flagsp, state, 0)) 826 return; 827 828 sleepq_lock(&fp->f_vnread_flags); 829 MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0); 830 MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0); 831 fp->f_vnread_flags = 0; 832 sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0); 833 sleepq_release(&fp->f_vnread_flags); 834 } 835 #else 836 off_t 837 foffset_lock(struct file *fp, int flags) 838 { 839 struct mtx *mtxp; 840 off_t res; 841 842 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 843 844 mtxp = mtx_pool_find(mtxpool_sleep, fp); 845 mtx_lock(mtxp); 846 if ((flags & FOF_NOLOCK) == 0) { 847 while (fp->f_vnread_flags & FOFFSET_LOCKED) { 848 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING; 849 msleep(&fp->f_vnread_flags, mtxp, PUSER -1, 850 "vofflock", 0); 851 } 852 fp->f_vnread_flags |= FOFFSET_LOCKED; 853 } 854 res = fp->f_offset; 855 mtx_unlock(mtxp); 856 return (res); 857 } 858 859 void 860 foffset_unlock(struct file *fp, off_t val, int flags) 861 { 862 struct mtx *mtxp; 863 864 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 865 866 mtxp = mtx_pool_find(mtxpool_sleep, fp); 867 mtx_lock(mtxp); 868 if ((flags & FOF_NOUPDATE) == 0) 869 fp->f_offset = val; 870 if ((flags & FOF_NEXTOFF_R) != 0) 871 fp->f_nextoff[UIO_READ] = val; 872 if ((flags & FOF_NEXTOFF_W) != 0) 873 fp->f_nextoff[UIO_WRITE] = val; 874 if ((flags & FOF_NOLOCK) == 0) { 875 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0, 876 ("Lost FOFFSET_LOCKED")); 877 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING) 878 wakeup(&fp->f_vnread_flags); 879 fp->f_vnread_flags = 0; 880 } 881 mtx_unlock(mtxp); 882 } 883 #endif 884 885 void 886 foffset_lock_uio(struct file *fp, struct uio *uio, int flags) 887 { 888 889 if ((flags & FOF_OFFSET) == 0) 890 uio->uio_offset = foffset_lock(fp, flags); 891 } 892 893 void 894 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags) 895 { 896 897 if ((flags & FOF_OFFSET) == 0) 898 foffset_unlock(fp, uio->uio_offset, flags); 899 } 900 901 static int 902 get_advice(struct file *fp, struct uio *uio) 903 { 904 struct mtx *mtxp; 905 int ret; 906 907 ret = POSIX_FADV_NORMAL; 908 if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG) 909 return (ret); 910 911 mtxp = mtx_pool_find(mtxpool_sleep, fp); 912 mtx_lock(mtxp); 913 if (fp->f_advice != NULL && 914 uio->uio_offset >= fp->f_advice->fa_start && 915 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end) 916 ret = fp->f_advice->fa_advice; 917 mtx_unlock(mtxp); 918 return (ret); 919 } 920 921 static int 922 get_write_ioflag(struct file *fp) 923 { 924 int ioflag; 925 struct mount *mp; 926 struct vnode *vp; 927 928 ioflag = 0; 929 vp = fp->f_vnode; 930 mp = atomic_load_ptr(&vp->v_mount); 931 932 if ((fp->f_flag & O_DIRECT) != 0) 933 ioflag |= IO_DIRECT; 934 935 if ((fp->f_flag & O_FSYNC) != 0 || 936 (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0)) 937 ioflag |= IO_SYNC; 938 939 /* 940 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE() 941 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC 942 * fall back to full O_SYNC behavior. 943 */ 944 if ((fp->f_flag & O_DSYNC) != 0) 945 ioflag |= IO_SYNC | IO_DATASYNC; 946 947 return (ioflag); 948 } 949 950 int 951 vn_read_from_obj(struct vnode *vp, struct uio *uio) 952 { 953 vm_object_t obj; 954 vm_page_t ma[io_hold_cnt + 2]; 955 off_t off, vsz; 956 ssize_t resid; 957 int error, i, j; 958 959 MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2)); 960 obj = atomic_load_ptr(&vp->v_object); 961 if (obj == NULL) 962 return (EJUSTRETURN); 963 964 /* 965 * Depends on type stability of vm_objects. 966 */ 967 vm_object_pip_add(obj, 1); 968 if ((obj->flags & OBJ_DEAD) != 0) { 969 /* 970 * Note that object might be already reused from the 971 * vnode, and the OBJ_DEAD flag cleared. This is fine, 972 * we recheck for DOOMED vnode state after all pages 973 * are busied, and retract then. 974 * 975 * But we check for OBJ_DEAD to ensure that we do not 976 * busy pages while vm_object_terminate_pages() 977 * processes the queue. 978 */ 979 error = EJUSTRETURN; 980 goto out_pip; 981 } 982 983 resid = uio->uio_resid; 984 off = uio->uio_offset; 985 for (i = 0; resid > 0; i++) { 986 MPASS(i < io_hold_cnt + 2); 987 ma[i] = vm_page_grab_unlocked(obj, atop(off), 988 VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY | 989 VM_ALLOC_NOWAIT); 990 if (ma[i] == NULL) 991 break; 992 993 /* 994 * Skip invalid pages. Valid mask can be partial only 995 * at EOF, and we clip later. 996 */ 997 if (vm_page_none_valid(ma[i])) { 998 vm_page_sunbusy(ma[i]); 999 break; 1000 } 1001 1002 resid -= PAGE_SIZE; 1003 off += PAGE_SIZE; 1004 } 1005 if (i == 0) { 1006 error = EJUSTRETURN; 1007 goto out_pip; 1008 } 1009 1010 /* 1011 * Check VIRF_DOOMED after we busied our pages. Since 1012 * vgonel() terminates the vnode' vm_object, it cannot 1013 * process past pages busied by us. 1014 */ 1015 if (VN_IS_DOOMED(vp)) { 1016 error = EJUSTRETURN; 1017 goto out; 1018 } 1019 1020 resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1); 1021 if (resid > uio->uio_resid) 1022 resid = uio->uio_resid; 1023 1024 /* 1025 * Unlocked read of vnp_size is safe because truncation cannot 1026 * pass busied page. But we load vnp_size into a local 1027 * variable so that possible concurrent extension does not 1028 * break calculation. 1029 */ 1030 #if defined(__powerpc__) && !defined(__powerpc64__) 1031 vsz = obj->un_pager.vnp.vnp_size; 1032 #else 1033 vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size); 1034 #endif 1035 if (uio->uio_offset >= vsz) { 1036 error = EJUSTRETURN; 1037 goto out; 1038 } 1039 if (uio->uio_offset + resid > vsz) 1040 resid = vsz - uio->uio_offset; 1041 1042 error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio); 1043 1044 out: 1045 for (j = 0; j < i; j++) { 1046 if (error == 0) 1047 vm_page_reference(ma[j]); 1048 vm_page_sunbusy(ma[j]); 1049 } 1050 out_pip: 1051 vm_object_pip_wakeup(obj); 1052 if (error != 0) 1053 return (error); 1054 return (uio->uio_resid == 0 ? 0 : EJUSTRETURN); 1055 } 1056 1057 /* 1058 * File table vnode read routine. 1059 */ 1060 static int 1061 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, 1062 struct thread *td) 1063 { 1064 struct vnode *vp; 1065 off_t orig_offset; 1066 int error, ioflag; 1067 int advice; 1068 1069 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 1070 uio->uio_td, td)); 1071 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 1072 vp = fp->f_vnode; 1073 ioflag = 0; 1074 if (fp->f_flag & FNONBLOCK) 1075 ioflag |= IO_NDELAY; 1076 if (fp->f_flag & O_DIRECT) 1077 ioflag |= IO_DIRECT; 1078 1079 /* 1080 * Try to read from page cache. VIRF_DOOMED check is racy but 1081 * allows us to avoid unneeded work outright. 1082 */ 1083 if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() && 1084 (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) { 1085 error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred); 1086 if (error == 0) { 1087 fp->f_nextoff[UIO_READ] = uio->uio_offset; 1088 return (0); 1089 } 1090 if (error != EJUSTRETURN) 1091 return (error); 1092 } 1093 1094 advice = get_advice(fp, uio); 1095 vn_lock(vp, LK_SHARED | LK_RETRY); 1096 1097 switch (advice) { 1098 case POSIX_FADV_NORMAL: 1099 case POSIX_FADV_SEQUENTIAL: 1100 case POSIX_FADV_NOREUSE: 1101 ioflag |= sequential_heuristic(uio, fp); 1102 break; 1103 case POSIX_FADV_RANDOM: 1104 /* Disable read-ahead for random I/O. */ 1105 break; 1106 } 1107 orig_offset = uio->uio_offset; 1108 1109 #ifdef MAC 1110 error = mac_vnode_check_read(active_cred, fp->f_cred, vp); 1111 if (error == 0) 1112 #endif 1113 error = VOP_READ(vp, uio, ioflag, fp->f_cred); 1114 fp->f_nextoff[UIO_READ] = uio->uio_offset; 1115 VOP_UNLOCK(vp); 1116 if (error == 0 && advice == POSIX_FADV_NOREUSE && 1117 orig_offset != uio->uio_offset) 1118 /* 1119 * Use POSIX_FADV_DONTNEED to flush pages and buffers 1120 * for the backing file after a POSIX_FADV_NOREUSE 1121 * read(2). 1122 */ 1123 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1, 1124 POSIX_FADV_DONTNEED); 1125 return (error); 1126 } 1127 1128 /* 1129 * File table vnode write routine. 1130 */ 1131 static int 1132 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, 1133 struct thread *td) 1134 { 1135 struct vnode *vp; 1136 struct mount *mp; 1137 off_t orig_offset; 1138 int error, ioflag; 1139 int advice; 1140 bool need_finished_write; 1141 1142 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 1143 uio->uio_td, td)); 1144 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 1145 vp = fp->f_vnode; 1146 if (vp->v_type == VREG) 1147 bwillwrite(); 1148 ioflag = IO_UNIT; 1149 if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0) 1150 ioflag |= IO_APPEND; 1151 if ((fp->f_flag & FNONBLOCK) != 0) 1152 ioflag |= IO_NDELAY; 1153 ioflag |= get_write_ioflag(fp); 1154 1155 mp = NULL; 1156 need_finished_write = false; 1157 if (vp->v_type != VCHR) { 1158 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH); 1159 if (error != 0) 1160 goto unlock; 1161 need_finished_write = true; 1162 } 1163 1164 advice = get_advice(fp, uio); 1165 1166 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY); 1167 switch (advice) { 1168 case POSIX_FADV_NORMAL: 1169 case POSIX_FADV_SEQUENTIAL: 1170 case POSIX_FADV_NOREUSE: 1171 ioflag |= sequential_heuristic(uio, fp); 1172 break; 1173 case POSIX_FADV_RANDOM: 1174 /* XXX: Is this correct? */ 1175 break; 1176 } 1177 orig_offset = uio->uio_offset; 1178 1179 #ifdef MAC 1180 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1181 if (error == 0) 1182 #endif 1183 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred); 1184 fp->f_nextoff[UIO_WRITE] = uio->uio_offset; 1185 VOP_UNLOCK(vp); 1186 if (need_finished_write) 1187 vn_finished_write(mp); 1188 if (error == 0 && advice == POSIX_FADV_NOREUSE && 1189 orig_offset != uio->uio_offset) 1190 /* 1191 * Use POSIX_FADV_DONTNEED to flush pages and buffers 1192 * for the backing file after a POSIX_FADV_NOREUSE 1193 * write(2). 1194 */ 1195 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1, 1196 POSIX_FADV_DONTNEED); 1197 unlock: 1198 return (error); 1199 } 1200 1201 /* 1202 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to 1203 * prevent the following deadlock: 1204 * 1205 * Assume that the thread A reads from the vnode vp1 into userspace 1206 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is 1207 * currently not resident, then system ends up with the call chain 1208 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] -> 1209 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2) 1210 * which establishes lock order vp1->vn_lock, then vp2->vn_lock. 1211 * If, at the same time, thread B reads from vnode vp2 into buffer buf2 1212 * backed by the pages of vnode vp1, and some page in buf2 is not 1213 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock. 1214 * 1215 * To prevent the lock order reversal and deadlock, vn_io_fault() does 1216 * not allow page faults to happen during VOP_READ() or VOP_WRITE(). 1217 * Instead, it first tries to do the whole range i/o with pagefaults 1218 * disabled. If all pages in the i/o buffer are resident and mapped, 1219 * VOP will succeed (ignoring the genuine filesystem errors). 1220 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do 1221 * i/o in chunks, with all pages in the chunk prefaulted and held 1222 * using vm_fault_quick_hold_pages(). 1223 * 1224 * Filesystems using this deadlock avoidance scheme should use the 1225 * array of the held pages from uio, saved in the curthread->td_ma, 1226 * instead of doing uiomove(). A helper function 1227 * vn_io_fault_uiomove() converts uiomove request into 1228 * uiomove_fromphys() over td_ma array. 1229 * 1230 * Since vnode locks do not cover the whole i/o anymore, rangelocks 1231 * make the current i/o request atomic with respect to other i/os and 1232 * truncations. 1233 */ 1234 1235 /* 1236 * Decode vn_io_fault_args and perform the corresponding i/o. 1237 */ 1238 static int 1239 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio, 1240 struct thread *td) 1241 { 1242 int error, save; 1243 1244 error = 0; 1245 save = vm_fault_disable_pagefaults(); 1246 switch (args->kind) { 1247 case VN_IO_FAULT_FOP: 1248 error = (args->args.fop_args.doio)(args->args.fop_args.fp, 1249 uio, args->cred, args->flags, td); 1250 break; 1251 case VN_IO_FAULT_VOP: 1252 if (uio->uio_rw == UIO_READ) { 1253 error = VOP_READ(args->args.vop_args.vp, uio, 1254 args->flags, args->cred); 1255 } else if (uio->uio_rw == UIO_WRITE) { 1256 error = VOP_WRITE(args->args.vop_args.vp, uio, 1257 args->flags, args->cred); 1258 } 1259 break; 1260 default: 1261 panic("vn_io_fault_doio: unknown kind of io %d %d", 1262 args->kind, uio->uio_rw); 1263 } 1264 vm_fault_enable_pagefaults(save); 1265 return (error); 1266 } 1267 1268 static int 1269 vn_io_fault_touch(char *base, const struct uio *uio) 1270 { 1271 int r; 1272 1273 r = fubyte(base); 1274 if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1)) 1275 return (EFAULT); 1276 return (0); 1277 } 1278 1279 static int 1280 vn_io_fault_prefault_user(const struct uio *uio) 1281 { 1282 char *base; 1283 const struct iovec *iov; 1284 size_t len; 1285 ssize_t resid; 1286 int error, i; 1287 1288 KASSERT(uio->uio_segflg == UIO_USERSPACE, 1289 ("vn_io_fault_prefault userspace")); 1290 1291 error = i = 0; 1292 iov = uio->uio_iov; 1293 resid = uio->uio_resid; 1294 base = iov->iov_base; 1295 len = iov->iov_len; 1296 while (resid > 0) { 1297 error = vn_io_fault_touch(base, uio); 1298 if (error != 0) 1299 break; 1300 if (len < PAGE_SIZE) { 1301 if (len != 0) { 1302 error = vn_io_fault_touch(base + len - 1, uio); 1303 if (error != 0) 1304 break; 1305 resid -= len; 1306 } 1307 if (++i >= uio->uio_iovcnt) 1308 break; 1309 iov = uio->uio_iov + i; 1310 base = iov->iov_base; 1311 len = iov->iov_len; 1312 } else { 1313 len -= PAGE_SIZE; 1314 base += PAGE_SIZE; 1315 resid -= PAGE_SIZE; 1316 } 1317 } 1318 return (error); 1319 } 1320 1321 /* 1322 * Common code for vn_io_fault(), agnostic to the kind of i/o request. 1323 * Uses vn_io_fault_doio() to make the call to an actual i/o function. 1324 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request 1325 * into args and call vn_io_fault1() to handle faults during the user 1326 * mode buffer accesses. 1327 */ 1328 static int 1329 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args, 1330 struct thread *td) 1331 { 1332 vm_page_t ma[io_hold_cnt + 2]; 1333 struct uio *uio_clone, short_uio; 1334 struct iovec short_iovec[1]; 1335 vm_page_t *prev_td_ma; 1336 vm_prot_t prot; 1337 vm_offset_t addr, end; 1338 size_t len, resid; 1339 ssize_t adv; 1340 int error, cnt, saveheld, prev_td_ma_cnt; 1341 1342 if (vn_io_fault_prefault) { 1343 error = vn_io_fault_prefault_user(uio); 1344 if (error != 0) 1345 return (error); /* Or ignore ? */ 1346 } 1347 1348 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ; 1349 1350 /* 1351 * The UFS follows IO_UNIT directive and replays back both 1352 * uio_offset and uio_resid if an error is encountered during the 1353 * operation. But, since the iovec may be already advanced, 1354 * uio is still in an inconsistent state. 1355 * 1356 * Cache a copy of the original uio, which is advanced to the redo 1357 * point using UIO_NOCOPY below. 1358 */ 1359 uio_clone = cloneuio(uio); 1360 resid = uio->uio_resid; 1361 1362 short_uio.uio_segflg = UIO_USERSPACE; 1363 short_uio.uio_rw = uio->uio_rw; 1364 short_uio.uio_td = uio->uio_td; 1365 1366 error = vn_io_fault_doio(args, uio, td); 1367 if (error != EFAULT) 1368 goto out; 1369 1370 atomic_add_long(&vn_io_faults_cnt, 1); 1371 uio_clone->uio_segflg = UIO_NOCOPY; 1372 uiomove(NULL, resid - uio->uio_resid, uio_clone); 1373 uio_clone->uio_segflg = uio->uio_segflg; 1374 1375 saveheld = curthread_pflags_set(TDP_UIOHELD); 1376 prev_td_ma = td->td_ma; 1377 prev_td_ma_cnt = td->td_ma_cnt; 1378 1379 while (uio_clone->uio_resid != 0) { 1380 len = uio_clone->uio_iov->iov_len; 1381 if (len == 0) { 1382 KASSERT(uio_clone->uio_iovcnt >= 1, 1383 ("iovcnt underflow")); 1384 uio_clone->uio_iov++; 1385 uio_clone->uio_iovcnt--; 1386 continue; 1387 } 1388 if (len > ptoa(io_hold_cnt)) 1389 len = ptoa(io_hold_cnt); 1390 addr = (uintptr_t)uio_clone->uio_iov->iov_base; 1391 end = round_page(addr + len); 1392 if (end < addr) { 1393 error = EFAULT; 1394 break; 1395 } 1396 /* 1397 * A perfectly misaligned address and length could cause 1398 * both the start and the end of the chunk to use partial 1399 * page. +2 accounts for such a situation. 1400 */ 1401 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map, 1402 addr, len, prot, ma, io_hold_cnt + 2); 1403 if (cnt == -1) { 1404 error = EFAULT; 1405 break; 1406 } 1407 short_uio.uio_iov = &short_iovec[0]; 1408 short_iovec[0].iov_base = (void *)addr; 1409 short_uio.uio_iovcnt = 1; 1410 short_uio.uio_resid = short_iovec[0].iov_len = len; 1411 short_uio.uio_offset = uio_clone->uio_offset; 1412 td->td_ma = ma; 1413 td->td_ma_cnt = cnt; 1414 1415 error = vn_io_fault_doio(args, &short_uio, td); 1416 vm_page_unhold_pages(ma, cnt); 1417 adv = len - short_uio.uio_resid; 1418 1419 uio_clone->uio_iov->iov_base = 1420 (char *)uio_clone->uio_iov->iov_base + adv; 1421 uio_clone->uio_iov->iov_len -= adv; 1422 uio_clone->uio_resid -= adv; 1423 uio_clone->uio_offset += adv; 1424 1425 uio->uio_resid -= adv; 1426 uio->uio_offset += adv; 1427 1428 if (error != 0 || adv == 0) 1429 break; 1430 } 1431 td->td_ma = prev_td_ma; 1432 td->td_ma_cnt = prev_td_ma_cnt; 1433 curthread_pflags_restore(saveheld); 1434 out: 1435 free(uio_clone, M_IOV); 1436 return (error); 1437 } 1438 1439 static int 1440 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred, 1441 int flags, struct thread *td) 1442 { 1443 fo_rdwr_t *doio; 1444 struct vnode *vp; 1445 void *rl_cookie; 1446 struct vn_io_fault_args args; 1447 int error; 1448 1449 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write; 1450 vp = fp->f_vnode; 1451 1452 /* 1453 * The ability to read(2) on a directory has historically been 1454 * allowed for all users, but this can and has been the source of 1455 * at least one security issue in the past. As such, it is now hidden 1456 * away behind a sysctl for those that actually need it to use it, and 1457 * restricted to root when it's turned on to make it relatively safe to 1458 * leave on for longer sessions of need. 1459 */ 1460 if (vp->v_type == VDIR) { 1461 KASSERT(uio->uio_rw == UIO_READ, 1462 ("illegal write attempted on a directory")); 1463 if (!vfs_allow_read_dir) 1464 return (EISDIR); 1465 if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0) 1466 return (EISDIR); 1467 } 1468 1469 foffset_lock_uio(fp, uio, flags); 1470 if (do_vn_io_fault(vp, uio)) { 1471 args.kind = VN_IO_FAULT_FOP; 1472 args.args.fop_args.fp = fp; 1473 args.args.fop_args.doio = doio; 1474 args.cred = active_cred; 1475 args.flags = flags | FOF_OFFSET; 1476 if (uio->uio_rw == UIO_READ) { 1477 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset, 1478 uio->uio_offset + uio->uio_resid); 1479 } else if ((fp->f_flag & O_APPEND) != 0 || 1480 (flags & FOF_OFFSET) == 0) { 1481 /* For appenders, punt and lock the whole range. */ 1482 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1483 } else { 1484 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset, 1485 uio->uio_offset + uio->uio_resid); 1486 } 1487 error = vn_io_fault1(vp, uio, &args, td); 1488 vn_rangelock_unlock(vp, rl_cookie); 1489 } else { 1490 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); 1491 } 1492 foffset_unlock_uio(fp, uio, flags); 1493 return (error); 1494 } 1495 1496 /* 1497 * Helper function to perform the requested uiomove operation using 1498 * the held pages for io->uio_iov[0].iov_base buffer instead of 1499 * copyin/copyout. Access to the pages with uiomove_fromphys() 1500 * instead of iov_base prevents page faults that could occur due to 1501 * pmap_collect() invalidating the mapping created by 1502 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or 1503 * object cleanup revoking the write access from page mappings. 1504 * 1505 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove() 1506 * instead of plain uiomove(). 1507 */ 1508 int 1509 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio) 1510 { 1511 struct uio transp_uio; 1512 struct iovec transp_iov[1]; 1513 struct thread *td; 1514 size_t adv; 1515 int error, pgadv; 1516 1517 td = curthread; 1518 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1519 uio->uio_segflg != UIO_USERSPACE) 1520 return (uiomove(data, xfersize, uio)); 1521 1522 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1523 transp_iov[0].iov_base = data; 1524 transp_uio.uio_iov = &transp_iov[0]; 1525 transp_uio.uio_iovcnt = 1; 1526 if (xfersize > uio->uio_resid) 1527 xfersize = uio->uio_resid; 1528 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize; 1529 transp_uio.uio_offset = 0; 1530 transp_uio.uio_segflg = UIO_SYSSPACE; 1531 /* 1532 * Since transp_iov points to data, and td_ma page array 1533 * corresponds to original uio->uio_iov, we need to invert the 1534 * direction of the i/o operation as passed to 1535 * uiomove_fromphys(). 1536 */ 1537 switch (uio->uio_rw) { 1538 case UIO_WRITE: 1539 transp_uio.uio_rw = UIO_READ; 1540 break; 1541 case UIO_READ: 1542 transp_uio.uio_rw = UIO_WRITE; 1543 break; 1544 } 1545 transp_uio.uio_td = uio->uio_td; 1546 error = uiomove_fromphys(td->td_ma, 1547 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK, 1548 xfersize, &transp_uio); 1549 adv = xfersize - transp_uio.uio_resid; 1550 pgadv = 1551 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) - 1552 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT); 1553 td->td_ma += pgadv; 1554 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1555 pgadv)); 1556 td->td_ma_cnt -= pgadv; 1557 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv; 1558 uio->uio_iov->iov_len -= adv; 1559 uio->uio_resid -= adv; 1560 uio->uio_offset += adv; 1561 return (error); 1562 } 1563 1564 int 1565 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize, 1566 struct uio *uio) 1567 { 1568 struct thread *td; 1569 vm_offset_t iov_base; 1570 int cnt, pgadv; 1571 1572 td = curthread; 1573 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1574 uio->uio_segflg != UIO_USERSPACE) 1575 return (uiomove_fromphys(ma, offset, xfersize, uio)); 1576 1577 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1578 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize; 1579 iov_base = (vm_offset_t)uio->uio_iov->iov_base; 1580 switch (uio->uio_rw) { 1581 case UIO_WRITE: 1582 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma, 1583 offset, cnt); 1584 break; 1585 case UIO_READ: 1586 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK, 1587 cnt); 1588 break; 1589 } 1590 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT); 1591 td->td_ma += pgadv; 1592 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1593 pgadv)); 1594 td->td_ma_cnt -= pgadv; 1595 uio->uio_iov->iov_base = (char *)(iov_base + cnt); 1596 uio->uio_iov->iov_len -= cnt; 1597 uio->uio_resid -= cnt; 1598 uio->uio_offset += cnt; 1599 return (0); 1600 } 1601 1602 /* 1603 * File table truncate routine. 1604 */ 1605 static int 1606 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1607 struct thread *td) 1608 { 1609 struct mount *mp; 1610 struct vnode *vp; 1611 void *rl_cookie; 1612 int error; 1613 1614 vp = fp->f_vnode; 1615 1616 retry: 1617 /* 1618 * Lock the whole range for truncation. Otherwise split i/o 1619 * might happen partly before and partly after the truncation. 1620 */ 1621 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1622 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH); 1623 if (error) 1624 goto out1; 1625 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1626 AUDIT_ARG_VNODE1(vp); 1627 if (vp->v_type == VDIR) { 1628 error = EISDIR; 1629 goto out; 1630 } 1631 #ifdef MAC 1632 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1633 if (error) 1634 goto out; 1635 #endif 1636 error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0, 1637 fp->f_cred); 1638 out: 1639 VOP_UNLOCK(vp); 1640 vn_finished_write(mp); 1641 out1: 1642 vn_rangelock_unlock(vp, rl_cookie); 1643 if (error == ERELOOKUP) 1644 goto retry; 1645 return (error); 1646 } 1647 1648 /* 1649 * Truncate a file that is already locked. 1650 */ 1651 int 1652 vn_truncate_locked(struct vnode *vp, off_t length, bool sync, 1653 struct ucred *cred) 1654 { 1655 struct vattr vattr; 1656 int error; 1657 1658 error = VOP_ADD_WRITECOUNT(vp, 1); 1659 if (error == 0) { 1660 VATTR_NULL(&vattr); 1661 vattr.va_size = length; 1662 if (sync) 1663 vattr.va_vaflags |= VA_SYNC; 1664 error = VOP_SETATTR(vp, &vattr, cred); 1665 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 1666 } 1667 return (error); 1668 } 1669 1670 /* 1671 * File table vnode stat routine. 1672 */ 1673 int 1674 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred) 1675 { 1676 struct vnode *vp = fp->f_vnode; 1677 int error; 1678 1679 vn_lock(vp, LK_SHARED | LK_RETRY); 1680 error = VOP_STAT(vp, sb, active_cred, fp->f_cred); 1681 VOP_UNLOCK(vp); 1682 1683 return (error); 1684 } 1685 1686 /* 1687 * File table vnode ioctl routine. 1688 */ 1689 static int 1690 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred, 1691 struct thread *td) 1692 { 1693 struct vattr vattr; 1694 struct vnode *vp; 1695 struct fiobmap2_arg *bmarg; 1696 int error; 1697 1698 vp = fp->f_vnode; 1699 switch (vp->v_type) { 1700 case VDIR: 1701 case VREG: 1702 switch (com) { 1703 case FIONREAD: 1704 vn_lock(vp, LK_SHARED | LK_RETRY); 1705 error = VOP_GETATTR(vp, &vattr, active_cred); 1706 VOP_UNLOCK(vp); 1707 if (error == 0) 1708 *(int *)data = vattr.va_size - fp->f_offset; 1709 return (error); 1710 case FIOBMAP2: 1711 bmarg = (struct fiobmap2_arg *)data; 1712 vn_lock(vp, LK_SHARED | LK_RETRY); 1713 #ifdef MAC 1714 error = mac_vnode_check_read(active_cred, fp->f_cred, 1715 vp); 1716 if (error == 0) 1717 #endif 1718 error = VOP_BMAP(vp, bmarg->bn, NULL, 1719 &bmarg->bn, &bmarg->runp, &bmarg->runb); 1720 VOP_UNLOCK(vp); 1721 return (error); 1722 case FIONBIO: 1723 case FIOASYNC: 1724 return (0); 1725 default: 1726 return (VOP_IOCTL(vp, com, data, fp->f_flag, 1727 active_cred, td)); 1728 } 1729 break; 1730 case VCHR: 1731 return (VOP_IOCTL(vp, com, data, fp->f_flag, 1732 active_cred, td)); 1733 default: 1734 return (ENOTTY); 1735 } 1736 } 1737 1738 /* 1739 * File table vnode poll routine. 1740 */ 1741 static int 1742 vn_poll(struct file *fp, int events, struct ucred *active_cred, 1743 struct thread *td) 1744 { 1745 struct vnode *vp; 1746 int error; 1747 1748 vp = fp->f_vnode; 1749 #if defined(MAC) || defined(AUDIT) 1750 if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) { 1751 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1752 AUDIT_ARG_VNODE1(vp); 1753 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp); 1754 VOP_UNLOCK(vp); 1755 if (error != 0) 1756 return (error); 1757 } 1758 #endif 1759 error = VOP_POLL(vp, events, fp->f_cred, td); 1760 return (error); 1761 } 1762 1763 /* 1764 * Acquire the requested lock and then check for validity. LK_RETRY 1765 * permits vn_lock to return doomed vnodes. 1766 */ 1767 static int __noinline 1768 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line, 1769 int error) 1770 { 1771 1772 KASSERT((flags & LK_RETRY) == 0 || error == 0, 1773 ("vn_lock: error %d incompatible with flags %#x", error, flags)); 1774 1775 if (error == 0) 1776 VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed")); 1777 1778 if ((flags & LK_RETRY) == 0) { 1779 if (error == 0) { 1780 VOP_UNLOCK(vp); 1781 error = ENOENT; 1782 } 1783 return (error); 1784 } 1785 1786 /* 1787 * LK_RETRY case. 1788 * 1789 * Nothing to do if we got the lock. 1790 */ 1791 if (error == 0) 1792 return (0); 1793 1794 /* 1795 * Interlock was dropped by the call in _vn_lock. 1796 */ 1797 flags &= ~LK_INTERLOCK; 1798 do { 1799 error = VOP_LOCK1(vp, flags, file, line); 1800 } while (error != 0); 1801 return (0); 1802 } 1803 1804 int 1805 _vn_lock(struct vnode *vp, int flags, const char *file, int line) 1806 { 1807 int error; 1808 1809 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 1810 ("vn_lock: no locktype (%d passed)", flags)); 1811 VNPASS(vp->v_holdcnt > 0, vp); 1812 error = VOP_LOCK1(vp, flags, file, line); 1813 if (__predict_false(error != 0 || VN_IS_DOOMED(vp))) 1814 return (_vn_lock_fallback(vp, flags, file, line, error)); 1815 return (0); 1816 } 1817 1818 /* 1819 * File table vnode close routine. 1820 */ 1821 static int 1822 vn_closefile(struct file *fp, struct thread *td) 1823 { 1824 struct vnode *vp; 1825 struct flock lf; 1826 int error; 1827 bool ref; 1828 1829 vp = fp->f_vnode; 1830 fp->f_ops = &badfileops; 1831 ref = (fp->f_flag & FHASLOCK) != 0; 1832 1833 error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref); 1834 1835 if (__predict_false(ref)) { 1836 lf.l_whence = SEEK_SET; 1837 lf.l_start = 0; 1838 lf.l_len = 0; 1839 lf.l_type = F_UNLCK; 1840 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); 1841 vrele(vp); 1842 } 1843 return (error); 1844 } 1845 1846 /* 1847 * Preparing to start a filesystem write operation. If the operation is 1848 * permitted, then we bump the count of operations in progress and 1849 * proceed. If a suspend request is in progress, we wait until the 1850 * suspension is over, and then proceed. 1851 */ 1852 static int 1853 vn_start_write_refed(struct mount *mp, int flags, bool mplocked) 1854 { 1855 struct mount_pcpu *mpcpu; 1856 int error, mflags; 1857 1858 if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 && 1859 vfs_op_thread_enter(mp, mpcpu)) { 1860 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0); 1861 vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1); 1862 vfs_op_thread_exit(mp, mpcpu); 1863 return (0); 1864 } 1865 1866 if (mplocked) 1867 mtx_assert(MNT_MTX(mp), MA_OWNED); 1868 else 1869 MNT_ILOCK(mp); 1870 1871 error = 0; 1872 1873 /* 1874 * Check on status of suspension. 1875 */ 1876 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 || 1877 mp->mnt_susp_owner != curthread) { 1878 mflags = 0; 1879 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) { 1880 if (flags & V_PCATCH) 1881 mflags |= PCATCH; 1882 } 1883 mflags |= (PUSER - 1); 1884 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1885 if (flags & V_NOWAIT) { 1886 error = EWOULDBLOCK; 1887 goto unlock; 1888 } 1889 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, 1890 "suspfs", 0); 1891 if (error) 1892 goto unlock; 1893 } 1894 } 1895 if (flags & V_XSLEEP) 1896 goto unlock; 1897 mp->mnt_writeopcount++; 1898 unlock: 1899 if (error != 0 || (flags & V_XSLEEP) != 0) 1900 MNT_REL(mp); 1901 MNT_IUNLOCK(mp); 1902 return (error); 1903 } 1904 1905 int 1906 vn_start_write(struct vnode *vp, struct mount **mpp, int flags) 1907 { 1908 struct mount *mp; 1909 int error; 1910 1911 KASSERT((flags & ~V_VALID_FLAGS) == 0, 1912 ("%s: invalid flags passed %d\n", __func__, flags)); 1913 1914 error = 0; 1915 /* 1916 * If a vnode is provided, get and return the mount point that 1917 * to which it will write. 1918 */ 1919 if (vp != NULL) { 1920 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1921 *mpp = NULL; 1922 if (error != EOPNOTSUPP) 1923 return (error); 1924 return (0); 1925 } 1926 } 1927 if ((mp = *mpp) == NULL) 1928 return (0); 1929 1930 /* 1931 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1932 * a vfs_ref(). 1933 * As long as a vnode is not provided we need to acquire a 1934 * refcount for the provided mountpoint too, in order to 1935 * emulate a vfs_ref(). 1936 */ 1937 if (vp == NULL) 1938 vfs_ref(mp); 1939 1940 return (vn_start_write_refed(mp, flags, false)); 1941 } 1942 1943 /* 1944 * Secondary suspension. Used by operations such as vop_inactive 1945 * routines that are needed by the higher level functions. These 1946 * are allowed to proceed until all the higher level functions have 1947 * completed (indicated by mnt_writeopcount dropping to zero). At that 1948 * time, these operations are halted until the suspension is over. 1949 */ 1950 int 1951 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags) 1952 { 1953 struct mount *mp; 1954 int error, mflags; 1955 1956 KASSERT((flags & ~V_VALID_FLAGS) == 0, 1957 ("%s: invalid flags passed %d\n", __func__, flags)); 1958 1959 retry: 1960 if (vp != NULL) { 1961 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1962 *mpp = NULL; 1963 if (error != EOPNOTSUPP) 1964 return (error); 1965 return (0); 1966 } 1967 } 1968 /* 1969 * If we are not suspended or have not yet reached suspended 1970 * mode, then let the operation proceed. 1971 */ 1972 if ((mp = *mpp) == NULL) 1973 return (0); 1974 1975 /* 1976 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1977 * a vfs_ref(). 1978 * As long as a vnode is not provided we need to acquire a 1979 * refcount for the provided mountpoint too, in order to 1980 * emulate a vfs_ref(). 1981 */ 1982 MNT_ILOCK(mp); 1983 if (vp == NULL) 1984 MNT_REF(mp); 1985 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) { 1986 mp->mnt_secondary_writes++; 1987 mp->mnt_secondary_accwrites++; 1988 MNT_IUNLOCK(mp); 1989 return (0); 1990 } 1991 if (flags & V_NOWAIT) { 1992 MNT_REL(mp); 1993 MNT_IUNLOCK(mp); 1994 return (EWOULDBLOCK); 1995 } 1996 /* 1997 * Wait for the suspension to finish. 1998 */ 1999 mflags = 0; 2000 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) { 2001 if (flags & V_PCATCH) 2002 mflags |= PCATCH; 2003 } 2004 mflags |= (PUSER - 1) | PDROP; 2005 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0); 2006 vfs_rel(mp); 2007 if (error == 0) 2008 goto retry; 2009 return (error); 2010 } 2011 2012 /* 2013 * Filesystem write operation has completed. If we are suspending and this 2014 * operation is the last one, notify the suspender that the suspension is 2015 * now in effect. 2016 */ 2017 void 2018 vn_finished_write(struct mount *mp) 2019 { 2020 struct mount_pcpu *mpcpu; 2021 int c; 2022 2023 if (mp == NULL) 2024 return; 2025 2026 if (vfs_op_thread_enter(mp, mpcpu)) { 2027 vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1); 2028 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 2029 vfs_op_thread_exit(mp, mpcpu); 2030 return; 2031 } 2032 2033 MNT_ILOCK(mp); 2034 vfs_assert_mount_counters(mp); 2035 MNT_REL(mp); 2036 c = --mp->mnt_writeopcount; 2037 if (mp->mnt_vfs_ops == 0) { 2038 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0); 2039 MNT_IUNLOCK(mp); 2040 return; 2041 } 2042 if (c < 0) 2043 vfs_dump_mount_counters(mp); 2044 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0) 2045 wakeup(&mp->mnt_writeopcount); 2046 MNT_IUNLOCK(mp); 2047 } 2048 2049 /* 2050 * Filesystem secondary write operation has completed. If we are 2051 * suspending and this operation is the last one, notify the suspender 2052 * that the suspension is now in effect. 2053 */ 2054 void 2055 vn_finished_secondary_write(struct mount *mp) 2056 { 2057 if (mp == NULL) 2058 return; 2059 MNT_ILOCK(mp); 2060 MNT_REL(mp); 2061 mp->mnt_secondary_writes--; 2062 if (mp->mnt_secondary_writes < 0) 2063 panic("vn_finished_secondary_write: neg cnt"); 2064 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 2065 mp->mnt_secondary_writes <= 0) 2066 wakeup(&mp->mnt_secondary_writes); 2067 MNT_IUNLOCK(mp); 2068 } 2069 2070 /* 2071 * Request a filesystem to suspend write operations. 2072 */ 2073 int 2074 vfs_write_suspend(struct mount *mp, int flags) 2075 { 2076 int error; 2077 2078 vfs_op_enter(mp); 2079 2080 MNT_ILOCK(mp); 2081 vfs_assert_mount_counters(mp); 2082 if (mp->mnt_susp_owner == curthread) { 2083 vfs_op_exit_locked(mp); 2084 MNT_IUNLOCK(mp); 2085 return (EALREADY); 2086 } 2087 while (mp->mnt_kern_flag & MNTK_SUSPEND) 2088 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0); 2089 2090 /* 2091 * Unmount holds a write reference on the mount point. If we 2092 * own busy reference and drain for writers, we deadlock with 2093 * the reference draining in the unmount path. Callers of 2094 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if 2095 * vfs_busy() reference is owned and caller is not in the 2096 * unmount context. 2097 */ 2098 if ((flags & VS_SKIP_UNMOUNT) != 0 && 2099 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 2100 vfs_op_exit_locked(mp); 2101 MNT_IUNLOCK(mp); 2102 return (EBUSY); 2103 } 2104 2105 mp->mnt_kern_flag |= MNTK_SUSPEND; 2106 mp->mnt_susp_owner = curthread; 2107 if (mp->mnt_writeopcount > 0) 2108 (void) msleep(&mp->mnt_writeopcount, 2109 MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0); 2110 else 2111 MNT_IUNLOCK(mp); 2112 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) { 2113 vfs_write_resume(mp, 0); 2114 /* vfs_write_resume does vfs_op_exit() for us */ 2115 } 2116 return (error); 2117 } 2118 2119 /* 2120 * Request a filesystem to resume write operations. 2121 */ 2122 void 2123 vfs_write_resume(struct mount *mp, int flags) 2124 { 2125 2126 MNT_ILOCK(mp); 2127 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 2128 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner")); 2129 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 | 2130 MNTK_SUSPENDED); 2131 mp->mnt_susp_owner = NULL; 2132 wakeup(&mp->mnt_writeopcount); 2133 wakeup(&mp->mnt_flag); 2134 curthread->td_pflags &= ~TDP_IGNSUSP; 2135 if ((flags & VR_START_WRITE) != 0) { 2136 MNT_REF(mp); 2137 mp->mnt_writeopcount++; 2138 } 2139 MNT_IUNLOCK(mp); 2140 if ((flags & VR_NO_SUSPCLR) == 0) 2141 VFS_SUSP_CLEAN(mp); 2142 vfs_op_exit(mp); 2143 } else if ((flags & VR_START_WRITE) != 0) { 2144 MNT_REF(mp); 2145 vn_start_write_refed(mp, 0, true); 2146 } else { 2147 MNT_IUNLOCK(mp); 2148 } 2149 } 2150 2151 /* 2152 * Helper loop around vfs_write_suspend() for filesystem unmount VFS 2153 * methods. 2154 */ 2155 int 2156 vfs_write_suspend_umnt(struct mount *mp) 2157 { 2158 int error; 2159 2160 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0, 2161 ("vfs_write_suspend_umnt: recursed")); 2162 2163 /* dounmount() already called vn_start_write(). */ 2164 for (;;) { 2165 vn_finished_write(mp); 2166 error = vfs_write_suspend(mp, 0); 2167 if (error != 0) { 2168 vn_start_write(NULL, &mp, V_WAIT); 2169 return (error); 2170 } 2171 MNT_ILOCK(mp); 2172 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0) 2173 break; 2174 MNT_IUNLOCK(mp); 2175 vn_start_write(NULL, &mp, V_WAIT); 2176 } 2177 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 2178 wakeup(&mp->mnt_flag); 2179 MNT_IUNLOCK(mp); 2180 curthread->td_pflags |= TDP_IGNSUSP; 2181 return (0); 2182 } 2183 2184 /* 2185 * Implement kqueues for files by translating it to vnode operation. 2186 */ 2187 static int 2188 vn_kqfilter(struct file *fp, struct knote *kn) 2189 { 2190 2191 return (VOP_KQFILTER(fp->f_vnode, kn)); 2192 } 2193 2194 int 2195 vn_kqfilter_opath(struct file *fp, struct knote *kn) 2196 { 2197 if ((fp->f_flag & FKQALLOWED) == 0) 2198 return (EBADF); 2199 return (vn_kqfilter(fp, kn)); 2200 } 2201 2202 /* 2203 * Simplified in-kernel wrapper calls for extended attribute access. 2204 * Both calls pass in a NULL credential, authorizing as "kernel" access. 2205 * Set IO_NODELOCKED in ioflg if the vnode is already locked. 2206 */ 2207 int 2208 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, 2209 const char *attrname, int *buflen, char *buf, struct thread *td) 2210 { 2211 struct uio auio; 2212 struct iovec iov; 2213 int error; 2214 2215 iov.iov_len = *buflen; 2216 iov.iov_base = buf; 2217 2218 auio.uio_iov = &iov; 2219 auio.uio_iovcnt = 1; 2220 auio.uio_rw = UIO_READ; 2221 auio.uio_segflg = UIO_SYSSPACE; 2222 auio.uio_td = td; 2223 auio.uio_offset = 0; 2224 auio.uio_resid = *buflen; 2225 2226 if ((ioflg & IO_NODELOCKED) == 0) 2227 vn_lock(vp, LK_SHARED | LK_RETRY); 2228 2229 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2230 2231 /* authorize attribute retrieval as kernel */ 2232 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL, 2233 td); 2234 2235 if ((ioflg & IO_NODELOCKED) == 0) 2236 VOP_UNLOCK(vp); 2237 2238 if (error == 0) { 2239 *buflen = *buflen - auio.uio_resid; 2240 } 2241 2242 return (error); 2243 } 2244 2245 /* 2246 * XXX failure mode if partially written? 2247 */ 2248 int 2249 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, 2250 const char *attrname, int buflen, char *buf, struct thread *td) 2251 { 2252 struct uio auio; 2253 struct iovec iov; 2254 struct mount *mp; 2255 int error; 2256 2257 iov.iov_len = buflen; 2258 iov.iov_base = buf; 2259 2260 auio.uio_iov = &iov; 2261 auio.uio_iovcnt = 1; 2262 auio.uio_rw = UIO_WRITE; 2263 auio.uio_segflg = UIO_SYSSPACE; 2264 auio.uio_td = td; 2265 auio.uio_offset = 0; 2266 auio.uio_resid = buflen; 2267 2268 if ((ioflg & IO_NODELOCKED) == 0) { 2269 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 2270 return (error); 2271 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2272 } 2273 2274 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2275 2276 /* authorize attribute setting as kernel */ 2277 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td); 2278 2279 if ((ioflg & IO_NODELOCKED) == 0) { 2280 vn_finished_write(mp); 2281 VOP_UNLOCK(vp); 2282 } 2283 2284 return (error); 2285 } 2286 2287 int 2288 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, 2289 const char *attrname, struct thread *td) 2290 { 2291 struct mount *mp; 2292 int error; 2293 2294 if ((ioflg & IO_NODELOCKED) == 0) { 2295 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 2296 return (error); 2297 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2298 } 2299 2300 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2301 2302 /* authorize attribute removal as kernel */ 2303 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td); 2304 if (error == EOPNOTSUPP) 2305 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL, 2306 NULL, td); 2307 2308 if ((ioflg & IO_NODELOCKED) == 0) { 2309 vn_finished_write(mp); 2310 VOP_UNLOCK(vp); 2311 } 2312 2313 return (error); 2314 } 2315 2316 static int 2317 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags, 2318 struct vnode **rvp) 2319 { 2320 2321 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp)); 2322 } 2323 2324 int 2325 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp) 2326 { 2327 2328 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino, 2329 lkflags, rvp)); 2330 } 2331 2332 int 2333 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg, 2334 int lkflags, struct vnode **rvp) 2335 { 2336 struct mount *mp; 2337 int ltype, error; 2338 2339 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get"); 2340 mp = vp->v_mount; 2341 ltype = VOP_ISLOCKED(vp); 2342 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED, 2343 ("vn_vget_ino: vp not locked")); 2344 error = vfs_busy(mp, MBF_NOWAIT); 2345 if (error != 0) { 2346 vfs_ref(mp); 2347 VOP_UNLOCK(vp); 2348 error = vfs_busy(mp, 0); 2349 vn_lock(vp, ltype | LK_RETRY); 2350 vfs_rel(mp); 2351 if (error != 0) 2352 return (ENOENT); 2353 if (VN_IS_DOOMED(vp)) { 2354 vfs_unbusy(mp); 2355 return (ENOENT); 2356 } 2357 } 2358 VOP_UNLOCK(vp); 2359 error = alloc(mp, alloc_arg, lkflags, rvp); 2360 vfs_unbusy(mp); 2361 if (error != 0 || *rvp != vp) 2362 vn_lock(vp, ltype | LK_RETRY); 2363 if (VN_IS_DOOMED(vp)) { 2364 if (error == 0) { 2365 if (*rvp == vp) 2366 vunref(vp); 2367 else 2368 vput(*rvp); 2369 } 2370 error = ENOENT; 2371 } 2372 return (error); 2373 } 2374 2375 static void 2376 vn_send_sigxfsz(struct proc *p) 2377 { 2378 PROC_LOCK(p); 2379 kern_psignal(p, SIGXFSZ); 2380 PROC_UNLOCK(p); 2381 } 2382 2383 int 2384 vn_rlimit_trunc(u_quad_t size, struct thread *td) 2385 { 2386 if (size <= lim_cur(td, RLIMIT_FSIZE)) 2387 return (0); 2388 vn_send_sigxfsz(td->td_proc); 2389 return (EFBIG); 2390 } 2391 2392 static int 2393 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz, 2394 bool adj, struct thread *td) 2395 { 2396 off_t lim; 2397 bool ktr_write; 2398 2399 if (vp->v_type != VREG) 2400 return (0); 2401 2402 /* 2403 * Handle file system maximum file size. 2404 */ 2405 if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) { 2406 if (!adj || uio->uio_offset >= maxfsz) 2407 return (EFBIG); 2408 uio->uio_resid = maxfsz - uio->uio_offset; 2409 } 2410 2411 /* 2412 * This is kernel write (e.g. vnode_pager) or accounting 2413 * write, ignore limit. 2414 */ 2415 if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0) 2416 return (0); 2417 2418 /* 2419 * Calculate file size limit. 2420 */ 2421 ktr_write = (td->td_pflags & TDP_INKTRACE) != 0; 2422 lim = __predict_false(ktr_write) ? td->td_ktr_io_lim : 2423 lim_cur(td, RLIMIT_FSIZE); 2424 2425 /* 2426 * Is the limit reached? 2427 */ 2428 if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim)) 2429 return (0); 2430 2431 /* 2432 * Prepared filesystems can handle writes truncated to the 2433 * file size limit. 2434 */ 2435 if (adj && (uoff_t)uio->uio_offset < lim) { 2436 uio->uio_resid = lim - (uoff_t)uio->uio_offset; 2437 return (0); 2438 } 2439 2440 if (!ktr_write || ktr_filesize_limit_signal) 2441 vn_send_sigxfsz(td->td_proc); 2442 return (EFBIG); 2443 } 2444 2445 /* 2446 * Helper for VOP_WRITE() implementations, the common code to 2447 * handle maximum supported file size on the filesystem, and 2448 * RLIMIT_FSIZE, except for special writes from accounting subsystem 2449 * and ktrace. 2450 * 2451 * For maximum file size (maxfsz argument): 2452 * - return EFBIG if uio_offset is beyond it 2453 * - otherwise, clamp uio_resid if write would extend file beyond maxfsz. 2454 * 2455 * For RLIMIT_FSIZE: 2456 * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit 2457 * - otherwise, clamp uio_resid if write would extend file beyond limit. 2458 * 2459 * If clamping occured, the adjustment for uio_resid is stored in 2460 * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return 2461 * from the VOP. 2462 */ 2463 int 2464 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz, 2465 ssize_t *resid_adj, struct thread *td) 2466 { 2467 ssize_t resid_orig; 2468 int error; 2469 bool adj; 2470 2471 resid_orig = uio->uio_resid; 2472 adj = resid_adj != NULL; 2473 error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td); 2474 if (adj) 2475 *resid_adj = resid_orig - uio->uio_resid; 2476 return (error); 2477 } 2478 2479 void 2480 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj) 2481 { 2482 uio->uio_resid += resid_adj; 2483 } 2484 2485 int 2486 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio, 2487 struct thread *td) 2488 { 2489 return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL, 2490 td)); 2491 } 2492 2493 int 2494 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, 2495 struct thread *td) 2496 { 2497 struct vnode *vp; 2498 2499 vp = fp->f_vnode; 2500 #ifdef AUDIT 2501 vn_lock(vp, LK_SHARED | LK_RETRY); 2502 AUDIT_ARG_VNODE1(vp); 2503 VOP_UNLOCK(vp); 2504 #endif 2505 return (setfmode(td, active_cred, vp, mode)); 2506 } 2507 2508 int 2509 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 2510 struct thread *td) 2511 { 2512 struct vnode *vp; 2513 2514 vp = fp->f_vnode; 2515 #ifdef AUDIT 2516 vn_lock(vp, LK_SHARED | LK_RETRY); 2517 AUDIT_ARG_VNODE1(vp); 2518 VOP_UNLOCK(vp); 2519 #endif 2520 return (setfown(td, active_cred, vp, uid, gid)); 2521 } 2522 2523 /* 2524 * Remove pages in the range ["start", "end") from the vnode's VM object. If 2525 * "end" is 0, then the range extends to the end of the object. 2526 */ 2527 void 2528 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) 2529 { 2530 vm_object_t object; 2531 2532 if ((object = vp->v_object) == NULL) 2533 return; 2534 VM_OBJECT_WLOCK(object); 2535 vm_object_page_remove(object, start, end, 0); 2536 VM_OBJECT_WUNLOCK(object); 2537 } 2538 2539 /* 2540 * Like vn_pages_remove(), but skips invalid pages, which by definition are not 2541 * mapped into any process' address space. Filesystems may use this in 2542 * preference to vn_pages_remove() to avoid blocking on pages busied in 2543 * preparation for a VOP_GETPAGES. 2544 */ 2545 void 2546 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) 2547 { 2548 vm_object_t object; 2549 2550 if ((object = vp->v_object) == NULL) 2551 return; 2552 VM_OBJECT_WLOCK(object); 2553 vm_object_page_remove(object, start, end, OBJPR_VALIDONLY); 2554 VM_OBJECT_WUNLOCK(object); 2555 } 2556 2557 int 2558 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off, 2559 struct ucred *cred) 2560 { 2561 struct vattr va; 2562 daddr_t bn, bnp; 2563 uint64_t bsize; 2564 off_t noff; 2565 int error; 2566 2567 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, 2568 ("%s: Wrong command %lu", __func__, cmd)); 2569 ASSERT_VOP_LOCKED(vp, "vn_bmap_seekhole_locked"); 2570 2571 if (vp->v_type != VREG) { 2572 error = ENOTTY; 2573 goto out; 2574 } 2575 error = VOP_GETATTR(vp, &va, cred); 2576 if (error != 0) 2577 goto out; 2578 noff = *off; 2579 if (noff < 0 || noff >= va.va_size) { 2580 error = ENXIO; 2581 goto out; 2582 } 2583 bsize = vp->v_mount->mnt_stat.f_iosize; 2584 for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize - 2585 noff % bsize) { 2586 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL); 2587 if (error == EOPNOTSUPP) { 2588 error = ENOTTY; 2589 goto out; 2590 } 2591 if ((bnp == -1 && cmd == FIOSEEKHOLE) || 2592 (bnp != -1 && cmd == FIOSEEKDATA)) { 2593 noff = bn * bsize; 2594 if (noff < *off) 2595 noff = *off; 2596 goto out; 2597 } 2598 } 2599 if (noff > va.va_size) 2600 noff = va.va_size; 2601 /* noff == va.va_size. There is an implicit hole at the end of file. */ 2602 if (cmd == FIOSEEKDATA) 2603 error = ENXIO; 2604 out: 2605 if (error == 0) 2606 *off = noff; 2607 return (error); 2608 } 2609 2610 int 2611 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred) 2612 { 2613 int error; 2614 2615 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, 2616 ("%s: Wrong command %lu", __func__, cmd)); 2617 2618 if (vn_lock(vp, LK_SHARED) != 0) 2619 return (EBADF); 2620 error = vn_bmap_seekhole_locked(vp, cmd, off, cred); 2621 VOP_UNLOCK(vp); 2622 return (error); 2623 } 2624 2625 int 2626 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td) 2627 { 2628 struct ucred *cred; 2629 struct vnode *vp; 2630 struct vattr vattr; 2631 off_t foffset, size; 2632 int error, noneg; 2633 2634 cred = td->td_ucred; 2635 vp = fp->f_vnode; 2636 foffset = foffset_lock(fp, 0); 2637 noneg = (vp->v_type != VCHR); 2638 error = 0; 2639 switch (whence) { 2640 case L_INCR: 2641 if (noneg && 2642 (foffset < 0 || 2643 (offset > 0 && foffset > OFF_MAX - offset))) { 2644 error = EOVERFLOW; 2645 break; 2646 } 2647 offset += foffset; 2648 break; 2649 case L_XTND: 2650 vn_lock(vp, LK_SHARED | LK_RETRY); 2651 error = VOP_GETATTR(vp, &vattr, cred); 2652 VOP_UNLOCK(vp); 2653 if (error) 2654 break; 2655 2656 /* 2657 * If the file references a disk device, then fetch 2658 * the media size and use that to determine the ending 2659 * offset. 2660 */ 2661 if (vattr.va_size == 0 && vp->v_type == VCHR && 2662 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0) 2663 vattr.va_size = size; 2664 if (noneg && 2665 (vattr.va_size > OFF_MAX || 2666 (offset > 0 && vattr.va_size > OFF_MAX - offset))) { 2667 error = EOVERFLOW; 2668 break; 2669 } 2670 offset += vattr.va_size; 2671 break; 2672 case L_SET: 2673 break; 2674 case SEEK_DATA: 2675 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td); 2676 if (error == ENOTTY) 2677 error = EINVAL; 2678 break; 2679 case SEEK_HOLE: 2680 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td); 2681 if (error == ENOTTY) 2682 error = EINVAL; 2683 break; 2684 default: 2685 error = EINVAL; 2686 } 2687 if (error == 0 && noneg && offset < 0) 2688 error = EINVAL; 2689 if (error != 0) 2690 goto drop; 2691 VFS_KNOTE_UNLOCKED(vp, 0); 2692 td->td_uretoff.tdu_off = offset; 2693 drop: 2694 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0); 2695 return (error); 2696 } 2697 2698 int 2699 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred, 2700 struct thread *td) 2701 { 2702 int error; 2703 2704 /* 2705 * Grant permission if the caller is the owner of the file, or 2706 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on 2707 * on the file. If the time pointer is null, then write 2708 * permission on the file is also sufficient. 2709 * 2710 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes: 2711 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES 2712 * will be allowed to set the times [..] to the current 2713 * server time. 2714 */ 2715 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td); 2716 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0) 2717 error = VOP_ACCESS(vp, VWRITE, cred, td); 2718 return (error); 2719 } 2720 2721 int 2722 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 2723 { 2724 struct vnode *vp; 2725 int error; 2726 2727 if (fp->f_type == DTYPE_FIFO) 2728 kif->kf_type = KF_TYPE_FIFO; 2729 else 2730 kif->kf_type = KF_TYPE_VNODE; 2731 vp = fp->f_vnode; 2732 vref(vp); 2733 FILEDESC_SUNLOCK(fdp); 2734 error = vn_fill_kinfo_vnode(vp, kif); 2735 vrele(vp); 2736 FILEDESC_SLOCK(fdp); 2737 return (error); 2738 } 2739 2740 static inline void 2741 vn_fill_junk(struct kinfo_file *kif) 2742 { 2743 size_t len, olen; 2744 2745 /* 2746 * Simulate vn_fullpath returning changing values for a given 2747 * vp during e.g. coredump. 2748 */ 2749 len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1; 2750 olen = strlen(kif->kf_path); 2751 if (len < olen) 2752 strcpy(&kif->kf_path[len - 1], "$"); 2753 else 2754 for (; olen < len; olen++) 2755 strcpy(&kif->kf_path[olen], "A"); 2756 } 2757 2758 int 2759 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif) 2760 { 2761 struct vattr va; 2762 char *fullpath, *freepath; 2763 int error; 2764 2765 kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type); 2766 freepath = NULL; 2767 fullpath = "-"; 2768 error = vn_fullpath(vp, &fullpath, &freepath); 2769 if (error == 0) { 2770 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path)); 2771 } 2772 if (freepath != NULL) 2773 free(freepath, M_TEMP); 2774 2775 KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path, 2776 vn_fill_junk(kif); 2777 ); 2778 2779 /* 2780 * Retrieve vnode attributes. 2781 */ 2782 va.va_fsid = VNOVAL; 2783 va.va_rdev = NODEV; 2784 vn_lock(vp, LK_SHARED | LK_RETRY); 2785 error = VOP_GETATTR(vp, &va, curthread->td_ucred); 2786 VOP_UNLOCK(vp); 2787 if (error != 0) 2788 return (error); 2789 if (va.va_fsid != VNOVAL) 2790 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid; 2791 else 2792 kif->kf_un.kf_file.kf_file_fsid = 2793 vp->v_mount->mnt_stat.f_fsid.val[0]; 2794 kif->kf_un.kf_file.kf_file_fsid_freebsd11 = 2795 kif->kf_un.kf_file.kf_file_fsid; /* truncate */ 2796 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid; 2797 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode); 2798 kif->kf_un.kf_file.kf_file_size = va.va_size; 2799 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev; 2800 kif->kf_un.kf_file.kf_file_rdev_freebsd11 = 2801 kif->kf_un.kf_file.kf_file_rdev; /* truncate */ 2802 return (0); 2803 } 2804 2805 int 2806 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, 2807 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, 2808 struct thread *td) 2809 { 2810 #ifdef HWPMC_HOOKS 2811 struct pmckern_map_in pkm; 2812 #endif 2813 struct mount *mp; 2814 struct vnode *vp; 2815 vm_object_t object; 2816 vm_prot_t maxprot; 2817 boolean_t writecounted; 2818 int error; 2819 2820 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \ 2821 defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) 2822 /* 2823 * POSIX shared-memory objects are defined to have 2824 * kernel persistence, and are not defined to support 2825 * read(2)/write(2) -- or even open(2). Thus, we can 2826 * use MAP_ASYNC to trade on-disk coherence for speed. 2827 * The shm_open(3) library routine turns on the FPOSIXSHM 2828 * flag to request this behavior. 2829 */ 2830 if ((fp->f_flag & FPOSIXSHM) != 0) 2831 flags |= MAP_NOSYNC; 2832 #endif 2833 vp = fp->f_vnode; 2834 2835 /* 2836 * Ensure that file and memory protections are 2837 * compatible. Note that we only worry about 2838 * writability if mapping is shared; in this case, 2839 * current and max prot are dictated by the open file. 2840 * XXX use the vnode instead? Problem is: what 2841 * credentials do we use for determination? What if 2842 * proc does a setuid? 2843 */ 2844 mp = vp->v_mount; 2845 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) { 2846 maxprot = VM_PROT_NONE; 2847 if ((prot & VM_PROT_EXECUTE) != 0) 2848 return (EACCES); 2849 } else 2850 maxprot = VM_PROT_EXECUTE; 2851 if ((fp->f_flag & FREAD) != 0) 2852 maxprot |= VM_PROT_READ; 2853 else if ((prot & VM_PROT_READ) != 0) 2854 return (EACCES); 2855 2856 /* 2857 * If we are sharing potential changes via MAP_SHARED and we 2858 * are trying to get write permission although we opened it 2859 * without asking for it, bail out. 2860 */ 2861 if ((flags & MAP_SHARED) != 0) { 2862 if ((fp->f_flag & FWRITE) != 0) 2863 maxprot |= VM_PROT_WRITE; 2864 else if ((prot & VM_PROT_WRITE) != 0) 2865 return (EACCES); 2866 } else { 2867 maxprot |= VM_PROT_WRITE; 2868 cap_maxprot |= VM_PROT_WRITE; 2869 } 2870 maxprot &= cap_maxprot; 2871 2872 /* 2873 * For regular files and shared memory, POSIX requires that 2874 * the value of foff be a legitimate offset within the data 2875 * object. In particular, negative offsets are invalid. 2876 * Blocking negative offsets and overflows here avoids 2877 * possible wraparound or user-level access into reserved 2878 * ranges of the data object later. In contrast, POSIX does 2879 * not dictate how offsets are used by device drivers, so in 2880 * the case of a device mapping a negative offset is passed 2881 * on. 2882 */ 2883 if ( 2884 #ifdef _LP64 2885 size > OFF_MAX || 2886 #endif 2887 foff > OFF_MAX - size) 2888 return (EINVAL); 2889 2890 writecounted = FALSE; 2891 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp, 2892 &foff, &object, &writecounted); 2893 if (error != 0) 2894 return (error); 2895 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 2896 foff, writecounted, td); 2897 if (error != 0) { 2898 /* 2899 * If this mapping was accounted for in the vnode's 2900 * writecount, then undo that now. 2901 */ 2902 if (writecounted) 2903 vm_pager_release_writecount(object, 0, size); 2904 vm_object_deallocate(object); 2905 } 2906 #ifdef HWPMC_HOOKS 2907 /* Inform hwpmc(4) if an executable is being mapped. */ 2908 if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) { 2909 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) { 2910 pkm.pm_file = vp; 2911 pkm.pm_address = (uintptr_t) *addr; 2912 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm); 2913 } 2914 } 2915 #endif 2916 return (error); 2917 } 2918 2919 void 2920 vn_fsid(struct vnode *vp, struct vattr *va) 2921 { 2922 fsid_t *f; 2923 2924 f = &vp->v_mount->mnt_stat.f_fsid; 2925 va->va_fsid = (uint32_t)f->val[1]; 2926 va->va_fsid <<= sizeof(f->val[1]) * NBBY; 2927 va->va_fsid += (uint32_t)f->val[0]; 2928 } 2929 2930 int 2931 vn_fsync_buf(struct vnode *vp, int waitfor) 2932 { 2933 struct buf *bp, *nbp; 2934 struct bufobj *bo; 2935 struct mount *mp; 2936 int error, maxretry; 2937 2938 error = 0; 2939 maxretry = 10000; /* large, arbitrarily chosen */ 2940 mp = NULL; 2941 if (vp->v_type == VCHR) { 2942 VI_LOCK(vp); 2943 mp = vp->v_rdev->si_mountpt; 2944 VI_UNLOCK(vp); 2945 } 2946 bo = &vp->v_bufobj; 2947 BO_LOCK(bo); 2948 loop1: 2949 /* 2950 * MARK/SCAN initialization to avoid infinite loops. 2951 */ 2952 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 2953 bp->b_vflags &= ~BV_SCANNED; 2954 bp->b_error = 0; 2955 } 2956 2957 /* 2958 * Flush all dirty buffers associated with a vnode. 2959 */ 2960 loop2: 2961 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2962 if ((bp->b_vflags & BV_SCANNED) != 0) 2963 continue; 2964 bp->b_vflags |= BV_SCANNED; 2965 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2966 if (waitfor != MNT_WAIT) 2967 continue; 2968 if (BUF_LOCK(bp, 2969 LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL, 2970 BO_LOCKPTR(bo)) != 0) { 2971 BO_LOCK(bo); 2972 goto loop1; 2973 } 2974 BO_LOCK(bo); 2975 } 2976 BO_UNLOCK(bo); 2977 KASSERT(bp->b_bufobj == bo, 2978 ("bp %p wrong b_bufobj %p should be %p", 2979 bp, bp->b_bufobj, bo)); 2980 if ((bp->b_flags & B_DELWRI) == 0) 2981 panic("fsync: not dirty"); 2982 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) { 2983 vfs_bio_awrite(bp); 2984 } else { 2985 bremfree(bp); 2986 bawrite(bp); 2987 } 2988 if (maxretry < 1000) 2989 pause("dirty", hz < 1000 ? 1 : hz / 1000); 2990 BO_LOCK(bo); 2991 goto loop2; 2992 } 2993 2994 /* 2995 * If synchronous the caller expects us to completely resolve all 2996 * dirty buffers in the system. Wait for in-progress I/O to 2997 * complete (which could include background bitmap writes), then 2998 * retry if dirty blocks still exist. 2999 */ 3000 if (waitfor == MNT_WAIT) { 3001 bufobj_wwait(bo, 0, 0); 3002 if (bo->bo_dirty.bv_cnt > 0) { 3003 /* 3004 * If we are unable to write any of these buffers 3005 * then we fail now rather than trying endlessly 3006 * to write them out. 3007 */ 3008 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 3009 if ((error = bp->b_error) != 0) 3010 break; 3011 if ((mp != NULL && mp->mnt_secondary_writes > 0) || 3012 (error == 0 && --maxretry >= 0)) 3013 goto loop1; 3014 if (error == 0) 3015 error = EAGAIN; 3016 } 3017 } 3018 BO_UNLOCK(bo); 3019 if (error != 0) 3020 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error); 3021 3022 return (error); 3023 } 3024 3025 /* 3026 * Copies a byte range from invp to outvp. Calls VOP_COPY_FILE_RANGE() 3027 * or vn_generic_copy_file_range() after rangelocking the byte ranges, 3028 * to do the actual copy. 3029 * vn_generic_copy_file_range() is factored out, so it can be called 3030 * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from 3031 * different file systems. 3032 */ 3033 int 3034 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp, 3035 off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred, 3036 struct ucred *outcred, struct thread *fsize_td) 3037 { 3038 int error; 3039 size_t len; 3040 uint64_t uval; 3041 3042 len = *lenp; 3043 *lenp = 0; /* For error returns. */ 3044 error = 0; 3045 3046 /* Do some sanity checks on the arguments. */ 3047 if (invp->v_type == VDIR || outvp->v_type == VDIR) 3048 error = EISDIR; 3049 else if (*inoffp < 0 || *outoffp < 0 || 3050 invp->v_type != VREG || outvp->v_type != VREG) 3051 error = EINVAL; 3052 if (error != 0) 3053 goto out; 3054 3055 /* Ensure offset + len does not wrap around. */ 3056 uval = *inoffp; 3057 uval += len; 3058 if (uval > INT64_MAX) 3059 len = INT64_MAX - *inoffp; 3060 uval = *outoffp; 3061 uval += len; 3062 if (uval > INT64_MAX) 3063 len = INT64_MAX - *outoffp; 3064 if (len == 0) 3065 goto out; 3066 3067 /* 3068 * If the two vnode are for the same file system, call 3069 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range() 3070 * which can handle copies across multiple file systems. 3071 */ 3072 *lenp = len; 3073 if (invp->v_mount == outvp->v_mount) 3074 error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp, 3075 lenp, flags, incred, outcred, fsize_td); 3076 else 3077 error = vn_generic_copy_file_range(invp, inoffp, outvp, 3078 outoffp, lenp, flags, incred, outcred, fsize_td); 3079 out: 3080 return (error); 3081 } 3082 3083 /* 3084 * Test len bytes of data starting at dat for all bytes == 0. 3085 * Return true if all bytes are zero, false otherwise. 3086 * Expects dat to be well aligned. 3087 */ 3088 static bool 3089 mem_iszero(void *dat, int len) 3090 { 3091 int i; 3092 const u_int *p; 3093 const char *cp; 3094 3095 for (p = dat; len > 0; len -= sizeof(*p), p++) { 3096 if (len >= sizeof(*p)) { 3097 if (*p != 0) 3098 return (false); 3099 } else { 3100 cp = (const char *)p; 3101 for (i = 0; i < len; i++, cp++) 3102 if (*cp != '\0') 3103 return (false); 3104 } 3105 } 3106 return (true); 3107 } 3108 3109 /* 3110 * Look for a hole in the output file and, if found, adjust *outoffp 3111 * and *xferp to skip past the hole. 3112 * *xferp is the entire hole length to be written and xfer2 is how many bytes 3113 * to be written as 0's upon return. 3114 */ 3115 static off_t 3116 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp, 3117 off_t *dataoffp, off_t *holeoffp, struct ucred *cred) 3118 { 3119 int error; 3120 off_t delta; 3121 3122 if (*holeoffp == 0 || *holeoffp <= *outoffp) { 3123 *dataoffp = *outoffp; 3124 error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred, 3125 curthread); 3126 if (error == 0) { 3127 *holeoffp = *dataoffp; 3128 error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred, 3129 curthread); 3130 } 3131 if (error != 0 || *holeoffp == *dataoffp) { 3132 /* 3133 * Since outvp is unlocked, it may be possible for 3134 * another thread to do a truncate(), lseek(), write() 3135 * creating a hole at startoff between the above 3136 * VOP_IOCTL() calls, if the other thread does not do 3137 * rangelocking. 3138 * If that happens, *holeoffp == *dataoffp and finding 3139 * the hole has failed, so disable vn_skip_hole(). 3140 */ 3141 *holeoffp = -1; /* Disable use of vn_skip_hole(). */ 3142 return (xfer2); 3143 } 3144 KASSERT(*dataoffp >= *outoffp, 3145 ("vn_skip_hole: dataoff=%jd < outoff=%jd", 3146 (intmax_t)*dataoffp, (intmax_t)*outoffp)); 3147 KASSERT(*holeoffp > *dataoffp, 3148 ("vn_skip_hole: holeoff=%jd <= dataoff=%jd", 3149 (intmax_t)*holeoffp, (intmax_t)*dataoffp)); 3150 } 3151 3152 /* 3153 * If there is a hole before the data starts, advance *outoffp and 3154 * *xferp past the hole. 3155 */ 3156 if (*dataoffp > *outoffp) { 3157 delta = *dataoffp - *outoffp; 3158 if (delta >= *xferp) { 3159 /* Entire *xferp is a hole. */ 3160 *outoffp += *xferp; 3161 *xferp = 0; 3162 return (0); 3163 } 3164 *xferp -= delta; 3165 *outoffp += delta; 3166 xfer2 = MIN(xfer2, *xferp); 3167 } 3168 3169 /* 3170 * If a hole starts before the end of this xfer2, reduce this xfer2 so 3171 * that the write ends at the start of the hole. 3172 * *holeoffp should always be greater than *outoffp, but for the 3173 * non-INVARIANTS case, check this to make sure xfer2 remains a sane 3174 * value. 3175 */ 3176 if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2) 3177 xfer2 = *holeoffp - *outoffp; 3178 return (xfer2); 3179 } 3180 3181 /* 3182 * Write an xfer sized chunk to outvp in blksize blocks from dat. 3183 * dat is a maximum of blksize in length and can be written repeatedly in 3184 * the chunk. 3185 * If growfile == true, just grow the file via vn_truncate_locked() instead 3186 * of doing actual writes. 3187 * If checkhole == true, a hole is being punched, so skip over any hole 3188 * already in the output file. 3189 */ 3190 static int 3191 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer, 3192 u_long blksize, bool growfile, bool checkhole, struct ucred *cred) 3193 { 3194 struct mount *mp; 3195 off_t dataoff, holeoff, xfer2; 3196 int error; 3197 3198 /* 3199 * Loop around doing writes of blksize until write has been completed. 3200 * Lock/unlock on each loop iteration so that a bwillwrite() can be 3201 * done for each iteration, since the xfer argument can be very 3202 * large if there is a large hole to punch in the output file. 3203 */ 3204 error = 0; 3205 holeoff = 0; 3206 do { 3207 xfer2 = MIN(xfer, blksize); 3208 if (checkhole) { 3209 /* 3210 * Punching a hole. Skip writing if there is 3211 * already a hole in the output file. 3212 */ 3213 xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer, 3214 &dataoff, &holeoff, cred); 3215 if (xfer == 0) 3216 break; 3217 if (holeoff < 0) 3218 checkhole = false; 3219 KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd", 3220 (intmax_t)xfer2)); 3221 } 3222 bwillwrite(); 3223 mp = NULL; 3224 error = vn_start_write(outvp, &mp, V_WAIT); 3225 if (error != 0) 3226 break; 3227 if (growfile) { 3228 error = vn_lock(outvp, LK_EXCLUSIVE); 3229 if (error == 0) { 3230 error = vn_truncate_locked(outvp, outoff + xfer, 3231 false, cred); 3232 VOP_UNLOCK(outvp); 3233 } 3234 } else { 3235 error = vn_lock(outvp, vn_lktype_write(mp, outvp)); 3236 if (error == 0) { 3237 error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2, 3238 outoff, UIO_SYSSPACE, IO_NODELOCKED, 3239 curthread->td_ucred, cred, NULL, curthread); 3240 outoff += xfer2; 3241 xfer -= xfer2; 3242 VOP_UNLOCK(outvp); 3243 } 3244 } 3245 if (mp != NULL) 3246 vn_finished_write(mp); 3247 } while (!growfile && xfer > 0 && error == 0); 3248 return (error); 3249 } 3250 3251 /* 3252 * Copy a byte range of one file to another. This function can handle the 3253 * case where invp and outvp are on different file systems. 3254 * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there 3255 * is no better file system specific way to do it. 3256 */ 3257 int 3258 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp, 3259 struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags, 3260 struct ucred *incred, struct ucred *outcred, struct thread *fsize_td) 3261 { 3262 struct vattr va, inva; 3263 struct mount *mp; 3264 off_t startoff, endoff, xfer, xfer2; 3265 u_long blksize; 3266 int error, interrupted; 3267 bool cantseek, readzeros, eof, lastblock, holetoeof; 3268 ssize_t aresid, r = 0; 3269 size_t copylen, len, savlen; 3270 char *dat; 3271 long holein, holeout; 3272 struct timespec curts, endts; 3273 3274 holein = holeout = 0; 3275 savlen = len = *lenp; 3276 error = 0; 3277 interrupted = 0; 3278 dat = NULL; 3279 3280 error = vn_lock(invp, LK_SHARED); 3281 if (error != 0) 3282 goto out; 3283 if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0) 3284 holein = 0; 3285 if (holein > 0) 3286 error = VOP_GETATTR(invp, &inva, incred); 3287 VOP_UNLOCK(invp); 3288 if (error != 0) 3289 goto out; 3290 3291 mp = NULL; 3292 error = vn_start_write(outvp, &mp, V_WAIT); 3293 if (error == 0) 3294 error = vn_lock(outvp, LK_EXCLUSIVE); 3295 if (error == 0) { 3296 /* 3297 * If fsize_td != NULL, do a vn_rlimit_fsizex() call, 3298 * now that outvp is locked. 3299 */ 3300 if (fsize_td != NULL) { 3301 struct uio io; 3302 3303 io.uio_offset = *outoffp; 3304 io.uio_resid = len; 3305 error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td); 3306 len = savlen = io.uio_resid; 3307 /* 3308 * No need to call vn_rlimit_fsizex_res before return, 3309 * since the uio is local. 3310 */ 3311 } 3312 if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0) 3313 holeout = 0; 3314 /* 3315 * Holes that are past EOF do not need to be written as a block 3316 * of zero bytes. So, truncate the output file as far as 3317 * possible and then use va.va_size to decide if writing 0 3318 * bytes is necessary in the loop below. 3319 */ 3320 if (error == 0) 3321 error = VOP_GETATTR(outvp, &va, outcred); 3322 if (error == 0 && va.va_size > *outoffp && va.va_size <= 3323 *outoffp + len) { 3324 #ifdef MAC 3325 error = mac_vnode_check_write(curthread->td_ucred, 3326 outcred, outvp); 3327 if (error == 0) 3328 #endif 3329 error = vn_truncate_locked(outvp, *outoffp, 3330 false, outcred); 3331 if (error == 0) 3332 va.va_size = *outoffp; 3333 } 3334 VOP_UNLOCK(outvp); 3335 } 3336 if (mp != NULL) 3337 vn_finished_write(mp); 3338 if (error != 0) 3339 goto out; 3340 3341 if (holein == 0 && holeout > 0) { 3342 /* 3343 * For this special case, the input data will be scanned 3344 * for blocks of all 0 bytes. For these blocks, the 3345 * write can be skipped for the output file to create 3346 * an unallocated region. 3347 * Therefore, use the appropriate size for the output file. 3348 */ 3349 blksize = holeout; 3350 if (blksize <= 512) { 3351 /* 3352 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE 3353 * of 512, although it actually only creates 3354 * unallocated regions for blocks >= f_iosize. 3355 */ 3356 blksize = outvp->v_mount->mnt_stat.f_iosize; 3357 } 3358 } else { 3359 /* 3360 * Use the larger of the two f_iosize values. If they are 3361 * not the same size, one will normally be an exact multiple of 3362 * the other, since they are both likely to be a power of 2. 3363 */ 3364 blksize = MAX(invp->v_mount->mnt_stat.f_iosize, 3365 outvp->v_mount->mnt_stat.f_iosize); 3366 } 3367 3368 /* Clip to sane limits. */ 3369 if (blksize < 4096) 3370 blksize = 4096; 3371 else if (blksize > maxphys) 3372 blksize = maxphys; 3373 dat = malloc(blksize, M_TEMP, M_WAITOK); 3374 3375 /* 3376 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA 3377 * to find holes. Otherwise, just scan the read block for all 0s 3378 * in the inner loop where the data copying is done. 3379 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may 3380 * support holes on the server, but do not support FIOSEEKHOLE. 3381 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate 3382 * that this function should return after 1second with a partial 3383 * completion. 3384 */ 3385 if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) { 3386 getnanouptime(&endts); 3387 endts.tv_sec++; 3388 } else 3389 timespecclear(&endts); 3390 holetoeof = eof = false; 3391 while (len > 0 && error == 0 && !eof && interrupted == 0) { 3392 endoff = 0; /* To shut up compilers. */ 3393 cantseek = true; 3394 startoff = *inoffp; 3395 copylen = len; 3396 3397 /* 3398 * Find the next data area. If there is just a hole to EOF, 3399 * FIOSEEKDATA should fail with ENXIO. 3400 * (I do not know if any file system will report a hole to 3401 * EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA 3402 * will fail for those file systems.) 3403 * 3404 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE, 3405 * the code just falls through to the inner copy loop. 3406 */ 3407 error = EINVAL; 3408 if (holein > 0) { 3409 error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0, 3410 incred, curthread); 3411 if (error == ENXIO) { 3412 startoff = endoff = inva.va_size; 3413 eof = holetoeof = true; 3414 error = 0; 3415 } 3416 } 3417 if (error == 0 && !holetoeof) { 3418 endoff = startoff; 3419 error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0, 3420 incred, curthread); 3421 /* 3422 * Since invp is unlocked, it may be possible for 3423 * another thread to do a truncate(), lseek(), write() 3424 * creating a hole at startoff between the above 3425 * VOP_IOCTL() calls, if the other thread does not do 3426 * rangelocking. 3427 * If that happens, startoff == endoff and finding 3428 * the hole has failed, so set an error. 3429 */ 3430 if (error == 0 && startoff == endoff) 3431 error = EINVAL; /* Any error. Reset to 0. */ 3432 } 3433 if (error == 0) { 3434 if (startoff > *inoffp) { 3435 /* Found hole before data block. */ 3436 xfer = MIN(startoff - *inoffp, len); 3437 if (*outoffp < va.va_size) { 3438 /* Must write 0s to punch hole. */ 3439 xfer2 = MIN(va.va_size - *outoffp, 3440 xfer); 3441 memset(dat, 0, MIN(xfer2, blksize)); 3442 error = vn_write_outvp(outvp, dat, 3443 *outoffp, xfer2, blksize, false, 3444 holeout > 0, outcred); 3445 } 3446 3447 if (error == 0 && *outoffp + xfer > 3448 va.va_size && (xfer == len || holetoeof)) { 3449 /* Grow output file (hole at end). */ 3450 error = vn_write_outvp(outvp, dat, 3451 *outoffp, xfer, blksize, true, 3452 false, outcred); 3453 } 3454 if (error == 0) { 3455 *inoffp += xfer; 3456 *outoffp += xfer; 3457 len -= xfer; 3458 if (len < savlen) { 3459 interrupted = sig_intr(); 3460 if (timespecisset(&endts) && 3461 interrupted == 0) { 3462 getnanouptime(&curts); 3463 if (timespeccmp(&curts, 3464 &endts, >=)) 3465 interrupted = 3466 EINTR; 3467 } 3468 } 3469 } 3470 } 3471 copylen = MIN(len, endoff - startoff); 3472 cantseek = false; 3473 } else { 3474 cantseek = true; 3475 startoff = *inoffp; 3476 copylen = len; 3477 error = 0; 3478 } 3479 3480 xfer = blksize; 3481 if (cantseek) { 3482 /* 3483 * Set first xfer to end at a block boundary, so that 3484 * holes are more likely detected in the loop below via 3485 * the for all bytes 0 method. 3486 */ 3487 xfer -= (*inoffp % blksize); 3488 } 3489 /* Loop copying the data block. */ 3490 while (copylen > 0 && error == 0 && !eof && interrupted == 0) { 3491 if (copylen < xfer) 3492 xfer = copylen; 3493 error = vn_lock(invp, LK_SHARED); 3494 if (error != 0) 3495 goto out; 3496 error = vn_rdwr(UIO_READ, invp, dat, xfer, 3497 startoff, UIO_SYSSPACE, IO_NODELOCKED, 3498 curthread->td_ucred, incred, &aresid, 3499 curthread); 3500 VOP_UNLOCK(invp); 3501 lastblock = false; 3502 if (error == 0 && aresid > 0) { 3503 /* Stop the copy at EOF on the input file. */ 3504 xfer -= aresid; 3505 eof = true; 3506 lastblock = true; 3507 } 3508 if (error == 0) { 3509 /* 3510 * Skip the write for holes past the initial EOF 3511 * of the output file, unless this is the last 3512 * write of the output file at EOF. 3513 */ 3514 readzeros = cantseek ? mem_iszero(dat, xfer) : 3515 false; 3516 if (xfer == len) 3517 lastblock = true; 3518 if (!cantseek || *outoffp < va.va_size || 3519 lastblock || !readzeros) 3520 error = vn_write_outvp(outvp, dat, 3521 *outoffp, xfer, blksize, 3522 readzeros && lastblock && 3523 *outoffp >= va.va_size, false, 3524 outcred); 3525 if (error == 0) { 3526 *inoffp += xfer; 3527 startoff += xfer; 3528 *outoffp += xfer; 3529 copylen -= xfer; 3530 len -= xfer; 3531 if (len < savlen) { 3532 interrupted = sig_intr(); 3533 if (timespecisset(&endts) && 3534 interrupted == 0) { 3535 getnanouptime(&curts); 3536 if (timespeccmp(&curts, 3537 &endts, >=)) 3538 interrupted = 3539 EINTR; 3540 } 3541 } 3542 } 3543 } 3544 xfer = blksize; 3545 } 3546 } 3547 out: 3548 *lenp = savlen - len; 3549 free(dat, M_TEMP); 3550 return (error); 3551 } 3552 3553 static int 3554 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td) 3555 { 3556 struct mount *mp; 3557 struct vnode *vp; 3558 off_t olen, ooffset; 3559 int error; 3560 #ifdef AUDIT 3561 int audited_vnode1 = 0; 3562 #endif 3563 3564 vp = fp->f_vnode; 3565 if (vp->v_type != VREG) 3566 return (ENODEV); 3567 3568 /* Allocating blocks may take a long time, so iterate. */ 3569 for (;;) { 3570 olen = len; 3571 ooffset = offset; 3572 3573 bwillwrite(); 3574 mp = NULL; 3575 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH); 3576 if (error != 0) 3577 break; 3578 error = vn_lock(vp, LK_EXCLUSIVE); 3579 if (error != 0) { 3580 vn_finished_write(mp); 3581 break; 3582 } 3583 #ifdef AUDIT 3584 if (!audited_vnode1) { 3585 AUDIT_ARG_VNODE1(vp); 3586 audited_vnode1 = 1; 3587 } 3588 #endif 3589 #ifdef MAC 3590 error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp); 3591 if (error == 0) 3592 #endif 3593 error = VOP_ALLOCATE(vp, &offset, &len, 0, 3594 td->td_ucred); 3595 VOP_UNLOCK(vp); 3596 vn_finished_write(mp); 3597 3598 if (olen + ooffset != offset + len) { 3599 panic("offset + len changed from %jx/%jx to %jx/%jx", 3600 ooffset, olen, offset, len); 3601 } 3602 if (error != 0 || len == 0) 3603 break; 3604 KASSERT(olen > len, ("Iteration did not make progress?")); 3605 maybe_yield(); 3606 } 3607 3608 return (error); 3609 } 3610 3611 static int 3612 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags, 3613 int ioflag, struct ucred *cred, struct ucred *active_cred, 3614 struct ucred *file_cred) 3615 { 3616 struct mount *mp; 3617 void *rl_cookie; 3618 off_t off, len; 3619 int error; 3620 #ifdef AUDIT 3621 bool audited_vnode1 = false; 3622 #endif 3623 3624 rl_cookie = NULL; 3625 error = 0; 3626 mp = NULL; 3627 off = *offset; 3628 len = *length; 3629 3630 if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0) 3631 rl_cookie = vn_rangelock_wlock(vp, off, off + len); 3632 while (len > 0 && error == 0) { 3633 /* 3634 * Try to deallocate the longest range in one pass. 3635 * In case a pass takes too long to be executed, it returns 3636 * partial result. The residue will be proceeded in the next 3637 * pass. 3638 */ 3639 3640 if ((ioflag & IO_NODELOCKED) == 0) { 3641 bwillwrite(); 3642 if ((error = vn_start_write(vp, &mp, 3643 V_WAIT | V_PCATCH)) != 0) 3644 goto out; 3645 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY); 3646 } 3647 #ifdef AUDIT 3648 if (!audited_vnode1) { 3649 AUDIT_ARG_VNODE1(vp); 3650 audited_vnode1 = true; 3651 } 3652 #endif 3653 3654 #ifdef MAC 3655 if ((ioflag & IO_NOMACCHECK) == 0) 3656 error = mac_vnode_check_write(active_cred, file_cred, 3657 vp); 3658 #endif 3659 if (error == 0) 3660 error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag, 3661 cred); 3662 3663 if ((ioflag & IO_NODELOCKED) == 0) { 3664 VOP_UNLOCK(vp); 3665 if (mp != NULL) { 3666 vn_finished_write(mp); 3667 mp = NULL; 3668 } 3669 } 3670 if (error == 0 && len != 0) 3671 maybe_yield(); 3672 } 3673 out: 3674 if (rl_cookie != NULL) 3675 vn_rangelock_unlock(vp, rl_cookie); 3676 *offset = off; 3677 *length = len; 3678 return (error); 3679 } 3680 3681 /* 3682 * This function is supposed to be used in the situations where the deallocation 3683 * is not triggered by a user request. 3684 */ 3685 int 3686 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags, 3687 int ioflag, struct ucred *active_cred, struct ucred *file_cred) 3688 { 3689 struct ucred *cred; 3690 3691 if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset || 3692 flags != 0) 3693 return (EINVAL); 3694 if (vp->v_type != VREG) 3695 return (ENODEV); 3696 3697 cred = file_cred != NOCRED ? file_cred : active_cred; 3698 return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred, 3699 active_cred, file_cred)); 3700 } 3701 3702 static int 3703 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags, 3704 struct ucred *active_cred, struct thread *td) 3705 { 3706 int error; 3707 struct vnode *vp; 3708 int ioflag; 3709 3710 KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd")); 3711 KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0, 3712 ("vn_fspacectl: non-zero flags")); 3713 KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset, 3714 ("vn_fspacectl: offset/length overflow or underflow")); 3715 vp = fp->f_vnode; 3716 3717 if (vp->v_type != VREG) 3718 return (ENODEV); 3719 3720 ioflag = get_write_ioflag(fp); 3721 3722 switch (cmd) { 3723 case SPACECTL_DEALLOC: 3724 error = vn_deallocate_impl(vp, offset, length, flags, ioflag, 3725 active_cred, active_cred, fp->f_cred); 3726 break; 3727 default: 3728 panic("vn_fspacectl: unknown cmd %d", cmd); 3729 } 3730 3731 return (error); 3732 } 3733 3734 static u_long vn_lock_pair_pause_cnt; 3735 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD, 3736 &vn_lock_pair_pause_cnt, 0, 3737 "Count of vn_lock_pair deadlocks"); 3738 3739 u_int vn_lock_pair_pause_max; 3740 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW, 3741 &vn_lock_pair_pause_max, 0, 3742 "Max ticks for vn_lock_pair deadlock avoidance sleep"); 3743 3744 static void 3745 vn_lock_pair_pause(const char *wmesg) 3746 { 3747 atomic_add_long(&vn_lock_pair_pause_cnt, 1); 3748 pause(wmesg, prng32_bounded(vn_lock_pair_pause_max)); 3749 } 3750 3751 /* 3752 * Lock pair of vnodes vp1, vp2, avoiding lock order reversal. 3753 * vp1_locked indicates whether vp1 is exclusively locked; if not, vp1 3754 * must be unlocked. Same for vp2 and vp2_locked. One of the vnodes 3755 * can be NULL. 3756 * 3757 * The function returns with both vnodes exclusively locked, and 3758 * guarantees that it does not create lock order reversal with other 3759 * threads during its execution. Both vnodes could be unlocked 3760 * temporary (and reclaimed). 3761 */ 3762 void 3763 vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2, 3764 bool vp2_locked) 3765 { 3766 int error; 3767 3768 if (vp1 == NULL && vp2 == NULL) 3769 return; 3770 if (vp1 != NULL) { 3771 if (vp1_locked) 3772 ASSERT_VOP_ELOCKED(vp1, "vp1"); 3773 else 3774 ASSERT_VOP_UNLOCKED(vp1, "vp1"); 3775 } else { 3776 vp1_locked = true; 3777 } 3778 if (vp2 != NULL) { 3779 if (vp2_locked) 3780 ASSERT_VOP_ELOCKED(vp2, "vp2"); 3781 else 3782 ASSERT_VOP_UNLOCKED(vp2, "vp2"); 3783 } else { 3784 vp2_locked = true; 3785 } 3786 if (!vp1_locked && !vp2_locked) { 3787 vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY); 3788 vp1_locked = true; 3789 } 3790 3791 for (;;) { 3792 if (vp1_locked && vp2_locked) 3793 break; 3794 if (vp1_locked && vp2 != NULL) { 3795 if (vp1 != NULL) { 3796 error = VOP_LOCK1(vp2, LK_EXCLUSIVE | LK_NOWAIT, 3797 __FILE__, __LINE__); 3798 if (error == 0) 3799 break; 3800 VOP_UNLOCK(vp1); 3801 vp1_locked = false; 3802 vn_lock_pair_pause("vlp1"); 3803 } 3804 vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY); 3805 vp2_locked = true; 3806 } 3807 if (vp2_locked && vp1 != NULL) { 3808 if (vp2 != NULL) { 3809 error = VOP_LOCK1(vp1, LK_EXCLUSIVE | LK_NOWAIT, 3810 __FILE__, __LINE__); 3811 if (error == 0) 3812 break; 3813 VOP_UNLOCK(vp2); 3814 vp2_locked = false; 3815 vn_lock_pair_pause("vlp2"); 3816 } 3817 vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY); 3818 vp1_locked = true; 3819 } 3820 } 3821 if (vp1 != NULL) 3822 ASSERT_VOP_ELOCKED(vp1, "vp1 ret"); 3823 if (vp2 != NULL) 3824 ASSERT_VOP_ELOCKED(vp2, "vp2 ret"); 3825 } 3826 3827 int 3828 vn_lktype_write(struct mount *mp, struct vnode *vp) 3829 { 3830 if (MNT_SHARED_WRITES(mp) || 3831 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) 3832 return (LK_SHARED); 3833 return (LK_EXCLUSIVE); 3834 } 3835