xref: /freebsd/sys/kern/vfs_subr.c (revision 7937bfbc0ca53fe7cdd0d54414f9296e273a518e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_watchdog.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/asan.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/capsicum.h>
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/counter.h>
54 #include <sys/dirent.h>
55 #include <sys/event.h>
56 #include <sys/eventhandler.h>
57 #include <sys/extattr.h>
58 #include <sys/file.h>
59 #include <sys/fcntl.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/sysctl.h>
81 #include <sys/syslog.h>
82 #include <sys/vmmeter.h>
83 #include <sys/vnode.h>
84 #include <sys/watchdog.h>
85 
86 #include <machine/stdarg.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99 
100 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
101 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
102 #endif
103 
104 #ifdef DDB
105 #include <ddb/ddb.h>
106 #endif
107 
108 static void	delmntque(struct vnode *vp);
109 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
110 		    int slpflag, int slptimeo);
111 static void	syncer_shutdown(void *arg, int howto);
112 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
113 static void	v_init_counters(struct vnode *);
114 static void	vn_seqc_init(struct vnode *);
115 static void	vn_seqc_write_end_free(struct vnode *vp);
116 static void	vgonel(struct vnode *);
117 static bool	vhold_recycle_free(struct vnode *);
118 static void	vdropl_recycle(struct vnode *vp);
119 static void	vdrop_recycle(struct vnode *vp);
120 static void	vfs_knllock(void *arg);
121 static void	vfs_knlunlock(void *arg);
122 static void	vfs_knl_assert_lock(void *arg, int what);
123 static void	destroy_vpollinfo(struct vpollinfo *vi);
124 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
125 		    daddr_t startlbn, daddr_t endlbn);
126 static void	vnlru_recalc(void);
127 
128 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129     "vnode configuration and statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131     "vnode configuration");
132 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133     "vnode statistics");
134 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
135     "vnode recycling");
136 
137 /*
138  * Number of vnodes in existence.  Increased whenever getnewvnode()
139  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
140  */
141 static u_long __exclusive_cache_line numvnodes;
142 
143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144     "Number of vnodes in existence (legacy)");
145 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
146     "Number of vnodes in existence");
147 
148 static counter_u64_t vnodes_created;
149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150     "Number of vnodes created by getnewvnode (legacy)");
151 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
152     "Number of vnodes created by getnewvnode");
153 
154 /*
155  * Conversion tables for conversion from vnode types to inode formats
156  * and back.
157  */
158 __enum_uint8(vtype) iftovt_tab[16] = {
159 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
161 };
162 int vttoif_tab[10] = {
163 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
165 };
166 
167 /*
168  * List of allocates vnodes in the system.
169  */
170 static TAILQ_HEAD(freelst, vnode) vnode_list;
171 static struct vnode *vnode_list_free_marker;
172 static struct vnode *vnode_list_reclaim_marker;
173 
174 /*
175  * "Free" vnode target.  Free vnodes are rarely completely free, but are
176  * just ones that are cheap to recycle.  Usually they are for files which
177  * have been stat'd but not read; these usually have inode and namecache
178  * data attached to them.  This target is the preferred minimum size of a
179  * sub-cache consisting mostly of such files. The system balances the size
180  * of this sub-cache with its complement to try to prevent either from
181  * thrashing while the other is relatively inactive.  The targets express
182  * a preference for the best balance.
183  *
184  * "Above" this target there are 2 further targets (watermarks) related
185  * to recyling of free vnodes.  In the best-operating case, the cache is
186  * exactly full, the free list has size between vlowat and vhiwat above the
187  * free target, and recycling from it and normal use maintains this state.
188  * Sometimes the free list is below vlowat or even empty, but this state
189  * is even better for immediate use provided the cache is not full.
190  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
191  * ones) to reach one of these states.  The watermarks are currently hard-
192  * coded as 4% and 9% of the available space higher.  These and the default
193  * of 25% for wantfreevnodes are too large if the memory size is large.
194  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
195  * whenever vnlru_proc() becomes active.
196  */
197 static long wantfreevnodes;
198 static long __exclusive_cache_line freevnodes;
199 static long freevnodes_old;
200 
201 static u_long recycles_count;
202 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
203     "Number of vnodes recycled to meet vnode cache targets (legacy)");
204 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
205     &recycles_count, 0,
206     "Number of vnodes recycled to meet vnode cache targets");
207 
208 static u_long recycles_free_count;
209 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
210     &recycles_free_count, 0,
211     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
212 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
213     &recycles_free_count, 0,
214     "Number of free vnodes recycled to meet vnode cache targets");
215 
216 static counter_u64_t direct_recycles_free_count;
217 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
218     &direct_recycles_free_count,
219     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
220 
221 static counter_u64_t vnode_skipped_requeues;
222 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
223     "Number of times LRU requeue was skipped due to lock contention");
224 
225 static __read_mostly bool vnode_can_skip_requeue;
226 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
227     &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
228 
229 static u_long deferred_inact;
230 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
231     &deferred_inact, 0, "Number of times inactive processing was deferred");
232 
233 /* To keep more than one thread at a time from running vfs_getnewfsid */
234 static struct mtx mntid_mtx;
235 
236 /*
237  * Lock for any access to the following:
238  *	vnode_list
239  *	numvnodes
240  *	freevnodes
241  */
242 static struct mtx __exclusive_cache_line vnode_list_mtx;
243 
244 /* Publicly exported FS */
245 struct nfs_public nfs_pub;
246 
247 static uma_zone_t buf_trie_zone;
248 static smr_t buf_trie_smr;
249 
250 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
251 static uma_zone_t vnode_zone;
252 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
253 
254 __read_frequently smr_t vfs_smr;
255 
256 /*
257  * The workitem queue.
258  *
259  * It is useful to delay writes of file data and filesystem metadata
260  * for tens of seconds so that quickly created and deleted files need
261  * not waste disk bandwidth being created and removed. To realize this,
262  * we append vnodes to a "workitem" queue. When running with a soft
263  * updates implementation, most pending metadata dependencies should
264  * not wait for more than a few seconds. Thus, mounted on block devices
265  * are delayed only about a half the time that file data is delayed.
266  * Similarly, directory updates are more critical, so are only delayed
267  * about a third the time that file data is delayed. Thus, there are
268  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
269  * one each second (driven off the filesystem syncer process). The
270  * syncer_delayno variable indicates the next queue that is to be processed.
271  * Items that need to be processed soon are placed in this queue:
272  *
273  *	syncer_workitem_pending[syncer_delayno]
274  *
275  * A delay of fifteen seconds is done by placing the request fifteen
276  * entries later in the queue:
277  *
278  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
279  *
280  */
281 static int syncer_delayno;
282 static long syncer_mask;
283 LIST_HEAD(synclist, bufobj);
284 static struct synclist *syncer_workitem_pending;
285 /*
286  * The sync_mtx protects:
287  *	bo->bo_synclist
288  *	sync_vnode_count
289  *	syncer_delayno
290  *	syncer_state
291  *	syncer_workitem_pending
292  *	syncer_worklist_len
293  *	rushjob
294  */
295 static struct mtx sync_mtx;
296 static struct cv sync_wakeup;
297 
298 #define SYNCER_MAXDELAY		32
299 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
300 static int syncdelay = 30;		/* max time to delay syncing data */
301 static int filedelay = 30;		/* time to delay syncing files */
302 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
303     "Time to delay syncing files (in seconds)");
304 static int dirdelay = 29;		/* time to delay syncing directories */
305 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
306     "Time to delay syncing directories (in seconds)");
307 static int metadelay = 28;		/* time to delay syncing metadata */
308 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
309     "Time to delay syncing metadata (in seconds)");
310 static int rushjob;		/* number of slots to run ASAP */
311 static int stat_rush_requests;	/* number of times I/O speeded up */
312 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
313     "Number of times I/O speeded up (rush requests)");
314 
315 #define	VDBATCH_SIZE 8
316 struct vdbatch {
317 	u_int index;
318 	struct mtx lock;
319 	struct vnode *tab[VDBATCH_SIZE];
320 };
321 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
322 
323 static void	vdbatch_dequeue(struct vnode *vp);
324 
325 /*
326  * When shutting down the syncer, run it at four times normal speed.
327  */
328 #define SYNCER_SHUTDOWN_SPEEDUP		4
329 static int sync_vnode_count;
330 static int syncer_worklist_len;
331 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
332     syncer_state;
333 
334 /* Target for maximum number of vnodes. */
335 u_long desiredvnodes;
336 static u_long gapvnodes;		/* gap between wanted and desired */
337 static u_long vhiwat;		/* enough extras after expansion */
338 static u_long vlowat;		/* minimal extras before expansion */
339 static bool vstir;		/* nonzero to stir non-free vnodes */
340 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
341 
342 static u_long vnlru_read_freevnodes(void);
343 
344 /*
345  * Note that no attempt is made to sanitize these parameters.
346  */
347 static int
348 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
349 {
350 	u_long val;
351 	int error;
352 
353 	val = desiredvnodes;
354 	error = sysctl_handle_long(oidp, &val, 0, req);
355 	if (error != 0 || req->newptr == NULL)
356 		return (error);
357 
358 	if (val == desiredvnodes)
359 		return (0);
360 	mtx_lock(&vnode_list_mtx);
361 	desiredvnodes = val;
362 	wantfreevnodes = desiredvnodes / 4;
363 	vnlru_recalc();
364 	mtx_unlock(&vnode_list_mtx);
365 	/*
366 	 * XXX There is no protection against multiple threads changing
367 	 * desiredvnodes at the same time. Locking above only helps vnlru and
368 	 * getnewvnode.
369 	 */
370 	vfs_hash_changesize(desiredvnodes);
371 	cache_changesize(desiredvnodes);
372 	return (0);
373 }
374 
375 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
376     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377     "LU", "Target for maximum number of vnodes (legacy)");
378 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
379     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
380     "LU", "Target for maximum number of vnodes");
381 
382 static int
383 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
384 {
385 	u_long rfreevnodes;
386 
387 	rfreevnodes = vnlru_read_freevnodes();
388 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
389 }
390 
391 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
392     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393     "LU", "Number of \"free\" vnodes (legacy)");
394 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
395     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
396     "LU", "Number of \"free\" vnodes");
397 
398 static int
399 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
400 {
401 	u_long val;
402 	int error;
403 
404 	val = wantfreevnodes;
405 	error = sysctl_handle_long(oidp, &val, 0, req);
406 	if (error != 0 || req->newptr == NULL)
407 		return (error);
408 
409 	if (val == wantfreevnodes)
410 		return (0);
411 	mtx_lock(&vnode_list_mtx);
412 	wantfreevnodes = val;
413 	vnlru_recalc();
414 	mtx_unlock(&vnode_list_mtx);
415 	return (0);
416 }
417 
418 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
419     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
421 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
422     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
423     "LU", "Target for minimum number of \"free\" vnodes");
424 
425 static int vnlru_nowhere;
426 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
427     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
428 
429 static int
430 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
431 {
432 	struct vnode *vp;
433 	struct nameidata nd;
434 	char *buf;
435 	unsigned long ndflags;
436 	int error;
437 
438 	if (req->newptr == NULL)
439 		return (EINVAL);
440 	if (req->newlen >= PATH_MAX)
441 		return (E2BIG);
442 
443 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
444 	error = SYSCTL_IN(req, buf, req->newlen);
445 	if (error != 0)
446 		goto out;
447 
448 	buf[req->newlen] = '\0';
449 
450 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
451 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
452 	if ((error = namei(&nd)) != 0)
453 		goto out;
454 	vp = nd.ni_vp;
455 
456 	if (VN_IS_DOOMED(vp)) {
457 		/*
458 		 * This vnode is being recycled.  Return != 0 to let the caller
459 		 * know that the sysctl had no effect.  Return EAGAIN because a
460 		 * subsequent call will likely succeed (since namei will create
461 		 * a new vnode if necessary)
462 		 */
463 		error = EAGAIN;
464 		goto putvnode;
465 	}
466 
467 	vgone(vp);
468 putvnode:
469 	vput(vp);
470 	NDFREE_PNBUF(&nd);
471 out:
472 	free(buf, M_TEMP);
473 	return (error);
474 }
475 
476 static int
477 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
478 {
479 	struct thread *td = curthread;
480 	struct vnode *vp;
481 	struct file *fp;
482 	int error;
483 	int fd;
484 
485 	if (req->newptr == NULL)
486 		return (EBADF);
487 
488         error = sysctl_handle_int(oidp, &fd, 0, req);
489         if (error != 0)
490                 return (error);
491 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
492 	if (error != 0)
493 		return (error);
494 	vp = fp->f_vnode;
495 
496 	error = vn_lock(vp, LK_EXCLUSIVE);
497 	if (error != 0)
498 		goto drop;
499 
500 	vgone(vp);
501 	VOP_UNLOCK(vp);
502 drop:
503 	fdrop(fp, td);
504 	return (error);
505 }
506 
507 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
508     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
510 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
511     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
512     sysctl_ftry_reclaim_vnode, "I",
513     "Try to reclaim a vnode by its file descriptor");
514 
515 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
516 #define vnsz2log 8
517 #ifndef DEBUG_LOCKS
518 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
519     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
520     "vnsz2log needs to be updated");
521 #endif
522 
523 /*
524  * Support for the bufobj clean & dirty pctrie.
525  */
526 static void *
527 buf_trie_alloc(struct pctrie *ptree)
528 {
529 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
530 }
531 
532 static void
533 buf_trie_free(struct pctrie *ptree, void *node)
534 {
535 	uma_zfree_smr(buf_trie_zone, node);
536 }
537 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
538     buf_trie_smr);
539 
540 /*
541  * Lookup the next element greater than or equal to lblkno, accounting for the
542  * fact that, for pctries, negative values are greater than nonnegative ones.
543  */
544 static struct buf *
545 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
546 {
547 	struct buf *bp;
548 
549 	bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
550 	if (bp == NULL && lblkno < 0)
551 		bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
552 	if (bp != NULL && bp->b_lblkno < lblkno)
553 		bp = NULL;
554 	return (bp);
555 }
556 
557 /*
558  * Insert bp, and find the next element smaller than bp, accounting for the fact
559  * that, for pctries, negative values are greater than nonnegative ones.
560  */
561 static int
562 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
563 {
564 	int error;
565 
566 	error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
567 	if (error != EEXIST) {
568 		if (*n == NULL && bp->b_lblkno >= 0)
569 			*n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
570 		if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
571 			*n = NULL;
572 	}
573 	return (error);
574 }
575 
576 /*
577  * Initialize the vnode management data structures.
578  *
579  * Reevaluate the following cap on the number of vnodes after the physical
580  * memory size exceeds 512GB.  In the limit, as the physical memory size
581  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
582  */
583 #ifndef	MAXVNODES_MAX
584 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
585 #endif
586 
587 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
588 
589 static struct vnode *
590 vn_alloc_marker(struct mount *mp)
591 {
592 	struct vnode *vp;
593 
594 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
595 	vp->v_type = VMARKER;
596 	vp->v_mount = mp;
597 
598 	return (vp);
599 }
600 
601 static void
602 vn_free_marker(struct vnode *vp)
603 {
604 
605 	MPASS(vp->v_type == VMARKER);
606 	free(vp, M_VNODE_MARKER);
607 }
608 
609 #ifdef KASAN
610 static int
611 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
612 {
613 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
614 	return (0);
615 }
616 
617 static void
618 vnode_dtor(void *mem, int size, void *arg __unused)
619 {
620 	size_t end1, end2, off1, off2;
621 
622 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
623 	    offsetof(struct vnode, v_dbatchcpu),
624 	    "KASAN marks require updating");
625 
626 	off1 = offsetof(struct vnode, v_vnodelist);
627 	off2 = offsetof(struct vnode, v_dbatchcpu);
628 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
629 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
630 
631 	/*
632 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
633 	 * after the vnode has been freed.  Try to get some KASAN coverage by
634 	 * marking everything except those two fields as invalid.  Because
635 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
636 	 * the same 8-byte aligned word must also be marked valid.
637 	 */
638 
639 	/* Handle the area from the start until v_vnodelist... */
640 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
641 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
642 
643 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
644 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
645 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
646 	if (off2 > off1)
647 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
648 		    off2 - off1, KASAN_UMA_FREED);
649 
650 	/* ... and finally the area from v_dbatchcpu to the end. */
651 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
652 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
653 	    KASAN_UMA_FREED);
654 }
655 #endif /* KASAN */
656 
657 /*
658  * Initialize a vnode as it first enters the zone.
659  */
660 static int
661 vnode_init(void *mem, int size, int flags)
662 {
663 	struct vnode *vp;
664 
665 	vp = mem;
666 	bzero(vp, size);
667 	/*
668 	 * Setup locks.
669 	 */
670 	vp->v_vnlock = &vp->v_lock;
671 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
672 	/*
673 	 * By default, don't allow shared locks unless filesystems opt-in.
674 	 */
675 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
676 	    LK_NOSHARE | LK_IS_VNODE);
677 	/*
678 	 * Initialize bufobj.
679 	 */
680 	bufobj_init(&vp->v_bufobj, vp);
681 	/*
682 	 * Initialize namecache.
683 	 */
684 	cache_vnode_init(vp);
685 	/*
686 	 * Initialize rangelocks.
687 	 */
688 	rangelock_init(&vp->v_rl);
689 
690 	vp->v_dbatchcpu = NOCPU;
691 
692 	vp->v_state = VSTATE_DEAD;
693 
694 	/*
695 	 * Check vhold_recycle_free for an explanation.
696 	 */
697 	vp->v_holdcnt = VHOLD_NO_SMR;
698 	vp->v_type = VNON;
699 	mtx_lock(&vnode_list_mtx);
700 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
701 	mtx_unlock(&vnode_list_mtx);
702 	return (0);
703 }
704 
705 /*
706  * Free a vnode when it is cleared from the zone.
707  */
708 static void
709 vnode_fini(void *mem, int size)
710 {
711 	struct vnode *vp;
712 	struct bufobj *bo;
713 
714 	vp = mem;
715 	vdbatch_dequeue(vp);
716 	mtx_lock(&vnode_list_mtx);
717 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
718 	mtx_unlock(&vnode_list_mtx);
719 	rangelock_destroy(&vp->v_rl);
720 	lockdestroy(vp->v_vnlock);
721 	mtx_destroy(&vp->v_interlock);
722 	bo = &vp->v_bufobj;
723 	rw_destroy(BO_LOCKPTR(bo));
724 
725 	kasan_mark(mem, size, size, 0);
726 }
727 
728 /*
729  * Provide the size of NFS nclnode and NFS fh for calculation of the
730  * vnode memory consumption.  The size is specified directly to
731  * eliminate dependency on NFS-private header.
732  *
733  * Other filesystems may use bigger or smaller (like UFS and ZFS)
734  * private inode data, but the NFS-based estimation is ample enough.
735  * Still, we care about differences in the size between 64- and 32-bit
736  * platforms.
737  *
738  * Namecache structure size is heuristically
739  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
740  */
741 #ifdef _LP64
742 #define	NFS_NCLNODE_SZ	(528 + 64)
743 #define	NC_SZ		148
744 #else
745 #define	NFS_NCLNODE_SZ	(360 + 32)
746 #define	NC_SZ		92
747 #endif
748 
749 static void
750 vntblinit(void *dummy __unused)
751 {
752 	struct vdbatch *vd;
753 	uma_ctor ctor;
754 	uma_dtor dtor;
755 	int cpu, physvnodes, virtvnodes;
756 
757 	/*
758 	 * Desiredvnodes is a function of the physical memory size and the
759 	 * kernel's heap size.  Generally speaking, it scales with the
760 	 * physical memory size.  The ratio of desiredvnodes to the physical
761 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
762 	 * Thereafter, the
763 	 * marginal ratio of desiredvnodes to the physical memory size is
764 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
765 	 * size.  The memory required by desiredvnodes vnodes and vm objects
766 	 * must not exceed 1/10th of the kernel's heap size.
767 	 */
768 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
769 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
770 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
771 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
772 	desiredvnodes = min(physvnodes, virtvnodes);
773 	if (desiredvnodes > MAXVNODES_MAX) {
774 		if (bootverbose)
775 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
776 			    desiredvnodes, MAXVNODES_MAX);
777 		desiredvnodes = MAXVNODES_MAX;
778 	}
779 	wantfreevnodes = desiredvnodes / 4;
780 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
781 	TAILQ_INIT(&vnode_list);
782 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
783 	/*
784 	 * The lock is taken to appease WITNESS.
785 	 */
786 	mtx_lock(&vnode_list_mtx);
787 	vnlru_recalc();
788 	mtx_unlock(&vnode_list_mtx);
789 	vnode_list_free_marker = vn_alloc_marker(NULL);
790 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
791 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
792 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
793 
794 #ifdef KASAN
795 	ctor = vnode_ctor;
796 	dtor = vnode_dtor;
797 #else
798 	ctor = NULL;
799 	dtor = NULL;
800 #endif
801 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
802 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
803 	uma_zone_set_smr(vnode_zone, vfs_smr);
804 
805 	/*
806 	 * Preallocate enough nodes to support one-per buf so that
807 	 * we can not fail an insert.  reassignbuf() callers can not
808 	 * tolerate the insertion failure.
809 	 */
810 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
811 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
812 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
813 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
814 	uma_prealloc(buf_trie_zone, nbuf);
815 
816 	vnodes_created = counter_u64_alloc(M_WAITOK);
817 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
818 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
819 
820 	/*
821 	 * Initialize the filesystem syncer.
822 	 */
823 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
824 	    &syncer_mask);
825 	syncer_maxdelay = syncer_mask + 1;
826 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
827 	cv_init(&sync_wakeup, "syncer");
828 
829 	CPU_FOREACH(cpu) {
830 		vd = DPCPU_ID_PTR((cpu), vd);
831 		bzero(vd, sizeof(*vd));
832 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
833 	}
834 }
835 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
836 
837 /*
838  * Mark a mount point as busy. Used to synchronize access and to delay
839  * unmounting. Eventually, mountlist_mtx is not released on failure.
840  *
841  * vfs_busy() is a custom lock, it can block the caller.
842  * vfs_busy() only sleeps if the unmount is active on the mount point.
843  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
844  * vnode belonging to mp.
845  *
846  * Lookup uses vfs_busy() to traverse mount points.
847  * root fs			var fs
848  * / vnode lock		A	/ vnode lock (/var)		D
849  * /var vnode lock	B	/log vnode lock(/var/log)	E
850  * vfs_busy lock	C	vfs_busy lock			F
851  *
852  * Within each file system, the lock order is C->A->B and F->D->E.
853  *
854  * When traversing across mounts, the system follows that lock order:
855  *
856  *        C->A->B
857  *              |
858  *              +->F->D->E
859  *
860  * The lookup() process for namei("/var") illustrates the process:
861  *  1. VOP_LOOKUP() obtains B while A is held
862  *  2. vfs_busy() obtains a shared lock on F while A and B are held
863  *  3. vput() releases lock on B
864  *  4. vput() releases lock on A
865  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
866  *  6. vfs_unbusy() releases shared lock on F
867  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
868  *     Attempt to lock A (instead of vp_crossmp) while D is held would
869  *     violate the global order, causing deadlocks.
870  *
871  * dounmount() locks B while F is drained.  Note that for stacked
872  * filesystems, D and B in the example above may be the same lock,
873  * which introdues potential lock order reversal deadlock between
874  * dounmount() and step 5 above.  These filesystems may avoid the LOR
875  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
876  * remain held until after step 5.
877  */
878 int
879 vfs_busy(struct mount *mp, int flags)
880 {
881 	struct mount_pcpu *mpcpu;
882 
883 	MPASS((flags & ~MBF_MASK) == 0);
884 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
885 
886 	if (vfs_op_thread_enter(mp, mpcpu)) {
887 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
888 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
889 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
890 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
891 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
892 		vfs_op_thread_exit(mp, mpcpu);
893 		if (flags & MBF_MNTLSTLOCK)
894 			mtx_unlock(&mountlist_mtx);
895 		return (0);
896 	}
897 
898 	MNT_ILOCK(mp);
899 	vfs_assert_mount_counters(mp);
900 	MNT_REF(mp);
901 	/*
902 	 * If mount point is currently being unmounted, sleep until the
903 	 * mount point fate is decided.  If thread doing the unmounting fails,
904 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
905 	 * that this mount point has survived the unmount attempt and vfs_busy
906 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
907 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
908 	 * about to be really destroyed.  vfs_busy needs to release its
909 	 * reference on the mount point in this case and return with ENOENT,
910 	 * telling the caller the mount it tried to busy is no longer valid.
911 	 */
912 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
913 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
914 		    ("%s: non-empty upper mount list with pending unmount",
915 		    __func__));
916 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
917 			MNT_REL(mp);
918 			MNT_IUNLOCK(mp);
919 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
920 			    __func__);
921 			return (ENOENT);
922 		}
923 		if (flags & MBF_MNTLSTLOCK)
924 			mtx_unlock(&mountlist_mtx);
925 		mp->mnt_kern_flag |= MNTK_MWAIT;
926 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
927 		if (flags & MBF_MNTLSTLOCK)
928 			mtx_lock(&mountlist_mtx);
929 		MNT_ILOCK(mp);
930 	}
931 	if (flags & MBF_MNTLSTLOCK)
932 		mtx_unlock(&mountlist_mtx);
933 	mp->mnt_lockref++;
934 	MNT_IUNLOCK(mp);
935 	return (0);
936 }
937 
938 /*
939  * Free a busy filesystem.
940  */
941 void
942 vfs_unbusy(struct mount *mp)
943 {
944 	struct mount_pcpu *mpcpu;
945 	int c;
946 
947 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
948 
949 	if (vfs_op_thread_enter(mp, mpcpu)) {
950 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
951 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
952 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
953 		vfs_op_thread_exit(mp, mpcpu);
954 		return;
955 	}
956 
957 	MNT_ILOCK(mp);
958 	vfs_assert_mount_counters(mp);
959 	MNT_REL(mp);
960 	c = --mp->mnt_lockref;
961 	if (mp->mnt_vfs_ops == 0) {
962 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
963 		MNT_IUNLOCK(mp);
964 		return;
965 	}
966 	if (c < 0)
967 		vfs_dump_mount_counters(mp);
968 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
969 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
970 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
971 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
972 		wakeup(&mp->mnt_lockref);
973 	}
974 	MNT_IUNLOCK(mp);
975 }
976 
977 /*
978  * Lookup a mount point by filesystem identifier.
979  */
980 struct mount *
981 vfs_getvfs(fsid_t *fsid)
982 {
983 	struct mount *mp;
984 
985 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
986 	mtx_lock(&mountlist_mtx);
987 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
988 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
989 			vfs_ref(mp);
990 			mtx_unlock(&mountlist_mtx);
991 			return (mp);
992 		}
993 	}
994 	mtx_unlock(&mountlist_mtx);
995 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
996 	return ((struct mount *) 0);
997 }
998 
999 /*
1000  * Lookup a mount point by filesystem identifier, busying it before
1001  * returning.
1002  *
1003  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1004  * cache for popular filesystem identifiers.  The cache is lockess, using
1005  * the fact that struct mount's are never freed.  In worst case we may
1006  * get pointer to unmounted or even different filesystem, so we have to
1007  * check what we got, and go slow way if so.
1008  */
1009 struct mount *
1010 vfs_busyfs(fsid_t *fsid)
1011 {
1012 #define	FSID_CACHE_SIZE	256
1013 	typedef struct mount * volatile vmp_t;
1014 	static vmp_t cache[FSID_CACHE_SIZE];
1015 	struct mount *mp;
1016 	int error;
1017 	uint32_t hash;
1018 
1019 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1020 	hash = fsid->val[0] ^ fsid->val[1];
1021 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1022 	mp = cache[hash];
1023 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1024 		goto slow;
1025 	if (vfs_busy(mp, 0) != 0) {
1026 		cache[hash] = NULL;
1027 		goto slow;
1028 	}
1029 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1030 		return (mp);
1031 	else
1032 	    vfs_unbusy(mp);
1033 
1034 slow:
1035 	mtx_lock(&mountlist_mtx);
1036 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1037 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1038 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
1039 			if (error) {
1040 				cache[hash] = NULL;
1041 				mtx_unlock(&mountlist_mtx);
1042 				return (NULL);
1043 			}
1044 			cache[hash] = mp;
1045 			return (mp);
1046 		}
1047 	}
1048 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1049 	mtx_unlock(&mountlist_mtx);
1050 	return ((struct mount *) 0);
1051 }
1052 
1053 /*
1054  * Check if a user can access privileged mount options.
1055  */
1056 int
1057 vfs_suser(struct mount *mp, struct thread *td)
1058 {
1059 	int error;
1060 
1061 	if (jailed(td->td_ucred)) {
1062 		/*
1063 		 * If the jail of the calling thread lacks permission for
1064 		 * this type of file system, deny immediately.
1065 		 */
1066 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1067 			return (EPERM);
1068 
1069 		/*
1070 		 * If the file system was mounted outside the jail of the
1071 		 * calling thread, deny immediately.
1072 		 */
1073 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1074 			return (EPERM);
1075 	}
1076 
1077 	/*
1078 	 * If file system supports delegated administration, we don't check
1079 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1080 	 * by the file system itself.
1081 	 * If this is not the user that did original mount, we check for
1082 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1083 	 */
1084 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1085 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1086 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1087 			return (error);
1088 	}
1089 	return (0);
1090 }
1091 
1092 /*
1093  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1094  * will be used to create fake device numbers for stat().  Also try (but
1095  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1096  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1097  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1098  *
1099  * Keep in mind that several mounts may be running in parallel.  Starting
1100  * the search one past where the previous search terminated is both a
1101  * micro-optimization and a defense against returning the same fsid to
1102  * different mounts.
1103  */
1104 void
1105 vfs_getnewfsid(struct mount *mp)
1106 {
1107 	static uint16_t mntid_base;
1108 	struct mount *nmp;
1109 	fsid_t tfsid;
1110 	int mtype;
1111 
1112 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1113 	mtx_lock(&mntid_mtx);
1114 	mtype = mp->mnt_vfc->vfc_typenum;
1115 	tfsid.val[1] = mtype;
1116 	mtype = (mtype & 0xFF) << 24;
1117 	for (;;) {
1118 		tfsid.val[0] = makedev(255,
1119 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1120 		mntid_base++;
1121 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1122 			break;
1123 		vfs_rel(nmp);
1124 	}
1125 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1126 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1127 	mtx_unlock(&mntid_mtx);
1128 }
1129 
1130 /*
1131  * Knob to control the precision of file timestamps:
1132  *
1133  *   0 = seconds only; nanoseconds zeroed.
1134  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1135  *   2 = seconds and nanoseconds, truncated to microseconds.
1136  * >=3 = seconds and nanoseconds, maximum precision.
1137  */
1138 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1139 
1140 static int timestamp_precision = TSP_USEC;
1141 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1142     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1143     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1144     "3+: sec + ns (max. precision))");
1145 
1146 /*
1147  * Get a current timestamp.
1148  */
1149 void
1150 vfs_timestamp(struct timespec *tsp)
1151 {
1152 	struct timeval tv;
1153 
1154 	switch (timestamp_precision) {
1155 	case TSP_SEC:
1156 		tsp->tv_sec = time_second;
1157 		tsp->tv_nsec = 0;
1158 		break;
1159 	case TSP_HZ:
1160 		getnanotime(tsp);
1161 		break;
1162 	case TSP_USEC:
1163 		microtime(&tv);
1164 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1165 		break;
1166 	case TSP_NSEC:
1167 	default:
1168 		nanotime(tsp);
1169 		break;
1170 	}
1171 }
1172 
1173 /*
1174  * Set vnode attributes to VNOVAL
1175  */
1176 void
1177 vattr_null(struct vattr *vap)
1178 {
1179 
1180 	vap->va_type = VNON;
1181 	vap->va_size = VNOVAL;
1182 	vap->va_bytes = VNOVAL;
1183 	vap->va_mode = VNOVAL;
1184 	vap->va_nlink = VNOVAL;
1185 	vap->va_uid = VNOVAL;
1186 	vap->va_gid = VNOVAL;
1187 	vap->va_fsid = VNOVAL;
1188 	vap->va_fileid = VNOVAL;
1189 	vap->va_blocksize = VNOVAL;
1190 	vap->va_rdev = VNOVAL;
1191 	vap->va_atime.tv_sec = VNOVAL;
1192 	vap->va_atime.tv_nsec = VNOVAL;
1193 	vap->va_mtime.tv_sec = VNOVAL;
1194 	vap->va_mtime.tv_nsec = VNOVAL;
1195 	vap->va_ctime.tv_sec = VNOVAL;
1196 	vap->va_ctime.tv_nsec = VNOVAL;
1197 	vap->va_birthtime.tv_sec = VNOVAL;
1198 	vap->va_birthtime.tv_nsec = VNOVAL;
1199 	vap->va_flags = VNOVAL;
1200 	vap->va_gen = VNOVAL;
1201 	vap->va_vaflags = 0;
1202 }
1203 
1204 /*
1205  * Try to reduce the total number of vnodes.
1206  *
1207  * This routine (and its user) are buggy in at least the following ways:
1208  * - all parameters were picked years ago when RAM sizes were significantly
1209  *   smaller
1210  * - it can pick vnodes based on pages used by the vm object, but filesystems
1211  *   like ZFS don't use it making the pick broken
1212  * - since ZFS has its own aging policy it gets partially combated by this one
1213  * - a dedicated method should be provided for filesystems to let them decide
1214  *   whether the vnode should be recycled
1215  *
1216  * This routine is called when we have too many vnodes.  It attempts
1217  * to free <count> vnodes and will potentially free vnodes that still
1218  * have VM backing store (VM backing store is typically the cause
1219  * of a vnode blowout so we want to do this).  Therefore, this operation
1220  * is not considered cheap.
1221  *
1222  * A number of conditions may prevent a vnode from being reclaimed.
1223  * the buffer cache may have references on the vnode, a directory
1224  * vnode may still have references due to the namei cache representing
1225  * underlying files, or the vnode may be in active use.   It is not
1226  * desirable to reuse such vnodes.  These conditions may cause the
1227  * number of vnodes to reach some minimum value regardless of what
1228  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1229  *
1230  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1231  * 			 entries if this argument is strue
1232  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1233  *			 pages.
1234  * @param target	 How many vnodes to reclaim.
1235  * @return		 The number of vnodes that were reclaimed.
1236  */
1237 static int
1238 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1239 {
1240 	struct vnode *vp, *mvp;
1241 	struct mount *mp;
1242 	struct vm_object *object;
1243 	u_long done;
1244 	bool retried;
1245 
1246 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1247 
1248 	retried = false;
1249 	done = 0;
1250 
1251 	mvp = vnode_list_reclaim_marker;
1252 restart:
1253 	vp = mvp;
1254 	while (done < target) {
1255 		vp = TAILQ_NEXT(vp, v_vnodelist);
1256 		if (__predict_false(vp == NULL))
1257 			break;
1258 
1259 		if (__predict_false(vp->v_type == VMARKER))
1260 			continue;
1261 
1262 		/*
1263 		 * If it's been deconstructed already, it's still
1264 		 * referenced, or it exceeds the trigger, skip it.
1265 		 * Also skip free vnodes.  We are trying to make space
1266 		 * for more free vnodes, not reduce their count.
1267 		 */
1268 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1269 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1270 			goto next_iter;
1271 
1272 		if (vp->v_type == VBAD || vp->v_type == VNON)
1273 			goto next_iter;
1274 
1275 		object = atomic_load_ptr(&vp->v_object);
1276 		if (object == NULL || object->resident_page_count > trigger) {
1277 			goto next_iter;
1278 		}
1279 
1280 		/*
1281 		 * Handle races against vnode allocation. Filesystems lock the
1282 		 * vnode some time after it gets returned from getnewvnode,
1283 		 * despite type and hold count being manipulated earlier.
1284 		 * Resorting to checking v_mount restores guarantees present
1285 		 * before the global list was reworked to contain all vnodes.
1286 		 */
1287 		if (!VI_TRYLOCK(vp))
1288 			goto next_iter;
1289 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1290 			VI_UNLOCK(vp);
1291 			goto next_iter;
1292 		}
1293 		if (vp->v_mount == NULL) {
1294 			VI_UNLOCK(vp);
1295 			goto next_iter;
1296 		}
1297 		vholdl(vp);
1298 		VI_UNLOCK(vp);
1299 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1300 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1301 		mtx_unlock(&vnode_list_mtx);
1302 
1303 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1304 			vdrop_recycle(vp);
1305 			goto next_iter_unlocked;
1306 		}
1307 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1308 			vdrop_recycle(vp);
1309 			vn_finished_write(mp);
1310 			goto next_iter_unlocked;
1311 		}
1312 
1313 		VI_LOCK(vp);
1314 		if (vp->v_usecount > 0 ||
1315 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1316 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1317 		    vp->v_object->resident_page_count > trigger)) {
1318 			VOP_UNLOCK(vp);
1319 			vdropl_recycle(vp);
1320 			vn_finished_write(mp);
1321 			goto next_iter_unlocked;
1322 		}
1323 		recycles_count++;
1324 		vgonel(vp);
1325 		VOP_UNLOCK(vp);
1326 		vdropl_recycle(vp);
1327 		vn_finished_write(mp);
1328 		done++;
1329 next_iter_unlocked:
1330 		maybe_yield();
1331 		mtx_lock(&vnode_list_mtx);
1332 		goto restart;
1333 next_iter:
1334 		MPASS(vp->v_type != VMARKER);
1335 		if (!should_yield())
1336 			continue;
1337 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1338 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1339 		mtx_unlock(&vnode_list_mtx);
1340 		kern_yield(PRI_USER);
1341 		mtx_lock(&vnode_list_mtx);
1342 		goto restart;
1343 	}
1344 	if (done == 0 && !retried) {
1345 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1346 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1347 		retried = true;
1348 		goto restart;
1349 	}
1350 	return (done);
1351 }
1352 
1353 static int max_free_per_call = 10000;
1354 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1355     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1356 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1357     &max_free_per_call, 0,
1358     "limit on vnode free requests per call to the vnlru_free routine");
1359 
1360 /*
1361  * Attempt to recycle requested amount of free vnodes.
1362  */
1363 static int
1364 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1365 {
1366 	struct vnode *vp;
1367 	struct mount *mp;
1368 	int ocount;
1369 	bool retried;
1370 
1371 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1372 	if (count > max_free_per_call)
1373 		count = max_free_per_call;
1374 	if (count == 0) {
1375 		mtx_unlock(&vnode_list_mtx);
1376 		return (0);
1377 	}
1378 	ocount = count;
1379 	retried = false;
1380 	vp = mvp;
1381 	for (;;) {
1382 		vp = TAILQ_NEXT(vp, v_vnodelist);
1383 		if (__predict_false(vp == NULL)) {
1384 			/*
1385 			 * The free vnode marker can be past eligible vnodes:
1386 			 * 1. if vdbatch_process trylock failed
1387 			 * 2. if vtryrecycle failed
1388 			 *
1389 			 * If so, start the scan from scratch.
1390 			 */
1391 			if (!retried && vnlru_read_freevnodes() > 0) {
1392 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1393 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1394 				vp = mvp;
1395 				retried = true;
1396 				continue;
1397 			}
1398 
1399 			/*
1400 			 * Give up
1401 			 */
1402 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1403 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1404 			mtx_unlock(&vnode_list_mtx);
1405 			break;
1406 		}
1407 		if (__predict_false(vp->v_type == VMARKER))
1408 			continue;
1409 		if (vp->v_holdcnt > 0)
1410 			continue;
1411 		/*
1412 		 * Don't recycle if our vnode is from different type
1413 		 * of mount point.  Note that mp is type-safe, the
1414 		 * check does not reach unmapped address even if
1415 		 * vnode is reclaimed.
1416 		 */
1417 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1418 		    mp->mnt_op != mnt_op) {
1419 			continue;
1420 		}
1421 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1422 			continue;
1423 		}
1424 		if (!vhold_recycle_free(vp))
1425 			continue;
1426 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1427 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1428 		mtx_unlock(&vnode_list_mtx);
1429 		/*
1430 		 * FIXME: ignores the return value, meaning it may be nothing
1431 		 * got recycled but it claims otherwise to the caller.
1432 		 *
1433 		 * Originally the value started being ignored in 2005 with
1434 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1435 		 *
1436 		 * Respecting the value can run into significant stalls if most
1437 		 * vnodes belong to one file system and it has writes
1438 		 * suspended.  In presence of many threads and millions of
1439 		 * vnodes they keep contending on the vnode_list_mtx lock only
1440 		 * to find vnodes they can't recycle.
1441 		 *
1442 		 * The solution would be to pre-check if the vnode is likely to
1443 		 * be recycle-able, but it needs to happen with the
1444 		 * vnode_list_mtx lock held. This runs into a problem where
1445 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1446 		 * writes are frozen) can take locks which LOR against it.
1447 		 *
1448 		 * Check nullfs for one example (null_getwritemount).
1449 		 */
1450 		vtryrecycle(vp, isvnlru);
1451 		count--;
1452 		if (count == 0) {
1453 			break;
1454 		}
1455 		mtx_lock(&vnode_list_mtx);
1456 		vp = mvp;
1457 	}
1458 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1459 	return (ocount - count);
1460 }
1461 
1462 /*
1463  * XXX: returns without vnode_list_mtx locked!
1464  */
1465 static int
1466 vnlru_free_locked_direct(int count)
1467 {
1468 	int ret;
1469 
1470 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1471 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1472 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1473 	return (ret);
1474 }
1475 
1476 static int
1477 vnlru_free_locked_vnlru(int count)
1478 {
1479 	int ret;
1480 
1481 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1482 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1483 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1484 	return (ret);
1485 }
1486 
1487 static int
1488 vnlru_free_vnlru(int count)
1489 {
1490 
1491 	mtx_lock(&vnode_list_mtx);
1492 	return (vnlru_free_locked_vnlru(count));
1493 }
1494 
1495 void
1496 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1497 {
1498 
1499 	MPASS(mnt_op != NULL);
1500 	MPASS(mvp != NULL);
1501 	VNPASS(mvp->v_type == VMARKER, mvp);
1502 	mtx_lock(&vnode_list_mtx);
1503 	vnlru_free_impl(count, mnt_op, mvp, true);
1504 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1505 }
1506 
1507 struct vnode *
1508 vnlru_alloc_marker(void)
1509 {
1510 	struct vnode *mvp;
1511 
1512 	mvp = vn_alloc_marker(NULL);
1513 	mtx_lock(&vnode_list_mtx);
1514 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1515 	mtx_unlock(&vnode_list_mtx);
1516 	return (mvp);
1517 }
1518 
1519 void
1520 vnlru_free_marker(struct vnode *mvp)
1521 {
1522 	mtx_lock(&vnode_list_mtx);
1523 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1524 	mtx_unlock(&vnode_list_mtx);
1525 	vn_free_marker(mvp);
1526 }
1527 
1528 static void
1529 vnlru_recalc(void)
1530 {
1531 
1532 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1533 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1534 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1535 	vlowat = vhiwat / 2;
1536 }
1537 
1538 /*
1539  * Attempt to recycle vnodes in a context that is always safe to block.
1540  * Calling vlrurecycle() from the bowels of filesystem code has some
1541  * interesting deadlock problems.
1542  */
1543 static struct proc *vnlruproc;
1544 static int vnlruproc_sig;
1545 static u_long vnlruproc_kicks;
1546 
1547 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1548     "Number of times vnlru awakened due to vnode shortage");
1549 
1550 #define VNLRU_COUNT_SLOP 100
1551 
1552 /*
1553  * The main freevnodes counter is only updated when a counter local to CPU
1554  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1555  * walked to compute a more accurate total.
1556  *
1557  * Note: the actual value at any given moment can still exceed slop, but it
1558  * should not be by significant margin in practice.
1559  */
1560 #define VNLRU_FREEVNODES_SLOP 126
1561 
1562 static void __noinline
1563 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1564 {
1565 
1566 	atomic_add_long(&freevnodes, *lfreevnodes);
1567 	*lfreevnodes = 0;
1568 	critical_exit();
1569 }
1570 
1571 static __inline void
1572 vfs_freevnodes_inc(void)
1573 {
1574 	int8_t *lfreevnodes;
1575 
1576 	critical_enter();
1577 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1578 	(*lfreevnodes)++;
1579 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1580 		vfs_freevnodes_rollup(lfreevnodes);
1581 	else
1582 		critical_exit();
1583 }
1584 
1585 static __inline void
1586 vfs_freevnodes_dec(void)
1587 {
1588 	int8_t *lfreevnodes;
1589 
1590 	critical_enter();
1591 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1592 	(*lfreevnodes)--;
1593 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1594 		vfs_freevnodes_rollup(lfreevnodes);
1595 	else
1596 		critical_exit();
1597 }
1598 
1599 static u_long
1600 vnlru_read_freevnodes(void)
1601 {
1602 	long slop, rfreevnodes, rfreevnodes_old;
1603 	int cpu;
1604 
1605 	rfreevnodes = atomic_load_long(&freevnodes);
1606 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1607 
1608 	if (rfreevnodes > rfreevnodes_old)
1609 		slop = rfreevnodes - rfreevnodes_old;
1610 	else
1611 		slop = rfreevnodes_old - rfreevnodes;
1612 	if (slop < VNLRU_FREEVNODES_SLOP)
1613 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1614 	CPU_FOREACH(cpu) {
1615 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1616 	}
1617 	atomic_store_long(&freevnodes_old, rfreevnodes);
1618 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1619 }
1620 
1621 static bool
1622 vnlru_under(u_long rnumvnodes, u_long limit)
1623 {
1624 	u_long rfreevnodes, space;
1625 
1626 	if (__predict_false(rnumvnodes > desiredvnodes))
1627 		return (true);
1628 
1629 	space = desiredvnodes - rnumvnodes;
1630 	if (space < limit) {
1631 		rfreevnodes = vnlru_read_freevnodes();
1632 		if (rfreevnodes > wantfreevnodes)
1633 			space += rfreevnodes - wantfreevnodes;
1634 	}
1635 	return (space < limit);
1636 }
1637 
1638 static void
1639 vnlru_kick_locked(void)
1640 {
1641 
1642 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1643 	if (vnlruproc_sig == 0) {
1644 		vnlruproc_sig = 1;
1645 		vnlruproc_kicks++;
1646 		wakeup(vnlruproc);
1647 	}
1648 }
1649 
1650 static void
1651 vnlru_kick_cond(void)
1652 {
1653 
1654 	if (vnlru_read_freevnodes() > wantfreevnodes)
1655 		return;
1656 
1657 	if (vnlruproc_sig)
1658 		return;
1659 	mtx_lock(&vnode_list_mtx);
1660 	vnlru_kick_locked();
1661 	mtx_unlock(&vnode_list_mtx);
1662 }
1663 
1664 static void
1665 vnlru_proc_sleep(void)
1666 {
1667 
1668 	if (vnlruproc_sig) {
1669 		vnlruproc_sig = 0;
1670 		wakeup(&vnlruproc_sig);
1671 	}
1672 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1673 }
1674 
1675 /*
1676  * A lighter version of the machinery below.
1677  *
1678  * Tries to reach goals only by recycling free vnodes and does not invoke
1679  * uma_reclaim(UMA_RECLAIM_DRAIN).
1680  *
1681  * This works around pathological behavior in vnlru in presence of tons of free
1682  * vnodes, but without having to rewrite the machinery at this time. Said
1683  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1684  * (cycling through all levels of "force") when the count is transiently above
1685  * limit. This happens a lot when all vnodes are used up and vn_alloc
1686  * speculatively increments the counter.
1687  *
1688  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1689  * 1 million files in total and 20 find(1) processes stating them in parallel
1690  * (one per each tree).
1691  *
1692  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1693  * seconds to execute (time varies *wildly* between runs). With the workaround
1694  * it consistently stays around 20 seconds [it got further down with later
1695  * changes].
1696  *
1697  * That is to say the entire thing needs a fundamental redesign (most notably
1698  * to accommodate faster recycling), the above only tries to get it ouf the way.
1699  *
1700  * Return values are:
1701  * -1 -- fallback to regular vnlru loop
1702  *  0 -- do nothing, go to sleep
1703  * >0 -- recycle this many vnodes
1704  */
1705 static long
1706 vnlru_proc_light_pick(void)
1707 {
1708 	u_long rnumvnodes, rfreevnodes;
1709 
1710 	if (vstir || vnlruproc_sig == 1)
1711 		return (-1);
1712 
1713 	rnumvnodes = atomic_load_long(&numvnodes);
1714 	rfreevnodes = vnlru_read_freevnodes();
1715 
1716 	/*
1717 	 * vnode limit might have changed and now we may be at a significant
1718 	 * excess. Bail if we can't sort it out with free vnodes.
1719 	 *
1720 	 * Due to atomic updates the count can legitimately go above
1721 	 * the limit for a short period, don't bother doing anything in
1722 	 * that case.
1723 	 */
1724 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1725 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1726 		    rfreevnodes <= wantfreevnodes) {
1727 			return (-1);
1728 		}
1729 
1730 		return (rnumvnodes - desiredvnodes);
1731 	}
1732 
1733 	/*
1734 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1735 	 * to begin with.
1736 	 */
1737 	if (rnumvnodes < wantfreevnodes) {
1738 		return (0);
1739 	}
1740 
1741 	if (rfreevnodes < wantfreevnodes) {
1742 		return (-1);
1743 	}
1744 
1745 	return (0);
1746 }
1747 
1748 static bool
1749 vnlru_proc_light(void)
1750 {
1751 	long freecount;
1752 
1753 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1754 
1755 	freecount = vnlru_proc_light_pick();
1756 	if (freecount == -1)
1757 		return (false);
1758 
1759 	if (freecount != 0) {
1760 		vnlru_free_vnlru(freecount);
1761 	}
1762 
1763 	mtx_lock(&vnode_list_mtx);
1764 	vnlru_proc_sleep();
1765 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1766 	return (true);
1767 }
1768 
1769 static u_long uma_reclaim_calls;
1770 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1771     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1772 
1773 static void
1774 vnlru_proc(void)
1775 {
1776 	u_long rnumvnodes, rfreevnodes, target;
1777 	unsigned long onumvnodes;
1778 	int done, force, trigger, usevnodes;
1779 	bool reclaim_nc_src, want_reread;
1780 
1781 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1782 	    SHUTDOWN_PRI_FIRST);
1783 
1784 	force = 0;
1785 	want_reread = false;
1786 	for (;;) {
1787 		kproc_suspend_check(vnlruproc);
1788 
1789 		if (force == 0 && vnlru_proc_light())
1790 			continue;
1791 
1792 		mtx_lock(&vnode_list_mtx);
1793 		rnumvnodes = atomic_load_long(&numvnodes);
1794 
1795 		if (want_reread) {
1796 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1797 			want_reread = false;
1798 		}
1799 
1800 		/*
1801 		 * If numvnodes is too large (due to desiredvnodes being
1802 		 * adjusted using its sysctl, or emergency growth), first
1803 		 * try to reduce it by discarding free vnodes.
1804 		 */
1805 		if (rnumvnodes > desiredvnodes + 10) {
1806 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1807 			mtx_lock(&vnode_list_mtx);
1808 			rnumvnodes = atomic_load_long(&numvnodes);
1809 		}
1810 		/*
1811 		 * Sleep if the vnode cache is in a good state.  This is
1812 		 * when it is not over-full and has space for about a 4%
1813 		 * or 9% expansion (by growing its size or inexcessively
1814 		 * reducing free vnode count).  Otherwise, try to reclaim
1815 		 * space for a 10% expansion.
1816 		 */
1817 		if (vstir && force == 0) {
1818 			force = 1;
1819 			vstir = false;
1820 		}
1821 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1822 			vnlru_proc_sleep();
1823 			continue;
1824 		}
1825 		rfreevnodes = vnlru_read_freevnodes();
1826 
1827 		onumvnodes = rnumvnodes;
1828 		/*
1829 		 * Calculate parameters for recycling.  These are the same
1830 		 * throughout the loop to give some semblance of fairness.
1831 		 * The trigger point is to avoid recycling vnodes with lots
1832 		 * of resident pages.  We aren't trying to free memory; we
1833 		 * are trying to recycle or at least free vnodes.
1834 		 */
1835 		if (rnumvnodes <= desiredvnodes)
1836 			usevnodes = rnumvnodes - rfreevnodes;
1837 		else
1838 			usevnodes = rnumvnodes;
1839 		if (usevnodes <= 0)
1840 			usevnodes = 1;
1841 		/*
1842 		 * The trigger value is chosen to give a conservatively
1843 		 * large value to ensure that it alone doesn't prevent
1844 		 * making progress.  The value can easily be so large that
1845 		 * it is effectively infinite in some congested and
1846 		 * misconfigured cases, and this is necessary.  Normally
1847 		 * it is about 8 to 100 (pages), which is quite large.
1848 		 */
1849 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1850 		if (force < 2)
1851 			trigger = vsmalltrigger;
1852 		reclaim_nc_src = force >= 3;
1853 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1854 		target = target / 10 + 1;
1855 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1856 		mtx_unlock(&vnode_list_mtx);
1857 		/*
1858 		 * Total number of vnodes can transiently go slightly above the
1859 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1860 		 * this happens.
1861 		 */
1862 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1863 		    numvnodes <= desiredvnodes) {
1864 			uma_reclaim_calls++;
1865 			uma_reclaim(UMA_RECLAIM_DRAIN);
1866 		}
1867 		if (done == 0) {
1868 			if (force == 0 || force == 1) {
1869 				force = 2;
1870 				continue;
1871 			}
1872 			if (force == 2) {
1873 				force = 3;
1874 				continue;
1875 			}
1876 			want_reread = true;
1877 			force = 0;
1878 			vnlru_nowhere++;
1879 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1880 		} else {
1881 			want_reread = true;
1882 			kern_yield(PRI_USER);
1883 		}
1884 	}
1885 }
1886 
1887 static struct kproc_desc vnlru_kp = {
1888 	"vnlru",
1889 	vnlru_proc,
1890 	&vnlruproc
1891 };
1892 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1893     &vnlru_kp);
1894 
1895 /*
1896  * Routines having to do with the management of the vnode table.
1897  */
1898 
1899 /*
1900  * Try to recycle a freed vnode.
1901  */
1902 static int
1903 vtryrecycle(struct vnode *vp, bool isvnlru)
1904 {
1905 	struct mount *vnmp;
1906 
1907 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1908 	VNPASS(vp->v_holdcnt > 0, vp);
1909 	/*
1910 	 * This vnode may found and locked via some other list, if so we
1911 	 * can't recycle it yet.
1912 	 */
1913 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1914 		CTR2(KTR_VFS,
1915 		    "%s: impossible to recycle, vp %p lock is already held",
1916 		    __func__, vp);
1917 		vdrop_recycle(vp);
1918 		return (EWOULDBLOCK);
1919 	}
1920 	/*
1921 	 * Don't recycle if its filesystem is being suspended.
1922 	 */
1923 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1924 		VOP_UNLOCK(vp);
1925 		CTR2(KTR_VFS,
1926 		    "%s: impossible to recycle, cannot start the write for %p",
1927 		    __func__, vp);
1928 		vdrop_recycle(vp);
1929 		return (EBUSY);
1930 	}
1931 	/*
1932 	 * If we got this far, we need to acquire the interlock and see if
1933 	 * anyone picked up this vnode from another list.  If not, we will
1934 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1935 	 * will skip over it.
1936 	 */
1937 	VI_LOCK(vp);
1938 	if (vp->v_usecount) {
1939 		VOP_UNLOCK(vp);
1940 		vdropl_recycle(vp);
1941 		vn_finished_write(vnmp);
1942 		CTR2(KTR_VFS,
1943 		    "%s: impossible to recycle, %p is already referenced",
1944 		    __func__, vp);
1945 		return (EBUSY);
1946 	}
1947 	if (!VN_IS_DOOMED(vp)) {
1948 		if (isvnlru)
1949 			recycles_free_count++;
1950 		else
1951 			counter_u64_add(direct_recycles_free_count, 1);
1952 		vgonel(vp);
1953 	}
1954 	VOP_UNLOCK(vp);
1955 	vdropl_recycle(vp);
1956 	vn_finished_write(vnmp);
1957 	return (0);
1958 }
1959 
1960 /*
1961  * Allocate a new vnode.
1962  *
1963  * The operation never returns an error. Returning an error was disabled
1964  * in r145385 (dated 2005) with the following comment:
1965  *
1966  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1967  *
1968  * Given the age of this commit (almost 15 years at the time of writing this
1969  * comment) restoring the ability to fail requires a significant audit of
1970  * all codepaths.
1971  *
1972  * The routine can try to free a vnode or stall for up to 1 second waiting for
1973  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1974  */
1975 static u_long vn_alloc_cyclecount;
1976 static u_long vn_alloc_sleeps;
1977 
1978 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1979     "Number of times vnode allocation blocked waiting on vnlru");
1980 
1981 static struct vnode * __noinline
1982 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1983 {
1984 	u_long rfreevnodes;
1985 
1986 	if (bumped) {
1987 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1988 			atomic_subtract_long(&numvnodes, 1);
1989 			bumped = false;
1990 		}
1991 	}
1992 
1993 	mtx_lock(&vnode_list_mtx);
1994 
1995 	if (vn_alloc_cyclecount != 0) {
1996 		rnumvnodes = atomic_load_long(&numvnodes);
1997 		if (rnumvnodes + 1 < desiredvnodes) {
1998 			vn_alloc_cyclecount = 0;
1999 			mtx_unlock(&vnode_list_mtx);
2000 			goto alloc;
2001 		}
2002 
2003 		rfreevnodes = vnlru_read_freevnodes();
2004 		if (rfreevnodes < wantfreevnodes) {
2005 			if (vn_alloc_cyclecount++ >= rfreevnodes) {
2006 				vn_alloc_cyclecount = 0;
2007 				vstir = true;
2008 			}
2009 		} else {
2010 			vn_alloc_cyclecount = 0;
2011 		}
2012 	}
2013 
2014 	/*
2015 	 * Grow the vnode cache if it will not be above its target max after
2016 	 * growing.  Otherwise, if there is at least one free vnode, try to
2017 	 * reclaim 1 item from it before growing the cache (possibly above its
2018 	 * target max if the reclamation failed or is delayed).
2019 	 */
2020 	if (vnlru_free_locked_direct(1) > 0)
2021 		goto alloc;
2022 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2023 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2024 		/*
2025 		 * Wait for space for a new vnode.
2026 		 */
2027 		if (bumped) {
2028 			atomic_subtract_long(&numvnodes, 1);
2029 			bumped = false;
2030 		}
2031 		mtx_lock(&vnode_list_mtx);
2032 		vnlru_kick_locked();
2033 		vn_alloc_sleeps++;
2034 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2035 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2036 		    vnlru_read_freevnodes() > 1)
2037 			vnlru_free_locked_direct(1);
2038 		else
2039 			mtx_unlock(&vnode_list_mtx);
2040 	}
2041 alloc:
2042 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2043 	if (!bumped)
2044 		atomic_add_long(&numvnodes, 1);
2045 	vnlru_kick_cond();
2046 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2047 }
2048 
2049 static struct vnode *
2050 vn_alloc(struct mount *mp)
2051 {
2052 	u_long rnumvnodes;
2053 
2054 	if (__predict_false(vn_alloc_cyclecount != 0))
2055 		return (vn_alloc_hard(mp, 0, false));
2056 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2057 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2058 		return (vn_alloc_hard(mp, rnumvnodes, true));
2059 	}
2060 
2061 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2062 }
2063 
2064 static void
2065 vn_free(struct vnode *vp)
2066 {
2067 
2068 	atomic_subtract_long(&numvnodes, 1);
2069 	uma_zfree_smr(vnode_zone, vp);
2070 }
2071 
2072 /*
2073  * Allocate a new vnode.
2074  */
2075 int
2076 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2077     struct vnode **vpp)
2078 {
2079 	struct vnode *vp;
2080 	struct thread *td;
2081 	struct lock_object *lo;
2082 
2083 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2084 
2085 	KASSERT(vops->registered,
2086 	    ("%s: not registered vector op %p\n", __func__, vops));
2087 	cache_validate_vop_vector(mp, vops);
2088 
2089 	td = curthread;
2090 	if (td->td_vp_reserved != NULL) {
2091 		vp = td->td_vp_reserved;
2092 		td->td_vp_reserved = NULL;
2093 	} else {
2094 		vp = vn_alloc(mp);
2095 	}
2096 	counter_u64_add(vnodes_created, 1);
2097 
2098 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2099 
2100 	/*
2101 	 * Locks are given the generic name "vnode" when created.
2102 	 * Follow the historic practice of using the filesystem
2103 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2104 	 *
2105 	 * Locks live in a witness group keyed on their name. Thus,
2106 	 * when a lock is renamed, it must also move from the witness
2107 	 * group of its old name to the witness group of its new name.
2108 	 *
2109 	 * The change only needs to be made when the vnode moves
2110 	 * from one filesystem type to another. We ensure that each
2111 	 * filesystem use a single static name pointer for its tag so
2112 	 * that we can compare pointers rather than doing a strcmp().
2113 	 */
2114 	lo = &vp->v_vnlock->lock_object;
2115 #ifdef WITNESS
2116 	if (lo->lo_name != tag) {
2117 #endif
2118 		lo->lo_name = tag;
2119 #ifdef WITNESS
2120 		WITNESS_DESTROY(lo);
2121 		WITNESS_INIT(lo, tag);
2122 	}
2123 #endif
2124 	/*
2125 	 * By default, don't allow shared locks unless filesystems opt-in.
2126 	 */
2127 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2128 	/*
2129 	 * Finalize various vnode identity bits.
2130 	 */
2131 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2132 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2133 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2134 	vp->v_type = VNON;
2135 	vp->v_op = vops;
2136 	vp->v_irflag = 0;
2137 	v_init_counters(vp);
2138 	vn_seqc_init(vp);
2139 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2140 #ifdef DIAGNOSTIC
2141 	if (mp == NULL && vops != &dead_vnodeops)
2142 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2143 #endif
2144 #ifdef MAC
2145 	mac_vnode_init(vp);
2146 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2147 		mac_vnode_associate_singlelabel(mp, vp);
2148 #endif
2149 	if (mp != NULL) {
2150 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2151 	}
2152 
2153 	/*
2154 	 * For the filesystems which do not use vfs_hash_insert(),
2155 	 * still initialize v_hash to have vfs_hash_index() useful.
2156 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2157 	 * its own hashing.
2158 	 */
2159 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2160 
2161 	*vpp = vp;
2162 	return (0);
2163 }
2164 
2165 void
2166 getnewvnode_reserve(void)
2167 {
2168 	struct thread *td;
2169 
2170 	td = curthread;
2171 	MPASS(td->td_vp_reserved == NULL);
2172 	td->td_vp_reserved = vn_alloc(NULL);
2173 }
2174 
2175 void
2176 getnewvnode_drop_reserve(void)
2177 {
2178 	struct thread *td;
2179 
2180 	td = curthread;
2181 	if (td->td_vp_reserved != NULL) {
2182 		vn_free(td->td_vp_reserved);
2183 		td->td_vp_reserved = NULL;
2184 	}
2185 }
2186 
2187 static void __noinline
2188 freevnode(struct vnode *vp)
2189 {
2190 	struct bufobj *bo;
2191 
2192 	/*
2193 	 * The vnode has been marked for destruction, so free it.
2194 	 *
2195 	 * The vnode will be returned to the zone where it will
2196 	 * normally remain until it is needed for another vnode. We
2197 	 * need to cleanup (or verify that the cleanup has already
2198 	 * been done) any residual data left from its current use
2199 	 * so as not to contaminate the freshly allocated vnode.
2200 	 */
2201 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2202 	/*
2203 	 * Paired with vgone.
2204 	 */
2205 	vn_seqc_write_end_free(vp);
2206 
2207 	bo = &vp->v_bufobj;
2208 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2209 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2210 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2211 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2212 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2213 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2214 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2215 	    ("clean blk trie not empty"));
2216 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2217 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2218 	    ("dirty blk trie not empty"));
2219 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2220 	    ("Leaked inactivation"));
2221 	VI_UNLOCK(vp);
2222 	cache_assert_no_entries(vp);
2223 
2224 #ifdef MAC
2225 	mac_vnode_destroy(vp);
2226 #endif
2227 	if (vp->v_pollinfo != NULL) {
2228 		/*
2229 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2230 		 * here while having another vnode locked when trying to
2231 		 * satisfy a lookup and needing to recycle.
2232 		 */
2233 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2234 		destroy_vpollinfo(vp->v_pollinfo);
2235 		VOP_UNLOCK(vp);
2236 		vp->v_pollinfo = NULL;
2237 	}
2238 	vp->v_mountedhere = NULL;
2239 	vp->v_unpcb = NULL;
2240 	vp->v_rdev = NULL;
2241 	vp->v_fifoinfo = NULL;
2242 	vp->v_iflag = 0;
2243 	vp->v_vflag = 0;
2244 	bo->bo_flag = 0;
2245 	vn_free(vp);
2246 }
2247 
2248 /*
2249  * Delete from old mount point vnode list, if on one.
2250  */
2251 static void
2252 delmntque(struct vnode *vp)
2253 {
2254 	struct mount *mp;
2255 
2256 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2257 
2258 	mp = vp->v_mount;
2259 	MNT_ILOCK(mp);
2260 	VI_LOCK(vp);
2261 	vp->v_mount = NULL;
2262 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2263 		("bad mount point vnode list size"));
2264 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2265 	mp->mnt_nvnodelistsize--;
2266 	MNT_REL(mp);
2267 	MNT_IUNLOCK(mp);
2268 	/*
2269 	 * The caller expects the interlock to be still held.
2270 	 */
2271 	ASSERT_VI_LOCKED(vp, __func__);
2272 }
2273 
2274 static int
2275 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2276 {
2277 
2278 	KASSERT(vp->v_mount == NULL,
2279 		("insmntque: vnode already on per mount vnode list"));
2280 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2281 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2282 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2283 	} else {
2284 		KASSERT(!dtr,
2285 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2286 		    __func__));
2287 	}
2288 
2289 	/*
2290 	 * We acquire the vnode interlock early to ensure that the
2291 	 * vnode cannot be recycled by another process releasing a
2292 	 * holdcnt on it before we get it on both the vnode list
2293 	 * and the active vnode list. The mount mutex protects only
2294 	 * manipulation of the vnode list and the vnode freelist
2295 	 * mutex protects only manipulation of the active vnode list.
2296 	 * Hence the need to hold the vnode interlock throughout.
2297 	 */
2298 	MNT_ILOCK(mp);
2299 	VI_LOCK(vp);
2300 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2301 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2302 	    mp->mnt_nvnodelistsize == 0)) &&
2303 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2304 		VI_UNLOCK(vp);
2305 		MNT_IUNLOCK(mp);
2306 		if (dtr) {
2307 			vp->v_data = NULL;
2308 			vp->v_op = &dead_vnodeops;
2309 			vgone(vp);
2310 			vput(vp);
2311 		}
2312 		return (EBUSY);
2313 	}
2314 	vp->v_mount = mp;
2315 	MNT_REF(mp);
2316 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2317 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2318 		("neg mount point vnode list size"));
2319 	mp->mnt_nvnodelistsize++;
2320 	VI_UNLOCK(vp);
2321 	MNT_IUNLOCK(mp);
2322 	return (0);
2323 }
2324 
2325 /*
2326  * Insert into list of vnodes for the new mount point, if available.
2327  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2328  * leaves handling of the vnode to the caller.
2329  */
2330 int
2331 insmntque(struct vnode *vp, struct mount *mp)
2332 {
2333 	return (insmntque1_int(vp, mp, true));
2334 }
2335 
2336 int
2337 insmntque1(struct vnode *vp, struct mount *mp)
2338 {
2339 	return (insmntque1_int(vp, mp, false));
2340 }
2341 
2342 /*
2343  * Flush out and invalidate all buffers associated with a bufobj
2344  * Called with the underlying object locked.
2345  */
2346 int
2347 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2348 {
2349 	int error;
2350 
2351 	BO_LOCK(bo);
2352 	if (flags & V_SAVE) {
2353 		error = bufobj_wwait(bo, slpflag, slptimeo);
2354 		if (error) {
2355 			BO_UNLOCK(bo);
2356 			return (error);
2357 		}
2358 		if (bo->bo_dirty.bv_cnt > 0) {
2359 			BO_UNLOCK(bo);
2360 			do {
2361 				error = BO_SYNC(bo, MNT_WAIT);
2362 			} while (error == ERELOOKUP);
2363 			if (error != 0)
2364 				return (error);
2365 			BO_LOCK(bo);
2366 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2367 				BO_UNLOCK(bo);
2368 				return (EBUSY);
2369 			}
2370 		}
2371 	}
2372 	/*
2373 	 * If you alter this loop please notice that interlock is dropped and
2374 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2375 	 * no race conditions occur from this.
2376 	 */
2377 	do {
2378 		error = flushbuflist(&bo->bo_clean,
2379 		    flags, bo, slpflag, slptimeo);
2380 		if (error == 0 && !(flags & V_CLEANONLY))
2381 			error = flushbuflist(&bo->bo_dirty,
2382 			    flags, bo, slpflag, slptimeo);
2383 		if (error != 0 && error != EAGAIN) {
2384 			BO_UNLOCK(bo);
2385 			return (error);
2386 		}
2387 	} while (error != 0);
2388 
2389 	/*
2390 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2391 	 * have write I/O in-progress but if there is a VM object then the
2392 	 * VM object can also have read-I/O in-progress.
2393 	 */
2394 	do {
2395 		bufobj_wwait(bo, 0, 0);
2396 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2397 			BO_UNLOCK(bo);
2398 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2399 			BO_LOCK(bo);
2400 		}
2401 	} while (bo->bo_numoutput > 0);
2402 	BO_UNLOCK(bo);
2403 
2404 	/*
2405 	 * Destroy the copy in the VM cache, too.
2406 	 */
2407 	if (bo->bo_object != NULL &&
2408 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2409 		VM_OBJECT_WLOCK(bo->bo_object);
2410 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2411 		    OBJPR_CLEANONLY : 0);
2412 		VM_OBJECT_WUNLOCK(bo->bo_object);
2413 	}
2414 
2415 #ifdef INVARIANTS
2416 	BO_LOCK(bo);
2417 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2418 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2419 	    bo->bo_clean.bv_cnt > 0))
2420 		panic("vinvalbuf: flush failed");
2421 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2422 	    bo->bo_dirty.bv_cnt > 0)
2423 		panic("vinvalbuf: flush dirty failed");
2424 	BO_UNLOCK(bo);
2425 #endif
2426 	return (0);
2427 }
2428 
2429 /*
2430  * Flush out and invalidate all buffers associated with a vnode.
2431  * Called with the underlying object locked.
2432  */
2433 int
2434 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2435 {
2436 
2437 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2438 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2439 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2440 		return (0);
2441 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2442 }
2443 
2444 /*
2445  * Flush out buffers on the specified list.
2446  *
2447  */
2448 static int
2449 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2450     int slptimeo)
2451 {
2452 	struct buf *bp, *nbp;
2453 	int retval, error;
2454 	daddr_t lblkno;
2455 	b_xflags_t xflags;
2456 
2457 	ASSERT_BO_WLOCKED(bo);
2458 
2459 	retval = 0;
2460 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2461 		/*
2462 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2463 		 * do not skip any buffers. If we are flushing only V_NORMAL
2464 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2465 		 * flushing only V_ALT buffers then skip buffers not marked
2466 		 * as BX_ALTDATA.
2467 		 */
2468 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2469 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2470 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2471 			continue;
2472 		}
2473 		if (nbp != NULL) {
2474 			lblkno = nbp->b_lblkno;
2475 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2476 		}
2477 		retval = EAGAIN;
2478 		error = BUF_TIMELOCK(bp,
2479 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2480 		    "flushbuf", slpflag, slptimeo);
2481 		if (error) {
2482 			BO_LOCK(bo);
2483 			return (error != ENOLCK ? error : EAGAIN);
2484 		}
2485 		KASSERT(bp->b_bufobj == bo,
2486 		    ("bp %p wrong b_bufobj %p should be %p",
2487 		    bp, bp->b_bufobj, bo));
2488 		/*
2489 		 * XXX Since there are no node locks for NFS, I
2490 		 * believe there is a slight chance that a delayed
2491 		 * write will occur while sleeping just above, so
2492 		 * check for it.
2493 		 */
2494 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2495 		    (flags & V_SAVE)) {
2496 			bremfree(bp);
2497 			bp->b_flags |= B_ASYNC;
2498 			bwrite(bp);
2499 			BO_LOCK(bo);
2500 			return (EAGAIN);	/* XXX: why not loop ? */
2501 		}
2502 		bremfree(bp);
2503 		bp->b_flags |= (B_INVAL | B_RELBUF);
2504 		bp->b_flags &= ~B_ASYNC;
2505 		brelse(bp);
2506 		BO_LOCK(bo);
2507 		if (nbp == NULL)
2508 			break;
2509 		nbp = gbincore(bo, lblkno);
2510 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2511 		    != xflags)
2512 			break;			/* nbp invalid */
2513 	}
2514 	return (retval);
2515 }
2516 
2517 int
2518 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2519 {
2520 	struct buf *bp;
2521 	int error;
2522 	daddr_t lblkno;
2523 
2524 	ASSERT_BO_LOCKED(bo);
2525 
2526 	for (lblkno = startn;;) {
2527 again:
2528 		bp = buf_lookup_ge(bufv, lblkno);
2529 		if (bp == NULL || bp->b_lblkno >= endn)
2530 			break;
2531 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2532 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2533 		if (error != 0) {
2534 			BO_RLOCK(bo);
2535 			if (error == ENOLCK)
2536 				goto again;
2537 			return (error);
2538 		}
2539 		KASSERT(bp->b_bufobj == bo,
2540 		    ("bp %p wrong b_bufobj %p should be %p",
2541 		    bp, bp->b_bufobj, bo));
2542 		lblkno = bp->b_lblkno + 1;
2543 		if ((bp->b_flags & B_MANAGED) == 0)
2544 			bremfree(bp);
2545 		bp->b_flags |= B_RELBUF;
2546 		/*
2547 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2548 		 * pages backing each buffer in the range are unlikely to be
2549 		 * reused.  Dirty buffers will have the hint applied once
2550 		 * they've been written.
2551 		 */
2552 		if ((bp->b_flags & B_VMIO) != 0)
2553 			bp->b_flags |= B_NOREUSE;
2554 		brelse(bp);
2555 		BO_RLOCK(bo);
2556 	}
2557 	return (0);
2558 }
2559 
2560 /*
2561  * Truncate a file's buffer and pages to a specified length.  This
2562  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2563  * sync activity.
2564  */
2565 int
2566 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2567 {
2568 	struct buf *bp, *nbp;
2569 	struct bufobj *bo;
2570 	daddr_t startlbn;
2571 
2572 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2573 	    vp, blksize, (uintmax_t)length);
2574 
2575 	/*
2576 	 * Round up to the *next* lbn.
2577 	 */
2578 	startlbn = howmany(length, blksize);
2579 
2580 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2581 
2582 	bo = &vp->v_bufobj;
2583 restart_unlocked:
2584 	BO_LOCK(bo);
2585 
2586 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2587 		;
2588 
2589 	if (length > 0) {
2590 		/*
2591 		 * Write out vnode metadata, e.g. indirect blocks.
2592 		 */
2593 restartsync:
2594 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2595 			if (bp->b_lblkno >= 0)
2596 				continue;
2597 			/*
2598 			 * Since we hold the vnode lock this should only
2599 			 * fail if we're racing with the buf daemon.
2600 			 */
2601 			if (BUF_LOCK(bp,
2602 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2603 			    BO_LOCKPTR(bo)) == ENOLCK)
2604 				goto restart_unlocked;
2605 
2606 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2607 			    ("buf(%p) on dirty queue without DELWRI", bp));
2608 
2609 			bremfree(bp);
2610 			bawrite(bp);
2611 			BO_LOCK(bo);
2612 			goto restartsync;
2613 		}
2614 	}
2615 
2616 	bufobj_wwait(bo, 0, 0);
2617 	BO_UNLOCK(bo);
2618 	vnode_pager_setsize(vp, length);
2619 
2620 	return (0);
2621 }
2622 
2623 /*
2624  * Invalidate the cached pages of a file's buffer within the range of block
2625  * numbers [startlbn, endlbn).
2626  */
2627 void
2628 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2629     int blksize)
2630 {
2631 	struct bufobj *bo;
2632 	off_t start, end;
2633 
2634 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2635 
2636 	start = blksize * startlbn;
2637 	end = blksize * endlbn;
2638 
2639 	bo = &vp->v_bufobj;
2640 	BO_LOCK(bo);
2641 	MPASS(blksize == bo->bo_bsize);
2642 
2643 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2644 		;
2645 
2646 	BO_UNLOCK(bo);
2647 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2648 }
2649 
2650 static int
2651 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2652     daddr_t startlbn, daddr_t endlbn)
2653 {
2654 	struct bufv *bv;
2655 	struct buf *bp, *nbp;
2656 	uint8_t anyfreed;
2657 	bool clean;
2658 
2659 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2660 	ASSERT_BO_LOCKED(bo);
2661 
2662 	anyfreed = 1;
2663 	clean = true;
2664 	do {
2665 		bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2666 		bp = buf_lookup_ge(bv, startlbn);
2667 		if (bp == NULL)
2668 			continue;
2669 		TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2670 			if (bp->b_lblkno >= endlbn)
2671 				break;
2672 			if (BUF_LOCK(bp,
2673 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2674 			    BO_LOCKPTR(bo)) == ENOLCK) {
2675 				BO_LOCK(bo);
2676 				return (EAGAIN);
2677 			}
2678 
2679 			bremfree(bp);
2680 			bp->b_flags |= B_INVAL | B_RELBUF;
2681 			bp->b_flags &= ~B_ASYNC;
2682 			brelse(bp);
2683 			anyfreed = 2;
2684 
2685 			BO_LOCK(bo);
2686 			if (nbp != NULL &&
2687 			    (((nbp->b_xflags &
2688 			    (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2689 			    nbp->b_vp != vp ||
2690 			    (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2691 				return (EAGAIN);
2692 		}
2693 	} while (clean = !clean, anyfreed-- > 0);
2694 	return (0);
2695 }
2696 
2697 static void
2698 buf_vlist_remove(struct buf *bp)
2699 {
2700 	struct bufv *bv;
2701 	b_xflags_t flags;
2702 
2703 	flags = bp->b_xflags;
2704 
2705 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2706 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2707 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2708 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2709 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2710 
2711 	if ((flags & BX_VNDIRTY) != 0)
2712 		bv = &bp->b_bufobj->bo_dirty;
2713 	else
2714 		bv = &bp->b_bufobj->bo_clean;
2715 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2716 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2717 	bv->bv_cnt--;
2718 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2719 }
2720 
2721 /*
2722  * Add the buffer to the sorted clean or dirty block list.  Return zero on
2723  * success, EEXIST if a buffer with this identity already exists, or another
2724  * error on allocation failure.
2725  */
2726 static inline int
2727 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2728 {
2729 	struct bufv *bv;
2730 	struct buf *n;
2731 	int error;
2732 
2733 	ASSERT_BO_WLOCKED(bo);
2734 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2735 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2736 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2737 	    ("dead bo %p", bo));
2738 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2739 	    ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2740 
2741 	if (xflags & BX_VNDIRTY)
2742 		bv = &bo->bo_dirty;
2743 	else
2744 		bv = &bo->bo_clean;
2745 
2746 	error = buf_insert_lookup_le(bv, bp, &n);
2747 	if (n == NULL) {
2748 		KASSERT(error != EEXIST,
2749 		    ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2750 		    bp));
2751 	} else {
2752 		KASSERT(n->b_lblkno <= bp->b_lblkno,
2753 		    ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2754 		    bp, n));
2755 		KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2756 		    ("buf_vlist_add: inconsistent result for existing buf: "
2757 		    "error %d bp %p n %p", error, bp, n));
2758 	}
2759 	if (error != 0)
2760 		return (error);
2761 
2762 	/* Keep the list ordered. */
2763 	if (n == NULL) {
2764 		KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2765 		    bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2766 		    ("buf_vlist_add: queue order: "
2767 		    "%p should be before first %p",
2768 		    bp, TAILQ_FIRST(&bv->bv_hd)));
2769 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2770 	} else {
2771 		KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2772 		    bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2773 		    ("buf_vlist_add: queue order: "
2774 		    "%p should be before next %p",
2775 		    bp, TAILQ_NEXT(n, b_bobufs)));
2776 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2777 	}
2778 
2779 	bv->bv_cnt++;
2780 	return (0);
2781 }
2782 
2783 /*
2784  * Add the buffer to the sorted clean or dirty block list.
2785  *
2786  * NOTE: xflags is passed as a constant, optimizing this inline function!
2787  */
2788 static void
2789 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2790 {
2791 	int error;
2792 
2793 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2794 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2795 	bp->b_xflags |= xflags;
2796 	error = buf_vlist_find_or_add(bp, bo, xflags);
2797 	if (error)
2798 		panic("buf_vlist_add: error=%d", error);
2799 }
2800 
2801 /*
2802  * Look up a buffer using the buffer tries.
2803  */
2804 struct buf *
2805 gbincore(struct bufobj *bo, daddr_t lblkno)
2806 {
2807 	struct buf *bp;
2808 
2809 	ASSERT_BO_LOCKED(bo);
2810 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2811 	if (bp != NULL)
2812 		return (bp);
2813 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2814 }
2815 
2816 /*
2817  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2818  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2819  * stability of the result.  Like other lockless lookups, the found buf may
2820  * already be invalid by the time this function returns.
2821  */
2822 struct buf *
2823 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2824 {
2825 	struct buf *bp;
2826 
2827 	ASSERT_BO_UNLOCKED(bo);
2828 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2829 	if (bp != NULL)
2830 		return (bp);
2831 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2832 }
2833 
2834 /*
2835  * Associate a buffer with a vnode.
2836  */
2837 int
2838 bgetvp(struct vnode *vp, struct buf *bp)
2839 {
2840 	struct bufobj *bo;
2841 	int error;
2842 
2843 	bo = &vp->v_bufobj;
2844 	ASSERT_BO_UNLOCKED(bo);
2845 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2846 
2847 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2848 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2849 	    ("bgetvp: bp already attached! %p", bp));
2850 
2851 	/*
2852 	 * Add the buf to the vnode's clean list unless we lost a race and find
2853 	 * an existing buf in either dirty or clean.
2854 	 */
2855 	bp->b_vp = vp;
2856 	bp->b_bufobj = bo;
2857 	bp->b_xflags |= BX_VNCLEAN;
2858 	error = EEXIST;
2859 	BO_LOCK(bo);
2860 	if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2861 		error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2862 	BO_UNLOCK(bo);
2863 	if (__predict_true(error == 0)) {
2864 		vhold(vp);
2865 		return (0);
2866 	}
2867 	if (error != EEXIST)
2868 		panic("bgetvp: buf_vlist_add error: %d", error);
2869 	bp->b_vp = NULL;
2870 	bp->b_bufobj = NULL;
2871 	bp->b_xflags &= ~BX_VNCLEAN;
2872 	return (error);
2873 }
2874 
2875 /*
2876  * Disassociate a buffer from a vnode.
2877  */
2878 void
2879 brelvp(struct buf *bp)
2880 {
2881 	struct bufobj *bo;
2882 	struct vnode *vp;
2883 
2884 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2885 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2886 
2887 	/*
2888 	 * Delete from old vnode list, if on one.
2889 	 */
2890 	vp = bp->b_vp;		/* XXX */
2891 	bo = bp->b_bufobj;
2892 	BO_LOCK(bo);
2893 	buf_vlist_remove(bp);
2894 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2895 		bo->bo_flag &= ~BO_ONWORKLST;
2896 		mtx_lock(&sync_mtx);
2897 		LIST_REMOVE(bo, bo_synclist);
2898 		syncer_worklist_len--;
2899 		mtx_unlock(&sync_mtx);
2900 	}
2901 	bp->b_vp = NULL;
2902 	bp->b_bufobj = NULL;
2903 	BO_UNLOCK(bo);
2904 	vdrop(vp);
2905 }
2906 
2907 /*
2908  * Add an item to the syncer work queue.
2909  */
2910 static void
2911 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2912 {
2913 	int slot;
2914 
2915 	ASSERT_BO_WLOCKED(bo);
2916 
2917 	mtx_lock(&sync_mtx);
2918 	if (bo->bo_flag & BO_ONWORKLST)
2919 		LIST_REMOVE(bo, bo_synclist);
2920 	else {
2921 		bo->bo_flag |= BO_ONWORKLST;
2922 		syncer_worklist_len++;
2923 	}
2924 
2925 	if (delay > syncer_maxdelay - 2)
2926 		delay = syncer_maxdelay - 2;
2927 	slot = (syncer_delayno + delay) & syncer_mask;
2928 
2929 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2930 	mtx_unlock(&sync_mtx);
2931 }
2932 
2933 static int
2934 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2935 {
2936 	int error, len;
2937 
2938 	mtx_lock(&sync_mtx);
2939 	len = syncer_worklist_len - sync_vnode_count;
2940 	mtx_unlock(&sync_mtx);
2941 	error = SYSCTL_OUT(req, &len, sizeof(len));
2942 	return (error);
2943 }
2944 
2945 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2946     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2947     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2948 
2949 static struct proc *updateproc;
2950 static void sched_sync(void);
2951 static struct kproc_desc up_kp = {
2952 	"syncer",
2953 	sched_sync,
2954 	&updateproc
2955 };
2956 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2957 
2958 static int
2959 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2960 {
2961 	struct vnode *vp;
2962 	struct mount *mp;
2963 
2964 	*bo = LIST_FIRST(slp);
2965 	if (*bo == NULL)
2966 		return (0);
2967 	vp = bo2vnode(*bo);
2968 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2969 		return (1);
2970 	/*
2971 	 * We use vhold in case the vnode does not
2972 	 * successfully sync.  vhold prevents the vnode from
2973 	 * going away when we unlock the sync_mtx so that
2974 	 * we can acquire the vnode interlock.
2975 	 */
2976 	vholdl(vp);
2977 	mtx_unlock(&sync_mtx);
2978 	VI_UNLOCK(vp);
2979 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2980 		vdrop(vp);
2981 		mtx_lock(&sync_mtx);
2982 		return (*bo == LIST_FIRST(slp));
2983 	}
2984 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2985 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2986 	    ("suspended mp syncing vp %p", vp));
2987 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2988 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2989 	VOP_UNLOCK(vp);
2990 	vn_finished_write(mp);
2991 	BO_LOCK(*bo);
2992 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2993 		/*
2994 		 * Put us back on the worklist.  The worklist
2995 		 * routine will remove us from our current
2996 		 * position and then add us back in at a later
2997 		 * position.
2998 		 */
2999 		vn_syncer_add_to_worklist(*bo, syncdelay);
3000 	}
3001 	BO_UNLOCK(*bo);
3002 	vdrop(vp);
3003 	mtx_lock(&sync_mtx);
3004 	return (0);
3005 }
3006 
3007 static int first_printf = 1;
3008 
3009 /*
3010  * System filesystem synchronizer daemon.
3011  */
3012 static void
3013 sched_sync(void)
3014 {
3015 	struct synclist *next, *slp;
3016 	struct bufobj *bo;
3017 	long starttime;
3018 	struct thread *td = curthread;
3019 	int last_work_seen;
3020 	int net_worklist_len;
3021 	int syncer_final_iter;
3022 	int error;
3023 
3024 	last_work_seen = 0;
3025 	syncer_final_iter = 0;
3026 	syncer_state = SYNCER_RUNNING;
3027 	starttime = time_uptime;
3028 	td->td_pflags |= TDP_NORUNNINGBUF;
3029 
3030 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3031 	    SHUTDOWN_PRI_LAST);
3032 
3033 	mtx_lock(&sync_mtx);
3034 	for (;;) {
3035 		if (syncer_state == SYNCER_FINAL_DELAY &&
3036 		    syncer_final_iter == 0) {
3037 			mtx_unlock(&sync_mtx);
3038 			kproc_suspend_check(td->td_proc);
3039 			mtx_lock(&sync_mtx);
3040 		}
3041 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
3042 		if (syncer_state != SYNCER_RUNNING &&
3043 		    starttime != time_uptime) {
3044 			if (first_printf) {
3045 				printf("\nSyncing disks, vnodes remaining... ");
3046 				first_printf = 0;
3047 			}
3048 			printf("%d ", net_worklist_len);
3049 		}
3050 		starttime = time_uptime;
3051 
3052 		/*
3053 		 * Push files whose dirty time has expired.  Be careful
3054 		 * of interrupt race on slp queue.
3055 		 *
3056 		 * Skip over empty worklist slots when shutting down.
3057 		 */
3058 		do {
3059 			slp = &syncer_workitem_pending[syncer_delayno];
3060 			syncer_delayno += 1;
3061 			if (syncer_delayno == syncer_maxdelay)
3062 				syncer_delayno = 0;
3063 			next = &syncer_workitem_pending[syncer_delayno];
3064 			/*
3065 			 * If the worklist has wrapped since the
3066 			 * it was emptied of all but syncer vnodes,
3067 			 * switch to the FINAL_DELAY state and run
3068 			 * for one more second.
3069 			 */
3070 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
3071 			    net_worklist_len == 0 &&
3072 			    last_work_seen == syncer_delayno) {
3073 				syncer_state = SYNCER_FINAL_DELAY;
3074 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3075 			}
3076 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3077 		    syncer_worklist_len > 0);
3078 
3079 		/*
3080 		 * Keep track of the last time there was anything
3081 		 * on the worklist other than syncer vnodes.
3082 		 * Return to the SHUTTING_DOWN state if any
3083 		 * new work appears.
3084 		 */
3085 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3086 			last_work_seen = syncer_delayno;
3087 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3088 			syncer_state = SYNCER_SHUTTING_DOWN;
3089 		while (!LIST_EMPTY(slp)) {
3090 			error = sync_vnode(slp, &bo, td);
3091 			if (error == 1) {
3092 				LIST_REMOVE(bo, bo_synclist);
3093 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3094 				continue;
3095 			}
3096 
3097 			if (first_printf == 0) {
3098 				/*
3099 				 * Drop the sync mutex, because some watchdog
3100 				 * drivers need to sleep while patting
3101 				 */
3102 				mtx_unlock(&sync_mtx);
3103 				wdog_kern_pat(WD_LASTVAL);
3104 				mtx_lock(&sync_mtx);
3105 			}
3106 		}
3107 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3108 			syncer_final_iter--;
3109 		/*
3110 		 * The variable rushjob allows the kernel to speed up the
3111 		 * processing of the filesystem syncer process. A rushjob
3112 		 * value of N tells the filesystem syncer to process the next
3113 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3114 		 * is used by the soft update code to speed up the filesystem
3115 		 * syncer process when the incore state is getting so far
3116 		 * ahead of the disk that the kernel memory pool is being
3117 		 * threatened with exhaustion.
3118 		 */
3119 		if (rushjob > 0) {
3120 			rushjob -= 1;
3121 			continue;
3122 		}
3123 		/*
3124 		 * Just sleep for a short period of time between
3125 		 * iterations when shutting down to allow some I/O
3126 		 * to happen.
3127 		 *
3128 		 * If it has taken us less than a second to process the
3129 		 * current work, then wait. Otherwise start right over
3130 		 * again. We can still lose time if any single round
3131 		 * takes more than two seconds, but it does not really
3132 		 * matter as we are just trying to generally pace the
3133 		 * filesystem activity.
3134 		 */
3135 		if (syncer_state != SYNCER_RUNNING ||
3136 		    time_uptime == starttime) {
3137 			thread_lock(td);
3138 			sched_prio(td, PPAUSE);
3139 			thread_unlock(td);
3140 		}
3141 		if (syncer_state != SYNCER_RUNNING)
3142 			cv_timedwait(&sync_wakeup, &sync_mtx,
3143 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3144 		else if (time_uptime == starttime)
3145 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3146 	}
3147 }
3148 
3149 /*
3150  * Request the syncer daemon to speed up its work.
3151  * We never push it to speed up more than half of its
3152  * normal turn time, otherwise it could take over the cpu.
3153  */
3154 int
3155 speedup_syncer(void)
3156 {
3157 	int ret = 0;
3158 
3159 	mtx_lock(&sync_mtx);
3160 	if (rushjob < syncdelay / 2) {
3161 		rushjob += 1;
3162 		stat_rush_requests += 1;
3163 		ret = 1;
3164 	}
3165 	mtx_unlock(&sync_mtx);
3166 	cv_broadcast(&sync_wakeup);
3167 	return (ret);
3168 }
3169 
3170 /*
3171  * Tell the syncer to speed up its work and run though its work
3172  * list several times, then tell it to shut down.
3173  */
3174 static void
3175 syncer_shutdown(void *arg, int howto)
3176 {
3177 
3178 	if (howto & RB_NOSYNC)
3179 		return;
3180 	mtx_lock(&sync_mtx);
3181 	syncer_state = SYNCER_SHUTTING_DOWN;
3182 	rushjob = 0;
3183 	mtx_unlock(&sync_mtx);
3184 	cv_broadcast(&sync_wakeup);
3185 	kproc_shutdown(arg, howto);
3186 }
3187 
3188 void
3189 syncer_suspend(void)
3190 {
3191 
3192 	syncer_shutdown(updateproc, 0);
3193 }
3194 
3195 void
3196 syncer_resume(void)
3197 {
3198 
3199 	mtx_lock(&sync_mtx);
3200 	first_printf = 1;
3201 	syncer_state = SYNCER_RUNNING;
3202 	mtx_unlock(&sync_mtx);
3203 	cv_broadcast(&sync_wakeup);
3204 	kproc_resume(updateproc);
3205 }
3206 
3207 /*
3208  * Move the buffer between the clean and dirty lists of its vnode.
3209  */
3210 void
3211 reassignbuf(struct buf *bp)
3212 {
3213 	struct vnode *vp;
3214 	struct bufobj *bo;
3215 	int delay;
3216 #ifdef INVARIANTS
3217 	struct bufv *bv;
3218 #endif
3219 
3220 	vp = bp->b_vp;
3221 	bo = bp->b_bufobj;
3222 
3223 	KASSERT((bp->b_flags & B_PAGING) == 0,
3224 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3225 
3226 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3227 	    bp, bp->b_vp, bp->b_flags);
3228 
3229 	BO_LOCK(bo);
3230 	if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3231 		/*
3232 		 * Coordinate with getblk's unlocked lookup.  Make
3233 		 * BO_NONSTERILE visible before the first reassignbuf produces
3234 		 * any side effect.  This could be outside the bo lock if we
3235 		 * used a separate atomic flag field.
3236 		 */
3237 		bo->bo_flag |= BO_NONSTERILE;
3238 		atomic_thread_fence_rel();
3239 	}
3240 	buf_vlist_remove(bp);
3241 
3242 	/*
3243 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3244 	 * of clean buffers.
3245 	 */
3246 	if (bp->b_flags & B_DELWRI) {
3247 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3248 			switch (vp->v_type) {
3249 			case VDIR:
3250 				delay = dirdelay;
3251 				break;
3252 			case VCHR:
3253 				delay = metadelay;
3254 				break;
3255 			default:
3256 				delay = filedelay;
3257 			}
3258 			vn_syncer_add_to_worklist(bo, delay);
3259 		}
3260 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3261 	} else {
3262 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3263 
3264 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3265 			mtx_lock(&sync_mtx);
3266 			LIST_REMOVE(bo, bo_synclist);
3267 			syncer_worklist_len--;
3268 			mtx_unlock(&sync_mtx);
3269 			bo->bo_flag &= ~BO_ONWORKLST;
3270 		}
3271 	}
3272 #ifdef INVARIANTS
3273 	bv = &bo->bo_clean;
3274 	bp = TAILQ_FIRST(&bv->bv_hd);
3275 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3276 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3277 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3278 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3279 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3280 	bv = &bo->bo_dirty;
3281 	bp = TAILQ_FIRST(&bv->bv_hd);
3282 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3283 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3284 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3285 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3286 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3287 #endif
3288 	BO_UNLOCK(bo);
3289 }
3290 
3291 static void
3292 v_init_counters(struct vnode *vp)
3293 {
3294 
3295 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3296 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3297 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3298 
3299 	refcount_init(&vp->v_holdcnt, 1);
3300 	refcount_init(&vp->v_usecount, 1);
3301 }
3302 
3303 /*
3304  * Get a usecount on a vnode.
3305  *
3306  * vget and vget_finish may fail to lock the vnode if they lose a race against
3307  * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3308  *
3309  * Consumers which don't guarantee liveness of the vnode can use SMR to
3310  * try to get a reference. Note this operation can fail since the vnode
3311  * may be awaiting getting freed by the time they get to it.
3312  */
3313 enum vgetstate
3314 vget_prep_smr(struct vnode *vp)
3315 {
3316 	enum vgetstate vs;
3317 
3318 	VFS_SMR_ASSERT_ENTERED();
3319 
3320 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3321 		vs = VGET_USECOUNT;
3322 	} else {
3323 		if (vhold_smr(vp))
3324 			vs = VGET_HOLDCNT;
3325 		else
3326 			vs = VGET_NONE;
3327 	}
3328 	return (vs);
3329 }
3330 
3331 enum vgetstate
3332 vget_prep(struct vnode *vp)
3333 {
3334 	enum vgetstate vs;
3335 
3336 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3337 		vs = VGET_USECOUNT;
3338 	} else {
3339 		vhold(vp);
3340 		vs = VGET_HOLDCNT;
3341 	}
3342 	return (vs);
3343 }
3344 
3345 void
3346 vget_abort(struct vnode *vp, enum vgetstate vs)
3347 {
3348 
3349 	switch (vs) {
3350 	case VGET_USECOUNT:
3351 		vrele(vp);
3352 		break;
3353 	case VGET_HOLDCNT:
3354 		vdrop(vp);
3355 		break;
3356 	default:
3357 		__assert_unreachable();
3358 	}
3359 }
3360 
3361 int
3362 vget(struct vnode *vp, int flags)
3363 {
3364 	enum vgetstate vs;
3365 
3366 	vs = vget_prep(vp);
3367 	return (vget_finish(vp, flags, vs));
3368 }
3369 
3370 int
3371 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3372 {
3373 	int error;
3374 
3375 	if ((flags & LK_INTERLOCK) != 0)
3376 		ASSERT_VI_LOCKED(vp, __func__);
3377 	else
3378 		ASSERT_VI_UNLOCKED(vp, __func__);
3379 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3380 	VNPASS(vp->v_holdcnt > 0, vp);
3381 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3382 
3383 	error = vn_lock(vp, flags);
3384 	if (__predict_false(error != 0)) {
3385 		vget_abort(vp, vs);
3386 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3387 		    vp);
3388 		return (error);
3389 	}
3390 
3391 	vget_finish_ref(vp, vs);
3392 	return (0);
3393 }
3394 
3395 void
3396 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3397 {
3398 	int old;
3399 
3400 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3401 	VNPASS(vp->v_holdcnt > 0, vp);
3402 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3403 
3404 	if (vs == VGET_USECOUNT)
3405 		return;
3406 
3407 	/*
3408 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3409 	 * the vnode around. Otherwise someone else lended their hold count and
3410 	 * we have to drop ours.
3411 	 */
3412 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3413 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3414 	if (old != 0) {
3415 #ifdef INVARIANTS
3416 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3417 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3418 #else
3419 		refcount_release(&vp->v_holdcnt);
3420 #endif
3421 	}
3422 }
3423 
3424 void
3425 vref(struct vnode *vp)
3426 {
3427 	enum vgetstate vs;
3428 
3429 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3430 	vs = vget_prep(vp);
3431 	vget_finish_ref(vp, vs);
3432 }
3433 
3434 void
3435 vrefact(struct vnode *vp)
3436 {
3437 	int old __diagused;
3438 
3439 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3440 	old = refcount_acquire(&vp->v_usecount);
3441 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3442 }
3443 
3444 void
3445 vlazy(struct vnode *vp)
3446 {
3447 	struct mount *mp;
3448 
3449 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3450 
3451 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3452 		return;
3453 	/*
3454 	 * We may get here for inactive routines after the vnode got doomed.
3455 	 */
3456 	if (VN_IS_DOOMED(vp))
3457 		return;
3458 	mp = vp->v_mount;
3459 	mtx_lock(&mp->mnt_listmtx);
3460 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3461 		vp->v_mflag |= VMP_LAZYLIST;
3462 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3463 		mp->mnt_lazyvnodelistsize++;
3464 	}
3465 	mtx_unlock(&mp->mnt_listmtx);
3466 }
3467 
3468 static void
3469 vunlazy(struct vnode *vp)
3470 {
3471 	struct mount *mp;
3472 
3473 	ASSERT_VI_LOCKED(vp, __func__);
3474 	VNPASS(!VN_IS_DOOMED(vp), vp);
3475 
3476 	mp = vp->v_mount;
3477 	mtx_lock(&mp->mnt_listmtx);
3478 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3479 	/*
3480 	 * Don't remove the vnode from the lazy list if another thread
3481 	 * has increased the hold count. It may have re-enqueued the
3482 	 * vnode to the lazy list and is now responsible for its
3483 	 * removal.
3484 	 */
3485 	if (vp->v_holdcnt == 0) {
3486 		vp->v_mflag &= ~VMP_LAZYLIST;
3487 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3488 		mp->mnt_lazyvnodelistsize--;
3489 	}
3490 	mtx_unlock(&mp->mnt_listmtx);
3491 }
3492 
3493 /*
3494  * This routine is only meant to be called from vgonel prior to dooming
3495  * the vnode.
3496  */
3497 static void
3498 vunlazy_gone(struct vnode *vp)
3499 {
3500 	struct mount *mp;
3501 
3502 	ASSERT_VOP_ELOCKED(vp, __func__);
3503 	ASSERT_VI_LOCKED(vp, __func__);
3504 	VNPASS(!VN_IS_DOOMED(vp), vp);
3505 
3506 	if (vp->v_mflag & VMP_LAZYLIST) {
3507 		mp = vp->v_mount;
3508 		mtx_lock(&mp->mnt_listmtx);
3509 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3510 		vp->v_mflag &= ~VMP_LAZYLIST;
3511 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3512 		mp->mnt_lazyvnodelistsize--;
3513 		mtx_unlock(&mp->mnt_listmtx);
3514 	}
3515 }
3516 
3517 static void
3518 vdefer_inactive(struct vnode *vp)
3519 {
3520 
3521 	ASSERT_VI_LOCKED(vp, __func__);
3522 	VNPASS(vp->v_holdcnt > 0, vp);
3523 	if (VN_IS_DOOMED(vp)) {
3524 		vdropl(vp);
3525 		return;
3526 	}
3527 	if (vp->v_iflag & VI_DEFINACT) {
3528 		VNPASS(vp->v_holdcnt > 1, vp);
3529 		vdropl(vp);
3530 		return;
3531 	}
3532 	if (vp->v_usecount > 0) {
3533 		vp->v_iflag &= ~VI_OWEINACT;
3534 		vdropl(vp);
3535 		return;
3536 	}
3537 	vlazy(vp);
3538 	vp->v_iflag |= VI_DEFINACT;
3539 	VI_UNLOCK(vp);
3540 	atomic_add_long(&deferred_inact, 1);
3541 }
3542 
3543 static void
3544 vdefer_inactive_unlocked(struct vnode *vp)
3545 {
3546 
3547 	VI_LOCK(vp);
3548 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3549 		vdropl(vp);
3550 		return;
3551 	}
3552 	vdefer_inactive(vp);
3553 }
3554 
3555 enum vput_op { VRELE, VPUT, VUNREF };
3556 
3557 /*
3558  * Handle ->v_usecount transitioning to 0.
3559  *
3560  * By releasing the last usecount we take ownership of the hold count which
3561  * provides liveness of the vnode, meaning we have to vdrop.
3562  *
3563  * For all vnodes we may need to perform inactive processing. It requires an
3564  * exclusive lock on the vnode, while it is legal to call here with only a
3565  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3566  * inactive processing gets deferred to the syncer.
3567  *
3568  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3569  * on the lock being held all the way until VOP_INACTIVE. This in particular
3570  * happens with UFS which adds half-constructed vnodes to the hash, where they
3571  * can be found by other code.
3572  */
3573 static void
3574 vput_final(struct vnode *vp, enum vput_op func)
3575 {
3576 	int error;
3577 	bool want_unlock;
3578 
3579 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3580 	VNPASS(vp->v_holdcnt > 0, vp);
3581 
3582 	VI_LOCK(vp);
3583 
3584 	/*
3585 	 * By the time we got here someone else might have transitioned
3586 	 * the count back to > 0.
3587 	 */
3588 	if (vp->v_usecount > 0)
3589 		goto out;
3590 
3591 	/*
3592 	 * If the vnode is doomed vgone already performed inactive processing
3593 	 * (if needed).
3594 	 */
3595 	if (VN_IS_DOOMED(vp))
3596 		goto out;
3597 
3598 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3599 		goto out;
3600 
3601 	if (vp->v_iflag & VI_DOINGINACT)
3602 		goto out;
3603 
3604 	/*
3605 	 * Locking operations here will drop the interlock and possibly the
3606 	 * vnode lock, opening a window where the vnode can get doomed all the
3607 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3608 	 * perform inactive.
3609 	 */
3610 	vp->v_iflag |= VI_OWEINACT;
3611 	want_unlock = false;
3612 	error = 0;
3613 	switch (func) {
3614 	case VRELE:
3615 		switch (VOP_ISLOCKED(vp)) {
3616 		case LK_EXCLUSIVE:
3617 			break;
3618 		case LK_EXCLOTHER:
3619 		case 0:
3620 			want_unlock = true;
3621 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3622 			VI_LOCK(vp);
3623 			break;
3624 		default:
3625 			/*
3626 			 * The lock has at least one sharer, but we have no way
3627 			 * to conclude whether this is us. Play it safe and
3628 			 * defer processing.
3629 			 */
3630 			error = EAGAIN;
3631 			break;
3632 		}
3633 		break;
3634 	case VPUT:
3635 		want_unlock = true;
3636 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3637 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3638 			    LK_NOWAIT);
3639 			VI_LOCK(vp);
3640 		}
3641 		break;
3642 	case VUNREF:
3643 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3644 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3645 			VI_LOCK(vp);
3646 		}
3647 		break;
3648 	}
3649 	if (error == 0) {
3650 		if (func == VUNREF) {
3651 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3652 			    ("recursive vunref"));
3653 			vp->v_vflag |= VV_UNREF;
3654 		}
3655 		for (;;) {
3656 			error = vinactive(vp);
3657 			if (want_unlock)
3658 				VOP_UNLOCK(vp);
3659 			if (error != ERELOOKUP || !want_unlock)
3660 				break;
3661 			VOP_LOCK(vp, LK_EXCLUSIVE);
3662 		}
3663 		if (func == VUNREF)
3664 			vp->v_vflag &= ~VV_UNREF;
3665 		vdropl(vp);
3666 	} else {
3667 		vdefer_inactive(vp);
3668 	}
3669 	return;
3670 out:
3671 	if (func == VPUT)
3672 		VOP_UNLOCK(vp);
3673 	vdropl(vp);
3674 }
3675 
3676 /*
3677  * Decrement ->v_usecount for a vnode.
3678  *
3679  * Releasing the last use count requires additional processing, see vput_final
3680  * above for details.
3681  *
3682  * Comment above each variant denotes lock state on entry and exit.
3683  */
3684 
3685 /*
3686  * in: any
3687  * out: same as passed in
3688  */
3689 void
3690 vrele(struct vnode *vp)
3691 {
3692 
3693 	ASSERT_VI_UNLOCKED(vp, __func__);
3694 	if (!refcount_release(&vp->v_usecount))
3695 		return;
3696 	vput_final(vp, VRELE);
3697 }
3698 
3699 /*
3700  * in: locked
3701  * out: unlocked
3702  */
3703 void
3704 vput(struct vnode *vp)
3705 {
3706 
3707 	ASSERT_VOP_LOCKED(vp, __func__);
3708 	ASSERT_VI_UNLOCKED(vp, __func__);
3709 	if (!refcount_release(&vp->v_usecount)) {
3710 		VOP_UNLOCK(vp);
3711 		return;
3712 	}
3713 	vput_final(vp, VPUT);
3714 }
3715 
3716 /*
3717  * in: locked
3718  * out: locked
3719  */
3720 void
3721 vunref(struct vnode *vp)
3722 {
3723 
3724 	ASSERT_VOP_LOCKED(vp, __func__);
3725 	ASSERT_VI_UNLOCKED(vp, __func__);
3726 	if (!refcount_release(&vp->v_usecount))
3727 		return;
3728 	vput_final(vp, VUNREF);
3729 }
3730 
3731 void
3732 vhold(struct vnode *vp)
3733 {
3734 	int old;
3735 
3736 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3737 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3738 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3739 	    ("%s: wrong hold count %d", __func__, old));
3740 	if (old == 0)
3741 		vfs_freevnodes_dec();
3742 }
3743 
3744 void
3745 vholdnz(struct vnode *vp)
3746 {
3747 
3748 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3749 #ifdef INVARIANTS
3750 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3751 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3752 	    ("%s: wrong hold count %d", __func__, old));
3753 #else
3754 	atomic_add_int(&vp->v_holdcnt, 1);
3755 #endif
3756 }
3757 
3758 /*
3759  * Grab a hold count unless the vnode is freed.
3760  *
3761  * Only use this routine if vfs smr is the only protection you have against
3762  * freeing the vnode.
3763  *
3764  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3765  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3766  * the thread which managed to set the flag.
3767  *
3768  * It may be tempting to replace the loop with:
3769  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3770  * if (count & VHOLD_NO_SMR) {
3771  *     backpedal and error out;
3772  * }
3773  *
3774  * However, while this is more performant, it hinders debugging by eliminating
3775  * the previously mentioned invariant.
3776  */
3777 bool
3778 vhold_smr(struct vnode *vp)
3779 {
3780 	int count;
3781 
3782 	VFS_SMR_ASSERT_ENTERED();
3783 
3784 	count = atomic_load_int(&vp->v_holdcnt);
3785 	for (;;) {
3786 		if (count & VHOLD_NO_SMR) {
3787 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3788 			    ("non-zero hold count with flags %d\n", count));
3789 			return (false);
3790 		}
3791 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3792 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3793 			if (count == 0)
3794 				vfs_freevnodes_dec();
3795 			return (true);
3796 		}
3797 	}
3798 }
3799 
3800 /*
3801  * Hold a free vnode for recycling.
3802  *
3803  * Note: vnode_init references this comment.
3804  *
3805  * Attempts to recycle only need the global vnode list lock and have no use for
3806  * SMR.
3807  *
3808  * However, vnodes get inserted into the global list before they get fully
3809  * initialized and stay there until UMA decides to free the memory. This in
3810  * particular means the target can be found before it becomes usable and after
3811  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3812  * VHOLD_NO_SMR.
3813  *
3814  * Note: the vnode may gain more references after we transition the count 0->1.
3815  */
3816 static bool
3817 vhold_recycle_free(struct vnode *vp)
3818 {
3819 	int count;
3820 
3821 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3822 
3823 	count = atomic_load_int(&vp->v_holdcnt);
3824 	for (;;) {
3825 		if (count & VHOLD_NO_SMR) {
3826 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3827 			    ("non-zero hold count with flags %d\n", count));
3828 			return (false);
3829 		}
3830 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3831 		if (count > 0) {
3832 			return (false);
3833 		}
3834 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3835 			vfs_freevnodes_dec();
3836 			return (true);
3837 		}
3838 	}
3839 }
3840 
3841 static void __noinline
3842 vdbatch_process(struct vdbatch *vd)
3843 {
3844 	struct vnode *vp;
3845 	int i;
3846 
3847 	mtx_assert(&vd->lock, MA_OWNED);
3848 	MPASS(curthread->td_pinned > 0);
3849 	MPASS(vd->index == VDBATCH_SIZE);
3850 
3851 	/*
3852 	 * Attempt to requeue the passed batch, but give up easily.
3853 	 *
3854 	 * Despite batching the mechanism is prone to transient *significant*
3855 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3856 	 * if multiple CPUs get here (one real-world example is highly parallel
3857 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3858 	 * quasi-LRU (read: not that great even if fully honoured) provide an
3859 	 * option to just dodge the problem. Parties which don't like it are
3860 	 * welcome to implement something better.
3861 	 */
3862 	if (vnode_can_skip_requeue) {
3863 		if (!mtx_trylock(&vnode_list_mtx)) {
3864 			counter_u64_add(vnode_skipped_requeues, 1);
3865 			critical_enter();
3866 			for (i = 0; i < VDBATCH_SIZE; i++) {
3867 				vp = vd->tab[i];
3868 				vd->tab[i] = NULL;
3869 				MPASS(vp->v_dbatchcpu != NOCPU);
3870 				vp->v_dbatchcpu = NOCPU;
3871 			}
3872 			vd->index = 0;
3873 			critical_exit();
3874 			return;
3875 
3876 		}
3877 		/* fallthrough to locked processing */
3878 	} else {
3879 		mtx_lock(&vnode_list_mtx);
3880 	}
3881 
3882 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3883 	critical_enter();
3884 	for (i = 0; i < VDBATCH_SIZE; i++) {
3885 		vp = vd->tab[i];
3886 		vd->tab[i] = NULL;
3887 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3888 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3889 		MPASS(vp->v_dbatchcpu != NOCPU);
3890 		vp->v_dbatchcpu = NOCPU;
3891 	}
3892 	mtx_unlock(&vnode_list_mtx);
3893 	vd->index = 0;
3894 	critical_exit();
3895 }
3896 
3897 static void
3898 vdbatch_enqueue(struct vnode *vp)
3899 {
3900 	struct vdbatch *vd;
3901 
3902 	ASSERT_VI_LOCKED(vp, __func__);
3903 	VNPASS(!VN_IS_DOOMED(vp), vp);
3904 
3905 	if (vp->v_dbatchcpu != NOCPU) {
3906 		VI_UNLOCK(vp);
3907 		return;
3908 	}
3909 
3910 	sched_pin();
3911 	vd = DPCPU_PTR(vd);
3912 	mtx_lock(&vd->lock);
3913 	MPASS(vd->index < VDBATCH_SIZE);
3914 	MPASS(vd->tab[vd->index] == NULL);
3915 	/*
3916 	 * A hack: we depend on being pinned so that we know what to put in
3917 	 * ->v_dbatchcpu.
3918 	 */
3919 	vp->v_dbatchcpu = curcpu;
3920 	vd->tab[vd->index] = vp;
3921 	vd->index++;
3922 	VI_UNLOCK(vp);
3923 	if (vd->index == VDBATCH_SIZE)
3924 		vdbatch_process(vd);
3925 	mtx_unlock(&vd->lock);
3926 	sched_unpin();
3927 }
3928 
3929 /*
3930  * This routine must only be called for vnodes which are about to be
3931  * deallocated. Supporting dequeue for arbitrary vndoes would require
3932  * validating that the locked batch matches.
3933  */
3934 static void
3935 vdbatch_dequeue(struct vnode *vp)
3936 {
3937 	struct vdbatch *vd;
3938 	int i;
3939 	short cpu;
3940 
3941 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3942 
3943 	cpu = vp->v_dbatchcpu;
3944 	if (cpu == NOCPU)
3945 		return;
3946 
3947 	vd = DPCPU_ID_PTR(cpu, vd);
3948 	mtx_lock(&vd->lock);
3949 	for (i = 0; i < vd->index; i++) {
3950 		if (vd->tab[i] != vp)
3951 			continue;
3952 		vp->v_dbatchcpu = NOCPU;
3953 		vd->index--;
3954 		vd->tab[i] = vd->tab[vd->index];
3955 		vd->tab[vd->index] = NULL;
3956 		break;
3957 	}
3958 	mtx_unlock(&vd->lock);
3959 	/*
3960 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3961 	 */
3962 	MPASS(vp->v_dbatchcpu == NOCPU);
3963 }
3964 
3965 /*
3966  * Drop the hold count of the vnode.
3967  *
3968  * It will only get freed if this is the last hold *and* it has been vgone'd.
3969  *
3970  * Because the vnode vm object keeps a hold reference on the vnode if
3971  * there is at least one resident non-cached page, the vnode cannot
3972  * leave the active list without the page cleanup done.
3973  */
3974 static void __noinline
3975 vdropl_final(struct vnode *vp)
3976 {
3977 
3978 	ASSERT_VI_LOCKED(vp, __func__);
3979 	VNPASS(VN_IS_DOOMED(vp), vp);
3980 	/*
3981 	 * Set the VHOLD_NO_SMR flag.
3982 	 *
3983 	 * We may be racing against vhold_smr. If they win we can just pretend
3984 	 * we never got this far, they will vdrop later.
3985 	 */
3986 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3987 		vfs_freevnodes_inc();
3988 		VI_UNLOCK(vp);
3989 		/*
3990 		 * We lost the aforementioned race. Any subsequent access is
3991 		 * invalid as they might have managed to vdropl on their own.
3992 		 */
3993 		return;
3994 	}
3995 	/*
3996 	 * Don't bump freevnodes as this one is going away.
3997 	 */
3998 	freevnode(vp);
3999 }
4000 
4001 void
4002 vdrop(struct vnode *vp)
4003 {
4004 
4005 	ASSERT_VI_UNLOCKED(vp, __func__);
4006 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4007 	if (refcount_release_if_not_last(&vp->v_holdcnt))
4008 		return;
4009 	VI_LOCK(vp);
4010 	vdropl(vp);
4011 }
4012 
4013 static __always_inline void
4014 vdropl_impl(struct vnode *vp, bool enqueue)
4015 {
4016 
4017 	ASSERT_VI_LOCKED(vp, __func__);
4018 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4019 	if (!refcount_release(&vp->v_holdcnt)) {
4020 		VI_UNLOCK(vp);
4021 		return;
4022 	}
4023 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4024 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4025 	if (VN_IS_DOOMED(vp)) {
4026 		vdropl_final(vp);
4027 		return;
4028 	}
4029 
4030 	vfs_freevnodes_inc();
4031 	if (vp->v_mflag & VMP_LAZYLIST) {
4032 		vunlazy(vp);
4033 	}
4034 
4035 	if (!enqueue) {
4036 		VI_UNLOCK(vp);
4037 		return;
4038 	}
4039 
4040 	/*
4041 	 * Also unlocks the interlock. We can't assert on it as we
4042 	 * released our hold and by now the vnode might have been
4043 	 * freed.
4044 	 */
4045 	vdbatch_enqueue(vp);
4046 }
4047 
4048 void
4049 vdropl(struct vnode *vp)
4050 {
4051 
4052 	vdropl_impl(vp, true);
4053 }
4054 
4055 /*
4056  * vdrop a vnode when recycling
4057  *
4058  * This is a special case routine only to be used when recycling, differs from
4059  * regular vdrop by not requeieing the vnode on LRU.
4060  *
4061  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4062  * e.g., frozen writes on the filesystem), filling the batch and causing it to
4063  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4064  * loop which can last for as long as writes are frozen.
4065  */
4066 static void
4067 vdropl_recycle(struct vnode *vp)
4068 {
4069 
4070 	vdropl_impl(vp, false);
4071 }
4072 
4073 static void
4074 vdrop_recycle(struct vnode *vp)
4075 {
4076 
4077 	VI_LOCK(vp);
4078 	vdropl_recycle(vp);
4079 }
4080 
4081 /*
4082  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4083  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
4084  */
4085 static int
4086 vinactivef(struct vnode *vp)
4087 {
4088 	int error;
4089 
4090 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4091 	ASSERT_VI_LOCKED(vp, "vinactive");
4092 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4093 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4094 	vp->v_iflag |= VI_DOINGINACT;
4095 	vp->v_iflag &= ~VI_OWEINACT;
4096 	VI_UNLOCK(vp);
4097 
4098 	/*
4099 	 * Before moving off the active list, we must be sure that any
4100 	 * modified pages are converted into the vnode's dirty
4101 	 * buffers, since these will no longer be checked once the
4102 	 * vnode is on the inactive list.
4103 	 *
4104 	 * The write-out of the dirty pages is asynchronous.  At the
4105 	 * point that VOP_INACTIVE() is called, there could still be
4106 	 * pending I/O and dirty pages in the object.
4107 	 */
4108 	if ((vp->v_vflag & VV_NOSYNC) == 0)
4109 		vnode_pager_clean_async(vp);
4110 
4111 	error = VOP_INACTIVE(vp);
4112 	VI_LOCK(vp);
4113 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4114 	vp->v_iflag &= ~VI_DOINGINACT;
4115 	return (error);
4116 }
4117 
4118 int
4119 vinactive(struct vnode *vp)
4120 {
4121 
4122 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4123 	ASSERT_VI_LOCKED(vp, "vinactive");
4124 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4125 
4126 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4127 		return (0);
4128 	if (vp->v_iflag & VI_DOINGINACT)
4129 		return (0);
4130 	if (vp->v_usecount > 0) {
4131 		vp->v_iflag &= ~VI_OWEINACT;
4132 		return (0);
4133 	}
4134 	return (vinactivef(vp));
4135 }
4136 
4137 /*
4138  * Remove any vnodes in the vnode table belonging to mount point mp.
4139  *
4140  * If FORCECLOSE is not specified, there should not be any active ones,
4141  * return error if any are found (nb: this is a user error, not a
4142  * system error). If FORCECLOSE is specified, detach any active vnodes
4143  * that are found.
4144  *
4145  * If WRITECLOSE is set, only flush out regular file vnodes open for
4146  * writing.
4147  *
4148  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4149  *
4150  * `rootrefs' specifies the base reference count for the root vnode
4151  * of this filesystem. The root vnode is considered busy if its
4152  * v_usecount exceeds this value. On a successful return, vflush(, td)
4153  * will call vrele() on the root vnode exactly rootrefs times.
4154  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4155  * be zero.
4156  */
4157 #ifdef DIAGNOSTIC
4158 static int busyprt = 0;		/* print out busy vnodes */
4159 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4160 #endif
4161 
4162 int
4163 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4164 {
4165 	struct vnode *vp, *mvp, *rootvp = NULL;
4166 	struct vattr vattr;
4167 	int busy = 0, error;
4168 
4169 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4170 	    rootrefs, flags);
4171 	if (rootrefs > 0) {
4172 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4173 		    ("vflush: bad args"));
4174 		/*
4175 		 * Get the filesystem root vnode. We can vput() it
4176 		 * immediately, since with rootrefs > 0, it won't go away.
4177 		 */
4178 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4179 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4180 			    __func__, error);
4181 			return (error);
4182 		}
4183 		vput(rootvp);
4184 	}
4185 loop:
4186 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4187 		vholdl(vp);
4188 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4189 		if (error) {
4190 			vdrop(vp);
4191 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4192 			goto loop;
4193 		}
4194 		/*
4195 		 * Skip over a vnodes marked VV_SYSTEM.
4196 		 */
4197 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4198 			VOP_UNLOCK(vp);
4199 			vdrop(vp);
4200 			continue;
4201 		}
4202 		/*
4203 		 * If WRITECLOSE is set, flush out unlinked but still open
4204 		 * files (even if open only for reading) and regular file
4205 		 * vnodes open for writing.
4206 		 */
4207 		if (flags & WRITECLOSE) {
4208 			vnode_pager_clean_async(vp);
4209 			do {
4210 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4211 			} while (error == ERELOOKUP);
4212 			if (error != 0) {
4213 				VOP_UNLOCK(vp);
4214 				vdrop(vp);
4215 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4216 				return (error);
4217 			}
4218 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4219 			VI_LOCK(vp);
4220 
4221 			if ((vp->v_type == VNON ||
4222 			    (error == 0 && vattr.va_nlink > 0)) &&
4223 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4224 				VOP_UNLOCK(vp);
4225 				vdropl(vp);
4226 				continue;
4227 			}
4228 		} else
4229 			VI_LOCK(vp);
4230 		/*
4231 		 * With v_usecount == 0, all we need to do is clear out the
4232 		 * vnode data structures and we are done.
4233 		 *
4234 		 * If FORCECLOSE is set, forcibly close the vnode.
4235 		 */
4236 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4237 			vgonel(vp);
4238 		} else {
4239 			busy++;
4240 #ifdef DIAGNOSTIC
4241 			if (busyprt)
4242 				vn_printf(vp, "vflush: busy vnode ");
4243 #endif
4244 		}
4245 		VOP_UNLOCK(vp);
4246 		vdropl(vp);
4247 	}
4248 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4249 		/*
4250 		 * If just the root vnode is busy, and if its refcount
4251 		 * is equal to `rootrefs', then go ahead and kill it.
4252 		 */
4253 		VI_LOCK(rootvp);
4254 		KASSERT(busy > 0, ("vflush: not busy"));
4255 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4256 		    ("vflush: usecount %d < rootrefs %d",
4257 		     rootvp->v_usecount, rootrefs));
4258 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4259 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4260 			vgone(rootvp);
4261 			VOP_UNLOCK(rootvp);
4262 			busy = 0;
4263 		} else
4264 			VI_UNLOCK(rootvp);
4265 	}
4266 	if (busy) {
4267 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4268 		    busy);
4269 		return (EBUSY);
4270 	}
4271 	for (; rootrefs > 0; rootrefs--)
4272 		vrele(rootvp);
4273 	return (0);
4274 }
4275 
4276 /*
4277  * Recycle an unused vnode.
4278  */
4279 int
4280 vrecycle(struct vnode *vp)
4281 {
4282 	int recycled;
4283 
4284 	VI_LOCK(vp);
4285 	recycled = vrecyclel(vp);
4286 	VI_UNLOCK(vp);
4287 	return (recycled);
4288 }
4289 
4290 /*
4291  * vrecycle, with the vp interlock held.
4292  */
4293 int
4294 vrecyclel(struct vnode *vp)
4295 {
4296 	int recycled;
4297 
4298 	ASSERT_VOP_ELOCKED(vp, __func__);
4299 	ASSERT_VI_LOCKED(vp, __func__);
4300 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4301 	recycled = 0;
4302 	if (vp->v_usecount == 0) {
4303 		recycled = 1;
4304 		vgonel(vp);
4305 	}
4306 	return (recycled);
4307 }
4308 
4309 /*
4310  * Eliminate all activity associated with a vnode
4311  * in preparation for reuse.
4312  */
4313 void
4314 vgone(struct vnode *vp)
4315 {
4316 	VI_LOCK(vp);
4317 	vgonel(vp);
4318 	VI_UNLOCK(vp);
4319 }
4320 
4321 /*
4322  * Notify upper mounts about reclaimed or unlinked vnode.
4323  */
4324 void
4325 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4326 {
4327 	struct mount *mp;
4328 	struct mount_upper_node *ump;
4329 
4330 	mp = atomic_load_ptr(&vp->v_mount);
4331 	if (mp == NULL)
4332 		return;
4333 	if (TAILQ_EMPTY(&mp->mnt_notify))
4334 		return;
4335 
4336 	MNT_ILOCK(mp);
4337 	mp->mnt_upper_pending++;
4338 	KASSERT(mp->mnt_upper_pending > 0,
4339 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4340 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4341 		MNT_IUNLOCK(mp);
4342 		switch (event) {
4343 		case VFS_NOTIFY_UPPER_RECLAIM:
4344 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4345 			break;
4346 		case VFS_NOTIFY_UPPER_UNLINK:
4347 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4348 			break;
4349 		}
4350 		MNT_ILOCK(mp);
4351 	}
4352 	mp->mnt_upper_pending--;
4353 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4354 	    mp->mnt_upper_pending == 0) {
4355 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4356 		wakeup(&mp->mnt_uppers);
4357 	}
4358 	MNT_IUNLOCK(mp);
4359 }
4360 
4361 /*
4362  * vgone, with the vp interlock held.
4363  */
4364 static void
4365 vgonel(struct vnode *vp)
4366 {
4367 	struct thread *td;
4368 	struct mount *mp;
4369 	vm_object_t object;
4370 	bool active, doinginact, oweinact;
4371 
4372 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4373 	ASSERT_VI_LOCKED(vp, "vgonel");
4374 	VNASSERT(vp->v_holdcnt, vp,
4375 	    ("vgonel: vp %p has no reference.", vp));
4376 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4377 	td = curthread;
4378 
4379 	/*
4380 	 * Don't vgonel if we're already doomed.
4381 	 */
4382 	if (VN_IS_DOOMED(vp)) {
4383 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4384 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4385 		return;
4386 	}
4387 	/*
4388 	 * Paired with freevnode.
4389 	 */
4390 	vn_seqc_write_begin_locked(vp);
4391 	vunlazy_gone(vp);
4392 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4393 	vn_set_state(vp, VSTATE_DESTROYING);
4394 
4395 	/*
4396 	 * Check to see if the vnode is in use.  If so, we have to
4397 	 * call VOP_CLOSE() and VOP_INACTIVE().
4398 	 *
4399 	 * It could be that VOP_INACTIVE() requested reclamation, in
4400 	 * which case we should avoid recursion, so check
4401 	 * VI_DOINGINACT.  This is not precise but good enough.
4402 	 */
4403 	active = vp->v_usecount > 0;
4404 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4405 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4406 
4407 	/*
4408 	 * If we need to do inactive VI_OWEINACT will be set.
4409 	 */
4410 	if (vp->v_iflag & VI_DEFINACT) {
4411 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4412 		vp->v_iflag &= ~VI_DEFINACT;
4413 		vdropl(vp);
4414 	} else {
4415 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4416 		VI_UNLOCK(vp);
4417 	}
4418 	cache_purge_vgone(vp);
4419 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4420 
4421 	/*
4422 	 * If purging an active vnode, it must be closed and
4423 	 * deactivated before being reclaimed.
4424 	 */
4425 	if (active)
4426 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4427 	if (!doinginact) {
4428 		do {
4429 			if (oweinact || active) {
4430 				VI_LOCK(vp);
4431 				vinactivef(vp);
4432 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4433 				VI_UNLOCK(vp);
4434 			}
4435 		} while (oweinact);
4436 	}
4437 	if (vp->v_type == VSOCK)
4438 		vfs_unp_reclaim(vp);
4439 
4440 	/*
4441 	 * Clean out any buffers associated with the vnode.
4442 	 * If the flush fails, just toss the buffers.
4443 	 */
4444 	mp = NULL;
4445 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4446 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4447 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4448 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4449 			;
4450 	}
4451 
4452 	BO_LOCK(&vp->v_bufobj);
4453 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4454 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4455 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4456 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4457 	    ("vp %p bufobj not invalidated", vp));
4458 
4459 	/*
4460 	 * For VMIO bufobj, BO_DEAD is set later, or in
4461 	 * vm_object_terminate() after the object's page queue is
4462 	 * flushed.
4463 	 */
4464 	object = vp->v_bufobj.bo_object;
4465 	if (object == NULL)
4466 		vp->v_bufobj.bo_flag |= BO_DEAD;
4467 	BO_UNLOCK(&vp->v_bufobj);
4468 
4469 	/*
4470 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4471 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4472 	 * should not touch the object borrowed from the lower vnode
4473 	 * (the handle check).
4474 	 */
4475 	if (object != NULL && object->type == OBJT_VNODE &&
4476 	    object->handle == vp)
4477 		vnode_destroy_vobject(vp);
4478 
4479 	/*
4480 	 * Reclaim the vnode.
4481 	 */
4482 	if (VOP_RECLAIM(vp))
4483 		panic("vgone: cannot reclaim");
4484 	if (mp != NULL)
4485 		vn_finished_secondary_write(mp);
4486 	VNASSERT(vp->v_object == NULL, vp,
4487 	    ("vop_reclaim left v_object vp=%p", vp));
4488 	/*
4489 	 * Clear the advisory locks and wake up waiting threads.
4490 	 */
4491 	if (vp->v_lockf != NULL) {
4492 		(void)VOP_ADVLOCKPURGE(vp);
4493 		vp->v_lockf = NULL;
4494 	}
4495 	/*
4496 	 * Delete from old mount point vnode list.
4497 	 */
4498 	if (vp->v_mount == NULL) {
4499 		VI_LOCK(vp);
4500 	} else {
4501 		delmntque(vp);
4502 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4503 	}
4504 	/*
4505 	 * Done with purge, reset to the standard lock and invalidate
4506 	 * the vnode.
4507 	 */
4508 	vp->v_vnlock = &vp->v_lock;
4509 	vp->v_op = &dead_vnodeops;
4510 	vp->v_type = VBAD;
4511 	vn_set_state(vp, VSTATE_DEAD);
4512 }
4513 
4514 /*
4515  * Print out a description of a vnode.
4516  */
4517 static const char *const vtypename[] = {
4518 	[VNON] = "VNON",
4519 	[VREG] = "VREG",
4520 	[VDIR] = "VDIR",
4521 	[VBLK] = "VBLK",
4522 	[VCHR] = "VCHR",
4523 	[VLNK] = "VLNK",
4524 	[VSOCK] = "VSOCK",
4525 	[VFIFO] = "VFIFO",
4526 	[VBAD] = "VBAD",
4527 	[VMARKER] = "VMARKER",
4528 };
4529 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4530     "vnode type name not added to vtypename");
4531 
4532 static const char *const vstatename[] = {
4533 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4534 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4535 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4536 	[VSTATE_DEAD] = "VSTATE_DEAD",
4537 };
4538 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4539     "vnode state name not added to vstatename");
4540 
4541 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4542     "new hold count flag not added to vn_printf");
4543 
4544 void
4545 vn_printf(struct vnode *vp, const char *fmt, ...)
4546 {
4547 	va_list ap;
4548 	char buf[256], buf2[16];
4549 	u_long flags;
4550 	u_int holdcnt;
4551 	short irflag;
4552 
4553 	va_start(ap, fmt);
4554 	vprintf(fmt, ap);
4555 	va_end(ap);
4556 	printf("%p: ", (void *)vp);
4557 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4558 	    vstatename[vp->v_state], vp->v_op);
4559 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4560 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4561 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4562 	    vp->v_seqc_users);
4563 	switch (vp->v_type) {
4564 	case VDIR:
4565 		printf(" mountedhere %p\n", vp->v_mountedhere);
4566 		break;
4567 	case VCHR:
4568 		printf(" rdev %p\n", vp->v_rdev);
4569 		break;
4570 	case VSOCK:
4571 		printf(" socket %p\n", vp->v_unpcb);
4572 		break;
4573 	case VFIFO:
4574 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4575 		break;
4576 	default:
4577 		printf("\n");
4578 		break;
4579 	}
4580 	buf[0] = '\0';
4581 	buf[1] = '\0';
4582 	if (holdcnt & VHOLD_NO_SMR)
4583 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4584 	printf("    hold count flags (%s)\n", buf + 1);
4585 
4586 	buf[0] = '\0';
4587 	buf[1] = '\0';
4588 	irflag = vn_irflag_read(vp);
4589 	if (irflag & VIRF_DOOMED)
4590 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4591 	if (irflag & VIRF_PGREAD)
4592 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4593 	if (irflag & VIRF_MOUNTPOINT)
4594 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4595 	if (irflag & VIRF_TEXT_REF)
4596 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4597 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4598 	if (flags != 0) {
4599 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4600 		strlcat(buf, buf2, sizeof(buf));
4601 	}
4602 	if (vp->v_vflag & VV_ROOT)
4603 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4604 	if (vp->v_vflag & VV_ISTTY)
4605 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4606 	if (vp->v_vflag & VV_NOSYNC)
4607 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4608 	if (vp->v_vflag & VV_ETERNALDEV)
4609 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4610 	if (vp->v_vflag & VV_CACHEDLABEL)
4611 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4612 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4613 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4614 	if (vp->v_vflag & VV_COPYONWRITE)
4615 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4616 	if (vp->v_vflag & VV_SYSTEM)
4617 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4618 	if (vp->v_vflag & VV_PROCDEP)
4619 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4620 	if (vp->v_vflag & VV_DELETED)
4621 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4622 	if (vp->v_vflag & VV_MD)
4623 		strlcat(buf, "|VV_MD", sizeof(buf));
4624 	if (vp->v_vflag & VV_FORCEINSMQ)
4625 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4626 	if (vp->v_vflag & VV_READLINK)
4627 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4628 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4629 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4630 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4631 	if (flags != 0) {
4632 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4633 		strlcat(buf, buf2, sizeof(buf));
4634 	}
4635 	if (vp->v_iflag & VI_MOUNT)
4636 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4637 	if (vp->v_iflag & VI_DOINGINACT)
4638 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4639 	if (vp->v_iflag & VI_OWEINACT)
4640 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4641 	if (vp->v_iflag & VI_DEFINACT)
4642 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4643 	if (vp->v_iflag & VI_FOPENING)
4644 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4645 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4646 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4647 	if (flags != 0) {
4648 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4649 		strlcat(buf, buf2, sizeof(buf));
4650 	}
4651 	if (vp->v_mflag & VMP_LAZYLIST)
4652 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4653 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4654 	if (flags != 0) {
4655 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4656 		strlcat(buf, buf2, sizeof(buf));
4657 	}
4658 	printf("    flags (%s)", buf + 1);
4659 	if (mtx_owned(VI_MTX(vp)))
4660 		printf(" VI_LOCKed");
4661 	printf("\n");
4662 	if (vp->v_object != NULL)
4663 		printf("    v_object %p ref %d pages %d "
4664 		    "cleanbuf %d dirtybuf %d\n",
4665 		    vp->v_object, vp->v_object->ref_count,
4666 		    vp->v_object->resident_page_count,
4667 		    vp->v_bufobj.bo_clean.bv_cnt,
4668 		    vp->v_bufobj.bo_dirty.bv_cnt);
4669 	printf("    ");
4670 	lockmgr_printinfo(vp->v_vnlock);
4671 	if (vp->v_data != NULL)
4672 		VOP_PRINT(vp);
4673 }
4674 
4675 #ifdef DDB
4676 /*
4677  * List all of the locked vnodes in the system.
4678  * Called when debugging the kernel.
4679  */
4680 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4681 {
4682 	struct mount *mp;
4683 	struct vnode *vp;
4684 
4685 	/*
4686 	 * Note: because this is DDB, we can't obey the locking semantics
4687 	 * for these structures, which means we could catch an inconsistent
4688 	 * state and dereference a nasty pointer.  Not much to be done
4689 	 * about that.
4690 	 */
4691 	db_printf("Locked vnodes\n");
4692 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4693 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4694 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4695 				vn_printf(vp, "vnode ");
4696 		}
4697 	}
4698 }
4699 
4700 /*
4701  * Show details about the given vnode.
4702  */
4703 DB_SHOW_COMMAND(vnode, db_show_vnode)
4704 {
4705 	struct vnode *vp;
4706 
4707 	if (!have_addr)
4708 		return;
4709 	vp = (struct vnode *)addr;
4710 	vn_printf(vp, "vnode ");
4711 }
4712 
4713 /*
4714  * Show details about the given mount point.
4715  */
4716 DB_SHOW_COMMAND(mount, db_show_mount)
4717 {
4718 	struct mount *mp;
4719 	struct vfsopt *opt;
4720 	struct statfs *sp;
4721 	struct vnode *vp;
4722 	char buf[512];
4723 	uint64_t mflags;
4724 	u_int flags;
4725 
4726 	if (!have_addr) {
4727 		/* No address given, print short info about all mount points. */
4728 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4729 			db_printf("%p %s on %s (%s)\n", mp,
4730 			    mp->mnt_stat.f_mntfromname,
4731 			    mp->mnt_stat.f_mntonname,
4732 			    mp->mnt_stat.f_fstypename);
4733 			if (db_pager_quit)
4734 				break;
4735 		}
4736 		db_printf("\nMore info: show mount <addr>\n");
4737 		return;
4738 	}
4739 
4740 	mp = (struct mount *)addr;
4741 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4742 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4743 
4744 	buf[0] = '\0';
4745 	mflags = mp->mnt_flag;
4746 #define	MNT_FLAG(flag)	do {						\
4747 	if (mflags & (flag)) {						\
4748 		if (buf[0] != '\0')					\
4749 			strlcat(buf, ", ", sizeof(buf));		\
4750 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4751 		mflags &= ~(flag);					\
4752 	}								\
4753 } while (0)
4754 	MNT_FLAG(MNT_RDONLY);
4755 	MNT_FLAG(MNT_SYNCHRONOUS);
4756 	MNT_FLAG(MNT_NOEXEC);
4757 	MNT_FLAG(MNT_NOSUID);
4758 	MNT_FLAG(MNT_NFS4ACLS);
4759 	MNT_FLAG(MNT_UNION);
4760 	MNT_FLAG(MNT_ASYNC);
4761 	MNT_FLAG(MNT_SUIDDIR);
4762 	MNT_FLAG(MNT_SOFTDEP);
4763 	MNT_FLAG(MNT_NOSYMFOLLOW);
4764 	MNT_FLAG(MNT_GJOURNAL);
4765 	MNT_FLAG(MNT_MULTILABEL);
4766 	MNT_FLAG(MNT_ACLS);
4767 	MNT_FLAG(MNT_NOATIME);
4768 	MNT_FLAG(MNT_NOCLUSTERR);
4769 	MNT_FLAG(MNT_NOCLUSTERW);
4770 	MNT_FLAG(MNT_SUJ);
4771 	MNT_FLAG(MNT_EXRDONLY);
4772 	MNT_FLAG(MNT_EXPORTED);
4773 	MNT_FLAG(MNT_DEFEXPORTED);
4774 	MNT_FLAG(MNT_EXPORTANON);
4775 	MNT_FLAG(MNT_EXKERB);
4776 	MNT_FLAG(MNT_EXPUBLIC);
4777 	MNT_FLAG(MNT_LOCAL);
4778 	MNT_FLAG(MNT_QUOTA);
4779 	MNT_FLAG(MNT_ROOTFS);
4780 	MNT_FLAG(MNT_USER);
4781 	MNT_FLAG(MNT_IGNORE);
4782 	MNT_FLAG(MNT_UPDATE);
4783 	MNT_FLAG(MNT_DELEXPORT);
4784 	MNT_FLAG(MNT_RELOAD);
4785 	MNT_FLAG(MNT_FORCE);
4786 	MNT_FLAG(MNT_SNAPSHOT);
4787 	MNT_FLAG(MNT_BYFSID);
4788 #undef MNT_FLAG
4789 	if (mflags != 0) {
4790 		if (buf[0] != '\0')
4791 			strlcat(buf, ", ", sizeof(buf));
4792 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4793 		    "0x%016jx", mflags);
4794 	}
4795 	db_printf("    mnt_flag = %s\n", buf);
4796 
4797 	buf[0] = '\0';
4798 	flags = mp->mnt_kern_flag;
4799 #define	MNT_KERN_FLAG(flag)	do {					\
4800 	if (flags & (flag)) {						\
4801 		if (buf[0] != '\0')					\
4802 			strlcat(buf, ", ", sizeof(buf));		\
4803 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4804 		flags &= ~(flag);					\
4805 	}								\
4806 } while (0)
4807 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4808 	MNT_KERN_FLAG(MNTK_ASYNC);
4809 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4810 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4811 	MNT_KERN_FLAG(MNTK_DRAINING);
4812 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4813 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4814 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4815 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4816 	MNT_KERN_FLAG(MNTK_RECURSE);
4817 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4818 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4819 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4820 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4821 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4822 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4823 	MNT_KERN_FLAG(MNTK_NOASYNC);
4824 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4825 	MNT_KERN_FLAG(MNTK_MWAIT);
4826 	MNT_KERN_FLAG(MNTK_SUSPEND);
4827 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4828 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4829 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4830 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4831 #undef MNT_KERN_FLAG
4832 	if (flags != 0) {
4833 		if (buf[0] != '\0')
4834 			strlcat(buf, ", ", sizeof(buf));
4835 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4836 		    "0x%08x", flags);
4837 	}
4838 	db_printf("    mnt_kern_flag = %s\n", buf);
4839 
4840 	db_printf("    mnt_opt = ");
4841 	opt = TAILQ_FIRST(mp->mnt_opt);
4842 	if (opt != NULL) {
4843 		db_printf("%s", opt->name);
4844 		opt = TAILQ_NEXT(opt, link);
4845 		while (opt != NULL) {
4846 			db_printf(", %s", opt->name);
4847 			opt = TAILQ_NEXT(opt, link);
4848 		}
4849 	}
4850 	db_printf("\n");
4851 
4852 	sp = &mp->mnt_stat;
4853 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4854 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4855 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4856 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4857 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4858 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4859 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4860 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4861 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4862 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4863 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4864 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4865 
4866 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4867 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4868 	if (jailed(mp->mnt_cred))
4869 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4870 	db_printf(" }\n");
4871 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4872 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4873 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4874 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4875 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4876 	    mp->mnt_lazyvnodelistsize);
4877 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4878 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4879 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4880 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4881 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4882 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4883 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4884 	db_printf("    mnt_secondary_accwrites = %d\n",
4885 	    mp->mnt_secondary_accwrites);
4886 	db_printf("    mnt_gjprovider = %s\n",
4887 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4888 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4889 
4890 	db_printf("\n\nList of active vnodes\n");
4891 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4892 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4893 			vn_printf(vp, "vnode ");
4894 			if (db_pager_quit)
4895 				break;
4896 		}
4897 	}
4898 	db_printf("\n\nList of inactive vnodes\n");
4899 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4900 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4901 			vn_printf(vp, "vnode ");
4902 			if (db_pager_quit)
4903 				break;
4904 		}
4905 	}
4906 }
4907 #endif	/* DDB */
4908 
4909 /*
4910  * Fill in a struct xvfsconf based on a struct vfsconf.
4911  */
4912 static int
4913 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4914 {
4915 	struct xvfsconf xvfsp;
4916 
4917 	bzero(&xvfsp, sizeof(xvfsp));
4918 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4919 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4920 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4921 	xvfsp.vfc_flags = vfsp->vfc_flags;
4922 	/*
4923 	 * These are unused in userland, we keep them
4924 	 * to not break binary compatibility.
4925 	 */
4926 	xvfsp.vfc_vfsops = NULL;
4927 	xvfsp.vfc_next = NULL;
4928 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4929 }
4930 
4931 #ifdef COMPAT_FREEBSD32
4932 struct xvfsconf32 {
4933 	uint32_t	vfc_vfsops;
4934 	char		vfc_name[MFSNAMELEN];
4935 	int32_t		vfc_typenum;
4936 	int32_t		vfc_refcount;
4937 	int32_t		vfc_flags;
4938 	uint32_t	vfc_next;
4939 };
4940 
4941 static int
4942 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4943 {
4944 	struct xvfsconf32 xvfsp;
4945 
4946 	bzero(&xvfsp, sizeof(xvfsp));
4947 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4948 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4949 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4950 	xvfsp.vfc_flags = vfsp->vfc_flags;
4951 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4952 }
4953 #endif
4954 
4955 /*
4956  * Top level filesystem related information gathering.
4957  */
4958 static int
4959 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4960 {
4961 	struct vfsconf *vfsp;
4962 	int error;
4963 
4964 	error = 0;
4965 	vfsconf_slock();
4966 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4967 #ifdef COMPAT_FREEBSD32
4968 		if (req->flags & SCTL_MASK32)
4969 			error = vfsconf2x32(req, vfsp);
4970 		else
4971 #endif
4972 			error = vfsconf2x(req, vfsp);
4973 		if (error)
4974 			break;
4975 	}
4976 	vfsconf_sunlock();
4977 	return (error);
4978 }
4979 
4980 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4981     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4982     "S,xvfsconf", "List of all configured filesystems");
4983 
4984 #ifndef BURN_BRIDGES
4985 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4986 
4987 static int
4988 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4989 {
4990 	int *name = (int *)arg1 - 1;	/* XXX */
4991 	u_int namelen = arg2 + 1;	/* XXX */
4992 	struct vfsconf *vfsp;
4993 
4994 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4995 	    "please rebuild world\n");
4996 
4997 #if 1 || defined(COMPAT_PRELITE2)
4998 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4999 	if (namelen == 1)
5000 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
5001 #endif
5002 
5003 	switch (name[1]) {
5004 	case VFS_MAXTYPENUM:
5005 		if (namelen != 2)
5006 			return (ENOTDIR);
5007 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
5008 	case VFS_CONF:
5009 		if (namelen != 3)
5010 			return (ENOTDIR);	/* overloaded */
5011 		vfsconf_slock();
5012 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5013 			if (vfsp->vfc_typenum == name[2])
5014 				break;
5015 		}
5016 		vfsconf_sunlock();
5017 		if (vfsp == NULL)
5018 			return (EOPNOTSUPP);
5019 #ifdef COMPAT_FREEBSD32
5020 		if (req->flags & SCTL_MASK32)
5021 			return (vfsconf2x32(req, vfsp));
5022 		else
5023 #endif
5024 			return (vfsconf2x(req, vfsp));
5025 	}
5026 	return (EOPNOTSUPP);
5027 }
5028 
5029 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5030     CTLFLAG_MPSAFE, vfs_sysctl,
5031     "Generic filesystem");
5032 
5033 #if 1 || defined(COMPAT_PRELITE2)
5034 
5035 static int
5036 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5037 {
5038 	int error;
5039 	struct vfsconf *vfsp;
5040 	struct ovfsconf ovfs;
5041 
5042 	vfsconf_slock();
5043 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5044 		bzero(&ovfs, sizeof(ovfs));
5045 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
5046 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
5047 		ovfs.vfc_index = vfsp->vfc_typenum;
5048 		ovfs.vfc_refcount = vfsp->vfc_refcount;
5049 		ovfs.vfc_flags = vfsp->vfc_flags;
5050 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5051 		if (error != 0) {
5052 			vfsconf_sunlock();
5053 			return (error);
5054 		}
5055 	}
5056 	vfsconf_sunlock();
5057 	return (0);
5058 }
5059 
5060 #endif /* 1 || COMPAT_PRELITE2 */
5061 #endif /* !BURN_BRIDGES */
5062 
5063 static void
5064 unmount_or_warn(struct mount *mp)
5065 {
5066 	int error;
5067 
5068 	error = dounmount(mp, MNT_FORCE, curthread);
5069 	if (error != 0) {
5070 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5071 		if (error == EBUSY)
5072 			printf("BUSY)\n");
5073 		else
5074 			printf("%d)\n", error);
5075 	}
5076 }
5077 
5078 /*
5079  * Unmount all filesystems. The list is traversed in reverse order
5080  * of mounting to avoid dependencies.
5081  */
5082 void
5083 vfs_unmountall(void)
5084 {
5085 	struct mount *mp, *tmp;
5086 
5087 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5088 
5089 	/*
5090 	 * Since this only runs when rebooting, it is not interlocked.
5091 	 */
5092 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5093 		vfs_ref(mp);
5094 
5095 		/*
5096 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5097 		 * unmount of the latter.
5098 		 */
5099 		if (mp == rootdevmp)
5100 			continue;
5101 
5102 		unmount_or_warn(mp);
5103 	}
5104 
5105 	if (rootdevmp != NULL)
5106 		unmount_or_warn(rootdevmp);
5107 }
5108 
5109 static void
5110 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5111 {
5112 
5113 	ASSERT_VI_LOCKED(vp, __func__);
5114 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5115 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5116 		vdropl(vp);
5117 		return;
5118 	}
5119 	if (vn_lock(vp, lkflags) == 0) {
5120 		VI_LOCK(vp);
5121 		vinactive(vp);
5122 		VOP_UNLOCK(vp);
5123 		vdropl(vp);
5124 		return;
5125 	}
5126 	vdefer_inactive_unlocked(vp);
5127 }
5128 
5129 static int
5130 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5131 {
5132 
5133 	return (vp->v_iflag & VI_DEFINACT);
5134 }
5135 
5136 static void __noinline
5137 vfs_periodic_inactive(struct mount *mp, int flags)
5138 {
5139 	struct vnode *vp, *mvp;
5140 	int lkflags;
5141 
5142 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5143 	if (flags != MNT_WAIT)
5144 		lkflags |= LK_NOWAIT;
5145 
5146 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5147 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5148 			VI_UNLOCK(vp);
5149 			continue;
5150 		}
5151 		vp->v_iflag &= ~VI_DEFINACT;
5152 		vfs_deferred_inactive(vp, lkflags);
5153 	}
5154 }
5155 
5156 static inline bool
5157 vfs_want_msync(struct vnode *vp)
5158 {
5159 	struct vm_object *obj;
5160 
5161 	/*
5162 	 * This test may be performed without any locks held.
5163 	 * We rely on vm_object's type stability.
5164 	 */
5165 	if (vp->v_vflag & VV_NOSYNC)
5166 		return (false);
5167 	obj = vp->v_object;
5168 	return (obj != NULL && vm_object_mightbedirty(obj));
5169 }
5170 
5171 static int
5172 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5173 {
5174 
5175 	if (vp->v_vflag & VV_NOSYNC)
5176 		return (false);
5177 	if (vp->v_iflag & VI_DEFINACT)
5178 		return (true);
5179 	return (vfs_want_msync(vp));
5180 }
5181 
5182 static void __noinline
5183 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5184 {
5185 	struct vnode *vp, *mvp;
5186 	int lkflags;
5187 	bool seen_defer;
5188 
5189 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5190 	if (flags != MNT_WAIT)
5191 		lkflags |= LK_NOWAIT;
5192 
5193 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5194 		seen_defer = false;
5195 		if (vp->v_iflag & VI_DEFINACT) {
5196 			vp->v_iflag &= ~VI_DEFINACT;
5197 			seen_defer = true;
5198 		}
5199 		if (!vfs_want_msync(vp)) {
5200 			if (seen_defer)
5201 				vfs_deferred_inactive(vp, lkflags);
5202 			else
5203 				VI_UNLOCK(vp);
5204 			continue;
5205 		}
5206 		if (vget(vp, lkflags) == 0) {
5207 			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5208 				if (flags == MNT_WAIT)
5209 					vnode_pager_clean_sync(vp);
5210 				else
5211 					vnode_pager_clean_async(vp);
5212 			}
5213 			vput(vp);
5214 			if (seen_defer)
5215 				vdrop(vp);
5216 		} else {
5217 			if (seen_defer)
5218 				vdefer_inactive_unlocked(vp);
5219 		}
5220 	}
5221 }
5222 
5223 void
5224 vfs_periodic(struct mount *mp, int flags)
5225 {
5226 
5227 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5228 
5229 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5230 		vfs_periodic_inactive(mp, flags);
5231 	else
5232 		vfs_periodic_msync_inactive(mp, flags);
5233 }
5234 
5235 static void
5236 destroy_vpollinfo_free(struct vpollinfo *vi)
5237 {
5238 
5239 	knlist_destroy(&vi->vpi_selinfo.si_note);
5240 	mtx_destroy(&vi->vpi_lock);
5241 	free(vi, M_VNODEPOLL);
5242 }
5243 
5244 static void
5245 destroy_vpollinfo(struct vpollinfo *vi)
5246 {
5247 
5248 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5249 	seldrain(&vi->vpi_selinfo);
5250 	destroy_vpollinfo_free(vi);
5251 }
5252 
5253 /*
5254  * Initialize per-vnode helper structure to hold poll-related state.
5255  */
5256 void
5257 v_addpollinfo(struct vnode *vp)
5258 {
5259 	struct vpollinfo *vi;
5260 
5261 	if (vp->v_pollinfo != NULL)
5262 		return;
5263 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5264 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5265 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5266 	    vfs_knlunlock, vfs_knl_assert_lock);
5267 	VI_LOCK(vp);
5268 	if (vp->v_pollinfo != NULL) {
5269 		VI_UNLOCK(vp);
5270 		destroy_vpollinfo_free(vi);
5271 		return;
5272 	}
5273 	vp->v_pollinfo = vi;
5274 	VI_UNLOCK(vp);
5275 }
5276 
5277 /*
5278  * Record a process's interest in events which might happen to
5279  * a vnode.  Because poll uses the historic select-style interface
5280  * internally, this routine serves as both the ``check for any
5281  * pending events'' and the ``record my interest in future events''
5282  * functions.  (These are done together, while the lock is held,
5283  * to avoid race conditions.)
5284  */
5285 int
5286 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5287 {
5288 
5289 	v_addpollinfo(vp);
5290 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5291 	if (vp->v_pollinfo->vpi_revents & events) {
5292 		/*
5293 		 * This leaves events we are not interested
5294 		 * in available for the other process which
5295 		 * which presumably had requested them
5296 		 * (otherwise they would never have been
5297 		 * recorded).
5298 		 */
5299 		events &= vp->v_pollinfo->vpi_revents;
5300 		vp->v_pollinfo->vpi_revents &= ~events;
5301 
5302 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5303 		return (events);
5304 	}
5305 	vp->v_pollinfo->vpi_events |= events;
5306 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5307 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5308 	return (0);
5309 }
5310 
5311 /*
5312  * Routine to create and manage a filesystem syncer vnode.
5313  */
5314 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5315 static int	sync_fsync(struct  vop_fsync_args *);
5316 static int	sync_inactive(struct  vop_inactive_args *);
5317 static int	sync_reclaim(struct  vop_reclaim_args *);
5318 
5319 static struct vop_vector sync_vnodeops = {
5320 	.vop_bypass =	VOP_EOPNOTSUPP,
5321 	.vop_close =	sync_close,
5322 	.vop_fsync =	sync_fsync,
5323 	.vop_getwritemount = vop_stdgetwritemount,
5324 	.vop_inactive =	sync_inactive,
5325 	.vop_need_inactive = vop_stdneed_inactive,
5326 	.vop_reclaim =	sync_reclaim,
5327 	.vop_lock1 =	vop_stdlock,
5328 	.vop_unlock =	vop_stdunlock,
5329 	.vop_islocked =	vop_stdislocked,
5330 	.vop_fplookup_vexec = VOP_EAGAIN,
5331 	.vop_fplookup_symlink = VOP_EAGAIN,
5332 };
5333 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5334 
5335 /*
5336  * Create a new filesystem syncer vnode for the specified mount point.
5337  */
5338 void
5339 vfs_allocate_syncvnode(struct mount *mp)
5340 {
5341 	struct vnode *vp;
5342 	struct bufobj *bo;
5343 	static long start, incr, next;
5344 	int error;
5345 
5346 	/* Allocate a new vnode */
5347 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5348 	if (error != 0)
5349 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5350 	vp->v_type = VNON;
5351 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5352 	vp->v_vflag |= VV_FORCEINSMQ;
5353 	error = insmntque1(vp, mp);
5354 	if (error != 0)
5355 		panic("vfs_allocate_syncvnode: insmntque() failed");
5356 	vp->v_vflag &= ~VV_FORCEINSMQ;
5357 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5358 	VOP_UNLOCK(vp);
5359 	/*
5360 	 * Place the vnode onto the syncer worklist. We attempt to
5361 	 * scatter them about on the list so that they will go off
5362 	 * at evenly distributed times even if all the filesystems
5363 	 * are mounted at once.
5364 	 */
5365 	next += incr;
5366 	if (next == 0 || next > syncer_maxdelay) {
5367 		start /= 2;
5368 		incr /= 2;
5369 		if (start == 0) {
5370 			start = syncer_maxdelay / 2;
5371 			incr = syncer_maxdelay;
5372 		}
5373 		next = start;
5374 	}
5375 	bo = &vp->v_bufobj;
5376 	BO_LOCK(bo);
5377 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5378 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5379 	mtx_lock(&sync_mtx);
5380 	sync_vnode_count++;
5381 	if (mp->mnt_syncer == NULL) {
5382 		mp->mnt_syncer = vp;
5383 		vp = NULL;
5384 	}
5385 	mtx_unlock(&sync_mtx);
5386 	BO_UNLOCK(bo);
5387 	if (vp != NULL) {
5388 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5389 		vgone(vp);
5390 		vput(vp);
5391 	}
5392 }
5393 
5394 void
5395 vfs_deallocate_syncvnode(struct mount *mp)
5396 {
5397 	struct vnode *vp;
5398 
5399 	mtx_lock(&sync_mtx);
5400 	vp = mp->mnt_syncer;
5401 	if (vp != NULL)
5402 		mp->mnt_syncer = NULL;
5403 	mtx_unlock(&sync_mtx);
5404 	if (vp != NULL)
5405 		vrele(vp);
5406 }
5407 
5408 /*
5409  * Do a lazy sync of the filesystem.
5410  */
5411 static int
5412 sync_fsync(struct vop_fsync_args *ap)
5413 {
5414 	struct vnode *syncvp = ap->a_vp;
5415 	struct mount *mp = syncvp->v_mount;
5416 	int error, save;
5417 	struct bufobj *bo;
5418 
5419 	/*
5420 	 * We only need to do something if this is a lazy evaluation.
5421 	 */
5422 	if (ap->a_waitfor != MNT_LAZY)
5423 		return (0);
5424 
5425 	/*
5426 	 * Move ourselves to the back of the sync list.
5427 	 */
5428 	bo = &syncvp->v_bufobj;
5429 	BO_LOCK(bo);
5430 	vn_syncer_add_to_worklist(bo, syncdelay);
5431 	BO_UNLOCK(bo);
5432 
5433 	/*
5434 	 * Walk the list of vnodes pushing all that are dirty and
5435 	 * not already on the sync list.
5436 	 */
5437 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5438 		return (0);
5439 	VOP_UNLOCK(syncvp);
5440 	save = curthread_pflags_set(TDP_SYNCIO);
5441 	/*
5442 	 * The filesystem at hand may be idle with free vnodes stored in the
5443 	 * batch.  Return them instead of letting them stay there indefinitely.
5444 	 */
5445 	vfs_periodic(mp, MNT_NOWAIT);
5446 	error = VFS_SYNC(mp, MNT_LAZY);
5447 	curthread_pflags_restore(save);
5448 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5449 	vfs_unbusy(mp);
5450 	return (error);
5451 }
5452 
5453 /*
5454  * The syncer vnode is no referenced.
5455  */
5456 static int
5457 sync_inactive(struct vop_inactive_args *ap)
5458 {
5459 
5460 	vgone(ap->a_vp);
5461 	return (0);
5462 }
5463 
5464 /*
5465  * The syncer vnode is no longer needed and is being decommissioned.
5466  *
5467  * Modifications to the worklist must be protected by sync_mtx.
5468  */
5469 static int
5470 sync_reclaim(struct vop_reclaim_args *ap)
5471 {
5472 	struct vnode *vp = ap->a_vp;
5473 	struct bufobj *bo;
5474 
5475 	bo = &vp->v_bufobj;
5476 	BO_LOCK(bo);
5477 	mtx_lock(&sync_mtx);
5478 	if (vp->v_mount->mnt_syncer == vp)
5479 		vp->v_mount->mnt_syncer = NULL;
5480 	if (bo->bo_flag & BO_ONWORKLST) {
5481 		LIST_REMOVE(bo, bo_synclist);
5482 		syncer_worklist_len--;
5483 		sync_vnode_count--;
5484 		bo->bo_flag &= ~BO_ONWORKLST;
5485 	}
5486 	mtx_unlock(&sync_mtx);
5487 	BO_UNLOCK(bo);
5488 
5489 	return (0);
5490 }
5491 
5492 int
5493 vn_need_pageq_flush(struct vnode *vp)
5494 {
5495 	struct vm_object *obj;
5496 
5497 	obj = vp->v_object;
5498 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5499 	    vm_object_mightbedirty(obj));
5500 }
5501 
5502 /*
5503  * Check if vnode represents a disk device
5504  */
5505 bool
5506 vn_isdisk_error(struct vnode *vp, int *errp)
5507 {
5508 	int error;
5509 
5510 	if (vp->v_type != VCHR) {
5511 		error = ENOTBLK;
5512 		goto out;
5513 	}
5514 	error = 0;
5515 	dev_lock();
5516 	if (vp->v_rdev == NULL)
5517 		error = ENXIO;
5518 	else if (vp->v_rdev->si_devsw == NULL)
5519 		error = ENXIO;
5520 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5521 		error = ENOTBLK;
5522 	dev_unlock();
5523 out:
5524 	*errp = error;
5525 	return (error == 0);
5526 }
5527 
5528 bool
5529 vn_isdisk(struct vnode *vp)
5530 {
5531 	int error;
5532 
5533 	return (vn_isdisk_error(vp, &error));
5534 }
5535 
5536 /*
5537  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5538  * the comment above cache_fplookup for details.
5539  */
5540 int
5541 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5542 {
5543 	int error;
5544 
5545 	VFS_SMR_ASSERT_ENTERED();
5546 
5547 	/* Check the owner. */
5548 	if (cred->cr_uid == file_uid) {
5549 		if (file_mode & S_IXUSR)
5550 			return (0);
5551 		goto out_error;
5552 	}
5553 
5554 	/* Otherwise, check the groups (first match) */
5555 	if (groupmember(file_gid, cred)) {
5556 		if (file_mode & S_IXGRP)
5557 			return (0);
5558 		goto out_error;
5559 	}
5560 
5561 	/* Otherwise, check everyone else. */
5562 	if (file_mode & S_IXOTH)
5563 		return (0);
5564 out_error:
5565 	/*
5566 	 * Permission check failed, but it is possible denial will get overwritten
5567 	 * (e.g., when root is traversing through a 700 directory owned by someone
5568 	 * else).
5569 	 *
5570 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5571 	 * modules overriding this result. It's quite unclear what semantics
5572 	 * are allowed for them to operate, thus for safety we don't call them
5573 	 * from within the SMR section. This also means if any such modules
5574 	 * are present, we have to let the regular lookup decide.
5575 	 */
5576 	error = priv_check_cred_vfs_lookup_nomac(cred);
5577 	switch (error) {
5578 	case 0:
5579 		return (0);
5580 	case EAGAIN:
5581 		/*
5582 		 * MAC modules present.
5583 		 */
5584 		return (EAGAIN);
5585 	case EPERM:
5586 		return (EACCES);
5587 	default:
5588 		return (error);
5589 	}
5590 }
5591 
5592 /*
5593  * Common filesystem object access control check routine.  Accepts a
5594  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5595  * Returns 0 on success, or an errno on failure.
5596  */
5597 int
5598 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5599     accmode_t accmode, struct ucred *cred)
5600 {
5601 	accmode_t dac_granted;
5602 	accmode_t priv_granted;
5603 
5604 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5605 	    ("invalid bit in accmode"));
5606 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5607 	    ("VAPPEND without VWRITE"));
5608 
5609 	/*
5610 	 * Look for a normal, non-privileged way to access the file/directory
5611 	 * as requested.  If it exists, go with that.
5612 	 */
5613 
5614 	dac_granted = 0;
5615 
5616 	/* Check the owner. */
5617 	if (cred->cr_uid == file_uid) {
5618 		dac_granted |= VADMIN;
5619 		if (file_mode & S_IXUSR)
5620 			dac_granted |= VEXEC;
5621 		if (file_mode & S_IRUSR)
5622 			dac_granted |= VREAD;
5623 		if (file_mode & S_IWUSR)
5624 			dac_granted |= (VWRITE | VAPPEND);
5625 
5626 		if ((accmode & dac_granted) == accmode)
5627 			return (0);
5628 
5629 		goto privcheck;
5630 	}
5631 
5632 	/* Otherwise, check the groups (first match) */
5633 	if (groupmember(file_gid, cred)) {
5634 		if (file_mode & S_IXGRP)
5635 			dac_granted |= VEXEC;
5636 		if (file_mode & S_IRGRP)
5637 			dac_granted |= VREAD;
5638 		if (file_mode & S_IWGRP)
5639 			dac_granted |= (VWRITE | VAPPEND);
5640 
5641 		if ((accmode & dac_granted) == accmode)
5642 			return (0);
5643 
5644 		goto privcheck;
5645 	}
5646 
5647 	/* Otherwise, check everyone else. */
5648 	if (file_mode & S_IXOTH)
5649 		dac_granted |= VEXEC;
5650 	if (file_mode & S_IROTH)
5651 		dac_granted |= VREAD;
5652 	if (file_mode & S_IWOTH)
5653 		dac_granted |= (VWRITE | VAPPEND);
5654 	if ((accmode & dac_granted) == accmode)
5655 		return (0);
5656 
5657 privcheck:
5658 	/*
5659 	 * Build a privilege mask to determine if the set of privileges
5660 	 * satisfies the requirements when combined with the granted mask
5661 	 * from above.  For each privilege, if the privilege is required,
5662 	 * bitwise or the request type onto the priv_granted mask.
5663 	 */
5664 	priv_granted = 0;
5665 
5666 	if (type == VDIR) {
5667 		/*
5668 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5669 		 * requests, instead of PRIV_VFS_EXEC.
5670 		 */
5671 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5672 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5673 			priv_granted |= VEXEC;
5674 	} else {
5675 		/*
5676 		 * Ensure that at least one execute bit is on. Otherwise,
5677 		 * a privileged user will always succeed, and we don't want
5678 		 * this to happen unless the file really is executable.
5679 		 */
5680 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5681 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5682 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5683 			priv_granted |= VEXEC;
5684 	}
5685 
5686 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5687 	    !priv_check_cred(cred, PRIV_VFS_READ))
5688 		priv_granted |= VREAD;
5689 
5690 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5691 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5692 		priv_granted |= (VWRITE | VAPPEND);
5693 
5694 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5695 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5696 		priv_granted |= VADMIN;
5697 
5698 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5699 		return (0);
5700 	}
5701 
5702 	return ((accmode & VADMIN) ? EPERM : EACCES);
5703 }
5704 
5705 /*
5706  * Credential check based on process requesting service, and per-attribute
5707  * permissions.
5708  */
5709 int
5710 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5711     struct thread *td, accmode_t accmode)
5712 {
5713 
5714 	/*
5715 	 * Kernel-invoked always succeeds.
5716 	 */
5717 	if (cred == NOCRED)
5718 		return (0);
5719 
5720 	/*
5721 	 * Do not allow privileged processes in jail to directly manipulate
5722 	 * system attributes.
5723 	 */
5724 	switch (attrnamespace) {
5725 	case EXTATTR_NAMESPACE_SYSTEM:
5726 		/* Potentially should be: return (EPERM); */
5727 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5728 	case EXTATTR_NAMESPACE_USER:
5729 		return (VOP_ACCESS(vp, accmode, cred, td));
5730 	default:
5731 		return (EPERM);
5732 	}
5733 }
5734 
5735 #ifdef DEBUG_VFS_LOCKS
5736 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5737 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5738     "Drop into debugger on lock violation");
5739 
5740 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5741 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5742     0, "Check for interlock across VOPs");
5743 
5744 int vfs_badlock_print = 1;	/* Print lock violations. */
5745 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5746     0, "Print lock violations");
5747 
5748 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5749 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5750     0, "Print vnode details on lock violations");
5751 
5752 #ifdef KDB
5753 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5754 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5755     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5756 #endif
5757 
5758 static void
5759 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5760 {
5761 
5762 #ifdef KDB
5763 	if (vfs_badlock_backtrace)
5764 		kdb_backtrace();
5765 #endif
5766 	if (vfs_badlock_vnode)
5767 		vn_printf(vp, "vnode ");
5768 	if (vfs_badlock_print)
5769 		printf("%s: %p %s\n", str, (void *)vp, msg);
5770 	if (vfs_badlock_ddb)
5771 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5772 }
5773 
5774 void
5775 assert_vi_locked(struct vnode *vp, const char *str)
5776 {
5777 
5778 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5779 		vfs_badlock("interlock is not locked but should be", str, vp);
5780 }
5781 
5782 void
5783 assert_vi_unlocked(struct vnode *vp, const char *str)
5784 {
5785 
5786 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5787 		vfs_badlock("interlock is locked but should not be", str, vp);
5788 }
5789 
5790 void
5791 assert_vop_locked(struct vnode *vp, const char *str)
5792 {
5793 	if (KERNEL_PANICKED() || vp == NULL)
5794 		return;
5795 
5796 #ifdef WITNESS
5797 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5798 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5799 #else
5800 	int locked = VOP_ISLOCKED(vp);
5801 	if (locked == 0 || locked == LK_EXCLOTHER)
5802 #endif
5803 		vfs_badlock("is not locked but should be", str, vp);
5804 }
5805 
5806 void
5807 assert_vop_unlocked(struct vnode *vp, const char *str)
5808 {
5809 	if (KERNEL_PANICKED() || vp == NULL)
5810 		return;
5811 
5812 #ifdef WITNESS
5813 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5814 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5815 #else
5816 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5817 #endif
5818 		vfs_badlock("is locked but should not be", str, vp);
5819 }
5820 
5821 void
5822 assert_vop_elocked(struct vnode *vp, const char *str)
5823 {
5824 	if (KERNEL_PANICKED() || vp == NULL)
5825 		return;
5826 
5827 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5828 		vfs_badlock("is not exclusive locked but should be", str, vp);
5829 }
5830 #endif /* DEBUG_VFS_LOCKS */
5831 
5832 void
5833 vop_rename_fail(struct vop_rename_args *ap)
5834 {
5835 
5836 	if (ap->a_tvp != NULL)
5837 		vput(ap->a_tvp);
5838 	if (ap->a_tdvp == ap->a_tvp)
5839 		vrele(ap->a_tdvp);
5840 	else
5841 		vput(ap->a_tdvp);
5842 	vrele(ap->a_fdvp);
5843 	vrele(ap->a_fvp);
5844 }
5845 
5846 void
5847 vop_rename_pre(void *ap)
5848 {
5849 	struct vop_rename_args *a = ap;
5850 
5851 #ifdef DEBUG_VFS_LOCKS
5852 	if (a->a_tvp)
5853 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5854 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5855 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5856 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5857 
5858 	/* Check the source (from). */
5859 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5860 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5861 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5862 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5863 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5864 
5865 	/* Check the target. */
5866 	if (a->a_tvp)
5867 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5868 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5869 #endif
5870 	/*
5871 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5872 	 * in vop_rename_post but that's not going to work out since some
5873 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5874 	 *
5875 	 * For now filesystems are expected to do the relevant calls after they
5876 	 * decide what vnodes to operate on.
5877 	 */
5878 	if (a->a_tdvp != a->a_fdvp)
5879 		vhold(a->a_fdvp);
5880 	if (a->a_tvp != a->a_fvp)
5881 		vhold(a->a_fvp);
5882 	vhold(a->a_tdvp);
5883 	if (a->a_tvp)
5884 		vhold(a->a_tvp);
5885 }
5886 
5887 #ifdef DEBUG_VFS_LOCKS
5888 void
5889 vop_fplookup_vexec_debugpre(void *ap __unused)
5890 {
5891 
5892 	VFS_SMR_ASSERT_ENTERED();
5893 }
5894 
5895 void
5896 vop_fplookup_vexec_debugpost(void *ap, int rc)
5897 {
5898 	struct vop_fplookup_vexec_args *a;
5899 	struct vnode *vp;
5900 
5901 	a = ap;
5902 	vp = a->a_vp;
5903 
5904 	VFS_SMR_ASSERT_ENTERED();
5905 	if (rc == EOPNOTSUPP)
5906 		VNPASS(VN_IS_DOOMED(vp), vp);
5907 }
5908 
5909 void
5910 vop_fplookup_symlink_debugpre(void *ap __unused)
5911 {
5912 
5913 	VFS_SMR_ASSERT_ENTERED();
5914 }
5915 
5916 void
5917 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5918 {
5919 
5920 	VFS_SMR_ASSERT_ENTERED();
5921 }
5922 
5923 static void
5924 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5925 {
5926 	if (vp->v_type == VCHR)
5927 		;
5928 	/*
5929 	 * The shared vs. exclusive locking policy for fsync()
5930 	 * is actually determined by vp's write mount as indicated
5931 	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5932 	 * may not be the same as vp->v_mount.  However, if the
5933 	 * underlying filesystem which really handles the fsync()
5934 	 * supports shared locking, the stacked filesystem must also
5935 	 * be prepared for its VOP_FSYNC() operation to be called
5936 	 * with only a shared lock.  On the other hand, if the
5937 	 * stacked filesystem claims support for shared write
5938 	 * locking but the underlying filesystem does not, and the
5939 	 * caller incorrectly uses a shared lock, this condition
5940 	 * should still be caught when the stacked filesystem
5941 	 * invokes VOP_FSYNC() on the underlying filesystem.
5942 	 */
5943 	else if (MNT_SHARED_WRITES(vp->v_mount))
5944 		ASSERT_VOP_LOCKED(vp, name);
5945 	else
5946 		ASSERT_VOP_ELOCKED(vp, name);
5947 }
5948 
5949 void
5950 vop_fsync_debugpre(void *a)
5951 {
5952 	struct vop_fsync_args *ap;
5953 
5954 	ap = a;
5955 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5956 }
5957 
5958 void
5959 vop_fsync_debugpost(void *a, int rc __unused)
5960 {
5961 	struct vop_fsync_args *ap;
5962 
5963 	ap = a;
5964 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5965 }
5966 
5967 void
5968 vop_fdatasync_debugpre(void *a)
5969 {
5970 	struct vop_fdatasync_args *ap;
5971 
5972 	ap = a;
5973 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5974 }
5975 
5976 void
5977 vop_fdatasync_debugpost(void *a, int rc __unused)
5978 {
5979 	struct vop_fdatasync_args *ap;
5980 
5981 	ap = a;
5982 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5983 }
5984 
5985 void
5986 vop_strategy_debugpre(void *ap)
5987 {
5988 	struct vop_strategy_args *a;
5989 	struct buf *bp;
5990 
5991 	a = ap;
5992 	bp = a->a_bp;
5993 
5994 	/*
5995 	 * Cluster ops lock their component buffers but not the IO container.
5996 	 */
5997 	if ((bp->b_flags & B_CLUSTER) != 0)
5998 		return;
5999 
6000 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
6001 		if (vfs_badlock_print)
6002 			printf(
6003 			    "VOP_STRATEGY: bp is not locked but should be\n");
6004 		if (vfs_badlock_ddb)
6005 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
6006 	}
6007 }
6008 
6009 void
6010 vop_lock_debugpre(void *ap)
6011 {
6012 	struct vop_lock1_args *a = ap;
6013 
6014 	if ((a->a_flags & LK_INTERLOCK) == 0)
6015 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6016 	else
6017 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6018 }
6019 
6020 void
6021 vop_lock_debugpost(void *ap, int rc)
6022 {
6023 	struct vop_lock1_args *a = ap;
6024 
6025 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6026 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6027 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6028 }
6029 
6030 void
6031 vop_unlock_debugpre(void *ap)
6032 {
6033 	struct vop_unlock_args *a = ap;
6034 	struct vnode *vp = a->a_vp;
6035 
6036 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6037 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6038 }
6039 
6040 void
6041 vop_need_inactive_debugpre(void *ap)
6042 {
6043 	struct vop_need_inactive_args *a = ap;
6044 
6045 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6046 }
6047 
6048 void
6049 vop_need_inactive_debugpost(void *ap, int rc)
6050 {
6051 	struct vop_need_inactive_args *a = ap;
6052 
6053 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6054 }
6055 #endif
6056 
6057 void
6058 vop_create_pre(void *ap)
6059 {
6060 	struct vop_create_args *a;
6061 	struct vnode *dvp;
6062 
6063 	a = ap;
6064 	dvp = a->a_dvp;
6065 	vn_seqc_write_begin(dvp);
6066 }
6067 
6068 void
6069 vop_create_post(void *ap, int rc)
6070 {
6071 	struct vop_create_args *a;
6072 	struct vnode *dvp;
6073 
6074 	a = ap;
6075 	dvp = a->a_dvp;
6076 	vn_seqc_write_end(dvp);
6077 	if (!rc)
6078 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6079 }
6080 
6081 void
6082 vop_whiteout_pre(void *ap)
6083 {
6084 	struct vop_whiteout_args *a;
6085 	struct vnode *dvp;
6086 
6087 	a = ap;
6088 	dvp = a->a_dvp;
6089 	vn_seqc_write_begin(dvp);
6090 }
6091 
6092 void
6093 vop_whiteout_post(void *ap, int rc)
6094 {
6095 	struct vop_whiteout_args *a;
6096 	struct vnode *dvp;
6097 
6098 	a = ap;
6099 	dvp = a->a_dvp;
6100 	vn_seqc_write_end(dvp);
6101 }
6102 
6103 void
6104 vop_deleteextattr_pre(void *ap)
6105 {
6106 	struct vop_deleteextattr_args *a;
6107 	struct vnode *vp;
6108 
6109 	a = ap;
6110 	vp = a->a_vp;
6111 	vn_seqc_write_begin(vp);
6112 }
6113 
6114 void
6115 vop_deleteextattr_post(void *ap, int rc)
6116 {
6117 	struct vop_deleteextattr_args *a;
6118 	struct vnode *vp;
6119 
6120 	a = ap;
6121 	vp = a->a_vp;
6122 	vn_seqc_write_end(vp);
6123 	if (!rc)
6124 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6125 }
6126 
6127 void
6128 vop_link_pre(void *ap)
6129 {
6130 	struct vop_link_args *a;
6131 	struct vnode *vp, *tdvp;
6132 
6133 	a = ap;
6134 	vp = a->a_vp;
6135 	tdvp = a->a_tdvp;
6136 	vn_seqc_write_begin(vp);
6137 	vn_seqc_write_begin(tdvp);
6138 }
6139 
6140 void
6141 vop_link_post(void *ap, int rc)
6142 {
6143 	struct vop_link_args *a;
6144 	struct vnode *vp, *tdvp;
6145 
6146 	a = ap;
6147 	vp = a->a_vp;
6148 	tdvp = a->a_tdvp;
6149 	vn_seqc_write_end(vp);
6150 	vn_seqc_write_end(tdvp);
6151 	if (!rc) {
6152 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6153 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6154 	}
6155 }
6156 
6157 void
6158 vop_mkdir_pre(void *ap)
6159 {
6160 	struct vop_mkdir_args *a;
6161 	struct vnode *dvp;
6162 
6163 	a = ap;
6164 	dvp = a->a_dvp;
6165 	vn_seqc_write_begin(dvp);
6166 }
6167 
6168 void
6169 vop_mkdir_post(void *ap, int rc)
6170 {
6171 	struct vop_mkdir_args *a;
6172 	struct vnode *dvp;
6173 
6174 	a = ap;
6175 	dvp = a->a_dvp;
6176 	vn_seqc_write_end(dvp);
6177 	if (!rc)
6178 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6179 }
6180 
6181 #ifdef DEBUG_VFS_LOCKS
6182 void
6183 vop_mkdir_debugpost(void *ap, int rc)
6184 {
6185 	struct vop_mkdir_args *a;
6186 
6187 	a = ap;
6188 	if (!rc)
6189 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6190 }
6191 #endif
6192 
6193 void
6194 vop_mknod_pre(void *ap)
6195 {
6196 	struct vop_mknod_args *a;
6197 	struct vnode *dvp;
6198 
6199 	a = ap;
6200 	dvp = a->a_dvp;
6201 	vn_seqc_write_begin(dvp);
6202 }
6203 
6204 void
6205 vop_mknod_post(void *ap, int rc)
6206 {
6207 	struct vop_mknod_args *a;
6208 	struct vnode *dvp;
6209 
6210 	a = ap;
6211 	dvp = a->a_dvp;
6212 	vn_seqc_write_end(dvp);
6213 	if (!rc)
6214 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6215 }
6216 
6217 void
6218 vop_reclaim_post(void *ap, int rc)
6219 {
6220 	struct vop_reclaim_args *a;
6221 	struct vnode *vp;
6222 
6223 	a = ap;
6224 	vp = a->a_vp;
6225 	ASSERT_VOP_IN_SEQC(vp);
6226 	if (!rc)
6227 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6228 }
6229 
6230 void
6231 vop_remove_pre(void *ap)
6232 {
6233 	struct vop_remove_args *a;
6234 	struct vnode *dvp, *vp;
6235 
6236 	a = ap;
6237 	dvp = a->a_dvp;
6238 	vp = a->a_vp;
6239 	vn_seqc_write_begin(dvp);
6240 	vn_seqc_write_begin(vp);
6241 }
6242 
6243 void
6244 vop_remove_post(void *ap, int rc)
6245 {
6246 	struct vop_remove_args *a;
6247 	struct vnode *dvp, *vp;
6248 
6249 	a = ap;
6250 	dvp = a->a_dvp;
6251 	vp = a->a_vp;
6252 	vn_seqc_write_end(dvp);
6253 	vn_seqc_write_end(vp);
6254 	if (!rc) {
6255 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6256 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6257 	}
6258 }
6259 
6260 void
6261 vop_rename_post(void *ap, int rc)
6262 {
6263 	struct vop_rename_args *a = ap;
6264 	long hint;
6265 
6266 	if (!rc) {
6267 		hint = NOTE_WRITE;
6268 		if (a->a_fdvp == a->a_tdvp) {
6269 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6270 				hint |= NOTE_LINK;
6271 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6272 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6273 		} else {
6274 			hint |= NOTE_EXTEND;
6275 			if (a->a_fvp->v_type == VDIR)
6276 				hint |= NOTE_LINK;
6277 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6278 
6279 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6280 			    a->a_tvp->v_type == VDIR)
6281 				hint &= ~NOTE_LINK;
6282 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6283 		}
6284 
6285 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6286 		if (a->a_tvp)
6287 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6288 	}
6289 	if (a->a_tdvp != a->a_fdvp)
6290 		vdrop(a->a_fdvp);
6291 	if (a->a_tvp != a->a_fvp)
6292 		vdrop(a->a_fvp);
6293 	vdrop(a->a_tdvp);
6294 	if (a->a_tvp)
6295 		vdrop(a->a_tvp);
6296 }
6297 
6298 void
6299 vop_rmdir_pre(void *ap)
6300 {
6301 	struct vop_rmdir_args *a;
6302 	struct vnode *dvp, *vp;
6303 
6304 	a = ap;
6305 	dvp = a->a_dvp;
6306 	vp = a->a_vp;
6307 	vn_seqc_write_begin(dvp);
6308 	vn_seqc_write_begin(vp);
6309 }
6310 
6311 void
6312 vop_rmdir_post(void *ap, int rc)
6313 {
6314 	struct vop_rmdir_args *a;
6315 	struct vnode *dvp, *vp;
6316 
6317 	a = ap;
6318 	dvp = a->a_dvp;
6319 	vp = a->a_vp;
6320 	vn_seqc_write_end(dvp);
6321 	vn_seqc_write_end(vp);
6322 	if (!rc) {
6323 		vp->v_vflag |= VV_UNLINKED;
6324 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6325 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6326 	}
6327 }
6328 
6329 void
6330 vop_setattr_pre(void *ap)
6331 {
6332 	struct vop_setattr_args *a;
6333 	struct vnode *vp;
6334 
6335 	a = ap;
6336 	vp = a->a_vp;
6337 	vn_seqc_write_begin(vp);
6338 }
6339 
6340 void
6341 vop_setattr_post(void *ap, int rc)
6342 {
6343 	struct vop_setattr_args *a;
6344 	struct vnode *vp;
6345 
6346 	a = ap;
6347 	vp = a->a_vp;
6348 	vn_seqc_write_end(vp);
6349 	if (!rc)
6350 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6351 }
6352 
6353 void
6354 vop_setacl_pre(void *ap)
6355 {
6356 	struct vop_setacl_args *a;
6357 	struct vnode *vp;
6358 
6359 	a = ap;
6360 	vp = a->a_vp;
6361 	vn_seqc_write_begin(vp);
6362 }
6363 
6364 void
6365 vop_setacl_post(void *ap, int rc __unused)
6366 {
6367 	struct vop_setacl_args *a;
6368 	struct vnode *vp;
6369 
6370 	a = ap;
6371 	vp = a->a_vp;
6372 	vn_seqc_write_end(vp);
6373 }
6374 
6375 void
6376 vop_setextattr_pre(void *ap)
6377 {
6378 	struct vop_setextattr_args *a;
6379 	struct vnode *vp;
6380 
6381 	a = ap;
6382 	vp = a->a_vp;
6383 	vn_seqc_write_begin(vp);
6384 }
6385 
6386 void
6387 vop_setextattr_post(void *ap, int rc)
6388 {
6389 	struct vop_setextattr_args *a;
6390 	struct vnode *vp;
6391 
6392 	a = ap;
6393 	vp = a->a_vp;
6394 	vn_seqc_write_end(vp);
6395 	if (!rc)
6396 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6397 }
6398 
6399 void
6400 vop_symlink_pre(void *ap)
6401 {
6402 	struct vop_symlink_args *a;
6403 	struct vnode *dvp;
6404 
6405 	a = ap;
6406 	dvp = a->a_dvp;
6407 	vn_seqc_write_begin(dvp);
6408 }
6409 
6410 void
6411 vop_symlink_post(void *ap, int rc)
6412 {
6413 	struct vop_symlink_args *a;
6414 	struct vnode *dvp;
6415 
6416 	a = ap;
6417 	dvp = a->a_dvp;
6418 	vn_seqc_write_end(dvp);
6419 	if (!rc)
6420 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6421 }
6422 
6423 void
6424 vop_open_post(void *ap, int rc)
6425 {
6426 	struct vop_open_args *a = ap;
6427 
6428 	if (!rc)
6429 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6430 }
6431 
6432 void
6433 vop_close_post(void *ap, int rc)
6434 {
6435 	struct vop_close_args *a = ap;
6436 
6437 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6438 	    !VN_IS_DOOMED(a->a_vp))) {
6439 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6440 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6441 	}
6442 }
6443 
6444 void
6445 vop_read_post(void *ap, int rc)
6446 {
6447 	struct vop_read_args *a = ap;
6448 
6449 	if (!rc)
6450 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6451 }
6452 
6453 void
6454 vop_read_pgcache_post(void *ap, int rc)
6455 {
6456 	struct vop_read_pgcache_args *a = ap;
6457 
6458 	if (!rc)
6459 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6460 }
6461 
6462 void
6463 vop_readdir_post(void *ap, int rc)
6464 {
6465 	struct vop_readdir_args *a = ap;
6466 
6467 	if (!rc)
6468 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6469 }
6470 
6471 static struct knlist fs_knlist;
6472 
6473 static void
6474 vfs_event_init(void *arg)
6475 {
6476 	knlist_init_mtx(&fs_knlist, NULL);
6477 }
6478 /* XXX - correct order? */
6479 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6480 
6481 void
6482 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6483 {
6484 
6485 	KNOTE_UNLOCKED(&fs_knlist, event);
6486 }
6487 
6488 static int	filt_fsattach(struct knote *kn);
6489 static void	filt_fsdetach(struct knote *kn);
6490 static int	filt_fsevent(struct knote *kn, long hint);
6491 
6492 struct filterops fs_filtops = {
6493 	.f_isfd = 0,
6494 	.f_attach = filt_fsattach,
6495 	.f_detach = filt_fsdetach,
6496 	.f_event = filt_fsevent
6497 };
6498 
6499 static int
6500 filt_fsattach(struct knote *kn)
6501 {
6502 
6503 	kn->kn_flags |= EV_CLEAR;
6504 	knlist_add(&fs_knlist, kn, 0);
6505 	return (0);
6506 }
6507 
6508 static void
6509 filt_fsdetach(struct knote *kn)
6510 {
6511 
6512 	knlist_remove(&fs_knlist, kn, 0);
6513 }
6514 
6515 static int
6516 filt_fsevent(struct knote *kn, long hint)
6517 {
6518 
6519 	kn->kn_fflags |= kn->kn_sfflags & hint;
6520 
6521 	return (kn->kn_fflags != 0);
6522 }
6523 
6524 static int
6525 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6526 {
6527 	struct vfsidctl vc;
6528 	int error;
6529 	struct mount *mp;
6530 
6531 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6532 	if (error)
6533 		return (error);
6534 	if (vc.vc_vers != VFS_CTL_VERS1)
6535 		return (EINVAL);
6536 	mp = vfs_getvfs(&vc.vc_fsid);
6537 	if (mp == NULL)
6538 		return (ENOENT);
6539 	/* ensure that a specific sysctl goes to the right filesystem. */
6540 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6541 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6542 		vfs_rel(mp);
6543 		return (EINVAL);
6544 	}
6545 	VCTLTOREQ(&vc, req);
6546 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6547 	vfs_rel(mp);
6548 	return (error);
6549 }
6550 
6551 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6552     NULL, 0, sysctl_vfs_ctl, "",
6553     "Sysctl by fsid");
6554 
6555 /*
6556  * Function to initialize a va_filerev field sensibly.
6557  * XXX: Wouldn't a random number make a lot more sense ??
6558  */
6559 u_quad_t
6560 init_va_filerev(void)
6561 {
6562 	struct bintime bt;
6563 
6564 	getbinuptime(&bt);
6565 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6566 }
6567 
6568 static int	filt_vfsread(struct knote *kn, long hint);
6569 static int	filt_vfswrite(struct knote *kn, long hint);
6570 static int	filt_vfsvnode(struct knote *kn, long hint);
6571 static void	filt_vfsdetach(struct knote *kn);
6572 static struct filterops vfsread_filtops = {
6573 	.f_isfd = 1,
6574 	.f_detach = filt_vfsdetach,
6575 	.f_event = filt_vfsread
6576 };
6577 static struct filterops vfswrite_filtops = {
6578 	.f_isfd = 1,
6579 	.f_detach = filt_vfsdetach,
6580 	.f_event = filt_vfswrite
6581 };
6582 static struct filterops vfsvnode_filtops = {
6583 	.f_isfd = 1,
6584 	.f_detach = filt_vfsdetach,
6585 	.f_event = filt_vfsvnode
6586 };
6587 
6588 static void
6589 vfs_knllock(void *arg)
6590 {
6591 	struct vnode *vp = arg;
6592 
6593 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6594 }
6595 
6596 static void
6597 vfs_knlunlock(void *arg)
6598 {
6599 	struct vnode *vp = arg;
6600 
6601 	VOP_UNLOCK(vp);
6602 }
6603 
6604 static void
6605 vfs_knl_assert_lock(void *arg, int what)
6606 {
6607 #ifdef DEBUG_VFS_LOCKS
6608 	struct vnode *vp = arg;
6609 
6610 	if (what == LA_LOCKED)
6611 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6612 	else
6613 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6614 #endif
6615 }
6616 
6617 int
6618 vfs_kqfilter(struct vop_kqfilter_args *ap)
6619 {
6620 	struct vnode *vp = ap->a_vp;
6621 	struct knote *kn = ap->a_kn;
6622 	struct knlist *knl;
6623 
6624 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6625 	    kn->kn_filter != EVFILT_WRITE),
6626 	    ("READ/WRITE filter on a FIFO leaked through"));
6627 	switch (kn->kn_filter) {
6628 	case EVFILT_READ:
6629 		kn->kn_fop = &vfsread_filtops;
6630 		break;
6631 	case EVFILT_WRITE:
6632 		kn->kn_fop = &vfswrite_filtops;
6633 		break;
6634 	case EVFILT_VNODE:
6635 		kn->kn_fop = &vfsvnode_filtops;
6636 		break;
6637 	default:
6638 		return (EINVAL);
6639 	}
6640 
6641 	kn->kn_hook = (caddr_t)vp;
6642 
6643 	v_addpollinfo(vp);
6644 	if (vp->v_pollinfo == NULL)
6645 		return (ENOMEM);
6646 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6647 	vhold(vp);
6648 	knlist_add(knl, kn, 0);
6649 
6650 	return (0);
6651 }
6652 
6653 /*
6654  * Detach knote from vnode
6655  */
6656 static void
6657 filt_vfsdetach(struct knote *kn)
6658 {
6659 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6660 
6661 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6662 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6663 	vdrop(vp);
6664 }
6665 
6666 /*ARGSUSED*/
6667 static int
6668 filt_vfsread(struct knote *kn, long hint)
6669 {
6670 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6671 	off_t size;
6672 	int res;
6673 
6674 	/*
6675 	 * filesystem is gone, so set the EOF flag and schedule
6676 	 * the knote for deletion.
6677 	 */
6678 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6679 		VI_LOCK(vp);
6680 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6681 		VI_UNLOCK(vp);
6682 		return (1);
6683 	}
6684 
6685 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6686 		return (0);
6687 
6688 	VI_LOCK(vp);
6689 	kn->kn_data = size - kn->kn_fp->f_offset;
6690 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6691 	VI_UNLOCK(vp);
6692 	return (res);
6693 }
6694 
6695 /*ARGSUSED*/
6696 static int
6697 filt_vfswrite(struct knote *kn, long hint)
6698 {
6699 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6700 
6701 	VI_LOCK(vp);
6702 
6703 	/*
6704 	 * filesystem is gone, so set the EOF flag and schedule
6705 	 * the knote for deletion.
6706 	 */
6707 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6708 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6709 
6710 	kn->kn_data = 0;
6711 	VI_UNLOCK(vp);
6712 	return (1);
6713 }
6714 
6715 static int
6716 filt_vfsvnode(struct knote *kn, long hint)
6717 {
6718 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6719 	int res;
6720 
6721 	VI_LOCK(vp);
6722 	if (kn->kn_sfflags & hint)
6723 		kn->kn_fflags |= hint;
6724 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6725 		kn->kn_flags |= EV_EOF;
6726 		VI_UNLOCK(vp);
6727 		return (1);
6728 	}
6729 	res = (kn->kn_fflags != 0);
6730 	VI_UNLOCK(vp);
6731 	return (res);
6732 }
6733 
6734 int
6735 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6736 {
6737 	int error;
6738 
6739 	if (dp->d_reclen > ap->a_uio->uio_resid)
6740 		return (ENAMETOOLONG);
6741 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6742 	if (error) {
6743 		if (ap->a_ncookies != NULL) {
6744 			if (ap->a_cookies != NULL)
6745 				free(ap->a_cookies, M_TEMP);
6746 			ap->a_cookies = NULL;
6747 			*ap->a_ncookies = 0;
6748 		}
6749 		return (error);
6750 	}
6751 	if (ap->a_ncookies == NULL)
6752 		return (0);
6753 
6754 	KASSERT(ap->a_cookies,
6755 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6756 
6757 	*ap->a_cookies = realloc(*ap->a_cookies,
6758 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6759 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6760 	*ap->a_ncookies += 1;
6761 	return (0);
6762 }
6763 
6764 /*
6765  * The purpose of this routine is to remove granularity from accmode_t,
6766  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6767  * VADMIN and VAPPEND.
6768  *
6769  * If it returns 0, the caller is supposed to continue with the usual
6770  * access checks using 'accmode' as modified by this routine.  If it
6771  * returns nonzero value, the caller is supposed to return that value
6772  * as errno.
6773  *
6774  * Note that after this routine runs, accmode may be zero.
6775  */
6776 int
6777 vfs_unixify_accmode(accmode_t *accmode)
6778 {
6779 	/*
6780 	 * There is no way to specify explicit "deny" rule using
6781 	 * file mode or POSIX.1e ACLs.
6782 	 */
6783 	if (*accmode & VEXPLICIT_DENY) {
6784 		*accmode = 0;
6785 		return (0);
6786 	}
6787 
6788 	/*
6789 	 * None of these can be translated into usual access bits.
6790 	 * Also, the common case for NFSv4 ACLs is to not contain
6791 	 * either of these bits. Caller should check for VWRITE
6792 	 * on the containing directory instead.
6793 	 */
6794 	if (*accmode & (VDELETE_CHILD | VDELETE))
6795 		return (EPERM);
6796 
6797 	if (*accmode & VADMIN_PERMS) {
6798 		*accmode &= ~VADMIN_PERMS;
6799 		*accmode |= VADMIN;
6800 	}
6801 
6802 	/*
6803 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6804 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6805 	 */
6806 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6807 
6808 	return (0);
6809 }
6810 
6811 /*
6812  * Clear out a doomed vnode (if any) and replace it with a new one as long
6813  * as the fs is not being unmounted. Return the root vnode to the caller.
6814  */
6815 static int __noinline
6816 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6817 {
6818 	struct vnode *vp;
6819 	int error;
6820 
6821 restart:
6822 	if (mp->mnt_rootvnode != NULL) {
6823 		MNT_ILOCK(mp);
6824 		vp = mp->mnt_rootvnode;
6825 		if (vp != NULL) {
6826 			if (!VN_IS_DOOMED(vp)) {
6827 				vrefact(vp);
6828 				MNT_IUNLOCK(mp);
6829 				error = vn_lock(vp, flags);
6830 				if (error == 0) {
6831 					*vpp = vp;
6832 					return (0);
6833 				}
6834 				vrele(vp);
6835 				goto restart;
6836 			}
6837 			/*
6838 			 * Clear the old one.
6839 			 */
6840 			mp->mnt_rootvnode = NULL;
6841 		}
6842 		MNT_IUNLOCK(mp);
6843 		if (vp != NULL) {
6844 			vfs_op_barrier_wait(mp);
6845 			vrele(vp);
6846 		}
6847 	}
6848 	error = VFS_CACHEDROOT(mp, flags, vpp);
6849 	if (error != 0)
6850 		return (error);
6851 	if (mp->mnt_vfs_ops == 0) {
6852 		MNT_ILOCK(mp);
6853 		if (mp->mnt_vfs_ops != 0) {
6854 			MNT_IUNLOCK(mp);
6855 			return (0);
6856 		}
6857 		if (mp->mnt_rootvnode == NULL) {
6858 			vrefact(*vpp);
6859 			mp->mnt_rootvnode = *vpp;
6860 		} else {
6861 			if (mp->mnt_rootvnode != *vpp) {
6862 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6863 					panic("%s: mismatch between vnode returned "
6864 					    " by VFS_CACHEDROOT and the one cached "
6865 					    " (%p != %p)",
6866 					    __func__, *vpp, mp->mnt_rootvnode);
6867 				}
6868 			}
6869 		}
6870 		MNT_IUNLOCK(mp);
6871 	}
6872 	return (0);
6873 }
6874 
6875 int
6876 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6877 {
6878 	struct mount_pcpu *mpcpu;
6879 	struct vnode *vp;
6880 	int error;
6881 
6882 	if (!vfs_op_thread_enter(mp, mpcpu))
6883 		return (vfs_cache_root_fallback(mp, flags, vpp));
6884 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6885 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6886 		vfs_op_thread_exit(mp, mpcpu);
6887 		return (vfs_cache_root_fallback(mp, flags, vpp));
6888 	}
6889 	vrefact(vp);
6890 	vfs_op_thread_exit(mp, mpcpu);
6891 	error = vn_lock(vp, flags);
6892 	if (error != 0) {
6893 		vrele(vp);
6894 		return (vfs_cache_root_fallback(mp, flags, vpp));
6895 	}
6896 	*vpp = vp;
6897 	return (0);
6898 }
6899 
6900 struct vnode *
6901 vfs_cache_root_clear(struct mount *mp)
6902 {
6903 	struct vnode *vp;
6904 
6905 	/*
6906 	 * ops > 0 guarantees there is nobody who can see this vnode
6907 	 */
6908 	MPASS(mp->mnt_vfs_ops > 0);
6909 	vp = mp->mnt_rootvnode;
6910 	if (vp != NULL)
6911 		vn_seqc_write_begin(vp);
6912 	mp->mnt_rootvnode = NULL;
6913 	return (vp);
6914 }
6915 
6916 void
6917 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6918 {
6919 
6920 	MPASS(mp->mnt_vfs_ops > 0);
6921 	vrefact(vp);
6922 	mp->mnt_rootvnode = vp;
6923 }
6924 
6925 /*
6926  * These are helper functions for filesystems to traverse all
6927  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6928  *
6929  * This interface replaces MNT_VNODE_FOREACH.
6930  */
6931 
6932 struct vnode *
6933 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6934 {
6935 	struct vnode *vp;
6936 
6937 	maybe_yield();
6938 	MNT_ILOCK(mp);
6939 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6940 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6941 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6942 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6943 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6944 			continue;
6945 		VI_LOCK(vp);
6946 		if (VN_IS_DOOMED(vp)) {
6947 			VI_UNLOCK(vp);
6948 			continue;
6949 		}
6950 		break;
6951 	}
6952 	if (vp == NULL) {
6953 		__mnt_vnode_markerfree_all(mvp, mp);
6954 		/* MNT_IUNLOCK(mp); -- done in above function */
6955 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6956 		return (NULL);
6957 	}
6958 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6959 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6960 	MNT_IUNLOCK(mp);
6961 	return (vp);
6962 }
6963 
6964 struct vnode *
6965 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6966 {
6967 	struct vnode *vp;
6968 
6969 	*mvp = vn_alloc_marker(mp);
6970 	MNT_ILOCK(mp);
6971 	MNT_REF(mp);
6972 
6973 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6974 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6975 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6976 			continue;
6977 		VI_LOCK(vp);
6978 		if (VN_IS_DOOMED(vp)) {
6979 			VI_UNLOCK(vp);
6980 			continue;
6981 		}
6982 		break;
6983 	}
6984 	if (vp == NULL) {
6985 		MNT_REL(mp);
6986 		MNT_IUNLOCK(mp);
6987 		vn_free_marker(*mvp);
6988 		*mvp = NULL;
6989 		return (NULL);
6990 	}
6991 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6992 	MNT_IUNLOCK(mp);
6993 	return (vp);
6994 }
6995 
6996 void
6997 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6998 {
6999 
7000 	if (*mvp == NULL) {
7001 		MNT_IUNLOCK(mp);
7002 		return;
7003 	}
7004 
7005 	mtx_assert(MNT_MTX(mp), MA_OWNED);
7006 
7007 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7008 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7009 	MNT_REL(mp);
7010 	MNT_IUNLOCK(mp);
7011 	vn_free_marker(*mvp);
7012 	*mvp = NULL;
7013 }
7014 
7015 /*
7016  * These are helper functions for filesystems to traverse their
7017  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7018  */
7019 static void
7020 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7021 {
7022 
7023 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7024 
7025 	MNT_ILOCK(mp);
7026 	MNT_REL(mp);
7027 	MNT_IUNLOCK(mp);
7028 	vn_free_marker(*mvp);
7029 	*mvp = NULL;
7030 }
7031 
7032 /*
7033  * Relock the mp mount vnode list lock with the vp vnode interlock in the
7034  * conventional lock order during mnt_vnode_next_lazy iteration.
7035  *
7036  * On entry, the mount vnode list lock is held and the vnode interlock is not.
7037  * The list lock is dropped and reacquired.  On success, both locks are held.
7038  * On failure, the mount vnode list lock is held but the vnode interlock is
7039  * not, and the procedure may have yielded.
7040  */
7041 static bool
7042 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7043     struct vnode *vp)
7044 {
7045 
7046 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7047 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7048 	    ("%s: bad marker", __func__));
7049 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7050 	    ("%s: inappropriate vnode", __func__));
7051 	ASSERT_VI_UNLOCKED(vp, __func__);
7052 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7053 
7054 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7055 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7056 
7057 	/*
7058 	 * Note we may be racing against vdrop which transitioned the hold
7059 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7060 	 * if we are the only user after we get the interlock we will just
7061 	 * vdrop.
7062 	 */
7063 	vhold(vp);
7064 	mtx_unlock(&mp->mnt_listmtx);
7065 	VI_LOCK(vp);
7066 	if (VN_IS_DOOMED(vp)) {
7067 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7068 		goto out_lost;
7069 	}
7070 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7071 	/*
7072 	 * There is nothing to do if we are the last user.
7073 	 */
7074 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
7075 		goto out_lost;
7076 	mtx_lock(&mp->mnt_listmtx);
7077 	return (true);
7078 out_lost:
7079 	vdropl(vp);
7080 	maybe_yield();
7081 	mtx_lock(&mp->mnt_listmtx);
7082 	return (false);
7083 }
7084 
7085 static struct vnode *
7086 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7087     void *cbarg)
7088 {
7089 	struct vnode *vp;
7090 
7091 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7092 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7093 restart:
7094 	vp = TAILQ_NEXT(*mvp, v_lazylist);
7095 	while (vp != NULL) {
7096 		if (vp->v_type == VMARKER) {
7097 			vp = TAILQ_NEXT(vp, v_lazylist);
7098 			continue;
7099 		}
7100 		/*
7101 		 * See if we want to process the vnode. Note we may encounter a
7102 		 * long string of vnodes we don't care about and hog the list
7103 		 * as a result. Check for it and requeue the marker.
7104 		 */
7105 		VNPASS(!VN_IS_DOOMED(vp), vp);
7106 		if (!cb(vp, cbarg)) {
7107 			if (!should_yield()) {
7108 				vp = TAILQ_NEXT(vp, v_lazylist);
7109 				continue;
7110 			}
7111 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7112 			    v_lazylist);
7113 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7114 			    v_lazylist);
7115 			mtx_unlock(&mp->mnt_listmtx);
7116 			kern_yield(PRI_USER);
7117 			mtx_lock(&mp->mnt_listmtx);
7118 			goto restart;
7119 		}
7120 		/*
7121 		 * Try-lock because this is the wrong lock order.
7122 		 */
7123 		if (!VI_TRYLOCK(vp) &&
7124 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7125 			goto restart;
7126 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7127 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7128 		    ("alien vnode on the lazy list %p %p", vp, mp));
7129 		VNPASS(vp->v_mount == mp, vp);
7130 		VNPASS(!VN_IS_DOOMED(vp), vp);
7131 		break;
7132 	}
7133 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7134 
7135 	/* Check if we are done */
7136 	if (vp == NULL) {
7137 		mtx_unlock(&mp->mnt_listmtx);
7138 		mnt_vnode_markerfree_lazy(mvp, mp);
7139 		return (NULL);
7140 	}
7141 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7142 	mtx_unlock(&mp->mnt_listmtx);
7143 	ASSERT_VI_LOCKED(vp, "lazy iter");
7144 	return (vp);
7145 }
7146 
7147 struct vnode *
7148 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7149     void *cbarg)
7150 {
7151 
7152 	maybe_yield();
7153 	mtx_lock(&mp->mnt_listmtx);
7154 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7155 }
7156 
7157 struct vnode *
7158 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7159     void *cbarg)
7160 {
7161 	struct vnode *vp;
7162 
7163 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7164 		return (NULL);
7165 
7166 	*mvp = vn_alloc_marker(mp);
7167 	MNT_ILOCK(mp);
7168 	MNT_REF(mp);
7169 	MNT_IUNLOCK(mp);
7170 
7171 	mtx_lock(&mp->mnt_listmtx);
7172 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7173 	if (vp == NULL) {
7174 		mtx_unlock(&mp->mnt_listmtx);
7175 		mnt_vnode_markerfree_lazy(mvp, mp);
7176 		return (NULL);
7177 	}
7178 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7179 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7180 }
7181 
7182 void
7183 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7184 {
7185 
7186 	if (*mvp == NULL)
7187 		return;
7188 
7189 	mtx_lock(&mp->mnt_listmtx);
7190 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7191 	mtx_unlock(&mp->mnt_listmtx);
7192 	mnt_vnode_markerfree_lazy(mvp, mp);
7193 }
7194 
7195 int
7196 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7197 {
7198 
7199 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7200 		cnp->cn_flags &= ~NOEXECCHECK;
7201 		return (0);
7202 	}
7203 
7204 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7205 }
7206 
7207 /*
7208  * Do not use this variant unless you have means other than the hold count
7209  * to prevent the vnode from getting freed.
7210  */
7211 void
7212 vn_seqc_write_begin_locked(struct vnode *vp)
7213 {
7214 
7215 	ASSERT_VI_LOCKED(vp, __func__);
7216 	VNPASS(vp->v_holdcnt > 0, vp);
7217 	VNPASS(vp->v_seqc_users >= 0, vp);
7218 	vp->v_seqc_users++;
7219 	if (vp->v_seqc_users == 1)
7220 		seqc_sleepable_write_begin(&vp->v_seqc);
7221 }
7222 
7223 void
7224 vn_seqc_write_begin(struct vnode *vp)
7225 {
7226 
7227 	VI_LOCK(vp);
7228 	vn_seqc_write_begin_locked(vp);
7229 	VI_UNLOCK(vp);
7230 }
7231 
7232 void
7233 vn_seqc_write_end_locked(struct vnode *vp)
7234 {
7235 
7236 	ASSERT_VI_LOCKED(vp, __func__);
7237 	VNPASS(vp->v_seqc_users > 0, vp);
7238 	vp->v_seqc_users--;
7239 	if (vp->v_seqc_users == 0)
7240 		seqc_sleepable_write_end(&vp->v_seqc);
7241 }
7242 
7243 void
7244 vn_seqc_write_end(struct vnode *vp)
7245 {
7246 
7247 	VI_LOCK(vp);
7248 	vn_seqc_write_end_locked(vp);
7249 	VI_UNLOCK(vp);
7250 }
7251 
7252 /*
7253  * Special case handling for allocating and freeing vnodes.
7254  *
7255  * The counter remains unchanged on free so that a doomed vnode will
7256  * keep testing as in modify as long as it is accessible with SMR.
7257  */
7258 static void
7259 vn_seqc_init(struct vnode *vp)
7260 {
7261 
7262 	vp->v_seqc = 0;
7263 	vp->v_seqc_users = 0;
7264 }
7265 
7266 static void
7267 vn_seqc_write_end_free(struct vnode *vp)
7268 {
7269 
7270 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7271 	VNPASS(vp->v_seqc_users == 1, vp);
7272 }
7273 
7274 void
7275 vn_irflag_set_locked(struct vnode *vp, short toset)
7276 {
7277 	short flags;
7278 
7279 	ASSERT_VI_LOCKED(vp, __func__);
7280 	flags = vn_irflag_read(vp);
7281 	VNASSERT((flags & toset) == 0, vp,
7282 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7283 	    __func__, flags, toset));
7284 	atomic_store_short(&vp->v_irflag, flags | toset);
7285 }
7286 
7287 void
7288 vn_irflag_set(struct vnode *vp, short toset)
7289 {
7290 
7291 	VI_LOCK(vp);
7292 	vn_irflag_set_locked(vp, toset);
7293 	VI_UNLOCK(vp);
7294 }
7295 
7296 void
7297 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7298 {
7299 	short flags;
7300 
7301 	ASSERT_VI_LOCKED(vp, __func__);
7302 	flags = vn_irflag_read(vp);
7303 	atomic_store_short(&vp->v_irflag, flags | toset);
7304 }
7305 
7306 void
7307 vn_irflag_set_cond(struct vnode *vp, short toset)
7308 {
7309 
7310 	VI_LOCK(vp);
7311 	vn_irflag_set_cond_locked(vp, toset);
7312 	VI_UNLOCK(vp);
7313 }
7314 
7315 void
7316 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7317 {
7318 	short flags;
7319 
7320 	ASSERT_VI_LOCKED(vp, __func__);
7321 	flags = vn_irflag_read(vp);
7322 	VNASSERT((flags & tounset) == tounset, vp,
7323 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7324 	    __func__, flags, tounset));
7325 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7326 }
7327 
7328 void
7329 vn_irflag_unset(struct vnode *vp, short tounset)
7330 {
7331 
7332 	VI_LOCK(vp);
7333 	vn_irflag_unset_locked(vp, tounset);
7334 	VI_UNLOCK(vp);
7335 }
7336 
7337 int
7338 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7339 {
7340 	struct vattr vattr;
7341 	int error;
7342 
7343 	ASSERT_VOP_LOCKED(vp, __func__);
7344 	error = VOP_GETATTR(vp, &vattr, cred);
7345 	if (__predict_true(error == 0)) {
7346 		if (vattr.va_size <= OFF_MAX)
7347 			*size = vattr.va_size;
7348 		else
7349 			error = EFBIG;
7350 	}
7351 	return (error);
7352 }
7353 
7354 int
7355 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7356 {
7357 	int error;
7358 
7359 	VOP_LOCK(vp, LK_SHARED);
7360 	error = vn_getsize_locked(vp, size, cred);
7361 	VOP_UNLOCK(vp);
7362 	return (error);
7363 }
7364 
7365 #ifdef INVARIANTS
7366 void
7367 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7368 {
7369 
7370 	switch (vp->v_state) {
7371 	case VSTATE_UNINITIALIZED:
7372 		switch (state) {
7373 		case VSTATE_CONSTRUCTED:
7374 		case VSTATE_DESTROYING:
7375 			return;
7376 		default:
7377 			break;
7378 		}
7379 		break;
7380 	case VSTATE_CONSTRUCTED:
7381 		ASSERT_VOP_ELOCKED(vp, __func__);
7382 		switch (state) {
7383 		case VSTATE_DESTROYING:
7384 			return;
7385 		default:
7386 			break;
7387 		}
7388 		break;
7389 	case VSTATE_DESTROYING:
7390 		ASSERT_VOP_ELOCKED(vp, __func__);
7391 		switch (state) {
7392 		case VSTATE_DEAD:
7393 			return;
7394 		default:
7395 			break;
7396 		}
7397 		break;
7398 	case VSTATE_DEAD:
7399 		switch (state) {
7400 		case VSTATE_UNINITIALIZED:
7401 			return;
7402 		default:
7403 			break;
7404 		}
7405 		break;
7406 	}
7407 
7408 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7409 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7410 }
7411 #endif
7412