1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 37 */ 38 39 /* 40 * External virtual filesystem routines 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include "opt_compat.h" 47 #include "opt_ddb.h" 48 #include "opt_watchdog.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/bio.h> 53 #include <sys/buf.h> 54 #include <sys/condvar.h> 55 #include <sys/conf.h> 56 #include <sys/counter.h> 57 #include <sys/dirent.h> 58 #include <sys/event.h> 59 #include <sys/eventhandler.h> 60 #include <sys/extattr.h> 61 #include <sys/file.h> 62 #include <sys/fcntl.h> 63 #include <sys/jail.h> 64 #include <sys/kdb.h> 65 #include <sys/kernel.h> 66 #include <sys/kthread.h> 67 #include <sys/lockf.h> 68 #include <sys/malloc.h> 69 #include <sys/mount.h> 70 #include <sys/namei.h> 71 #include <sys/pctrie.h> 72 #include <sys/priv.h> 73 #include <sys/reboot.h> 74 #include <sys/refcount.h> 75 #include <sys/rwlock.h> 76 #include <sys/sched.h> 77 #include <sys/sleepqueue.h> 78 #include <sys/smp.h> 79 #include <sys/stat.h> 80 #include <sys/sysctl.h> 81 #include <sys/syslog.h> 82 #include <sys/vmmeter.h> 83 #include <sys/vnode.h> 84 #include <sys/watchdog.h> 85 86 #include <machine/stdarg.h> 87 88 #include <security/mac/mac_framework.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_extern.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_page.h> 96 #include <vm/vm_kern.h> 97 #include <vm/uma.h> 98 99 #ifdef DDB 100 #include <ddb/ddb.h> 101 #endif 102 103 static void delmntque(struct vnode *vp); 104 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 105 int slpflag, int slptimeo); 106 static void syncer_shutdown(void *arg, int howto); 107 static int vtryrecycle(struct vnode *vp); 108 static void v_init_counters(struct vnode *); 109 static void v_incr_usecount(struct vnode *); 110 static void v_incr_usecount_locked(struct vnode *); 111 static void v_incr_devcount(struct vnode *); 112 static void v_decr_devcount(struct vnode *); 113 static void vgonel(struct vnode *); 114 static void vfs_knllock(void *arg); 115 static void vfs_knlunlock(void *arg); 116 static void vfs_knl_assert_locked(void *arg); 117 static void vfs_knl_assert_unlocked(void *arg); 118 static void vnlru_return_batches(struct vfsops *mnt_op); 119 static void destroy_vpollinfo(struct vpollinfo *vi); 120 121 /* 122 * Number of vnodes in existence. Increased whenever getnewvnode() 123 * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode. 124 */ 125 static unsigned long numvnodes; 126 127 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 128 "Number of vnodes in existence"); 129 130 static counter_u64_t vnodes_created; 131 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 132 "Number of vnodes created by getnewvnode"); 133 134 static u_long mnt_free_list_batch = 128; 135 SYSCTL_ULONG(_vfs, OID_AUTO, mnt_free_list_batch, CTLFLAG_RW, 136 &mnt_free_list_batch, 0, "Limit of vnodes held on mnt's free list"); 137 138 /* 139 * Conversion tables for conversion from vnode types to inode formats 140 * and back. 141 */ 142 enum vtype iftovt_tab[16] = { 143 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 144 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 145 }; 146 int vttoif_tab[10] = { 147 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 148 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 149 }; 150 151 /* 152 * List of vnodes that are ready for recycling. 153 */ 154 static TAILQ_HEAD(freelst, vnode) vnode_free_list; 155 156 /* 157 * "Free" vnode target. Free vnodes are rarely completely free, but are 158 * just ones that are cheap to recycle. Usually they are for files which 159 * have been stat'd but not read; these usually have inode and namecache 160 * data attached to them. This target is the preferred minimum size of a 161 * sub-cache consisting mostly of such files. The system balances the size 162 * of this sub-cache with its complement to try to prevent either from 163 * thrashing while the other is relatively inactive. The targets express 164 * a preference for the best balance. 165 * 166 * "Above" this target there are 2 further targets (watermarks) related 167 * to recyling of free vnodes. In the best-operating case, the cache is 168 * exactly full, the free list has size between vlowat and vhiwat above the 169 * free target, and recycling from it and normal use maintains this state. 170 * Sometimes the free list is below vlowat or even empty, but this state 171 * is even better for immediate use provided the cache is not full. 172 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free 173 * ones) to reach one of these states. The watermarks are currently hard- 174 * coded as 4% and 9% of the available space higher. These and the default 175 * of 25% for wantfreevnodes are too large if the memory size is large. 176 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim 177 * whenever vnlru_proc() becomes active. 178 */ 179 static u_long wantfreevnodes; 180 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, 181 &wantfreevnodes, 0, "Target for minimum number of \"free\" vnodes"); 182 static u_long freevnodes; 183 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, 184 &freevnodes, 0, "Number of \"free\" vnodes"); 185 186 static counter_u64_t recycles_count; 187 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 188 "Number of vnodes recycled to meet vnode cache targets"); 189 190 /* 191 * Various variables used for debugging the new implementation of 192 * reassignbuf(). 193 * XXX these are probably of (very) limited utility now. 194 */ 195 static int reassignbufcalls; 196 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, 197 "Number of calls to reassignbuf"); 198 199 static counter_u64_t free_owe_inact; 200 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact, 201 "Number of times free vnodes kept on active list due to VFS " 202 "owing inactivation"); 203 204 /* To keep more than one thread at a time from running vfs_getnewfsid */ 205 static struct mtx mntid_mtx; 206 207 /* 208 * Lock for any access to the following: 209 * vnode_free_list 210 * numvnodes 211 * freevnodes 212 */ 213 static struct mtx vnode_free_list_mtx; 214 215 /* Publicly exported FS */ 216 struct nfs_public nfs_pub; 217 218 static uma_zone_t buf_trie_zone; 219 220 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 221 static uma_zone_t vnode_zone; 222 static uma_zone_t vnodepoll_zone; 223 224 /* 225 * The workitem queue. 226 * 227 * It is useful to delay writes of file data and filesystem metadata 228 * for tens of seconds so that quickly created and deleted files need 229 * not waste disk bandwidth being created and removed. To realize this, 230 * we append vnodes to a "workitem" queue. When running with a soft 231 * updates implementation, most pending metadata dependencies should 232 * not wait for more than a few seconds. Thus, mounted on block devices 233 * are delayed only about a half the time that file data is delayed. 234 * Similarly, directory updates are more critical, so are only delayed 235 * about a third the time that file data is delayed. Thus, there are 236 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 237 * one each second (driven off the filesystem syncer process). The 238 * syncer_delayno variable indicates the next queue that is to be processed. 239 * Items that need to be processed soon are placed in this queue: 240 * 241 * syncer_workitem_pending[syncer_delayno] 242 * 243 * A delay of fifteen seconds is done by placing the request fifteen 244 * entries later in the queue: 245 * 246 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 247 * 248 */ 249 static int syncer_delayno; 250 static long syncer_mask; 251 LIST_HEAD(synclist, bufobj); 252 static struct synclist *syncer_workitem_pending; 253 /* 254 * The sync_mtx protects: 255 * bo->bo_synclist 256 * sync_vnode_count 257 * syncer_delayno 258 * syncer_state 259 * syncer_workitem_pending 260 * syncer_worklist_len 261 * rushjob 262 */ 263 static struct mtx sync_mtx; 264 static struct cv sync_wakeup; 265 266 #define SYNCER_MAXDELAY 32 267 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 268 static int syncdelay = 30; /* max time to delay syncing data */ 269 static int filedelay = 30; /* time to delay syncing files */ 270 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 271 "Time to delay syncing files (in seconds)"); 272 static int dirdelay = 29; /* time to delay syncing directories */ 273 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 274 "Time to delay syncing directories (in seconds)"); 275 static int metadelay = 28; /* time to delay syncing metadata */ 276 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 277 "Time to delay syncing metadata (in seconds)"); 278 static int rushjob; /* number of slots to run ASAP */ 279 static int stat_rush_requests; /* number of times I/O speeded up */ 280 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 281 "Number of times I/O speeded up (rush requests)"); 282 283 /* 284 * When shutting down the syncer, run it at four times normal speed. 285 */ 286 #define SYNCER_SHUTDOWN_SPEEDUP 4 287 static int sync_vnode_count; 288 static int syncer_worklist_len; 289 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 290 syncer_state; 291 292 /* Target for maximum number of vnodes. */ 293 int desiredvnodes; 294 static int gapvnodes; /* gap between wanted and desired */ 295 static int vhiwat; /* enough extras after expansion */ 296 static int vlowat; /* minimal extras before expansion */ 297 static int vstir; /* nonzero to stir non-free vnodes */ 298 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */ 299 300 static int 301 sysctl_update_desiredvnodes(SYSCTL_HANDLER_ARGS) 302 { 303 int error, old_desiredvnodes; 304 305 old_desiredvnodes = desiredvnodes; 306 if ((error = sysctl_handle_int(oidp, arg1, arg2, req)) != 0) 307 return (error); 308 if (old_desiredvnodes != desiredvnodes) { 309 wantfreevnodes = desiredvnodes / 4; 310 /* XXX locking seems to be incomplete. */ 311 vfs_hash_changesize(desiredvnodes); 312 cache_changesize(desiredvnodes); 313 } 314 return (0); 315 } 316 317 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, 318 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &desiredvnodes, 0, 319 sysctl_update_desiredvnodes, "I", "Target for maximum number of vnodes"); 320 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, 321 &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)"); 322 static int vnlru_nowhere; 323 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, 324 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 325 326 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 327 static int vnsz2log; 328 329 /* 330 * Support for the bufobj clean & dirty pctrie. 331 */ 332 static void * 333 buf_trie_alloc(struct pctrie *ptree) 334 { 335 336 return uma_zalloc(buf_trie_zone, M_NOWAIT); 337 } 338 339 static void 340 buf_trie_free(struct pctrie *ptree, void *node) 341 { 342 343 uma_zfree(buf_trie_zone, node); 344 } 345 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free); 346 347 /* 348 * Initialize the vnode management data structures. 349 * 350 * Reevaluate the following cap on the number of vnodes after the physical 351 * memory size exceeds 512GB. In the limit, as the physical memory size 352 * grows, the ratio of the memory size in KB to vnodes approaches 64:1. 353 */ 354 #ifndef MAXVNODES_MAX 355 #define MAXVNODES_MAX (512 * 1024 * 1024 / 64) /* 8M */ 356 #endif 357 358 /* 359 * Initialize a vnode as it first enters the zone. 360 */ 361 static int 362 vnode_init(void *mem, int size, int flags) 363 { 364 struct vnode *vp; 365 366 vp = mem; 367 bzero(vp, size); 368 /* 369 * Setup locks. 370 */ 371 vp->v_vnlock = &vp->v_lock; 372 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 373 /* 374 * By default, don't allow shared locks unless filesystems opt-in. 375 */ 376 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT, 377 LK_NOSHARE | LK_IS_VNODE); 378 /* 379 * Initialize bufobj. 380 */ 381 bufobj_init(&vp->v_bufobj, vp); 382 /* 383 * Initialize namecache. 384 */ 385 LIST_INIT(&vp->v_cache_src); 386 TAILQ_INIT(&vp->v_cache_dst); 387 /* 388 * Initialize rangelocks. 389 */ 390 rangelock_init(&vp->v_rl); 391 return (0); 392 } 393 394 /* 395 * Free a vnode when it is cleared from the zone. 396 */ 397 static void 398 vnode_fini(void *mem, int size) 399 { 400 struct vnode *vp; 401 struct bufobj *bo; 402 403 vp = mem; 404 rangelock_destroy(&vp->v_rl); 405 lockdestroy(vp->v_vnlock); 406 mtx_destroy(&vp->v_interlock); 407 bo = &vp->v_bufobj; 408 rw_destroy(BO_LOCKPTR(bo)); 409 } 410 411 /* 412 * Provide the size of NFS nclnode and NFS fh for calculation of the 413 * vnode memory consumption. The size is specified directly to 414 * eliminate dependency on NFS-private header. 415 * 416 * Other filesystems may use bigger or smaller (like UFS and ZFS) 417 * private inode data, but the NFS-based estimation is ample enough. 418 * Still, we care about differences in the size between 64- and 32-bit 419 * platforms. 420 * 421 * Namecache structure size is heuristically 422 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1. 423 */ 424 #ifdef _LP64 425 #define NFS_NCLNODE_SZ (528 + 64) 426 #define NC_SZ 148 427 #else 428 #define NFS_NCLNODE_SZ (360 + 32) 429 #define NC_SZ 92 430 #endif 431 432 static void 433 vntblinit(void *dummy __unused) 434 { 435 u_int i; 436 int physvnodes, virtvnodes; 437 438 /* 439 * Desiredvnodes is a function of the physical memory size and the 440 * kernel's heap size. Generally speaking, it scales with the 441 * physical memory size. The ratio of desiredvnodes to the physical 442 * memory size is 1:16 until desiredvnodes exceeds 98,304. 443 * Thereafter, the 444 * marginal ratio of desiredvnodes to the physical memory size is 445 * 1:64. However, desiredvnodes is limited by the kernel's heap 446 * size. The memory required by desiredvnodes vnodes and vm objects 447 * must not exceed 1/10th of the kernel's heap size. 448 */ 449 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 + 450 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64; 451 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) + 452 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ)); 453 desiredvnodes = min(physvnodes, virtvnodes); 454 if (desiredvnodes > MAXVNODES_MAX) { 455 if (bootverbose) 456 printf("Reducing kern.maxvnodes %d -> %d\n", 457 desiredvnodes, MAXVNODES_MAX); 458 desiredvnodes = MAXVNODES_MAX; 459 } 460 wantfreevnodes = desiredvnodes / 4; 461 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 462 TAILQ_INIT(&vnode_free_list); 463 mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF); 464 vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL, 465 vnode_init, vnode_fini, UMA_ALIGN_PTR, 0); 466 vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo), 467 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 468 /* 469 * Preallocate enough nodes to support one-per buf so that 470 * we can not fail an insert. reassignbuf() callers can not 471 * tolerate the insertion failure. 472 */ 473 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 474 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 475 UMA_ZONE_NOFREE | UMA_ZONE_VM); 476 uma_prealloc(buf_trie_zone, nbuf); 477 478 vnodes_created = counter_u64_alloc(M_WAITOK); 479 recycles_count = counter_u64_alloc(M_WAITOK); 480 free_owe_inact = counter_u64_alloc(M_WAITOK); 481 482 /* 483 * Initialize the filesystem syncer. 484 */ 485 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 486 &syncer_mask); 487 syncer_maxdelay = syncer_mask + 1; 488 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 489 cv_init(&sync_wakeup, "syncer"); 490 for (i = 1; i <= sizeof(struct vnode); i <<= 1) 491 vnsz2log++; 492 vnsz2log--; 493 } 494 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 495 496 497 /* 498 * Mark a mount point as busy. Used to synchronize access and to delay 499 * unmounting. Eventually, mountlist_mtx is not released on failure. 500 * 501 * vfs_busy() is a custom lock, it can block the caller. 502 * vfs_busy() only sleeps if the unmount is active on the mount point. 503 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 504 * vnode belonging to mp. 505 * 506 * Lookup uses vfs_busy() to traverse mount points. 507 * root fs var fs 508 * / vnode lock A / vnode lock (/var) D 509 * /var vnode lock B /log vnode lock(/var/log) E 510 * vfs_busy lock C vfs_busy lock F 511 * 512 * Within each file system, the lock order is C->A->B and F->D->E. 513 * 514 * When traversing across mounts, the system follows that lock order: 515 * 516 * C->A->B 517 * | 518 * +->F->D->E 519 * 520 * The lookup() process for namei("/var") illustrates the process: 521 * VOP_LOOKUP() obtains B while A is held 522 * vfs_busy() obtains a shared lock on F while A and B are held 523 * vput() releases lock on B 524 * vput() releases lock on A 525 * VFS_ROOT() obtains lock on D while shared lock on F is held 526 * vfs_unbusy() releases shared lock on F 527 * vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 528 * Attempt to lock A (instead of vp_crossmp) while D is held would 529 * violate the global order, causing deadlocks. 530 * 531 * dounmount() locks B while F is drained. 532 */ 533 int 534 vfs_busy(struct mount *mp, int flags) 535 { 536 537 MPASS((flags & ~MBF_MASK) == 0); 538 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 539 540 MNT_ILOCK(mp); 541 MNT_REF(mp); 542 /* 543 * If mount point is currently being unmounted, sleep until the 544 * mount point fate is decided. If thread doing the unmounting fails, 545 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 546 * that this mount point has survived the unmount attempt and vfs_busy 547 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 548 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 549 * about to be really destroyed. vfs_busy needs to release its 550 * reference on the mount point in this case and return with ENOENT, 551 * telling the caller that mount mount it tried to busy is no longer 552 * valid. 553 */ 554 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 555 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 556 MNT_REL(mp); 557 MNT_IUNLOCK(mp); 558 CTR1(KTR_VFS, "%s: failed busying before sleeping", 559 __func__); 560 return (ENOENT); 561 } 562 if (flags & MBF_MNTLSTLOCK) 563 mtx_unlock(&mountlist_mtx); 564 mp->mnt_kern_flag |= MNTK_MWAIT; 565 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 566 if (flags & MBF_MNTLSTLOCK) 567 mtx_lock(&mountlist_mtx); 568 MNT_ILOCK(mp); 569 } 570 if (flags & MBF_MNTLSTLOCK) 571 mtx_unlock(&mountlist_mtx); 572 mp->mnt_lockref++; 573 MNT_IUNLOCK(mp); 574 return (0); 575 } 576 577 /* 578 * Free a busy filesystem. 579 */ 580 void 581 vfs_unbusy(struct mount *mp) 582 { 583 584 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 585 MNT_ILOCK(mp); 586 MNT_REL(mp); 587 KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref")); 588 mp->mnt_lockref--; 589 if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 590 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 591 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 592 mp->mnt_kern_flag &= ~MNTK_DRAINING; 593 wakeup(&mp->mnt_lockref); 594 } 595 MNT_IUNLOCK(mp); 596 } 597 598 /* 599 * Lookup a mount point by filesystem identifier. 600 */ 601 struct mount * 602 vfs_getvfs(fsid_t *fsid) 603 { 604 struct mount *mp; 605 606 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 607 mtx_lock(&mountlist_mtx); 608 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 609 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 610 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 611 vfs_ref(mp); 612 mtx_unlock(&mountlist_mtx); 613 return (mp); 614 } 615 } 616 mtx_unlock(&mountlist_mtx); 617 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 618 return ((struct mount *) 0); 619 } 620 621 /* 622 * Lookup a mount point by filesystem identifier, busying it before 623 * returning. 624 * 625 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 626 * cache for popular filesystem identifiers. The cache is lockess, using 627 * the fact that struct mount's are never freed. In worst case we may 628 * get pointer to unmounted or even different filesystem, so we have to 629 * check what we got, and go slow way if so. 630 */ 631 struct mount * 632 vfs_busyfs(fsid_t *fsid) 633 { 634 #define FSID_CACHE_SIZE 256 635 typedef struct mount * volatile vmp_t; 636 static vmp_t cache[FSID_CACHE_SIZE]; 637 struct mount *mp; 638 int error; 639 uint32_t hash; 640 641 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 642 hash = fsid->val[0] ^ fsid->val[1]; 643 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 644 mp = cache[hash]; 645 if (mp == NULL || 646 mp->mnt_stat.f_fsid.val[0] != fsid->val[0] || 647 mp->mnt_stat.f_fsid.val[1] != fsid->val[1]) 648 goto slow; 649 if (vfs_busy(mp, 0) != 0) { 650 cache[hash] = NULL; 651 goto slow; 652 } 653 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 654 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) 655 return (mp); 656 else 657 vfs_unbusy(mp); 658 659 slow: 660 mtx_lock(&mountlist_mtx); 661 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 662 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 663 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 664 error = vfs_busy(mp, MBF_MNTLSTLOCK); 665 if (error) { 666 cache[hash] = NULL; 667 mtx_unlock(&mountlist_mtx); 668 return (NULL); 669 } 670 cache[hash] = mp; 671 return (mp); 672 } 673 } 674 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 675 mtx_unlock(&mountlist_mtx); 676 return ((struct mount *) 0); 677 } 678 679 /* 680 * Check if a user can access privileged mount options. 681 */ 682 int 683 vfs_suser(struct mount *mp, struct thread *td) 684 { 685 int error; 686 687 /* 688 * If the thread is jailed, but this is not a jail-friendly file 689 * system, deny immediately. 690 */ 691 if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred)) 692 return (EPERM); 693 694 /* 695 * If the file system was mounted outside the jail of the calling 696 * thread, deny immediately. 697 */ 698 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 699 return (EPERM); 700 701 /* 702 * If file system supports delegated administration, we don't check 703 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 704 * by the file system itself. 705 * If this is not the user that did original mount, we check for 706 * the PRIV_VFS_MOUNT_OWNER privilege. 707 */ 708 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 709 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 710 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 711 return (error); 712 } 713 return (0); 714 } 715 716 /* 717 * Get a new unique fsid. Try to make its val[0] unique, since this value 718 * will be used to create fake device numbers for stat(). Also try (but 719 * not so hard) make its val[0] unique mod 2^16, since some emulators only 720 * support 16-bit device numbers. We end up with unique val[0]'s for the 721 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 722 * 723 * Keep in mind that several mounts may be running in parallel. Starting 724 * the search one past where the previous search terminated is both a 725 * micro-optimization and a defense against returning the same fsid to 726 * different mounts. 727 */ 728 void 729 vfs_getnewfsid(struct mount *mp) 730 { 731 static uint16_t mntid_base; 732 struct mount *nmp; 733 fsid_t tfsid; 734 int mtype; 735 736 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 737 mtx_lock(&mntid_mtx); 738 mtype = mp->mnt_vfc->vfc_typenum; 739 tfsid.val[1] = mtype; 740 mtype = (mtype & 0xFF) << 24; 741 for (;;) { 742 tfsid.val[0] = makedev(255, 743 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 744 mntid_base++; 745 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 746 break; 747 vfs_rel(nmp); 748 } 749 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 750 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 751 mtx_unlock(&mntid_mtx); 752 } 753 754 /* 755 * Knob to control the precision of file timestamps: 756 * 757 * 0 = seconds only; nanoseconds zeroed. 758 * 1 = seconds and nanoseconds, accurate within 1/HZ. 759 * 2 = seconds and nanoseconds, truncated to microseconds. 760 * >=3 = seconds and nanoseconds, maximum precision. 761 */ 762 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 763 764 static int timestamp_precision = TSP_USEC; 765 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 766 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 767 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, " 768 "3+: sec + ns (max. precision))"); 769 770 /* 771 * Get a current timestamp. 772 */ 773 void 774 vfs_timestamp(struct timespec *tsp) 775 { 776 struct timeval tv; 777 778 switch (timestamp_precision) { 779 case TSP_SEC: 780 tsp->tv_sec = time_second; 781 tsp->tv_nsec = 0; 782 break; 783 case TSP_HZ: 784 getnanotime(tsp); 785 break; 786 case TSP_USEC: 787 microtime(&tv); 788 TIMEVAL_TO_TIMESPEC(&tv, tsp); 789 break; 790 case TSP_NSEC: 791 default: 792 nanotime(tsp); 793 break; 794 } 795 } 796 797 /* 798 * Set vnode attributes to VNOVAL 799 */ 800 void 801 vattr_null(struct vattr *vap) 802 { 803 804 vap->va_type = VNON; 805 vap->va_size = VNOVAL; 806 vap->va_bytes = VNOVAL; 807 vap->va_mode = VNOVAL; 808 vap->va_nlink = VNOVAL; 809 vap->va_uid = VNOVAL; 810 vap->va_gid = VNOVAL; 811 vap->va_fsid = VNOVAL; 812 vap->va_fileid = VNOVAL; 813 vap->va_blocksize = VNOVAL; 814 vap->va_rdev = VNOVAL; 815 vap->va_atime.tv_sec = VNOVAL; 816 vap->va_atime.tv_nsec = VNOVAL; 817 vap->va_mtime.tv_sec = VNOVAL; 818 vap->va_mtime.tv_nsec = VNOVAL; 819 vap->va_ctime.tv_sec = VNOVAL; 820 vap->va_ctime.tv_nsec = VNOVAL; 821 vap->va_birthtime.tv_sec = VNOVAL; 822 vap->va_birthtime.tv_nsec = VNOVAL; 823 vap->va_flags = VNOVAL; 824 vap->va_gen = VNOVAL; 825 vap->va_vaflags = 0; 826 } 827 828 /* 829 * This routine is called when we have too many vnodes. It attempts 830 * to free <count> vnodes and will potentially free vnodes that still 831 * have VM backing store (VM backing store is typically the cause 832 * of a vnode blowout so we want to do this). Therefore, this operation 833 * is not considered cheap. 834 * 835 * A number of conditions may prevent a vnode from being reclaimed. 836 * the buffer cache may have references on the vnode, a directory 837 * vnode may still have references due to the namei cache representing 838 * underlying files, or the vnode may be in active use. It is not 839 * desirable to reuse such vnodes. These conditions may cause the 840 * number of vnodes to reach some minimum value regardless of what 841 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 842 */ 843 static int 844 vlrureclaim(struct mount *mp, int reclaim_nc_src, int trigger) 845 { 846 struct vnode *vp; 847 int count, done, target; 848 849 done = 0; 850 vn_start_write(NULL, &mp, V_WAIT); 851 MNT_ILOCK(mp); 852 count = mp->mnt_nvnodelistsize; 853 target = count * (int64_t)gapvnodes / imax(desiredvnodes, 1); 854 target = target / 10 + 1; 855 while (count != 0 && done < target) { 856 vp = TAILQ_FIRST(&mp->mnt_nvnodelist); 857 while (vp != NULL && vp->v_type == VMARKER) 858 vp = TAILQ_NEXT(vp, v_nmntvnodes); 859 if (vp == NULL) 860 break; 861 /* 862 * XXX LRU is completely broken for non-free vnodes. First 863 * by calling here in mountpoint order, then by moving 864 * unselected vnodes to the end here, and most grossly by 865 * removing the vlruvp() function that was supposed to 866 * maintain the order. (This function was born broken 867 * since syncer problems prevented it doing anything.) The 868 * order is closer to LRC (C = Created). 869 * 870 * LRU reclaiming of vnodes seems to have last worked in 871 * FreeBSD-3 where LRU wasn't mentioned under any spelling. 872 * Then there was no hold count, and inactive vnodes were 873 * simply put on the free list in LRU order. The separate 874 * lists also break LRU. We prefer to reclaim from the 875 * free list for technical reasons. This tends to thrash 876 * the free list to keep very unrecently used held vnodes. 877 * The problem is mitigated by keeping the free list large. 878 */ 879 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 880 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 881 --count; 882 if (!VI_TRYLOCK(vp)) 883 goto next_iter; 884 /* 885 * If it's been deconstructed already, it's still 886 * referenced, or it exceeds the trigger, skip it. 887 * Also skip free vnodes. We are trying to make space 888 * to expand the free list, not reduce it. 889 */ 890 if (vp->v_usecount || 891 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || 892 ((vp->v_iflag & VI_FREE) != 0) || 893 (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL && 894 vp->v_object->resident_page_count > trigger)) { 895 VI_UNLOCK(vp); 896 goto next_iter; 897 } 898 MNT_IUNLOCK(mp); 899 vholdl(vp); 900 if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) { 901 vdrop(vp); 902 goto next_iter_mntunlocked; 903 } 904 VI_LOCK(vp); 905 /* 906 * v_usecount may have been bumped after VOP_LOCK() dropped 907 * the vnode interlock and before it was locked again. 908 * 909 * It is not necessary to recheck VI_DOOMED because it can 910 * only be set by another thread that holds both the vnode 911 * lock and vnode interlock. If another thread has the 912 * vnode lock before we get to VOP_LOCK() and obtains the 913 * vnode interlock after VOP_LOCK() drops the vnode 914 * interlock, the other thread will be unable to drop the 915 * vnode lock before our VOP_LOCK() call fails. 916 */ 917 if (vp->v_usecount || 918 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || 919 (vp->v_iflag & VI_FREE) != 0 || 920 (vp->v_object != NULL && 921 vp->v_object->resident_page_count > trigger)) { 922 VOP_UNLOCK(vp, LK_INTERLOCK); 923 vdrop(vp); 924 goto next_iter_mntunlocked; 925 } 926 KASSERT((vp->v_iflag & VI_DOOMED) == 0, 927 ("VI_DOOMED unexpectedly detected in vlrureclaim()")); 928 counter_u64_add(recycles_count, 1); 929 vgonel(vp); 930 VOP_UNLOCK(vp, 0); 931 vdropl(vp); 932 done++; 933 next_iter_mntunlocked: 934 if (!should_yield()) 935 goto relock_mnt; 936 goto yield; 937 next_iter: 938 if (!should_yield()) 939 continue; 940 MNT_IUNLOCK(mp); 941 yield: 942 kern_yield(PRI_USER); 943 relock_mnt: 944 MNT_ILOCK(mp); 945 } 946 MNT_IUNLOCK(mp); 947 vn_finished_write(mp); 948 return done; 949 } 950 951 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */ 952 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free, 953 0, 954 "limit on vnode free requests per call to the vnlru_free routine"); 955 956 /* 957 * Attempt to reduce the free list by the requested amount. 958 */ 959 static void 960 vnlru_free_locked(int count, struct vfsops *mnt_op) 961 { 962 struct vnode *vp; 963 struct mount *mp; 964 bool tried_batches; 965 966 tried_batches = false; 967 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 968 if (count > max_vnlru_free) 969 count = max_vnlru_free; 970 for (; count > 0; count--) { 971 vp = TAILQ_FIRST(&vnode_free_list); 972 /* 973 * The list can be modified while the free_list_mtx 974 * has been dropped and vp could be NULL here. 975 */ 976 if (vp == NULL) { 977 if (tried_batches) 978 break; 979 mtx_unlock(&vnode_free_list_mtx); 980 vnlru_return_batches(mnt_op); 981 tried_batches = true; 982 mtx_lock(&vnode_free_list_mtx); 983 continue; 984 } 985 986 VNASSERT(vp->v_op != NULL, vp, 987 ("vnlru_free: vnode already reclaimed.")); 988 KASSERT((vp->v_iflag & VI_FREE) != 0, 989 ("Removing vnode not on freelist")); 990 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 991 ("Mangling active vnode")); 992 TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist); 993 994 /* 995 * Don't recycle if our vnode is from different type 996 * of mount point. Note that mp is type-safe, the 997 * check does not reach unmapped address even if 998 * vnode is reclaimed. 999 * Don't recycle if we can't get the interlock without 1000 * blocking. 1001 */ 1002 if ((mnt_op != NULL && (mp = vp->v_mount) != NULL && 1003 mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) { 1004 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist); 1005 continue; 1006 } 1007 VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0, 1008 vp, ("vp inconsistent on freelist")); 1009 1010 /* 1011 * The clear of VI_FREE prevents activation of the 1012 * vnode. There is no sense in putting the vnode on 1013 * the mount point active list, only to remove it 1014 * later during recycling. Inline the relevant part 1015 * of vholdl(), to avoid triggering assertions or 1016 * activating. 1017 */ 1018 freevnodes--; 1019 vp->v_iflag &= ~VI_FREE; 1020 refcount_acquire(&vp->v_holdcnt); 1021 1022 mtx_unlock(&vnode_free_list_mtx); 1023 VI_UNLOCK(vp); 1024 vtryrecycle(vp); 1025 /* 1026 * If the recycled succeeded this vdrop will actually free 1027 * the vnode. If not it will simply place it back on 1028 * the free list. 1029 */ 1030 vdrop(vp); 1031 mtx_lock(&vnode_free_list_mtx); 1032 } 1033 } 1034 1035 void 1036 vnlru_free(int count, struct vfsops *mnt_op) 1037 { 1038 1039 mtx_lock(&vnode_free_list_mtx); 1040 vnlru_free_locked(count, mnt_op); 1041 mtx_unlock(&vnode_free_list_mtx); 1042 } 1043 1044 1045 /* XXX some names and initialization are bad for limits and watermarks. */ 1046 static int 1047 vspace(void) 1048 { 1049 int space; 1050 1051 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100); 1052 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */ 1053 vlowat = vhiwat / 2; 1054 if (numvnodes > desiredvnodes) 1055 return (0); 1056 space = desiredvnodes - numvnodes; 1057 if (freevnodes > wantfreevnodes) 1058 space += freevnodes - wantfreevnodes; 1059 return (space); 1060 } 1061 1062 static void 1063 vnlru_return_batch_locked(struct mount *mp) 1064 { 1065 struct vnode *vp; 1066 1067 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 1068 1069 if (mp->mnt_tmpfreevnodelistsize == 0) 1070 return; 1071 1072 TAILQ_FOREACH(vp, &mp->mnt_tmpfreevnodelist, v_actfreelist) { 1073 VNASSERT((vp->v_mflag & VMP_TMPMNTFREELIST) != 0, vp, 1074 ("vnode without VMP_TMPMNTFREELIST on mnt_tmpfreevnodelist")); 1075 vp->v_mflag &= ~VMP_TMPMNTFREELIST; 1076 } 1077 mtx_lock(&vnode_free_list_mtx); 1078 TAILQ_CONCAT(&vnode_free_list, &mp->mnt_tmpfreevnodelist, v_actfreelist); 1079 freevnodes += mp->mnt_tmpfreevnodelistsize; 1080 mtx_unlock(&vnode_free_list_mtx); 1081 mp->mnt_tmpfreevnodelistsize = 0; 1082 } 1083 1084 static void 1085 vnlru_return_batch(struct mount *mp) 1086 { 1087 1088 mtx_lock(&mp->mnt_listmtx); 1089 vnlru_return_batch_locked(mp); 1090 mtx_unlock(&mp->mnt_listmtx); 1091 } 1092 1093 static void 1094 vnlru_return_batches(struct vfsops *mnt_op) 1095 { 1096 struct mount *mp, *nmp; 1097 bool need_unbusy; 1098 1099 mtx_lock(&mountlist_mtx); 1100 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 1101 need_unbusy = false; 1102 if (mnt_op != NULL && mp->mnt_op != mnt_op) 1103 goto next; 1104 if (mp->mnt_tmpfreevnodelistsize == 0) 1105 goto next; 1106 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) == 0) { 1107 vnlru_return_batch(mp); 1108 need_unbusy = true; 1109 mtx_lock(&mountlist_mtx); 1110 } 1111 next: 1112 nmp = TAILQ_NEXT(mp, mnt_list); 1113 if (need_unbusy) 1114 vfs_unbusy(mp); 1115 } 1116 mtx_unlock(&mountlist_mtx); 1117 } 1118 1119 /* 1120 * Attempt to recycle vnodes in a context that is always safe to block. 1121 * Calling vlrurecycle() from the bowels of filesystem code has some 1122 * interesting deadlock problems. 1123 */ 1124 static struct proc *vnlruproc; 1125 static int vnlruproc_sig; 1126 1127 static void 1128 vnlru_proc(void) 1129 { 1130 struct mount *mp, *nmp; 1131 unsigned long onumvnodes; 1132 int done, force, reclaim_nc_src, trigger, usevnodes; 1133 1134 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc, 1135 SHUTDOWN_PRI_FIRST); 1136 1137 force = 0; 1138 for (;;) { 1139 kproc_suspend_check(vnlruproc); 1140 mtx_lock(&vnode_free_list_mtx); 1141 /* 1142 * If numvnodes is too large (due to desiredvnodes being 1143 * adjusted using its sysctl, or emergency growth), first 1144 * try to reduce it by discarding from the free list. 1145 */ 1146 if (numvnodes > desiredvnodes) 1147 vnlru_free_locked(numvnodes - desiredvnodes, NULL); 1148 /* 1149 * Sleep if the vnode cache is in a good state. This is 1150 * when it is not over-full and has space for about a 4% 1151 * or 9% expansion (by growing its size or inexcessively 1152 * reducing its free list). Otherwise, try to reclaim 1153 * space for a 10% expansion. 1154 */ 1155 if (vstir && force == 0) { 1156 force = 1; 1157 vstir = 0; 1158 } 1159 if (vspace() >= vlowat && force == 0) { 1160 vnlruproc_sig = 0; 1161 wakeup(&vnlruproc_sig); 1162 msleep(vnlruproc, &vnode_free_list_mtx, 1163 PVFS|PDROP, "vlruwt", hz); 1164 continue; 1165 } 1166 mtx_unlock(&vnode_free_list_mtx); 1167 done = 0; 1168 onumvnodes = numvnodes; 1169 /* 1170 * Calculate parameters for recycling. These are the same 1171 * throughout the loop to give some semblance of fairness. 1172 * The trigger point is to avoid recycling vnodes with lots 1173 * of resident pages. We aren't trying to free memory; we 1174 * are trying to recycle or at least free vnodes. 1175 */ 1176 if (numvnodes <= desiredvnodes) 1177 usevnodes = numvnodes - freevnodes; 1178 else 1179 usevnodes = numvnodes; 1180 if (usevnodes <= 0) 1181 usevnodes = 1; 1182 /* 1183 * The trigger value is is chosen to give a conservatively 1184 * large value to ensure that it alone doesn't prevent 1185 * making progress. The value can easily be so large that 1186 * it is effectively infinite in some congested and 1187 * misconfigured cases, and this is necessary. Normally 1188 * it is about 8 to 100 (pages), which is quite large. 1189 */ 1190 trigger = vm_cnt.v_page_count * 2 / usevnodes; 1191 if (force < 2) 1192 trigger = vsmalltrigger; 1193 reclaim_nc_src = force >= 3; 1194 mtx_lock(&mountlist_mtx); 1195 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 1196 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) { 1197 nmp = TAILQ_NEXT(mp, mnt_list); 1198 continue; 1199 } 1200 done += vlrureclaim(mp, reclaim_nc_src, trigger); 1201 mtx_lock(&mountlist_mtx); 1202 nmp = TAILQ_NEXT(mp, mnt_list); 1203 vfs_unbusy(mp); 1204 } 1205 mtx_unlock(&mountlist_mtx); 1206 if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes) 1207 uma_reclaim(); 1208 if (done == 0) { 1209 if (force == 0 || force == 1) { 1210 force = 2; 1211 continue; 1212 } 1213 if (force == 2) { 1214 force = 3; 1215 continue; 1216 } 1217 force = 0; 1218 vnlru_nowhere++; 1219 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 1220 } else 1221 kern_yield(PRI_USER); 1222 /* 1223 * After becoming active to expand above low water, keep 1224 * active until above high water. 1225 */ 1226 force = vspace() < vhiwat; 1227 } 1228 } 1229 1230 static struct kproc_desc vnlru_kp = { 1231 "vnlru", 1232 vnlru_proc, 1233 &vnlruproc 1234 }; 1235 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 1236 &vnlru_kp); 1237 1238 /* 1239 * Routines having to do with the management of the vnode table. 1240 */ 1241 1242 /* 1243 * Try to recycle a freed vnode. We abort if anyone picks up a reference 1244 * before we actually vgone(). This function must be called with the vnode 1245 * held to prevent the vnode from being returned to the free list midway 1246 * through vgone(). 1247 */ 1248 static int 1249 vtryrecycle(struct vnode *vp) 1250 { 1251 struct mount *vnmp; 1252 1253 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 1254 VNASSERT(vp->v_holdcnt, vp, 1255 ("vtryrecycle: Recycling vp %p without a reference.", vp)); 1256 /* 1257 * This vnode may found and locked via some other list, if so we 1258 * can't recycle it yet. 1259 */ 1260 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1261 CTR2(KTR_VFS, 1262 "%s: impossible to recycle, vp %p lock is already held", 1263 __func__, vp); 1264 return (EWOULDBLOCK); 1265 } 1266 /* 1267 * Don't recycle if its filesystem is being suspended. 1268 */ 1269 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 1270 VOP_UNLOCK(vp, 0); 1271 CTR2(KTR_VFS, 1272 "%s: impossible to recycle, cannot start the write for %p", 1273 __func__, vp); 1274 return (EBUSY); 1275 } 1276 /* 1277 * If we got this far, we need to acquire the interlock and see if 1278 * anyone picked up this vnode from another list. If not, we will 1279 * mark it with DOOMED via vgonel() so that anyone who does find it 1280 * will skip over it. 1281 */ 1282 VI_LOCK(vp); 1283 if (vp->v_usecount) { 1284 VOP_UNLOCK(vp, LK_INTERLOCK); 1285 vn_finished_write(vnmp); 1286 CTR2(KTR_VFS, 1287 "%s: impossible to recycle, %p is already referenced", 1288 __func__, vp); 1289 return (EBUSY); 1290 } 1291 if ((vp->v_iflag & VI_DOOMED) == 0) { 1292 counter_u64_add(recycles_count, 1); 1293 vgonel(vp); 1294 } 1295 VOP_UNLOCK(vp, LK_INTERLOCK); 1296 vn_finished_write(vnmp); 1297 return (0); 1298 } 1299 1300 static void 1301 vcheckspace(void) 1302 { 1303 1304 if (vspace() < vlowat && vnlruproc_sig == 0) { 1305 vnlruproc_sig = 1; 1306 wakeup(vnlruproc); 1307 } 1308 } 1309 1310 /* 1311 * Wait if necessary for space for a new vnode. 1312 */ 1313 static int 1314 getnewvnode_wait(int suspended) 1315 { 1316 1317 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 1318 if (numvnodes >= desiredvnodes) { 1319 if (suspended) { 1320 /* 1321 * The file system is being suspended. We cannot 1322 * risk a deadlock here, so allow allocation of 1323 * another vnode even if this would give too many. 1324 */ 1325 return (0); 1326 } 1327 if (vnlruproc_sig == 0) { 1328 vnlruproc_sig = 1; /* avoid unnecessary wakeups */ 1329 wakeup(vnlruproc); 1330 } 1331 msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS, 1332 "vlruwk", hz); 1333 } 1334 /* Post-adjust like the pre-adjust in getnewvnode(). */ 1335 if (numvnodes + 1 > desiredvnodes && freevnodes > 1) 1336 vnlru_free_locked(1, NULL); 1337 return (numvnodes >= desiredvnodes ? ENFILE : 0); 1338 } 1339 1340 /* 1341 * This hack is fragile, and probably not needed any more now that the 1342 * watermark handling works. 1343 */ 1344 void 1345 getnewvnode_reserve(u_int count) 1346 { 1347 struct thread *td; 1348 1349 /* Pre-adjust like the pre-adjust in getnewvnode(), with any count. */ 1350 /* XXX no longer so quick, but this part is not racy. */ 1351 mtx_lock(&vnode_free_list_mtx); 1352 if (numvnodes + count > desiredvnodes && freevnodes > wantfreevnodes) 1353 vnlru_free_locked(ulmin(numvnodes + count - desiredvnodes, 1354 freevnodes - wantfreevnodes), NULL); 1355 mtx_unlock(&vnode_free_list_mtx); 1356 1357 td = curthread; 1358 /* First try to be quick and racy. */ 1359 if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) { 1360 td->td_vp_reserv += count; 1361 vcheckspace(); /* XXX no longer so quick, but more racy */ 1362 return; 1363 } else 1364 atomic_subtract_long(&numvnodes, count); 1365 1366 mtx_lock(&vnode_free_list_mtx); 1367 while (count > 0) { 1368 if (getnewvnode_wait(0) == 0) { 1369 count--; 1370 td->td_vp_reserv++; 1371 atomic_add_long(&numvnodes, 1); 1372 } 1373 } 1374 vcheckspace(); 1375 mtx_unlock(&vnode_free_list_mtx); 1376 } 1377 1378 /* 1379 * This hack is fragile, especially if desiredvnodes or wantvnodes are 1380 * misconfgured or changed significantly. Reducing desiredvnodes below 1381 * the reserved amount should cause bizarre behaviour like reducing it 1382 * below the number of active vnodes -- the system will try to reduce 1383 * numvnodes to match, but should fail, so the subtraction below should 1384 * not overflow. 1385 */ 1386 void 1387 getnewvnode_drop_reserve(void) 1388 { 1389 struct thread *td; 1390 1391 td = curthread; 1392 atomic_subtract_long(&numvnodes, td->td_vp_reserv); 1393 td->td_vp_reserv = 0; 1394 } 1395 1396 /* 1397 * Return the next vnode from the free list. 1398 */ 1399 int 1400 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 1401 struct vnode **vpp) 1402 { 1403 struct vnode *vp; 1404 struct thread *td; 1405 struct lock_object *lo; 1406 static int cyclecount; 1407 int error; 1408 1409 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 1410 vp = NULL; 1411 td = curthread; 1412 if (td->td_vp_reserv > 0) { 1413 td->td_vp_reserv -= 1; 1414 goto alloc; 1415 } 1416 mtx_lock(&vnode_free_list_mtx); 1417 if (numvnodes < desiredvnodes) 1418 cyclecount = 0; 1419 else if (cyclecount++ >= freevnodes) { 1420 cyclecount = 0; 1421 vstir = 1; 1422 } 1423 /* 1424 * Grow the vnode cache if it will not be above its target max 1425 * after growing. Otherwise, if the free list is nonempty, try 1426 * to reclaim 1 item from it before growing the cache (possibly 1427 * above its target max if the reclamation failed or is delayed). 1428 * Otherwise, wait for some space. In all cases, schedule 1429 * vnlru_proc() if we are getting short of space. The watermarks 1430 * should be chosen so that we never wait or even reclaim from 1431 * the free list to below its target minimum. 1432 */ 1433 if (numvnodes + 1 <= desiredvnodes) 1434 ; 1435 else if (freevnodes > 0) 1436 vnlru_free_locked(1, NULL); 1437 else { 1438 error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag & 1439 MNTK_SUSPEND)); 1440 #if 0 /* XXX Not all VFS_VGET/ffs_vget callers check returns. */ 1441 if (error != 0) { 1442 mtx_unlock(&vnode_free_list_mtx); 1443 return (error); 1444 } 1445 #endif 1446 } 1447 vcheckspace(); 1448 atomic_add_long(&numvnodes, 1); 1449 mtx_unlock(&vnode_free_list_mtx); 1450 alloc: 1451 counter_u64_add(vnodes_created, 1); 1452 vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK); 1453 /* 1454 * Locks are given the generic name "vnode" when created. 1455 * Follow the historic practice of using the filesystem 1456 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc. 1457 * 1458 * Locks live in a witness group keyed on their name. Thus, 1459 * when a lock is renamed, it must also move from the witness 1460 * group of its old name to the witness group of its new name. 1461 * 1462 * The change only needs to be made when the vnode moves 1463 * from one filesystem type to another. We ensure that each 1464 * filesystem use a single static name pointer for its tag so 1465 * that we can compare pointers rather than doing a strcmp(). 1466 */ 1467 lo = &vp->v_vnlock->lock_object; 1468 if (lo->lo_name != tag) { 1469 lo->lo_name = tag; 1470 WITNESS_DESTROY(lo); 1471 WITNESS_INIT(lo, tag); 1472 } 1473 /* 1474 * By default, don't allow shared locks unless filesystems opt-in. 1475 */ 1476 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE; 1477 /* 1478 * Finalize various vnode identity bits. 1479 */ 1480 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp)); 1481 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp)); 1482 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp)); 1483 vp->v_type = VNON; 1484 vp->v_tag = tag; 1485 vp->v_op = vops; 1486 v_init_counters(vp); 1487 vp->v_bufobj.bo_ops = &buf_ops_bio; 1488 #ifdef DIAGNOSTIC 1489 if (mp == NULL && vops != &dead_vnodeops) 1490 printf("NULL mp in getnewvnode(9), tag %s\n", tag); 1491 #endif 1492 #ifdef MAC 1493 mac_vnode_init(vp); 1494 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 1495 mac_vnode_associate_singlelabel(mp, vp); 1496 #endif 1497 if (mp != NULL) { 1498 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize; 1499 if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0) 1500 vp->v_vflag |= VV_NOKNOTE; 1501 } 1502 1503 /* 1504 * For the filesystems which do not use vfs_hash_insert(), 1505 * still initialize v_hash to have vfs_hash_index() useful. 1506 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 1507 * its own hashing. 1508 */ 1509 vp->v_hash = (uintptr_t)vp >> vnsz2log; 1510 1511 *vpp = vp; 1512 return (0); 1513 } 1514 1515 /* 1516 * Delete from old mount point vnode list, if on one. 1517 */ 1518 static void 1519 delmntque(struct vnode *vp) 1520 { 1521 struct mount *mp; 1522 int active; 1523 1524 mp = vp->v_mount; 1525 if (mp == NULL) 1526 return; 1527 MNT_ILOCK(mp); 1528 VI_LOCK(vp); 1529 KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize, 1530 ("Active vnode list size %d > Vnode list size %d", 1531 mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize)); 1532 active = vp->v_iflag & VI_ACTIVE; 1533 vp->v_iflag &= ~VI_ACTIVE; 1534 if (active) { 1535 mtx_lock(&mp->mnt_listmtx); 1536 TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist); 1537 mp->mnt_activevnodelistsize--; 1538 mtx_unlock(&mp->mnt_listmtx); 1539 } 1540 vp->v_mount = NULL; 1541 VI_UNLOCK(vp); 1542 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 1543 ("bad mount point vnode list size")); 1544 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1545 mp->mnt_nvnodelistsize--; 1546 MNT_REL(mp); 1547 MNT_IUNLOCK(mp); 1548 } 1549 1550 static void 1551 insmntque_stddtr(struct vnode *vp, void *dtr_arg) 1552 { 1553 1554 vp->v_data = NULL; 1555 vp->v_op = &dead_vnodeops; 1556 vgone(vp); 1557 vput(vp); 1558 } 1559 1560 /* 1561 * Insert into list of vnodes for the new mount point, if available. 1562 */ 1563 int 1564 insmntque1(struct vnode *vp, struct mount *mp, 1565 void (*dtr)(struct vnode *, void *), void *dtr_arg) 1566 { 1567 1568 KASSERT(vp->v_mount == NULL, 1569 ("insmntque: vnode already on per mount vnode list")); 1570 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 1571 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 1572 1573 /* 1574 * We acquire the vnode interlock early to ensure that the 1575 * vnode cannot be recycled by another process releasing a 1576 * holdcnt on it before we get it on both the vnode list 1577 * and the active vnode list. The mount mutex protects only 1578 * manipulation of the vnode list and the vnode freelist 1579 * mutex protects only manipulation of the active vnode list. 1580 * Hence the need to hold the vnode interlock throughout. 1581 */ 1582 MNT_ILOCK(mp); 1583 VI_LOCK(vp); 1584 if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 && 1585 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 1586 mp->mnt_nvnodelistsize == 0)) && 1587 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 1588 VI_UNLOCK(vp); 1589 MNT_IUNLOCK(mp); 1590 if (dtr != NULL) 1591 dtr(vp, dtr_arg); 1592 return (EBUSY); 1593 } 1594 vp->v_mount = mp; 1595 MNT_REF(mp); 1596 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1597 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 1598 ("neg mount point vnode list size")); 1599 mp->mnt_nvnodelistsize++; 1600 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 1601 ("Activating already active vnode")); 1602 vp->v_iflag |= VI_ACTIVE; 1603 mtx_lock(&mp->mnt_listmtx); 1604 TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist); 1605 mp->mnt_activevnodelistsize++; 1606 mtx_unlock(&mp->mnt_listmtx); 1607 VI_UNLOCK(vp); 1608 MNT_IUNLOCK(mp); 1609 return (0); 1610 } 1611 1612 int 1613 insmntque(struct vnode *vp, struct mount *mp) 1614 { 1615 1616 return (insmntque1(vp, mp, insmntque_stddtr, NULL)); 1617 } 1618 1619 /* 1620 * Flush out and invalidate all buffers associated with a bufobj 1621 * Called with the underlying object locked. 1622 */ 1623 int 1624 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 1625 { 1626 int error; 1627 1628 BO_LOCK(bo); 1629 if (flags & V_SAVE) { 1630 error = bufobj_wwait(bo, slpflag, slptimeo); 1631 if (error) { 1632 BO_UNLOCK(bo); 1633 return (error); 1634 } 1635 if (bo->bo_dirty.bv_cnt > 0) { 1636 BO_UNLOCK(bo); 1637 if ((error = BO_SYNC(bo, MNT_WAIT)) != 0) 1638 return (error); 1639 /* 1640 * XXX We could save a lock/unlock if this was only 1641 * enabled under INVARIANTS 1642 */ 1643 BO_LOCK(bo); 1644 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) 1645 panic("vinvalbuf: dirty bufs"); 1646 } 1647 } 1648 /* 1649 * If you alter this loop please notice that interlock is dropped and 1650 * reacquired in flushbuflist. Special care is needed to ensure that 1651 * no race conditions occur from this. 1652 */ 1653 do { 1654 error = flushbuflist(&bo->bo_clean, 1655 flags, bo, slpflag, slptimeo); 1656 if (error == 0 && !(flags & V_CLEANONLY)) 1657 error = flushbuflist(&bo->bo_dirty, 1658 flags, bo, slpflag, slptimeo); 1659 if (error != 0 && error != EAGAIN) { 1660 BO_UNLOCK(bo); 1661 return (error); 1662 } 1663 } while (error != 0); 1664 1665 /* 1666 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 1667 * have write I/O in-progress but if there is a VM object then the 1668 * VM object can also have read-I/O in-progress. 1669 */ 1670 do { 1671 bufobj_wwait(bo, 0, 0); 1672 if ((flags & V_VMIO) == 0) { 1673 BO_UNLOCK(bo); 1674 if (bo->bo_object != NULL) { 1675 VM_OBJECT_WLOCK(bo->bo_object); 1676 vm_object_pip_wait(bo->bo_object, "bovlbx"); 1677 VM_OBJECT_WUNLOCK(bo->bo_object); 1678 } 1679 BO_LOCK(bo); 1680 } 1681 } while (bo->bo_numoutput > 0); 1682 BO_UNLOCK(bo); 1683 1684 /* 1685 * Destroy the copy in the VM cache, too. 1686 */ 1687 if (bo->bo_object != NULL && 1688 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) { 1689 VM_OBJECT_WLOCK(bo->bo_object); 1690 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 1691 OBJPR_CLEANONLY : 0); 1692 VM_OBJECT_WUNLOCK(bo->bo_object); 1693 } 1694 1695 #ifdef INVARIANTS 1696 BO_LOCK(bo); 1697 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO | 1698 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 || 1699 bo->bo_clean.bv_cnt > 0)) 1700 panic("vinvalbuf: flush failed"); 1701 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 && 1702 bo->bo_dirty.bv_cnt > 0) 1703 panic("vinvalbuf: flush dirty failed"); 1704 BO_UNLOCK(bo); 1705 #endif 1706 return (0); 1707 } 1708 1709 /* 1710 * Flush out and invalidate all buffers associated with a vnode. 1711 * Called with the underlying object locked. 1712 */ 1713 int 1714 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 1715 { 1716 1717 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 1718 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 1719 if (vp->v_object != NULL && vp->v_object->handle != vp) 1720 return (0); 1721 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 1722 } 1723 1724 /* 1725 * Flush out buffers on the specified list. 1726 * 1727 */ 1728 static int 1729 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 1730 int slptimeo) 1731 { 1732 struct buf *bp, *nbp; 1733 int retval, error; 1734 daddr_t lblkno; 1735 b_xflags_t xflags; 1736 1737 ASSERT_BO_WLOCKED(bo); 1738 1739 retval = 0; 1740 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 1741 if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) || 1742 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) { 1743 continue; 1744 } 1745 if (nbp != NULL) { 1746 lblkno = nbp->b_lblkno; 1747 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 1748 } 1749 retval = EAGAIN; 1750 error = BUF_TIMELOCK(bp, 1751 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 1752 "flushbuf", slpflag, slptimeo); 1753 if (error) { 1754 BO_LOCK(bo); 1755 return (error != ENOLCK ? error : EAGAIN); 1756 } 1757 KASSERT(bp->b_bufobj == bo, 1758 ("bp %p wrong b_bufobj %p should be %p", 1759 bp, bp->b_bufobj, bo)); 1760 /* 1761 * XXX Since there are no node locks for NFS, I 1762 * believe there is a slight chance that a delayed 1763 * write will occur while sleeping just above, so 1764 * check for it. 1765 */ 1766 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 1767 (flags & V_SAVE)) { 1768 bremfree(bp); 1769 bp->b_flags |= B_ASYNC; 1770 bwrite(bp); 1771 BO_LOCK(bo); 1772 return (EAGAIN); /* XXX: why not loop ? */ 1773 } 1774 bremfree(bp); 1775 bp->b_flags |= (B_INVAL | B_RELBUF); 1776 bp->b_flags &= ~B_ASYNC; 1777 brelse(bp); 1778 BO_LOCK(bo); 1779 if (nbp == NULL) 1780 break; 1781 nbp = gbincore(bo, lblkno); 1782 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 1783 != xflags) 1784 break; /* nbp invalid */ 1785 } 1786 return (retval); 1787 } 1788 1789 int 1790 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn) 1791 { 1792 struct buf *bp; 1793 int error; 1794 daddr_t lblkno; 1795 1796 ASSERT_BO_LOCKED(bo); 1797 1798 for (lblkno = startn;;) { 1799 again: 1800 bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno); 1801 if (bp == NULL || bp->b_lblkno >= endn || 1802 bp->b_lblkno < startn) 1803 break; 1804 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 1805 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0); 1806 if (error != 0) { 1807 BO_RLOCK(bo); 1808 if (error == ENOLCK) 1809 goto again; 1810 return (error); 1811 } 1812 KASSERT(bp->b_bufobj == bo, 1813 ("bp %p wrong b_bufobj %p should be %p", 1814 bp, bp->b_bufobj, bo)); 1815 lblkno = bp->b_lblkno + 1; 1816 if ((bp->b_flags & B_MANAGED) == 0) 1817 bremfree(bp); 1818 bp->b_flags |= B_RELBUF; 1819 /* 1820 * In the VMIO case, use the B_NOREUSE flag to hint that the 1821 * pages backing each buffer in the range are unlikely to be 1822 * reused. Dirty buffers will have the hint applied once 1823 * they've been written. 1824 */ 1825 if (bp->b_vp->v_object != NULL) 1826 bp->b_flags |= B_NOREUSE; 1827 brelse(bp); 1828 BO_RLOCK(bo); 1829 } 1830 return (0); 1831 } 1832 1833 /* 1834 * Truncate a file's buffer and pages to a specified length. This 1835 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 1836 * sync activity. 1837 */ 1838 int 1839 vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize) 1840 { 1841 struct buf *bp, *nbp; 1842 int anyfreed; 1843 int trunclbn; 1844 struct bufobj *bo; 1845 1846 CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__, 1847 vp, cred, blksize, (uintmax_t)length); 1848 1849 /* 1850 * Round up to the *next* lbn. 1851 */ 1852 trunclbn = howmany(length, blksize); 1853 1854 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 1855 restart: 1856 bo = &vp->v_bufobj; 1857 BO_LOCK(bo); 1858 anyfreed = 1; 1859 for (;anyfreed;) { 1860 anyfreed = 0; 1861 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 1862 if (bp->b_lblkno < trunclbn) 1863 continue; 1864 if (BUF_LOCK(bp, 1865 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1866 BO_LOCKPTR(bo)) == ENOLCK) 1867 goto restart; 1868 1869 bremfree(bp); 1870 bp->b_flags |= (B_INVAL | B_RELBUF); 1871 bp->b_flags &= ~B_ASYNC; 1872 brelse(bp); 1873 anyfreed = 1; 1874 1875 BO_LOCK(bo); 1876 if (nbp != NULL && 1877 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 1878 (nbp->b_vp != vp) || 1879 (nbp->b_flags & B_DELWRI))) { 1880 BO_UNLOCK(bo); 1881 goto restart; 1882 } 1883 } 1884 1885 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1886 if (bp->b_lblkno < trunclbn) 1887 continue; 1888 if (BUF_LOCK(bp, 1889 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1890 BO_LOCKPTR(bo)) == ENOLCK) 1891 goto restart; 1892 bremfree(bp); 1893 bp->b_flags |= (B_INVAL | B_RELBUF); 1894 bp->b_flags &= ~B_ASYNC; 1895 brelse(bp); 1896 anyfreed = 1; 1897 1898 BO_LOCK(bo); 1899 if (nbp != NULL && 1900 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 1901 (nbp->b_vp != vp) || 1902 (nbp->b_flags & B_DELWRI) == 0)) { 1903 BO_UNLOCK(bo); 1904 goto restart; 1905 } 1906 } 1907 } 1908 1909 if (length > 0) { 1910 restartsync: 1911 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1912 if (bp->b_lblkno > 0) 1913 continue; 1914 /* 1915 * Since we hold the vnode lock this should only 1916 * fail if we're racing with the buf daemon. 1917 */ 1918 if (BUF_LOCK(bp, 1919 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1920 BO_LOCKPTR(bo)) == ENOLCK) { 1921 goto restart; 1922 } 1923 VNASSERT((bp->b_flags & B_DELWRI), vp, 1924 ("buf(%p) on dirty queue without DELWRI", bp)); 1925 1926 bremfree(bp); 1927 bawrite(bp); 1928 BO_LOCK(bo); 1929 goto restartsync; 1930 } 1931 } 1932 1933 bufobj_wwait(bo, 0, 0); 1934 BO_UNLOCK(bo); 1935 vnode_pager_setsize(vp, length); 1936 1937 return (0); 1938 } 1939 1940 static void 1941 buf_vlist_remove(struct buf *bp) 1942 { 1943 struct bufv *bv; 1944 1945 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1946 ASSERT_BO_WLOCKED(bp->b_bufobj); 1947 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) != 1948 (BX_VNDIRTY|BX_VNCLEAN), 1949 ("buf_vlist_remove: Buf %p is on two lists", bp)); 1950 if (bp->b_xflags & BX_VNDIRTY) 1951 bv = &bp->b_bufobj->bo_dirty; 1952 else 1953 bv = &bp->b_bufobj->bo_clean; 1954 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 1955 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 1956 bv->bv_cnt--; 1957 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 1958 } 1959 1960 /* 1961 * Add the buffer to the sorted clean or dirty block list. 1962 * 1963 * NOTE: xflags is passed as a constant, optimizing this inline function! 1964 */ 1965 static void 1966 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 1967 { 1968 struct bufv *bv; 1969 struct buf *n; 1970 int error; 1971 1972 ASSERT_BO_WLOCKED(bo); 1973 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0, 1974 ("dead bo %p", bo)); 1975 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 1976 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 1977 bp->b_xflags |= xflags; 1978 if (xflags & BX_VNDIRTY) 1979 bv = &bo->bo_dirty; 1980 else 1981 bv = &bo->bo_clean; 1982 1983 /* 1984 * Keep the list ordered. Optimize empty list insertion. Assume 1985 * we tend to grow at the tail so lookup_le should usually be cheaper 1986 * than _ge. 1987 */ 1988 if (bv->bv_cnt == 0 || 1989 bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno) 1990 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); 1991 else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL) 1992 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 1993 else 1994 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 1995 error = BUF_PCTRIE_INSERT(&bv->bv_root, bp); 1996 if (error) 1997 panic("buf_vlist_add: Preallocated nodes insufficient."); 1998 bv->bv_cnt++; 1999 } 2000 2001 /* 2002 * Look up a buffer using the buffer tries. 2003 */ 2004 struct buf * 2005 gbincore(struct bufobj *bo, daddr_t lblkno) 2006 { 2007 struct buf *bp; 2008 2009 ASSERT_BO_LOCKED(bo); 2010 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 2011 if (bp != NULL) 2012 return (bp); 2013 return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno); 2014 } 2015 2016 /* 2017 * Associate a buffer with a vnode. 2018 */ 2019 void 2020 bgetvp(struct vnode *vp, struct buf *bp) 2021 { 2022 struct bufobj *bo; 2023 2024 bo = &vp->v_bufobj; 2025 ASSERT_BO_WLOCKED(bo); 2026 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 2027 2028 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 2029 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 2030 ("bgetvp: bp already attached! %p", bp)); 2031 2032 vhold(vp); 2033 bp->b_vp = vp; 2034 bp->b_bufobj = bo; 2035 /* 2036 * Insert onto list for new vnode. 2037 */ 2038 buf_vlist_add(bp, bo, BX_VNCLEAN); 2039 } 2040 2041 /* 2042 * Disassociate a buffer from a vnode. 2043 */ 2044 void 2045 brelvp(struct buf *bp) 2046 { 2047 struct bufobj *bo; 2048 struct vnode *vp; 2049 2050 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2051 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 2052 2053 /* 2054 * Delete from old vnode list, if on one. 2055 */ 2056 vp = bp->b_vp; /* XXX */ 2057 bo = bp->b_bufobj; 2058 BO_LOCK(bo); 2059 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2060 buf_vlist_remove(bp); 2061 else 2062 panic("brelvp: Buffer %p not on queue.", bp); 2063 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2064 bo->bo_flag &= ~BO_ONWORKLST; 2065 mtx_lock(&sync_mtx); 2066 LIST_REMOVE(bo, bo_synclist); 2067 syncer_worklist_len--; 2068 mtx_unlock(&sync_mtx); 2069 } 2070 bp->b_vp = NULL; 2071 bp->b_bufobj = NULL; 2072 BO_UNLOCK(bo); 2073 vdrop(vp); 2074 } 2075 2076 /* 2077 * Add an item to the syncer work queue. 2078 */ 2079 static void 2080 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 2081 { 2082 int slot; 2083 2084 ASSERT_BO_WLOCKED(bo); 2085 2086 mtx_lock(&sync_mtx); 2087 if (bo->bo_flag & BO_ONWORKLST) 2088 LIST_REMOVE(bo, bo_synclist); 2089 else { 2090 bo->bo_flag |= BO_ONWORKLST; 2091 syncer_worklist_len++; 2092 } 2093 2094 if (delay > syncer_maxdelay - 2) 2095 delay = syncer_maxdelay - 2; 2096 slot = (syncer_delayno + delay) & syncer_mask; 2097 2098 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 2099 mtx_unlock(&sync_mtx); 2100 } 2101 2102 static int 2103 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 2104 { 2105 int error, len; 2106 2107 mtx_lock(&sync_mtx); 2108 len = syncer_worklist_len - sync_vnode_count; 2109 mtx_unlock(&sync_mtx); 2110 error = SYSCTL_OUT(req, &len, sizeof(len)); 2111 return (error); 2112 } 2113 2114 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 2115 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 2116 2117 static struct proc *updateproc; 2118 static void sched_sync(void); 2119 static struct kproc_desc up_kp = { 2120 "syncer", 2121 sched_sync, 2122 &updateproc 2123 }; 2124 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 2125 2126 static int 2127 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 2128 { 2129 struct vnode *vp; 2130 struct mount *mp; 2131 2132 *bo = LIST_FIRST(slp); 2133 if (*bo == NULL) 2134 return (0); 2135 vp = bo2vnode(*bo); 2136 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 2137 return (1); 2138 /* 2139 * We use vhold in case the vnode does not 2140 * successfully sync. vhold prevents the vnode from 2141 * going away when we unlock the sync_mtx so that 2142 * we can acquire the vnode interlock. 2143 */ 2144 vholdl(vp); 2145 mtx_unlock(&sync_mtx); 2146 VI_UNLOCK(vp); 2147 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2148 vdrop(vp); 2149 mtx_lock(&sync_mtx); 2150 return (*bo == LIST_FIRST(slp)); 2151 } 2152 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2153 (void) VOP_FSYNC(vp, MNT_LAZY, td); 2154 VOP_UNLOCK(vp, 0); 2155 vn_finished_write(mp); 2156 BO_LOCK(*bo); 2157 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 2158 /* 2159 * Put us back on the worklist. The worklist 2160 * routine will remove us from our current 2161 * position and then add us back in at a later 2162 * position. 2163 */ 2164 vn_syncer_add_to_worklist(*bo, syncdelay); 2165 } 2166 BO_UNLOCK(*bo); 2167 vdrop(vp); 2168 mtx_lock(&sync_mtx); 2169 return (0); 2170 } 2171 2172 static int first_printf = 1; 2173 2174 /* 2175 * System filesystem synchronizer daemon. 2176 */ 2177 static void 2178 sched_sync(void) 2179 { 2180 struct synclist *next, *slp; 2181 struct bufobj *bo; 2182 long starttime; 2183 struct thread *td = curthread; 2184 int last_work_seen; 2185 int net_worklist_len; 2186 int syncer_final_iter; 2187 int error; 2188 2189 last_work_seen = 0; 2190 syncer_final_iter = 0; 2191 syncer_state = SYNCER_RUNNING; 2192 starttime = time_uptime; 2193 td->td_pflags |= TDP_NORUNNINGBUF; 2194 2195 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 2196 SHUTDOWN_PRI_LAST); 2197 2198 mtx_lock(&sync_mtx); 2199 for (;;) { 2200 if (syncer_state == SYNCER_FINAL_DELAY && 2201 syncer_final_iter == 0) { 2202 mtx_unlock(&sync_mtx); 2203 kproc_suspend_check(td->td_proc); 2204 mtx_lock(&sync_mtx); 2205 } 2206 net_worklist_len = syncer_worklist_len - sync_vnode_count; 2207 if (syncer_state != SYNCER_RUNNING && 2208 starttime != time_uptime) { 2209 if (first_printf) { 2210 printf("\nSyncing disks, vnodes remaining... "); 2211 first_printf = 0; 2212 } 2213 printf("%d ", net_worklist_len); 2214 } 2215 starttime = time_uptime; 2216 2217 /* 2218 * Push files whose dirty time has expired. Be careful 2219 * of interrupt race on slp queue. 2220 * 2221 * Skip over empty worklist slots when shutting down. 2222 */ 2223 do { 2224 slp = &syncer_workitem_pending[syncer_delayno]; 2225 syncer_delayno += 1; 2226 if (syncer_delayno == syncer_maxdelay) 2227 syncer_delayno = 0; 2228 next = &syncer_workitem_pending[syncer_delayno]; 2229 /* 2230 * If the worklist has wrapped since the 2231 * it was emptied of all but syncer vnodes, 2232 * switch to the FINAL_DELAY state and run 2233 * for one more second. 2234 */ 2235 if (syncer_state == SYNCER_SHUTTING_DOWN && 2236 net_worklist_len == 0 && 2237 last_work_seen == syncer_delayno) { 2238 syncer_state = SYNCER_FINAL_DELAY; 2239 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 2240 } 2241 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 2242 syncer_worklist_len > 0); 2243 2244 /* 2245 * Keep track of the last time there was anything 2246 * on the worklist other than syncer vnodes. 2247 * Return to the SHUTTING_DOWN state if any 2248 * new work appears. 2249 */ 2250 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 2251 last_work_seen = syncer_delayno; 2252 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 2253 syncer_state = SYNCER_SHUTTING_DOWN; 2254 while (!LIST_EMPTY(slp)) { 2255 error = sync_vnode(slp, &bo, td); 2256 if (error == 1) { 2257 LIST_REMOVE(bo, bo_synclist); 2258 LIST_INSERT_HEAD(next, bo, bo_synclist); 2259 continue; 2260 } 2261 2262 if (first_printf == 0) { 2263 /* 2264 * Drop the sync mutex, because some watchdog 2265 * drivers need to sleep while patting 2266 */ 2267 mtx_unlock(&sync_mtx); 2268 wdog_kern_pat(WD_LASTVAL); 2269 mtx_lock(&sync_mtx); 2270 } 2271 2272 } 2273 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 2274 syncer_final_iter--; 2275 /* 2276 * The variable rushjob allows the kernel to speed up the 2277 * processing of the filesystem syncer process. A rushjob 2278 * value of N tells the filesystem syncer to process the next 2279 * N seconds worth of work on its queue ASAP. Currently rushjob 2280 * is used by the soft update code to speed up the filesystem 2281 * syncer process when the incore state is getting so far 2282 * ahead of the disk that the kernel memory pool is being 2283 * threatened with exhaustion. 2284 */ 2285 if (rushjob > 0) { 2286 rushjob -= 1; 2287 continue; 2288 } 2289 /* 2290 * Just sleep for a short period of time between 2291 * iterations when shutting down to allow some I/O 2292 * to happen. 2293 * 2294 * If it has taken us less than a second to process the 2295 * current work, then wait. Otherwise start right over 2296 * again. We can still lose time if any single round 2297 * takes more than two seconds, but it does not really 2298 * matter as we are just trying to generally pace the 2299 * filesystem activity. 2300 */ 2301 if (syncer_state != SYNCER_RUNNING || 2302 time_uptime == starttime) { 2303 thread_lock(td); 2304 sched_prio(td, PPAUSE); 2305 thread_unlock(td); 2306 } 2307 if (syncer_state != SYNCER_RUNNING) 2308 cv_timedwait(&sync_wakeup, &sync_mtx, 2309 hz / SYNCER_SHUTDOWN_SPEEDUP); 2310 else if (time_uptime == starttime) 2311 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 2312 } 2313 } 2314 2315 /* 2316 * Request the syncer daemon to speed up its work. 2317 * We never push it to speed up more than half of its 2318 * normal turn time, otherwise it could take over the cpu. 2319 */ 2320 int 2321 speedup_syncer(void) 2322 { 2323 int ret = 0; 2324 2325 mtx_lock(&sync_mtx); 2326 if (rushjob < syncdelay / 2) { 2327 rushjob += 1; 2328 stat_rush_requests += 1; 2329 ret = 1; 2330 } 2331 mtx_unlock(&sync_mtx); 2332 cv_broadcast(&sync_wakeup); 2333 return (ret); 2334 } 2335 2336 /* 2337 * Tell the syncer to speed up its work and run though its work 2338 * list several times, then tell it to shut down. 2339 */ 2340 static void 2341 syncer_shutdown(void *arg, int howto) 2342 { 2343 2344 if (howto & RB_NOSYNC) 2345 return; 2346 mtx_lock(&sync_mtx); 2347 syncer_state = SYNCER_SHUTTING_DOWN; 2348 rushjob = 0; 2349 mtx_unlock(&sync_mtx); 2350 cv_broadcast(&sync_wakeup); 2351 kproc_shutdown(arg, howto); 2352 } 2353 2354 void 2355 syncer_suspend(void) 2356 { 2357 2358 syncer_shutdown(updateproc, 0); 2359 } 2360 2361 void 2362 syncer_resume(void) 2363 { 2364 2365 mtx_lock(&sync_mtx); 2366 first_printf = 1; 2367 syncer_state = SYNCER_RUNNING; 2368 mtx_unlock(&sync_mtx); 2369 cv_broadcast(&sync_wakeup); 2370 kproc_resume(updateproc); 2371 } 2372 2373 /* 2374 * Reassign a buffer from one vnode to another. 2375 * Used to assign file specific control information 2376 * (indirect blocks) to the vnode to which they belong. 2377 */ 2378 void 2379 reassignbuf(struct buf *bp) 2380 { 2381 struct vnode *vp; 2382 struct bufobj *bo; 2383 int delay; 2384 #ifdef INVARIANTS 2385 struct bufv *bv; 2386 #endif 2387 2388 vp = bp->b_vp; 2389 bo = bp->b_bufobj; 2390 ++reassignbufcalls; 2391 2392 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 2393 bp, bp->b_vp, bp->b_flags); 2394 /* 2395 * B_PAGING flagged buffers cannot be reassigned because their vp 2396 * is not fully linked in. 2397 */ 2398 if (bp->b_flags & B_PAGING) 2399 panic("cannot reassign paging buffer"); 2400 2401 /* 2402 * Delete from old vnode list, if on one. 2403 */ 2404 BO_LOCK(bo); 2405 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2406 buf_vlist_remove(bp); 2407 else 2408 panic("reassignbuf: Buffer %p not on queue.", bp); 2409 /* 2410 * If dirty, put on list of dirty buffers; otherwise insert onto list 2411 * of clean buffers. 2412 */ 2413 if (bp->b_flags & B_DELWRI) { 2414 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 2415 switch (vp->v_type) { 2416 case VDIR: 2417 delay = dirdelay; 2418 break; 2419 case VCHR: 2420 delay = metadelay; 2421 break; 2422 default: 2423 delay = filedelay; 2424 } 2425 vn_syncer_add_to_worklist(bo, delay); 2426 } 2427 buf_vlist_add(bp, bo, BX_VNDIRTY); 2428 } else { 2429 buf_vlist_add(bp, bo, BX_VNCLEAN); 2430 2431 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2432 mtx_lock(&sync_mtx); 2433 LIST_REMOVE(bo, bo_synclist); 2434 syncer_worklist_len--; 2435 mtx_unlock(&sync_mtx); 2436 bo->bo_flag &= ~BO_ONWORKLST; 2437 } 2438 } 2439 #ifdef INVARIANTS 2440 bv = &bo->bo_clean; 2441 bp = TAILQ_FIRST(&bv->bv_hd); 2442 KASSERT(bp == NULL || bp->b_bufobj == bo, 2443 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2444 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2445 KASSERT(bp == NULL || bp->b_bufobj == bo, 2446 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2447 bv = &bo->bo_dirty; 2448 bp = TAILQ_FIRST(&bv->bv_hd); 2449 KASSERT(bp == NULL || bp->b_bufobj == bo, 2450 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2451 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2452 KASSERT(bp == NULL || bp->b_bufobj == bo, 2453 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2454 #endif 2455 BO_UNLOCK(bo); 2456 } 2457 2458 /* 2459 * A temporary hack until refcount_* APIs are sorted out. 2460 */ 2461 static __inline int 2462 vfs_refcount_acquire_if_not_zero(volatile u_int *count) 2463 { 2464 u_int old; 2465 2466 old = *count; 2467 for (;;) { 2468 if (old == 0) 2469 return (0); 2470 if (atomic_fcmpset_int(count, &old, old + 1)) 2471 return (1); 2472 } 2473 } 2474 2475 static __inline int 2476 vfs_refcount_release_if_not_last(volatile u_int *count) 2477 { 2478 u_int old; 2479 2480 old = *count; 2481 for (;;) { 2482 if (old == 1) 2483 return (0); 2484 if (atomic_fcmpset_int(count, &old, old - 1)) 2485 return (1); 2486 } 2487 } 2488 2489 static void 2490 v_init_counters(struct vnode *vp) 2491 { 2492 2493 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0, 2494 vp, ("%s called for an initialized vnode", __FUNCTION__)); 2495 ASSERT_VI_UNLOCKED(vp, __FUNCTION__); 2496 2497 refcount_init(&vp->v_holdcnt, 1); 2498 refcount_init(&vp->v_usecount, 1); 2499 } 2500 2501 static void 2502 v_incr_usecount_locked(struct vnode *vp) 2503 { 2504 2505 ASSERT_VI_LOCKED(vp, __func__); 2506 if ((vp->v_iflag & VI_OWEINACT) != 0) { 2507 VNASSERT(vp->v_usecount == 0, vp, 2508 ("vnode with usecount and VI_OWEINACT set")); 2509 vp->v_iflag &= ~VI_OWEINACT; 2510 } 2511 refcount_acquire(&vp->v_usecount); 2512 v_incr_devcount(vp); 2513 } 2514 2515 /* 2516 * Increment the use count on the vnode, taking care to reference 2517 * the driver's usecount if this is a chardev. 2518 */ 2519 static void 2520 v_incr_usecount(struct vnode *vp) 2521 { 2522 2523 ASSERT_VI_UNLOCKED(vp, __func__); 2524 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2525 2526 if (vp->v_type != VCHR && 2527 vfs_refcount_acquire_if_not_zero(&vp->v_usecount)) { 2528 VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp, 2529 ("vnode with usecount and VI_OWEINACT set")); 2530 } else { 2531 VI_LOCK(vp); 2532 v_incr_usecount_locked(vp); 2533 VI_UNLOCK(vp); 2534 } 2535 } 2536 2537 /* 2538 * Increment si_usecount of the associated device, if any. 2539 */ 2540 static void 2541 v_incr_devcount(struct vnode *vp) 2542 { 2543 2544 ASSERT_VI_LOCKED(vp, __FUNCTION__); 2545 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2546 dev_lock(); 2547 vp->v_rdev->si_usecount++; 2548 dev_unlock(); 2549 } 2550 } 2551 2552 /* 2553 * Decrement si_usecount of the associated device, if any. 2554 */ 2555 static void 2556 v_decr_devcount(struct vnode *vp) 2557 { 2558 2559 ASSERT_VI_LOCKED(vp, __FUNCTION__); 2560 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2561 dev_lock(); 2562 vp->v_rdev->si_usecount--; 2563 dev_unlock(); 2564 } 2565 } 2566 2567 /* 2568 * Grab a particular vnode from the free list, increment its 2569 * reference count and lock it. VI_DOOMED is set if the vnode 2570 * is being destroyed. Only callers who specify LK_RETRY will 2571 * see doomed vnodes. If inactive processing was delayed in 2572 * vput try to do it here. 2573 * 2574 * Notes on lockless counter manipulation: 2575 * _vhold, vputx and other routines make various decisions based 2576 * on either holdcnt or usecount being 0. As long as either counter 2577 * is not transitioning 0->1 nor 1->0, the manipulation can be done 2578 * with atomic operations. Otherwise the interlock is taken covering 2579 * both the atomic and additional actions. 2580 */ 2581 int 2582 vget(struct vnode *vp, int flags, struct thread *td) 2583 { 2584 int error, oweinact; 2585 2586 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 2587 ("vget: invalid lock operation")); 2588 2589 if ((flags & LK_INTERLOCK) != 0) 2590 ASSERT_VI_LOCKED(vp, __func__); 2591 else 2592 ASSERT_VI_UNLOCKED(vp, __func__); 2593 if ((flags & LK_VNHELD) != 0) 2594 VNASSERT((vp->v_holdcnt > 0), vp, 2595 ("vget: LK_VNHELD passed but vnode not held")); 2596 2597 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2598 2599 if ((flags & LK_VNHELD) == 0) 2600 _vhold(vp, (flags & LK_INTERLOCK) != 0); 2601 2602 if ((error = vn_lock(vp, flags)) != 0) { 2603 vdrop(vp); 2604 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 2605 vp); 2606 return (error); 2607 } 2608 if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0) 2609 panic("vget: vn_lock failed to return ENOENT\n"); 2610 /* 2611 * We don't guarantee that any particular close will 2612 * trigger inactive processing so just make a best effort 2613 * here at preventing a reference to a removed file. If 2614 * we don't succeed no harm is done. 2615 * 2616 * Upgrade our holdcnt to a usecount. 2617 */ 2618 if (vp->v_type == VCHR || 2619 !vfs_refcount_acquire_if_not_zero(&vp->v_usecount)) { 2620 VI_LOCK(vp); 2621 if ((vp->v_iflag & VI_OWEINACT) == 0) { 2622 oweinact = 0; 2623 } else { 2624 oweinact = 1; 2625 vp->v_iflag &= ~VI_OWEINACT; 2626 } 2627 refcount_acquire(&vp->v_usecount); 2628 v_incr_devcount(vp); 2629 if (oweinact && VOP_ISLOCKED(vp) == LK_EXCLUSIVE && 2630 (flags & LK_NOWAIT) == 0) 2631 vinactive(vp, td); 2632 VI_UNLOCK(vp); 2633 } 2634 return (0); 2635 } 2636 2637 /* 2638 * Increase the reference (use) and hold count of a vnode. 2639 * This will also remove the vnode from the free list if it is presently free. 2640 */ 2641 void 2642 vref(struct vnode *vp) 2643 { 2644 2645 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2646 _vhold(vp, false); 2647 v_incr_usecount(vp); 2648 } 2649 2650 void 2651 vrefl(struct vnode *vp) 2652 { 2653 2654 ASSERT_VI_LOCKED(vp, __func__); 2655 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2656 _vhold(vp, true); 2657 v_incr_usecount_locked(vp); 2658 } 2659 2660 void 2661 vrefact(struct vnode *vp) 2662 { 2663 2664 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2665 if (__predict_false(vp->v_type == VCHR)) { 2666 VNASSERT(vp->v_holdcnt > 0 && vp->v_usecount > 0, vp, 2667 ("%s: wrong ref counts", __func__)); 2668 vref(vp); 2669 return; 2670 } 2671 #ifdef INVARIANTS 2672 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 2673 VNASSERT(old > 0, vp, ("%s: wrong hold count", __func__)); 2674 old = atomic_fetchadd_int(&vp->v_usecount, 1); 2675 VNASSERT(old > 0, vp, ("%s: wrong use count", __func__)); 2676 #else 2677 refcount_acquire(&vp->v_holdcnt); 2678 refcount_acquire(&vp->v_usecount); 2679 #endif 2680 } 2681 2682 /* 2683 * Return reference count of a vnode. 2684 * 2685 * The results of this call are only guaranteed when some mechanism is used to 2686 * stop other processes from gaining references to the vnode. This may be the 2687 * case if the caller holds the only reference. This is also useful when stale 2688 * data is acceptable as race conditions may be accounted for by some other 2689 * means. 2690 */ 2691 int 2692 vrefcnt(struct vnode *vp) 2693 { 2694 2695 return (vp->v_usecount); 2696 } 2697 2698 #define VPUTX_VRELE 1 2699 #define VPUTX_VPUT 2 2700 #define VPUTX_VUNREF 3 2701 2702 /* 2703 * Decrement the use and hold counts for a vnode. 2704 * 2705 * See an explanation near vget() as to why atomic operation is safe. 2706 */ 2707 static void 2708 vputx(struct vnode *vp, int func) 2709 { 2710 int error; 2711 2712 KASSERT(vp != NULL, ("vputx: null vp")); 2713 if (func == VPUTX_VUNREF) 2714 ASSERT_VOP_LOCKED(vp, "vunref"); 2715 else if (func == VPUTX_VPUT) 2716 ASSERT_VOP_LOCKED(vp, "vput"); 2717 else 2718 KASSERT(func == VPUTX_VRELE, ("vputx: wrong func")); 2719 ASSERT_VI_UNLOCKED(vp, __func__); 2720 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2721 2722 if (vp->v_type != VCHR && 2723 vfs_refcount_release_if_not_last(&vp->v_usecount)) { 2724 if (func == VPUTX_VPUT) 2725 VOP_UNLOCK(vp, 0); 2726 vdrop(vp); 2727 return; 2728 } 2729 2730 VI_LOCK(vp); 2731 2732 /* 2733 * We want to hold the vnode until the inactive finishes to 2734 * prevent vgone() races. We drop the use count here and the 2735 * hold count below when we're done. 2736 */ 2737 if (!refcount_release(&vp->v_usecount) || 2738 (vp->v_iflag & VI_DOINGINACT)) { 2739 if (func == VPUTX_VPUT) 2740 VOP_UNLOCK(vp, 0); 2741 v_decr_devcount(vp); 2742 vdropl(vp); 2743 return; 2744 } 2745 2746 v_decr_devcount(vp); 2747 2748 error = 0; 2749 2750 if (vp->v_usecount != 0) { 2751 vn_printf(vp, "vputx: usecount not zero for vnode "); 2752 panic("vputx: usecount not zero"); 2753 } 2754 2755 CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp); 2756 2757 /* 2758 * We must call VOP_INACTIVE with the node locked. Mark 2759 * as VI_DOINGINACT to avoid recursion. 2760 */ 2761 vp->v_iflag |= VI_OWEINACT; 2762 switch (func) { 2763 case VPUTX_VRELE: 2764 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 2765 VI_LOCK(vp); 2766 break; 2767 case VPUTX_VPUT: 2768 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 2769 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 2770 LK_NOWAIT); 2771 VI_LOCK(vp); 2772 } 2773 break; 2774 case VPUTX_VUNREF: 2775 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 2776 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 2777 VI_LOCK(vp); 2778 } 2779 break; 2780 } 2781 VNASSERT(vp->v_usecount == 0 || (vp->v_iflag & VI_OWEINACT) == 0, vp, 2782 ("vnode with usecount and VI_OWEINACT set")); 2783 if (error == 0) { 2784 if (vp->v_iflag & VI_OWEINACT) 2785 vinactive(vp, curthread); 2786 if (func != VPUTX_VUNREF) 2787 VOP_UNLOCK(vp, 0); 2788 } 2789 vdropl(vp); 2790 } 2791 2792 /* 2793 * Vnode put/release. 2794 * If count drops to zero, call inactive routine and return to freelist. 2795 */ 2796 void 2797 vrele(struct vnode *vp) 2798 { 2799 2800 vputx(vp, VPUTX_VRELE); 2801 } 2802 2803 /* 2804 * Release an already locked vnode. This give the same effects as 2805 * unlock+vrele(), but takes less time and avoids releasing and 2806 * re-aquiring the lock (as vrele() acquires the lock internally.) 2807 */ 2808 void 2809 vput(struct vnode *vp) 2810 { 2811 2812 vputx(vp, VPUTX_VPUT); 2813 } 2814 2815 /* 2816 * Release an exclusively locked vnode. Do not unlock the vnode lock. 2817 */ 2818 void 2819 vunref(struct vnode *vp) 2820 { 2821 2822 vputx(vp, VPUTX_VUNREF); 2823 } 2824 2825 /* 2826 * Increase the hold count and activate if this is the first reference. 2827 */ 2828 void 2829 _vhold(struct vnode *vp, bool locked) 2830 { 2831 struct mount *mp; 2832 2833 if (locked) 2834 ASSERT_VI_LOCKED(vp, __func__); 2835 else 2836 ASSERT_VI_UNLOCKED(vp, __func__); 2837 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2838 if (!locked) { 2839 if (vfs_refcount_acquire_if_not_zero(&vp->v_holdcnt)) { 2840 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 2841 ("_vhold: vnode with holdcnt is free")); 2842 return; 2843 } 2844 VI_LOCK(vp); 2845 } 2846 if ((vp->v_iflag & VI_FREE) == 0) { 2847 refcount_acquire(&vp->v_holdcnt); 2848 if (!locked) 2849 VI_UNLOCK(vp); 2850 return; 2851 } 2852 VNASSERT(vp->v_holdcnt == 0, vp, 2853 ("%s: wrong hold count", __func__)); 2854 VNASSERT(vp->v_op != NULL, vp, 2855 ("%s: vnode already reclaimed.", __func__)); 2856 /* 2857 * Remove a vnode from the free list, mark it as in use, 2858 * and put it on the active list. 2859 */ 2860 VNASSERT(vp->v_mount != NULL, vp, 2861 ("_vhold: vnode not on per mount vnode list")); 2862 mp = vp->v_mount; 2863 mtx_lock(&mp->mnt_listmtx); 2864 if ((vp->v_mflag & VMP_TMPMNTFREELIST) != 0) { 2865 TAILQ_REMOVE(&mp->mnt_tmpfreevnodelist, vp, v_actfreelist); 2866 mp->mnt_tmpfreevnodelistsize--; 2867 vp->v_mflag &= ~VMP_TMPMNTFREELIST; 2868 } else { 2869 mtx_lock(&vnode_free_list_mtx); 2870 TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist); 2871 freevnodes--; 2872 mtx_unlock(&vnode_free_list_mtx); 2873 } 2874 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 2875 ("Activating already active vnode")); 2876 vp->v_iflag &= ~VI_FREE; 2877 vp->v_iflag |= VI_ACTIVE; 2878 TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist); 2879 mp->mnt_activevnodelistsize++; 2880 mtx_unlock(&mp->mnt_listmtx); 2881 refcount_acquire(&vp->v_holdcnt); 2882 if (!locked) 2883 VI_UNLOCK(vp); 2884 } 2885 2886 /* 2887 * Drop the hold count of the vnode. If this is the last reference to 2888 * the vnode we place it on the free list unless it has been vgone'd 2889 * (marked VI_DOOMED) in which case we will free it. 2890 * 2891 * Because the vnode vm object keeps a hold reference on the vnode if 2892 * there is at least one resident non-cached page, the vnode cannot 2893 * leave the active list without the page cleanup done. 2894 */ 2895 void 2896 _vdrop(struct vnode *vp, bool locked) 2897 { 2898 struct bufobj *bo; 2899 struct mount *mp; 2900 int active; 2901 2902 if (locked) 2903 ASSERT_VI_LOCKED(vp, __func__); 2904 else 2905 ASSERT_VI_UNLOCKED(vp, __func__); 2906 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2907 if ((int)vp->v_holdcnt <= 0) 2908 panic("vdrop: holdcnt %d", vp->v_holdcnt); 2909 if (!locked) { 2910 if (vfs_refcount_release_if_not_last(&vp->v_holdcnt)) 2911 return; 2912 VI_LOCK(vp); 2913 } 2914 if (refcount_release(&vp->v_holdcnt) == 0) { 2915 VI_UNLOCK(vp); 2916 return; 2917 } 2918 if ((vp->v_iflag & VI_DOOMED) == 0) { 2919 /* 2920 * Mark a vnode as free: remove it from its active list 2921 * and put it up for recycling on the freelist. 2922 */ 2923 VNASSERT(vp->v_op != NULL, vp, 2924 ("vdropl: vnode already reclaimed.")); 2925 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 2926 ("vnode already free")); 2927 VNASSERT(vp->v_holdcnt == 0, vp, 2928 ("vdropl: freeing when we shouldn't")); 2929 active = vp->v_iflag & VI_ACTIVE; 2930 if ((vp->v_iflag & VI_OWEINACT) == 0) { 2931 vp->v_iflag &= ~VI_ACTIVE; 2932 mp = vp->v_mount; 2933 if (mp != NULL) { 2934 mtx_lock(&mp->mnt_listmtx); 2935 if (active) { 2936 TAILQ_REMOVE(&mp->mnt_activevnodelist, 2937 vp, v_actfreelist); 2938 mp->mnt_activevnodelistsize--; 2939 } 2940 TAILQ_INSERT_TAIL(&mp->mnt_tmpfreevnodelist, 2941 vp, v_actfreelist); 2942 mp->mnt_tmpfreevnodelistsize++; 2943 vp->v_iflag |= VI_FREE; 2944 vp->v_mflag |= VMP_TMPMNTFREELIST; 2945 VI_UNLOCK(vp); 2946 if (mp->mnt_tmpfreevnodelistsize >= 2947 mnt_free_list_batch) 2948 vnlru_return_batch_locked(mp); 2949 mtx_unlock(&mp->mnt_listmtx); 2950 } else { 2951 VNASSERT(active == 0, vp, 2952 ("vdropl: active vnode not on per mount " 2953 "vnode list")); 2954 mtx_lock(&vnode_free_list_mtx); 2955 TAILQ_INSERT_TAIL(&vnode_free_list, vp, 2956 v_actfreelist); 2957 freevnodes++; 2958 vp->v_iflag |= VI_FREE; 2959 VI_UNLOCK(vp); 2960 mtx_unlock(&vnode_free_list_mtx); 2961 } 2962 } else { 2963 VI_UNLOCK(vp); 2964 counter_u64_add(free_owe_inact, 1); 2965 } 2966 return; 2967 } 2968 /* 2969 * The vnode has been marked for destruction, so free it. 2970 * 2971 * The vnode will be returned to the zone where it will 2972 * normally remain until it is needed for another vnode. We 2973 * need to cleanup (or verify that the cleanup has already 2974 * been done) any residual data left from its current use 2975 * so as not to contaminate the freshly allocated vnode. 2976 */ 2977 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 2978 atomic_subtract_long(&numvnodes, 1); 2979 bo = &vp->v_bufobj; 2980 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 2981 ("cleaned vnode still on the free list.")); 2982 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 2983 VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count")); 2984 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 2985 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 2986 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 2987 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 2988 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 2989 ("clean blk trie not empty")); 2990 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 2991 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 2992 ("dirty blk trie not empty")); 2993 VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst")); 2994 VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src")); 2995 VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for ..")); 2996 VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp, 2997 ("Dangling rangelock waiters")); 2998 VI_UNLOCK(vp); 2999 #ifdef MAC 3000 mac_vnode_destroy(vp); 3001 #endif 3002 if (vp->v_pollinfo != NULL) { 3003 destroy_vpollinfo(vp->v_pollinfo); 3004 vp->v_pollinfo = NULL; 3005 } 3006 #ifdef INVARIANTS 3007 /* XXX Elsewhere we detect an already freed vnode via NULL v_op. */ 3008 vp->v_op = NULL; 3009 #endif 3010 vp->v_mountedhere = NULL; 3011 vp->v_unpcb = NULL; 3012 vp->v_rdev = NULL; 3013 vp->v_fifoinfo = NULL; 3014 vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0; 3015 vp->v_iflag = 0; 3016 vp->v_vflag = 0; 3017 bo->bo_flag = 0; 3018 uma_zfree(vnode_zone, vp); 3019 } 3020 3021 /* 3022 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 3023 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 3024 * OWEINACT tracks whether a vnode missed a call to inactive due to a 3025 * failed lock upgrade. 3026 */ 3027 void 3028 vinactive(struct vnode *vp, struct thread *td) 3029 { 3030 struct vm_object *obj; 3031 3032 ASSERT_VOP_ELOCKED(vp, "vinactive"); 3033 ASSERT_VI_LOCKED(vp, "vinactive"); 3034 VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp, 3035 ("vinactive: recursed on VI_DOINGINACT")); 3036 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3037 vp->v_iflag |= VI_DOINGINACT; 3038 vp->v_iflag &= ~VI_OWEINACT; 3039 VI_UNLOCK(vp); 3040 /* 3041 * Before moving off the active list, we must be sure that any 3042 * modified pages are converted into the vnode's dirty 3043 * buffers, since these will no longer be checked once the 3044 * vnode is on the inactive list. 3045 * 3046 * The write-out of the dirty pages is asynchronous. At the 3047 * point that VOP_INACTIVE() is called, there could still be 3048 * pending I/O and dirty pages in the object. 3049 */ 3050 if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 3051 (obj->flags & OBJ_MIGHTBEDIRTY) != 0) { 3052 VM_OBJECT_WLOCK(obj); 3053 vm_object_page_clean(obj, 0, 0, 0); 3054 VM_OBJECT_WUNLOCK(obj); 3055 } 3056 VOP_INACTIVE(vp, td); 3057 VI_LOCK(vp); 3058 VNASSERT(vp->v_iflag & VI_DOINGINACT, vp, 3059 ("vinactive: lost VI_DOINGINACT")); 3060 vp->v_iflag &= ~VI_DOINGINACT; 3061 } 3062 3063 /* 3064 * Remove any vnodes in the vnode table belonging to mount point mp. 3065 * 3066 * If FORCECLOSE is not specified, there should not be any active ones, 3067 * return error if any are found (nb: this is a user error, not a 3068 * system error). If FORCECLOSE is specified, detach any active vnodes 3069 * that are found. 3070 * 3071 * If WRITECLOSE is set, only flush out regular file vnodes open for 3072 * writing. 3073 * 3074 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 3075 * 3076 * `rootrefs' specifies the base reference count for the root vnode 3077 * of this filesystem. The root vnode is considered busy if its 3078 * v_usecount exceeds this value. On a successful return, vflush(, td) 3079 * will call vrele() on the root vnode exactly rootrefs times. 3080 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 3081 * be zero. 3082 */ 3083 #ifdef DIAGNOSTIC 3084 static int busyprt = 0; /* print out busy vnodes */ 3085 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 3086 #endif 3087 3088 int 3089 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 3090 { 3091 struct vnode *vp, *mvp, *rootvp = NULL; 3092 struct vattr vattr; 3093 int busy = 0, error; 3094 3095 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 3096 rootrefs, flags); 3097 if (rootrefs > 0) { 3098 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 3099 ("vflush: bad args")); 3100 /* 3101 * Get the filesystem root vnode. We can vput() it 3102 * immediately, since with rootrefs > 0, it won't go away. 3103 */ 3104 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 3105 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 3106 __func__, error); 3107 return (error); 3108 } 3109 vput(rootvp); 3110 } 3111 loop: 3112 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 3113 vholdl(vp); 3114 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 3115 if (error) { 3116 vdrop(vp); 3117 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 3118 goto loop; 3119 } 3120 /* 3121 * Skip over a vnodes marked VV_SYSTEM. 3122 */ 3123 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 3124 VOP_UNLOCK(vp, 0); 3125 vdrop(vp); 3126 continue; 3127 } 3128 /* 3129 * If WRITECLOSE is set, flush out unlinked but still open 3130 * files (even if open only for reading) and regular file 3131 * vnodes open for writing. 3132 */ 3133 if (flags & WRITECLOSE) { 3134 if (vp->v_object != NULL) { 3135 VM_OBJECT_WLOCK(vp->v_object); 3136 vm_object_page_clean(vp->v_object, 0, 0, 0); 3137 VM_OBJECT_WUNLOCK(vp->v_object); 3138 } 3139 error = VOP_FSYNC(vp, MNT_WAIT, td); 3140 if (error != 0) { 3141 VOP_UNLOCK(vp, 0); 3142 vdrop(vp); 3143 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 3144 return (error); 3145 } 3146 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 3147 VI_LOCK(vp); 3148 3149 if ((vp->v_type == VNON || 3150 (error == 0 && vattr.va_nlink > 0)) && 3151 (vp->v_writecount == 0 || vp->v_type != VREG)) { 3152 VOP_UNLOCK(vp, 0); 3153 vdropl(vp); 3154 continue; 3155 } 3156 } else 3157 VI_LOCK(vp); 3158 /* 3159 * With v_usecount == 0, all we need to do is clear out the 3160 * vnode data structures and we are done. 3161 * 3162 * If FORCECLOSE is set, forcibly close the vnode. 3163 */ 3164 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 3165 vgonel(vp); 3166 } else { 3167 busy++; 3168 #ifdef DIAGNOSTIC 3169 if (busyprt) 3170 vn_printf(vp, "vflush: busy vnode "); 3171 #endif 3172 } 3173 VOP_UNLOCK(vp, 0); 3174 vdropl(vp); 3175 } 3176 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 3177 /* 3178 * If just the root vnode is busy, and if its refcount 3179 * is equal to `rootrefs', then go ahead and kill it. 3180 */ 3181 VI_LOCK(rootvp); 3182 KASSERT(busy > 0, ("vflush: not busy")); 3183 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 3184 ("vflush: usecount %d < rootrefs %d", 3185 rootvp->v_usecount, rootrefs)); 3186 if (busy == 1 && rootvp->v_usecount == rootrefs) { 3187 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 3188 vgone(rootvp); 3189 VOP_UNLOCK(rootvp, 0); 3190 busy = 0; 3191 } else 3192 VI_UNLOCK(rootvp); 3193 } 3194 if (busy) { 3195 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 3196 busy); 3197 return (EBUSY); 3198 } 3199 for (; rootrefs > 0; rootrefs--) 3200 vrele(rootvp); 3201 return (0); 3202 } 3203 3204 /* 3205 * Recycle an unused vnode to the front of the free list. 3206 */ 3207 int 3208 vrecycle(struct vnode *vp) 3209 { 3210 int recycled; 3211 3212 VI_LOCK(vp); 3213 recycled = vrecyclel(vp); 3214 VI_UNLOCK(vp); 3215 return (recycled); 3216 } 3217 3218 /* 3219 * vrecycle, with the vp interlock held. 3220 */ 3221 int 3222 vrecyclel(struct vnode *vp) 3223 { 3224 int recycled; 3225 3226 ASSERT_VOP_ELOCKED(vp, __func__); 3227 ASSERT_VI_LOCKED(vp, __func__); 3228 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3229 recycled = 0; 3230 if (vp->v_usecount == 0) { 3231 recycled = 1; 3232 vgonel(vp); 3233 } 3234 return (recycled); 3235 } 3236 3237 /* 3238 * Eliminate all activity associated with a vnode 3239 * in preparation for reuse. 3240 */ 3241 void 3242 vgone(struct vnode *vp) 3243 { 3244 VI_LOCK(vp); 3245 vgonel(vp); 3246 VI_UNLOCK(vp); 3247 } 3248 3249 static void 3250 notify_lowervp_vfs_dummy(struct mount *mp __unused, 3251 struct vnode *lowervp __unused) 3252 { 3253 } 3254 3255 /* 3256 * Notify upper mounts about reclaimed or unlinked vnode. 3257 */ 3258 void 3259 vfs_notify_upper(struct vnode *vp, int event) 3260 { 3261 static struct vfsops vgonel_vfsops = { 3262 .vfs_reclaim_lowervp = notify_lowervp_vfs_dummy, 3263 .vfs_unlink_lowervp = notify_lowervp_vfs_dummy, 3264 }; 3265 struct mount *mp, *ump, *mmp; 3266 3267 mp = vp->v_mount; 3268 if (mp == NULL) 3269 return; 3270 3271 MNT_ILOCK(mp); 3272 if (TAILQ_EMPTY(&mp->mnt_uppers)) 3273 goto unlock; 3274 MNT_IUNLOCK(mp); 3275 mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO); 3276 mmp->mnt_op = &vgonel_vfsops; 3277 mmp->mnt_kern_flag |= MNTK_MARKER; 3278 MNT_ILOCK(mp); 3279 mp->mnt_kern_flag |= MNTK_VGONE_UPPER; 3280 for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) { 3281 if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) { 3282 ump = TAILQ_NEXT(ump, mnt_upper_link); 3283 continue; 3284 } 3285 TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link); 3286 MNT_IUNLOCK(mp); 3287 switch (event) { 3288 case VFS_NOTIFY_UPPER_RECLAIM: 3289 VFS_RECLAIM_LOWERVP(ump, vp); 3290 break; 3291 case VFS_NOTIFY_UPPER_UNLINK: 3292 VFS_UNLINK_LOWERVP(ump, vp); 3293 break; 3294 default: 3295 KASSERT(0, ("invalid event %d", event)); 3296 break; 3297 } 3298 MNT_ILOCK(mp); 3299 ump = TAILQ_NEXT(mmp, mnt_upper_link); 3300 TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link); 3301 } 3302 free(mmp, M_TEMP); 3303 mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER; 3304 if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) { 3305 mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER; 3306 wakeup(&mp->mnt_uppers); 3307 } 3308 unlock: 3309 MNT_IUNLOCK(mp); 3310 } 3311 3312 /* 3313 * vgone, with the vp interlock held. 3314 */ 3315 static void 3316 vgonel(struct vnode *vp) 3317 { 3318 struct thread *td; 3319 int oweinact; 3320 int active; 3321 struct mount *mp; 3322 3323 ASSERT_VOP_ELOCKED(vp, "vgonel"); 3324 ASSERT_VI_LOCKED(vp, "vgonel"); 3325 VNASSERT(vp->v_holdcnt, vp, 3326 ("vgonel: vp %p has no reference.", vp)); 3327 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3328 td = curthread; 3329 3330 /* 3331 * Don't vgonel if we're already doomed. 3332 */ 3333 if (vp->v_iflag & VI_DOOMED) 3334 return; 3335 vp->v_iflag |= VI_DOOMED; 3336 3337 /* 3338 * Check to see if the vnode is in use. If so, we have to call 3339 * VOP_CLOSE() and VOP_INACTIVE(). 3340 */ 3341 active = vp->v_usecount; 3342 oweinact = (vp->v_iflag & VI_OWEINACT); 3343 VI_UNLOCK(vp); 3344 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 3345 3346 /* 3347 * If purging an active vnode, it must be closed and 3348 * deactivated before being reclaimed. 3349 */ 3350 if (active) 3351 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 3352 if (oweinact || active) { 3353 VI_LOCK(vp); 3354 if ((vp->v_iflag & VI_DOINGINACT) == 0) 3355 vinactive(vp, td); 3356 VI_UNLOCK(vp); 3357 } 3358 if (vp->v_type == VSOCK) 3359 vfs_unp_reclaim(vp); 3360 3361 /* 3362 * Clean out any buffers associated with the vnode. 3363 * If the flush fails, just toss the buffers. 3364 */ 3365 mp = NULL; 3366 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 3367 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 3368 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 3369 while (vinvalbuf(vp, 0, 0, 0) != 0) 3370 ; 3371 } 3372 3373 BO_LOCK(&vp->v_bufobj); 3374 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 3375 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 3376 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 3377 vp->v_bufobj.bo_clean.bv_cnt == 0, 3378 ("vp %p bufobj not invalidated", vp)); 3379 3380 /* 3381 * For VMIO bufobj, BO_DEAD is set in vm_object_terminate() 3382 * after the object's page queue is flushed. 3383 */ 3384 if (vp->v_bufobj.bo_object == NULL) 3385 vp->v_bufobj.bo_flag |= BO_DEAD; 3386 BO_UNLOCK(&vp->v_bufobj); 3387 3388 /* 3389 * Reclaim the vnode. 3390 */ 3391 if (VOP_RECLAIM(vp, td)) 3392 panic("vgone: cannot reclaim"); 3393 if (mp != NULL) 3394 vn_finished_secondary_write(mp); 3395 VNASSERT(vp->v_object == NULL, vp, 3396 ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag)); 3397 /* 3398 * Clear the advisory locks and wake up waiting threads. 3399 */ 3400 (void)VOP_ADVLOCKPURGE(vp); 3401 vp->v_lockf = NULL; 3402 /* 3403 * Delete from old mount point vnode list. 3404 */ 3405 delmntque(vp); 3406 cache_purge(vp); 3407 /* 3408 * Done with purge, reset to the standard lock and invalidate 3409 * the vnode. 3410 */ 3411 VI_LOCK(vp); 3412 vp->v_vnlock = &vp->v_lock; 3413 vp->v_op = &dead_vnodeops; 3414 vp->v_tag = "none"; 3415 vp->v_type = VBAD; 3416 } 3417 3418 /* 3419 * Calculate the total number of references to a special device. 3420 */ 3421 int 3422 vcount(struct vnode *vp) 3423 { 3424 int count; 3425 3426 dev_lock(); 3427 count = vp->v_rdev->si_usecount; 3428 dev_unlock(); 3429 return (count); 3430 } 3431 3432 /* 3433 * Same as above, but using the struct cdev *as argument 3434 */ 3435 int 3436 count_dev(struct cdev *dev) 3437 { 3438 int count; 3439 3440 dev_lock(); 3441 count = dev->si_usecount; 3442 dev_unlock(); 3443 return(count); 3444 } 3445 3446 /* 3447 * Print out a description of a vnode. 3448 */ 3449 static char *typename[] = 3450 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD", 3451 "VMARKER"}; 3452 3453 void 3454 vn_printf(struct vnode *vp, const char *fmt, ...) 3455 { 3456 va_list ap; 3457 char buf[256], buf2[16]; 3458 u_long flags; 3459 3460 va_start(ap, fmt); 3461 vprintf(fmt, ap); 3462 va_end(ap); 3463 printf("%p: ", (void *)vp); 3464 printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]); 3465 printf(" usecount %d, writecount %d, refcount %d", 3466 vp->v_usecount, vp->v_writecount, vp->v_holdcnt); 3467 switch (vp->v_type) { 3468 case VDIR: 3469 printf(" mountedhere %p\n", vp->v_mountedhere); 3470 break; 3471 case VCHR: 3472 printf(" rdev %p\n", vp->v_rdev); 3473 break; 3474 case VSOCK: 3475 printf(" socket %p\n", vp->v_unpcb); 3476 break; 3477 case VFIFO: 3478 printf(" fifoinfo %p\n", vp->v_fifoinfo); 3479 break; 3480 default: 3481 printf("\n"); 3482 break; 3483 } 3484 buf[0] = '\0'; 3485 buf[1] = '\0'; 3486 if (vp->v_vflag & VV_ROOT) 3487 strlcat(buf, "|VV_ROOT", sizeof(buf)); 3488 if (vp->v_vflag & VV_ISTTY) 3489 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 3490 if (vp->v_vflag & VV_NOSYNC) 3491 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 3492 if (vp->v_vflag & VV_ETERNALDEV) 3493 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 3494 if (vp->v_vflag & VV_CACHEDLABEL) 3495 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 3496 if (vp->v_vflag & VV_TEXT) 3497 strlcat(buf, "|VV_TEXT", sizeof(buf)); 3498 if (vp->v_vflag & VV_COPYONWRITE) 3499 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 3500 if (vp->v_vflag & VV_SYSTEM) 3501 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 3502 if (vp->v_vflag & VV_PROCDEP) 3503 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 3504 if (vp->v_vflag & VV_NOKNOTE) 3505 strlcat(buf, "|VV_NOKNOTE", sizeof(buf)); 3506 if (vp->v_vflag & VV_DELETED) 3507 strlcat(buf, "|VV_DELETED", sizeof(buf)); 3508 if (vp->v_vflag & VV_MD) 3509 strlcat(buf, "|VV_MD", sizeof(buf)); 3510 if (vp->v_vflag & VV_FORCEINSMQ) 3511 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 3512 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 3513 VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP | 3514 VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ); 3515 if (flags != 0) { 3516 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 3517 strlcat(buf, buf2, sizeof(buf)); 3518 } 3519 if (vp->v_iflag & VI_MOUNT) 3520 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 3521 if (vp->v_iflag & VI_DOOMED) 3522 strlcat(buf, "|VI_DOOMED", sizeof(buf)); 3523 if (vp->v_iflag & VI_FREE) 3524 strlcat(buf, "|VI_FREE", sizeof(buf)); 3525 if (vp->v_iflag & VI_ACTIVE) 3526 strlcat(buf, "|VI_ACTIVE", sizeof(buf)); 3527 if (vp->v_iflag & VI_DOINGINACT) 3528 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 3529 if (vp->v_iflag & VI_OWEINACT) 3530 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 3531 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOOMED | VI_FREE | 3532 VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT); 3533 if (flags != 0) { 3534 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 3535 strlcat(buf, buf2, sizeof(buf)); 3536 } 3537 printf(" flags (%s)\n", buf + 1); 3538 if (mtx_owned(VI_MTX(vp))) 3539 printf(" VI_LOCKed"); 3540 if (vp->v_object != NULL) 3541 printf(" v_object %p ref %d pages %d " 3542 "cleanbuf %d dirtybuf %d\n", 3543 vp->v_object, vp->v_object->ref_count, 3544 vp->v_object->resident_page_count, 3545 vp->v_bufobj.bo_clean.bv_cnt, 3546 vp->v_bufobj.bo_dirty.bv_cnt); 3547 printf(" "); 3548 lockmgr_printinfo(vp->v_vnlock); 3549 if (vp->v_data != NULL) 3550 VOP_PRINT(vp); 3551 } 3552 3553 #ifdef DDB 3554 /* 3555 * List all of the locked vnodes in the system. 3556 * Called when debugging the kernel. 3557 */ 3558 DB_SHOW_COMMAND(lockedvnods, lockedvnodes) 3559 { 3560 struct mount *mp; 3561 struct vnode *vp; 3562 3563 /* 3564 * Note: because this is DDB, we can't obey the locking semantics 3565 * for these structures, which means we could catch an inconsistent 3566 * state and dereference a nasty pointer. Not much to be done 3567 * about that. 3568 */ 3569 db_printf("Locked vnodes\n"); 3570 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3571 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3572 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 3573 vn_printf(vp, "vnode "); 3574 } 3575 } 3576 } 3577 3578 /* 3579 * Show details about the given vnode. 3580 */ 3581 DB_SHOW_COMMAND(vnode, db_show_vnode) 3582 { 3583 struct vnode *vp; 3584 3585 if (!have_addr) 3586 return; 3587 vp = (struct vnode *)addr; 3588 vn_printf(vp, "vnode "); 3589 } 3590 3591 /* 3592 * Show details about the given mount point. 3593 */ 3594 DB_SHOW_COMMAND(mount, db_show_mount) 3595 { 3596 struct mount *mp; 3597 struct vfsopt *opt; 3598 struct statfs *sp; 3599 struct vnode *vp; 3600 char buf[512]; 3601 uint64_t mflags; 3602 u_int flags; 3603 3604 if (!have_addr) { 3605 /* No address given, print short info about all mount points. */ 3606 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3607 db_printf("%p %s on %s (%s)\n", mp, 3608 mp->mnt_stat.f_mntfromname, 3609 mp->mnt_stat.f_mntonname, 3610 mp->mnt_stat.f_fstypename); 3611 if (db_pager_quit) 3612 break; 3613 } 3614 db_printf("\nMore info: show mount <addr>\n"); 3615 return; 3616 } 3617 3618 mp = (struct mount *)addr; 3619 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 3620 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 3621 3622 buf[0] = '\0'; 3623 mflags = mp->mnt_flag; 3624 #define MNT_FLAG(flag) do { \ 3625 if (mflags & (flag)) { \ 3626 if (buf[0] != '\0') \ 3627 strlcat(buf, ", ", sizeof(buf)); \ 3628 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 3629 mflags &= ~(flag); \ 3630 } \ 3631 } while (0) 3632 MNT_FLAG(MNT_RDONLY); 3633 MNT_FLAG(MNT_SYNCHRONOUS); 3634 MNT_FLAG(MNT_NOEXEC); 3635 MNT_FLAG(MNT_NOSUID); 3636 MNT_FLAG(MNT_NFS4ACLS); 3637 MNT_FLAG(MNT_UNION); 3638 MNT_FLAG(MNT_ASYNC); 3639 MNT_FLAG(MNT_SUIDDIR); 3640 MNT_FLAG(MNT_SOFTDEP); 3641 MNT_FLAG(MNT_NOSYMFOLLOW); 3642 MNT_FLAG(MNT_GJOURNAL); 3643 MNT_FLAG(MNT_MULTILABEL); 3644 MNT_FLAG(MNT_ACLS); 3645 MNT_FLAG(MNT_NOATIME); 3646 MNT_FLAG(MNT_NOCLUSTERR); 3647 MNT_FLAG(MNT_NOCLUSTERW); 3648 MNT_FLAG(MNT_SUJ); 3649 MNT_FLAG(MNT_EXRDONLY); 3650 MNT_FLAG(MNT_EXPORTED); 3651 MNT_FLAG(MNT_DEFEXPORTED); 3652 MNT_FLAG(MNT_EXPORTANON); 3653 MNT_FLAG(MNT_EXKERB); 3654 MNT_FLAG(MNT_EXPUBLIC); 3655 MNT_FLAG(MNT_LOCAL); 3656 MNT_FLAG(MNT_QUOTA); 3657 MNT_FLAG(MNT_ROOTFS); 3658 MNT_FLAG(MNT_USER); 3659 MNT_FLAG(MNT_IGNORE); 3660 MNT_FLAG(MNT_UPDATE); 3661 MNT_FLAG(MNT_DELEXPORT); 3662 MNT_FLAG(MNT_RELOAD); 3663 MNT_FLAG(MNT_FORCE); 3664 MNT_FLAG(MNT_SNAPSHOT); 3665 MNT_FLAG(MNT_BYFSID); 3666 #undef MNT_FLAG 3667 if (mflags != 0) { 3668 if (buf[0] != '\0') 3669 strlcat(buf, ", ", sizeof(buf)); 3670 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 3671 "0x%016jx", mflags); 3672 } 3673 db_printf(" mnt_flag = %s\n", buf); 3674 3675 buf[0] = '\0'; 3676 flags = mp->mnt_kern_flag; 3677 #define MNT_KERN_FLAG(flag) do { \ 3678 if (flags & (flag)) { \ 3679 if (buf[0] != '\0') \ 3680 strlcat(buf, ", ", sizeof(buf)); \ 3681 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 3682 flags &= ~(flag); \ 3683 } \ 3684 } while (0) 3685 MNT_KERN_FLAG(MNTK_UNMOUNTF); 3686 MNT_KERN_FLAG(MNTK_ASYNC); 3687 MNT_KERN_FLAG(MNTK_SOFTDEP); 3688 MNT_KERN_FLAG(MNTK_NOINSMNTQ); 3689 MNT_KERN_FLAG(MNTK_DRAINING); 3690 MNT_KERN_FLAG(MNTK_REFEXPIRE); 3691 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 3692 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 3693 MNT_KERN_FLAG(MNTK_NO_IOPF); 3694 MNT_KERN_FLAG(MNTK_VGONE_UPPER); 3695 MNT_KERN_FLAG(MNTK_VGONE_WAITER); 3696 MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT); 3697 MNT_KERN_FLAG(MNTK_MARKER); 3698 MNT_KERN_FLAG(MNTK_USES_BCACHE); 3699 MNT_KERN_FLAG(MNTK_NOASYNC); 3700 MNT_KERN_FLAG(MNTK_UNMOUNT); 3701 MNT_KERN_FLAG(MNTK_MWAIT); 3702 MNT_KERN_FLAG(MNTK_SUSPEND); 3703 MNT_KERN_FLAG(MNTK_SUSPEND2); 3704 MNT_KERN_FLAG(MNTK_SUSPENDED); 3705 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 3706 MNT_KERN_FLAG(MNTK_NOKNOTE); 3707 #undef MNT_KERN_FLAG 3708 if (flags != 0) { 3709 if (buf[0] != '\0') 3710 strlcat(buf, ", ", sizeof(buf)); 3711 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 3712 "0x%08x", flags); 3713 } 3714 db_printf(" mnt_kern_flag = %s\n", buf); 3715 3716 db_printf(" mnt_opt = "); 3717 opt = TAILQ_FIRST(mp->mnt_opt); 3718 if (opt != NULL) { 3719 db_printf("%s", opt->name); 3720 opt = TAILQ_NEXT(opt, link); 3721 while (opt != NULL) { 3722 db_printf(", %s", opt->name); 3723 opt = TAILQ_NEXT(opt, link); 3724 } 3725 } 3726 db_printf("\n"); 3727 3728 sp = &mp->mnt_stat; 3729 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 3730 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 3731 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 3732 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 3733 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 3734 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 3735 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 3736 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 3737 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 3738 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 3739 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 3740 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 3741 3742 db_printf(" mnt_cred = { uid=%u ruid=%u", 3743 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 3744 if (jailed(mp->mnt_cred)) 3745 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 3746 db_printf(" }\n"); 3747 db_printf(" mnt_ref = %d\n", mp->mnt_ref); 3748 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 3749 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 3750 db_printf(" mnt_activevnodelistsize = %d\n", 3751 mp->mnt_activevnodelistsize); 3752 db_printf(" mnt_writeopcount = %d\n", mp->mnt_writeopcount); 3753 db_printf(" mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen); 3754 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 3755 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 3756 db_printf(" mnt_lockref = %d\n", mp->mnt_lockref); 3757 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 3758 db_printf(" mnt_secondary_accwrites = %d\n", 3759 mp->mnt_secondary_accwrites); 3760 db_printf(" mnt_gjprovider = %s\n", 3761 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 3762 3763 db_printf("\n\nList of active vnodes\n"); 3764 TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) { 3765 if (vp->v_type != VMARKER) { 3766 vn_printf(vp, "vnode "); 3767 if (db_pager_quit) 3768 break; 3769 } 3770 } 3771 db_printf("\n\nList of inactive vnodes\n"); 3772 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3773 if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) { 3774 vn_printf(vp, "vnode "); 3775 if (db_pager_quit) 3776 break; 3777 } 3778 } 3779 } 3780 #endif /* DDB */ 3781 3782 /* 3783 * Fill in a struct xvfsconf based on a struct vfsconf. 3784 */ 3785 static int 3786 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 3787 { 3788 struct xvfsconf xvfsp; 3789 3790 bzero(&xvfsp, sizeof(xvfsp)); 3791 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 3792 xvfsp.vfc_typenum = vfsp->vfc_typenum; 3793 xvfsp.vfc_refcount = vfsp->vfc_refcount; 3794 xvfsp.vfc_flags = vfsp->vfc_flags; 3795 /* 3796 * These are unused in userland, we keep them 3797 * to not break binary compatibility. 3798 */ 3799 xvfsp.vfc_vfsops = NULL; 3800 xvfsp.vfc_next = NULL; 3801 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 3802 } 3803 3804 #ifdef COMPAT_FREEBSD32 3805 struct xvfsconf32 { 3806 uint32_t vfc_vfsops; 3807 char vfc_name[MFSNAMELEN]; 3808 int32_t vfc_typenum; 3809 int32_t vfc_refcount; 3810 int32_t vfc_flags; 3811 uint32_t vfc_next; 3812 }; 3813 3814 static int 3815 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 3816 { 3817 struct xvfsconf32 xvfsp; 3818 3819 bzero(&xvfsp, sizeof(xvfsp)); 3820 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 3821 xvfsp.vfc_typenum = vfsp->vfc_typenum; 3822 xvfsp.vfc_refcount = vfsp->vfc_refcount; 3823 xvfsp.vfc_flags = vfsp->vfc_flags; 3824 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 3825 } 3826 #endif 3827 3828 /* 3829 * Top level filesystem related information gathering. 3830 */ 3831 static int 3832 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 3833 { 3834 struct vfsconf *vfsp; 3835 int error; 3836 3837 error = 0; 3838 vfsconf_slock(); 3839 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3840 #ifdef COMPAT_FREEBSD32 3841 if (req->flags & SCTL_MASK32) 3842 error = vfsconf2x32(req, vfsp); 3843 else 3844 #endif 3845 error = vfsconf2x(req, vfsp); 3846 if (error) 3847 break; 3848 } 3849 vfsconf_sunlock(); 3850 return (error); 3851 } 3852 3853 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 3854 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 3855 "S,xvfsconf", "List of all configured filesystems"); 3856 3857 #ifndef BURN_BRIDGES 3858 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 3859 3860 static int 3861 vfs_sysctl(SYSCTL_HANDLER_ARGS) 3862 { 3863 int *name = (int *)arg1 - 1; /* XXX */ 3864 u_int namelen = arg2 + 1; /* XXX */ 3865 struct vfsconf *vfsp; 3866 3867 log(LOG_WARNING, "userland calling deprecated sysctl, " 3868 "please rebuild world\n"); 3869 3870 #if 1 || defined(COMPAT_PRELITE2) 3871 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 3872 if (namelen == 1) 3873 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 3874 #endif 3875 3876 switch (name[1]) { 3877 case VFS_MAXTYPENUM: 3878 if (namelen != 2) 3879 return (ENOTDIR); 3880 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 3881 case VFS_CONF: 3882 if (namelen != 3) 3883 return (ENOTDIR); /* overloaded */ 3884 vfsconf_slock(); 3885 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3886 if (vfsp->vfc_typenum == name[2]) 3887 break; 3888 } 3889 vfsconf_sunlock(); 3890 if (vfsp == NULL) 3891 return (EOPNOTSUPP); 3892 #ifdef COMPAT_FREEBSD32 3893 if (req->flags & SCTL_MASK32) 3894 return (vfsconf2x32(req, vfsp)); 3895 else 3896 #endif 3897 return (vfsconf2x(req, vfsp)); 3898 } 3899 return (EOPNOTSUPP); 3900 } 3901 3902 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 3903 CTLFLAG_MPSAFE, vfs_sysctl, 3904 "Generic filesystem"); 3905 3906 #if 1 || defined(COMPAT_PRELITE2) 3907 3908 static int 3909 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 3910 { 3911 int error; 3912 struct vfsconf *vfsp; 3913 struct ovfsconf ovfs; 3914 3915 vfsconf_slock(); 3916 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3917 bzero(&ovfs, sizeof(ovfs)); 3918 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 3919 strcpy(ovfs.vfc_name, vfsp->vfc_name); 3920 ovfs.vfc_index = vfsp->vfc_typenum; 3921 ovfs.vfc_refcount = vfsp->vfc_refcount; 3922 ovfs.vfc_flags = vfsp->vfc_flags; 3923 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 3924 if (error != 0) { 3925 vfsconf_sunlock(); 3926 return (error); 3927 } 3928 } 3929 vfsconf_sunlock(); 3930 return (0); 3931 } 3932 3933 #endif /* 1 || COMPAT_PRELITE2 */ 3934 #endif /* !BURN_BRIDGES */ 3935 3936 #define KINFO_VNODESLOP 10 3937 #ifdef notyet 3938 /* 3939 * Dump vnode list (via sysctl). 3940 */ 3941 /* ARGSUSED */ 3942 static int 3943 sysctl_vnode(SYSCTL_HANDLER_ARGS) 3944 { 3945 struct xvnode *xvn; 3946 struct mount *mp; 3947 struct vnode *vp; 3948 int error, len, n; 3949 3950 /* 3951 * Stale numvnodes access is not fatal here. 3952 */ 3953 req->lock = 0; 3954 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn; 3955 if (!req->oldptr) 3956 /* Make an estimate */ 3957 return (SYSCTL_OUT(req, 0, len)); 3958 3959 error = sysctl_wire_old_buffer(req, 0); 3960 if (error != 0) 3961 return (error); 3962 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK); 3963 n = 0; 3964 mtx_lock(&mountlist_mtx); 3965 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3966 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 3967 continue; 3968 MNT_ILOCK(mp); 3969 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3970 if (n == len) 3971 break; 3972 vref(vp); 3973 xvn[n].xv_size = sizeof *xvn; 3974 xvn[n].xv_vnode = vp; 3975 xvn[n].xv_id = 0; /* XXX compat */ 3976 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field 3977 XV_COPY(usecount); 3978 XV_COPY(writecount); 3979 XV_COPY(holdcnt); 3980 XV_COPY(mount); 3981 XV_COPY(numoutput); 3982 XV_COPY(type); 3983 #undef XV_COPY 3984 xvn[n].xv_flag = vp->v_vflag; 3985 3986 switch (vp->v_type) { 3987 case VREG: 3988 case VDIR: 3989 case VLNK: 3990 break; 3991 case VBLK: 3992 case VCHR: 3993 if (vp->v_rdev == NULL) { 3994 vrele(vp); 3995 continue; 3996 } 3997 xvn[n].xv_dev = dev2udev(vp->v_rdev); 3998 break; 3999 case VSOCK: 4000 xvn[n].xv_socket = vp->v_socket; 4001 break; 4002 case VFIFO: 4003 xvn[n].xv_fifo = vp->v_fifoinfo; 4004 break; 4005 case VNON: 4006 case VBAD: 4007 default: 4008 /* shouldn't happen? */ 4009 vrele(vp); 4010 continue; 4011 } 4012 vrele(vp); 4013 ++n; 4014 } 4015 MNT_IUNLOCK(mp); 4016 mtx_lock(&mountlist_mtx); 4017 vfs_unbusy(mp); 4018 if (n == len) 4019 break; 4020 } 4021 mtx_unlock(&mountlist_mtx); 4022 4023 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn); 4024 free(xvn, M_TEMP); 4025 return (error); 4026 } 4027 4028 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD | 4029 CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode", 4030 ""); 4031 #endif 4032 4033 static void 4034 unmount_or_warn(struct mount *mp) 4035 { 4036 int error; 4037 4038 error = dounmount(mp, MNT_FORCE, curthread); 4039 if (error != 0) { 4040 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); 4041 if (error == EBUSY) 4042 printf("BUSY)\n"); 4043 else 4044 printf("%d)\n", error); 4045 } 4046 } 4047 4048 /* 4049 * Unmount all filesystems. The list is traversed in reverse order 4050 * of mounting to avoid dependencies. 4051 */ 4052 void 4053 vfs_unmountall(void) 4054 { 4055 struct mount *mp, *tmp; 4056 4057 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 4058 4059 /* 4060 * Since this only runs when rebooting, it is not interlocked. 4061 */ 4062 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) { 4063 vfs_ref(mp); 4064 4065 /* 4066 * Forcibly unmounting "/dev" before "/" would prevent clean 4067 * unmount of the latter. 4068 */ 4069 if (mp == rootdevmp) 4070 continue; 4071 4072 unmount_or_warn(mp); 4073 } 4074 4075 if (rootdevmp != NULL) 4076 unmount_or_warn(rootdevmp); 4077 } 4078 4079 /* 4080 * perform msync on all vnodes under a mount point 4081 * the mount point must be locked. 4082 */ 4083 void 4084 vfs_msync(struct mount *mp, int flags) 4085 { 4086 struct vnode *vp, *mvp; 4087 struct vm_object *obj; 4088 4089 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 4090 4091 vnlru_return_batch(mp); 4092 4093 MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) { 4094 obj = vp->v_object; 4095 if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 && 4096 (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) { 4097 if (!vget(vp, 4098 LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, 4099 curthread)) { 4100 if (vp->v_vflag & VV_NOSYNC) { /* unlinked */ 4101 vput(vp); 4102 continue; 4103 } 4104 4105 obj = vp->v_object; 4106 if (obj != NULL) { 4107 VM_OBJECT_WLOCK(obj); 4108 vm_object_page_clean(obj, 0, 0, 4109 flags == MNT_WAIT ? 4110 OBJPC_SYNC : OBJPC_NOSYNC); 4111 VM_OBJECT_WUNLOCK(obj); 4112 } 4113 vput(vp); 4114 } 4115 } else 4116 VI_UNLOCK(vp); 4117 } 4118 } 4119 4120 static void 4121 destroy_vpollinfo_free(struct vpollinfo *vi) 4122 { 4123 4124 knlist_destroy(&vi->vpi_selinfo.si_note); 4125 mtx_destroy(&vi->vpi_lock); 4126 uma_zfree(vnodepoll_zone, vi); 4127 } 4128 4129 static void 4130 destroy_vpollinfo(struct vpollinfo *vi) 4131 { 4132 4133 knlist_clear(&vi->vpi_selinfo.si_note, 1); 4134 seldrain(&vi->vpi_selinfo); 4135 destroy_vpollinfo_free(vi); 4136 } 4137 4138 /* 4139 * Initialize per-vnode helper structure to hold poll-related state. 4140 */ 4141 void 4142 v_addpollinfo(struct vnode *vp) 4143 { 4144 struct vpollinfo *vi; 4145 4146 if (vp->v_pollinfo != NULL) 4147 return; 4148 vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO); 4149 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 4150 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 4151 vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked); 4152 VI_LOCK(vp); 4153 if (vp->v_pollinfo != NULL) { 4154 VI_UNLOCK(vp); 4155 destroy_vpollinfo_free(vi); 4156 return; 4157 } 4158 vp->v_pollinfo = vi; 4159 VI_UNLOCK(vp); 4160 } 4161 4162 /* 4163 * Record a process's interest in events which might happen to 4164 * a vnode. Because poll uses the historic select-style interface 4165 * internally, this routine serves as both the ``check for any 4166 * pending events'' and the ``record my interest in future events'' 4167 * functions. (These are done together, while the lock is held, 4168 * to avoid race conditions.) 4169 */ 4170 int 4171 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 4172 { 4173 4174 v_addpollinfo(vp); 4175 mtx_lock(&vp->v_pollinfo->vpi_lock); 4176 if (vp->v_pollinfo->vpi_revents & events) { 4177 /* 4178 * This leaves events we are not interested 4179 * in available for the other process which 4180 * which presumably had requested them 4181 * (otherwise they would never have been 4182 * recorded). 4183 */ 4184 events &= vp->v_pollinfo->vpi_revents; 4185 vp->v_pollinfo->vpi_revents &= ~events; 4186 4187 mtx_unlock(&vp->v_pollinfo->vpi_lock); 4188 return (events); 4189 } 4190 vp->v_pollinfo->vpi_events |= events; 4191 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 4192 mtx_unlock(&vp->v_pollinfo->vpi_lock); 4193 return (0); 4194 } 4195 4196 /* 4197 * Routine to create and manage a filesystem syncer vnode. 4198 */ 4199 #define sync_close ((int (*)(struct vop_close_args *))nullop) 4200 static int sync_fsync(struct vop_fsync_args *); 4201 static int sync_inactive(struct vop_inactive_args *); 4202 static int sync_reclaim(struct vop_reclaim_args *); 4203 4204 static struct vop_vector sync_vnodeops = { 4205 .vop_bypass = VOP_EOPNOTSUPP, 4206 .vop_close = sync_close, /* close */ 4207 .vop_fsync = sync_fsync, /* fsync */ 4208 .vop_inactive = sync_inactive, /* inactive */ 4209 .vop_reclaim = sync_reclaim, /* reclaim */ 4210 .vop_lock1 = vop_stdlock, /* lock */ 4211 .vop_unlock = vop_stdunlock, /* unlock */ 4212 .vop_islocked = vop_stdislocked, /* islocked */ 4213 }; 4214 4215 /* 4216 * Create a new filesystem syncer vnode for the specified mount point. 4217 */ 4218 void 4219 vfs_allocate_syncvnode(struct mount *mp) 4220 { 4221 struct vnode *vp; 4222 struct bufobj *bo; 4223 static long start, incr, next; 4224 int error; 4225 4226 /* Allocate a new vnode */ 4227 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 4228 if (error != 0) 4229 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 4230 vp->v_type = VNON; 4231 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 4232 vp->v_vflag |= VV_FORCEINSMQ; 4233 error = insmntque(vp, mp); 4234 if (error != 0) 4235 panic("vfs_allocate_syncvnode: insmntque() failed"); 4236 vp->v_vflag &= ~VV_FORCEINSMQ; 4237 VOP_UNLOCK(vp, 0); 4238 /* 4239 * Place the vnode onto the syncer worklist. We attempt to 4240 * scatter them about on the list so that they will go off 4241 * at evenly distributed times even if all the filesystems 4242 * are mounted at once. 4243 */ 4244 next += incr; 4245 if (next == 0 || next > syncer_maxdelay) { 4246 start /= 2; 4247 incr /= 2; 4248 if (start == 0) { 4249 start = syncer_maxdelay / 2; 4250 incr = syncer_maxdelay; 4251 } 4252 next = start; 4253 } 4254 bo = &vp->v_bufobj; 4255 BO_LOCK(bo); 4256 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 4257 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 4258 mtx_lock(&sync_mtx); 4259 sync_vnode_count++; 4260 if (mp->mnt_syncer == NULL) { 4261 mp->mnt_syncer = vp; 4262 vp = NULL; 4263 } 4264 mtx_unlock(&sync_mtx); 4265 BO_UNLOCK(bo); 4266 if (vp != NULL) { 4267 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 4268 vgone(vp); 4269 vput(vp); 4270 } 4271 } 4272 4273 void 4274 vfs_deallocate_syncvnode(struct mount *mp) 4275 { 4276 struct vnode *vp; 4277 4278 mtx_lock(&sync_mtx); 4279 vp = mp->mnt_syncer; 4280 if (vp != NULL) 4281 mp->mnt_syncer = NULL; 4282 mtx_unlock(&sync_mtx); 4283 if (vp != NULL) 4284 vrele(vp); 4285 } 4286 4287 /* 4288 * Do a lazy sync of the filesystem. 4289 */ 4290 static int 4291 sync_fsync(struct vop_fsync_args *ap) 4292 { 4293 struct vnode *syncvp = ap->a_vp; 4294 struct mount *mp = syncvp->v_mount; 4295 int error, save; 4296 struct bufobj *bo; 4297 4298 /* 4299 * We only need to do something if this is a lazy evaluation. 4300 */ 4301 if (ap->a_waitfor != MNT_LAZY) 4302 return (0); 4303 4304 /* 4305 * Move ourselves to the back of the sync list. 4306 */ 4307 bo = &syncvp->v_bufobj; 4308 BO_LOCK(bo); 4309 vn_syncer_add_to_worklist(bo, syncdelay); 4310 BO_UNLOCK(bo); 4311 4312 /* 4313 * Walk the list of vnodes pushing all that are dirty and 4314 * not already on the sync list. 4315 */ 4316 if (vfs_busy(mp, MBF_NOWAIT) != 0) 4317 return (0); 4318 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { 4319 vfs_unbusy(mp); 4320 return (0); 4321 } 4322 save = curthread_pflags_set(TDP_SYNCIO); 4323 vfs_msync(mp, MNT_NOWAIT); 4324 error = VFS_SYNC(mp, MNT_LAZY); 4325 curthread_pflags_restore(save); 4326 vn_finished_write(mp); 4327 vfs_unbusy(mp); 4328 return (error); 4329 } 4330 4331 /* 4332 * The syncer vnode is no referenced. 4333 */ 4334 static int 4335 sync_inactive(struct vop_inactive_args *ap) 4336 { 4337 4338 vgone(ap->a_vp); 4339 return (0); 4340 } 4341 4342 /* 4343 * The syncer vnode is no longer needed and is being decommissioned. 4344 * 4345 * Modifications to the worklist must be protected by sync_mtx. 4346 */ 4347 static int 4348 sync_reclaim(struct vop_reclaim_args *ap) 4349 { 4350 struct vnode *vp = ap->a_vp; 4351 struct bufobj *bo; 4352 4353 bo = &vp->v_bufobj; 4354 BO_LOCK(bo); 4355 mtx_lock(&sync_mtx); 4356 if (vp->v_mount->mnt_syncer == vp) 4357 vp->v_mount->mnt_syncer = NULL; 4358 if (bo->bo_flag & BO_ONWORKLST) { 4359 LIST_REMOVE(bo, bo_synclist); 4360 syncer_worklist_len--; 4361 sync_vnode_count--; 4362 bo->bo_flag &= ~BO_ONWORKLST; 4363 } 4364 mtx_unlock(&sync_mtx); 4365 BO_UNLOCK(bo); 4366 4367 return (0); 4368 } 4369 4370 /* 4371 * Check if vnode represents a disk device 4372 */ 4373 int 4374 vn_isdisk(struct vnode *vp, int *errp) 4375 { 4376 int error; 4377 4378 if (vp->v_type != VCHR) { 4379 error = ENOTBLK; 4380 goto out; 4381 } 4382 error = 0; 4383 dev_lock(); 4384 if (vp->v_rdev == NULL) 4385 error = ENXIO; 4386 else if (vp->v_rdev->si_devsw == NULL) 4387 error = ENXIO; 4388 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 4389 error = ENOTBLK; 4390 dev_unlock(); 4391 out: 4392 if (errp != NULL) 4393 *errp = error; 4394 return (error == 0); 4395 } 4396 4397 /* 4398 * Common filesystem object access control check routine. Accepts a 4399 * vnode's type, "mode", uid and gid, requested access mode, credentials, 4400 * and optional call-by-reference privused argument allowing vaccess() 4401 * to indicate to the caller whether privilege was used to satisfy the 4402 * request (obsoleted). Returns 0 on success, or an errno on failure. 4403 */ 4404 int 4405 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 4406 accmode_t accmode, struct ucred *cred, int *privused) 4407 { 4408 accmode_t dac_granted; 4409 accmode_t priv_granted; 4410 4411 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 4412 ("invalid bit in accmode")); 4413 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 4414 ("VAPPEND without VWRITE")); 4415 4416 /* 4417 * Look for a normal, non-privileged way to access the file/directory 4418 * as requested. If it exists, go with that. 4419 */ 4420 4421 if (privused != NULL) 4422 *privused = 0; 4423 4424 dac_granted = 0; 4425 4426 /* Check the owner. */ 4427 if (cred->cr_uid == file_uid) { 4428 dac_granted |= VADMIN; 4429 if (file_mode & S_IXUSR) 4430 dac_granted |= VEXEC; 4431 if (file_mode & S_IRUSR) 4432 dac_granted |= VREAD; 4433 if (file_mode & S_IWUSR) 4434 dac_granted |= (VWRITE | VAPPEND); 4435 4436 if ((accmode & dac_granted) == accmode) 4437 return (0); 4438 4439 goto privcheck; 4440 } 4441 4442 /* Otherwise, check the groups (first match) */ 4443 if (groupmember(file_gid, cred)) { 4444 if (file_mode & S_IXGRP) 4445 dac_granted |= VEXEC; 4446 if (file_mode & S_IRGRP) 4447 dac_granted |= VREAD; 4448 if (file_mode & S_IWGRP) 4449 dac_granted |= (VWRITE | VAPPEND); 4450 4451 if ((accmode & dac_granted) == accmode) 4452 return (0); 4453 4454 goto privcheck; 4455 } 4456 4457 /* Otherwise, check everyone else. */ 4458 if (file_mode & S_IXOTH) 4459 dac_granted |= VEXEC; 4460 if (file_mode & S_IROTH) 4461 dac_granted |= VREAD; 4462 if (file_mode & S_IWOTH) 4463 dac_granted |= (VWRITE | VAPPEND); 4464 if ((accmode & dac_granted) == accmode) 4465 return (0); 4466 4467 privcheck: 4468 /* 4469 * Build a privilege mask to determine if the set of privileges 4470 * satisfies the requirements when combined with the granted mask 4471 * from above. For each privilege, if the privilege is required, 4472 * bitwise or the request type onto the priv_granted mask. 4473 */ 4474 priv_granted = 0; 4475 4476 if (type == VDIR) { 4477 /* 4478 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 4479 * requests, instead of PRIV_VFS_EXEC. 4480 */ 4481 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 4482 !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0)) 4483 priv_granted |= VEXEC; 4484 } else { 4485 /* 4486 * Ensure that at least one execute bit is on. Otherwise, 4487 * a privileged user will always succeed, and we don't want 4488 * this to happen unless the file really is executable. 4489 */ 4490 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 4491 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 4492 !priv_check_cred(cred, PRIV_VFS_EXEC, 0)) 4493 priv_granted |= VEXEC; 4494 } 4495 4496 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 4497 !priv_check_cred(cred, PRIV_VFS_READ, 0)) 4498 priv_granted |= VREAD; 4499 4500 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 4501 !priv_check_cred(cred, PRIV_VFS_WRITE, 0)) 4502 priv_granted |= (VWRITE | VAPPEND); 4503 4504 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 4505 !priv_check_cred(cred, PRIV_VFS_ADMIN, 0)) 4506 priv_granted |= VADMIN; 4507 4508 if ((accmode & (priv_granted | dac_granted)) == accmode) { 4509 /* XXX audit: privilege used */ 4510 if (privused != NULL) 4511 *privused = 1; 4512 return (0); 4513 } 4514 4515 return ((accmode & VADMIN) ? EPERM : EACCES); 4516 } 4517 4518 /* 4519 * Credential check based on process requesting service, and per-attribute 4520 * permissions. 4521 */ 4522 int 4523 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 4524 struct thread *td, accmode_t accmode) 4525 { 4526 4527 /* 4528 * Kernel-invoked always succeeds. 4529 */ 4530 if (cred == NOCRED) 4531 return (0); 4532 4533 /* 4534 * Do not allow privileged processes in jail to directly manipulate 4535 * system attributes. 4536 */ 4537 switch (attrnamespace) { 4538 case EXTATTR_NAMESPACE_SYSTEM: 4539 /* Potentially should be: return (EPERM); */ 4540 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0)); 4541 case EXTATTR_NAMESPACE_USER: 4542 return (VOP_ACCESS(vp, accmode, cred, td)); 4543 default: 4544 return (EPERM); 4545 } 4546 } 4547 4548 #ifdef DEBUG_VFS_LOCKS 4549 /* 4550 * This only exists to suppress warnings from unlocked specfs accesses. It is 4551 * no longer ok to have an unlocked VFS. 4552 */ 4553 #define IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL || \ 4554 (vp)->v_type == VCHR || (vp)->v_type == VBAD) 4555 4556 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 4557 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 4558 "Drop into debugger on lock violation"); 4559 4560 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 4561 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 4562 0, "Check for interlock across VOPs"); 4563 4564 int vfs_badlock_print = 1; /* Print lock violations. */ 4565 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 4566 0, "Print lock violations"); 4567 4568 int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */ 4569 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode, 4570 0, "Print vnode details on lock violations"); 4571 4572 #ifdef KDB 4573 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 4574 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 4575 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 4576 #endif 4577 4578 static void 4579 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 4580 { 4581 4582 #ifdef KDB 4583 if (vfs_badlock_backtrace) 4584 kdb_backtrace(); 4585 #endif 4586 if (vfs_badlock_vnode) 4587 vn_printf(vp, "vnode "); 4588 if (vfs_badlock_print) 4589 printf("%s: %p %s\n", str, (void *)vp, msg); 4590 if (vfs_badlock_ddb) 4591 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 4592 } 4593 4594 void 4595 assert_vi_locked(struct vnode *vp, const char *str) 4596 { 4597 4598 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 4599 vfs_badlock("interlock is not locked but should be", str, vp); 4600 } 4601 4602 void 4603 assert_vi_unlocked(struct vnode *vp, const char *str) 4604 { 4605 4606 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 4607 vfs_badlock("interlock is locked but should not be", str, vp); 4608 } 4609 4610 void 4611 assert_vop_locked(struct vnode *vp, const char *str) 4612 { 4613 int locked; 4614 4615 if (!IGNORE_LOCK(vp)) { 4616 locked = VOP_ISLOCKED(vp); 4617 if (locked == 0 || locked == LK_EXCLOTHER) 4618 vfs_badlock("is not locked but should be", str, vp); 4619 } 4620 } 4621 4622 void 4623 assert_vop_unlocked(struct vnode *vp, const char *str) 4624 { 4625 4626 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 4627 vfs_badlock("is locked but should not be", str, vp); 4628 } 4629 4630 void 4631 assert_vop_elocked(struct vnode *vp, const char *str) 4632 { 4633 4634 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 4635 vfs_badlock("is not exclusive locked but should be", str, vp); 4636 } 4637 #endif /* DEBUG_VFS_LOCKS */ 4638 4639 void 4640 vop_rename_fail(struct vop_rename_args *ap) 4641 { 4642 4643 if (ap->a_tvp != NULL) 4644 vput(ap->a_tvp); 4645 if (ap->a_tdvp == ap->a_tvp) 4646 vrele(ap->a_tdvp); 4647 else 4648 vput(ap->a_tdvp); 4649 vrele(ap->a_fdvp); 4650 vrele(ap->a_fvp); 4651 } 4652 4653 void 4654 vop_rename_pre(void *ap) 4655 { 4656 struct vop_rename_args *a = ap; 4657 4658 #ifdef DEBUG_VFS_LOCKS 4659 if (a->a_tvp) 4660 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 4661 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 4662 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 4663 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 4664 4665 /* Check the source (from). */ 4666 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 4667 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 4668 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 4669 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 4670 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 4671 4672 /* Check the target. */ 4673 if (a->a_tvp) 4674 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 4675 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 4676 #endif 4677 if (a->a_tdvp != a->a_fdvp) 4678 vhold(a->a_fdvp); 4679 if (a->a_tvp != a->a_fvp) 4680 vhold(a->a_fvp); 4681 vhold(a->a_tdvp); 4682 if (a->a_tvp) 4683 vhold(a->a_tvp); 4684 } 4685 4686 #ifdef DEBUG_VFS_LOCKS 4687 void 4688 vop_strategy_pre(void *ap) 4689 { 4690 struct vop_strategy_args *a; 4691 struct buf *bp; 4692 4693 a = ap; 4694 bp = a->a_bp; 4695 4696 /* 4697 * Cluster ops lock their component buffers but not the IO container. 4698 */ 4699 if ((bp->b_flags & B_CLUSTER) != 0) 4700 return; 4701 4702 if (panicstr == NULL && !BUF_ISLOCKED(bp)) { 4703 if (vfs_badlock_print) 4704 printf( 4705 "VOP_STRATEGY: bp is not locked but should be\n"); 4706 if (vfs_badlock_ddb) 4707 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 4708 } 4709 } 4710 4711 void 4712 vop_lock_pre(void *ap) 4713 { 4714 struct vop_lock1_args *a = ap; 4715 4716 if ((a->a_flags & LK_INTERLOCK) == 0) 4717 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 4718 else 4719 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 4720 } 4721 4722 void 4723 vop_lock_post(void *ap, int rc) 4724 { 4725 struct vop_lock1_args *a = ap; 4726 4727 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 4728 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 4729 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 4730 } 4731 4732 void 4733 vop_unlock_pre(void *ap) 4734 { 4735 struct vop_unlock_args *a = ap; 4736 4737 if (a->a_flags & LK_INTERLOCK) 4738 ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK"); 4739 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK"); 4740 } 4741 4742 void 4743 vop_unlock_post(void *ap, int rc) 4744 { 4745 struct vop_unlock_args *a = ap; 4746 4747 if (a->a_flags & LK_INTERLOCK) 4748 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK"); 4749 } 4750 #endif 4751 4752 void 4753 vop_create_post(void *ap, int rc) 4754 { 4755 struct vop_create_args *a = ap; 4756 4757 if (!rc) 4758 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4759 } 4760 4761 void 4762 vop_deleteextattr_post(void *ap, int rc) 4763 { 4764 struct vop_deleteextattr_args *a = ap; 4765 4766 if (!rc) 4767 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4768 } 4769 4770 void 4771 vop_link_post(void *ap, int rc) 4772 { 4773 struct vop_link_args *a = ap; 4774 4775 if (!rc) { 4776 VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK); 4777 VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE); 4778 } 4779 } 4780 4781 void 4782 vop_mkdir_post(void *ap, int rc) 4783 { 4784 struct vop_mkdir_args *a = ap; 4785 4786 if (!rc) 4787 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 4788 } 4789 4790 void 4791 vop_mknod_post(void *ap, int rc) 4792 { 4793 struct vop_mknod_args *a = ap; 4794 4795 if (!rc) 4796 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4797 } 4798 4799 void 4800 vop_reclaim_post(void *ap, int rc) 4801 { 4802 struct vop_reclaim_args *a = ap; 4803 4804 if (!rc) 4805 VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE); 4806 } 4807 4808 void 4809 vop_remove_post(void *ap, int rc) 4810 { 4811 struct vop_remove_args *a = ap; 4812 4813 if (!rc) { 4814 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4815 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 4816 } 4817 } 4818 4819 void 4820 vop_rename_post(void *ap, int rc) 4821 { 4822 struct vop_rename_args *a = ap; 4823 long hint; 4824 4825 if (!rc) { 4826 hint = NOTE_WRITE; 4827 if (a->a_fdvp == a->a_tdvp) { 4828 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR) 4829 hint |= NOTE_LINK; 4830 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 4831 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 4832 } else { 4833 hint |= NOTE_EXTEND; 4834 if (a->a_fvp->v_type == VDIR) 4835 hint |= NOTE_LINK; 4836 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 4837 4838 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL && 4839 a->a_tvp->v_type == VDIR) 4840 hint &= ~NOTE_LINK; 4841 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 4842 } 4843 4844 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 4845 if (a->a_tvp) 4846 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 4847 } 4848 if (a->a_tdvp != a->a_fdvp) 4849 vdrop(a->a_fdvp); 4850 if (a->a_tvp != a->a_fvp) 4851 vdrop(a->a_fvp); 4852 vdrop(a->a_tdvp); 4853 if (a->a_tvp) 4854 vdrop(a->a_tvp); 4855 } 4856 4857 void 4858 vop_rmdir_post(void *ap, int rc) 4859 { 4860 struct vop_rmdir_args *a = ap; 4861 4862 if (!rc) { 4863 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 4864 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 4865 } 4866 } 4867 4868 void 4869 vop_setattr_post(void *ap, int rc) 4870 { 4871 struct vop_setattr_args *a = ap; 4872 4873 if (!rc) 4874 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4875 } 4876 4877 void 4878 vop_setextattr_post(void *ap, int rc) 4879 { 4880 struct vop_setextattr_args *a = ap; 4881 4882 if (!rc) 4883 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4884 } 4885 4886 void 4887 vop_symlink_post(void *ap, int rc) 4888 { 4889 struct vop_symlink_args *a = ap; 4890 4891 if (!rc) 4892 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4893 } 4894 4895 void 4896 vop_open_post(void *ap, int rc) 4897 { 4898 struct vop_open_args *a = ap; 4899 4900 if (!rc) 4901 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN); 4902 } 4903 4904 void 4905 vop_close_post(void *ap, int rc) 4906 { 4907 struct vop_close_args *a = ap; 4908 4909 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */ 4910 (a->a_vp->v_iflag & VI_DOOMED) == 0)) { 4911 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ? 4912 NOTE_CLOSE_WRITE : NOTE_CLOSE); 4913 } 4914 } 4915 4916 void 4917 vop_read_post(void *ap, int rc) 4918 { 4919 struct vop_read_args *a = ap; 4920 4921 if (!rc) 4922 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 4923 } 4924 4925 void 4926 vop_readdir_post(void *ap, int rc) 4927 { 4928 struct vop_readdir_args *a = ap; 4929 4930 if (!rc) 4931 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 4932 } 4933 4934 static struct knlist fs_knlist; 4935 4936 static void 4937 vfs_event_init(void *arg) 4938 { 4939 knlist_init_mtx(&fs_knlist, NULL); 4940 } 4941 /* XXX - correct order? */ 4942 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 4943 4944 void 4945 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 4946 { 4947 4948 KNOTE_UNLOCKED(&fs_knlist, event); 4949 } 4950 4951 static int filt_fsattach(struct knote *kn); 4952 static void filt_fsdetach(struct knote *kn); 4953 static int filt_fsevent(struct knote *kn, long hint); 4954 4955 struct filterops fs_filtops = { 4956 .f_isfd = 0, 4957 .f_attach = filt_fsattach, 4958 .f_detach = filt_fsdetach, 4959 .f_event = filt_fsevent 4960 }; 4961 4962 static int 4963 filt_fsattach(struct knote *kn) 4964 { 4965 4966 kn->kn_flags |= EV_CLEAR; 4967 knlist_add(&fs_knlist, kn, 0); 4968 return (0); 4969 } 4970 4971 static void 4972 filt_fsdetach(struct knote *kn) 4973 { 4974 4975 knlist_remove(&fs_knlist, kn, 0); 4976 } 4977 4978 static int 4979 filt_fsevent(struct knote *kn, long hint) 4980 { 4981 4982 kn->kn_fflags |= hint; 4983 return (kn->kn_fflags != 0); 4984 } 4985 4986 static int 4987 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 4988 { 4989 struct vfsidctl vc; 4990 int error; 4991 struct mount *mp; 4992 4993 error = SYSCTL_IN(req, &vc, sizeof(vc)); 4994 if (error) 4995 return (error); 4996 if (vc.vc_vers != VFS_CTL_VERS1) 4997 return (EINVAL); 4998 mp = vfs_getvfs(&vc.vc_fsid); 4999 if (mp == NULL) 5000 return (ENOENT); 5001 /* ensure that a specific sysctl goes to the right filesystem. */ 5002 if (strcmp(vc.vc_fstypename, "*") != 0 && 5003 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 5004 vfs_rel(mp); 5005 return (EINVAL); 5006 } 5007 VCTLTOREQ(&vc, req); 5008 error = VFS_SYSCTL(mp, vc.vc_op, req); 5009 vfs_rel(mp); 5010 return (error); 5011 } 5012 5013 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR, 5014 NULL, 0, sysctl_vfs_ctl, "", 5015 "Sysctl by fsid"); 5016 5017 /* 5018 * Function to initialize a va_filerev field sensibly. 5019 * XXX: Wouldn't a random number make a lot more sense ?? 5020 */ 5021 u_quad_t 5022 init_va_filerev(void) 5023 { 5024 struct bintime bt; 5025 5026 getbinuptime(&bt); 5027 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 5028 } 5029 5030 static int filt_vfsread(struct knote *kn, long hint); 5031 static int filt_vfswrite(struct knote *kn, long hint); 5032 static int filt_vfsvnode(struct knote *kn, long hint); 5033 static void filt_vfsdetach(struct knote *kn); 5034 static struct filterops vfsread_filtops = { 5035 .f_isfd = 1, 5036 .f_detach = filt_vfsdetach, 5037 .f_event = filt_vfsread 5038 }; 5039 static struct filterops vfswrite_filtops = { 5040 .f_isfd = 1, 5041 .f_detach = filt_vfsdetach, 5042 .f_event = filt_vfswrite 5043 }; 5044 static struct filterops vfsvnode_filtops = { 5045 .f_isfd = 1, 5046 .f_detach = filt_vfsdetach, 5047 .f_event = filt_vfsvnode 5048 }; 5049 5050 static void 5051 vfs_knllock(void *arg) 5052 { 5053 struct vnode *vp = arg; 5054 5055 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5056 } 5057 5058 static void 5059 vfs_knlunlock(void *arg) 5060 { 5061 struct vnode *vp = arg; 5062 5063 VOP_UNLOCK(vp, 0); 5064 } 5065 5066 static void 5067 vfs_knl_assert_locked(void *arg) 5068 { 5069 #ifdef DEBUG_VFS_LOCKS 5070 struct vnode *vp = arg; 5071 5072 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 5073 #endif 5074 } 5075 5076 static void 5077 vfs_knl_assert_unlocked(void *arg) 5078 { 5079 #ifdef DEBUG_VFS_LOCKS 5080 struct vnode *vp = arg; 5081 5082 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 5083 #endif 5084 } 5085 5086 int 5087 vfs_kqfilter(struct vop_kqfilter_args *ap) 5088 { 5089 struct vnode *vp = ap->a_vp; 5090 struct knote *kn = ap->a_kn; 5091 struct knlist *knl; 5092 5093 switch (kn->kn_filter) { 5094 case EVFILT_READ: 5095 kn->kn_fop = &vfsread_filtops; 5096 break; 5097 case EVFILT_WRITE: 5098 kn->kn_fop = &vfswrite_filtops; 5099 break; 5100 case EVFILT_VNODE: 5101 kn->kn_fop = &vfsvnode_filtops; 5102 break; 5103 default: 5104 return (EINVAL); 5105 } 5106 5107 kn->kn_hook = (caddr_t)vp; 5108 5109 v_addpollinfo(vp); 5110 if (vp->v_pollinfo == NULL) 5111 return (ENOMEM); 5112 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 5113 vhold(vp); 5114 knlist_add(knl, kn, 0); 5115 5116 return (0); 5117 } 5118 5119 /* 5120 * Detach knote from vnode 5121 */ 5122 static void 5123 filt_vfsdetach(struct knote *kn) 5124 { 5125 struct vnode *vp = (struct vnode *)kn->kn_hook; 5126 5127 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 5128 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 5129 vdrop(vp); 5130 } 5131 5132 /*ARGSUSED*/ 5133 static int 5134 filt_vfsread(struct knote *kn, long hint) 5135 { 5136 struct vnode *vp = (struct vnode *)kn->kn_hook; 5137 struct vattr va; 5138 int res; 5139 5140 /* 5141 * filesystem is gone, so set the EOF flag and schedule 5142 * the knote for deletion. 5143 */ 5144 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 5145 VI_LOCK(vp); 5146 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 5147 VI_UNLOCK(vp); 5148 return (1); 5149 } 5150 5151 if (VOP_GETATTR(vp, &va, curthread->td_ucred)) 5152 return (0); 5153 5154 VI_LOCK(vp); 5155 kn->kn_data = va.va_size - kn->kn_fp->f_offset; 5156 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0; 5157 VI_UNLOCK(vp); 5158 return (res); 5159 } 5160 5161 /*ARGSUSED*/ 5162 static int 5163 filt_vfswrite(struct knote *kn, long hint) 5164 { 5165 struct vnode *vp = (struct vnode *)kn->kn_hook; 5166 5167 VI_LOCK(vp); 5168 5169 /* 5170 * filesystem is gone, so set the EOF flag and schedule 5171 * the knote for deletion. 5172 */ 5173 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) 5174 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 5175 5176 kn->kn_data = 0; 5177 VI_UNLOCK(vp); 5178 return (1); 5179 } 5180 5181 static int 5182 filt_vfsvnode(struct knote *kn, long hint) 5183 { 5184 struct vnode *vp = (struct vnode *)kn->kn_hook; 5185 int res; 5186 5187 VI_LOCK(vp); 5188 if (kn->kn_sfflags & hint) 5189 kn->kn_fflags |= hint; 5190 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 5191 kn->kn_flags |= EV_EOF; 5192 VI_UNLOCK(vp); 5193 return (1); 5194 } 5195 res = (kn->kn_fflags != 0); 5196 VI_UNLOCK(vp); 5197 return (res); 5198 } 5199 5200 int 5201 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 5202 { 5203 int error; 5204 5205 if (dp->d_reclen > ap->a_uio->uio_resid) 5206 return (ENAMETOOLONG); 5207 error = uiomove(dp, dp->d_reclen, ap->a_uio); 5208 if (error) { 5209 if (ap->a_ncookies != NULL) { 5210 if (ap->a_cookies != NULL) 5211 free(ap->a_cookies, M_TEMP); 5212 ap->a_cookies = NULL; 5213 *ap->a_ncookies = 0; 5214 } 5215 return (error); 5216 } 5217 if (ap->a_ncookies == NULL) 5218 return (0); 5219 5220 KASSERT(ap->a_cookies, 5221 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 5222 5223 *ap->a_cookies = realloc(*ap->a_cookies, 5224 (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO); 5225 (*ap->a_cookies)[*ap->a_ncookies] = off; 5226 *ap->a_ncookies += 1; 5227 return (0); 5228 } 5229 5230 /* 5231 * Mark for update the access time of the file if the filesystem 5232 * supports VOP_MARKATIME. This functionality is used by execve and 5233 * mmap, so we want to avoid the I/O implied by directly setting 5234 * va_atime for the sake of efficiency. 5235 */ 5236 void 5237 vfs_mark_atime(struct vnode *vp, struct ucred *cred) 5238 { 5239 struct mount *mp; 5240 5241 mp = vp->v_mount; 5242 ASSERT_VOP_LOCKED(vp, "vfs_mark_atime"); 5243 if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 5244 (void)VOP_MARKATIME(vp); 5245 } 5246 5247 /* 5248 * The purpose of this routine is to remove granularity from accmode_t, 5249 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 5250 * VADMIN and VAPPEND. 5251 * 5252 * If it returns 0, the caller is supposed to continue with the usual 5253 * access checks using 'accmode' as modified by this routine. If it 5254 * returns nonzero value, the caller is supposed to return that value 5255 * as errno. 5256 * 5257 * Note that after this routine runs, accmode may be zero. 5258 */ 5259 int 5260 vfs_unixify_accmode(accmode_t *accmode) 5261 { 5262 /* 5263 * There is no way to specify explicit "deny" rule using 5264 * file mode or POSIX.1e ACLs. 5265 */ 5266 if (*accmode & VEXPLICIT_DENY) { 5267 *accmode = 0; 5268 return (0); 5269 } 5270 5271 /* 5272 * None of these can be translated into usual access bits. 5273 * Also, the common case for NFSv4 ACLs is to not contain 5274 * either of these bits. Caller should check for VWRITE 5275 * on the containing directory instead. 5276 */ 5277 if (*accmode & (VDELETE_CHILD | VDELETE)) 5278 return (EPERM); 5279 5280 if (*accmode & VADMIN_PERMS) { 5281 *accmode &= ~VADMIN_PERMS; 5282 *accmode |= VADMIN; 5283 } 5284 5285 /* 5286 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 5287 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 5288 */ 5289 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 5290 5291 return (0); 5292 } 5293 5294 /* 5295 * These are helper functions for filesystems to traverse all 5296 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 5297 * 5298 * This interface replaces MNT_VNODE_FOREACH. 5299 */ 5300 5301 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 5302 5303 struct vnode * 5304 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 5305 { 5306 struct vnode *vp; 5307 5308 if (should_yield()) 5309 kern_yield(PRI_USER); 5310 MNT_ILOCK(mp); 5311 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 5312 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL; 5313 vp = TAILQ_NEXT(vp, v_nmntvnodes)) { 5314 /* Allow a racy peek at VI_DOOMED to save a lock acquisition. */ 5315 if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0) 5316 continue; 5317 VI_LOCK(vp); 5318 if ((vp->v_iflag & VI_DOOMED) != 0) { 5319 VI_UNLOCK(vp); 5320 continue; 5321 } 5322 break; 5323 } 5324 if (vp == NULL) { 5325 __mnt_vnode_markerfree_all(mvp, mp); 5326 /* MNT_IUNLOCK(mp); -- done in above function */ 5327 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 5328 return (NULL); 5329 } 5330 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 5331 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 5332 MNT_IUNLOCK(mp); 5333 return (vp); 5334 } 5335 5336 struct vnode * 5337 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 5338 { 5339 struct vnode *vp; 5340 5341 *mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 5342 MNT_ILOCK(mp); 5343 MNT_REF(mp); 5344 (*mvp)->v_mount = mp; 5345 (*mvp)->v_type = VMARKER; 5346 5347 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 5348 /* Allow a racy peek at VI_DOOMED to save a lock acquisition. */ 5349 if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0) 5350 continue; 5351 VI_LOCK(vp); 5352 if ((vp->v_iflag & VI_DOOMED) != 0) { 5353 VI_UNLOCK(vp); 5354 continue; 5355 } 5356 break; 5357 } 5358 if (vp == NULL) { 5359 MNT_REL(mp); 5360 MNT_IUNLOCK(mp); 5361 free(*mvp, M_VNODE_MARKER); 5362 *mvp = NULL; 5363 return (NULL); 5364 } 5365 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 5366 MNT_IUNLOCK(mp); 5367 return (vp); 5368 } 5369 5370 void 5371 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 5372 { 5373 5374 if (*mvp == NULL) { 5375 MNT_IUNLOCK(mp); 5376 return; 5377 } 5378 5379 mtx_assert(MNT_MTX(mp), MA_OWNED); 5380 5381 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 5382 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 5383 MNT_REL(mp); 5384 MNT_IUNLOCK(mp); 5385 free(*mvp, M_VNODE_MARKER); 5386 *mvp = NULL; 5387 } 5388 5389 /* 5390 * These are helper functions for filesystems to traverse their 5391 * active vnodes. See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h 5392 */ 5393 static void 5394 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp) 5395 { 5396 5397 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 5398 5399 MNT_ILOCK(mp); 5400 MNT_REL(mp); 5401 MNT_IUNLOCK(mp); 5402 free(*mvp, M_VNODE_MARKER); 5403 *mvp = NULL; 5404 } 5405 5406 /* 5407 * Relock the mp mount vnode list lock with the vp vnode interlock in the 5408 * conventional lock order during mnt_vnode_next_active iteration. 5409 * 5410 * On entry, the mount vnode list lock is held and the vnode interlock is not. 5411 * The list lock is dropped and reacquired. On success, both locks are held. 5412 * On failure, the mount vnode list lock is held but the vnode interlock is 5413 * not, and the procedure may have yielded. 5414 */ 5415 static bool 5416 mnt_vnode_next_active_relock(struct vnode *mvp, struct mount *mp, 5417 struct vnode *vp) 5418 { 5419 const struct vnode *tmp; 5420 bool held, ret; 5421 5422 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER && 5423 TAILQ_NEXT(mvp, v_actfreelist) != NULL, mvp, 5424 ("%s: bad marker", __func__)); 5425 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp, 5426 ("%s: inappropriate vnode", __func__)); 5427 ASSERT_VI_UNLOCKED(vp, __func__); 5428 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 5429 5430 ret = false; 5431 5432 TAILQ_REMOVE(&mp->mnt_activevnodelist, mvp, v_actfreelist); 5433 TAILQ_INSERT_BEFORE(vp, mvp, v_actfreelist); 5434 5435 /* 5436 * Use a hold to prevent vp from disappearing while the mount vnode 5437 * list lock is dropped and reacquired. Normally a hold would be 5438 * acquired with vhold(), but that might try to acquire the vnode 5439 * interlock, which would be a LOR with the mount vnode list lock. 5440 */ 5441 held = vfs_refcount_acquire_if_not_zero(&vp->v_holdcnt); 5442 mtx_unlock(&mp->mnt_listmtx); 5443 if (!held) 5444 goto abort; 5445 VI_LOCK(vp); 5446 if (!vfs_refcount_release_if_not_last(&vp->v_holdcnt)) { 5447 vdropl(vp); 5448 goto abort; 5449 } 5450 mtx_lock(&mp->mnt_listmtx); 5451 5452 /* 5453 * Determine whether the vnode is still the next one after the marker, 5454 * excepting any other markers. If the vnode has not been doomed by 5455 * vgone() then the hold should have ensured that it remained on the 5456 * active list. If it has been doomed but is still on the active list, 5457 * don't abort, but rather skip over it (avoid spinning on doomed 5458 * vnodes). 5459 */ 5460 tmp = mvp; 5461 do { 5462 tmp = TAILQ_NEXT(tmp, v_actfreelist); 5463 } while (tmp != NULL && tmp->v_type == VMARKER); 5464 if (tmp != vp) { 5465 mtx_unlock(&mp->mnt_listmtx); 5466 VI_UNLOCK(vp); 5467 goto abort; 5468 } 5469 5470 ret = true; 5471 goto out; 5472 abort: 5473 maybe_yield(); 5474 mtx_lock(&mp->mnt_listmtx); 5475 out: 5476 if (ret) 5477 ASSERT_VI_LOCKED(vp, __func__); 5478 else 5479 ASSERT_VI_UNLOCKED(vp, __func__); 5480 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 5481 return (ret); 5482 } 5483 5484 static struct vnode * 5485 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp) 5486 { 5487 struct vnode *vp, *nvp; 5488 5489 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 5490 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 5491 restart: 5492 vp = TAILQ_NEXT(*mvp, v_actfreelist); 5493 while (vp != NULL) { 5494 if (vp->v_type == VMARKER) { 5495 vp = TAILQ_NEXT(vp, v_actfreelist); 5496 continue; 5497 } 5498 /* 5499 * Try-lock because this is the wrong lock order. If that does 5500 * not succeed, drop the mount vnode list lock and try to 5501 * reacquire it and the vnode interlock in the right order. 5502 */ 5503 if (!VI_TRYLOCK(vp) && 5504 !mnt_vnode_next_active_relock(*mvp, mp, vp)) 5505 goto restart; 5506 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 5507 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 5508 ("alien vnode on the active list %p %p", vp, mp)); 5509 if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0) 5510 break; 5511 nvp = TAILQ_NEXT(vp, v_actfreelist); 5512 VI_UNLOCK(vp); 5513 vp = nvp; 5514 } 5515 TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist); 5516 5517 /* Check if we are done */ 5518 if (vp == NULL) { 5519 mtx_unlock(&mp->mnt_listmtx); 5520 mnt_vnode_markerfree_active(mvp, mp); 5521 return (NULL); 5522 } 5523 TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist); 5524 mtx_unlock(&mp->mnt_listmtx); 5525 ASSERT_VI_LOCKED(vp, "active iter"); 5526 KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp)); 5527 return (vp); 5528 } 5529 5530 struct vnode * 5531 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp) 5532 { 5533 5534 if (should_yield()) 5535 kern_yield(PRI_USER); 5536 mtx_lock(&mp->mnt_listmtx); 5537 return (mnt_vnode_next_active(mvp, mp)); 5538 } 5539 5540 struct vnode * 5541 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp) 5542 { 5543 struct vnode *vp; 5544 5545 *mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 5546 MNT_ILOCK(mp); 5547 MNT_REF(mp); 5548 MNT_IUNLOCK(mp); 5549 (*mvp)->v_type = VMARKER; 5550 (*mvp)->v_mount = mp; 5551 5552 mtx_lock(&mp->mnt_listmtx); 5553 vp = TAILQ_FIRST(&mp->mnt_activevnodelist); 5554 if (vp == NULL) { 5555 mtx_unlock(&mp->mnt_listmtx); 5556 mnt_vnode_markerfree_active(mvp, mp); 5557 return (NULL); 5558 } 5559 TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist); 5560 return (mnt_vnode_next_active(mvp, mp)); 5561 } 5562 5563 void 5564 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp) 5565 { 5566 5567 if (*mvp == NULL) 5568 return; 5569 5570 mtx_lock(&mp->mnt_listmtx); 5571 TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist); 5572 mtx_unlock(&mp->mnt_listmtx); 5573 mnt_vnode_markerfree_active(mvp, mp); 5574 } 5575