1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 35 */ 36 37 /* 38 * External virtual filesystem routines 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_compat.h" 45 #include "opt_ddb.h" 46 #include "opt_watchdog.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bio.h> 51 #include <sys/buf.h> 52 #include <sys/condvar.h> 53 #include <sys/conf.h> 54 #include <sys/dirent.h> 55 #include <sys/event.h> 56 #include <sys/eventhandler.h> 57 #include <sys/extattr.h> 58 #include <sys/file.h> 59 #include <sys/fcntl.h> 60 #include <sys/jail.h> 61 #include <sys/kdb.h> 62 #include <sys/kernel.h> 63 #include <sys/kthread.h> 64 #include <sys/lockf.h> 65 #include <sys/malloc.h> 66 #include <sys/mount.h> 67 #include <sys/namei.h> 68 #include <sys/pctrie.h> 69 #include <sys/priv.h> 70 #include <sys/reboot.h> 71 #include <sys/rwlock.h> 72 #include <sys/sched.h> 73 #include <sys/sleepqueue.h> 74 #include <sys/smp.h> 75 #include <sys/stat.h> 76 #include <sys/sysctl.h> 77 #include <sys/syslog.h> 78 #include <sys/vmmeter.h> 79 #include <sys/vnode.h> 80 #include <sys/watchdog.h> 81 82 #include <machine/stdarg.h> 83 84 #include <security/mac/mac_framework.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_extern.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_page.h> 92 #include <vm/vm_kern.h> 93 #include <vm/uma.h> 94 95 #ifdef DDB 96 #include <ddb/ddb.h> 97 #endif 98 99 static void delmntque(struct vnode *vp); 100 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 101 int slpflag, int slptimeo); 102 static void syncer_shutdown(void *arg, int howto); 103 static int vtryrecycle(struct vnode *vp); 104 static void v_incr_usecount(struct vnode *); 105 static void v_decr_usecount(struct vnode *); 106 static void v_decr_useonly(struct vnode *); 107 static void v_upgrade_usecount(struct vnode *); 108 static void vnlru_free(int); 109 static void vgonel(struct vnode *); 110 static void vfs_knllock(void *arg); 111 static void vfs_knlunlock(void *arg); 112 static void vfs_knl_assert_locked(void *arg); 113 static void vfs_knl_assert_unlocked(void *arg); 114 static void destroy_vpollinfo(struct vpollinfo *vi); 115 116 /* 117 * Number of vnodes in existence. Increased whenever getnewvnode() 118 * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode. 119 */ 120 static unsigned long numvnodes; 121 122 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 123 "Number of vnodes in existence"); 124 125 static u_long vnodes_created; 126 SYSCTL_ULONG(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 127 0, "Number of vnodes created by getnewvnode"); 128 129 /* 130 * Conversion tables for conversion from vnode types to inode formats 131 * and back. 132 */ 133 enum vtype iftovt_tab[16] = { 134 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 135 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 136 }; 137 int vttoif_tab[10] = { 138 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 139 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 140 }; 141 142 /* 143 * List of vnodes that are ready for recycling. 144 */ 145 static TAILQ_HEAD(freelst, vnode) vnode_free_list; 146 147 /* 148 * Free vnode target. Free vnodes may simply be files which have been stat'd 149 * but not read. This is somewhat common, and a small cache of such files 150 * should be kept to avoid recreation costs. 151 */ 152 static u_long wantfreevnodes; 153 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, ""); 154 /* Number of vnodes in the free list. */ 155 static u_long freevnodes; 156 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, 157 "Number of vnodes in the free list"); 158 159 static int vlru_allow_cache_src; 160 SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW, 161 &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode"); 162 163 static u_long recycles_count; 164 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 0, 165 "Number of vnodes recycled to avoid exceding kern.maxvnodes"); 166 167 /* 168 * Various variables used for debugging the new implementation of 169 * reassignbuf(). 170 * XXX these are probably of (very) limited utility now. 171 */ 172 static int reassignbufcalls; 173 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, 174 "Number of calls to reassignbuf"); 175 176 /* 177 * Cache for the mount type id assigned to NFS. This is used for 178 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c. 179 */ 180 int nfs_mount_type = -1; 181 182 /* To keep more than one thread at a time from running vfs_getnewfsid */ 183 static struct mtx mntid_mtx; 184 185 /* 186 * Lock for any access to the following: 187 * vnode_free_list 188 * numvnodes 189 * freevnodes 190 */ 191 static struct mtx vnode_free_list_mtx; 192 193 /* Publicly exported FS */ 194 struct nfs_public nfs_pub; 195 196 static uma_zone_t buf_trie_zone; 197 198 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 199 static uma_zone_t vnode_zone; 200 static uma_zone_t vnodepoll_zone; 201 202 /* 203 * The workitem queue. 204 * 205 * It is useful to delay writes of file data and filesystem metadata 206 * for tens of seconds so that quickly created and deleted files need 207 * not waste disk bandwidth being created and removed. To realize this, 208 * we append vnodes to a "workitem" queue. When running with a soft 209 * updates implementation, most pending metadata dependencies should 210 * not wait for more than a few seconds. Thus, mounted on block devices 211 * are delayed only about a half the time that file data is delayed. 212 * Similarly, directory updates are more critical, so are only delayed 213 * about a third the time that file data is delayed. Thus, there are 214 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 215 * one each second (driven off the filesystem syncer process). The 216 * syncer_delayno variable indicates the next queue that is to be processed. 217 * Items that need to be processed soon are placed in this queue: 218 * 219 * syncer_workitem_pending[syncer_delayno] 220 * 221 * A delay of fifteen seconds is done by placing the request fifteen 222 * entries later in the queue: 223 * 224 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 225 * 226 */ 227 static int syncer_delayno; 228 static long syncer_mask; 229 LIST_HEAD(synclist, bufobj); 230 static struct synclist *syncer_workitem_pending; 231 /* 232 * The sync_mtx protects: 233 * bo->bo_synclist 234 * sync_vnode_count 235 * syncer_delayno 236 * syncer_state 237 * syncer_workitem_pending 238 * syncer_worklist_len 239 * rushjob 240 */ 241 static struct mtx sync_mtx; 242 static struct cv sync_wakeup; 243 244 #define SYNCER_MAXDELAY 32 245 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 246 static int syncdelay = 30; /* max time to delay syncing data */ 247 static int filedelay = 30; /* time to delay syncing files */ 248 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 249 "Time to delay syncing files (in seconds)"); 250 static int dirdelay = 29; /* time to delay syncing directories */ 251 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 252 "Time to delay syncing directories (in seconds)"); 253 static int metadelay = 28; /* time to delay syncing metadata */ 254 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 255 "Time to delay syncing metadata (in seconds)"); 256 static int rushjob; /* number of slots to run ASAP */ 257 static int stat_rush_requests; /* number of times I/O speeded up */ 258 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 259 "Number of times I/O speeded up (rush requests)"); 260 261 /* 262 * When shutting down the syncer, run it at four times normal speed. 263 */ 264 #define SYNCER_SHUTDOWN_SPEEDUP 4 265 static int sync_vnode_count; 266 static int syncer_worklist_len; 267 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 268 syncer_state; 269 270 /* 271 * Number of vnodes we want to exist at any one time. This is mostly used 272 * to size hash tables in vnode-related code. It is normally not used in 273 * getnewvnode(), as wantfreevnodes is normally nonzero.) 274 * 275 * XXX desiredvnodes is historical cruft and should not exist. 276 */ 277 int desiredvnodes; 278 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, 279 &desiredvnodes, 0, "Maximum number of vnodes"); 280 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, 281 &wantfreevnodes, 0, "Minimum number of vnodes (legacy)"); 282 static int vnlru_nowhere; 283 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, 284 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 285 286 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 287 static int vnsz2log; 288 289 /* 290 * Support for the bufobj clean & dirty pctrie. 291 */ 292 static void * 293 buf_trie_alloc(struct pctrie *ptree) 294 { 295 296 return uma_zalloc(buf_trie_zone, M_NOWAIT); 297 } 298 299 static void 300 buf_trie_free(struct pctrie *ptree, void *node) 301 { 302 303 uma_zfree(buf_trie_zone, node); 304 } 305 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free); 306 307 /* 308 * Initialize the vnode management data structures. 309 * 310 * Reevaluate the following cap on the number of vnodes after the physical 311 * memory size exceeds 512GB. In the limit, as the physical memory size 312 * grows, the ratio of physical pages to vnodes approaches sixteen to one. 313 */ 314 #ifndef MAXVNODES_MAX 315 #define MAXVNODES_MAX (512 * (1024 * 1024 * 1024 / (int)PAGE_SIZE / 16)) 316 #endif 317 static void 318 vntblinit(void *dummy __unused) 319 { 320 u_int i; 321 int physvnodes, virtvnodes; 322 323 /* 324 * Desiredvnodes is a function of the physical memory size and the 325 * kernel's heap size. Generally speaking, it scales with the 326 * physical memory size. The ratio of desiredvnodes to physical pages 327 * is one to four until desiredvnodes exceeds 98,304. Thereafter, the 328 * marginal ratio of desiredvnodes to physical pages is one to 329 * sixteen. However, desiredvnodes is limited by the kernel's heap 330 * size. The memory required by desiredvnodes vnodes and vm objects 331 * may not exceed one seventh of the kernel's heap size. 332 */ 333 physvnodes = maxproc + vm_cnt.v_page_count / 16 + 3 * min(98304 * 4, 334 vm_cnt.v_page_count) / 16; 335 virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) + 336 sizeof(struct vnode))); 337 desiredvnodes = min(physvnodes, virtvnodes); 338 if (desiredvnodes > MAXVNODES_MAX) { 339 if (bootverbose) 340 printf("Reducing kern.maxvnodes %d -> %d\n", 341 desiredvnodes, MAXVNODES_MAX); 342 desiredvnodes = MAXVNODES_MAX; 343 } 344 wantfreevnodes = desiredvnodes / 4; 345 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 346 TAILQ_INIT(&vnode_free_list); 347 mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF); 348 vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL, 349 NULL, NULL, UMA_ALIGN_PTR, 0); 350 vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo), 351 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 352 /* 353 * Preallocate enough nodes to support one-per buf so that 354 * we can not fail an insert. reassignbuf() callers can not 355 * tolerate the insertion failure. 356 */ 357 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 358 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 359 UMA_ZONE_NOFREE | UMA_ZONE_VM); 360 uma_prealloc(buf_trie_zone, nbuf); 361 /* 362 * Initialize the filesystem syncer. 363 */ 364 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 365 &syncer_mask); 366 syncer_maxdelay = syncer_mask + 1; 367 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 368 cv_init(&sync_wakeup, "syncer"); 369 for (i = 1; i <= sizeof(struct vnode); i <<= 1) 370 vnsz2log++; 371 vnsz2log--; 372 } 373 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 374 375 376 /* 377 * Mark a mount point as busy. Used to synchronize access and to delay 378 * unmounting. Eventually, mountlist_mtx is not released on failure. 379 * 380 * vfs_busy() is a custom lock, it can block the caller. 381 * vfs_busy() only sleeps if the unmount is active on the mount point. 382 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 383 * vnode belonging to mp. 384 * 385 * Lookup uses vfs_busy() to traverse mount points. 386 * root fs var fs 387 * / vnode lock A / vnode lock (/var) D 388 * /var vnode lock B /log vnode lock(/var/log) E 389 * vfs_busy lock C vfs_busy lock F 390 * 391 * Within each file system, the lock order is C->A->B and F->D->E. 392 * 393 * When traversing across mounts, the system follows that lock order: 394 * 395 * C->A->B 396 * | 397 * +->F->D->E 398 * 399 * The lookup() process for namei("/var") illustrates the process: 400 * VOP_LOOKUP() obtains B while A is held 401 * vfs_busy() obtains a shared lock on F while A and B are held 402 * vput() releases lock on B 403 * vput() releases lock on A 404 * VFS_ROOT() obtains lock on D while shared lock on F is held 405 * vfs_unbusy() releases shared lock on F 406 * vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 407 * Attempt to lock A (instead of vp_crossmp) while D is held would 408 * violate the global order, causing deadlocks. 409 * 410 * dounmount() locks B while F is drained. 411 */ 412 int 413 vfs_busy(struct mount *mp, int flags) 414 { 415 416 MPASS((flags & ~MBF_MASK) == 0); 417 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 418 419 MNT_ILOCK(mp); 420 MNT_REF(mp); 421 /* 422 * If mount point is currenly being unmounted, sleep until the 423 * mount point fate is decided. If thread doing the unmounting fails, 424 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 425 * that this mount point has survived the unmount attempt and vfs_busy 426 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 427 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 428 * about to be really destroyed. vfs_busy needs to release its 429 * reference on the mount point in this case and return with ENOENT, 430 * telling the caller that mount mount it tried to busy is no longer 431 * valid. 432 */ 433 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 434 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 435 MNT_REL(mp); 436 MNT_IUNLOCK(mp); 437 CTR1(KTR_VFS, "%s: failed busying before sleeping", 438 __func__); 439 return (ENOENT); 440 } 441 if (flags & MBF_MNTLSTLOCK) 442 mtx_unlock(&mountlist_mtx); 443 mp->mnt_kern_flag |= MNTK_MWAIT; 444 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 445 if (flags & MBF_MNTLSTLOCK) 446 mtx_lock(&mountlist_mtx); 447 MNT_ILOCK(mp); 448 } 449 if (flags & MBF_MNTLSTLOCK) 450 mtx_unlock(&mountlist_mtx); 451 mp->mnt_lockref++; 452 MNT_IUNLOCK(mp); 453 return (0); 454 } 455 456 /* 457 * Free a busy filesystem. 458 */ 459 void 460 vfs_unbusy(struct mount *mp) 461 { 462 463 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 464 MNT_ILOCK(mp); 465 MNT_REL(mp); 466 KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref")); 467 mp->mnt_lockref--; 468 if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 469 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 470 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 471 mp->mnt_kern_flag &= ~MNTK_DRAINING; 472 wakeup(&mp->mnt_lockref); 473 } 474 MNT_IUNLOCK(mp); 475 } 476 477 /* 478 * Lookup a mount point by filesystem identifier. 479 */ 480 struct mount * 481 vfs_getvfs(fsid_t *fsid) 482 { 483 struct mount *mp; 484 485 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 486 mtx_lock(&mountlist_mtx); 487 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 488 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 489 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 490 vfs_ref(mp); 491 mtx_unlock(&mountlist_mtx); 492 return (mp); 493 } 494 } 495 mtx_unlock(&mountlist_mtx); 496 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 497 return ((struct mount *) 0); 498 } 499 500 /* 501 * Lookup a mount point by filesystem identifier, busying it before 502 * returning. 503 * 504 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 505 * cache for popular filesystem identifiers. The cache is lockess, using 506 * the fact that struct mount's are never freed. In worst case we may 507 * get pointer to unmounted or even different filesystem, so we have to 508 * check what we got, and go slow way if so. 509 */ 510 struct mount * 511 vfs_busyfs(fsid_t *fsid) 512 { 513 #define FSID_CACHE_SIZE 256 514 typedef struct mount * volatile vmp_t; 515 static vmp_t cache[FSID_CACHE_SIZE]; 516 struct mount *mp; 517 int error; 518 uint32_t hash; 519 520 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 521 hash = fsid->val[0] ^ fsid->val[1]; 522 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 523 mp = cache[hash]; 524 if (mp == NULL || 525 mp->mnt_stat.f_fsid.val[0] != fsid->val[0] || 526 mp->mnt_stat.f_fsid.val[1] != fsid->val[1]) 527 goto slow; 528 if (vfs_busy(mp, 0) != 0) { 529 cache[hash] = NULL; 530 goto slow; 531 } 532 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 533 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) 534 return (mp); 535 else 536 vfs_unbusy(mp); 537 538 slow: 539 mtx_lock(&mountlist_mtx); 540 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 541 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 542 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 543 error = vfs_busy(mp, MBF_MNTLSTLOCK); 544 if (error) { 545 cache[hash] = NULL; 546 mtx_unlock(&mountlist_mtx); 547 return (NULL); 548 } 549 cache[hash] = mp; 550 return (mp); 551 } 552 } 553 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 554 mtx_unlock(&mountlist_mtx); 555 return ((struct mount *) 0); 556 } 557 558 /* 559 * Check if a user can access privileged mount options. 560 */ 561 int 562 vfs_suser(struct mount *mp, struct thread *td) 563 { 564 int error; 565 566 /* 567 * If the thread is jailed, but this is not a jail-friendly file 568 * system, deny immediately. 569 */ 570 if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred)) 571 return (EPERM); 572 573 /* 574 * If the file system was mounted outside the jail of the calling 575 * thread, deny immediately. 576 */ 577 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 578 return (EPERM); 579 580 /* 581 * If file system supports delegated administration, we don't check 582 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 583 * by the file system itself. 584 * If this is not the user that did original mount, we check for 585 * the PRIV_VFS_MOUNT_OWNER privilege. 586 */ 587 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 588 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 589 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 590 return (error); 591 } 592 return (0); 593 } 594 595 /* 596 * Get a new unique fsid. Try to make its val[0] unique, since this value 597 * will be used to create fake device numbers for stat(). Also try (but 598 * not so hard) make its val[0] unique mod 2^16, since some emulators only 599 * support 16-bit device numbers. We end up with unique val[0]'s for the 600 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 601 * 602 * Keep in mind that several mounts may be running in parallel. Starting 603 * the search one past where the previous search terminated is both a 604 * micro-optimization and a defense against returning the same fsid to 605 * different mounts. 606 */ 607 void 608 vfs_getnewfsid(struct mount *mp) 609 { 610 static uint16_t mntid_base; 611 struct mount *nmp; 612 fsid_t tfsid; 613 int mtype; 614 615 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 616 mtx_lock(&mntid_mtx); 617 mtype = mp->mnt_vfc->vfc_typenum; 618 tfsid.val[1] = mtype; 619 mtype = (mtype & 0xFF) << 24; 620 for (;;) { 621 tfsid.val[0] = makedev(255, 622 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 623 mntid_base++; 624 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 625 break; 626 vfs_rel(nmp); 627 } 628 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 629 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 630 mtx_unlock(&mntid_mtx); 631 } 632 633 /* 634 * Knob to control the precision of file timestamps: 635 * 636 * 0 = seconds only; nanoseconds zeroed. 637 * 1 = seconds and nanoseconds, accurate within 1/HZ. 638 * 2 = seconds and nanoseconds, truncated to microseconds. 639 * >=3 = seconds and nanoseconds, maximum precision. 640 */ 641 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 642 643 static int timestamp_precision = TSP_USEC; 644 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 645 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 646 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to ms, " 647 "3+: sec + ns (max. precision))"); 648 649 /* 650 * Get a current timestamp. 651 */ 652 void 653 vfs_timestamp(struct timespec *tsp) 654 { 655 struct timeval tv; 656 657 switch (timestamp_precision) { 658 case TSP_SEC: 659 tsp->tv_sec = time_second; 660 tsp->tv_nsec = 0; 661 break; 662 case TSP_HZ: 663 getnanotime(tsp); 664 break; 665 case TSP_USEC: 666 microtime(&tv); 667 TIMEVAL_TO_TIMESPEC(&tv, tsp); 668 break; 669 case TSP_NSEC: 670 default: 671 nanotime(tsp); 672 break; 673 } 674 } 675 676 /* 677 * Set vnode attributes to VNOVAL 678 */ 679 void 680 vattr_null(struct vattr *vap) 681 { 682 683 vap->va_type = VNON; 684 vap->va_size = VNOVAL; 685 vap->va_bytes = VNOVAL; 686 vap->va_mode = VNOVAL; 687 vap->va_nlink = VNOVAL; 688 vap->va_uid = VNOVAL; 689 vap->va_gid = VNOVAL; 690 vap->va_fsid = VNOVAL; 691 vap->va_fileid = VNOVAL; 692 vap->va_blocksize = VNOVAL; 693 vap->va_rdev = VNOVAL; 694 vap->va_atime.tv_sec = VNOVAL; 695 vap->va_atime.tv_nsec = VNOVAL; 696 vap->va_mtime.tv_sec = VNOVAL; 697 vap->va_mtime.tv_nsec = VNOVAL; 698 vap->va_ctime.tv_sec = VNOVAL; 699 vap->va_ctime.tv_nsec = VNOVAL; 700 vap->va_birthtime.tv_sec = VNOVAL; 701 vap->va_birthtime.tv_nsec = VNOVAL; 702 vap->va_flags = VNOVAL; 703 vap->va_gen = VNOVAL; 704 vap->va_vaflags = 0; 705 } 706 707 /* 708 * This routine is called when we have too many vnodes. It attempts 709 * to free <count> vnodes and will potentially free vnodes that still 710 * have VM backing store (VM backing store is typically the cause 711 * of a vnode blowout so we want to do this). Therefore, this operation 712 * is not considered cheap. 713 * 714 * A number of conditions may prevent a vnode from being reclaimed. 715 * the buffer cache may have references on the vnode, a directory 716 * vnode may still have references due to the namei cache representing 717 * underlying files, or the vnode may be in active use. It is not 718 * desireable to reuse such vnodes. These conditions may cause the 719 * number of vnodes to reach some minimum value regardless of what 720 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 721 */ 722 static int 723 vlrureclaim(struct mount *mp) 724 { 725 struct vnode *vp; 726 int done; 727 int trigger; 728 int usevnodes; 729 int count; 730 731 /* 732 * Calculate the trigger point, don't allow user 733 * screwups to blow us up. This prevents us from 734 * recycling vnodes with lots of resident pages. We 735 * aren't trying to free memory, we are trying to 736 * free vnodes. 737 */ 738 usevnodes = desiredvnodes; 739 if (usevnodes <= 0) 740 usevnodes = 1; 741 trigger = vm_cnt.v_page_count * 2 / usevnodes; 742 done = 0; 743 vn_start_write(NULL, &mp, V_WAIT); 744 MNT_ILOCK(mp); 745 count = mp->mnt_nvnodelistsize / 10 + 1; 746 while (count != 0) { 747 vp = TAILQ_FIRST(&mp->mnt_nvnodelist); 748 while (vp != NULL && vp->v_type == VMARKER) 749 vp = TAILQ_NEXT(vp, v_nmntvnodes); 750 if (vp == NULL) 751 break; 752 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 753 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 754 --count; 755 if (!VI_TRYLOCK(vp)) 756 goto next_iter; 757 /* 758 * If it's been deconstructed already, it's still 759 * referenced, or it exceeds the trigger, skip it. 760 */ 761 if (vp->v_usecount || 762 (!vlru_allow_cache_src && 763 !LIST_EMPTY(&(vp)->v_cache_src)) || 764 (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL && 765 vp->v_object->resident_page_count > trigger)) { 766 VI_UNLOCK(vp); 767 goto next_iter; 768 } 769 MNT_IUNLOCK(mp); 770 vholdl(vp); 771 if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) { 772 vdrop(vp); 773 goto next_iter_mntunlocked; 774 } 775 VI_LOCK(vp); 776 /* 777 * v_usecount may have been bumped after VOP_LOCK() dropped 778 * the vnode interlock and before it was locked again. 779 * 780 * It is not necessary to recheck VI_DOOMED because it can 781 * only be set by another thread that holds both the vnode 782 * lock and vnode interlock. If another thread has the 783 * vnode lock before we get to VOP_LOCK() and obtains the 784 * vnode interlock after VOP_LOCK() drops the vnode 785 * interlock, the other thread will be unable to drop the 786 * vnode lock before our VOP_LOCK() call fails. 787 */ 788 if (vp->v_usecount || 789 (!vlru_allow_cache_src && 790 !LIST_EMPTY(&(vp)->v_cache_src)) || 791 (vp->v_object != NULL && 792 vp->v_object->resident_page_count > trigger)) { 793 VOP_UNLOCK(vp, LK_INTERLOCK); 794 vdrop(vp); 795 goto next_iter_mntunlocked; 796 } 797 KASSERT((vp->v_iflag & VI_DOOMED) == 0, 798 ("VI_DOOMED unexpectedly detected in vlrureclaim()")); 799 atomic_add_long(&recycles_count, 1); 800 vgonel(vp); 801 VOP_UNLOCK(vp, 0); 802 vdropl(vp); 803 done++; 804 next_iter_mntunlocked: 805 if (!should_yield()) 806 goto relock_mnt; 807 goto yield; 808 next_iter: 809 if (!should_yield()) 810 continue; 811 MNT_IUNLOCK(mp); 812 yield: 813 kern_yield(PRI_USER); 814 relock_mnt: 815 MNT_ILOCK(mp); 816 } 817 MNT_IUNLOCK(mp); 818 vn_finished_write(mp); 819 return done; 820 } 821 822 /* 823 * Attempt to keep the free list at wantfreevnodes length. 824 */ 825 static void 826 vnlru_free(int count) 827 { 828 struct vnode *vp; 829 830 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 831 for (; count > 0; count--) { 832 vp = TAILQ_FIRST(&vnode_free_list); 833 /* 834 * The list can be modified while the free_list_mtx 835 * has been dropped and vp could be NULL here. 836 */ 837 if (!vp) 838 break; 839 VNASSERT(vp->v_op != NULL, vp, 840 ("vnlru_free: vnode already reclaimed.")); 841 KASSERT((vp->v_iflag & VI_FREE) != 0, 842 ("Removing vnode not on freelist")); 843 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 844 ("Mangling active vnode")); 845 TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist); 846 /* 847 * Don't recycle if we can't get the interlock. 848 */ 849 if (!VI_TRYLOCK(vp)) { 850 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist); 851 continue; 852 } 853 VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0, 854 vp, ("vp inconsistent on freelist")); 855 856 /* 857 * The clear of VI_FREE prevents activation of the 858 * vnode. There is no sense in putting the vnode on 859 * the mount point active list, only to remove it 860 * later during recycling. Inline the relevant part 861 * of vholdl(), to avoid triggering assertions or 862 * activating. 863 */ 864 freevnodes--; 865 vp->v_iflag &= ~VI_FREE; 866 vp->v_holdcnt++; 867 868 mtx_unlock(&vnode_free_list_mtx); 869 VI_UNLOCK(vp); 870 vtryrecycle(vp); 871 /* 872 * If the recycled succeeded this vdrop will actually free 873 * the vnode. If not it will simply place it back on 874 * the free list. 875 */ 876 vdrop(vp); 877 mtx_lock(&vnode_free_list_mtx); 878 } 879 } 880 /* 881 * Attempt to recycle vnodes in a context that is always safe to block. 882 * Calling vlrurecycle() from the bowels of filesystem code has some 883 * interesting deadlock problems. 884 */ 885 static struct proc *vnlruproc; 886 static int vnlruproc_sig; 887 888 static void 889 vnlru_proc(void) 890 { 891 struct mount *mp, *nmp; 892 int done; 893 struct proc *p = vnlruproc; 894 895 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p, 896 SHUTDOWN_PRI_FIRST); 897 898 for (;;) { 899 kproc_suspend_check(p); 900 mtx_lock(&vnode_free_list_mtx); 901 if (freevnodes > wantfreevnodes) 902 vnlru_free(freevnodes - wantfreevnodes); 903 if (numvnodes <= desiredvnodes * 9 / 10) { 904 vnlruproc_sig = 0; 905 wakeup(&vnlruproc_sig); 906 msleep(vnlruproc, &vnode_free_list_mtx, 907 PVFS|PDROP, "vlruwt", hz); 908 continue; 909 } 910 mtx_unlock(&vnode_free_list_mtx); 911 done = 0; 912 mtx_lock(&mountlist_mtx); 913 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 914 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) { 915 nmp = TAILQ_NEXT(mp, mnt_list); 916 continue; 917 } 918 done += vlrureclaim(mp); 919 mtx_lock(&mountlist_mtx); 920 nmp = TAILQ_NEXT(mp, mnt_list); 921 vfs_unbusy(mp); 922 } 923 mtx_unlock(&mountlist_mtx); 924 if (done == 0) { 925 #if 0 926 /* These messages are temporary debugging aids */ 927 if (vnlru_nowhere < 5) 928 printf("vnlru process getting nowhere..\n"); 929 else if (vnlru_nowhere == 5) 930 printf("vnlru process messages stopped.\n"); 931 #endif 932 vnlru_nowhere++; 933 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 934 } else 935 kern_yield(PRI_USER); 936 } 937 } 938 939 static struct kproc_desc vnlru_kp = { 940 "vnlru", 941 vnlru_proc, 942 &vnlruproc 943 }; 944 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 945 &vnlru_kp); 946 947 /* 948 * Routines having to do with the management of the vnode table. 949 */ 950 951 /* 952 * Try to recycle a freed vnode. We abort if anyone picks up a reference 953 * before we actually vgone(). This function must be called with the vnode 954 * held to prevent the vnode from being returned to the free list midway 955 * through vgone(). 956 */ 957 static int 958 vtryrecycle(struct vnode *vp) 959 { 960 struct mount *vnmp; 961 962 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 963 VNASSERT(vp->v_holdcnt, vp, 964 ("vtryrecycle: Recycling vp %p without a reference.", vp)); 965 /* 966 * This vnode may found and locked via some other list, if so we 967 * can't recycle it yet. 968 */ 969 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 970 CTR2(KTR_VFS, 971 "%s: impossible to recycle, vp %p lock is already held", 972 __func__, vp); 973 return (EWOULDBLOCK); 974 } 975 /* 976 * Don't recycle if its filesystem is being suspended. 977 */ 978 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 979 VOP_UNLOCK(vp, 0); 980 CTR2(KTR_VFS, 981 "%s: impossible to recycle, cannot start the write for %p", 982 __func__, vp); 983 return (EBUSY); 984 } 985 /* 986 * If we got this far, we need to acquire the interlock and see if 987 * anyone picked up this vnode from another list. If not, we will 988 * mark it with DOOMED via vgonel() so that anyone who does find it 989 * will skip over it. 990 */ 991 VI_LOCK(vp); 992 if (vp->v_usecount) { 993 VOP_UNLOCK(vp, LK_INTERLOCK); 994 vn_finished_write(vnmp); 995 CTR2(KTR_VFS, 996 "%s: impossible to recycle, %p is already referenced", 997 __func__, vp); 998 return (EBUSY); 999 } 1000 if ((vp->v_iflag & VI_DOOMED) == 0) { 1001 atomic_add_long(&recycles_count, 1); 1002 vgonel(vp); 1003 } 1004 VOP_UNLOCK(vp, LK_INTERLOCK); 1005 vn_finished_write(vnmp); 1006 return (0); 1007 } 1008 1009 /* 1010 * Wait for available vnodes. 1011 */ 1012 static int 1013 getnewvnode_wait(int suspended) 1014 { 1015 1016 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 1017 if (numvnodes > desiredvnodes) { 1018 if (suspended) { 1019 /* 1020 * File system is beeing suspended, we cannot risk a 1021 * deadlock here, so allocate new vnode anyway. 1022 */ 1023 if (freevnodes > wantfreevnodes) 1024 vnlru_free(freevnodes - wantfreevnodes); 1025 return (0); 1026 } 1027 if (vnlruproc_sig == 0) { 1028 vnlruproc_sig = 1; /* avoid unnecessary wakeups */ 1029 wakeup(vnlruproc); 1030 } 1031 msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS, 1032 "vlruwk", hz); 1033 } 1034 return (numvnodes > desiredvnodes ? ENFILE : 0); 1035 } 1036 1037 void 1038 getnewvnode_reserve(u_int count) 1039 { 1040 struct thread *td; 1041 1042 td = curthread; 1043 /* First try to be quick and racy. */ 1044 if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) { 1045 td->td_vp_reserv += count; 1046 return; 1047 } else 1048 atomic_subtract_long(&numvnodes, count); 1049 1050 mtx_lock(&vnode_free_list_mtx); 1051 while (count > 0) { 1052 if (getnewvnode_wait(0) == 0) { 1053 count--; 1054 td->td_vp_reserv++; 1055 atomic_add_long(&numvnodes, 1); 1056 } 1057 } 1058 mtx_unlock(&vnode_free_list_mtx); 1059 } 1060 1061 void 1062 getnewvnode_drop_reserve(void) 1063 { 1064 struct thread *td; 1065 1066 td = curthread; 1067 atomic_subtract_long(&numvnodes, td->td_vp_reserv); 1068 td->td_vp_reserv = 0; 1069 } 1070 1071 /* 1072 * Return the next vnode from the free list. 1073 */ 1074 int 1075 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 1076 struct vnode **vpp) 1077 { 1078 struct vnode *vp; 1079 struct bufobj *bo; 1080 struct thread *td; 1081 int error; 1082 1083 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 1084 vp = NULL; 1085 td = curthread; 1086 if (td->td_vp_reserv > 0) { 1087 td->td_vp_reserv -= 1; 1088 goto alloc; 1089 } 1090 mtx_lock(&vnode_free_list_mtx); 1091 /* 1092 * Lend our context to reclaim vnodes if they've exceeded the max. 1093 */ 1094 if (freevnodes > wantfreevnodes) 1095 vnlru_free(1); 1096 error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag & 1097 MNTK_SUSPEND)); 1098 #if 0 /* XXX Not all VFS_VGET/ffs_vget callers check returns. */ 1099 if (error != 0) { 1100 mtx_unlock(&vnode_free_list_mtx); 1101 return (error); 1102 } 1103 #endif 1104 atomic_add_long(&numvnodes, 1); 1105 mtx_unlock(&vnode_free_list_mtx); 1106 alloc: 1107 atomic_add_long(&vnodes_created, 1); 1108 vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO); 1109 /* 1110 * Setup locks. 1111 */ 1112 vp->v_vnlock = &vp->v_lock; 1113 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 1114 /* 1115 * By default, don't allow shared locks unless filesystems 1116 * opt-in. 1117 */ 1118 lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE | LK_IS_VNODE); 1119 /* 1120 * Initialize bufobj. 1121 */ 1122 bo = &vp->v_bufobj; 1123 bo->__bo_vnode = vp; 1124 rw_init(BO_LOCKPTR(bo), "bufobj interlock"); 1125 bo->bo_ops = &buf_ops_bio; 1126 bo->bo_private = vp; 1127 TAILQ_INIT(&bo->bo_clean.bv_hd); 1128 TAILQ_INIT(&bo->bo_dirty.bv_hd); 1129 /* 1130 * Initialize namecache. 1131 */ 1132 LIST_INIT(&vp->v_cache_src); 1133 TAILQ_INIT(&vp->v_cache_dst); 1134 /* 1135 * Finalize various vnode identity bits. 1136 */ 1137 vp->v_type = VNON; 1138 vp->v_tag = tag; 1139 vp->v_op = vops; 1140 v_incr_usecount(vp); 1141 vp->v_data = NULL; 1142 #ifdef MAC 1143 mac_vnode_init(vp); 1144 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 1145 mac_vnode_associate_singlelabel(mp, vp); 1146 else if (mp == NULL && vops != &dead_vnodeops) 1147 printf("NULL mp in getnewvnode()\n"); 1148 #endif 1149 if (mp != NULL) { 1150 bo->bo_bsize = mp->mnt_stat.f_iosize; 1151 if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0) 1152 vp->v_vflag |= VV_NOKNOTE; 1153 } 1154 rangelock_init(&vp->v_rl); 1155 1156 /* 1157 * For the filesystems which do not use vfs_hash_insert(), 1158 * still initialize v_hash to have vfs_hash_index() useful. 1159 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 1160 * its own hashing. 1161 */ 1162 vp->v_hash = (uintptr_t)vp >> vnsz2log; 1163 1164 *vpp = vp; 1165 return (0); 1166 } 1167 1168 /* 1169 * Delete from old mount point vnode list, if on one. 1170 */ 1171 static void 1172 delmntque(struct vnode *vp) 1173 { 1174 struct mount *mp; 1175 int active; 1176 1177 mp = vp->v_mount; 1178 if (mp == NULL) 1179 return; 1180 MNT_ILOCK(mp); 1181 VI_LOCK(vp); 1182 KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize, 1183 ("Active vnode list size %d > Vnode list size %d", 1184 mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize)); 1185 active = vp->v_iflag & VI_ACTIVE; 1186 vp->v_iflag &= ~VI_ACTIVE; 1187 if (active) { 1188 mtx_lock(&vnode_free_list_mtx); 1189 TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist); 1190 mp->mnt_activevnodelistsize--; 1191 mtx_unlock(&vnode_free_list_mtx); 1192 } 1193 vp->v_mount = NULL; 1194 VI_UNLOCK(vp); 1195 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 1196 ("bad mount point vnode list size")); 1197 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1198 mp->mnt_nvnodelistsize--; 1199 MNT_REL(mp); 1200 MNT_IUNLOCK(mp); 1201 } 1202 1203 static void 1204 insmntque_stddtr(struct vnode *vp, void *dtr_arg) 1205 { 1206 1207 vp->v_data = NULL; 1208 vp->v_op = &dead_vnodeops; 1209 vgone(vp); 1210 vput(vp); 1211 } 1212 1213 /* 1214 * Insert into list of vnodes for the new mount point, if available. 1215 */ 1216 int 1217 insmntque1(struct vnode *vp, struct mount *mp, 1218 void (*dtr)(struct vnode *, void *), void *dtr_arg) 1219 { 1220 1221 KASSERT(vp->v_mount == NULL, 1222 ("insmntque: vnode already on per mount vnode list")); 1223 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 1224 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 1225 1226 /* 1227 * We acquire the vnode interlock early to ensure that the 1228 * vnode cannot be recycled by another process releasing a 1229 * holdcnt on it before we get it on both the vnode list 1230 * and the active vnode list. The mount mutex protects only 1231 * manipulation of the vnode list and the vnode freelist 1232 * mutex protects only manipulation of the active vnode list. 1233 * Hence the need to hold the vnode interlock throughout. 1234 */ 1235 MNT_ILOCK(mp); 1236 VI_LOCK(vp); 1237 if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 && 1238 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 1239 mp->mnt_nvnodelistsize == 0)) && 1240 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 1241 VI_UNLOCK(vp); 1242 MNT_IUNLOCK(mp); 1243 if (dtr != NULL) 1244 dtr(vp, dtr_arg); 1245 return (EBUSY); 1246 } 1247 vp->v_mount = mp; 1248 MNT_REF(mp); 1249 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1250 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 1251 ("neg mount point vnode list size")); 1252 mp->mnt_nvnodelistsize++; 1253 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 1254 ("Activating already active vnode")); 1255 vp->v_iflag |= VI_ACTIVE; 1256 mtx_lock(&vnode_free_list_mtx); 1257 TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist); 1258 mp->mnt_activevnodelistsize++; 1259 mtx_unlock(&vnode_free_list_mtx); 1260 VI_UNLOCK(vp); 1261 MNT_IUNLOCK(mp); 1262 return (0); 1263 } 1264 1265 int 1266 insmntque(struct vnode *vp, struct mount *mp) 1267 { 1268 1269 return (insmntque1(vp, mp, insmntque_stddtr, NULL)); 1270 } 1271 1272 /* 1273 * Flush out and invalidate all buffers associated with a bufobj 1274 * Called with the underlying object locked. 1275 */ 1276 int 1277 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 1278 { 1279 int error; 1280 1281 BO_LOCK(bo); 1282 if (flags & V_SAVE) { 1283 error = bufobj_wwait(bo, slpflag, slptimeo); 1284 if (error) { 1285 BO_UNLOCK(bo); 1286 return (error); 1287 } 1288 if (bo->bo_dirty.bv_cnt > 0) { 1289 BO_UNLOCK(bo); 1290 if ((error = BO_SYNC(bo, MNT_WAIT)) != 0) 1291 return (error); 1292 /* 1293 * XXX We could save a lock/unlock if this was only 1294 * enabled under INVARIANTS 1295 */ 1296 BO_LOCK(bo); 1297 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) 1298 panic("vinvalbuf: dirty bufs"); 1299 } 1300 } 1301 /* 1302 * If you alter this loop please notice that interlock is dropped and 1303 * reacquired in flushbuflist. Special care is needed to ensure that 1304 * no race conditions occur from this. 1305 */ 1306 do { 1307 error = flushbuflist(&bo->bo_clean, 1308 flags, bo, slpflag, slptimeo); 1309 if (error == 0 && !(flags & V_CLEANONLY)) 1310 error = flushbuflist(&bo->bo_dirty, 1311 flags, bo, slpflag, slptimeo); 1312 if (error != 0 && error != EAGAIN) { 1313 BO_UNLOCK(bo); 1314 return (error); 1315 } 1316 } while (error != 0); 1317 1318 /* 1319 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 1320 * have write I/O in-progress but if there is a VM object then the 1321 * VM object can also have read-I/O in-progress. 1322 */ 1323 do { 1324 bufobj_wwait(bo, 0, 0); 1325 BO_UNLOCK(bo); 1326 if (bo->bo_object != NULL) { 1327 VM_OBJECT_WLOCK(bo->bo_object); 1328 vm_object_pip_wait(bo->bo_object, "bovlbx"); 1329 VM_OBJECT_WUNLOCK(bo->bo_object); 1330 } 1331 BO_LOCK(bo); 1332 } while (bo->bo_numoutput > 0); 1333 BO_UNLOCK(bo); 1334 1335 /* 1336 * Destroy the copy in the VM cache, too. 1337 */ 1338 if (bo->bo_object != NULL && 1339 (flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0) { 1340 VM_OBJECT_WLOCK(bo->bo_object); 1341 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 1342 OBJPR_CLEANONLY : 0); 1343 VM_OBJECT_WUNLOCK(bo->bo_object); 1344 } 1345 1346 #ifdef INVARIANTS 1347 BO_LOCK(bo); 1348 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0 && 1349 (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) 1350 panic("vinvalbuf: flush failed"); 1351 BO_UNLOCK(bo); 1352 #endif 1353 return (0); 1354 } 1355 1356 /* 1357 * Flush out and invalidate all buffers associated with a vnode. 1358 * Called with the underlying object locked. 1359 */ 1360 int 1361 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 1362 { 1363 1364 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 1365 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 1366 if (vp->v_object != NULL && vp->v_object->handle != vp) 1367 return (0); 1368 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 1369 } 1370 1371 /* 1372 * Flush out buffers on the specified list. 1373 * 1374 */ 1375 static int 1376 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 1377 int slptimeo) 1378 { 1379 struct buf *bp, *nbp; 1380 int retval, error; 1381 daddr_t lblkno; 1382 b_xflags_t xflags; 1383 1384 ASSERT_BO_WLOCKED(bo); 1385 1386 retval = 0; 1387 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 1388 if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) || 1389 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) { 1390 continue; 1391 } 1392 lblkno = 0; 1393 xflags = 0; 1394 if (nbp != NULL) { 1395 lblkno = nbp->b_lblkno; 1396 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 1397 } 1398 retval = EAGAIN; 1399 error = BUF_TIMELOCK(bp, 1400 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 1401 "flushbuf", slpflag, slptimeo); 1402 if (error) { 1403 BO_LOCK(bo); 1404 return (error != ENOLCK ? error : EAGAIN); 1405 } 1406 KASSERT(bp->b_bufobj == bo, 1407 ("bp %p wrong b_bufobj %p should be %p", 1408 bp, bp->b_bufobj, bo)); 1409 if (bp->b_bufobj != bo) { /* XXX: necessary ? */ 1410 BUF_UNLOCK(bp); 1411 BO_LOCK(bo); 1412 return (EAGAIN); 1413 } 1414 /* 1415 * XXX Since there are no node locks for NFS, I 1416 * believe there is a slight chance that a delayed 1417 * write will occur while sleeping just above, so 1418 * check for it. 1419 */ 1420 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 1421 (flags & V_SAVE)) { 1422 bremfree(bp); 1423 bp->b_flags |= B_ASYNC; 1424 bwrite(bp); 1425 BO_LOCK(bo); 1426 return (EAGAIN); /* XXX: why not loop ? */ 1427 } 1428 bremfree(bp); 1429 bp->b_flags |= (B_INVAL | B_RELBUF); 1430 bp->b_flags &= ~B_ASYNC; 1431 brelse(bp); 1432 BO_LOCK(bo); 1433 if (nbp != NULL && 1434 (nbp->b_bufobj != bo || 1435 nbp->b_lblkno != lblkno || 1436 (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) != xflags)) 1437 break; /* nbp invalid */ 1438 } 1439 return (retval); 1440 } 1441 1442 /* 1443 * Truncate a file's buffer and pages to a specified length. This 1444 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 1445 * sync activity. 1446 */ 1447 int 1448 vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize) 1449 { 1450 struct buf *bp, *nbp; 1451 int anyfreed; 1452 int trunclbn; 1453 struct bufobj *bo; 1454 1455 CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__, 1456 vp, cred, blksize, (uintmax_t)length); 1457 1458 /* 1459 * Round up to the *next* lbn. 1460 */ 1461 trunclbn = (length + blksize - 1) / blksize; 1462 1463 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 1464 restart: 1465 bo = &vp->v_bufobj; 1466 BO_LOCK(bo); 1467 anyfreed = 1; 1468 for (;anyfreed;) { 1469 anyfreed = 0; 1470 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 1471 if (bp->b_lblkno < trunclbn) 1472 continue; 1473 if (BUF_LOCK(bp, 1474 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1475 BO_LOCKPTR(bo)) == ENOLCK) 1476 goto restart; 1477 1478 bremfree(bp); 1479 bp->b_flags |= (B_INVAL | B_RELBUF); 1480 bp->b_flags &= ~B_ASYNC; 1481 brelse(bp); 1482 anyfreed = 1; 1483 1484 BO_LOCK(bo); 1485 if (nbp != NULL && 1486 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 1487 (nbp->b_vp != vp) || 1488 (nbp->b_flags & B_DELWRI))) { 1489 BO_UNLOCK(bo); 1490 goto restart; 1491 } 1492 } 1493 1494 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1495 if (bp->b_lblkno < trunclbn) 1496 continue; 1497 if (BUF_LOCK(bp, 1498 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1499 BO_LOCKPTR(bo)) == ENOLCK) 1500 goto restart; 1501 bremfree(bp); 1502 bp->b_flags |= (B_INVAL | B_RELBUF); 1503 bp->b_flags &= ~B_ASYNC; 1504 brelse(bp); 1505 anyfreed = 1; 1506 1507 BO_LOCK(bo); 1508 if (nbp != NULL && 1509 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 1510 (nbp->b_vp != vp) || 1511 (nbp->b_flags & B_DELWRI) == 0)) { 1512 BO_UNLOCK(bo); 1513 goto restart; 1514 } 1515 } 1516 } 1517 1518 if (length > 0) { 1519 restartsync: 1520 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1521 if (bp->b_lblkno > 0) 1522 continue; 1523 /* 1524 * Since we hold the vnode lock this should only 1525 * fail if we're racing with the buf daemon. 1526 */ 1527 if (BUF_LOCK(bp, 1528 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1529 BO_LOCKPTR(bo)) == ENOLCK) { 1530 goto restart; 1531 } 1532 VNASSERT((bp->b_flags & B_DELWRI), vp, 1533 ("buf(%p) on dirty queue without DELWRI", bp)); 1534 1535 bremfree(bp); 1536 bawrite(bp); 1537 BO_LOCK(bo); 1538 goto restartsync; 1539 } 1540 } 1541 1542 bufobj_wwait(bo, 0, 0); 1543 BO_UNLOCK(bo); 1544 vnode_pager_setsize(vp, length); 1545 1546 return (0); 1547 } 1548 1549 static void 1550 buf_vlist_remove(struct buf *bp) 1551 { 1552 struct bufv *bv; 1553 1554 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1555 ASSERT_BO_WLOCKED(bp->b_bufobj); 1556 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) != 1557 (BX_VNDIRTY|BX_VNCLEAN), 1558 ("buf_vlist_remove: Buf %p is on two lists", bp)); 1559 if (bp->b_xflags & BX_VNDIRTY) 1560 bv = &bp->b_bufobj->bo_dirty; 1561 else 1562 bv = &bp->b_bufobj->bo_clean; 1563 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 1564 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 1565 bv->bv_cnt--; 1566 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 1567 } 1568 1569 /* 1570 * Add the buffer to the sorted clean or dirty block list. 1571 * 1572 * NOTE: xflags is passed as a constant, optimizing this inline function! 1573 */ 1574 static void 1575 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 1576 { 1577 struct bufv *bv; 1578 struct buf *n; 1579 int error; 1580 1581 ASSERT_BO_WLOCKED(bo); 1582 KASSERT((bo->bo_flag & BO_DEAD) == 0, ("dead bo %p", bo)); 1583 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 1584 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 1585 bp->b_xflags |= xflags; 1586 if (xflags & BX_VNDIRTY) 1587 bv = &bo->bo_dirty; 1588 else 1589 bv = &bo->bo_clean; 1590 1591 /* 1592 * Keep the list ordered. Optimize empty list insertion. Assume 1593 * we tend to grow at the tail so lookup_le should usually be cheaper 1594 * than _ge. 1595 */ 1596 if (bv->bv_cnt == 0 || 1597 bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno) 1598 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); 1599 else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL) 1600 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 1601 else 1602 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 1603 error = BUF_PCTRIE_INSERT(&bv->bv_root, bp); 1604 if (error) 1605 panic("buf_vlist_add: Preallocated nodes insufficient."); 1606 bv->bv_cnt++; 1607 } 1608 1609 /* 1610 * Lookup a buffer using the splay tree. Note that we specifically avoid 1611 * shadow buffers used in background bitmap writes. 1612 * 1613 * This code isn't quite efficient as it could be because we are maintaining 1614 * two sorted lists and do not know which list the block resides in. 1615 * 1616 * During a "make buildworld" the desired buffer is found at one of 1617 * the roots more than 60% of the time. Thus, checking both roots 1618 * before performing either splay eliminates unnecessary splays on the 1619 * first tree splayed. 1620 */ 1621 struct buf * 1622 gbincore(struct bufobj *bo, daddr_t lblkno) 1623 { 1624 struct buf *bp; 1625 1626 ASSERT_BO_LOCKED(bo); 1627 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 1628 if (bp != NULL) 1629 return (bp); 1630 return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno); 1631 } 1632 1633 /* 1634 * Associate a buffer with a vnode. 1635 */ 1636 void 1637 bgetvp(struct vnode *vp, struct buf *bp) 1638 { 1639 struct bufobj *bo; 1640 1641 bo = &vp->v_bufobj; 1642 ASSERT_BO_WLOCKED(bo); 1643 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 1644 1645 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 1646 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 1647 ("bgetvp: bp already attached! %p", bp)); 1648 1649 vhold(vp); 1650 bp->b_vp = vp; 1651 bp->b_bufobj = bo; 1652 /* 1653 * Insert onto list for new vnode. 1654 */ 1655 buf_vlist_add(bp, bo, BX_VNCLEAN); 1656 } 1657 1658 /* 1659 * Disassociate a buffer from a vnode. 1660 */ 1661 void 1662 brelvp(struct buf *bp) 1663 { 1664 struct bufobj *bo; 1665 struct vnode *vp; 1666 1667 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1668 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 1669 1670 /* 1671 * Delete from old vnode list, if on one. 1672 */ 1673 vp = bp->b_vp; /* XXX */ 1674 bo = bp->b_bufobj; 1675 BO_LOCK(bo); 1676 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 1677 buf_vlist_remove(bp); 1678 else 1679 panic("brelvp: Buffer %p not on queue.", bp); 1680 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 1681 bo->bo_flag &= ~BO_ONWORKLST; 1682 mtx_lock(&sync_mtx); 1683 LIST_REMOVE(bo, bo_synclist); 1684 syncer_worklist_len--; 1685 mtx_unlock(&sync_mtx); 1686 } 1687 bp->b_vp = NULL; 1688 bp->b_bufobj = NULL; 1689 BO_UNLOCK(bo); 1690 vdrop(vp); 1691 } 1692 1693 /* 1694 * Add an item to the syncer work queue. 1695 */ 1696 static void 1697 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 1698 { 1699 int slot; 1700 1701 ASSERT_BO_WLOCKED(bo); 1702 1703 mtx_lock(&sync_mtx); 1704 if (bo->bo_flag & BO_ONWORKLST) 1705 LIST_REMOVE(bo, bo_synclist); 1706 else { 1707 bo->bo_flag |= BO_ONWORKLST; 1708 syncer_worklist_len++; 1709 } 1710 1711 if (delay > syncer_maxdelay - 2) 1712 delay = syncer_maxdelay - 2; 1713 slot = (syncer_delayno + delay) & syncer_mask; 1714 1715 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 1716 mtx_unlock(&sync_mtx); 1717 } 1718 1719 static int 1720 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 1721 { 1722 int error, len; 1723 1724 mtx_lock(&sync_mtx); 1725 len = syncer_worklist_len - sync_vnode_count; 1726 mtx_unlock(&sync_mtx); 1727 error = SYSCTL_OUT(req, &len, sizeof(len)); 1728 return (error); 1729 } 1730 1731 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 1732 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 1733 1734 static struct proc *updateproc; 1735 static void sched_sync(void); 1736 static struct kproc_desc up_kp = { 1737 "syncer", 1738 sched_sync, 1739 &updateproc 1740 }; 1741 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 1742 1743 static int 1744 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 1745 { 1746 struct vnode *vp; 1747 struct mount *mp; 1748 1749 *bo = LIST_FIRST(slp); 1750 if (*bo == NULL) 1751 return (0); 1752 vp = (*bo)->__bo_vnode; /* XXX */ 1753 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 1754 return (1); 1755 /* 1756 * We use vhold in case the vnode does not 1757 * successfully sync. vhold prevents the vnode from 1758 * going away when we unlock the sync_mtx so that 1759 * we can acquire the vnode interlock. 1760 */ 1761 vholdl(vp); 1762 mtx_unlock(&sync_mtx); 1763 VI_UNLOCK(vp); 1764 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1765 vdrop(vp); 1766 mtx_lock(&sync_mtx); 1767 return (*bo == LIST_FIRST(slp)); 1768 } 1769 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1770 (void) VOP_FSYNC(vp, MNT_LAZY, td); 1771 VOP_UNLOCK(vp, 0); 1772 vn_finished_write(mp); 1773 BO_LOCK(*bo); 1774 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 1775 /* 1776 * Put us back on the worklist. The worklist 1777 * routine will remove us from our current 1778 * position and then add us back in at a later 1779 * position. 1780 */ 1781 vn_syncer_add_to_worklist(*bo, syncdelay); 1782 } 1783 BO_UNLOCK(*bo); 1784 vdrop(vp); 1785 mtx_lock(&sync_mtx); 1786 return (0); 1787 } 1788 1789 static int first_printf = 1; 1790 1791 /* 1792 * System filesystem synchronizer daemon. 1793 */ 1794 static void 1795 sched_sync(void) 1796 { 1797 struct synclist *next, *slp; 1798 struct bufobj *bo; 1799 long starttime; 1800 struct thread *td = curthread; 1801 int last_work_seen; 1802 int net_worklist_len; 1803 int syncer_final_iter; 1804 int error; 1805 1806 last_work_seen = 0; 1807 syncer_final_iter = 0; 1808 syncer_state = SYNCER_RUNNING; 1809 starttime = time_uptime; 1810 td->td_pflags |= TDP_NORUNNINGBUF; 1811 1812 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 1813 SHUTDOWN_PRI_LAST); 1814 1815 mtx_lock(&sync_mtx); 1816 for (;;) { 1817 if (syncer_state == SYNCER_FINAL_DELAY && 1818 syncer_final_iter == 0) { 1819 mtx_unlock(&sync_mtx); 1820 kproc_suspend_check(td->td_proc); 1821 mtx_lock(&sync_mtx); 1822 } 1823 net_worklist_len = syncer_worklist_len - sync_vnode_count; 1824 if (syncer_state != SYNCER_RUNNING && 1825 starttime != time_uptime) { 1826 if (first_printf) { 1827 printf("\nSyncing disks, vnodes remaining..."); 1828 first_printf = 0; 1829 } 1830 printf("%d ", net_worklist_len); 1831 } 1832 starttime = time_uptime; 1833 1834 /* 1835 * Push files whose dirty time has expired. Be careful 1836 * of interrupt race on slp queue. 1837 * 1838 * Skip over empty worklist slots when shutting down. 1839 */ 1840 do { 1841 slp = &syncer_workitem_pending[syncer_delayno]; 1842 syncer_delayno += 1; 1843 if (syncer_delayno == syncer_maxdelay) 1844 syncer_delayno = 0; 1845 next = &syncer_workitem_pending[syncer_delayno]; 1846 /* 1847 * If the worklist has wrapped since the 1848 * it was emptied of all but syncer vnodes, 1849 * switch to the FINAL_DELAY state and run 1850 * for one more second. 1851 */ 1852 if (syncer_state == SYNCER_SHUTTING_DOWN && 1853 net_worklist_len == 0 && 1854 last_work_seen == syncer_delayno) { 1855 syncer_state = SYNCER_FINAL_DELAY; 1856 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 1857 } 1858 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 1859 syncer_worklist_len > 0); 1860 1861 /* 1862 * Keep track of the last time there was anything 1863 * on the worklist other than syncer vnodes. 1864 * Return to the SHUTTING_DOWN state if any 1865 * new work appears. 1866 */ 1867 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 1868 last_work_seen = syncer_delayno; 1869 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 1870 syncer_state = SYNCER_SHUTTING_DOWN; 1871 while (!LIST_EMPTY(slp)) { 1872 error = sync_vnode(slp, &bo, td); 1873 if (error == 1) { 1874 LIST_REMOVE(bo, bo_synclist); 1875 LIST_INSERT_HEAD(next, bo, bo_synclist); 1876 continue; 1877 } 1878 1879 if (first_printf == 0) { 1880 /* 1881 * Drop the sync mutex, because some watchdog 1882 * drivers need to sleep while patting 1883 */ 1884 mtx_unlock(&sync_mtx); 1885 wdog_kern_pat(WD_LASTVAL); 1886 mtx_lock(&sync_mtx); 1887 } 1888 1889 } 1890 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 1891 syncer_final_iter--; 1892 /* 1893 * The variable rushjob allows the kernel to speed up the 1894 * processing of the filesystem syncer process. A rushjob 1895 * value of N tells the filesystem syncer to process the next 1896 * N seconds worth of work on its queue ASAP. Currently rushjob 1897 * is used by the soft update code to speed up the filesystem 1898 * syncer process when the incore state is getting so far 1899 * ahead of the disk that the kernel memory pool is being 1900 * threatened with exhaustion. 1901 */ 1902 if (rushjob > 0) { 1903 rushjob -= 1; 1904 continue; 1905 } 1906 /* 1907 * Just sleep for a short period of time between 1908 * iterations when shutting down to allow some I/O 1909 * to happen. 1910 * 1911 * If it has taken us less than a second to process the 1912 * current work, then wait. Otherwise start right over 1913 * again. We can still lose time if any single round 1914 * takes more than two seconds, but it does not really 1915 * matter as we are just trying to generally pace the 1916 * filesystem activity. 1917 */ 1918 if (syncer_state != SYNCER_RUNNING || 1919 time_uptime == starttime) { 1920 thread_lock(td); 1921 sched_prio(td, PPAUSE); 1922 thread_unlock(td); 1923 } 1924 if (syncer_state != SYNCER_RUNNING) 1925 cv_timedwait(&sync_wakeup, &sync_mtx, 1926 hz / SYNCER_SHUTDOWN_SPEEDUP); 1927 else if (time_uptime == starttime) 1928 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 1929 } 1930 } 1931 1932 /* 1933 * Request the syncer daemon to speed up its work. 1934 * We never push it to speed up more than half of its 1935 * normal turn time, otherwise it could take over the cpu. 1936 */ 1937 int 1938 speedup_syncer(void) 1939 { 1940 int ret = 0; 1941 1942 mtx_lock(&sync_mtx); 1943 if (rushjob < syncdelay / 2) { 1944 rushjob += 1; 1945 stat_rush_requests += 1; 1946 ret = 1; 1947 } 1948 mtx_unlock(&sync_mtx); 1949 cv_broadcast(&sync_wakeup); 1950 return (ret); 1951 } 1952 1953 /* 1954 * Tell the syncer to speed up its work and run though its work 1955 * list several times, then tell it to shut down. 1956 */ 1957 static void 1958 syncer_shutdown(void *arg, int howto) 1959 { 1960 1961 if (howto & RB_NOSYNC) 1962 return; 1963 mtx_lock(&sync_mtx); 1964 syncer_state = SYNCER_SHUTTING_DOWN; 1965 rushjob = 0; 1966 mtx_unlock(&sync_mtx); 1967 cv_broadcast(&sync_wakeup); 1968 kproc_shutdown(arg, howto); 1969 } 1970 1971 void 1972 syncer_suspend(void) 1973 { 1974 1975 syncer_shutdown(updateproc, 0); 1976 } 1977 1978 void 1979 syncer_resume(void) 1980 { 1981 1982 mtx_lock(&sync_mtx); 1983 first_printf = 1; 1984 syncer_state = SYNCER_RUNNING; 1985 mtx_unlock(&sync_mtx); 1986 cv_broadcast(&sync_wakeup); 1987 kproc_resume(updateproc); 1988 } 1989 1990 /* 1991 * Reassign a buffer from one vnode to another. 1992 * Used to assign file specific control information 1993 * (indirect blocks) to the vnode to which they belong. 1994 */ 1995 void 1996 reassignbuf(struct buf *bp) 1997 { 1998 struct vnode *vp; 1999 struct bufobj *bo; 2000 int delay; 2001 #ifdef INVARIANTS 2002 struct bufv *bv; 2003 #endif 2004 2005 vp = bp->b_vp; 2006 bo = bp->b_bufobj; 2007 ++reassignbufcalls; 2008 2009 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 2010 bp, bp->b_vp, bp->b_flags); 2011 /* 2012 * B_PAGING flagged buffers cannot be reassigned because their vp 2013 * is not fully linked in. 2014 */ 2015 if (bp->b_flags & B_PAGING) 2016 panic("cannot reassign paging buffer"); 2017 2018 /* 2019 * Delete from old vnode list, if on one. 2020 */ 2021 BO_LOCK(bo); 2022 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2023 buf_vlist_remove(bp); 2024 else 2025 panic("reassignbuf: Buffer %p not on queue.", bp); 2026 /* 2027 * If dirty, put on list of dirty buffers; otherwise insert onto list 2028 * of clean buffers. 2029 */ 2030 if (bp->b_flags & B_DELWRI) { 2031 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 2032 switch (vp->v_type) { 2033 case VDIR: 2034 delay = dirdelay; 2035 break; 2036 case VCHR: 2037 delay = metadelay; 2038 break; 2039 default: 2040 delay = filedelay; 2041 } 2042 vn_syncer_add_to_worklist(bo, delay); 2043 } 2044 buf_vlist_add(bp, bo, BX_VNDIRTY); 2045 } else { 2046 buf_vlist_add(bp, bo, BX_VNCLEAN); 2047 2048 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2049 mtx_lock(&sync_mtx); 2050 LIST_REMOVE(bo, bo_synclist); 2051 syncer_worklist_len--; 2052 mtx_unlock(&sync_mtx); 2053 bo->bo_flag &= ~BO_ONWORKLST; 2054 } 2055 } 2056 #ifdef INVARIANTS 2057 bv = &bo->bo_clean; 2058 bp = TAILQ_FIRST(&bv->bv_hd); 2059 KASSERT(bp == NULL || bp->b_bufobj == bo, 2060 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2061 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2062 KASSERT(bp == NULL || bp->b_bufobj == bo, 2063 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2064 bv = &bo->bo_dirty; 2065 bp = TAILQ_FIRST(&bv->bv_hd); 2066 KASSERT(bp == NULL || bp->b_bufobj == bo, 2067 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2068 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2069 KASSERT(bp == NULL || bp->b_bufobj == bo, 2070 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2071 #endif 2072 BO_UNLOCK(bo); 2073 } 2074 2075 /* 2076 * Increment the use and hold counts on the vnode, taking care to reference 2077 * the driver's usecount if this is a chardev. The vholdl() will remove 2078 * the vnode from the free list if it is presently free. Requires the 2079 * vnode interlock and returns with it held. 2080 */ 2081 static void 2082 v_incr_usecount(struct vnode *vp) 2083 { 2084 2085 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2086 vholdl(vp); 2087 vp->v_usecount++; 2088 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2089 dev_lock(); 2090 vp->v_rdev->si_usecount++; 2091 dev_unlock(); 2092 } 2093 } 2094 2095 /* 2096 * Turn a holdcnt into a use+holdcnt such that only one call to 2097 * v_decr_usecount is needed. 2098 */ 2099 static void 2100 v_upgrade_usecount(struct vnode *vp) 2101 { 2102 2103 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2104 vp->v_usecount++; 2105 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2106 dev_lock(); 2107 vp->v_rdev->si_usecount++; 2108 dev_unlock(); 2109 } 2110 } 2111 2112 /* 2113 * Decrement the vnode use and hold count along with the driver's usecount 2114 * if this is a chardev. The vdropl() below releases the vnode interlock 2115 * as it may free the vnode. 2116 */ 2117 static void 2118 v_decr_usecount(struct vnode *vp) 2119 { 2120 2121 ASSERT_VI_LOCKED(vp, __FUNCTION__); 2122 VNASSERT(vp->v_usecount > 0, vp, 2123 ("v_decr_usecount: negative usecount")); 2124 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2125 vp->v_usecount--; 2126 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2127 dev_lock(); 2128 vp->v_rdev->si_usecount--; 2129 dev_unlock(); 2130 } 2131 vdropl(vp); 2132 } 2133 2134 /* 2135 * Decrement only the use count and driver use count. This is intended to 2136 * be paired with a follow on vdropl() to release the remaining hold count. 2137 * In this way we may vgone() a vnode with a 0 usecount without risk of 2138 * having it end up on a free list because the hold count is kept above 0. 2139 */ 2140 static void 2141 v_decr_useonly(struct vnode *vp) 2142 { 2143 2144 ASSERT_VI_LOCKED(vp, __FUNCTION__); 2145 VNASSERT(vp->v_usecount > 0, vp, 2146 ("v_decr_useonly: negative usecount")); 2147 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2148 vp->v_usecount--; 2149 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2150 dev_lock(); 2151 vp->v_rdev->si_usecount--; 2152 dev_unlock(); 2153 } 2154 } 2155 2156 /* 2157 * Grab a particular vnode from the free list, increment its 2158 * reference count and lock it. VI_DOOMED is set if the vnode 2159 * is being destroyed. Only callers who specify LK_RETRY will 2160 * see doomed vnodes. If inactive processing was delayed in 2161 * vput try to do it here. 2162 */ 2163 int 2164 vget(struct vnode *vp, int flags, struct thread *td) 2165 { 2166 int error; 2167 2168 error = 0; 2169 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 2170 ("vget: invalid lock operation")); 2171 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2172 2173 if ((flags & LK_INTERLOCK) == 0) 2174 VI_LOCK(vp); 2175 vholdl(vp); 2176 if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) { 2177 vdrop(vp); 2178 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 2179 vp); 2180 return (error); 2181 } 2182 if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0) 2183 panic("vget: vn_lock failed to return ENOENT\n"); 2184 VI_LOCK(vp); 2185 /* Upgrade our holdcnt to a usecount. */ 2186 v_upgrade_usecount(vp); 2187 /* 2188 * We don't guarantee that any particular close will 2189 * trigger inactive processing so just make a best effort 2190 * here at preventing a reference to a removed file. If 2191 * we don't succeed no harm is done. 2192 */ 2193 if (vp->v_iflag & VI_OWEINACT) { 2194 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && 2195 (flags & LK_NOWAIT) == 0) 2196 vinactive(vp, td); 2197 vp->v_iflag &= ~VI_OWEINACT; 2198 } 2199 VI_UNLOCK(vp); 2200 return (0); 2201 } 2202 2203 /* 2204 * Increase the reference count of a vnode. 2205 */ 2206 void 2207 vref(struct vnode *vp) 2208 { 2209 2210 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2211 VI_LOCK(vp); 2212 v_incr_usecount(vp); 2213 VI_UNLOCK(vp); 2214 } 2215 2216 /* 2217 * Return reference count of a vnode. 2218 * 2219 * The results of this call are only guaranteed when some mechanism other 2220 * than the VI lock is used to stop other processes from gaining references 2221 * to the vnode. This may be the case if the caller holds the only reference. 2222 * This is also useful when stale data is acceptable as race conditions may 2223 * be accounted for by some other means. 2224 */ 2225 int 2226 vrefcnt(struct vnode *vp) 2227 { 2228 int usecnt; 2229 2230 VI_LOCK(vp); 2231 usecnt = vp->v_usecount; 2232 VI_UNLOCK(vp); 2233 2234 return (usecnt); 2235 } 2236 2237 #define VPUTX_VRELE 1 2238 #define VPUTX_VPUT 2 2239 #define VPUTX_VUNREF 3 2240 2241 static void 2242 vputx(struct vnode *vp, int func) 2243 { 2244 int error; 2245 2246 KASSERT(vp != NULL, ("vputx: null vp")); 2247 if (func == VPUTX_VUNREF) 2248 ASSERT_VOP_LOCKED(vp, "vunref"); 2249 else if (func == VPUTX_VPUT) 2250 ASSERT_VOP_LOCKED(vp, "vput"); 2251 else 2252 KASSERT(func == VPUTX_VRELE, ("vputx: wrong func")); 2253 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2254 VI_LOCK(vp); 2255 2256 /* Skip this v_writecount check if we're going to panic below. */ 2257 VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp, 2258 ("vputx: missed vn_close")); 2259 error = 0; 2260 2261 if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) && 2262 vp->v_usecount == 1)) { 2263 if (func == VPUTX_VPUT) 2264 VOP_UNLOCK(vp, 0); 2265 v_decr_usecount(vp); 2266 return; 2267 } 2268 2269 if (vp->v_usecount != 1) { 2270 vprint("vputx: negative ref count", vp); 2271 panic("vputx: negative ref cnt"); 2272 } 2273 CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp); 2274 /* 2275 * We want to hold the vnode until the inactive finishes to 2276 * prevent vgone() races. We drop the use count here and the 2277 * hold count below when we're done. 2278 */ 2279 v_decr_useonly(vp); 2280 /* 2281 * We must call VOP_INACTIVE with the node locked. Mark 2282 * as VI_DOINGINACT to avoid recursion. 2283 */ 2284 vp->v_iflag |= VI_OWEINACT; 2285 switch (func) { 2286 case VPUTX_VRELE: 2287 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 2288 VI_LOCK(vp); 2289 break; 2290 case VPUTX_VPUT: 2291 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 2292 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 2293 LK_NOWAIT); 2294 VI_LOCK(vp); 2295 } 2296 break; 2297 case VPUTX_VUNREF: 2298 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 2299 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 2300 VI_LOCK(vp); 2301 } 2302 break; 2303 } 2304 if (vp->v_usecount > 0) 2305 vp->v_iflag &= ~VI_OWEINACT; 2306 if (error == 0) { 2307 if (vp->v_iflag & VI_OWEINACT) 2308 vinactive(vp, curthread); 2309 if (func != VPUTX_VUNREF) 2310 VOP_UNLOCK(vp, 0); 2311 } 2312 vdropl(vp); 2313 } 2314 2315 /* 2316 * Vnode put/release. 2317 * If count drops to zero, call inactive routine and return to freelist. 2318 */ 2319 void 2320 vrele(struct vnode *vp) 2321 { 2322 2323 vputx(vp, VPUTX_VRELE); 2324 } 2325 2326 /* 2327 * Release an already locked vnode. This give the same effects as 2328 * unlock+vrele(), but takes less time and avoids releasing and 2329 * re-aquiring the lock (as vrele() acquires the lock internally.) 2330 */ 2331 void 2332 vput(struct vnode *vp) 2333 { 2334 2335 vputx(vp, VPUTX_VPUT); 2336 } 2337 2338 /* 2339 * Release an exclusively locked vnode. Do not unlock the vnode lock. 2340 */ 2341 void 2342 vunref(struct vnode *vp) 2343 { 2344 2345 vputx(vp, VPUTX_VUNREF); 2346 } 2347 2348 /* 2349 * Somebody doesn't want the vnode recycled. 2350 */ 2351 void 2352 vhold(struct vnode *vp) 2353 { 2354 2355 VI_LOCK(vp); 2356 vholdl(vp); 2357 VI_UNLOCK(vp); 2358 } 2359 2360 /* 2361 * Increase the hold count and activate if this is the first reference. 2362 */ 2363 void 2364 vholdl(struct vnode *vp) 2365 { 2366 struct mount *mp; 2367 2368 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2369 #ifdef INVARIANTS 2370 /* getnewvnode() calls v_incr_usecount() without holding interlock. */ 2371 if (vp->v_type != VNON || vp->v_data != NULL) { 2372 ASSERT_VI_LOCKED(vp, "vholdl"); 2373 VNASSERT(vp->v_holdcnt > 0 || (vp->v_iflag & VI_FREE) != 0, 2374 vp, ("vholdl: free vnode is held")); 2375 } 2376 #endif 2377 vp->v_holdcnt++; 2378 if ((vp->v_iflag & VI_FREE) == 0) 2379 return; 2380 VNASSERT(vp->v_holdcnt == 1, vp, ("vholdl: wrong hold count")); 2381 VNASSERT(vp->v_op != NULL, vp, ("vholdl: vnode already reclaimed.")); 2382 /* 2383 * Remove a vnode from the free list, mark it as in use, 2384 * and put it on the active list. 2385 */ 2386 mtx_lock(&vnode_free_list_mtx); 2387 TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist); 2388 freevnodes--; 2389 vp->v_iflag &= ~(VI_FREE|VI_AGE); 2390 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 2391 ("Activating already active vnode")); 2392 vp->v_iflag |= VI_ACTIVE; 2393 mp = vp->v_mount; 2394 TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist); 2395 mp->mnt_activevnodelistsize++; 2396 mtx_unlock(&vnode_free_list_mtx); 2397 } 2398 2399 /* 2400 * Note that there is one less who cares about this vnode. 2401 * vdrop() is the opposite of vhold(). 2402 */ 2403 void 2404 vdrop(struct vnode *vp) 2405 { 2406 2407 VI_LOCK(vp); 2408 vdropl(vp); 2409 } 2410 2411 /* 2412 * Drop the hold count of the vnode. If this is the last reference to 2413 * the vnode we place it on the free list unless it has been vgone'd 2414 * (marked VI_DOOMED) in which case we will free it. 2415 */ 2416 void 2417 vdropl(struct vnode *vp) 2418 { 2419 struct bufobj *bo; 2420 struct mount *mp; 2421 int active; 2422 2423 ASSERT_VI_LOCKED(vp, "vdropl"); 2424 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2425 if (vp->v_holdcnt <= 0) 2426 panic("vdrop: holdcnt %d", vp->v_holdcnt); 2427 vp->v_holdcnt--; 2428 VNASSERT(vp->v_holdcnt >= vp->v_usecount, vp, 2429 ("hold count less than use count")); 2430 if (vp->v_holdcnt > 0) { 2431 VI_UNLOCK(vp); 2432 return; 2433 } 2434 if ((vp->v_iflag & VI_DOOMED) == 0) { 2435 /* 2436 * Mark a vnode as free: remove it from its active list 2437 * and put it up for recycling on the freelist. 2438 */ 2439 VNASSERT(vp->v_op != NULL, vp, 2440 ("vdropl: vnode already reclaimed.")); 2441 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 2442 ("vnode already free")); 2443 VNASSERT(vp->v_holdcnt == 0, vp, 2444 ("vdropl: freeing when we shouldn't")); 2445 active = vp->v_iflag & VI_ACTIVE; 2446 vp->v_iflag &= ~VI_ACTIVE; 2447 mp = vp->v_mount; 2448 mtx_lock(&vnode_free_list_mtx); 2449 if (active) { 2450 TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, 2451 v_actfreelist); 2452 mp->mnt_activevnodelistsize--; 2453 } 2454 if (vp->v_iflag & VI_AGE) { 2455 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_actfreelist); 2456 } else { 2457 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist); 2458 } 2459 freevnodes++; 2460 vp->v_iflag &= ~VI_AGE; 2461 vp->v_iflag |= VI_FREE; 2462 mtx_unlock(&vnode_free_list_mtx); 2463 VI_UNLOCK(vp); 2464 return; 2465 } 2466 /* 2467 * The vnode has been marked for destruction, so free it. 2468 */ 2469 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 2470 atomic_subtract_long(&numvnodes, 1); 2471 bo = &vp->v_bufobj; 2472 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 2473 ("cleaned vnode still on the free list.")); 2474 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 2475 VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count")); 2476 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 2477 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 2478 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 2479 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 2480 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 2481 ("clean blk trie not empty")); 2482 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 2483 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 2484 ("dirty blk trie not empty")); 2485 VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst")); 2486 VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src")); 2487 VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for ..")); 2488 VI_UNLOCK(vp); 2489 #ifdef MAC 2490 mac_vnode_destroy(vp); 2491 #endif 2492 if (vp->v_pollinfo != NULL) 2493 destroy_vpollinfo(vp->v_pollinfo); 2494 #ifdef INVARIANTS 2495 /* XXX Elsewhere we detect an already freed vnode via NULL v_op. */ 2496 vp->v_op = NULL; 2497 #endif 2498 rangelock_destroy(&vp->v_rl); 2499 lockdestroy(vp->v_vnlock); 2500 mtx_destroy(&vp->v_interlock); 2501 rw_destroy(BO_LOCKPTR(bo)); 2502 uma_zfree(vnode_zone, vp); 2503 } 2504 2505 /* 2506 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 2507 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 2508 * OWEINACT tracks whether a vnode missed a call to inactive due to a 2509 * failed lock upgrade. 2510 */ 2511 void 2512 vinactive(struct vnode *vp, struct thread *td) 2513 { 2514 struct vm_object *obj; 2515 2516 ASSERT_VOP_ELOCKED(vp, "vinactive"); 2517 ASSERT_VI_LOCKED(vp, "vinactive"); 2518 VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp, 2519 ("vinactive: recursed on VI_DOINGINACT")); 2520 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2521 vp->v_iflag |= VI_DOINGINACT; 2522 vp->v_iflag &= ~VI_OWEINACT; 2523 VI_UNLOCK(vp); 2524 /* 2525 * Before moving off the active list, we must be sure that any 2526 * modified pages are on the vnode's dirty list since these will 2527 * no longer be checked once the vnode is on the inactive list. 2528 * Because the vnode vm object keeps a hold reference on the vnode 2529 * if there is at least one resident non-cached page, the vnode 2530 * cannot leave the active list without the page cleanup done. 2531 */ 2532 obj = vp->v_object; 2533 if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0) { 2534 VM_OBJECT_WLOCK(obj); 2535 vm_object_page_clean(obj, 0, 0, OBJPC_NOSYNC); 2536 VM_OBJECT_WUNLOCK(obj); 2537 } 2538 VOP_INACTIVE(vp, td); 2539 VI_LOCK(vp); 2540 VNASSERT(vp->v_iflag & VI_DOINGINACT, vp, 2541 ("vinactive: lost VI_DOINGINACT")); 2542 vp->v_iflag &= ~VI_DOINGINACT; 2543 } 2544 2545 /* 2546 * Remove any vnodes in the vnode table belonging to mount point mp. 2547 * 2548 * If FORCECLOSE is not specified, there should not be any active ones, 2549 * return error if any are found (nb: this is a user error, not a 2550 * system error). If FORCECLOSE is specified, detach any active vnodes 2551 * that are found. 2552 * 2553 * If WRITECLOSE is set, only flush out regular file vnodes open for 2554 * writing. 2555 * 2556 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 2557 * 2558 * `rootrefs' specifies the base reference count for the root vnode 2559 * of this filesystem. The root vnode is considered busy if its 2560 * v_usecount exceeds this value. On a successful return, vflush(, td) 2561 * will call vrele() on the root vnode exactly rootrefs times. 2562 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 2563 * be zero. 2564 */ 2565 #ifdef DIAGNOSTIC 2566 static int busyprt = 0; /* print out busy vnodes */ 2567 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 2568 #endif 2569 2570 int 2571 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 2572 { 2573 struct vnode *vp, *mvp, *rootvp = NULL; 2574 struct vattr vattr; 2575 int busy = 0, error; 2576 2577 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 2578 rootrefs, flags); 2579 if (rootrefs > 0) { 2580 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 2581 ("vflush: bad args")); 2582 /* 2583 * Get the filesystem root vnode. We can vput() it 2584 * immediately, since with rootrefs > 0, it won't go away. 2585 */ 2586 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 2587 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 2588 __func__, error); 2589 return (error); 2590 } 2591 vput(rootvp); 2592 } 2593 loop: 2594 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 2595 vholdl(vp); 2596 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 2597 if (error) { 2598 vdrop(vp); 2599 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 2600 goto loop; 2601 } 2602 /* 2603 * Skip over a vnodes marked VV_SYSTEM. 2604 */ 2605 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 2606 VOP_UNLOCK(vp, 0); 2607 vdrop(vp); 2608 continue; 2609 } 2610 /* 2611 * If WRITECLOSE is set, flush out unlinked but still open 2612 * files (even if open only for reading) and regular file 2613 * vnodes open for writing. 2614 */ 2615 if (flags & WRITECLOSE) { 2616 if (vp->v_object != NULL) { 2617 VM_OBJECT_WLOCK(vp->v_object); 2618 vm_object_page_clean(vp->v_object, 0, 0, 0); 2619 VM_OBJECT_WUNLOCK(vp->v_object); 2620 } 2621 error = VOP_FSYNC(vp, MNT_WAIT, td); 2622 if (error != 0) { 2623 VOP_UNLOCK(vp, 0); 2624 vdrop(vp); 2625 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 2626 return (error); 2627 } 2628 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 2629 VI_LOCK(vp); 2630 2631 if ((vp->v_type == VNON || 2632 (error == 0 && vattr.va_nlink > 0)) && 2633 (vp->v_writecount == 0 || vp->v_type != VREG)) { 2634 VOP_UNLOCK(vp, 0); 2635 vdropl(vp); 2636 continue; 2637 } 2638 } else 2639 VI_LOCK(vp); 2640 /* 2641 * With v_usecount == 0, all we need to do is clear out the 2642 * vnode data structures and we are done. 2643 * 2644 * If FORCECLOSE is set, forcibly close the vnode. 2645 */ 2646 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 2647 VNASSERT(vp->v_usecount == 0 || 2648 vp->v_op != &devfs_specops || 2649 (vp->v_type != VCHR && vp->v_type != VBLK), vp, 2650 ("device VNODE %p is FORCECLOSED", vp)); 2651 vgonel(vp); 2652 } else { 2653 busy++; 2654 #ifdef DIAGNOSTIC 2655 if (busyprt) 2656 vprint("vflush: busy vnode", vp); 2657 #endif 2658 } 2659 VOP_UNLOCK(vp, 0); 2660 vdropl(vp); 2661 } 2662 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 2663 /* 2664 * If just the root vnode is busy, and if its refcount 2665 * is equal to `rootrefs', then go ahead and kill it. 2666 */ 2667 VI_LOCK(rootvp); 2668 KASSERT(busy > 0, ("vflush: not busy")); 2669 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 2670 ("vflush: usecount %d < rootrefs %d", 2671 rootvp->v_usecount, rootrefs)); 2672 if (busy == 1 && rootvp->v_usecount == rootrefs) { 2673 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 2674 vgone(rootvp); 2675 VOP_UNLOCK(rootvp, 0); 2676 busy = 0; 2677 } else 2678 VI_UNLOCK(rootvp); 2679 } 2680 if (busy) { 2681 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 2682 busy); 2683 return (EBUSY); 2684 } 2685 for (; rootrefs > 0; rootrefs--) 2686 vrele(rootvp); 2687 return (0); 2688 } 2689 2690 /* 2691 * Recycle an unused vnode to the front of the free list. 2692 */ 2693 int 2694 vrecycle(struct vnode *vp) 2695 { 2696 int recycled; 2697 2698 ASSERT_VOP_ELOCKED(vp, "vrecycle"); 2699 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2700 recycled = 0; 2701 VI_LOCK(vp); 2702 if (vp->v_usecount == 0) { 2703 recycled = 1; 2704 vgonel(vp); 2705 } 2706 VI_UNLOCK(vp); 2707 return (recycled); 2708 } 2709 2710 /* 2711 * Eliminate all activity associated with a vnode 2712 * in preparation for reuse. 2713 */ 2714 void 2715 vgone(struct vnode *vp) 2716 { 2717 VI_LOCK(vp); 2718 vgonel(vp); 2719 VI_UNLOCK(vp); 2720 } 2721 2722 static void 2723 notify_lowervp_vfs_dummy(struct mount *mp __unused, 2724 struct vnode *lowervp __unused) 2725 { 2726 } 2727 2728 /* 2729 * Notify upper mounts about reclaimed or unlinked vnode. 2730 */ 2731 void 2732 vfs_notify_upper(struct vnode *vp, int event) 2733 { 2734 static struct vfsops vgonel_vfsops = { 2735 .vfs_reclaim_lowervp = notify_lowervp_vfs_dummy, 2736 .vfs_unlink_lowervp = notify_lowervp_vfs_dummy, 2737 }; 2738 struct mount *mp, *ump, *mmp; 2739 2740 mp = vp->v_mount; 2741 if (mp == NULL) 2742 return; 2743 2744 MNT_ILOCK(mp); 2745 if (TAILQ_EMPTY(&mp->mnt_uppers)) 2746 goto unlock; 2747 MNT_IUNLOCK(mp); 2748 mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO); 2749 mmp->mnt_op = &vgonel_vfsops; 2750 mmp->mnt_kern_flag |= MNTK_MARKER; 2751 MNT_ILOCK(mp); 2752 mp->mnt_kern_flag |= MNTK_VGONE_UPPER; 2753 for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) { 2754 if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) { 2755 ump = TAILQ_NEXT(ump, mnt_upper_link); 2756 continue; 2757 } 2758 TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link); 2759 MNT_IUNLOCK(mp); 2760 switch (event) { 2761 case VFS_NOTIFY_UPPER_RECLAIM: 2762 VFS_RECLAIM_LOWERVP(ump, vp); 2763 break; 2764 case VFS_NOTIFY_UPPER_UNLINK: 2765 VFS_UNLINK_LOWERVP(ump, vp); 2766 break; 2767 default: 2768 KASSERT(0, ("invalid event %d", event)); 2769 break; 2770 } 2771 MNT_ILOCK(mp); 2772 ump = TAILQ_NEXT(mmp, mnt_upper_link); 2773 TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link); 2774 } 2775 free(mmp, M_TEMP); 2776 mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER; 2777 if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) { 2778 mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER; 2779 wakeup(&mp->mnt_uppers); 2780 } 2781 unlock: 2782 MNT_IUNLOCK(mp); 2783 } 2784 2785 /* 2786 * vgone, with the vp interlock held. 2787 */ 2788 void 2789 vgonel(struct vnode *vp) 2790 { 2791 struct thread *td; 2792 int oweinact; 2793 int active; 2794 struct mount *mp; 2795 2796 ASSERT_VOP_ELOCKED(vp, "vgonel"); 2797 ASSERT_VI_LOCKED(vp, "vgonel"); 2798 VNASSERT(vp->v_holdcnt, vp, 2799 ("vgonel: vp %p has no reference.", vp)); 2800 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2801 td = curthread; 2802 2803 /* 2804 * Don't vgonel if we're already doomed. 2805 */ 2806 if (vp->v_iflag & VI_DOOMED) 2807 return; 2808 vp->v_iflag |= VI_DOOMED; 2809 2810 /* 2811 * Check to see if the vnode is in use. If so, we have to call 2812 * VOP_CLOSE() and VOP_INACTIVE(). 2813 */ 2814 active = vp->v_usecount; 2815 oweinact = (vp->v_iflag & VI_OWEINACT); 2816 VI_UNLOCK(vp); 2817 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 2818 2819 /* 2820 * If purging an active vnode, it must be closed and 2821 * deactivated before being reclaimed. 2822 */ 2823 if (active) 2824 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 2825 if (oweinact || active) { 2826 VI_LOCK(vp); 2827 if ((vp->v_iflag & VI_DOINGINACT) == 0) 2828 vinactive(vp, td); 2829 VI_UNLOCK(vp); 2830 } 2831 if (vp->v_type == VSOCK) 2832 vfs_unp_reclaim(vp); 2833 2834 /* 2835 * Clean out any buffers associated with the vnode. 2836 * If the flush fails, just toss the buffers. 2837 */ 2838 mp = NULL; 2839 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 2840 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 2841 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 2842 while (vinvalbuf(vp, 0, 0, 0) != 0) 2843 ; 2844 } 2845 #ifdef INVARIANTS 2846 BO_LOCK(&vp->v_bufobj); 2847 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 2848 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 2849 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 2850 vp->v_bufobj.bo_clean.bv_cnt == 0, 2851 ("vp %p bufobj not invalidated", vp)); 2852 vp->v_bufobj.bo_flag |= BO_DEAD; 2853 BO_UNLOCK(&vp->v_bufobj); 2854 #endif 2855 2856 /* 2857 * Reclaim the vnode. 2858 */ 2859 if (VOP_RECLAIM(vp, td)) 2860 panic("vgone: cannot reclaim"); 2861 if (mp != NULL) 2862 vn_finished_secondary_write(mp); 2863 VNASSERT(vp->v_object == NULL, vp, 2864 ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag)); 2865 /* 2866 * Clear the advisory locks and wake up waiting threads. 2867 */ 2868 (void)VOP_ADVLOCKPURGE(vp); 2869 /* 2870 * Delete from old mount point vnode list. 2871 */ 2872 delmntque(vp); 2873 cache_purge(vp); 2874 /* 2875 * Done with purge, reset to the standard lock and invalidate 2876 * the vnode. 2877 */ 2878 VI_LOCK(vp); 2879 vp->v_vnlock = &vp->v_lock; 2880 vp->v_op = &dead_vnodeops; 2881 vp->v_tag = "none"; 2882 vp->v_type = VBAD; 2883 } 2884 2885 /* 2886 * Calculate the total number of references to a special device. 2887 */ 2888 int 2889 vcount(struct vnode *vp) 2890 { 2891 int count; 2892 2893 dev_lock(); 2894 count = vp->v_rdev->si_usecount; 2895 dev_unlock(); 2896 return (count); 2897 } 2898 2899 /* 2900 * Same as above, but using the struct cdev *as argument 2901 */ 2902 int 2903 count_dev(struct cdev *dev) 2904 { 2905 int count; 2906 2907 dev_lock(); 2908 count = dev->si_usecount; 2909 dev_unlock(); 2910 return(count); 2911 } 2912 2913 /* 2914 * Print out a description of a vnode. 2915 */ 2916 static char *typename[] = 2917 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD", 2918 "VMARKER"}; 2919 2920 void 2921 vn_printf(struct vnode *vp, const char *fmt, ...) 2922 { 2923 va_list ap; 2924 char buf[256], buf2[16]; 2925 u_long flags; 2926 2927 va_start(ap, fmt); 2928 vprintf(fmt, ap); 2929 va_end(ap); 2930 printf("%p: ", (void *)vp); 2931 printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]); 2932 printf(" usecount %d, writecount %d, refcount %d mountedhere %p\n", 2933 vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere); 2934 buf[0] = '\0'; 2935 buf[1] = '\0'; 2936 if (vp->v_vflag & VV_ROOT) 2937 strlcat(buf, "|VV_ROOT", sizeof(buf)); 2938 if (vp->v_vflag & VV_ISTTY) 2939 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 2940 if (vp->v_vflag & VV_NOSYNC) 2941 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 2942 if (vp->v_vflag & VV_ETERNALDEV) 2943 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 2944 if (vp->v_vflag & VV_CACHEDLABEL) 2945 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 2946 if (vp->v_vflag & VV_TEXT) 2947 strlcat(buf, "|VV_TEXT", sizeof(buf)); 2948 if (vp->v_vflag & VV_COPYONWRITE) 2949 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 2950 if (vp->v_vflag & VV_SYSTEM) 2951 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 2952 if (vp->v_vflag & VV_PROCDEP) 2953 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 2954 if (vp->v_vflag & VV_NOKNOTE) 2955 strlcat(buf, "|VV_NOKNOTE", sizeof(buf)); 2956 if (vp->v_vflag & VV_DELETED) 2957 strlcat(buf, "|VV_DELETED", sizeof(buf)); 2958 if (vp->v_vflag & VV_MD) 2959 strlcat(buf, "|VV_MD", sizeof(buf)); 2960 if (vp->v_vflag & VV_FORCEINSMQ) 2961 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 2962 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 2963 VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP | 2964 VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ); 2965 if (flags != 0) { 2966 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 2967 strlcat(buf, buf2, sizeof(buf)); 2968 } 2969 if (vp->v_iflag & VI_MOUNT) 2970 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 2971 if (vp->v_iflag & VI_AGE) 2972 strlcat(buf, "|VI_AGE", sizeof(buf)); 2973 if (vp->v_iflag & VI_DOOMED) 2974 strlcat(buf, "|VI_DOOMED", sizeof(buf)); 2975 if (vp->v_iflag & VI_FREE) 2976 strlcat(buf, "|VI_FREE", sizeof(buf)); 2977 if (vp->v_iflag & VI_ACTIVE) 2978 strlcat(buf, "|VI_ACTIVE", sizeof(buf)); 2979 if (vp->v_iflag & VI_DOINGINACT) 2980 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 2981 if (vp->v_iflag & VI_OWEINACT) 2982 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 2983 flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE | 2984 VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT); 2985 if (flags != 0) { 2986 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 2987 strlcat(buf, buf2, sizeof(buf)); 2988 } 2989 printf(" flags (%s)\n", buf + 1); 2990 if (mtx_owned(VI_MTX(vp))) 2991 printf(" VI_LOCKed"); 2992 if (vp->v_object != NULL) 2993 printf(" v_object %p ref %d pages %d " 2994 "cleanbuf %d dirtybuf %d\n", 2995 vp->v_object, vp->v_object->ref_count, 2996 vp->v_object->resident_page_count, 2997 vp->v_bufobj.bo_dirty.bv_cnt, 2998 vp->v_bufobj.bo_clean.bv_cnt); 2999 printf(" "); 3000 lockmgr_printinfo(vp->v_vnlock); 3001 if (vp->v_data != NULL) 3002 VOP_PRINT(vp); 3003 } 3004 3005 #ifdef DDB 3006 /* 3007 * List all of the locked vnodes in the system. 3008 * Called when debugging the kernel. 3009 */ 3010 DB_SHOW_COMMAND(lockedvnods, lockedvnodes) 3011 { 3012 struct mount *mp; 3013 struct vnode *vp; 3014 3015 /* 3016 * Note: because this is DDB, we can't obey the locking semantics 3017 * for these structures, which means we could catch an inconsistent 3018 * state and dereference a nasty pointer. Not much to be done 3019 * about that. 3020 */ 3021 db_printf("Locked vnodes\n"); 3022 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3023 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3024 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 3025 vprint("", vp); 3026 } 3027 } 3028 } 3029 3030 /* 3031 * Show details about the given vnode. 3032 */ 3033 DB_SHOW_COMMAND(vnode, db_show_vnode) 3034 { 3035 struct vnode *vp; 3036 3037 if (!have_addr) 3038 return; 3039 vp = (struct vnode *)addr; 3040 vn_printf(vp, "vnode "); 3041 } 3042 3043 /* 3044 * Show details about the given mount point. 3045 */ 3046 DB_SHOW_COMMAND(mount, db_show_mount) 3047 { 3048 struct mount *mp; 3049 struct vfsopt *opt; 3050 struct statfs *sp; 3051 struct vnode *vp; 3052 char buf[512]; 3053 uint64_t mflags; 3054 u_int flags; 3055 3056 if (!have_addr) { 3057 /* No address given, print short info about all mount points. */ 3058 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3059 db_printf("%p %s on %s (%s)\n", mp, 3060 mp->mnt_stat.f_mntfromname, 3061 mp->mnt_stat.f_mntonname, 3062 mp->mnt_stat.f_fstypename); 3063 if (db_pager_quit) 3064 break; 3065 } 3066 db_printf("\nMore info: show mount <addr>\n"); 3067 return; 3068 } 3069 3070 mp = (struct mount *)addr; 3071 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 3072 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 3073 3074 buf[0] = '\0'; 3075 mflags = mp->mnt_flag; 3076 #define MNT_FLAG(flag) do { \ 3077 if (mflags & (flag)) { \ 3078 if (buf[0] != '\0') \ 3079 strlcat(buf, ", ", sizeof(buf)); \ 3080 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 3081 mflags &= ~(flag); \ 3082 } \ 3083 } while (0) 3084 MNT_FLAG(MNT_RDONLY); 3085 MNT_FLAG(MNT_SYNCHRONOUS); 3086 MNT_FLAG(MNT_NOEXEC); 3087 MNT_FLAG(MNT_NOSUID); 3088 MNT_FLAG(MNT_NFS4ACLS); 3089 MNT_FLAG(MNT_UNION); 3090 MNT_FLAG(MNT_ASYNC); 3091 MNT_FLAG(MNT_SUIDDIR); 3092 MNT_FLAG(MNT_SOFTDEP); 3093 MNT_FLAG(MNT_NOSYMFOLLOW); 3094 MNT_FLAG(MNT_GJOURNAL); 3095 MNT_FLAG(MNT_MULTILABEL); 3096 MNT_FLAG(MNT_ACLS); 3097 MNT_FLAG(MNT_NOATIME); 3098 MNT_FLAG(MNT_NOCLUSTERR); 3099 MNT_FLAG(MNT_NOCLUSTERW); 3100 MNT_FLAG(MNT_SUJ); 3101 MNT_FLAG(MNT_EXRDONLY); 3102 MNT_FLAG(MNT_EXPORTED); 3103 MNT_FLAG(MNT_DEFEXPORTED); 3104 MNT_FLAG(MNT_EXPORTANON); 3105 MNT_FLAG(MNT_EXKERB); 3106 MNT_FLAG(MNT_EXPUBLIC); 3107 MNT_FLAG(MNT_LOCAL); 3108 MNT_FLAG(MNT_QUOTA); 3109 MNT_FLAG(MNT_ROOTFS); 3110 MNT_FLAG(MNT_USER); 3111 MNT_FLAG(MNT_IGNORE); 3112 MNT_FLAG(MNT_UPDATE); 3113 MNT_FLAG(MNT_DELEXPORT); 3114 MNT_FLAG(MNT_RELOAD); 3115 MNT_FLAG(MNT_FORCE); 3116 MNT_FLAG(MNT_SNAPSHOT); 3117 MNT_FLAG(MNT_BYFSID); 3118 #undef MNT_FLAG 3119 if (mflags != 0) { 3120 if (buf[0] != '\0') 3121 strlcat(buf, ", ", sizeof(buf)); 3122 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 3123 "0x%016jx", mflags); 3124 } 3125 db_printf(" mnt_flag = %s\n", buf); 3126 3127 buf[0] = '\0'; 3128 flags = mp->mnt_kern_flag; 3129 #define MNT_KERN_FLAG(flag) do { \ 3130 if (flags & (flag)) { \ 3131 if (buf[0] != '\0') \ 3132 strlcat(buf, ", ", sizeof(buf)); \ 3133 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 3134 flags &= ~(flag); \ 3135 } \ 3136 } while (0) 3137 MNT_KERN_FLAG(MNTK_UNMOUNTF); 3138 MNT_KERN_FLAG(MNTK_ASYNC); 3139 MNT_KERN_FLAG(MNTK_SOFTDEP); 3140 MNT_KERN_FLAG(MNTK_NOINSMNTQ); 3141 MNT_KERN_FLAG(MNTK_DRAINING); 3142 MNT_KERN_FLAG(MNTK_REFEXPIRE); 3143 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 3144 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 3145 MNT_KERN_FLAG(MNTK_NO_IOPF); 3146 MNT_KERN_FLAG(MNTK_VGONE_UPPER); 3147 MNT_KERN_FLAG(MNTK_VGONE_WAITER); 3148 MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT); 3149 MNT_KERN_FLAG(MNTK_MARKER); 3150 MNT_KERN_FLAG(MNTK_USES_BCACHE); 3151 MNT_KERN_FLAG(MNTK_NOASYNC); 3152 MNT_KERN_FLAG(MNTK_UNMOUNT); 3153 MNT_KERN_FLAG(MNTK_MWAIT); 3154 MNT_KERN_FLAG(MNTK_SUSPEND); 3155 MNT_KERN_FLAG(MNTK_SUSPEND2); 3156 MNT_KERN_FLAG(MNTK_SUSPENDED); 3157 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 3158 MNT_KERN_FLAG(MNTK_NOKNOTE); 3159 #undef MNT_KERN_FLAG 3160 if (flags != 0) { 3161 if (buf[0] != '\0') 3162 strlcat(buf, ", ", sizeof(buf)); 3163 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 3164 "0x%08x", flags); 3165 } 3166 db_printf(" mnt_kern_flag = %s\n", buf); 3167 3168 db_printf(" mnt_opt = "); 3169 opt = TAILQ_FIRST(mp->mnt_opt); 3170 if (opt != NULL) { 3171 db_printf("%s", opt->name); 3172 opt = TAILQ_NEXT(opt, link); 3173 while (opt != NULL) { 3174 db_printf(", %s", opt->name); 3175 opt = TAILQ_NEXT(opt, link); 3176 } 3177 } 3178 db_printf("\n"); 3179 3180 sp = &mp->mnt_stat; 3181 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 3182 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 3183 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 3184 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 3185 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 3186 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 3187 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 3188 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 3189 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 3190 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 3191 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 3192 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 3193 3194 db_printf(" mnt_cred = { uid=%u ruid=%u", 3195 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 3196 if (jailed(mp->mnt_cred)) 3197 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 3198 db_printf(" }\n"); 3199 db_printf(" mnt_ref = %d\n", mp->mnt_ref); 3200 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 3201 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 3202 db_printf(" mnt_activevnodelistsize = %d\n", 3203 mp->mnt_activevnodelistsize); 3204 db_printf(" mnt_writeopcount = %d\n", mp->mnt_writeopcount); 3205 db_printf(" mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen); 3206 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 3207 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 3208 db_printf(" mnt_lockref = %d\n", mp->mnt_lockref); 3209 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 3210 db_printf(" mnt_secondary_accwrites = %d\n", 3211 mp->mnt_secondary_accwrites); 3212 db_printf(" mnt_gjprovider = %s\n", 3213 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 3214 3215 db_printf("\n\nList of active vnodes\n"); 3216 TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) { 3217 if (vp->v_type != VMARKER) { 3218 vn_printf(vp, "vnode "); 3219 if (db_pager_quit) 3220 break; 3221 } 3222 } 3223 db_printf("\n\nList of inactive vnodes\n"); 3224 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3225 if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) { 3226 vn_printf(vp, "vnode "); 3227 if (db_pager_quit) 3228 break; 3229 } 3230 } 3231 } 3232 #endif /* DDB */ 3233 3234 /* 3235 * Fill in a struct xvfsconf based on a struct vfsconf. 3236 */ 3237 static int 3238 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 3239 { 3240 struct xvfsconf xvfsp; 3241 3242 bzero(&xvfsp, sizeof(xvfsp)); 3243 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 3244 xvfsp.vfc_typenum = vfsp->vfc_typenum; 3245 xvfsp.vfc_refcount = vfsp->vfc_refcount; 3246 xvfsp.vfc_flags = vfsp->vfc_flags; 3247 /* 3248 * These are unused in userland, we keep them 3249 * to not break binary compatibility. 3250 */ 3251 xvfsp.vfc_vfsops = NULL; 3252 xvfsp.vfc_next = NULL; 3253 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 3254 } 3255 3256 #ifdef COMPAT_FREEBSD32 3257 struct xvfsconf32 { 3258 uint32_t vfc_vfsops; 3259 char vfc_name[MFSNAMELEN]; 3260 int32_t vfc_typenum; 3261 int32_t vfc_refcount; 3262 int32_t vfc_flags; 3263 uint32_t vfc_next; 3264 }; 3265 3266 static int 3267 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 3268 { 3269 struct xvfsconf32 xvfsp; 3270 3271 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 3272 xvfsp.vfc_typenum = vfsp->vfc_typenum; 3273 xvfsp.vfc_refcount = vfsp->vfc_refcount; 3274 xvfsp.vfc_flags = vfsp->vfc_flags; 3275 xvfsp.vfc_vfsops = 0; 3276 xvfsp.vfc_next = 0; 3277 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 3278 } 3279 #endif 3280 3281 /* 3282 * Top level filesystem related information gathering. 3283 */ 3284 static int 3285 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 3286 { 3287 struct vfsconf *vfsp; 3288 int error; 3289 3290 error = 0; 3291 vfsconf_slock(); 3292 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3293 #ifdef COMPAT_FREEBSD32 3294 if (req->flags & SCTL_MASK32) 3295 error = vfsconf2x32(req, vfsp); 3296 else 3297 #endif 3298 error = vfsconf2x(req, vfsp); 3299 if (error) 3300 break; 3301 } 3302 vfsconf_sunlock(); 3303 return (error); 3304 } 3305 3306 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 3307 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 3308 "S,xvfsconf", "List of all configured filesystems"); 3309 3310 #ifndef BURN_BRIDGES 3311 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 3312 3313 static int 3314 vfs_sysctl(SYSCTL_HANDLER_ARGS) 3315 { 3316 int *name = (int *)arg1 - 1; /* XXX */ 3317 u_int namelen = arg2 + 1; /* XXX */ 3318 struct vfsconf *vfsp; 3319 3320 log(LOG_WARNING, "userland calling deprecated sysctl, " 3321 "please rebuild world\n"); 3322 3323 #if 1 || defined(COMPAT_PRELITE2) 3324 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 3325 if (namelen == 1) 3326 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 3327 #endif 3328 3329 switch (name[1]) { 3330 case VFS_MAXTYPENUM: 3331 if (namelen != 2) 3332 return (ENOTDIR); 3333 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 3334 case VFS_CONF: 3335 if (namelen != 3) 3336 return (ENOTDIR); /* overloaded */ 3337 vfsconf_slock(); 3338 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3339 if (vfsp->vfc_typenum == name[2]) 3340 break; 3341 } 3342 vfsconf_sunlock(); 3343 if (vfsp == NULL) 3344 return (EOPNOTSUPP); 3345 #ifdef COMPAT_FREEBSD32 3346 if (req->flags & SCTL_MASK32) 3347 return (vfsconf2x32(req, vfsp)); 3348 else 3349 #endif 3350 return (vfsconf2x(req, vfsp)); 3351 } 3352 return (EOPNOTSUPP); 3353 } 3354 3355 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 3356 CTLFLAG_MPSAFE, vfs_sysctl, 3357 "Generic filesystem"); 3358 3359 #if 1 || defined(COMPAT_PRELITE2) 3360 3361 static int 3362 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 3363 { 3364 int error; 3365 struct vfsconf *vfsp; 3366 struct ovfsconf ovfs; 3367 3368 vfsconf_slock(); 3369 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3370 bzero(&ovfs, sizeof(ovfs)); 3371 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 3372 strcpy(ovfs.vfc_name, vfsp->vfc_name); 3373 ovfs.vfc_index = vfsp->vfc_typenum; 3374 ovfs.vfc_refcount = vfsp->vfc_refcount; 3375 ovfs.vfc_flags = vfsp->vfc_flags; 3376 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 3377 if (error != 0) { 3378 vfsconf_sunlock(); 3379 return (error); 3380 } 3381 } 3382 vfsconf_sunlock(); 3383 return (0); 3384 } 3385 3386 #endif /* 1 || COMPAT_PRELITE2 */ 3387 #endif /* !BURN_BRIDGES */ 3388 3389 #define KINFO_VNODESLOP 10 3390 #ifdef notyet 3391 /* 3392 * Dump vnode list (via sysctl). 3393 */ 3394 /* ARGSUSED */ 3395 static int 3396 sysctl_vnode(SYSCTL_HANDLER_ARGS) 3397 { 3398 struct xvnode *xvn; 3399 struct mount *mp; 3400 struct vnode *vp; 3401 int error, len, n; 3402 3403 /* 3404 * Stale numvnodes access is not fatal here. 3405 */ 3406 req->lock = 0; 3407 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn; 3408 if (!req->oldptr) 3409 /* Make an estimate */ 3410 return (SYSCTL_OUT(req, 0, len)); 3411 3412 error = sysctl_wire_old_buffer(req, 0); 3413 if (error != 0) 3414 return (error); 3415 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK); 3416 n = 0; 3417 mtx_lock(&mountlist_mtx); 3418 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3419 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 3420 continue; 3421 MNT_ILOCK(mp); 3422 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3423 if (n == len) 3424 break; 3425 vref(vp); 3426 xvn[n].xv_size = sizeof *xvn; 3427 xvn[n].xv_vnode = vp; 3428 xvn[n].xv_id = 0; /* XXX compat */ 3429 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field 3430 XV_COPY(usecount); 3431 XV_COPY(writecount); 3432 XV_COPY(holdcnt); 3433 XV_COPY(mount); 3434 XV_COPY(numoutput); 3435 XV_COPY(type); 3436 #undef XV_COPY 3437 xvn[n].xv_flag = vp->v_vflag; 3438 3439 switch (vp->v_type) { 3440 case VREG: 3441 case VDIR: 3442 case VLNK: 3443 break; 3444 case VBLK: 3445 case VCHR: 3446 if (vp->v_rdev == NULL) { 3447 vrele(vp); 3448 continue; 3449 } 3450 xvn[n].xv_dev = dev2udev(vp->v_rdev); 3451 break; 3452 case VSOCK: 3453 xvn[n].xv_socket = vp->v_socket; 3454 break; 3455 case VFIFO: 3456 xvn[n].xv_fifo = vp->v_fifoinfo; 3457 break; 3458 case VNON: 3459 case VBAD: 3460 default: 3461 /* shouldn't happen? */ 3462 vrele(vp); 3463 continue; 3464 } 3465 vrele(vp); 3466 ++n; 3467 } 3468 MNT_IUNLOCK(mp); 3469 mtx_lock(&mountlist_mtx); 3470 vfs_unbusy(mp); 3471 if (n == len) 3472 break; 3473 } 3474 mtx_unlock(&mountlist_mtx); 3475 3476 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn); 3477 free(xvn, M_TEMP); 3478 return (error); 3479 } 3480 3481 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD | 3482 CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode", 3483 ""); 3484 #endif 3485 3486 /* 3487 * Unmount all filesystems. The list is traversed in reverse order 3488 * of mounting to avoid dependencies. 3489 */ 3490 void 3491 vfs_unmountall(void) 3492 { 3493 struct mount *mp; 3494 struct thread *td; 3495 int error; 3496 3497 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 3498 td = curthread; 3499 3500 /* 3501 * Since this only runs when rebooting, it is not interlocked. 3502 */ 3503 while(!TAILQ_EMPTY(&mountlist)) { 3504 mp = TAILQ_LAST(&mountlist, mntlist); 3505 error = dounmount(mp, MNT_FORCE, td); 3506 if (error) { 3507 TAILQ_REMOVE(&mountlist, mp, mnt_list); 3508 /* 3509 * XXX: Due to the way in which we mount the root 3510 * file system off of devfs, devfs will generate a 3511 * "busy" warning when we try to unmount it before 3512 * the root. Don't print a warning as a result in 3513 * order to avoid false positive errors that may 3514 * cause needless upset. 3515 */ 3516 if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) { 3517 printf("unmount of %s failed (", 3518 mp->mnt_stat.f_mntonname); 3519 if (error == EBUSY) 3520 printf("BUSY)\n"); 3521 else 3522 printf("%d)\n", error); 3523 } 3524 } else { 3525 /* The unmount has removed mp from the mountlist */ 3526 } 3527 } 3528 } 3529 3530 /* 3531 * perform msync on all vnodes under a mount point 3532 * the mount point must be locked. 3533 */ 3534 void 3535 vfs_msync(struct mount *mp, int flags) 3536 { 3537 struct vnode *vp, *mvp; 3538 struct vm_object *obj; 3539 3540 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 3541 MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) { 3542 obj = vp->v_object; 3543 if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 && 3544 (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) { 3545 if (!vget(vp, 3546 LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, 3547 curthread)) { 3548 if (vp->v_vflag & VV_NOSYNC) { /* unlinked */ 3549 vput(vp); 3550 continue; 3551 } 3552 3553 obj = vp->v_object; 3554 if (obj != NULL) { 3555 VM_OBJECT_WLOCK(obj); 3556 vm_object_page_clean(obj, 0, 0, 3557 flags == MNT_WAIT ? 3558 OBJPC_SYNC : OBJPC_NOSYNC); 3559 VM_OBJECT_WUNLOCK(obj); 3560 } 3561 vput(vp); 3562 } 3563 } else 3564 VI_UNLOCK(vp); 3565 } 3566 } 3567 3568 static void 3569 destroy_vpollinfo_free(struct vpollinfo *vi) 3570 { 3571 3572 knlist_destroy(&vi->vpi_selinfo.si_note); 3573 mtx_destroy(&vi->vpi_lock); 3574 uma_zfree(vnodepoll_zone, vi); 3575 } 3576 3577 static void 3578 destroy_vpollinfo(struct vpollinfo *vi) 3579 { 3580 3581 knlist_clear(&vi->vpi_selinfo.si_note, 1); 3582 seldrain(&vi->vpi_selinfo); 3583 destroy_vpollinfo_free(vi); 3584 } 3585 3586 /* 3587 * Initalize per-vnode helper structure to hold poll-related state. 3588 */ 3589 void 3590 v_addpollinfo(struct vnode *vp) 3591 { 3592 struct vpollinfo *vi; 3593 3594 if (vp->v_pollinfo != NULL) 3595 return; 3596 vi = uma_zalloc(vnodepoll_zone, M_WAITOK); 3597 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 3598 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 3599 vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked); 3600 VI_LOCK(vp); 3601 if (vp->v_pollinfo != NULL) { 3602 VI_UNLOCK(vp); 3603 destroy_vpollinfo_free(vi); 3604 return; 3605 } 3606 vp->v_pollinfo = vi; 3607 VI_UNLOCK(vp); 3608 } 3609 3610 /* 3611 * Record a process's interest in events which might happen to 3612 * a vnode. Because poll uses the historic select-style interface 3613 * internally, this routine serves as both the ``check for any 3614 * pending events'' and the ``record my interest in future events'' 3615 * functions. (These are done together, while the lock is held, 3616 * to avoid race conditions.) 3617 */ 3618 int 3619 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 3620 { 3621 3622 v_addpollinfo(vp); 3623 mtx_lock(&vp->v_pollinfo->vpi_lock); 3624 if (vp->v_pollinfo->vpi_revents & events) { 3625 /* 3626 * This leaves events we are not interested 3627 * in available for the other process which 3628 * which presumably had requested them 3629 * (otherwise they would never have been 3630 * recorded). 3631 */ 3632 events &= vp->v_pollinfo->vpi_revents; 3633 vp->v_pollinfo->vpi_revents &= ~events; 3634 3635 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3636 return (events); 3637 } 3638 vp->v_pollinfo->vpi_events |= events; 3639 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 3640 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3641 return (0); 3642 } 3643 3644 /* 3645 * Routine to create and manage a filesystem syncer vnode. 3646 */ 3647 #define sync_close ((int (*)(struct vop_close_args *))nullop) 3648 static int sync_fsync(struct vop_fsync_args *); 3649 static int sync_inactive(struct vop_inactive_args *); 3650 static int sync_reclaim(struct vop_reclaim_args *); 3651 3652 static struct vop_vector sync_vnodeops = { 3653 .vop_bypass = VOP_EOPNOTSUPP, 3654 .vop_close = sync_close, /* close */ 3655 .vop_fsync = sync_fsync, /* fsync */ 3656 .vop_inactive = sync_inactive, /* inactive */ 3657 .vop_reclaim = sync_reclaim, /* reclaim */ 3658 .vop_lock1 = vop_stdlock, /* lock */ 3659 .vop_unlock = vop_stdunlock, /* unlock */ 3660 .vop_islocked = vop_stdislocked, /* islocked */ 3661 }; 3662 3663 /* 3664 * Create a new filesystem syncer vnode for the specified mount point. 3665 */ 3666 void 3667 vfs_allocate_syncvnode(struct mount *mp) 3668 { 3669 struct vnode *vp; 3670 struct bufobj *bo; 3671 static long start, incr, next; 3672 int error; 3673 3674 /* Allocate a new vnode */ 3675 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 3676 if (error != 0) 3677 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 3678 vp->v_type = VNON; 3679 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3680 vp->v_vflag |= VV_FORCEINSMQ; 3681 error = insmntque(vp, mp); 3682 if (error != 0) 3683 panic("vfs_allocate_syncvnode: insmntque() failed"); 3684 vp->v_vflag &= ~VV_FORCEINSMQ; 3685 VOP_UNLOCK(vp, 0); 3686 /* 3687 * Place the vnode onto the syncer worklist. We attempt to 3688 * scatter them about on the list so that they will go off 3689 * at evenly distributed times even if all the filesystems 3690 * are mounted at once. 3691 */ 3692 next += incr; 3693 if (next == 0 || next > syncer_maxdelay) { 3694 start /= 2; 3695 incr /= 2; 3696 if (start == 0) { 3697 start = syncer_maxdelay / 2; 3698 incr = syncer_maxdelay; 3699 } 3700 next = start; 3701 } 3702 bo = &vp->v_bufobj; 3703 BO_LOCK(bo); 3704 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 3705 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 3706 mtx_lock(&sync_mtx); 3707 sync_vnode_count++; 3708 if (mp->mnt_syncer == NULL) { 3709 mp->mnt_syncer = vp; 3710 vp = NULL; 3711 } 3712 mtx_unlock(&sync_mtx); 3713 BO_UNLOCK(bo); 3714 if (vp != NULL) { 3715 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3716 vgone(vp); 3717 vput(vp); 3718 } 3719 } 3720 3721 void 3722 vfs_deallocate_syncvnode(struct mount *mp) 3723 { 3724 struct vnode *vp; 3725 3726 mtx_lock(&sync_mtx); 3727 vp = mp->mnt_syncer; 3728 if (vp != NULL) 3729 mp->mnt_syncer = NULL; 3730 mtx_unlock(&sync_mtx); 3731 if (vp != NULL) 3732 vrele(vp); 3733 } 3734 3735 /* 3736 * Do a lazy sync of the filesystem. 3737 */ 3738 static int 3739 sync_fsync(struct vop_fsync_args *ap) 3740 { 3741 struct vnode *syncvp = ap->a_vp; 3742 struct mount *mp = syncvp->v_mount; 3743 int error, save; 3744 struct bufobj *bo; 3745 3746 /* 3747 * We only need to do something if this is a lazy evaluation. 3748 */ 3749 if (ap->a_waitfor != MNT_LAZY) 3750 return (0); 3751 3752 /* 3753 * Move ourselves to the back of the sync list. 3754 */ 3755 bo = &syncvp->v_bufobj; 3756 BO_LOCK(bo); 3757 vn_syncer_add_to_worklist(bo, syncdelay); 3758 BO_UNLOCK(bo); 3759 3760 /* 3761 * Walk the list of vnodes pushing all that are dirty and 3762 * not already on the sync list. 3763 */ 3764 if (vfs_busy(mp, MBF_NOWAIT) != 0) 3765 return (0); 3766 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { 3767 vfs_unbusy(mp); 3768 return (0); 3769 } 3770 save = curthread_pflags_set(TDP_SYNCIO); 3771 vfs_msync(mp, MNT_NOWAIT); 3772 error = VFS_SYNC(mp, MNT_LAZY); 3773 curthread_pflags_restore(save); 3774 vn_finished_write(mp); 3775 vfs_unbusy(mp); 3776 return (error); 3777 } 3778 3779 /* 3780 * The syncer vnode is no referenced. 3781 */ 3782 static int 3783 sync_inactive(struct vop_inactive_args *ap) 3784 { 3785 3786 vgone(ap->a_vp); 3787 return (0); 3788 } 3789 3790 /* 3791 * The syncer vnode is no longer needed and is being decommissioned. 3792 * 3793 * Modifications to the worklist must be protected by sync_mtx. 3794 */ 3795 static int 3796 sync_reclaim(struct vop_reclaim_args *ap) 3797 { 3798 struct vnode *vp = ap->a_vp; 3799 struct bufobj *bo; 3800 3801 bo = &vp->v_bufobj; 3802 BO_LOCK(bo); 3803 mtx_lock(&sync_mtx); 3804 if (vp->v_mount->mnt_syncer == vp) 3805 vp->v_mount->mnt_syncer = NULL; 3806 if (bo->bo_flag & BO_ONWORKLST) { 3807 LIST_REMOVE(bo, bo_synclist); 3808 syncer_worklist_len--; 3809 sync_vnode_count--; 3810 bo->bo_flag &= ~BO_ONWORKLST; 3811 } 3812 mtx_unlock(&sync_mtx); 3813 BO_UNLOCK(bo); 3814 3815 return (0); 3816 } 3817 3818 /* 3819 * Check if vnode represents a disk device 3820 */ 3821 int 3822 vn_isdisk(struct vnode *vp, int *errp) 3823 { 3824 int error; 3825 3826 if (vp->v_type != VCHR) { 3827 error = ENOTBLK; 3828 goto out; 3829 } 3830 error = 0; 3831 dev_lock(); 3832 if (vp->v_rdev == NULL) 3833 error = ENXIO; 3834 else if (vp->v_rdev->si_devsw == NULL) 3835 error = ENXIO; 3836 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 3837 error = ENOTBLK; 3838 dev_unlock(); 3839 out: 3840 if (errp != NULL) 3841 *errp = error; 3842 return (error == 0); 3843 } 3844 3845 /* 3846 * Common filesystem object access control check routine. Accepts a 3847 * vnode's type, "mode", uid and gid, requested access mode, credentials, 3848 * and optional call-by-reference privused argument allowing vaccess() 3849 * to indicate to the caller whether privilege was used to satisfy the 3850 * request (obsoleted). Returns 0 on success, or an errno on failure. 3851 */ 3852 int 3853 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 3854 accmode_t accmode, struct ucred *cred, int *privused) 3855 { 3856 accmode_t dac_granted; 3857 accmode_t priv_granted; 3858 3859 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 3860 ("invalid bit in accmode")); 3861 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 3862 ("VAPPEND without VWRITE")); 3863 3864 /* 3865 * Look for a normal, non-privileged way to access the file/directory 3866 * as requested. If it exists, go with that. 3867 */ 3868 3869 if (privused != NULL) 3870 *privused = 0; 3871 3872 dac_granted = 0; 3873 3874 /* Check the owner. */ 3875 if (cred->cr_uid == file_uid) { 3876 dac_granted |= VADMIN; 3877 if (file_mode & S_IXUSR) 3878 dac_granted |= VEXEC; 3879 if (file_mode & S_IRUSR) 3880 dac_granted |= VREAD; 3881 if (file_mode & S_IWUSR) 3882 dac_granted |= (VWRITE | VAPPEND); 3883 3884 if ((accmode & dac_granted) == accmode) 3885 return (0); 3886 3887 goto privcheck; 3888 } 3889 3890 /* Otherwise, check the groups (first match) */ 3891 if (groupmember(file_gid, cred)) { 3892 if (file_mode & S_IXGRP) 3893 dac_granted |= VEXEC; 3894 if (file_mode & S_IRGRP) 3895 dac_granted |= VREAD; 3896 if (file_mode & S_IWGRP) 3897 dac_granted |= (VWRITE | VAPPEND); 3898 3899 if ((accmode & dac_granted) == accmode) 3900 return (0); 3901 3902 goto privcheck; 3903 } 3904 3905 /* Otherwise, check everyone else. */ 3906 if (file_mode & S_IXOTH) 3907 dac_granted |= VEXEC; 3908 if (file_mode & S_IROTH) 3909 dac_granted |= VREAD; 3910 if (file_mode & S_IWOTH) 3911 dac_granted |= (VWRITE | VAPPEND); 3912 if ((accmode & dac_granted) == accmode) 3913 return (0); 3914 3915 privcheck: 3916 /* 3917 * Build a privilege mask to determine if the set of privileges 3918 * satisfies the requirements when combined with the granted mask 3919 * from above. For each privilege, if the privilege is required, 3920 * bitwise or the request type onto the priv_granted mask. 3921 */ 3922 priv_granted = 0; 3923 3924 if (type == VDIR) { 3925 /* 3926 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 3927 * requests, instead of PRIV_VFS_EXEC. 3928 */ 3929 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 3930 !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0)) 3931 priv_granted |= VEXEC; 3932 } else { 3933 /* 3934 * Ensure that at least one execute bit is on. Otherwise, 3935 * a privileged user will always succeed, and we don't want 3936 * this to happen unless the file really is executable. 3937 */ 3938 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 3939 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 3940 !priv_check_cred(cred, PRIV_VFS_EXEC, 0)) 3941 priv_granted |= VEXEC; 3942 } 3943 3944 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 3945 !priv_check_cred(cred, PRIV_VFS_READ, 0)) 3946 priv_granted |= VREAD; 3947 3948 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 3949 !priv_check_cred(cred, PRIV_VFS_WRITE, 0)) 3950 priv_granted |= (VWRITE | VAPPEND); 3951 3952 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 3953 !priv_check_cred(cred, PRIV_VFS_ADMIN, 0)) 3954 priv_granted |= VADMIN; 3955 3956 if ((accmode & (priv_granted | dac_granted)) == accmode) { 3957 /* XXX audit: privilege used */ 3958 if (privused != NULL) 3959 *privused = 1; 3960 return (0); 3961 } 3962 3963 return ((accmode & VADMIN) ? EPERM : EACCES); 3964 } 3965 3966 /* 3967 * Credential check based on process requesting service, and per-attribute 3968 * permissions. 3969 */ 3970 int 3971 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 3972 struct thread *td, accmode_t accmode) 3973 { 3974 3975 /* 3976 * Kernel-invoked always succeeds. 3977 */ 3978 if (cred == NOCRED) 3979 return (0); 3980 3981 /* 3982 * Do not allow privileged processes in jail to directly manipulate 3983 * system attributes. 3984 */ 3985 switch (attrnamespace) { 3986 case EXTATTR_NAMESPACE_SYSTEM: 3987 /* Potentially should be: return (EPERM); */ 3988 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0)); 3989 case EXTATTR_NAMESPACE_USER: 3990 return (VOP_ACCESS(vp, accmode, cred, td)); 3991 default: 3992 return (EPERM); 3993 } 3994 } 3995 3996 #ifdef DEBUG_VFS_LOCKS 3997 /* 3998 * This only exists to supress warnings from unlocked specfs accesses. It is 3999 * no longer ok to have an unlocked VFS. 4000 */ 4001 #define IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL || \ 4002 (vp)->v_type == VCHR || (vp)->v_type == VBAD) 4003 4004 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 4005 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 4006 "Drop into debugger on lock violation"); 4007 4008 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 4009 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 4010 0, "Check for interlock across VOPs"); 4011 4012 int vfs_badlock_print = 1; /* Print lock violations. */ 4013 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 4014 0, "Print lock violations"); 4015 4016 #ifdef KDB 4017 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 4018 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 4019 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 4020 #endif 4021 4022 static void 4023 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 4024 { 4025 4026 #ifdef KDB 4027 if (vfs_badlock_backtrace) 4028 kdb_backtrace(); 4029 #endif 4030 if (vfs_badlock_print) 4031 printf("%s: %p %s\n", str, (void *)vp, msg); 4032 if (vfs_badlock_ddb) 4033 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 4034 } 4035 4036 void 4037 assert_vi_locked(struct vnode *vp, const char *str) 4038 { 4039 4040 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 4041 vfs_badlock("interlock is not locked but should be", str, vp); 4042 } 4043 4044 void 4045 assert_vi_unlocked(struct vnode *vp, const char *str) 4046 { 4047 4048 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 4049 vfs_badlock("interlock is locked but should not be", str, vp); 4050 } 4051 4052 void 4053 assert_vop_locked(struct vnode *vp, const char *str) 4054 { 4055 int locked; 4056 4057 if (!IGNORE_LOCK(vp)) { 4058 locked = VOP_ISLOCKED(vp); 4059 if (locked == 0 || locked == LK_EXCLOTHER) 4060 vfs_badlock("is not locked but should be", str, vp); 4061 } 4062 } 4063 4064 void 4065 assert_vop_unlocked(struct vnode *vp, const char *str) 4066 { 4067 4068 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 4069 vfs_badlock("is locked but should not be", str, vp); 4070 } 4071 4072 void 4073 assert_vop_elocked(struct vnode *vp, const char *str) 4074 { 4075 4076 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 4077 vfs_badlock("is not exclusive locked but should be", str, vp); 4078 } 4079 4080 #if 0 4081 void 4082 assert_vop_elocked_other(struct vnode *vp, const char *str) 4083 { 4084 4085 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER) 4086 vfs_badlock("is not exclusive locked by another thread", 4087 str, vp); 4088 } 4089 4090 void 4091 assert_vop_slocked(struct vnode *vp, const char *str) 4092 { 4093 4094 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED) 4095 vfs_badlock("is not locked shared but should be", str, vp); 4096 } 4097 #endif /* 0 */ 4098 #endif /* DEBUG_VFS_LOCKS */ 4099 4100 void 4101 vop_rename_fail(struct vop_rename_args *ap) 4102 { 4103 4104 if (ap->a_tvp != NULL) 4105 vput(ap->a_tvp); 4106 if (ap->a_tdvp == ap->a_tvp) 4107 vrele(ap->a_tdvp); 4108 else 4109 vput(ap->a_tdvp); 4110 vrele(ap->a_fdvp); 4111 vrele(ap->a_fvp); 4112 } 4113 4114 void 4115 vop_rename_pre(void *ap) 4116 { 4117 struct vop_rename_args *a = ap; 4118 4119 #ifdef DEBUG_VFS_LOCKS 4120 if (a->a_tvp) 4121 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 4122 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 4123 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 4124 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 4125 4126 /* Check the source (from). */ 4127 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 4128 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 4129 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 4130 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 4131 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 4132 4133 /* Check the target. */ 4134 if (a->a_tvp) 4135 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 4136 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 4137 #endif 4138 if (a->a_tdvp != a->a_fdvp) 4139 vhold(a->a_fdvp); 4140 if (a->a_tvp != a->a_fvp) 4141 vhold(a->a_fvp); 4142 vhold(a->a_tdvp); 4143 if (a->a_tvp) 4144 vhold(a->a_tvp); 4145 } 4146 4147 void 4148 vop_strategy_pre(void *ap) 4149 { 4150 #ifdef DEBUG_VFS_LOCKS 4151 struct vop_strategy_args *a; 4152 struct buf *bp; 4153 4154 a = ap; 4155 bp = a->a_bp; 4156 4157 /* 4158 * Cluster ops lock their component buffers but not the IO container. 4159 */ 4160 if ((bp->b_flags & B_CLUSTER) != 0) 4161 return; 4162 4163 if (panicstr == NULL && !BUF_ISLOCKED(bp)) { 4164 if (vfs_badlock_print) 4165 printf( 4166 "VOP_STRATEGY: bp is not locked but should be\n"); 4167 if (vfs_badlock_ddb) 4168 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 4169 } 4170 #endif 4171 } 4172 4173 void 4174 vop_lock_pre(void *ap) 4175 { 4176 #ifdef DEBUG_VFS_LOCKS 4177 struct vop_lock1_args *a = ap; 4178 4179 if ((a->a_flags & LK_INTERLOCK) == 0) 4180 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 4181 else 4182 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 4183 #endif 4184 } 4185 4186 void 4187 vop_lock_post(void *ap, int rc) 4188 { 4189 #ifdef DEBUG_VFS_LOCKS 4190 struct vop_lock1_args *a = ap; 4191 4192 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 4193 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 4194 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 4195 #endif 4196 } 4197 4198 void 4199 vop_unlock_pre(void *ap) 4200 { 4201 #ifdef DEBUG_VFS_LOCKS 4202 struct vop_unlock_args *a = ap; 4203 4204 if (a->a_flags & LK_INTERLOCK) 4205 ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK"); 4206 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK"); 4207 #endif 4208 } 4209 4210 void 4211 vop_unlock_post(void *ap, int rc) 4212 { 4213 #ifdef DEBUG_VFS_LOCKS 4214 struct vop_unlock_args *a = ap; 4215 4216 if (a->a_flags & LK_INTERLOCK) 4217 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK"); 4218 #endif 4219 } 4220 4221 void 4222 vop_create_post(void *ap, int rc) 4223 { 4224 struct vop_create_args *a = ap; 4225 4226 if (!rc) 4227 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4228 } 4229 4230 void 4231 vop_deleteextattr_post(void *ap, int rc) 4232 { 4233 struct vop_deleteextattr_args *a = ap; 4234 4235 if (!rc) 4236 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4237 } 4238 4239 void 4240 vop_link_post(void *ap, int rc) 4241 { 4242 struct vop_link_args *a = ap; 4243 4244 if (!rc) { 4245 VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK); 4246 VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE); 4247 } 4248 } 4249 4250 void 4251 vop_mkdir_post(void *ap, int rc) 4252 { 4253 struct vop_mkdir_args *a = ap; 4254 4255 if (!rc) 4256 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 4257 } 4258 4259 void 4260 vop_mknod_post(void *ap, int rc) 4261 { 4262 struct vop_mknod_args *a = ap; 4263 4264 if (!rc) 4265 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4266 } 4267 4268 void 4269 vop_remove_post(void *ap, int rc) 4270 { 4271 struct vop_remove_args *a = ap; 4272 4273 if (!rc) { 4274 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4275 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 4276 } 4277 } 4278 4279 void 4280 vop_rename_post(void *ap, int rc) 4281 { 4282 struct vop_rename_args *a = ap; 4283 4284 if (!rc) { 4285 VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE); 4286 VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE); 4287 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 4288 if (a->a_tvp) 4289 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 4290 } 4291 if (a->a_tdvp != a->a_fdvp) 4292 vdrop(a->a_fdvp); 4293 if (a->a_tvp != a->a_fvp) 4294 vdrop(a->a_fvp); 4295 vdrop(a->a_tdvp); 4296 if (a->a_tvp) 4297 vdrop(a->a_tvp); 4298 } 4299 4300 void 4301 vop_rmdir_post(void *ap, int rc) 4302 { 4303 struct vop_rmdir_args *a = ap; 4304 4305 if (!rc) { 4306 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 4307 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 4308 } 4309 } 4310 4311 void 4312 vop_setattr_post(void *ap, int rc) 4313 { 4314 struct vop_setattr_args *a = ap; 4315 4316 if (!rc) 4317 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4318 } 4319 4320 void 4321 vop_setextattr_post(void *ap, int rc) 4322 { 4323 struct vop_setextattr_args *a = ap; 4324 4325 if (!rc) 4326 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4327 } 4328 4329 void 4330 vop_symlink_post(void *ap, int rc) 4331 { 4332 struct vop_symlink_args *a = ap; 4333 4334 if (!rc) 4335 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4336 } 4337 4338 static struct knlist fs_knlist; 4339 4340 static void 4341 vfs_event_init(void *arg) 4342 { 4343 knlist_init_mtx(&fs_knlist, NULL); 4344 } 4345 /* XXX - correct order? */ 4346 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 4347 4348 void 4349 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 4350 { 4351 4352 KNOTE_UNLOCKED(&fs_knlist, event); 4353 } 4354 4355 static int filt_fsattach(struct knote *kn); 4356 static void filt_fsdetach(struct knote *kn); 4357 static int filt_fsevent(struct knote *kn, long hint); 4358 4359 struct filterops fs_filtops = { 4360 .f_isfd = 0, 4361 .f_attach = filt_fsattach, 4362 .f_detach = filt_fsdetach, 4363 .f_event = filt_fsevent 4364 }; 4365 4366 static int 4367 filt_fsattach(struct knote *kn) 4368 { 4369 4370 kn->kn_flags |= EV_CLEAR; 4371 knlist_add(&fs_knlist, kn, 0); 4372 return (0); 4373 } 4374 4375 static void 4376 filt_fsdetach(struct knote *kn) 4377 { 4378 4379 knlist_remove(&fs_knlist, kn, 0); 4380 } 4381 4382 static int 4383 filt_fsevent(struct knote *kn, long hint) 4384 { 4385 4386 kn->kn_fflags |= hint; 4387 return (kn->kn_fflags != 0); 4388 } 4389 4390 static int 4391 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 4392 { 4393 struct vfsidctl vc; 4394 int error; 4395 struct mount *mp; 4396 4397 error = SYSCTL_IN(req, &vc, sizeof(vc)); 4398 if (error) 4399 return (error); 4400 if (vc.vc_vers != VFS_CTL_VERS1) 4401 return (EINVAL); 4402 mp = vfs_getvfs(&vc.vc_fsid); 4403 if (mp == NULL) 4404 return (ENOENT); 4405 /* ensure that a specific sysctl goes to the right filesystem. */ 4406 if (strcmp(vc.vc_fstypename, "*") != 0 && 4407 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 4408 vfs_rel(mp); 4409 return (EINVAL); 4410 } 4411 VCTLTOREQ(&vc, req); 4412 error = VFS_SYSCTL(mp, vc.vc_op, req); 4413 vfs_rel(mp); 4414 return (error); 4415 } 4416 4417 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR, 4418 NULL, 0, sysctl_vfs_ctl, "", 4419 "Sysctl by fsid"); 4420 4421 /* 4422 * Function to initialize a va_filerev field sensibly. 4423 * XXX: Wouldn't a random number make a lot more sense ?? 4424 */ 4425 u_quad_t 4426 init_va_filerev(void) 4427 { 4428 struct bintime bt; 4429 4430 getbinuptime(&bt); 4431 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 4432 } 4433 4434 static int filt_vfsread(struct knote *kn, long hint); 4435 static int filt_vfswrite(struct knote *kn, long hint); 4436 static int filt_vfsvnode(struct knote *kn, long hint); 4437 static void filt_vfsdetach(struct knote *kn); 4438 static struct filterops vfsread_filtops = { 4439 .f_isfd = 1, 4440 .f_detach = filt_vfsdetach, 4441 .f_event = filt_vfsread 4442 }; 4443 static struct filterops vfswrite_filtops = { 4444 .f_isfd = 1, 4445 .f_detach = filt_vfsdetach, 4446 .f_event = filt_vfswrite 4447 }; 4448 static struct filterops vfsvnode_filtops = { 4449 .f_isfd = 1, 4450 .f_detach = filt_vfsdetach, 4451 .f_event = filt_vfsvnode 4452 }; 4453 4454 static void 4455 vfs_knllock(void *arg) 4456 { 4457 struct vnode *vp = arg; 4458 4459 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 4460 } 4461 4462 static void 4463 vfs_knlunlock(void *arg) 4464 { 4465 struct vnode *vp = arg; 4466 4467 VOP_UNLOCK(vp, 0); 4468 } 4469 4470 static void 4471 vfs_knl_assert_locked(void *arg) 4472 { 4473 #ifdef DEBUG_VFS_LOCKS 4474 struct vnode *vp = arg; 4475 4476 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 4477 #endif 4478 } 4479 4480 static void 4481 vfs_knl_assert_unlocked(void *arg) 4482 { 4483 #ifdef DEBUG_VFS_LOCKS 4484 struct vnode *vp = arg; 4485 4486 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 4487 #endif 4488 } 4489 4490 int 4491 vfs_kqfilter(struct vop_kqfilter_args *ap) 4492 { 4493 struct vnode *vp = ap->a_vp; 4494 struct knote *kn = ap->a_kn; 4495 struct knlist *knl; 4496 4497 switch (kn->kn_filter) { 4498 case EVFILT_READ: 4499 kn->kn_fop = &vfsread_filtops; 4500 break; 4501 case EVFILT_WRITE: 4502 kn->kn_fop = &vfswrite_filtops; 4503 break; 4504 case EVFILT_VNODE: 4505 kn->kn_fop = &vfsvnode_filtops; 4506 break; 4507 default: 4508 return (EINVAL); 4509 } 4510 4511 kn->kn_hook = (caddr_t)vp; 4512 4513 v_addpollinfo(vp); 4514 if (vp->v_pollinfo == NULL) 4515 return (ENOMEM); 4516 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 4517 vhold(vp); 4518 knlist_add(knl, kn, 0); 4519 4520 return (0); 4521 } 4522 4523 /* 4524 * Detach knote from vnode 4525 */ 4526 static void 4527 filt_vfsdetach(struct knote *kn) 4528 { 4529 struct vnode *vp = (struct vnode *)kn->kn_hook; 4530 4531 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 4532 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 4533 vdrop(vp); 4534 } 4535 4536 /*ARGSUSED*/ 4537 static int 4538 filt_vfsread(struct knote *kn, long hint) 4539 { 4540 struct vnode *vp = (struct vnode *)kn->kn_hook; 4541 struct vattr va; 4542 int res; 4543 4544 /* 4545 * filesystem is gone, so set the EOF flag and schedule 4546 * the knote for deletion. 4547 */ 4548 if (hint == NOTE_REVOKE) { 4549 VI_LOCK(vp); 4550 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 4551 VI_UNLOCK(vp); 4552 return (1); 4553 } 4554 4555 if (VOP_GETATTR(vp, &va, curthread->td_ucred)) 4556 return (0); 4557 4558 VI_LOCK(vp); 4559 kn->kn_data = va.va_size - kn->kn_fp->f_offset; 4560 res = (kn->kn_data != 0); 4561 VI_UNLOCK(vp); 4562 return (res); 4563 } 4564 4565 /*ARGSUSED*/ 4566 static int 4567 filt_vfswrite(struct knote *kn, long hint) 4568 { 4569 struct vnode *vp = (struct vnode *)kn->kn_hook; 4570 4571 VI_LOCK(vp); 4572 4573 /* 4574 * filesystem is gone, so set the EOF flag and schedule 4575 * the knote for deletion. 4576 */ 4577 if (hint == NOTE_REVOKE) 4578 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 4579 4580 kn->kn_data = 0; 4581 VI_UNLOCK(vp); 4582 return (1); 4583 } 4584 4585 static int 4586 filt_vfsvnode(struct knote *kn, long hint) 4587 { 4588 struct vnode *vp = (struct vnode *)kn->kn_hook; 4589 int res; 4590 4591 VI_LOCK(vp); 4592 if (kn->kn_sfflags & hint) 4593 kn->kn_fflags |= hint; 4594 if (hint == NOTE_REVOKE) { 4595 kn->kn_flags |= EV_EOF; 4596 VI_UNLOCK(vp); 4597 return (1); 4598 } 4599 res = (kn->kn_fflags != 0); 4600 VI_UNLOCK(vp); 4601 return (res); 4602 } 4603 4604 int 4605 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 4606 { 4607 int error; 4608 4609 if (dp->d_reclen > ap->a_uio->uio_resid) 4610 return (ENAMETOOLONG); 4611 error = uiomove(dp, dp->d_reclen, ap->a_uio); 4612 if (error) { 4613 if (ap->a_ncookies != NULL) { 4614 if (ap->a_cookies != NULL) 4615 free(ap->a_cookies, M_TEMP); 4616 ap->a_cookies = NULL; 4617 *ap->a_ncookies = 0; 4618 } 4619 return (error); 4620 } 4621 if (ap->a_ncookies == NULL) 4622 return (0); 4623 4624 KASSERT(ap->a_cookies, 4625 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 4626 4627 *ap->a_cookies = realloc(*ap->a_cookies, 4628 (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO); 4629 (*ap->a_cookies)[*ap->a_ncookies] = off; 4630 return (0); 4631 } 4632 4633 /* 4634 * Mark for update the access time of the file if the filesystem 4635 * supports VOP_MARKATIME. This functionality is used by execve and 4636 * mmap, so we want to avoid the I/O implied by directly setting 4637 * va_atime for the sake of efficiency. 4638 */ 4639 void 4640 vfs_mark_atime(struct vnode *vp, struct ucred *cred) 4641 { 4642 struct mount *mp; 4643 4644 mp = vp->v_mount; 4645 ASSERT_VOP_LOCKED(vp, "vfs_mark_atime"); 4646 if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 4647 (void)VOP_MARKATIME(vp); 4648 } 4649 4650 /* 4651 * The purpose of this routine is to remove granularity from accmode_t, 4652 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 4653 * VADMIN and VAPPEND. 4654 * 4655 * If it returns 0, the caller is supposed to continue with the usual 4656 * access checks using 'accmode' as modified by this routine. If it 4657 * returns nonzero value, the caller is supposed to return that value 4658 * as errno. 4659 * 4660 * Note that after this routine runs, accmode may be zero. 4661 */ 4662 int 4663 vfs_unixify_accmode(accmode_t *accmode) 4664 { 4665 /* 4666 * There is no way to specify explicit "deny" rule using 4667 * file mode or POSIX.1e ACLs. 4668 */ 4669 if (*accmode & VEXPLICIT_DENY) { 4670 *accmode = 0; 4671 return (0); 4672 } 4673 4674 /* 4675 * None of these can be translated into usual access bits. 4676 * Also, the common case for NFSv4 ACLs is to not contain 4677 * either of these bits. Caller should check for VWRITE 4678 * on the containing directory instead. 4679 */ 4680 if (*accmode & (VDELETE_CHILD | VDELETE)) 4681 return (EPERM); 4682 4683 if (*accmode & VADMIN_PERMS) { 4684 *accmode &= ~VADMIN_PERMS; 4685 *accmode |= VADMIN; 4686 } 4687 4688 /* 4689 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 4690 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 4691 */ 4692 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 4693 4694 return (0); 4695 } 4696 4697 /* 4698 * These are helper functions for filesystems to traverse all 4699 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 4700 * 4701 * This interface replaces MNT_VNODE_FOREACH. 4702 */ 4703 4704 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 4705 4706 struct vnode * 4707 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 4708 { 4709 struct vnode *vp; 4710 4711 if (should_yield()) 4712 kern_yield(PRI_USER); 4713 MNT_ILOCK(mp); 4714 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4715 vp = TAILQ_NEXT(*mvp, v_nmntvnodes); 4716 while (vp != NULL && (vp->v_type == VMARKER || 4717 (vp->v_iflag & VI_DOOMED) != 0)) 4718 vp = TAILQ_NEXT(vp, v_nmntvnodes); 4719 4720 /* Check if we are done */ 4721 if (vp == NULL) { 4722 __mnt_vnode_markerfree_all(mvp, mp); 4723 /* MNT_IUNLOCK(mp); -- done in above function */ 4724 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 4725 return (NULL); 4726 } 4727 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 4728 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 4729 VI_LOCK(vp); 4730 MNT_IUNLOCK(mp); 4731 return (vp); 4732 } 4733 4734 struct vnode * 4735 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 4736 { 4737 struct vnode *vp; 4738 4739 *mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 4740 MNT_ILOCK(mp); 4741 MNT_REF(mp); 4742 (*mvp)->v_type = VMARKER; 4743 4744 vp = TAILQ_FIRST(&mp->mnt_nvnodelist); 4745 while (vp != NULL && (vp->v_type == VMARKER || 4746 (vp->v_iflag & VI_DOOMED) != 0)) 4747 vp = TAILQ_NEXT(vp, v_nmntvnodes); 4748 4749 /* Check if we are done */ 4750 if (vp == NULL) { 4751 MNT_REL(mp); 4752 MNT_IUNLOCK(mp); 4753 free(*mvp, M_VNODE_MARKER); 4754 *mvp = NULL; 4755 return (NULL); 4756 } 4757 (*mvp)->v_mount = mp; 4758 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 4759 VI_LOCK(vp); 4760 MNT_IUNLOCK(mp); 4761 return (vp); 4762 } 4763 4764 4765 void 4766 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 4767 { 4768 4769 if (*mvp == NULL) { 4770 MNT_IUNLOCK(mp); 4771 return; 4772 } 4773 4774 mtx_assert(MNT_MTX(mp), MA_OWNED); 4775 4776 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4777 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 4778 MNT_REL(mp); 4779 MNT_IUNLOCK(mp); 4780 free(*mvp, M_VNODE_MARKER); 4781 *mvp = NULL; 4782 } 4783 4784 /* 4785 * These are helper functions for filesystems to traverse their 4786 * active vnodes. See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h 4787 */ 4788 static void 4789 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp) 4790 { 4791 4792 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4793 4794 MNT_ILOCK(mp); 4795 MNT_REL(mp); 4796 MNT_IUNLOCK(mp); 4797 free(*mvp, M_VNODE_MARKER); 4798 *mvp = NULL; 4799 } 4800 4801 static struct vnode * 4802 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp) 4803 { 4804 struct vnode *vp, *nvp; 4805 4806 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 4807 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4808 restart: 4809 vp = TAILQ_NEXT(*mvp, v_actfreelist); 4810 TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist); 4811 while (vp != NULL) { 4812 if (vp->v_type == VMARKER) { 4813 vp = TAILQ_NEXT(vp, v_actfreelist); 4814 continue; 4815 } 4816 if (!VI_TRYLOCK(vp)) { 4817 if (mp_ncpus == 1 || should_yield()) { 4818 TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist); 4819 mtx_unlock(&vnode_free_list_mtx); 4820 pause("vnacti", 1); 4821 mtx_lock(&vnode_free_list_mtx); 4822 goto restart; 4823 } 4824 continue; 4825 } 4826 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 4827 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 4828 ("alien vnode on the active list %p %p", vp, mp)); 4829 if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0) 4830 break; 4831 nvp = TAILQ_NEXT(vp, v_actfreelist); 4832 VI_UNLOCK(vp); 4833 vp = nvp; 4834 } 4835 4836 /* Check if we are done */ 4837 if (vp == NULL) { 4838 mtx_unlock(&vnode_free_list_mtx); 4839 mnt_vnode_markerfree_active(mvp, mp); 4840 return (NULL); 4841 } 4842 TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist); 4843 mtx_unlock(&vnode_free_list_mtx); 4844 ASSERT_VI_LOCKED(vp, "active iter"); 4845 KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp)); 4846 return (vp); 4847 } 4848 4849 struct vnode * 4850 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp) 4851 { 4852 4853 if (should_yield()) 4854 kern_yield(PRI_USER); 4855 mtx_lock(&vnode_free_list_mtx); 4856 return (mnt_vnode_next_active(mvp, mp)); 4857 } 4858 4859 struct vnode * 4860 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp) 4861 { 4862 struct vnode *vp; 4863 4864 *mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 4865 MNT_ILOCK(mp); 4866 MNT_REF(mp); 4867 MNT_IUNLOCK(mp); 4868 (*mvp)->v_type = VMARKER; 4869 (*mvp)->v_mount = mp; 4870 4871 mtx_lock(&vnode_free_list_mtx); 4872 vp = TAILQ_FIRST(&mp->mnt_activevnodelist); 4873 if (vp == NULL) { 4874 mtx_unlock(&vnode_free_list_mtx); 4875 mnt_vnode_markerfree_active(mvp, mp); 4876 return (NULL); 4877 } 4878 TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist); 4879 return (mnt_vnode_next_active(mvp, mp)); 4880 } 4881 4882 void 4883 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp) 4884 { 4885 4886 if (*mvp == NULL) 4887 return; 4888 4889 mtx_lock(&vnode_free_list_mtx); 4890 TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist); 4891 mtx_unlock(&vnode_free_list_mtx); 4892 mnt_vnode_markerfree_active(mvp, mp); 4893 } 4894