1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Poul-Henning Kamp of the FreeBSD Project. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ddb.h" 41 #include "opt_ktrace.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/capsicum.h> 46 #include <sys/counter.h> 47 #include <sys/filedesc.h> 48 #include <sys/fnv_hash.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/fcntl.h> 54 #include <sys/jail.h> 55 #include <sys/mount.h> 56 #include <sys/namei.h> 57 #include <sys/proc.h> 58 #include <sys/seqc.h> 59 #include <sys/sdt.h> 60 #include <sys/smr.h> 61 #include <sys/smp.h> 62 #include <sys/syscallsubr.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysproto.h> 65 #include <sys/vnode.h> 66 #include <ck_queue.h> 67 #ifdef KTRACE 68 #include <sys/ktrace.h> 69 #endif 70 #ifdef INVARIANTS 71 #include <machine/_inttypes.h> 72 #endif 73 74 #include <sys/capsicum.h> 75 76 #include <security/audit/audit.h> 77 #include <security/mac/mac_framework.h> 78 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #endif 82 83 #include <vm/uma.h> 84 85 /* 86 * High level overview of name caching in the VFS layer. 87 * 88 * Originally caching was implemented as part of UFS, later extracted to allow 89 * use by other filesystems. A decision was made to make it optional and 90 * completely detached from the rest of the kernel, which comes with limitations 91 * outlined near the end of this comment block. 92 * 93 * This fundamental choice needs to be revisited. In the meantime, the current 94 * state is described below. Significance of all notable routines is explained 95 * in comments placed above their implementation. Scattered thoroughout the 96 * file are TODO comments indicating shortcomings which can be fixed without 97 * reworking everything (most of the fixes will likely be reusable). Various 98 * details are omitted from this explanation to not clutter the overview, they 99 * have to be checked by reading the code and associated commentary. 100 * 101 * Keep in mind that it's individual path components which are cached, not full 102 * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries, 103 * one for each name. 104 * 105 * I. Data organization 106 * 107 * Entries are described by "struct namecache" objects and stored in a hash 108 * table. See cache_get_hash for more information. 109 * 110 * "struct vnode" contains pointers to source entries (names which can be found 111 * when traversing through said vnode), destination entries (names of that 112 * vnode (see "Limitations" for a breakdown on the subject) and a pointer to 113 * the parent vnode. 114 * 115 * The (directory vnode; name) tuple reliably determines the target entry if 116 * it exists. 117 * 118 * Since there are no small locks at this time (all are 32 bytes in size on 119 * LP64), the code works around the problem by introducing lock arrays to 120 * protect hash buckets and vnode lists. 121 * 122 * II. Filesystem integration 123 * 124 * Filesystems participating in name caching do the following: 125 * - set vop_lookup routine to vfs_cache_lookup 126 * - set vop_cachedlookup to whatever can perform the lookup if the above fails 127 * - if they support lockless lookup (see below), vop_fplookup_vexec and 128 * vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the 129 * mount point 130 * - call cache_purge or cache_vop_* routines to eliminate stale entries as 131 * applicable 132 * - call cache_enter to add entries depending on the MAKEENTRY flag 133 * 134 * With the above in mind, there are 2 entry points when doing lookups: 135 * - ... -> namei -> cache_fplookup -- this is the default 136 * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei 137 * should the above fail 138 * 139 * Example code flow how an entry is added: 140 * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP -> 141 * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter 142 * 143 * III. Performance considerations 144 * 145 * For lockless case forward lookup avoids any writes to shared areas apart 146 * from the terminal path component. In other words non-modifying lookups of 147 * different files don't suffer any scalability problems in the namecache. 148 * Looking up the same file is limited by VFS and goes beyond the scope of this 149 * file. 150 * 151 * At least on amd64 the single-threaded bottleneck for long paths is hashing 152 * (see cache_get_hash). There are cases where the code issues acquire fence 153 * multiple times, they can be combined on architectures which suffer from it. 154 * 155 * For locked case each encountered vnode has to be referenced and locked in 156 * order to be handed out to the caller (normally that's namei). This 157 * introduces significant hit single-threaded and serialization multi-threaded. 158 * 159 * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached -- 160 * avoids any writes to shared areas to any components. 161 * 162 * Unrelated insertions are partially serialized on updating the global entry 163 * counter and possibly serialized on colliding bucket or vnode locks. 164 * 165 * IV. Observability 166 * 167 * Note not everything has an explicit dtrace probe nor it should have, thus 168 * some of the one-liners below depend on implementation details. 169 * 170 * Examples: 171 * 172 * # Check what lookups failed to be handled in a lockless manner. Column 1 is 173 * # line number, column 2 is status code (see cache_fpl_status) 174 * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }' 175 * 176 * # Lengths of names added by binary name 177 * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }' 178 * 179 * # Same as above but only those which exceed 64 characters 180 * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }' 181 * 182 * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what 183 * # path is it 184 * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }' 185 * 186 * V. Limitations and implementation defects 187 * 188 * - since it is possible there is no entry for an open file, tools like 189 * "procstat" may fail to resolve fd -> vnode -> path to anything 190 * - even if a filesystem adds an entry, it may get purged (e.g., due to memory 191 * shortage) in which case the above problem applies 192 * - hardlinks are not tracked, thus if a vnode is reachable in more than one 193 * way, resolving a name may return a different path than the one used to 194 * open it (even if said path is still valid) 195 * - by default entries are not added for newly created files 196 * - adding an entry may need to evict negative entry first, which happens in 2 197 * distinct places (evicting on lookup, adding in a later VOP) making it 198 * impossible to simply reuse it 199 * - there is a simple scheme to evict negative entries as the cache is approaching 200 * its capacity, but it is very unclear if doing so is a good idea to begin with 201 * - vnodes are subject to being recycled even if target inode is left in memory, 202 * which loses the name cache entries when it perhaps should not. in case of tmpfs 203 * names get duplicated -- kept by filesystem itself and namecache separately 204 * - struct namecache has a fixed size and comes in 2 variants, often wasting space. 205 * now hard to replace with malloc due to dependence on SMR. 206 * - lack of better integration with the kernel also turns nullfs into a layered 207 * filesystem instead of something which can take advantage of caching 208 */ 209 210 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 211 "Name cache"); 212 213 SDT_PROVIDER_DECLARE(vfs); 214 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *", 215 "struct vnode *"); 216 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *", 217 "struct vnode *"); 218 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *", 219 "char *"); 220 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *", 221 "const char *"); 222 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *", 223 "struct namecache *", "int", "int"); 224 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *"); 225 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *", 226 "char *", "struct vnode *"); 227 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *"); 228 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int", 229 "struct vnode *", "char *"); 230 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *", 231 "struct vnode *"); 232 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative, 233 "struct vnode *", "char *"); 234 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *", 235 "char *"); 236 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *", 237 "struct componentname *"); 238 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *", 239 "struct componentname *"); 240 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t"); 241 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int"); 242 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *"); 243 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *"); 244 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *", 245 "struct vnode *"); 246 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *", 247 "char *"); 248 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *", 249 "char *"); 250 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t"); 251 252 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool"); 253 SDT_PROBE_DECLARE(vfs, namei, lookup, entry); 254 SDT_PROBE_DECLARE(vfs, namei, lookup, return); 255 256 static char __read_frequently cache_fast_lookup_enabled = true; 257 258 /* 259 * This structure describes the elements in the cache of recent 260 * names looked up by namei. 261 */ 262 struct negstate { 263 u_char neg_flag; 264 u_char neg_hit; 265 }; 266 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *), 267 "the state must fit in a union with a pointer without growing it"); 268 269 struct namecache { 270 LIST_ENTRY(namecache) nc_src; /* source vnode list */ 271 TAILQ_ENTRY(namecache) nc_dst; /* destination vnode list */ 272 CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */ 273 struct vnode *nc_dvp; /* vnode of parent of name */ 274 union { 275 struct vnode *nu_vp; /* vnode the name refers to */ 276 struct negstate nu_neg;/* negative entry state */ 277 } n_un; 278 u_char nc_flag; /* flag bits */ 279 u_char nc_nlen; /* length of name */ 280 char nc_name[]; /* segment name + nul */ 281 }; 282 283 /* 284 * struct namecache_ts repeats struct namecache layout up to the 285 * nc_nlen member. 286 * struct namecache_ts is used in place of struct namecache when time(s) need 287 * to be stored. The nc_dotdottime field is used when a cache entry is mapping 288 * both a non-dotdot directory name plus dotdot for the directory's 289 * parent. 290 * 291 * See below for alignment requirement. 292 */ 293 struct namecache_ts { 294 struct timespec nc_time; /* timespec provided by fs */ 295 struct timespec nc_dotdottime; /* dotdot timespec provided by fs */ 296 int nc_ticks; /* ticks value when entry was added */ 297 int nc_pad; 298 struct namecache nc_nc; 299 }; 300 301 TAILQ_HEAD(cache_freebatch, namecache); 302 303 /* 304 * At least mips n32 performs 64-bit accesses to timespec as found 305 * in namecache_ts and requires them to be aligned. Since others 306 * may be in the same spot suffer a little bit and enforce the 307 * alignment for everyone. Note this is a nop for 64-bit platforms. 308 */ 309 #define CACHE_ZONE_ALIGNMENT UMA_ALIGNOF(time_t) 310 311 /* 312 * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the 313 * 4.4 BSD codebase. Later on struct namecache was tweaked to become 314 * smaller and the value was bumped to retain the total size, but it 315 * was never re-evaluated for suitability. A simple test counting 316 * lengths during package building shows that the value of 45 covers 317 * about 86% of all added entries, reaching 99% at 65. 318 * 319 * Regardless of the above, use of dedicated zones instead of malloc may be 320 * inducing additional waste. This may be hard to address as said zones are 321 * tied to VFS SMR. Even if retaining them, the current split should be 322 * re-evaluated. 323 */ 324 #ifdef __LP64__ 325 #define CACHE_PATH_CUTOFF 45 326 #define CACHE_LARGE_PAD 6 327 #else 328 #define CACHE_PATH_CUTOFF 41 329 #define CACHE_LARGE_PAD 2 330 #endif 331 332 #define CACHE_ZONE_SMALL_SIZE (offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1) 333 #define CACHE_ZONE_SMALL_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE) 334 #define CACHE_ZONE_LARGE_SIZE (offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD) 335 #define CACHE_ZONE_LARGE_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE) 336 337 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 338 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 339 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 340 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size"); 341 342 #define nc_vp n_un.nu_vp 343 #define nc_neg n_un.nu_neg 344 345 /* 346 * Flags in namecache.nc_flag 347 */ 348 #define NCF_WHITE 0x01 349 #define NCF_ISDOTDOT 0x02 350 #define NCF_TS 0x04 351 #define NCF_DTS 0x08 352 #define NCF_DVDROP 0x10 353 #define NCF_NEGATIVE 0x20 354 #define NCF_INVALID 0x40 355 #define NCF_WIP 0x80 356 357 /* 358 * Flags in negstate.neg_flag 359 */ 360 #define NEG_HOT 0x01 361 362 static bool cache_neg_evict_cond(u_long lnumcache); 363 364 /* 365 * Mark an entry as invalid. 366 * 367 * This is called before it starts getting deconstructed. 368 */ 369 static void 370 cache_ncp_invalidate(struct namecache *ncp) 371 { 372 373 KASSERT((ncp->nc_flag & NCF_INVALID) == 0, 374 ("%s: entry %p already invalid", __func__, ncp)); 375 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID); 376 atomic_thread_fence_rel(); 377 } 378 379 /* 380 * Check whether the entry can be safely used. 381 * 382 * All places which elide locks are supposed to call this after they are 383 * done with reading from an entry. 384 */ 385 #define cache_ncp_canuse(ncp) ({ \ 386 struct namecache *_ncp = (ncp); \ 387 u_char _nc_flag; \ 388 \ 389 atomic_thread_fence_acq(); \ 390 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 391 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0); \ 392 }) 393 394 /* 395 * Like the above but also checks NCF_WHITE. 396 */ 397 #define cache_fpl_neg_ncp_canuse(ncp) ({ \ 398 struct namecache *_ncp = (ncp); \ 399 u_char _nc_flag; \ 400 \ 401 atomic_thread_fence_acq(); \ 402 _nc_flag = atomic_load_char(&_ncp->nc_flag); \ 403 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0); \ 404 }) 405 406 VFS_SMR_DECLARE; 407 408 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 409 "Name cache parameters"); 410 411 static u_int __read_mostly ncsize; /* the size as computed on creation or resizing */ 412 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0, 413 "Total namecache capacity"); 414 415 u_int ncsizefactor = 2; 416 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0, 417 "Size factor for namecache"); 418 419 static u_long __read_mostly ncnegfactor = 5; /* ratio of negative entries */ 420 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0, 421 "Ratio of negative namecache entries"); 422 423 /* 424 * Negative entry % of namecache capacity above which automatic eviction is allowed. 425 * 426 * Check cache_neg_evict_cond for details. 427 */ 428 static u_int ncnegminpct = 3; 429 430 static u_int __read_mostly neg_min; /* the above recomputed against ncsize */ 431 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0, 432 "Negative entry count above which automatic eviction is allowed"); 433 434 /* 435 * Structures associated with name caching. 436 */ 437 #define NCHHASH(hash) \ 438 (&nchashtbl[(hash) & nchash]) 439 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */ 440 static u_long __read_mostly nchash; /* size of hash table */ 441 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, 442 "Size of namecache hash table"); 443 static u_long __exclusive_cache_line numneg; /* number of negative entries allocated */ 444 static u_long __exclusive_cache_line numcache;/* number of cache entries allocated */ 445 446 struct nchstats nchstats; /* cache effectiveness statistics */ 447 448 static bool __read_mostly cache_rename_add = true; 449 SYSCTL_BOOL(_vfs, OID_AUTO, cache_rename_add, CTLFLAG_RW, 450 &cache_rename_add, 0, ""); 451 452 static u_int __exclusive_cache_line neg_cycle; 453 454 #define ncneghash 3 455 #define numneglists (ncneghash + 1) 456 457 struct neglist { 458 struct mtx nl_evict_lock; 459 struct mtx nl_lock __aligned(CACHE_LINE_SIZE); 460 TAILQ_HEAD(, namecache) nl_list; 461 TAILQ_HEAD(, namecache) nl_hotlist; 462 u_long nl_hotnum; 463 } __aligned(CACHE_LINE_SIZE); 464 465 static struct neglist neglists[numneglists]; 466 467 static inline struct neglist * 468 NCP2NEGLIST(struct namecache *ncp) 469 { 470 471 return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]); 472 } 473 474 static inline struct negstate * 475 NCP2NEGSTATE(struct namecache *ncp) 476 { 477 478 MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE); 479 return (&ncp->nc_neg); 480 } 481 482 #define numbucketlocks (ncbuckethash + 1) 483 static u_int __read_mostly ncbuckethash; 484 static struct mtx_padalign __read_mostly *bucketlocks; 485 #define HASH2BUCKETLOCK(hash) \ 486 ((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)])) 487 488 #define numvnodelocks (ncvnodehash + 1) 489 static u_int __read_mostly ncvnodehash; 490 static struct mtx __read_mostly *vnodelocks; 491 static inline struct mtx * 492 VP2VNODELOCK(struct vnode *vp) 493 { 494 495 return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]); 496 } 497 498 static void 499 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp) 500 { 501 struct namecache_ts *ncp_ts; 502 503 KASSERT((ncp->nc_flag & NCF_TS) != 0 || 504 (tsp == NULL && ticksp == NULL), 505 ("No NCF_TS")); 506 507 if (tsp == NULL) 508 return; 509 510 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 511 *tsp = ncp_ts->nc_time; 512 *ticksp = ncp_ts->nc_ticks; 513 } 514 515 #ifdef DEBUG_CACHE 516 static int __read_mostly doingcache = 1; /* 1 => enable the cache */ 517 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0, 518 "VFS namecache enabled"); 519 #endif 520 521 /* Export size information to userland */ 522 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, 523 sizeof(struct namecache), "sizeof(struct namecache)"); 524 525 /* 526 * The new name cache statistics 527 */ 528 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 529 "Name cache statistics"); 530 531 #define STATNODE_ULONG(name, varname, descr) \ 532 SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 533 #define STATNODE_COUNTER(name, varname, descr) \ 534 static COUNTER_U64_DEFINE_EARLY(varname); \ 535 SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \ 536 descr); 537 STATNODE_ULONG(neg, numneg, "Number of negative cache entries"); 538 STATNODE_ULONG(count, numcache, "Number of cache entries"); 539 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held"); 540 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit"); 541 STATNODE_COUNTER(dothits, dothits, "Number of '.' hits"); 542 STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits"); 543 STATNODE_COUNTER(miss, nummiss, "Number of cache misses"); 544 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache"); 545 STATNODE_COUNTER(posszaps, numposzaps, 546 "Number of cache hits (positive) we do not want to cache"); 547 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)"); 548 STATNODE_COUNTER(negzaps, numnegzaps, 549 "Number of cache hits (negative) we do not want to cache"); 550 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)"); 551 /* These count for vn_getcwd(), too. */ 552 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls"); 553 STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)"); 554 STATNODE_COUNTER(fullpathfail2, numfullpathfail2, 555 "Number of fullpath search errors (VOP_VPTOCNP failures)"); 556 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)"); 557 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls"); 558 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache"); 559 560 /* 561 * Debug or developer statistics. 562 */ 563 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 564 "Name cache debugging"); 565 #define DEBUGNODE_ULONG(name, varname, descr) \ 566 SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr); 567 #define DEBUGNODE_COUNTER(name, varname, descr) \ 568 static COUNTER_U64_DEFINE_EARLY(varname); \ 569 SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \ 570 descr); 571 DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success, 572 "Number of successful removals after relocking"); 573 static long zap_bucket_fail; 574 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, ""); 575 static long zap_bucket_fail2; 576 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, ""); 577 static long cache_lock_vnodes_cel_3_failures; 578 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures, 579 "Number of times 3-way vnode locking failed"); 580 581 static void cache_zap_locked(struct namecache *ncp); 582 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 583 char **retbuf, size_t *buflen, size_t addend); 584 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, 585 char **retbuf, size_t *buflen); 586 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, 587 char **retbuf, size_t *len, size_t addend); 588 589 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries"); 590 591 static inline void 592 cache_assert_vlp_locked(struct mtx *vlp) 593 { 594 595 if (vlp != NULL) 596 mtx_assert(vlp, MA_OWNED); 597 } 598 599 static inline void 600 cache_assert_vnode_locked(struct vnode *vp) 601 { 602 struct mtx *vlp; 603 604 vlp = VP2VNODELOCK(vp); 605 cache_assert_vlp_locked(vlp); 606 } 607 608 /* 609 * Directory vnodes with entries are held for two reasons: 610 * 1. make them less of a target for reclamation in vnlru 611 * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided 612 * 613 * It will be feasible to stop doing it altogether if all filesystems start 614 * supporting lockless lookup. 615 */ 616 static void 617 cache_hold_vnode(struct vnode *vp) 618 { 619 620 cache_assert_vnode_locked(vp); 621 VNPASS(LIST_EMPTY(&vp->v_cache_src), vp); 622 vhold(vp); 623 counter_u64_add(numcachehv, 1); 624 } 625 626 static void 627 cache_drop_vnode(struct vnode *vp) 628 { 629 630 /* 631 * Called after all locks are dropped, meaning we can't assert 632 * on the state of v_cache_src. 633 */ 634 vdrop(vp); 635 counter_u64_add(numcachehv, -1); 636 } 637 638 /* 639 * UMA zones. 640 */ 641 static uma_zone_t __read_mostly cache_zone_small; 642 static uma_zone_t __read_mostly cache_zone_small_ts; 643 static uma_zone_t __read_mostly cache_zone_large; 644 static uma_zone_t __read_mostly cache_zone_large_ts; 645 646 char * 647 cache_symlink_alloc(size_t size, int flags) 648 { 649 650 if (size < CACHE_ZONE_SMALL_SIZE) { 651 return (uma_zalloc_smr(cache_zone_small, flags)); 652 } 653 if (size < CACHE_ZONE_LARGE_SIZE) { 654 return (uma_zalloc_smr(cache_zone_large, flags)); 655 } 656 counter_u64_add(symlinktoobig, 1); 657 SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size); 658 return (NULL); 659 } 660 661 void 662 cache_symlink_free(char *string, size_t size) 663 { 664 665 MPASS(string != NULL); 666 KASSERT(size < CACHE_ZONE_LARGE_SIZE, 667 ("%s: size %zu too big", __func__, size)); 668 669 if (size < CACHE_ZONE_SMALL_SIZE) { 670 uma_zfree_smr(cache_zone_small, string); 671 return; 672 } 673 if (size < CACHE_ZONE_LARGE_SIZE) { 674 uma_zfree_smr(cache_zone_large, string); 675 return; 676 } 677 __assert_unreachable(); 678 } 679 680 static struct namecache * 681 cache_alloc_uma(int len, bool ts) 682 { 683 struct namecache_ts *ncp_ts; 684 struct namecache *ncp; 685 686 if (__predict_false(ts)) { 687 if (len <= CACHE_PATH_CUTOFF) 688 ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK); 689 else 690 ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK); 691 ncp = &ncp_ts->nc_nc; 692 } else { 693 if (len <= CACHE_PATH_CUTOFF) 694 ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK); 695 else 696 ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK); 697 } 698 return (ncp); 699 } 700 701 static void 702 cache_free_uma(struct namecache *ncp) 703 { 704 struct namecache_ts *ncp_ts; 705 706 if (__predict_false(ncp->nc_flag & NCF_TS)) { 707 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 708 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 709 uma_zfree_smr(cache_zone_small_ts, ncp_ts); 710 else 711 uma_zfree_smr(cache_zone_large_ts, ncp_ts); 712 } else { 713 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF) 714 uma_zfree_smr(cache_zone_small, ncp); 715 else 716 uma_zfree_smr(cache_zone_large, ncp); 717 } 718 } 719 720 static struct namecache * 721 cache_alloc(int len, bool ts) 722 { 723 u_long lnumcache; 724 725 /* 726 * Avoid blowout in namecache entries. 727 * 728 * Bugs: 729 * 1. filesystems may end up trying to add an already existing entry 730 * (for example this can happen after a cache miss during concurrent 731 * lookup), in which case we will call cache_neg_evict despite not 732 * adding anything. 733 * 2. the routine may fail to free anything and no provisions are made 734 * to make it try harder (see the inside for failure modes) 735 * 3. it only ever looks at negative entries. 736 */ 737 lnumcache = atomic_fetchadd_long(&numcache, 1) + 1; 738 if (cache_neg_evict_cond(lnumcache)) { 739 lnumcache = atomic_load_long(&numcache); 740 } 741 if (__predict_false(lnumcache >= ncsize)) { 742 atomic_subtract_long(&numcache, 1); 743 counter_u64_add(numdrops, 1); 744 return (NULL); 745 } 746 return (cache_alloc_uma(len, ts)); 747 } 748 749 static void 750 cache_free(struct namecache *ncp) 751 { 752 753 MPASS(ncp != NULL); 754 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 755 cache_drop_vnode(ncp->nc_dvp); 756 } 757 cache_free_uma(ncp); 758 atomic_subtract_long(&numcache, 1); 759 } 760 761 static void 762 cache_free_batch(struct cache_freebatch *batch) 763 { 764 struct namecache *ncp, *nnp; 765 int i; 766 767 i = 0; 768 if (TAILQ_EMPTY(batch)) 769 goto out; 770 TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) { 771 if ((ncp->nc_flag & NCF_DVDROP) != 0) { 772 cache_drop_vnode(ncp->nc_dvp); 773 } 774 cache_free_uma(ncp); 775 i++; 776 } 777 atomic_subtract_long(&numcache, i); 778 out: 779 SDT_PROBE1(vfs, namecache, purge, batch, i); 780 } 781 782 /* 783 * Hashing. 784 * 785 * The code was made to use FNV in 2001 and this choice needs to be revisited. 786 * 787 * Short summary of the difficulty: 788 * The longest name which can be inserted is NAME_MAX characters in length (or 789 * 255 at the time of writing this comment), while majority of names used in 790 * practice are significantly shorter (mostly below 10). More importantly 791 * majority of lookups performed find names are even shorter than that. 792 * 793 * This poses a problem where hashes which do better than FNV past word size 794 * (or so) tend to come with additional overhead when finalizing the result, 795 * making them noticeably slower for the most commonly used range. 796 * 797 * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c 798 * 799 * When looking it up the most time consuming part by a large margin (at least 800 * on amd64) is hashing. Replacing FNV with something which pessimizes short 801 * input would make the slowest part stand out even more. 802 */ 803 804 /* 805 * TODO: With the value stored we can do better than computing the hash based 806 * on the address. 807 */ 808 static void 809 cache_prehash(struct vnode *vp) 810 { 811 812 vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT); 813 } 814 815 static uint32_t 816 cache_get_hash(char *name, u_char len, struct vnode *dvp) 817 { 818 819 return (fnv_32_buf(name, len, dvp->v_nchash)); 820 } 821 822 static uint32_t 823 cache_get_hash_iter_start(struct vnode *dvp) 824 { 825 826 return (dvp->v_nchash); 827 } 828 829 static uint32_t 830 cache_get_hash_iter(char c, uint32_t hash) 831 { 832 833 return (fnv_32_buf(&c, 1, hash)); 834 } 835 836 static uint32_t 837 cache_get_hash_iter_finish(uint32_t hash) 838 { 839 840 return (hash); 841 } 842 843 static inline struct nchashhead * 844 NCP2BUCKET(struct namecache *ncp) 845 { 846 uint32_t hash; 847 848 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 849 return (NCHHASH(hash)); 850 } 851 852 static inline struct mtx * 853 NCP2BUCKETLOCK(struct namecache *ncp) 854 { 855 uint32_t hash; 856 857 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp); 858 return (HASH2BUCKETLOCK(hash)); 859 } 860 861 #ifdef INVARIANTS 862 static void 863 cache_assert_bucket_locked(struct namecache *ncp) 864 { 865 struct mtx *blp; 866 867 blp = NCP2BUCKETLOCK(ncp); 868 mtx_assert(blp, MA_OWNED); 869 } 870 871 static void 872 cache_assert_bucket_unlocked(struct namecache *ncp) 873 { 874 struct mtx *blp; 875 876 blp = NCP2BUCKETLOCK(ncp); 877 mtx_assert(blp, MA_NOTOWNED); 878 } 879 #else 880 #define cache_assert_bucket_locked(x) do { } while (0) 881 #define cache_assert_bucket_unlocked(x) do { } while (0) 882 #endif 883 884 #define cache_sort_vnodes(x, y) _cache_sort_vnodes((void **)(x), (void **)(y)) 885 static void 886 _cache_sort_vnodes(void **p1, void **p2) 887 { 888 void *tmp; 889 890 MPASS(*p1 != NULL || *p2 != NULL); 891 892 if (*p1 > *p2) { 893 tmp = *p2; 894 *p2 = *p1; 895 *p1 = tmp; 896 } 897 } 898 899 static void 900 cache_lock_all_buckets(void) 901 { 902 u_int i; 903 904 for (i = 0; i < numbucketlocks; i++) 905 mtx_lock(&bucketlocks[i]); 906 } 907 908 static void 909 cache_unlock_all_buckets(void) 910 { 911 u_int i; 912 913 for (i = 0; i < numbucketlocks; i++) 914 mtx_unlock(&bucketlocks[i]); 915 } 916 917 static void 918 cache_lock_all_vnodes(void) 919 { 920 u_int i; 921 922 for (i = 0; i < numvnodelocks; i++) 923 mtx_lock(&vnodelocks[i]); 924 } 925 926 static void 927 cache_unlock_all_vnodes(void) 928 { 929 u_int i; 930 931 for (i = 0; i < numvnodelocks; i++) 932 mtx_unlock(&vnodelocks[i]); 933 } 934 935 static int 936 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 937 { 938 939 cache_sort_vnodes(&vlp1, &vlp2); 940 941 if (vlp1 != NULL) { 942 if (!mtx_trylock(vlp1)) 943 return (EAGAIN); 944 } 945 if (!mtx_trylock(vlp2)) { 946 if (vlp1 != NULL) 947 mtx_unlock(vlp1); 948 return (EAGAIN); 949 } 950 951 return (0); 952 } 953 954 static void 955 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 956 { 957 958 MPASS(vlp1 != NULL || vlp2 != NULL); 959 MPASS(vlp1 <= vlp2); 960 961 if (vlp1 != NULL) 962 mtx_lock(vlp1); 963 if (vlp2 != NULL) 964 mtx_lock(vlp2); 965 } 966 967 static void 968 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2) 969 { 970 971 MPASS(vlp1 != NULL || vlp2 != NULL); 972 973 if (vlp1 != NULL) 974 mtx_unlock(vlp1); 975 if (vlp2 != NULL) 976 mtx_unlock(vlp2); 977 } 978 979 static int 980 sysctl_nchstats(SYSCTL_HANDLER_ARGS) 981 { 982 struct nchstats snap; 983 984 if (req->oldptr == NULL) 985 return (SYSCTL_OUT(req, 0, sizeof(snap))); 986 987 snap = nchstats; 988 snap.ncs_goodhits = counter_u64_fetch(numposhits); 989 snap.ncs_neghits = counter_u64_fetch(numneghits); 990 snap.ncs_badhits = counter_u64_fetch(numposzaps) + 991 counter_u64_fetch(numnegzaps); 992 snap.ncs_miss = counter_u64_fetch(nummisszap) + 993 counter_u64_fetch(nummiss); 994 995 return (SYSCTL_OUT(req, &snap, sizeof(snap))); 996 } 997 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD | 998 CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU", 999 "VFS cache effectiveness statistics"); 1000 1001 static void 1002 cache_recalc_neg_min(u_int val) 1003 { 1004 1005 neg_min = (ncsize * val) / 100; 1006 } 1007 1008 static int 1009 sysctl_negminpct(SYSCTL_HANDLER_ARGS) 1010 { 1011 u_int val; 1012 int error; 1013 1014 val = ncnegminpct; 1015 error = sysctl_handle_int(oidp, &val, 0, req); 1016 if (error != 0 || req->newptr == NULL) 1017 return (error); 1018 1019 if (val == ncnegminpct) 1020 return (0); 1021 if (val < 0 || val > 99) 1022 return (EINVAL); 1023 ncnegminpct = val; 1024 cache_recalc_neg_min(val); 1025 return (0); 1026 } 1027 1028 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct, 1029 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct, 1030 "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed"); 1031 1032 #ifdef DEBUG_CACHE 1033 /* 1034 * Grab an atomic snapshot of the name cache hash chain lengths 1035 */ 1036 static SYSCTL_NODE(_debug, OID_AUTO, hashstat, 1037 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 1038 "hash table stats"); 1039 1040 static int 1041 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS) 1042 { 1043 struct nchashhead *ncpp; 1044 struct namecache *ncp; 1045 int i, error, n_nchash, *cntbuf; 1046 1047 retry: 1048 n_nchash = nchash + 1; /* nchash is max index, not count */ 1049 if (req->oldptr == NULL) 1050 return SYSCTL_OUT(req, 0, n_nchash * sizeof(int)); 1051 cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK); 1052 cache_lock_all_buckets(); 1053 if (n_nchash != nchash + 1) { 1054 cache_unlock_all_buckets(); 1055 free(cntbuf, M_TEMP); 1056 goto retry; 1057 } 1058 /* Scan hash tables counting entries */ 1059 for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++) 1060 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) 1061 cntbuf[i]++; 1062 cache_unlock_all_buckets(); 1063 for (error = 0, i = 0; i < n_nchash; i++) 1064 if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0) 1065 break; 1066 free(cntbuf, M_TEMP); 1067 return (error); 1068 } 1069 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD| 1070 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int", 1071 "nchash chain lengths"); 1072 1073 static int 1074 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS) 1075 { 1076 int error; 1077 struct nchashhead *ncpp; 1078 struct namecache *ncp; 1079 int n_nchash; 1080 int count, maxlength, used, pct; 1081 1082 if (!req->oldptr) 1083 return SYSCTL_OUT(req, 0, 4 * sizeof(int)); 1084 1085 cache_lock_all_buckets(); 1086 n_nchash = nchash + 1; /* nchash is max index, not count */ 1087 used = 0; 1088 maxlength = 0; 1089 1090 /* Scan hash tables for applicable entries */ 1091 for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) { 1092 count = 0; 1093 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) { 1094 count++; 1095 } 1096 if (count) 1097 used++; 1098 if (maxlength < count) 1099 maxlength = count; 1100 } 1101 n_nchash = nchash + 1; 1102 cache_unlock_all_buckets(); 1103 pct = (used * 100) / (n_nchash / 100); 1104 error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash)); 1105 if (error) 1106 return (error); 1107 error = SYSCTL_OUT(req, &used, sizeof(used)); 1108 if (error) 1109 return (error); 1110 error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength)); 1111 if (error) 1112 return (error); 1113 error = SYSCTL_OUT(req, &pct, sizeof(pct)); 1114 if (error) 1115 return (error); 1116 return (0); 1117 } 1118 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD| 1119 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I", 1120 "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)"); 1121 #endif 1122 1123 /* 1124 * Negative entries management 1125 * 1126 * Various workloads create plenty of negative entries and barely use them 1127 * afterwards. Moreover malicious users can keep performing bogus lookups 1128 * adding even more entries. For example "make tinderbox" as of writing this 1129 * comment ends up with 2.6M namecache entries in total, 1.2M of which are 1130 * negative. 1131 * 1132 * As such, a rather aggressive eviction method is needed. The currently 1133 * employed method is a placeholder. 1134 * 1135 * Entries are split over numneglists separate lists, each of which is further 1136 * split into hot and cold entries. Entries get promoted after getting a hit. 1137 * Eviction happens on addition of new entry. 1138 */ 1139 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1140 "Name cache negative entry statistics"); 1141 1142 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0, 1143 "Number of negative cache entries"); 1144 1145 static COUNTER_U64_DEFINE_EARLY(neg_created); 1146 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created, 1147 "Number of created negative entries"); 1148 1149 static COUNTER_U64_DEFINE_EARLY(neg_evicted); 1150 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted, 1151 "Number of evicted negative entries"); 1152 1153 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty); 1154 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD, 1155 &neg_evict_skipped_empty, 1156 "Number of times evicting failed due to lack of entries"); 1157 1158 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed); 1159 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD, 1160 &neg_evict_skipped_missed, 1161 "Number of times evicting failed due to target entry disappearing"); 1162 1163 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended); 1164 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD, 1165 &neg_evict_skipped_contended, 1166 "Number of times evicting failed due to contention"); 1167 1168 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits, 1169 "Number of cache hits (negative)"); 1170 1171 static int 1172 sysctl_neg_hot(SYSCTL_HANDLER_ARGS) 1173 { 1174 int i, out; 1175 1176 out = 0; 1177 for (i = 0; i < numneglists; i++) 1178 out += neglists[i].nl_hotnum; 1179 1180 return (SYSCTL_OUT(req, &out, sizeof(out))); 1181 } 1182 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD | 1183 CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I", 1184 "Number of hot negative entries"); 1185 1186 static void 1187 cache_neg_init(struct namecache *ncp) 1188 { 1189 struct negstate *ns; 1190 1191 ncp->nc_flag |= NCF_NEGATIVE; 1192 ns = NCP2NEGSTATE(ncp); 1193 ns->neg_flag = 0; 1194 ns->neg_hit = 0; 1195 counter_u64_add(neg_created, 1); 1196 } 1197 1198 #define CACHE_NEG_PROMOTION_THRESH 2 1199 1200 static bool 1201 cache_neg_hit_prep(struct namecache *ncp) 1202 { 1203 struct negstate *ns; 1204 u_char n; 1205 1206 ns = NCP2NEGSTATE(ncp); 1207 n = atomic_load_char(&ns->neg_hit); 1208 for (;;) { 1209 if (n >= CACHE_NEG_PROMOTION_THRESH) 1210 return (false); 1211 if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1)) 1212 break; 1213 } 1214 return (n + 1 == CACHE_NEG_PROMOTION_THRESH); 1215 } 1216 1217 /* 1218 * Nothing to do here but it is provided for completeness as some 1219 * cache_neg_hit_prep callers may end up returning without even 1220 * trying to promote. 1221 */ 1222 #define cache_neg_hit_abort(ncp) do { } while (0) 1223 1224 static void 1225 cache_neg_hit_finish(struct namecache *ncp) 1226 { 1227 1228 SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name); 1229 counter_u64_add(numneghits, 1); 1230 } 1231 1232 /* 1233 * Move a negative entry to the hot list. 1234 */ 1235 static void 1236 cache_neg_promote_locked(struct namecache *ncp) 1237 { 1238 struct neglist *nl; 1239 struct negstate *ns; 1240 1241 ns = NCP2NEGSTATE(ncp); 1242 nl = NCP2NEGLIST(ncp); 1243 mtx_assert(&nl->nl_lock, MA_OWNED); 1244 if ((ns->neg_flag & NEG_HOT) == 0) { 1245 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1246 TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst); 1247 nl->nl_hotnum++; 1248 ns->neg_flag |= NEG_HOT; 1249 } 1250 } 1251 1252 /* 1253 * Move a hot negative entry to the cold list. 1254 */ 1255 static void 1256 cache_neg_demote_locked(struct namecache *ncp) 1257 { 1258 struct neglist *nl; 1259 struct negstate *ns; 1260 1261 ns = NCP2NEGSTATE(ncp); 1262 nl = NCP2NEGLIST(ncp); 1263 mtx_assert(&nl->nl_lock, MA_OWNED); 1264 MPASS(ns->neg_flag & NEG_HOT); 1265 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1266 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1267 nl->nl_hotnum--; 1268 ns->neg_flag &= ~NEG_HOT; 1269 atomic_store_char(&ns->neg_hit, 0); 1270 } 1271 1272 /* 1273 * Move a negative entry to the hot list if it matches the lookup. 1274 * 1275 * We have to take locks, but they may be contended and in the worst 1276 * case we may need to go off CPU. We don't want to spin within the 1277 * smr section and we can't block with it. Exiting the section means 1278 * the found entry could have been evicted. We are going to look it 1279 * up again. 1280 */ 1281 static bool 1282 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp, 1283 struct namecache *oncp, uint32_t hash) 1284 { 1285 struct namecache *ncp; 1286 struct neglist *nl; 1287 u_char nc_flag; 1288 1289 nl = NCP2NEGLIST(oncp); 1290 1291 mtx_lock(&nl->nl_lock); 1292 /* 1293 * For hash iteration. 1294 */ 1295 vfs_smr_enter(); 1296 1297 /* 1298 * Avoid all surprises by only succeeding if we got the same entry and 1299 * bailing completely otherwise. 1300 * XXX There are no provisions to keep the vnode around, meaning we may 1301 * end up promoting a negative entry for a *new* vnode and returning 1302 * ENOENT on its account. This is the error we want to return anyway 1303 * and promotion is harmless. 1304 * 1305 * In particular at this point there can be a new ncp which matches the 1306 * search but hashes to a different neglist. 1307 */ 1308 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1309 if (ncp == oncp) 1310 break; 1311 } 1312 1313 /* 1314 * No match to begin with. 1315 */ 1316 if (__predict_false(ncp == NULL)) { 1317 goto out_abort; 1318 } 1319 1320 /* 1321 * The newly found entry may be something different... 1322 */ 1323 if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1324 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) { 1325 goto out_abort; 1326 } 1327 1328 /* 1329 * ... and not even negative. 1330 */ 1331 nc_flag = atomic_load_char(&ncp->nc_flag); 1332 if ((nc_flag & NCF_NEGATIVE) == 0) { 1333 goto out_abort; 1334 } 1335 1336 if (!cache_ncp_canuse(ncp)) { 1337 goto out_abort; 1338 } 1339 1340 cache_neg_promote_locked(ncp); 1341 cache_neg_hit_finish(ncp); 1342 vfs_smr_exit(); 1343 mtx_unlock(&nl->nl_lock); 1344 return (true); 1345 out_abort: 1346 vfs_smr_exit(); 1347 mtx_unlock(&nl->nl_lock); 1348 return (false); 1349 } 1350 1351 static void 1352 cache_neg_promote(struct namecache *ncp) 1353 { 1354 struct neglist *nl; 1355 1356 nl = NCP2NEGLIST(ncp); 1357 mtx_lock(&nl->nl_lock); 1358 cache_neg_promote_locked(ncp); 1359 mtx_unlock(&nl->nl_lock); 1360 } 1361 1362 static void 1363 cache_neg_insert(struct namecache *ncp) 1364 { 1365 struct neglist *nl; 1366 1367 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1368 cache_assert_bucket_locked(ncp); 1369 nl = NCP2NEGLIST(ncp); 1370 mtx_lock(&nl->nl_lock); 1371 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst); 1372 mtx_unlock(&nl->nl_lock); 1373 atomic_add_long(&numneg, 1); 1374 } 1375 1376 static void 1377 cache_neg_remove(struct namecache *ncp) 1378 { 1379 struct neglist *nl; 1380 struct negstate *ns; 1381 1382 cache_assert_bucket_locked(ncp); 1383 nl = NCP2NEGLIST(ncp); 1384 ns = NCP2NEGSTATE(ncp); 1385 mtx_lock(&nl->nl_lock); 1386 if ((ns->neg_flag & NEG_HOT) != 0) { 1387 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst); 1388 nl->nl_hotnum--; 1389 } else { 1390 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst); 1391 } 1392 mtx_unlock(&nl->nl_lock); 1393 atomic_subtract_long(&numneg, 1); 1394 } 1395 1396 static struct neglist * 1397 cache_neg_evict_select_list(void) 1398 { 1399 struct neglist *nl; 1400 u_int c; 1401 1402 c = atomic_fetchadd_int(&neg_cycle, 1) + 1; 1403 nl = &neglists[c % numneglists]; 1404 if (!mtx_trylock(&nl->nl_evict_lock)) { 1405 counter_u64_add(neg_evict_skipped_contended, 1); 1406 return (NULL); 1407 } 1408 return (nl); 1409 } 1410 1411 static struct namecache * 1412 cache_neg_evict_select_entry(struct neglist *nl) 1413 { 1414 struct namecache *ncp, *lncp; 1415 struct negstate *ns, *lns; 1416 int i; 1417 1418 mtx_assert(&nl->nl_evict_lock, MA_OWNED); 1419 mtx_assert(&nl->nl_lock, MA_OWNED); 1420 ncp = TAILQ_FIRST(&nl->nl_list); 1421 if (ncp == NULL) 1422 return (NULL); 1423 lncp = ncp; 1424 lns = NCP2NEGSTATE(lncp); 1425 for (i = 1; i < 4; i++) { 1426 ncp = TAILQ_NEXT(ncp, nc_dst); 1427 if (ncp == NULL) 1428 break; 1429 ns = NCP2NEGSTATE(ncp); 1430 if (ns->neg_hit < lns->neg_hit) { 1431 lncp = ncp; 1432 lns = ns; 1433 } 1434 } 1435 return (lncp); 1436 } 1437 1438 static bool 1439 cache_neg_evict(void) 1440 { 1441 struct namecache *ncp, *ncp2; 1442 struct neglist *nl; 1443 struct vnode *dvp; 1444 struct mtx *dvlp; 1445 struct mtx *blp; 1446 uint32_t hash; 1447 u_char nlen; 1448 bool evicted; 1449 1450 nl = cache_neg_evict_select_list(); 1451 if (nl == NULL) { 1452 return (false); 1453 } 1454 1455 mtx_lock(&nl->nl_lock); 1456 ncp = TAILQ_FIRST(&nl->nl_hotlist); 1457 if (ncp != NULL) { 1458 cache_neg_demote_locked(ncp); 1459 } 1460 ncp = cache_neg_evict_select_entry(nl); 1461 if (ncp == NULL) { 1462 counter_u64_add(neg_evict_skipped_empty, 1); 1463 mtx_unlock(&nl->nl_lock); 1464 mtx_unlock(&nl->nl_evict_lock); 1465 return (false); 1466 } 1467 nlen = ncp->nc_nlen; 1468 dvp = ncp->nc_dvp; 1469 hash = cache_get_hash(ncp->nc_name, nlen, dvp); 1470 dvlp = VP2VNODELOCK(dvp); 1471 blp = HASH2BUCKETLOCK(hash); 1472 mtx_unlock(&nl->nl_lock); 1473 mtx_unlock(&nl->nl_evict_lock); 1474 mtx_lock(dvlp); 1475 mtx_lock(blp); 1476 /* 1477 * Note that since all locks were dropped above, the entry may be 1478 * gone or reallocated to be something else. 1479 */ 1480 CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) { 1481 if (ncp2 == ncp && ncp2->nc_dvp == dvp && 1482 ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0) 1483 break; 1484 } 1485 if (ncp2 == NULL) { 1486 counter_u64_add(neg_evict_skipped_missed, 1); 1487 ncp = NULL; 1488 evicted = false; 1489 } else { 1490 MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp)); 1491 MPASS(blp == NCP2BUCKETLOCK(ncp)); 1492 SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp, 1493 ncp->nc_name); 1494 cache_zap_locked(ncp); 1495 counter_u64_add(neg_evicted, 1); 1496 evicted = true; 1497 } 1498 mtx_unlock(blp); 1499 mtx_unlock(dvlp); 1500 if (ncp != NULL) 1501 cache_free(ncp); 1502 return (evicted); 1503 } 1504 1505 /* 1506 * Maybe evict a negative entry to create more room. 1507 * 1508 * The ncnegfactor parameter limits what fraction of the total count 1509 * can comprise of negative entries. However, if the cache is just 1510 * warming up this leads to excessive evictions. As such, ncnegminpct 1511 * (recomputed to neg_min) dictates whether the above should be 1512 * applied. 1513 * 1514 * Try evicting if the cache is close to full capacity regardless of 1515 * other considerations. 1516 */ 1517 static bool 1518 cache_neg_evict_cond(u_long lnumcache) 1519 { 1520 u_long lnumneg; 1521 1522 if (ncsize - 1000 < lnumcache) 1523 goto out_evict; 1524 lnumneg = atomic_load_long(&numneg); 1525 if (lnumneg < neg_min) 1526 return (false); 1527 if (lnumneg * ncnegfactor < lnumcache) 1528 return (false); 1529 out_evict: 1530 return (cache_neg_evict()); 1531 } 1532 1533 /* 1534 * cache_zap_locked(): 1535 * 1536 * Removes a namecache entry from cache, whether it contains an actual 1537 * pointer to a vnode or if it is just a negative cache entry. 1538 */ 1539 static void 1540 cache_zap_locked(struct namecache *ncp) 1541 { 1542 struct nchashhead *ncpp; 1543 struct vnode *dvp, *vp; 1544 1545 dvp = ncp->nc_dvp; 1546 vp = ncp->nc_vp; 1547 1548 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1549 cache_assert_vnode_locked(vp); 1550 cache_assert_vnode_locked(dvp); 1551 cache_assert_bucket_locked(ncp); 1552 1553 cache_ncp_invalidate(ncp); 1554 1555 ncpp = NCP2BUCKET(ncp); 1556 CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash); 1557 if (!(ncp->nc_flag & NCF_NEGATIVE)) { 1558 SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp); 1559 TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst); 1560 if (ncp == vp->v_cache_dd) { 1561 atomic_store_ptr(&vp->v_cache_dd, NULL); 1562 } 1563 } else { 1564 SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name); 1565 cache_neg_remove(ncp); 1566 } 1567 if (ncp->nc_flag & NCF_ISDOTDOT) { 1568 if (ncp == dvp->v_cache_dd) { 1569 atomic_store_ptr(&dvp->v_cache_dd, NULL); 1570 } 1571 } else { 1572 LIST_REMOVE(ncp, nc_src); 1573 if (LIST_EMPTY(&dvp->v_cache_src)) { 1574 ncp->nc_flag |= NCF_DVDROP; 1575 } 1576 } 1577 } 1578 1579 static void 1580 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp) 1581 { 1582 struct mtx *blp; 1583 1584 MPASS(ncp->nc_dvp == vp); 1585 MPASS(ncp->nc_flag & NCF_NEGATIVE); 1586 cache_assert_vnode_locked(vp); 1587 1588 blp = NCP2BUCKETLOCK(ncp); 1589 mtx_lock(blp); 1590 cache_zap_locked(ncp); 1591 mtx_unlock(blp); 1592 } 1593 1594 static bool 1595 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp, 1596 struct mtx **vlpp) 1597 { 1598 struct mtx *pvlp, *vlp1, *vlp2, *to_unlock; 1599 struct mtx *blp; 1600 1601 MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp); 1602 cache_assert_vnode_locked(vp); 1603 1604 if (ncp->nc_flag & NCF_NEGATIVE) { 1605 if (*vlpp != NULL) { 1606 mtx_unlock(*vlpp); 1607 *vlpp = NULL; 1608 } 1609 cache_zap_negative_locked_vnode_kl(ncp, vp); 1610 return (true); 1611 } 1612 1613 pvlp = VP2VNODELOCK(vp); 1614 blp = NCP2BUCKETLOCK(ncp); 1615 vlp1 = VP2VNODELOCK(ncp->nc_dvp); 1616 vlp2 = VP2VNODELOCK(ncp->nc_vp); 1617 1618 if (*vlpp == vlp1 || *vlpp == vlp2) { 1619 to_unlock = *vlpp; 1620 *vlpp = NULL; 1621 } else { 1622 if (*vlpp != NULL) { 1623 mtx_unlock(*vlpp); 1624 *vlpp = NULL; 1625 } 1626 cache_sort_vnodes(&vlp1, &vlp2); 1627 if (vlp1 == pvlp) { 1628 mtx_lock(vlp2); 1629 to_unlock = vlp2; 1630 } else { 1631 if (!mtx_trylock(vlp1)) 1632 goto out_relock; 1633 to_unlock = vlp1; 1634 } 1635 } 1636 mtx_lock(blp); 1637 cache_zap_locked(ncp); 1638 mtx_unlock(blp); 1639 if (to_unlock != NULL) 1640 mtx_unlock(to_unlock); 1641 return (true); 1642 1643 out_relock: 1644 mtx_unlock(vlp2); 1645 mtx_lock(vlp1); 1646 mtx_lock(vlp2); 1647 MPASS(*vlpp == NULL); 1648 *vlpp = vlp1; 1649 return (false); 1650 } 1651 1652 /* 1653 * If trylocking failed we can get here. We know enough to take all needed locks 1654 * in the right order and re-lookup the entry. 1655 */ 1656 static int 1657 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp, 1658 struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash, 1659 struct mtx *blp) 1660 { 1661 struct namecache *rncp; 1662 1663 cache_assert_bucket_unlocked(ncp); 1664 1665 cache_sort_vnodes(&dvlp, &vlp); 1666 cache_lock_vnodes(dvlp, vlp); 1667 mtx_lock(blp); 1668 CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) { 1669 if (rncp == ncp && rncp->nc_dvp == dvp && 1670 rncp->nc_nlen == cnp->cn_namelen && 1671 !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen)) 1672 break; 1673 } 1674 if (rncp != NULL) { 1675 cache_zap_locked(rncp); 1676 mtx_unlock(blp); 1677 cache_unlock_vnodes(dvlp, vlp); 1678 counter_u64_add(zap_bucket_relock_success, 1); 1679 return (0); 1680 } 1681 1682 mtx_unlock(blp); 1683 cache_unlock_vnodes(dvlp, vlp); 1684 return (EAGAIN); 1685 } 1686 1687 static int __noinline 1688 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp, 1689 uint32_t hash, struct mtx *blp) 1690 { 1691 struct mtx *dvlp, *vlp; 1692 struct vnode *dvp; 1693 1694 cache_assert_bucket_locked(ncp); 1695 1696 dvlp = VP2VNODELOCK(ncp->nc_dvp); 1697 vlp = NULL; 1698 if (!(ncp->nc_flag & NCF_NEGATIVE)) 1699 vlp = VP2VNODELOCK(ncp->nc_vp); 1700 if (cache_trylock_vnodes(dvlp, vlp) == 0) { 1701 cache_zap_locked(ncp); 1702 mtx_unlock(blp); 1703 cache_unlock_vnodes(dvlp, vlp); 1704 return (0); 1705 } 1706 1707 dvp = ncp->nc_dvp; 1708 mtx_unlock(blp); 1709 return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp)); 1710 } 1711 1712 static __noinline int 1713 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp) 1714 { 1715 struct namecache *ncp; 1716 struct mtx *blp; 1717 struct mtx *dvlp, *dvlp2; 1718 uint32_t hash; 1719 int error; 1720 1721 if (cnp->cn_namelen == 2 && 1722 cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') { 1723 dvlp = VP2VNODELOCK(dvp); 1724 dvlp2 = NULL; 1725 mtx_lock(dvlp); 1726 retry_dotdot: 1727 ncp = dvp->v_cache_dd; 1728 if (ncp == NULL) { 1729 mtx_unlock(dvlp); 1730 if (dvlp2 != NULL) 1731 mtx_unlock(dvlp2); 1732 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1733 return (0); 1734 } 1735 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1736 if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2)) 1737 goto retry_dotdot; 1738 MPASS(dvp->v_cache_dd == NULL); 1739 mtx_unlock(dvlp); 1740 if (dvlp2 != NULL) 1741 mtx_unlock(dvlp2); 1742 cache_free(ncp); 1743 } else { 1744 atomic_store_ptr(&dvp->v_cache_dd, NULL); 1745 mtx_unlock(dvlp); 1746 if (dvlp2 != NULL) 1747 mtx_unlock(dvlp2); 1748 } 1749 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1750 return (1); 1751 } 1752 1753 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1754 blp = HASH2BUCKETLOCK(hash); 1755 retry: 1756 if (CK_SLIST_EMPTY(NCHHASH(hash))) 1757 goto out_no_entry; 1758 1759 mtx_lock(blp); 1760 1761 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1762 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1763 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1764 break; 1765 } 1766 1767 if (ncp == NULL) { 1768 mtx_unlock(blp); 1769 goto out_no_entry; 1770 } 1771 1772 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 1773 if (__predict_false(error != 0)) { 1774 zap_bucket_fail++; 1775 goto retry; 1776 } 1777 counter_u64_add(numposzaps, 1); 1778 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp); 1779 cache_free(ncp); 1780 return (1); 1781 out_no_entry: 1782 counter_u64_add(nummisszap, 1); 1783 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp); 1784 return (0); 1785 } 1786 1787 static int __noinline 1788 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1789 struct timespec *tsp, int *ticksp) 1790 { 1791 int ltype; 1792 1793 *vpp = dvp; 1794 counter_u64_add(dothits, 1); 1795 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp); 1796 if (tsp != NULL) 1797 timespecclear(tsp); 1798 if (ticksp != NULL) 1799 *ticksp = ticks; 1800 vrefact(*vpp); 1801 /* 1802 * When we lookup "." we still can be asked to lock it 1803 * differently... 1804 */ 1805 ltype = cnp->cn_lkflags & LK_TYPE_MASK; 1806 if (ltype != VOP_ISLOCKED(*vpp)) { 1807 if (ltype == LK_EXCLUSIVE) { 1808 vn_lock(*vpp, LK_UPGRADE | LK_RETRY); 1809 if (VN_IS_DOOMED((*vpp))) { 1810 /* forced unmount */ 1811 vrele(*vpp); 1812 *vpp = NULL; 1813 return (ENOENT); 1814 } 1815 } else 1816 vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY); 1817 } 1818 return (-1); 1819 } 1820 1821 static int __noinline 1822 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1823 struct timespec *tsp, int *ticksp) 1824 { 1825 struct namecache_ts *ncp_ts; 1826 struct namecache *ncp; 1827 struct mtx *dvlp; 1828 enum vgetstate vs; 1829 int error, ltype; 1830 bool whiteout; 1831 1832 MPASS((cnp->cn_flags & ISDOTDOT) != 0); 1833 1834 if ((cnp->cn_flags & MAKEENTRY) == 0) { 1835 cache_remove_cnp(dvp, cnp); 1836 return (0); 1837 } 1838 1839 counter_u64_add(dotdothits, 1); 1840 retry: 1841 dvlp = VP2VNODELOCK(dvp); 1842 mtx_lock(dvlp); 1843 ncp = dvp->v_cache_dd; 1844 if (ncp == NULL) { 1845 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, ".."); 1846 mtx_unlock(dvlp); 1847 return (0); 1848 } 1849 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) { 1850 if (ncp->nc_flag & NCF_NEGATIVE) 1851 *vpp = NULL; 1852 else 1853 *vpp = ncp->nc_vp; 1854 } else 1855 *vpp = ncp->nc_dvp; 1856 if (*vpp == NULL) 1857 goto negative_success; 1858 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp); 1859 cache_out_ts(ncp, tsp, ticksp); 1860 if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) == 1861 NCF_DTS && tsp != NULL) { 1862 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 1863 *tsp = ncp_ts->nc_dotdottime; 1864 } 1865 1866 MPASS(dvp != *vpp); 1867 ltype = VOP_ISLOCKED(dvp); 1868 VOP_UNLOCK(dvp); 1869 vs = vget_prep(*vpp); 1870 mtx_unlock(dvlp); 1871 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1872 vn_lock(dvp, ltype | LK_RETRY); 1873 if (VN_IS_DOOMED(dvp)) { 1874 if (error == 0) 1875 vput(*vpp); 1876 *vpp = NULL; 1877 return (ENOENT); 1878 } 1879 if (error) { 1880 *vpp = NULL; 1881 goto retry; 1882 } 1883 return (-1); 1884 negative_success: 1885 if (__predict_false(cnp->cn_nameiop == CREATE)) { 1886 if (cnp->cn_flags & ISLASTCN) { 1887 counter_u64_add(numnegzaps, 1); 1888 cache_zap_negative_locked_vnode_kl(ncp, dvp); 1889 mtx_unlock(dvlp); 1890 cache_free(ncp); 1891 return (0); 1892 } 1893 } 1894 1895 whiteout = (ncp->nc_flag & NCF_WHITE); 1896 cache_out_ts(ncp, tsp, ticksp); 1897 if (cache_neg_hit_prep(ncp)) 1898 cache_neg_promote(ncp); 1899 else 1900 cache_neg_hit_finish(ncp); 1901 mtx_unlock(dvlp); 1902 if (whiteout) 1903 cnp->cn_flags |= ISWHITEOUT; 1904 return (ENOENT); 1905 } 1906 1907 /** 1908 * Lookup a name in the name cache 1909 * 1910 * # Arguments 1911 * 1912 * - dvp: Parent directory in which to search. 1913 * - vpp: Return argument. Will contain desired vnode on cache hit. 1914 * - cnp: Parameters of the name search. The most interesting bits of 1915 * the cn_flags field have the following meanings: 1916 * - MAKEENTRY: If clear, free an entry from the cache rather than look 1917 * it up. 1918 * - ISDOTDOT: Must be set if and only if cn_nameptr == ".." 1919 * - tsp: Return storage for cache timestamp. On a successful (positive 1920 * or negative) lookup, tsp will be filled with any timespec that 1921 * was stored when this cache entry was created. However, it will 1922 * be clear for "." entries. 1923 * - ticks: Return storage for alternate cache timestamp. On a successful 1924 * (positive or negative) lookup, it will contain the ticks value 1925 * that was current when the cache entry was created, unless cnp 1926 * was ".". 1927 * 1928 * Either both tsp and ticks have to be provided or neither of them. 1929 * 1930 * # Returns 1931 * 1932 * - -1: A positive cache hit. vpp will contain the desired vnode. 1933 * - ENOENT: A negative cache hit, or dvp was recycled out from under us due 1934 * to a forced unmount. vpp will not be modified. If the entry 1935 * is a whiteout, then the ISWHITEOUT flag will be set in 1936 * cnp->cn_flags. 1937 * - 0: A cache miss. vpp will not be modified. 1938 * 1939 * # Locking 1940 * 1941 * On a cache hit, vpp will be returned locked and ref'd. If we're looking up 1942 * .., dvp is unlocked. If we're looking up . an extra ref is taken, but the 1943 * lock is not recursively acquired. 1944 */ 1945 static int __noinline 1946 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1947 struct timespec *tsp, int *ticksp) 1948 { 1949 struct namecache *ncp; 1950 struct mtx *blp; 1951 uint32_t hash; 1952 enum vgetstate vs; 1953 int error; 1954 bool whiteout; 1955 1956 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 1957 MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0); 1958 1959 retry: 1960 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 1961 blp = HASH2BUCKETLOCK(hash); 1962 mtx_lock(blp); 1963 1964 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 1965 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 1966 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 1967 break; 1968 } 1969 1970 if (__predict_false(ncp == NULL)) { 1971 mtx_unlock(blp); 1972 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr); 1973 counter_u64_add(nummiss, 1); 1974 return (0); 1975 } 1976 1977 if (ncp->nc_flag & NCF_NEGATIVE) 1978 goto negative_success; 1979 1980 counter_u64_add(numposhits, 1); 1981 *vpp = ncp->nc_vp; 1982 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 1983 cache_out_ts(ncp, tsp, ticksp); 1984 MPASS(dvp != *vpp); 1985 vs = vget_prep(*vpp); 1986 mtx_unlock(blp); 1987 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 1988 if (error) { 1989 *vpp = NULL; 1990 goto retry; 1991 } 1992 return (-1); 1993 negative_success: 1994 /* 1995 * We don't get here with regular lookup apart from corner cases. 1996 */ 1997 if (__predict_true(cnp->cn_nameiop == CREATE)) { 1998 if (cnp->cn_flags & ISLASTCN) { 1999 counter_u64_add(numnegzaps, 1); 2000 error = cache_zap_locked_bucket(ncp, cnp, hash, blp); 2001 if (__predict_false(error != 0)) { 2002 zap_bucket_fail2++; 2003 goto retry; 2004 } 2005 cache_free(ncp); 2006 return (0); 2007 } 2008 } 2009 2010 whiteout = (ncp->nc_flag & NCF_WHITE); 2011 cache_out_ts(ncp, tsp, ticksp); 2012 if (cache_neg_hit_prep(ncp)) 2013 cache_neg_promote(ncp); 2014 else 2015 cache_neg_hit_finish(ncp); 2016 mtx_unlock(blp); 2017 if (whiteout) 2018 cnp->cn_flags |= ISWHITEOUT; 2019 return (ENOENT); 2020 } 2021 2022 int 2023 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 2024 struct timespec *tsp, int *ticksp) 2025 { 2026 struct namecache *ncp; 2027 uint32_t hash; 2028 enum vgetstate vs; 2029 int error; 2030 bool whiteout, neg_promote; 2031 u_short nc_flag; 2032 2033 MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL)); 2034 2035 #ifdef DEBUG_CACHE 2036 if (__predict_false(!doingcache)) { 2037 cnp->cn_flags &= ~MAKEENTRY; 2038 return (0); 2039 } 2040 #endif 2041 2042 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 2043 if (cnp->cn_namelen == 1) 2044 return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp)); 2045 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') 2046 return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp)); 2047 } 2048 2049 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 2050 2051 if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) { 2052 cache_remove_cnp(dvp, cnp); 2053 return (0); 2054 } 2055 2056 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 2057 vfs_smr_enter(); 2058 2059 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 2060 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 2061 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 2062 break; 2063 } 2064 2065 if (__predict_false(ncp == NULL)) { 2066 vfs_smr_exit(); 2067 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr); 2068 counter_u64_add(nummiss, 1); 2069 return (0); 2070 } 2071 2072 nc_flag = atomic_load_char(&ncp->nc_flag); 2073 if (nc_flag & NCF_NEGATIVE) 2074 goto negative_success; 2075 2076 counter_u64_add(numposhits, 1); 2077 *vpp = ncp->nc_vp; 2078 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp); 2079 cache_out_ts(ncp, tsp, ticksp); 2080 MPASS(dvp != *vpp); 2081 if (!cache_ncp_canuse(ncp)) { 2082 vfs_smr_exit(); 2083 *vpp = NULL; 2084 goto out_fallback; 2085 } 2086 vs = vget_prep_smr(*vpp); 2087 vfs_smr_exit(); 2088 if (__predict_false(vs == VGET_NONE)) { 2089 *vpp = NULL; 2090 goto out_fallback; 2091 } 2092 error = vget_finish(*vpp, cnp->cn_lkflags, vs); 2093 if (error) { 2094 *vpp = NULL; 2095 goto out_fallback; 2096 } 2097 return (-1); 2098 negative_success: 2099 if (cnp->cn_nameiop == CREATE) { 2100 if (cnp->cn_flags & ISLASTCN) { 2101 vfs_smr_exit(); 2102 goto out_fallback; 2103 } 2104 } 2105 2106 cache_out_ts(ncp, tsp, ticksp); 2107 whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE); 2108 neg_promote = cache_neg_hit_prep(ncp); 2109 if (!cache_ncp_canuse(ncp)) { 2110 cache_neg_hit_abort(ncp); 2111 vfs_smr_exit(); 2112 goto out_fallback; 2113 } 2114 if (neg_promote) { 2115 vfs_smr_exit(); 2116 if (!cache_neg_promote_cond(dvp, cnp, ncp, hash)) 2117 goto out_fallback; 2118 } else { 2119 cache_neg_hit_finish(ncp); 2120 vfs_smr_exit(); 2121 } 2122 if (whiteout) 2123 cnp->cn_flags |= ISWHITEOUT; 2124 return (ENOENT); 2125 out_fallback: 2126 return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp)); 2127 } 2128 2129 struct celockstate { 2130 struct mtx *vlp[3]; 2131 struct mtx *blp[2]; 2132 }; 2133 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3)); 2134 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2)); 2135 2136 static inline void 2137 cache_celockstate_init(struct celockstate *cel) 2138 { 2139 2140 bzero(cel, sizeof(*cel)); 2141 } 2142 2143 static void 2144 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp, 2145 struct vnode *dvp) 2146 { 2147 struct mtx *vlp1, *vlp2; 2148 2149 MPASS(cel->vlp[0] == NULL); 2150 MPASS(cel->vlp[1] == NULL); 2151 MPASS(cel->vlp[2] == NULL); 2152 2153 MPASS(vp != NULL || dvp != NULL); 2154 2155 vlp1 = VP2VNODELOCK(vp); 2156 vlp2 = VP2VNODELOCK(dvp); 2157 cache_sort_vnodes(&vlp1, &vlp2); 2158 2159 if (vlp1 != NULL) { 2160 mtx_lock(vlp1); 2161 cel->vlp[0] = vlp1; 2162 } 2163 mtx_lock(vlp2); 2164 cel->vlp[1] = vlp2; 2165 } 2166 2167 static void 2168 cache_unlock_vnodes_cel(struct celockstate *cel) 2169 { 2170 2171 MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL); 2172 2173 if (cel->vlp[0] != NULL) 2174 mtx_unlock(cel->vlp[0]); 2175 if (cel->vlp[1] != NULL) 2176 mtx_unlock(cel->vlp[1]); 2177 if (cel->vlp[2] != NULL) 2178 mtx_unlock(cel->vlp[2]); 2179 } 2180 2181 static bool 2182 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp) 2183 { 2184 struct mtx *vlp; 2185 bool ret; 2186 2187 cache_assert_vlp_locked(cel->vlp[0]); 2188 cache_assert_vlp_locked(cel->vlp[1]); 2189 MPASS(cel->vlp[2] == NULL); 2190 2191 MPASS(vp != NULL); 2192 vlp = VP2VNODELOCK(vp); 2193 2194 ret = true; 2195 if (vlp >= cel->vlp[1]) { 2196 mtx_lock(vlp); 2197 } else { 2198 if (mtx_trylock(vlp)) 2199 goto out; 2200 cache_lock_vnodes_cel_3_failures++; 2201 cache_unlock_vnodes_cel(cel); 2202 if (vlp < cel->vlp[0]) { 2203 mtx_lock(vlp); 2204 mtx_lock(cel->vlp[0]); 2205 mtx_lock(cel->vlp[1]); 2206 } else { 2207 if (cel->vlp[0] != NULL) 2208 mtx_lock(cel->vlp[0]); 2209 mtx_lock(vlp); 2210 mtx_lock(cel->vlp[1]); 2211 } 2212 ret = false; 2213 } 2214 out: 2215 cel->vlp[2] = vlp; 2216 return (ret); 2217 } 2218 2219 static void 2220 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1, 2221 struct mtx *blp2) 2222 { 2223 2224 MPASS(cel->blp[0] == NULL); 2225 MPASS(cel->blp[1] == NULL); 2226 2227 cache_sort_vnodes(&blp1, &blp2); 2228 2229 if (blp1 != NULL) { 2230 mtx_lock(blp1); 2231 cel->blp[0] = blp1; 2232 } 2233 mtx_lock(blp2); 2234 cel->blp[1] = blp2; 2235 } 2236 2237 static void 2238 cache_unlock_buckets_cel(struct celockstate *cel) 2239 { 2240 2241 if (cel->blp[0] != NULL) 2242 mtx_unlock(cel->blp[0]); 2243 mtx_unlock(cel->blp[1]); 2244 } 2245 2246 /* 2247 * Lock part of the cache affected by the insertion. 2248 * 2249 * This means vnodelocks for dvp, vp and the relevant bucketlock. 2250 * However, insertion can result in removal of an old entry. In this 2251 * case we have an additional vnode and bucketlock pair to lock. 2252 * 2253 * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while 2254 * preserving the locking order (smaller address first). 2255 */ 2256 static void 2257 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2258 uint32_t hash) 2259 { 2260 struct namecache *ncp; 2261 struct mtx *blps[2]; 2262 u_char nc_flag; 2263 2264 blps[0] = HASH2BUCKETLOCK(hash); 2265 for (;;) { 2266 blps[1] = NULL; 2267 cache_lock_vnodes_cel(cel, dvp, vp); 2268 if (vp == NULL || vp->v_type != VDIR) 2269 break; 2270 ncp = atomic_load_consume_ptr(&vp->v_cache_dd); 2271 if (ncp == NULL) 2272 break; 2273 nc_flag = atomic_load_char(&ncp->nc_flag); 2274 if ((nc_flag & NCF_ISDOTDOT) == 0) 2275 break; 2276 MPASS(ncp->nc_dvp == vp); 2277 blps[1] = NCP2BUCKETLOCK(ncp); 2278 if ((nc_flag & NCF_NEGATIVE) != 0) 2279 break; 2280 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2281 break; 2282 /* 2283 * All vnodes got re-locked. Re-validate the state and if 2284 * nothing changed we are done. Otherwise restart. 2285 */ 2286 if (ncp == vp->v_cache_dd && 2287 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2288 blps[1] == NCP2BUCKETLOCK(ncp) && 2289 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2290 break; 2291 cache_unlock_vnodes_cel(cel); 2292 cel->vlp[0] = NULL; 2293 cel->vlp[1] = NULL; 2294 cel->vlp[2] = NULL; 2295 } 2296 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2297 } 2298 2299 static void 2300 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, 2301 uint32_t hash) 2302 { 2303 struct namecache *ncp; 2304 struct mtx *blps[2]; 2305 u_char nc_flag; 2306 2307 blps[0] = HASH2BUCKETLOCK(hash); 2308 for (;;) { 2309 blps[1] = NULL; 2310 cache_lock_vnodes_cel(cel, dvp, vp); 2311 ncp = atomic_load_consume_ptr(&dvp->v_cache_dd); 2312 if (ncp == NULL) 2313 break; 2314 nc_flag = atomic_load_char(&ncp->nc_flag); 2315 if ((nc_flag & NCF_ISDOTDOT) == 0) 2316 break; 2317 MPASS(ncp->nc_dvp == dvp); 2318 blps[1] = NCP2BUCKETLOCK(ncp); 2319 if ((nc_flag & NCF_NEGATIVE) != 0) 2320 break; 2321 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp)) 2322 break; 2323 if (ncp == dvp->v_cache_dd && 2324 (ncp->nc_flag & NCF_ISDOTDOT) != 0 && 2325 blps[1] == NCP2BUCKETLOCK(ncp) && 2326 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2]) 2327 break; 2328 cache_unlock_vnodes_cel(cel); 2329 cel->vlp[0] = NULL; 2330 cel->vlp[1] = NULL; 2331 cel->vlp[2] = NULL; 2332 } 2333 cache_lock_buckets_cel(cel, blps[0], blps[1]); 2334 } 2335 2336 static void 2337 cache_enter_unlock(struct celockstate *cel) 2338 { 2339 2340 cache_unlock_buckets_cel(cel); 2341 cache_unlock_vnodes_cel(cel); 2342 } 2343 2344 static void __noinline 2345 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp, 2346 struct componentname *cnp) 2347 { 2348 struct celockstate cel; 2349 struct namecache *ncp; 2350 uint32_t hash; 2351 int len; 2352 2353 if (atomic_load_ptr(&dvp->v_cache_dd) == NULL) 2354 return; 2355 len = cnp->cn_namelen; 2356 cache_celockstate_init(&cel); 2357 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2358 cache_enter_lock_dd(&cel, dvp, vp, hash); 2359 ncp = dvp->v_cache_dd; 2360 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) { 2361 KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent")); 2362 cache_zap_locked(ncp); 2363 } else { 2364 ncp = NULL; 2365 } 2366 atomic_store_ptr(&dvp->v_cache_dd, NULL); 2367 cache_enter_unlock(&cel); 2368 if (ncp != NULL) 2369 cache_free(ncp); 2370 } 2371 2372 /* 2373 * Add an entry to the cache. 2374 */ 2375 void 2376 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, 2377 struct timespec *tsp, struct timespec *dtsp) 2378 { 2379 struct celockstate cel; 2380 struct namecache *ncp, *n2, *ndd; 2381 struct namecache_ts *ncp_ts; 2382 struct nchashhead *ncpp; 2383 uint32_t hash; 2384 int flag; 2385 int len; 2386 2387 KASSERT(cnp->cn_namelen <= NAME_MAX, 2388 ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen, 2389 NAME_MAX)); 2390 VNPASS(!VN_IS_DOOMED(dvp), dvp); 2391 VNPASS(dvp->v_type != VNON, dvp); 2392 if (vp != NULL) { 2393 VNPASS(!VN_IS_DOOMED(vp), vp); 2394 VNPASS(vp->v_type != VNON, vp); 2395 } 2396 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { 2397 KASSERT(dvp == vp, 2398 ("%s: different vnodes for dot entry (%p; %p)\n", __func__, 2399 dvp, vp)); 2400 } else { 2401 KASSERT(dvp != vp, 2402 ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__, 2403 cnp->cn_nameptr, dvp)); 2404 } 2405 2406 #ifdef DEBUG_CACHE 2407 if (__predict_false(!doingcache)) 2408 return; 2409 #endif 2410 2411 flag = 0; 2412 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 2413 if (cnp->cn_namelen == 1) 2414 return; 2415 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 2416 cache_enter_dotdot_prep(dvp, vp, cnp); 2417 flag = NCF_ISDOTDOT; 2418 } 2419 } 2420 2421 ncp = cache_alloc(cnp->cn_namelen, tsp != NULL); 2422 if (ncp == NULL) 2423 return; 2424 2425 cache_celockstate_init(&cel); 2426 ndd = NULL; 2427 ncp_ts = NULL; 2428 2429 /* 2430 * Calculate the hash key and setup as much of the new 2431 * namecache entry as possible before acquiring the lock. 2432 */ 2433 ncp->nc_flag = flag | NCF_WIP; 2434 ncp->nc_vp = vp; 2435 if (vp == NULL) 2436 cache_neg_init(ncp); 2437 ncp->nc_dvp = dvp; 2438 if (tsp != NULL) { 2439 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc); 2440 ncp_ts->nc_time = *tsp; 2441 ncp_ts->nc_ticks = ticks; 2442 ncp_ts->nc_nc.nc_flag |= NCF_TS; 2443 if (dtsp != NULL) { 2444 ncp_ts->nc_dotdottime = *dtsp; 2445 ncp_ts->nc_nc.nc_flag |= NCF_DTS; 2446 } 2447 } 2448 len = ncp->nc_nlen = cnp->cn_namelen; 2449 hash = cache_get_hash(cnp->cn_nameptr, len, dvp); 2450 memcpy(ncp->nc_name, cnp->cn_nameptr, len); 2451 ncp->nc_name[len] = '\0'; 2452 cache_enter_lock(&cel, dvp, vp, hash); 2453 2454 /* 2455 * See if this vnode or negative entry is already in the cache 2456 * with this name. This can happen with concurrent lookups of 2457 * the same path name. 2458 */ 2459 ncpp = NCHHASH(hash); 2460 CK_SLIST_FOREACH(n2, ncpp, nc_hash) { 2461 if (n2->nc_dvp == dvp && 2462 n2->nc_nlen == cnp->cn_namelen && 2463 !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) { 2464 MPASS(cache_ncp_canuse(n2)); 2465 if ((n2->nc_flag & NCF_NEGATIVE) != 0) 2466 KASSERT(vp == NULL, 2467 ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]", 2468 __func__, NULL, vp, cnp->cn_nameptr)); 2469 else 2470 KASSERT(n2->nc_vp == vp, 2471 ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]", 2472 __func__, n2->nc_vp, vp, cnp->cn_nameptr)); 2473 /* 2474 * Entries are supposed to be immutable unless in the 2475 * process of getting destroyed. Accommodating for 2476 * changing timestamps is possible but not worth it. 2477 * This should be harmless in terms of correctness, in 2478 * the worst case resulting in an earlier expiration. 2479 * Alternatively, the found entry can be replaced 2480 * altogether. 2481 */ 2482 MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS))); 2483 #if 0 2484 if (tsp != NULL) { 2485 KASSERT((n2->nc_flag & NCF_TS) != 0, 2486 ("no NCF_TS")); 2487 n2_ts = __containerof(n2, struct namecache_ts, nc_nc); 2488 n2_ts->nc_time = ncp_ts->nc_time; 2489 n2_ts->nc_ticks = ncp_ts->nc_ticks; 2490 if (dtsp != NULL) { 2491 n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime; 2492 n2_ts->nc_nc.nc_flag |= NCF_DTS; 2493 } 2494 } 2495 #endif 2496 SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name, 2497 vp); 2498 goto out_unlock_free; 2499 } 2500 } 2501 2502 if (flag == NCF_ISDOTDOT) { 2503 /* 2504 * See if we are trying to add .. entry, but some other lookup 2505 * has populated v_cache_dd pointer already. 2506 */ 2507 if (dvp->v_cache_dd != NULL) 2508 goto out_unlock_free; 2509 KASSERT(vp == NULL || vp->v_type == VDIR, 2510 ("wrong vnode type %p", vp)); 2511 atomic_thread_fence_rel(); 2512 atomic_store_ptr(&dvp->v_cache_dd, ncp); 2513 } 2514 2515 if (vp != NULL) { 2516 if (flag != NCF_ISDOTDOT) { 2517 /* 2518 * For this case, the cache entry maps both the 2519 * directory name in it and the name ".." for the 2520 * directory's parent. 2521 */ 2522 if ((ndd = vp->v_cache_dd) != NULL) { 2523 if ((ndd->nc_flag & NCF_ISDOTDOT) != 0) 2524 cache_zap_locked(ndd); 2525 else 2526 ndd = NULL; 2527 } 2528 atomic_thread_fence_rel(); 2529 atomic_store_ptr(&vp->v_cache_dd, ncp); 2530 } else if (vp->v_type != VDIR) { 2531 if (vp->v_cache_dd != NULL) { 2532 atomic_store_ptr(&vp->v_cache_dd, NULL); 2533 } 2534 } 2535 } 2536 2537 if (flag != NCF_ISDOTDOT) { 2538 if (LIST_EMPTY(&dvp->v_cache_src)) { 2539 cache_hold_vnode(dvp); 2540 } 2541 LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src); 2542 } 2543 2544 /* 2545 * If the entry is "negative", we place it into the 2546 * "negative" cache queue, otherwise, we place it into the 2547 * destination vnode's cache entries queue. 2548 */ 2549 if (vp != NULL) { 2550 TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst); 2551 SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name, 2552 vp); 2553 } else { 2554 if (cnp->cn_flags & ISWHITEOUT) 2555 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE); 2556 cache_neg_insert(ncp); 2557 SDT_PROBE2(vfs, namecache, enter_negative, done, dvp, 2558 ncp->nc_name); 2559 } 2560 2561 /* 2562 * Insert the new namecache entry into the appropriate chain 2563 * within the cache entries table. 2564 */ 2565 CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash); 2566 2567 atomic_thread_fence_rel(); 2568 /* 2569 * Mark the entry as fully constructed. 2570 * It is immutable past this point until its removal. 2571 */ 2572 atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP); 2573 2574 cache_enter_unlock(&cel); 2575 if (ndd != NULL) 2576 cache_free(ndd); 2577 return; 2578 out_unlock_free: 2579 cache_enter_unlock(&cel); 2580 cache_free(ncp); 2581 return; 2582 } 2583 2584 /* 2585 * A variant of the above accepting flags. 2586 * 2587 * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it. 2588 * 2589 * TODO: this routine is a hack. It blindly removes the old entry, even if it 2590 * happens to match and it is doing it in an inefficient manner. It was added 2591 * to accommodate NFS which runs into a case where the target for a given name 2592 * may change from under it. Note this does nothing to solve the following 2593 * race: 2 callers of cache_enter_time_flags pass a different target vnode for 2594 * the same [dvp, cnp]. It may be argued that code doing this is broken. 2595 */ 2596 void 2597 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, 2598 struct timespec *tsp, struct timespec *dtsp, int flags) 2599 { 2600 2601 MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0); 2602 2603 if (flags & VFS_CACHE_DROPOLD) 2604 cache_remove_cnp(dvp, cnp); 2605 cache_enter_time(dvp, vp, cnp, tsp, dtsp); 2606 } 2607 2608 static u_int 2609 cache_roundup_2(u_int val) 2610 { 2611 u_int res; 2612 2613 for (res = 1; res <= val; res <<= 1) 2614 continue; 2615 2616 return (res); 2617 } 2618 2619 static struct nchashhead * 2620 nchinittbl(u_long elements, u_long *hashmask) 2621 { 2622 struct nchashhead *hashtbl; 2623 u_long hashsize, i; 2624 2625 hashsize = cache_roundup_2(elements) / 2; 2626 2627 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK); 2628 for (i = 0; i < hashsize; i++) 2629 CK_SLIST_INIT(&hashtbl[i]); 2630 *hashmask = hashsize - 1; 2631 return (hashtbl); 2632 } 2633 2634 static void 2635 ncfreetbl(struct nchashhead *hashtbl) 2636 { 2637 2638 free(hashtbl, M_VFSCACHE); 2639 } 2640 2641 /* 2642 * Name cache initialization, from vfs_init() when we are booting 2643 */ 2644 static void 2645 nchinit(void *dummy __unused) 2646 { 2647 u_int i; 2648 2649 cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE, 2650 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2651 cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE, 2652 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2653 cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE, 2654 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2655 cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE, 2656 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT); 2657 2658 VFS_SMR_ZONE_SET(cache_zone_small); 2659 VFS_SMR_ZONE_SET(cache_zone_small_ts); 2660 VFS_SMR_ZONE_SET(cache_zone_large); 2661 VFS_SMR_ZONE_SET(cache_zone_large_ts); 2662 2663 ncsize = desiredvnodes * ncsizefactor; 2664 cache_recalc_neg_min(ncnegminpct); 2665 nchashtbl = nchinittbl(desiredvnodes * 2, &nchash); 2666 ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1; 2667 if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */ 2668 ncbuckethash = 7; 2669 if (ncbuckethash > nchash) 2670 ncbuckethash = nchash; 2671 bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE, 2672 M_WAITOK | M_ZERO); 2673 for (i = 0; i < numbucketlocks; i++) 2674 mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE); 2675 ncvnodehash = ncbuckethash; 2676 vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE, 2677 M_WAITOK | M_ZERO); 2678 for (i = 0; i < numvnodelocks; i++) 2679 mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE); 2680 2681 for (i = 0; i < numneglists; i++) { 2682 mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF); 2683 mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF); 2684 TAILQ_INIT(&neglists[i].nl_list); 2685 TAILQ_INIT(&neglists[i].nl_hotlist); 2686 } 2687 } 2688 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL); 2689 2690 void 2691 cache_vnode_init(struct vnode *vp) 2692 { 2693 2694 LIST_INIT(&vp->v_cache_src); 2695 TAILQ_INIT(&vp->v_cache_dst); 2696 vp->v_cache_dd = NULL; 2697 cache_prehash(vp); 2698 } 2699 2700 /* 2701 * Induce transient cache misses for lockless operation in cache_lookup() by 2702 * using a temporary hash table. 2703 * 2704 * This will force a fs lookup. 2705 * 2706 * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time 2707 * to observe all CPUs not performing the lookup. 2708 */ 2709 static void 2710 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash) 2711 { 2712 2713 MPASS(temphash < nchash); 2714 /* 2715 * Change the size. The new size is smaller and can safely be used 2716 * against the existing table. All lookups which now hash wrong will 2717 * result in a cache miss, which all callers are supposed to know how 2718 * to handle. 2719 */ 2720 atomic_store_long(&nchash, temphash); 2721 atomic_thread_fence_rel(); 2722 vfs_smr_synchronize(); 2723 /* 2724 * At this point everyone sees the updated hash value, but they still 2725 * see the old table. 2726 */ 2727 atomic_store_ptr(&nchashtbl, temptbl); 2728 atomic_thread_fence_rel(); 2729 vfs_smr_synchronize(); 2730 /* 2731 * At this point everyone sees the updated table pointer and size pair. 2732 */ 2733 } 2734 2735 /* 2736 * Set the new hash table. 2737 * 2738 * Similarly to cache_changesize_set_temp(), this has to synchronize against 2739 * lockless operation in cache_lookup(). 2740 */ 2741 static void 2742 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash) 2743 { 2744 2745 MPASS(nchash < new_hash); 2746 /* 2747 * Change the pointer first. This wont result in out of bounds access 2748 * since the temporary table is guaranteed to be smaller. 2749 */ 2750 atomic_store_ptr(&nchashtbl, new_tbl); 2751 atomic_thread_fence_rel(); 2752 vfs_smr_synchronize(); 2753 /* 2754 * At this point everyone sees the updated pointer value, but they 2755 * still see the old size. 2756 */ 2757 atomic_store_long(&nchash, new_hash); 2758 atomic_thread_fence_rel(); 2759 vfs_smr_synchronize(); 2760 /* 2761 * At this point everyone sees the updated table pointer and size pair. 2762 */ 2763 } 2764 2765 void 2766 cache_changesize(u_long newmaxvnodes) 2767 { 2768 struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl; 2769 u_long new_nchash, old_nchash, temphash; 2770 struct namecache *ncp; 2771 uint32_t hash; 2772 u_long newncsize; 2773 int i; 2774 2775 newncsize = newmaxvnodes * ncsizefactor; 2776 newmaxvnodes = cache_roundup_2(newmaxvnodes * 2); 2777 if (newmaxvnodes < numbucketlocks) 2778 newmaxvnodes = numbucketlocks; 2779 2780 new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash); 2781 /* If same hash table size, nothing to do */ 2782 if (nchash == new_nchash) { 2783 ncfreetbl(new_nchashtbl); 2784 return; 2785 } 2786 2787 temptbl = nchinittbl(1, &temphash); 2788 2789 /* 2790 * Move everything from the old hash table to the new table. 2791 * None of the namecache entries in the table can be removed 2792 * because to do so, they have to be removed from the hash table. 2793 */ 2794 cache_lock_all_vnodes(); 2795 cache_lock_all_buckets(); 2796 old_nchashtbl = nchashtbl; 2797 old_nchash = nchash; 2798 cache_changesize_set_temp(temptbl, temphash); 2799 for (i = 0; i <= old_nchash; i++) { 2800 while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) { 2801 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, 2802 ncp->nc_dvp); 2803 CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash); 2804 CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash); 2805 } 2806 } 2807 ncsize = newncsize; 2808 cache_recalc_neg_min(ncnegminpct); 2809 cache_changesize_set_new(new_nchashtbl, new_nchash); 2810 cache_unlock_all_buckets(); 2811 cache_unlock_all_vnodes(); 2812 ncfreetbl(old_nchashtbl); 2813 ncfreetbl(temptbl); 2814 } 2815 2816 /* 2817 * Remove all entries from and to a particular vnode. 2818 */ 2819 static void 2820 cache_purge_impl(struct vnode *vp) 2821 { 2822 struct cache_freebatch batch; 2823 struct namecache *ncp; 2824 struct mtx *vlp, *vlp2; 2825 2826 TAILQ_INIT(&batch); 2827 vlp = VP2VNODELOCK(vp); 2828 vlp2 = NULL; 2829 mtx_lock(vlp); 2830 retry: 2831 while (!LIST_EMPTY(&vp->v_cache_src)) { 2832 ncp = LIST_FIRST(&vp->v_cache_src); 2833 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2834 goto retry; 2835 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2836 } 2837 while (!TAILQ_EMPTY(&vp->v_cache_dst)) { 2838 ncp = TAILQ_FIRST(&vp->v_cache_dst); 2839 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2840 goto retry; 2841 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2842 } 2843 ncp = vp->v_cache_dd; 2844 if (ncp != NULL) { 2845 KASSERT(ncp->nc_flag & NCF_ISDOTDOT, 2846 ("lost dotdot link")); 2847 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2)) 2848 goto retry; 2849 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2850 } 2851 KASSERT(vp->v_cache_dd == NULL, ("incomplete purge")); 2852 mtx_unlock(vlp); 2853 if (vlp2 != NULL) 2854 mtx_unlock(vlp2); 2855 cache_free_batch(&batch); 2856 } 2857 2858 /* 2859 * Opportunistic check to see if there is anything to do. 2860 */ 2861 static bool 2862 cache_has_entries(struct vnode *vp) 2863 { 2864 2865 if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) && 2866 atomic_load_ptr(&vp->v_cache_dd) == NULL) 2867 return (false); 2868 return (true); 2869 } 2870 2871 void 2872 cache_purge(struct vnode *vp) 2873 { 2874 2875 SDT_PROBE1(vfs, namecache, purge, done, vp); 2876 if (!cache_has_entries(vp)) 2877 return; 2878 cache_purge_impl(vp); 2879 } 2880 2881 /* 2882 * Only to be used by vgone. 2883 */ 2884 void 2885 cache_purge_vgone(struct vnode *vp) 2886 { 2887 struct mtx *vlp; 2888 2889 VNPASS(VN_IS_DOOMED(vp), vp); 2890 if (cache_has_entries(vp)) { 2891 cache_purge_impl(vp); 2892 return; 2893 } 2894 2895 /* 2896 * Serialize against a potential thread doing cache_purge. 2897 */ 2898 vlp = VP2VNODELOCK(vp); 2899 mtx_wait_unlocked(vlp); 2900 if (cache_has_entries(vp)) { 2901 cache_purge_impl(vp); 2902 return; 2903 } 2904 return; 2905 } 2906 2907 /* 2908 * Remove all negative entries for a particular directory vnode. 2909 */ 2910 void 2911 cache_purge_negative(struct vnode *vp) 2912 { 2913 struct cache_freebatch batch; 2914 struct namecache *ncp, *nnp; 2915 struct mtx *vlp; 2916 2917 SDT_PROBE1(vfs, namecache, purge_negative, done, vp); 2918 if (LIST_EMPTY(&vp->v_cache_src)) 2919 return; 2920 TAILQ_INIT(&batch); 2921 vlp = VP2VNODELOCK(vp); 2922 mtx_lock(vlp); 2923 LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) { 2924 if (!(ncp->nc_flag & NCF_NEGATIVE)) 2925 continue; 2926 cache_zap_negative_locked_vnode_kl(ncp, vp); 2927 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst); 2928 } 2929 mtx_unlock(vlp); 2930 cache_free_batch(&batch); 2931 } 2932 2933 /* 2934 * Entry points for modifying VOP operations. 2935 */ 2936 void 2937 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp, 2938 struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp) 2939 { 2940 2941 ASSERT_VOP_IN_SEQC(fdvp); 2942 ASSERT_VOP_IN_SEQC(fvp); 2943 ASSERT_VOP_IN_SEQC(tdvp); 2944 if (tvp != NULL) 2945 ASSERT_VOP_IN_SEQC(tvp); 2946 2947 cache_purge(fvp); 2948 if (tvp != NULL) { 2949 cache_purge(tvp); 2950 KASSERT(!cache_remove_cnp(tdvp, tcnp), 2951 ("%s: lingering negative entry", __func__)); 2952 } else { 2953 cache_remove_cnp(tdvp, tcnp); 2954 } 2955 2956 /* 2957 * TODO 2958 * 2959 * Historically renaming was always purging all revelang entries, 2960 * but that's quite wasteful. In particular turns out that in many cases 2961 * the target file is immediately accessed after rename, inducing a cache 2962 * miss. 2963 * 2964 * Recode this to reduce relocking and reuse the existing entry (if any) 2965 * instead of just removing it above and allocating a new one here. 2966 */ 2967 if (cache_rename_add) { 2968 cache_enter(tdvp, fvp, tcnp); 2969 } 2970 } 2971 2972 void 2973 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp) 2974 { 2975 2976 ASSERT_VOP_IN_SEQC(dvp); 2977 ASSERT_VOP_IN_SEQC(vp); 2978 cache_purge(vp); 2979 } 2980 2981 #ifdef INVARIANTS 2982 /* 2983 * Validate that if an entry exists it matches. 2984 */ 2985 void 2986 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2987 { 2988 struct namecache *ncp; 2989 struct mtx *blp; 2990 uint32_t hash; 2991 2992 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp); 2993 if (CK_SLIST_EMPTY(NCHHASH(hash))) 2994 return; 2995 blp = HASH2BUCKETLOCK(hash); 2996 mtx_lock(blp); 2997 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 2998 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 2999 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) { 3000 if (ncp->nc_vp != vp) 3001 panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n", 3002 __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp); 3003 } 3004 } 3005 mtx_unlock(blp); 3006 } 3007 #endif 3008 3009 /* 3010 * Flush all entries referencing a particular filesystem. 3011 */ 3012 void 3013 cache_purgevfs(struct mount *mp) 3014 { 3015 struct vnode *vp, *mvp; 3016 size_t visited, purged; 3017 3018 visited = purged = 0; 3019 /* 3020 * Somewhat wasteful iteration over all vnodes. Would be better to 3021 * support filtering and avoid the interlock to begin with. 3022 */ 3023 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 3024 visited++; 3025 if (!cache_has_entries(vp)) { 3026 VI_UNLOCK(vp); 3027 continue; 3028 } 3029 vholdl(vp); 3030 VI_UNLOCK(vp); 3031 cache_purge(vp); 3032 purged++; 3033 vdrop(vp); 3034 } 3035 3036 SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged); 3037 } 3038 3039 /* 3040 * Perform canonical checks and cache lookup and pass on to filesystem 3041 * through the vop_cachedlookup only if needed. 3042 */ 3043 3044 int 3045 vfs_cache_lookup(struct vop_lookup_args *ap) 3046 { 3047 struct vnode *dvp; 3048 int error; 3049 struct vnode **vpp = ap->a_vpp; 3050 struct componentname *cnp = ap->a_cnp; 3051 int flags = cnp->cn_flags; 3052 3053 *vpp = NULL; 3054 dvp = ap->a_dvp; 3055 3056 if (dvp->v_type != VDIR) 3057 return (ENOTDIR); 3058 3059 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 3060 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 3061 return (EROFS); 3062 3063 error = vn_dir_check_exec(dvp, cnp); 3064 if (error != 0) 3065 return (error); 3066 3067 error = cache_lookup(dvp, vpp, cnp, NULL, NULL); 3068 if (error == 0) 3069 return (VOP_CACHEDLOOKUP(dvp, vpp, cnp)); 3070 if (error == -1) 3071 return (0); 3072 return (error); 3073 } 3074 3075 /* Implementation of the getcwd syscall. */ 3076 int 3077 sys___getcwd(struct thread *td, struct __getcwd_args *uap) 3078 { 3079 char *buf, *retbuf; 3080 size_t buflen; 3081 int error; 3082 3083 buflen = uap->buflen; 3084 if (__predict_false(buflen < 2)) 3085 return (EINVAL); 3086 if (buflen > MAXPATHLEN) 3087 buflen = MAXPATHLEN; 3088 3089 buf = uma_zalloc(namei_zone, M_WAITOK); 3090 error = vn_getcwd(buf, &retbuf, &buflen); 3091 if (error == 0) 3092 error = copyout(retbuf, uap->buf, buflen); 3093 uma_zfree(namei_zone, buf); 3094 return (error); 3095 } 3096 3097 int 3098 vn_getcwd(char *buf, char **retbuf, size_t *buflen) 3099 { 3100 struct pwd *pwd; 3101 int error; 3102 3103 vfs_smr_enter(); 3104 pwd = pwd_get_smr(); 3105 error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf, 3106 buflen, 0); 3107 VFS_SMR_ASSERT_NOT_ENTERED(); 3108 if (error < 0) { 3109 pwd = pwd_hold(curthread); 3110 error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf, 3111 retbuf, buflen); 3112 pwd_drop(pwd); 3113 } 3114 3115 #ifdef KTRACE 3116 if (KTRPOINT(curthread, KTR_NAMEI) && error == 0) 3117 ktrnamei(*retbuf); 3118 #endif 3119 return (error); 3120 } 3121 3122 /* 3123 * Canonicalize a path by walking it forward and back. 3124 * 3125 * BUGS: 3126 * - Nothing guarantees the integrity of the entire chain. Consider the case 3127 * where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of 3128 * "foo" into "quux" during the backwards walk. The result will be 3129 * "quux/bar/baz/qux", which could not have been obtained by an incremental 3130 * walk in userspace. Moreover, the path we return is inaccessible if the 3131 * calling thread lacks permission to traverse "quux". 3132 */ 3133 static int 3134 kern___realpathat(struct thread *td, int fd, const char *path, char *buf, 3135 size_t size, int flags, enum uio_seg pathseg) 3136 { 3137 struct nameidata nd; 3138 char *retbuf, *freebuf; 3139 int error; 3140 3141 if (flags != 0) 3142 return (EINVAL); 3143 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1, 3144 pathseg, path, fd, &cap_fstat_rights); 3145 if ((error = namei(&nd)) != 0) 3146 return (error); 3147 error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp, nd.ni_cnd.cn_nameptr, 3148 nd.ni_cnd.cn_namelen, &retbuf, &freebuf, &size); 3149 if (error == 0) { 3150 error = copyout(retbuf, buf, size); 3151 free(freebuf, M_TEMP); 3152 } 3153 NDFREE(&nd, 0); 3154 return (error); 3155 } 3156 3157 int 3158 sys___realpathat(struct thread *td, struct __realpathat_args *uap) 3159 { 3160 3161 return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size, 3162 uap->flags, UIO_USERSPACE)); 3163 } 3164 3165 /* 3166 * Retrieve the full filesystem path that correspond to a vnode from the name 3167 * cache (if available) 3168 */ 3169 int 3170 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf) 3171 { 3172 struct pwd *pwd; 3173 char *buf; 3174 size_t buflen; 3175 int error; 3176 3177 if (__predict_false(vp == NULL)) 3178 return (EINVAL); 3179 3180 buflen = MAXPATHLEN; 3181 buf = malloc(buflen, M_TEMP, M_WAITOK); 3182 vfs_smr_enter(); 3183 pwd = pwd_get_smr(); 3184 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0); 3185 VFS_SMR_ASSERT_NOT_ENTERED(); 3186 if (error < 0) { 3187 pwd = pwd_hold(curthread); 3188 error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen); 3189 pwd_drop(pwd); 3190 } 3191 if (error == 0) 3192 *freebuf = buf; 3193 else 3194 free(buf, M_TEMP); 3195 return (error); 3196 } 3197 3198 /* 3199 * This function is similar to vn_fullpath, but it attempts to lookup the 3200 * pathname relative to the global root mount point. This is required for the 3201 * auditing sub-system, as audited pathnames must be absolute, relative to the 3202 * global root mount point. 3203 */ 3204 int 3205 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf) 3206 { 3207 char *buf; 3208 size_t buflen; 3209 int error; 3210 3211 if (__predict_false(vp == NULL)) 3212 return (EINVAL); 3213 buflen = MAXPATHLEN; 3214 buf = malloc(buflen, M_TEMP, M_WAITOK); 3215 vfs_smr_enter(); 3216 error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0); 3217 VFS_SMR_ASSERT_NOT_ENTERED(); 3218 if (error < 0) { 3219 error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen); 3220 } 3221 if (error == 0) 3222 *freebuf = buf; 3223 else 3224 free(buf, M_TEMP); 3225 return (error); 3226 } 3227 3228 static struct namecache * 3229 vn_dd_from_dst(struct vnode *vp) 3230 { 3231 struct namecache *ncp; 3232 3233 cache_assert_vnode_locked(vp); 3234 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) { 3235 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 3236 return (ncp); 3237 } 3238 return (NULL); 3239 } 3240 3241 int 3242 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen) 3243 { 3244 struct vnode *dvp; 3245 struct namecache *ncp; 3246 struct mtx *vlp; 3247 int error; 3248 3249 vlp = VP2VNODELOCK(*vp); 3250 mtx_lock(vlp); 3251 ncp = (*vp)->v_cache_dd; 3252 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) { 3253 KASSERT(ncp == vn_dd_from_dst(*vp), 3254 ("%s: mismatch for dd entry (%p != %p)", __func__, 3255 ncp, vn_dd_from_dst(*vp))); 3256 } else { 3257 ncp = vn_dd_from_dst(*vp); 3258 } 3259 if (ncp != NULL) { 3260 if (*buflen < ncp->nc_nlen) { 3261 mtx_unlock(vlp); 3262 vrele(*vp); 3263 counter_u64_add(numfullpathfail4, 1); 3264 error = ENOMEM; 3265 SDT_PROBE3(vfs, namecache, fullpath, return, error, 3266 vp, NULL); 3267 return (error); 3268 } 3269 *buflen -= ncp->nc_nlen; 3270 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 3271 SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp, 3272 ncp->nc_name, vp); 3273 dvp = *vp; 3274 *vp = ncp->nc_dvp; 3275 vref(*vp); 3276 mtx_unlock(vlp); 3277 vrele(dvp); 3278 return (0); 3279 } 3280 SDT_PROBE1(vfs, namecache, fullpath, miss, vp); 3281 3282 mtx_unlock(vlp); 3283 vn_lock(*vp, LK_SHARED | LK_RETRY); 3284 error = VOP_VPTOCNP(*vp, &dvp, buf, buflen); 3285 vput(*vp); 3286 if (error) { 3287 counter_u64_add(numfullpathfail2, 1); 3288 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 3289 return (error); 3290 } 3291 3292 *vp = dvp; 3293 if (VN_IS_DOOMED(dvp)) { 3294 /* forced unmount */ 3295 vrele(dvp); 3296 error = ENOENT; 3297 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL); 3298 return (error); 3299 } 3300 /* 3301 * *vp has its use count incremented still. 3302 */ 3303 3304 return (0); 3305 } 3306 3307 /* 3308 * Resolve a directory to a pathname. 3309 * 3310 * The name of the directory can always be found in the namecache or fetched 3311 * from the filesystem. There is also guaranteed to be only one parent, meaning 3312 * we can just follow vnodes up until we find the root. 3313 * 3314 * The vnode must be referenced. 3315 */ 3316 static int 3317 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3318 size_t *len, size_t addend) 3319 { 3320 #ifdef KDTRACE_HOOKS 3321 struct vnode *startvp = vp; 3322 #endif 3323 struct vnode *vp1; 3324 size_t buflen; 3325 int error; 3326 bool slash_prefixed; 3327 3328 VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp); 3329 VNPASS(vp->v_usecount > 0, vp); 3330 3331 buflen = *len; 3332 3333 slash_prefixed = true; 3334 if (addend == 0) { 3335 MPASS(*len >= 2); 3336 buflen--; 3337 buf[buflen] = '\0'; 3338 slash_prefixed = false; 3339 } 3340 3341 error = 0; 3342 3343 SDT_PROBE1(vfs, namecache, fullpath, entry, vp); 3344 counter_u64_add(numfullpathcalls, 1); 3345 while (vp != rdir && vp != rootvnode) { 3346 /* 3347 * The vp vnode must be already fully constructed, 3348 * since it is either found in namecache or obtained 3349 * from VOP_VPTOCNP(). We may test for VV_ROOT safely 3350 * without obtaining the vnode lock. 3351 */ 3352 if ((vp->v_vflag & VV_ROOT) != 0) { 3353 vn_lock(vp, LK_RETRY | LK_SHARED); 3354 3355 /* 3356 * With the vnode locked, check for races with 3357 * unmount, forced or not. Note that we 3358 * already verified that vp is not equal to 3359 * the root vnode, which means that 3360 * mnt_vnodecovered can be NULL only for the 3361 * case of unmount. 3362 */ 3363 if (VN_IS_DOOMED(vp) || 3364 (vp1 = vp->v_mount->mnt_vnodecovered) == NULL || 3365 vp1->v_mountedhere != vp->v_mount) { 3366 vput(vp); 3367 error = ENOENT; 3368 SDT_PROBE3(vfs, namecache, fullpath, return, 3369 error, vp, NULL); 3370 break; 3371 } 3372 3373 vref(vp1); 3374 vput(vp); 3375 vp = vp1; 3376 continue; 3377 } 3378 if (vp->v_type != VDIR) { 3379 vrele(vp); 3380 counter_u64_add(numfullpathfail1, 1); 3381 error = ENOTDIR; 3382 SDT_PROBE3(vfs, namecache, fullpath, return, 3383 error, vp, NULL); 3384 break; 3385 } 3386 error = vn_vptocnp(&vp, buf, &buflen); 3387 if (error) 3388 break; 3389 if (buflen == 0) { 3390 vrele(vp); 3391 error = ENOMEM; 3392 SDT_PROBE3(vfs, namecache, fullpath, return, error, 3393 startvp, NULL); 3394 break; 3395 } 3396 buf[--buflen] = '/'; 3397 slash_prefixed = true; 3398 } 3399 if (error) 3400 return (error); 3401 if (!slash_prefixed) { 3402 if (buflen == 0) { 3403 vrele(vp); 3404 counter_u64_add(numfullpathfail4, 1); 3405 SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM, 3406 startvp, NULL); 3407 return (ENOMEM); 3408 } 3409 buf[--buflen] = '/'; 3410 } 3411 counter_u64_add(numfullpathfound, 1); 3412 vrele(vp); 3413 3414 *retbuf = buf + buflen; 3415 SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf); 3416 *len -= buflen; 3417 *len += addend; 3418 return (0); 3419 } 3420 3421 /* 3422 * Resolve an arbitrary vnode to a pathname. 3423 * 3424 * Note 2 caveats: 3425 * - hardlinks are not tracked, thus if the vnode is not a directory this can 3426 * resolve to a different path than the one used to find it 3427 * - namecache is not mandatory, meaning names are not guaranteed to be added 3428 * (in which case resolving fails) 3429 */ 3430 static void __inline 3431 cache_rev_failed_impl(int *reason, int line) 3432 { 3433 3434 *reason = line; 3435 } 3436 #define cache_rev_failed(var) cache_rev_failed_impl((var), __LINE__) 3437 3438 static int 3439 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, 3440 char **retbuf, size_t *buflen, size_t addend) 3441 { 3442 #ifdef KDTRACE_HOOKS 3443 struct vnode *startvp = vp; 3444 #endif 3445 struct vnode *tvp; 3446 struct mount *mp; 3447 struct namecache *ncp; 3448 size_t orig_buflen; 3449 int reason; 3450 int error; 3451 #ifdef KDTRACE_HOOKS 3452 int i; 3453 #endif 3454 seqc_t vp_seqc, tvp_seqc; 3455 u_char nc_flag; 3456 3457 VFS_SMR_ASSERT_ENTERED(); 3458 3459 if (!atomic_load_char(&cache_fast_lookup_enabled)) { 3460 vfs_smr_exit(); 3461 return (-1); 3462 } 3463 3464 orig_buflen = *buflen; 3465 3466 if (addend == 0) { 3467 MPASS(*buflen >= 2); 3468 *buflen -= 1; 3469 buf[*buflen] = '\0'; 3470 } 3471 3472 if (vp == rdir || vp == rootvnode) { 3473 if (addend == 0) { 3474 *buflen -= 1; 3475 buf[*buflen] = '/'; 3476 } 3477 goto out_ok; 3478 } 3479 3480 #ifdef KDTRACE_HOOKS 3481 i = 0; 3482 #endif 3483 error = -1; 3484 ncp = NULL; /* for sdt probe down below */ 3485 vp_seqc = vn_seqc_read_any(vp); 3486 if (seqc_in_modify(vp_seqc)) { 3487 cache_rev_failed(&reason); 3488 goto out_abort; 3489 } 3490 3491 for (;;) { 3492 #ifdef KDTRACE_HOOKS 3493 i++; 3494 #endif 3495 if ((vp->v_vflag & VV_ROOT) != 0) { 3496 mp = atomic_load_ptr(&vp->v_mount); 3497 if (mp == NULL) { 3498 cache_rev_failed(&reason); 3499 goto out_abort; 3500 } 3501 tvp = atomic_load_ptr(&mp->mnt_vnodecovered); 3502 tvp_seqc = vn_seqc_read_any(tvp); 3503 if (seqc_in_modify(tvp_seqc)) { 3504 cache_rev_failed(&reason); 3505 goto out_abort; 3506 } 3507 if (!vn_seqc_consistent(vp, vp_seqc)) { 3508 cache_rev_failed(&reason); 3509 goto out_abort; 3510 } 3511 vp = tvp; 3512 vp_seqc = tvp_seqc; 3513 continue; 3514 } 3515 ncp = atomic_load_consume_ptr(&vp->v_cache_dd); 3516 if (ncp == NULL) { 3517 cache_rev_failed(&reason); 3518 goto out_abort; 3519 } 3520 nc_flag = atomic_load_char(&ncp->nc_flag); 3521 if ((nc_flag & NCF_ISDOTDOT) != 0) { 3522 cache_rev_failed(&reason); 3523 goto out_abort; 3524 } 3525 if (ncp->nc_nlen >= *buflen) { 3526 cache_rev_failed(&reason); 3527 error = ENOMEM; 3528 goto out_abort; 3529 } 3530 *buflen -= ncp->nc_nlen; 3531 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen); 3532 *buflen -= 1; 3533 buf[*buflen] = '/'; 3534 tvp = ncp->nc_dvp; 3535 tvp_seqc = vn_seqc_read_any(tvp); 3536 if (seqc_in_modify(tvp_seqc)) { 3537 cache_rev_failed(&reason); 3538 goto out_abort; 3539 } 3540 if (!vn_seqc_consistent(vp, vp_seqc)) { 3541 cache_rev_failed(&reason); 3542 goto out_abort; 3543 } 3544 /* 3545 * Acquire fence provided by vn_seqc_read_any above. 3546 */ 3547 if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) { 3548 cache_rev_failed(&reason); 3549 goto out_abort; 3550 } 3551 if (!cache_ncp_canuse(ncp)) { 3552 cache_rev_failed(&reason); 3553 goto out_abort; 3554 } 3555 vp = tvp; 3556 vp_seqc = tvp_seqc; 3557 if (vp == rdir || vp == rootvnode) 3558 break; 3559 } 3560 out_ok: 3561 vfs_smr_exit(); 3562 *retbuf = buf + *buflen; 3563 *buflen = orig_buflen - *buflen + addend; 3564 SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf); 3565 return (0); 3566 3567 out_abort: 3568 *buflen = orig_buflen; 3569 SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i); 3570 vfs_smr_exit(); 3571 return (error); 3572 } 3573 3574 static int 3575 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, 3576 size_t *buflen) 3577 { 3578 size_t orig_buflen, addend; 3579 int error; 3580 3581 if (*buflen < 2) 3582 return (EINVAL); 3583 3584 orig_buflen = *buflen; 3585 3586 vref(vp); 3587 addend = 0; 3588 if (vp->v_type != VDIR) { 3589 *buflen -= 1; 3590 buf[*buflen] = '\0'; 3591 error = vn_vptocnp(&vp, buf, buflen); 3592 if (error) 3593 return (error); 3594 if (*buflen == 0) { 3595 vrele(vp); 3596 return (ENOMEM); 3597 } 3598 *buflen -= 1; 3599 buf[*buflen] = '/'; 3600 addend = orig_buflen - *buflen; 3601 } 3602 3603 return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend)); 3604 } 3605 3606 /* 3607 * Resolve an arbitrary vnode to a pathname (taking care of hardlinks). 3608 * 3609 * Since the namecache does not track hardlinks, the caller is 3610 * expected to first look up the target vnode with SAVENAME | 3611 * WANTPARENT flags passed to namei to get dvp and vp. 3612 * 3613 * Then we have 2 cases: 3614 * - if the found vnode is a directory, the path can be constructed just by 3615 * following names up the chain 3616 * - otherwise we populate the buffer with the saved name and start resolving 3617 * from the parent 3618 */ 3619 int 3620 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp, 3621 const char *hrdl_name, size_t hrdl_name_length, 3622 char **retbuf, char **freebuf, size_t *buflen) 3623 { 3624 char *buf, *tmpbuf; 3625 struct pwd *pwd; 3626 size_t addend; 3627 int error; 3628 enum vtype type; 3629 3630 if (*buflen < 2) 3631 return (EINVAL); 3632 if (*buflen > MAXPATHLEN) 3633 *buflen = MAXPATHLEN; 3634 3635 buf = malloc(*buflen, M_TEMP, M_WAITOK); 3636 3637 addend = 0; 3638 3639 /* 3640 * Check for VBAD to work around the vp_crossmp bug in lookup(). 3641 * 3642 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be 3643 * set to mount point's root vnode while ni_dvp will be vp_crossmp. 3644 * If the type is VDIR (like in this very case) we can skip looking 3645 * at ni_dvp in the first place. However, since vnodes get passed here 3646 * unlocked the target may transition to doomed state (type == VBAD) 3647 * before we get to evaluate the condition. If this happens, we will 3648 * populate part of the buffer and descend to vn_fullpath_dir with 3649 * vp == vp_crossmp. Prevent the problem by checking for VBAD. 3650 * 3651 * This should be atomic_load(&vp->v_type) but it is illegal to take 3652 * an address of a bit field, even if said field is sized to char. 3653 * Work around the problem by reading the value into a full-sized enum 3654 * and then re-reading it with atomic_load which will still prevent 3655 * the compiler from re-reading down the road. 3656 */ 3657 type = vp->v_type; 3658 type = atomic_load_int(&type); 3659 if (type == VBAD) { 3660 error = ENOENT; 3661 goto out_bad; 3662 } 3663 if (type != VDIR) { 3664 addend = hrdl_name_length + 2; 3665 if (*buflen < addend) { 3666 error = ENOMEM; 3667 goto out_bad; 3668 } 3669 *buflen -= addend; 3670 tmpbuf = buf + *buflen; 3671 tmpbuf[0] = '/'; 3672 memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length); 3673 tmpbuf[addend - 1] = '\0'; 3674 vp = dvp; 3675 } 3676 3677 vfs_smr_enter(); 3678 pwd = pwd_get_smr(); 3679 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3680 addend); 3681 VFS_SMR_ASSERT_NOT_ENTERED(); 3682 if (error < 0) { 3683 pwd = pwd_hold(curthread); 3684 vref(vp); 3685 error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen, 3686 addend); 3687 pwd_drop(pwd); 3688 } 3689 if (error != 0) 3690 goto out_bad; 3691 3692 *freebuf = buf; 3693 3694 return (0); 3695 out_bad: 3696 free(buf, M_TEMP); 3697 return (error); 3698 } 3699 3700 struct vnode * 3701 vn_dir_dd_ino(struct vnode *vp) 3702 { 3703 struct namecache *ncp; 3704 struct vnode *ddvp; 3705 struct mtx *vlp; 3706 enum vgetstate vs; 3707 3708 ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino"); 3709 vlp = VP2VNODELOCK(vp); 3710 mtx_lock(vlp); 3711 TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) { 3712 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) 3713 continue; 3714 ddvp = ncp->nc_dvp; 3715 vs = vget_prep(ddvp); 3716 mtx_unlock(vlp); 3717 if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs)) 3718 return (NULL); 3719 return (ddvp); 3720 } 3721 mtx_unlock(vlp); 3722 return (NULL); 3723 } 3724 3725 int 3726 vn_commname(struct vnode *vp, char *buf, u_int buflen) 3727 { 3728 struct namecache *ncp; 3729 struct mtx *vlp; 3730 int l; 3731 3732 vlp = VP2VNODELOCK(vp); 3733 mtx_lock(vlp); 3734 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) 3735 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0) 3736 break; 3737 if (ncp == NULL) { 3738 mtx_unlock(vlp); 3739 return (ENOENT); 3740 } 3741 l = min(ncp->nc_nlen, buflen - 1); 3742 memcpy(buf, ncp->nc_name, l); 3743 mtx_unlock(vlp); 3744 buf[l] = '\0'; 3745 return (0); 3746 } 3747 3748 /* 3749 * This function updates path string to vnode's full global path 3750 * and checks the size of the new path string against the pathlen argument. 3751 * 3752 * Requires a locked, referenced vnode. 3753 * Vnode is re-locked on success or ENODEV, otherwise unlocked. 3754 * 3755 * If vp is a directory, the call to vn_fullpath_global() always succeeds 3756 * because it falls back to the ".." lookup if the namecache lookup fails. 3757 */ 3758 int 3759 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, 3760 u_int pathlen) 3761 { 3762 struct nameidata nd; 3763 struct vnode *vp1; 3764 char *rpath, *fbuf; 3765 int error; 3766 3767 ASSERT_VOP_ELOCKED(vp, __func__); 3768 3769 /* Construct global filesystem path from vp. */ 3770 VOP_UNLOCK(vp); 3771 error = vn_fullpath_global(vp, &rpath, &fbuf); 3772 3773 if (error != 0) { 3774 vrele(vp); 3775 return (error); 3776 } 3777 3778 if (strlen(rpath) >= pathlen) { 3779 vrele(vp); 3780 error = ENAMETOOLONG; 3781 goto out; 3782 } 3783 3784 /* 3785 * Re-lookup the vnode by path to detect a possible rename. 3786 * As a side effect, the vnode is relocked. 3787 * If vnode was renamed, return ENOENT. 3788 */ 3789 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path); 3790 error = namei(&nd); 3791 if (error != 0) { 3792 vrele(vp); 3793 goto out; 3794 } 3795 NDFREE_PNBUF(&nd); 3796 vp1 = nd.ni_vp; 3797 vrele(vp); 3798 if (vp1 == vp) 3799 strcpy(path, rpath); 3800 else { 3801 vput(vp1); 3802 error = ENOENT; 3803 } 3804 3805 out: 3806 free(fbuf, M_TEMP); 3807 return (error); 3808 } 3809 3810 #ifdef DDB 3811 static void 3812 db_print_vpath(struct vnode *vp) 3813 { 3814 3815 while (vp != NULL) { 3816 db_printf("%p: ", vp); 3817 if (vp == rootvnode) { 3818 db_printf("/"); 3819 vp = NULL; 3820 } else { 3821 if (vp->v_vflag & VV_ROOT) { 3822 db_printf("<mount point>"); 3823 vp = vp->v_mount->mnt_vnodecovered; 3824 } else { 3825 struct namecache *ncp; 3826 char *ncn; 3827 int i; 3828 3829 ncp = TAILQ_FIRST(&vp->v_cache_dst); 3830 if (ncp != NULL) { 3831 ncn = ncp->nc_name; 3832 for (i = 0; i < ncp->nc_nlen; i++) 3833 db_printf("%c", *ncn++); 3834 vp = ncp->nc_dvp; 3835 } else { 3836 vp = NULL; 3837 } 3838 } 3839 } 3840 db_printf("\n"); 3841 } 3842 3843 return; 3844 } 3845 3846 DB_SHOW_COMMAND(vpath, db_show_vpath) 3847 { 3848 struct vnode *vp; 3849 3850 if (!have_addr) { 3851 db_printf("usage: show vpath <struct vnode *>\n"); 3852 return; 3853 } 3854 3855 vp = (struct vnode *)addr; 3856 db_print_vpath(vp); 3857 } 3858 3859 #endif 3860 3861 static int cache_fast_lookup = 1; 3862 3863 #define CACHE_FPL_FAILED -2020 3864 3865 void 3866 cache_fast_lookup_enabled_recalc(void) 3867 { 3868 int lookup_flag; 3869 int mac_on; 3870 3871 #ifdef MAC 3872 mac_on = mac_vnode_check_lookup_enabled(); 3873 mac_on |= mac_vnode_check_readlink_enabled(); 3874 #else 3875 mac_on = 0; 3876 #endif 3877 3878 lookup_flag = atomic_load_int(&cache_fast_lookup); 3879 if (lookup_flag && !mac_on) { 3880 atomic_store_char(&cache_fast_lookup_enabled, true); 3881 } else { 3882 atomic_store_char(&cache_fast_lookup_enabled, false); 3883 } 3884 } 3885 3886 static int 3887 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS) 3888 { 3889 int error, old; 3890 3891 old = atomic_load_int(&cache_fast_lookup); 3892 error = sysctl_handle_int(oidp, arg1, arg2, req); 3893 if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup)) 3894 cache_fast_lookup_enabled_recalc(); 3895 return (error); 3896 } 3897 SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE, 3898 &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", ""); 3899 3900 /* 3901 * Components of nameidata (or objects it can point to) which may 3902 * need restoring in case fast path lookup fails. 3903 */ 3904 struct nameidata_outer { 3905 size_t ni_pathlen; 3906 int cn_flags; 3907 }; 3908 3909 struct nameidata_saved { 3910 #ifdef INVARIANTS 3911 char *cn_nameptr; 3912 size_t ni_pathlen; 3913 #endif 3914 }; 3915 3916 #ifdef INVARIANTS 3917 struct cache_fpl_debug { 3918 size_t ni_pathlen; 3919 }; 3920 #endif 3921 3922 struct cache_fpl { 3923 struct nameidata *ndp; 3924 struct componentname *cnp; 3925 char *nulchar; 3926 struct vnode *dvp; 3927 struct vnode *tvp; 3928 seqc_t dvp_seqc; 3929 seqc_t tvp_seqc; 3930 uint32_t hash; 3931 struct nameidata_saved snd; 3932 struct nameidata_outer snd_outer; 3933 int line; 3934 enum cache_fpl_status status:8; 3935 bool in_smr; 3936 bool fsearch; 3937 bool savename; 3938 struct pwd **pwd; 3939 #ifdef INVARIANTS 3940 struct cache_fpl_debug debug; 3941 #endif 3942 }; 3943 3944 static bool cache_fplookup_mp_supported(struct mount *mp); 3945 static bool cache_fplookup_is_mp(struct cache_fpl *fpl); 3946 static int cache_fplookup_cross_mount(struct cache_fpl *fpl); 3947 static int cache_fplookup_partial_setup(struct cache_fpl *fpl); 3948 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl); 3949 static int cache_fplookup_trailingslash(struct cache_fpl *fpl); 3950 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl); 3951 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl); 3952 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n); 3953 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n); 3954 3955 static void 3956 cache_fpl_cleanup_cnp(struct componentname *cnp) 3957 { 3958 3959 uma_zfree(namei_zone, cnp->cn_pnbuf); 3960 #ifdef DIAGNOSTIC 3961 cnp->cn_pnbuf = NULL; 3962 cnp->cn_nameptr = NULL; 3963 #endif 3964 } 3965 3966 static struct vnode * 3967 cache_fpl_handle_root(struct cache_fpl *fpl) 3968 { 3969 struct nameidata *ndp; 3970 struct componentname *cnp; 3971 3972 ndp = fpl->ndp; 3973 cnp = fpl->cnp; 3974 3975 MPASS(*(cnp->cn_nameptr) == '/'); 3976 cnp->cn_nameptr++; 3977 cache_fpl_pathlen_dec(fpl); 3978 3979 if (__predict_false(*(cnp->cn_nameptr) == '/')) { 3980 do { 3981 cnp->cn_nameptr++; 3982 cache_fpl_pathlen_dec(fpl); 3983 } while (*(cnp->cn_nameptr) == '/'); 3984 } 3985 3986 return (ndp->ni_rootdir); 3987 } 3988 3989 static void 3990 cache_fpl_checkpoint_outer(struct cache_fpl *fpl) 3991 { 3992 3993 fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen; 3994 fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags; 3995 } 3996 3997 static void 3998 cache_fpl_checkpoint(struct cache_fpl *fpl) 3999 { 4000 4001 #ifdef INVARIANTS 4002 fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr; 4003 fpl->snd.ni_pathlen = fpl->debug.ni_pathlen; 4004 #endif 4005 } 4006 4007 static void 4008 cache_fpl_restore_partial(struct cache_fpl *fpl) 4009 { 4010 4011 fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags; 4012 #ifdef INVARIANTS 4013 fpl->debug.ni_pathlen = fpl->snd.ni_pathlen; 4014 #endif 4015 } 4016 4017 static void 4018 cache_fpl_restore_abort(struct cache_fpl *fpl) 4019 { 4020 4021 cache_fpl_restore_partial(fpl); 4022 /* 4023 * It is 0 on entry by API contract. 4024 */ 4025 fpl->ndp->ni_resflags = 0; 4026 fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf; 4027 fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen; 4028 } 4029 4030 #ifdef INVARIANTS 4031 #define cache_fpl_smr_assert_entered(fpl) ({ \ 4032 struct cache_fpl *_fpl = (fpl); \ 4033 MPASS(_fpl->in_smr == true); \ 4034 VFS_SMR_ASSERT_ENTERED(); \ 4035 }) 4036 #define cache_fpl_smr_assert_not_entered(fpl) ({ \ 4037 struct cache_fpl *_fpl = (fpl); \ 4038 MPASS(_fpl->in_smr == false); \ 4039 VFS_SMR_ASSERT_NOT_ENTERED(); \ 4040 }) 4041 static void 4042 cache_fpl_assert_status(struct cache_fpl *fpl) 4043 { 4044 4045 switch (fpl->status) { 4046 case CACHE_FPL_STATUS_UNSET: 4047 __assert_unreachable(); 4048 break; 4049 case CACHE_FPL_STATUS_DESTROYED: 4050 case CACHE_FPL_STATUS_ABORTED: 4051 case CACHE_FPL_STATUS_PARTIAL: 4052 case CACHE_FPL_STATUS_HANDLED: 4053 break; 4054 } 4055 } 4056 #else 4057 #define cache_fpl_smr_assert_entered(fpl) do { } while (0) 4058 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0) 4059 #define cache_fpl_assert_status(fpl) do { } while (0) 4060 #endif 4061 4062 #define cache_fpl_smr_enter_initial(fpl) ({ \ 4063 struct cache_fpl *_fpl = (fpl); \ 4064 vfs_smr_enter(); \ 4065 _fpl->in_smr = true; \ 4066 }) 4067 4068 #define cache_fpl_smr_enter(fpl) ({ \ 4069 struct cache_fpl *_fpl = (fpl); \ 4070 MPASS(_fpl->in_smr == false); \ 4071 vfs_smr_enter(); \ 4072 _fpl->in_smr = true; \ 4073 }) 4074 4075 #define cache_fpl_smr_exit(fpl) ({ \ 4076 struct cache_fpl *_fpl = (fpl); \ 4077 MPASS(_fpl->in_smr == true); \ 4078 vfs_smr_exit(); \ 4079 _fpl->in_smr = false; \ 4080 }) 4081 4082 static int 4083 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line) 4084 { 4085 4086 if (fpl->status != CACHE_FPL_STATUS_UNSET) { 4087 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, 4088 ("%s: converting to abort from %d at %d, set at %d\n", 4089 __func__, fpl->status, line, fpl->line)); 4090 } 4091 cache_fpl_smr_assert_not_entered(fpl); 4092 fpl->status = CACHE_FPL_STATUS_ABORTED; 4093 fpl->line = line; 4094 return (CACHE_FPL_FAILED); 4095 } 4096 4097 #define cache_fpl_aborted_early(x) cache_fpl_aborted_early_impl((x), __LINE__) 4098 4099 static int __noinline 4100 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line) 4101 { 4102 struct nameidata *ndp; 4103 struct componentname *cnp; 4104 4105 ndp = fpl->ndp; 4106 cnp = fpl->cnp; 4107 4108 if (fpl->status != CACHE_FPL_STATUS_UNSET) { 4109 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL, 4110 ("%s: converting to abort from %d at %d, set at %d\n", 4111 __func__, fpl->status, line, fpl->line)); 4112 } 4113 fpl->status = CACHE_FPL_STATUS_ABORTED; 4114 fpl->line = line; 4115 if (fpl->in_smr) 4116 cache_fpl_smr_exit(fpl); 4117 cache_fpl_restore_abort(fpl); 4118 /* 4119 * Resolving symlinks overwrites data passed by the caller. 4120 * Let namei know. 4121 */ 4122 if (ndp->ni_loopcnt > 0) { 4123 fpl->status = CACHE_FPL_STATUS_DESTROYED; 4124 cache_fpl_cleanup_cnp(cnp); 4125 } 4126 return (CACHE_FPL_FAILED); 4127 } 4128 4129 #define cache_fpl_aborted(x) cache_fpl_aborted_impl((x), __LINE__) 4130 4131 static int __noinline 4132 cache_fpl_partial_impl(struct cache_fpl *fpl, int line) 4133 { 4134 4135 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 4136 ("%s: setting to partial at %d, but already set to %d at %d\n", 4137 __func__, line, fpl->status, fpl->line)); 4138 cache_fpl_smr_assert_entered(fpl); 4139 fpl->status = CACHE_FPL_STATUS_PARTIAL; 4140 fpl->line = line; 4141 return (cache_fplookup_partial_setup(fpl)); 4142 } 4143 4144 #define cache_fpl_partial(x) cache_fpl_partial_impl((x), __LINE__) 4145 4146 static int 4147 cache_fpl_handled_impl(struct cache_fpl *fpl, int line) 4148 { 4149 4150 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 4151 ("%s: setting to handled at %d, but already set to %d at %d\n", 4152 __func__, line, fpl->status, fpl->line)); 4153 cache_fpl_smr_assert_not_entered(fpl); 4154 fpl->status = CACHE_FPL_STATUS_HANDLED; 4155 fpl->line = line; 4156 return (0); 4157 } 4158 4159 #define cache_fpl_handled(x) cache_fpl_handled_impl((x), __LINE__) 4160 4161 static int 4162 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line) 4163 { 4164 4165 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET, 4166 ("%s: setting to handled at %d, but already set to %d at %d\n", 4167 __func__, line, fpl->status, fpl->line)); 4168 MPASS(error != 0); 4169 MPASS(error != CACHE_FPL_FAILED); 4170 cache_fpl_smr_assert_not_entered(fpl); 4171 fpl->status = CACHE_FPL_STATUS_HANDLED; 4172 fpl->line = line; 4173 fpl->dvp = NULL; 4174 fpl->tvp = NULL; 4175 fpl->savename = false; 4176 return (error); 4177 } 4178 4179 #define cache_fpl_handled_error(x, e) cache_fpl_handled_error_impl((x), (e), __LINE__) 4180 4181 static bool 4182 cache_fpl_terminated(struct cache_fpl *fpl) 4183 { 4184 4185 return (fpl->status != CACHE_FPL_STATUS_UNSET); 4186 } 4187 4188 #define CACHE_FPL_SUPPORTED_CN_FLAGS \ 4189 (NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \ 4190 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | SAVENAME | SAVESTART | \ 4191 WILLBEDIR | ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | \ 4192 OPENREAD | OPENWRITE | WANTIOCTLCAPS) 4193 4194 #define CACHE_FPL_INTERNAL_CN_FLAGS \ 4195 (ISDOTDOT | MAKEENTRY | ISLASTCN) 4196 4197 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 4198 "supported and internal flags overlap"); 4199 4200 static bool 4201 cache_fpl_islastcn(struct nameidata *ndp) 4202 { 4203 4204 return (*ndp->ni_next == 0); 4205 } 4206 4207 static bool 4208 cache_fpl_istrailingslash(struct cache_fpl *fpl) 4209 { 4210 4211 MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf); 4212 return (*(fpl->nulchar - 1) == '/'); 4213 } 4214 4215 static bool 4216 cache_fpl_isdotdot(struct componentname *cnp) 4217 { 4218 4219 if (cnp->cn_namelen == 2 && 4220 cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.') 4221 return (true); 4222 return (false); 4223 } 4224 4225 static bool 4226 cache_can_fplookup(struct cache_fpl *fpl) 4227 { 4228 struct nameidata *ndp; 4229 struct componentname *cnp; 4230 struct thread *td; 4231 4232 ndp = fpl->ndp; 4233 cnp = fpl->cnp; 4234 td = curthread; 4235 4236 if (!atomic_load_char(&cache_fast_lookup_enabled)) { 4237 cache_fpl_aborted_early(fpl); 4238 return (false); 4239 } 4240 if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) { 4241 cache_fpl_aborted_early(fpl); 4242 return (false); 4243 } 4244 if (IN_CAPABILITY_MODE(td)) { 4245 cache_fpl_aborted_early(fpl); 4246 return (false); 4247 } 4248 if (AUDITING_TD(td)) { 4249 cache_fpl_aborted_early(fpl); 4250 return (false); 4251 } 4252 if (ndp->ni_startdir != NULL) { 4253 cache_fpl_aborted_early(fpl); 4254 return (false); 4255 } 4256 return (true); 4257 } 4258 4259 static int __noinline 4260 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp) 4261 { 4262 struct nameidata *ndp; 4263 struct componentname *cnp; 4264 int error; 4265 bool fsearch; 4266 4267 ndp = fpl->ndp; 4268 cnp = fpl->cnp; 4269 4270 error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch); 4271 if (__predict_false(error != 0)) { 4272 return (cache_fpl_aborted(fpl)); 4273 } 4274 fpl->fsearch = fsearch; 4275 if ((*vpp)->v_type != VDIR) { 4276 if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) { 4277 cache_fpl_smr_exit(fpl); 4278 return (cache_fpl_handled_error(fpl, ENOTDIR)); 4279 } 4280 } 4281 return (0); 4282 } 4283 4284 static int __noinline 4285 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp, 4286 uint32_t hash) 4287 { 4288 struct componentname *cnp; 4289 struct vnode *dvp; 4290 4291 cnp = fpl->cnp; 4292 dvp = fpl->dvp; 4293 4294 cache_fpl_smr_exit(fpl); 4295 if (cache_neg_promote_cond(dvp, cnp, oncp, hash)) 4296 return (cache_fpl_handled_error(fpl, ENOENT)); 4297 else 4298 return (cache_fpl_aborted(fpl)); 4299 } 4300 4301 /* 4302 * The target vnode is not supported, prepare for the slow path to take over. 4303 */ 4304 static int __noinline 4305 cache_fplookup_partial_setup(struct cache_fpl *fpl) 4306 { 4307 struct nameidata *ndp; 4308 struct componentname *cnp; 4309 enum vgetstate dvs; 4310 struct vnode *dvp; 4311 struct pwd *pwd; 4312 seqc_t dvp_seqc; 4313 4314 ndp = fpl->ndp; 4315 cnp = fpl->cnp; 4316 pwd = *(fpl->pwd); 4317 dvp = fpl->dvp; 4318 dvp_seqc = fpl->dvp_seqc; 4319 4320 if (!pwd_hold_smr(pwd)) { 4321 return (cache_fpl_aborted(fpl)); 4322 } 4323 4324 /* 4325 * Note that seqc is checked before the vnode is locked, so by 4326 * the time regular lookup gets to it it may have moved. 4327 * 4328 * Ultimately this does not affect correctness, any lookup errors 4329 * are userspace racing with itself. It is guaranteed that any 4330 * path which ultimately gets found could also have been found 4331 * by regular lookup going all the way in absence of concurrent 4332 * modifications. 4333 */ 4334 dvs = vget_prep_smr(dvp); 4335 cache_fpl_smr_exit(fpl); 4336 if (__predict_false(dvs == VGET_NONE)) { 4337 pwd_drop(pwd); 4338 return (cache_fpl_aborted(fpl)); 4339 } 4340 4341 vget_finish_ref(dvp, dvs); 4342 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4343 vrele(dvp); 4344 pwd_drop(pwd); 4345 return (cache_fpl_aborted(fpl)); 4346 } 4347 4348 cache_fpl_restore_partial(fpl); 4349 #ifdef INVARIANTS 4350 if (cnp->cn_nameptr != fpl->snd.cn_nameptr) { 4351 panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__, 4352 cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf); 4353 } 4354 #endif 4355 4356 ndp->ni_startdir = dvp; 4357 cnp->cn_flags |= MAKEENTRY; 4358 if (cache_fpl_islastcn(ndp)) 4359 cnp->cn_flags |= ISLASTCN; 4360 if (cache_fpl_isdotdot(cnp)) 4361 cnp->cn_flags |= ISDOTDOT; 4362 4363 /* 4364 * Skip potential extra slashes parsing did not take care of. 4365 * cache_fplookup_skip_slashes explains the mechanism. 4366 */ 4367 if (__predict_false(*(cnp->cn_nameptr) == '/')) { 4368 do { 4369 cnp->cn_nameptr++; 4370 cache_fpl_pathlen_dec(fpl); 4371 } while (*(cnp->cn_nameptr) == '/'); 4372 } 4373 4374 ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1; 4375 #ifdef INVARIANTS 4376 if (ndp->ni_pathlen != fpl->debug.ni_pathlen) { 4377 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 4378 __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 4379 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 4380 } 4381 #endif 4382 return (0); 4383 } 4384 4385 static int 4386 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs) 4387 { 4388 struct componentname *cnp; 4389 struct vnode *tvp; 4390 seqc_t tvp_seqc; 4391 int error, lkflags; 4392 4393 cnp = fpl->cnp; 4394 tvp = fpl->tvp; 4395 tvp_seqc = fpl->tvp_seqc; 4396 4397 if ((cnp->cn_flags & LOCKLEAF) != 0) { 4398 lkflags = LK_SHARED; 4399 if ((cnp->cn_flags & LOCKSHARED) == 0) 4400 lkflags = LK_EXCLUSIVE; 4401 error = vget_finish(tvp, lkflags, tvs); 4402 if (__predict_false(error != 0)) { 4403 return (cache_fpl_aborted(fpl)); 4404 } 4405 } else { 4406 vget_finish_ref(tvp, tvs); 4407 } 4408 4409 if (!vn_seqc_consistent(tvp, tvp_seqc)) { 4410 if ((cnp->cn_flags & LOCKLEAF) != 0) 4411 vput(tvp); 4412 else 4413 vrele(tvp); 4414 return (cache_fpl_aborted(fpl)); 4415 } 4416 4417 return (cache_fpl_handled(fpl)); 4418 } 4419 4420 /* 4421 * They want to possibly modify the state of the namecache. 4422 */ 4423 static int __noinline 4424 cache_fplookup_final_modifying(struct cache_fpl *fpl) 4425 { 4426 struct nameidata *ndp; 4427 struct componentname *cnp; 4428 enum vgetstate dvs; 4429 struct vnode *dvp, *tvp; 4430 struct mount *mp; 4431 seqc_t dvp_seqc; 4432 int error; 4433 bool docache; 4434 4435 ndp = fpl->ndp; 4436 cnp = fpl->cnp; 4437 dvp = fpl->dvp; 4438 dvp_seqc = fpl->dvp_seqc; 4439 4440 MPASS(*(cnp->cn_nameptr) != '/'); 4441 MPASS(cache_fpl_islastcn(ndp)); 4442 if ((cnp->cn_flags & LOCKPARENT) == 0) 4443 MPASS((cnp->cn_flags & WANTPARENT) != 0); 4444 MPASS((cnp->cn_flags & TRAILINGSLASH) == 0); 4445 MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE || 4446 cnp->cn_nameiop == RENAME); 4447 MPASS((cnp->cn_flags & MAKEENTRY) == 0); 4448 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 4449 4450 docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE; 4451 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME) 4452 docache = false; 4453 4454 /* 4455 * Regular lookup nulifies the slash, which we don't do here. 4456 * Don't take chances with filesystem routines seeing it for 4457 * the last entry. 4458 */ 4459 if (cache_fpl_istrailingslash(fpl)) { 4460 return (cache_fpl_partial(fpl)); 4461 } 4462 4463 mp = atomic_load_ptr(&dvp->v_mount); 4464 if (__predict_false(mp == NULL)) { 4465 return (cache_fpl_aborted(fpl)); 4466 } 4467 4468 if (__predict_false(mp->mnt_flag & MNT_RDONLY)) { 4469 cache_fpl_smr_exit(fpl); 4470 /* 4471 * Original code keeps not checking for CREATE which 4472 * might be a bug. For now let the old lookup decide. 4473 */ 4474 if (cnp->cn_nameiop == CREATE) { 4475 return (cache_fpl_aborted(fpl)); 4476 } 4477 return (cache_fpl_handled_error(fpl, EROFS)); 4478 } 4479 4480 if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) { 4481 cache_fpl_smr_exit(fpl); 4482 return (cache_fpl_handled_error(fpl, EEXIST)); 4483 } 4484 4485 /* 4486 * Secure access to dvp; check cache_fplookup_partial_setup for 4487 * reasoning. 4488 * 4489 * XXX At least UFS requires its lookup routine to be called for 4490 * the last path component, which leads to some level of complication 4491 * and inefficiency: 4492 * - the target routine always locks the target vnode, but our caller 4493 * may not need it locked 4494 * - some of the VOP machinery asserts that the parent is locked, which 4495 * once more may be not required 4496 * 4497 * TODO: add a flag for filesystems which don't need this. 4498 */ 4499 dvs = vget_prep_smr(dvp); 4500 cache_fpl_smr_exit(fpl); 4501 if (__predict_false(dvs == VGET_NONE)) { 4502 return (cache_fpl_aborted(fpl)); 4503 } 4504 4505 vget_finish_ref(dvp, dvs); 4506 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4507 vrele(dvp); 4508 return (cache_fpl_aborted(fpl)); 4509 } 4510 4511 error = vn_lock(dvp, LK_EXCLUSIVE); 4512 if (__predict_false(error != 0)) { 4513 vrele(dvp); 4514 return (cache_fpl_aborted(fpl)); 4515 } 4516 4517 tvp = NULL; 4518 cnp->cn_flags |= ISLASTCN; 4519 if (docache) 4520 cnp->cn_flags |= MAKEENTRY; 4521 if (cache_fpl_isdotdot(cnp)) 4522 cnp->cn_flags |= ISDOTDOT; 4523 cnp->cn_lkflags = LK_EXCLUSIVE; 4524 error = VOP_LOOKUP(dvp, &tvp, cnp); 4525 switch (error) { 4526 case EJUSTRETURN: 4527 case 0: 4528 break; 4529 case ENOTDIR: 4530 case ENOENT: 4531 vput(dvp); 4532 return (cache_fpl_handled_error(fpl, error)); 4533 default: 4534 vput(dvp); 4535 return (cache_fpl_aborted(fpl)); 4536 } 4537 4538 fpl->tvp = tvp; 4539 fpl->savename = (cnp->cn_flags & SAVENAME) != 0; 4540 4541 if (tvp == NULL) { 4542 if ((cnp->cn_flags & SAVESTART) != 0) { 4543 ndp->ni_startdir = dvp; 4544 vrefact(ndp->ni_startdir); 4545 cnp->cn_flags |= SAVENAME; 4546 fpl->savename = true; 4547 } 4548 MPASS(error == EJUSTRETURN); 4549 if ((cnp->cn_flags & LOCKPARENT) == 0) { 4550 VOP_UNLOCK(dvp); 4551 } 4552 return (cache_fpl_handled(fpl)); 4553 } 4554 4555 /* 4556 * There are very hairy corner cases concerning various flag combinations 4557 * and locking state. In particular here we only hold one lock instead of 4558 * two. 4559 * 4560 * Skip the complexity as it is of no significance for normal workloads. 4561 */ 4562 if (__predict_false(tvp == dvp)) { 4563 vput(dvp); 4564 vrele(tvp); 4565 return (cache_fpl_aborted(fpl)); 4566 } 4567 4568 /* 4569 * If they want the symlink itself we are fine, but if they want to 4570 * follow it regular lookup has to be engaged. 4571 */ 4572 if (tvp->v_type == VLNK) { 4573 if ((cnp->cn_flags & FOLLOW) != 0) { 4574 vput(dvp); 4575 vput(tvp); 4576 return (cache_fpl_aborted(fpl)); 4577 } 4578 } 4579 4580 /* 4581 * Since we expect this to be the terminal vnode it should almost never 4582 * be a mount point. 4583 */ 4584 if (__predict_false(cache_fplookup_is_mp(fpl))) { 4585 vput(dvp); 4586 vput(tvp); 4587 return (cache_fpl_aborted(fpl)); 4588 } 4589 4590 if ((cnp->cn_flags & FAILIFEXISTS) != 0) { 4591 vput(dvp); 4592 vput(tvp); 4593 return (cache_fpl_handled_error(fpl, EEXIST)); 4594 } 4595 4596 if ((cnp->cn_flags & LOCKLEAF) == 0) { 4597 VOP_UNLOCK(tvp); 4598 } 4599 4600 if ((cnp->cn_flags & LOCKPARENT) == 0) { 4601 VOP_UNLOCK(dvp); 4602 } 4603 4604 if ((cnp->cn_flags & SAVESTART) != 0) { 4605 ndp->ni_startdir = dvp; 4606 vrefact(ndp->ni_startdir); 4607 cnp->cn_flags |= SAVENAME; 4608 fpl->savename = true; 4609 } 4610 4611 return (cache_fpl_handled(fpl)); 4612 } 4613 4614 static int __noinline 4615 cache_fplookup_modifying(struct cache_fpl *fpl) 4616 { 4617 struct nameidata *ndp; 4618 4619 ndp = fpl->ndp; 4620 4621 if (!cache_fpl_islastcn(ndp)) { 4622 return (cache_fpl_partial(fpl)); 4623 } 4624 return (cache_fplookup_final_modifying(fpl)); 4625 } 4626 4627 static int __noinline 4628 cache_fplookup_final_withparent(struct cache_fpl *fpl) 4629 { 4630 struct componentname *cnp; 4631 enum vgetstate dvs, tvs; 4632 struct vnode *dvp, *tvp; 4633 seqc_t dvp_seqc; 4634 int error; 4635 4636 cnp = fpl->cnp; 4637 dvp = fpl->dvp; 4638 dvp_seqc = fpl->dvp_seqc; 4639 tvp = fpl->tvp; 4640 4641 MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0); 4642 4643 /* 4644 * This is less efficient than it can be for simplicity. 4645 */ 4646 dvs = vget_prep_smr(dvp); 4647 if (__predict_false(dvs == VGET_NONE)) { 4648 return (cache_fpl_aborted(fpl)); 4649 } 4650 tvs = vget_prep_smr(tvp); 4651 if (__predict_false(tvs == VGET_NONE)) { 4652 cache_fpl_smr_exit(fpl); 4653 vget_abort(dvp, dvs); 4654 return (cache_fpl_aborted(fpl)); 4655 } 4656 4657 cache_fpl_smr_exit(fpl); 4658 4659 if ((cnp->cn_flags & LOCKPARENT) != 0) { 4660 error = vget_finish(dvp, LK_EXCLUSIVE, dvs); 4661 if (__predict_false(error != 0)) { 4662 vget_abort(tvp, tvs); 4663 return (cache_fpl_aborted(fpl)); 4664 } 4665 } else { 4666 vget_finish_ref(dvp, dvs); 4667 } 4668 4669 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4670 vget_abort(tvp, tvs); 4671 if ((cnp->cn_flags & LOCKPARENT) != 0) 4672 vput(dvp); 4673 else 4674 vrele(dvp); 4675 return (cache_fpl_aborted(fpl)); 4676 } 4677 4678 error = cache_fplookup_final_child(fpl, tvs); 4679 if (__predict_false(error != 0)) { 4680 MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED || 4681 fpl->status == CACHE_FPL_STATUS_DESTROYED); 4682 if ((cnp->cn_flags & LOCKPARENT) != 0) 4683 vput(dvp); 4684 else 4685 vrele(dvp); 4686 return (error); 4687 } 4688 4689 MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED); 4690 return (0); 4691 } 4692 4693 static int 4694 cache_fplookup_final(struct cache_fpl *fpl) 4695 { 4696 struct componentname *cnp; 4697 enum vgetstate tvs; 4698 struct vnode *dvp, *tvp; 4699 seqc_t dvp_seqc; 4700 4701 cnp = fpl->cnp; 4702 dvp = fpl->dvp; 4703 dvp_seqc = fpl->dvp_seqc; 4704 tvp = fpl->tvp; 4705 4706 MPASS(*(cnp->cn_nameptr) != '/'); 4707 4708 if (cnp->cn_nameiop != LOOKUP) { 4709 return (cache_fplookup_final_modifying(fpl)); 4710 } 4711 4712 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) 4713 return (cache_fplookup_final_withparent(fpl)); 4714 4715 tvs = vget_prep_smr(tvp); 4716 if (__predict_false(tvs == VGET_NONE)) { 4717 return (cache_fpl_partial(fpl)); 4718 } 4719 4720 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4721 cache_fpl_smr_exit(fpl); 4722 vget_abort(tvp, tvs); 4723 return (cache_fpl_aborted(fpl)); 4724 } 4725 4726 cache_fpl_smr_exit(fpl); 4727 return (cache_fplookup_final_child(fpl, tvs)); 4728 } 4729 4730 /* 4731 * Comment from locked lookup: 4732 * Check for degenerate name (e.g. / or "") which is a way of talking about a 4733 * directory, e.g. like "/." or ".". 4734 */ 4735 static int __noinline 4736 cache_fplookup_degenerate(struct cache_fpl *fpl) 4737 { 4738 struct componentname *cnp; 4739 struct vnode *dvp; 4740 enum vgetstate dvs; 4741 int error, lkflags; 4742 #ifdef INVARIANTS 4743 char *cp; 4744 #endif 4745 4746 fpl->tvp = fpl->dvp; 4747 fpl->tvp_seqc = fpl->dvp_seqc; 4748 4749 cnp = fpl->cnp; 4750 dvp = fpl->dvp; 4751 4752 #ifdef INVARIANTS 4753 for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) { 4754 KASSERT(*cp == '/', 4755 ("%s: encountered non-slash; string [%s]\n", __func__, 4756 cnp->cn_pnbuf)); 4757 } 4758 #endif 4759 4760 if (__predict_false(cnp->cn_nameiop != LOOKUP)) { 4761 cache_fpl_smr_exit(fpl); 4762 return (cache_fpl_handled_error(fpl, EISDIR)); 4763 } 4764 4765 MPASS((cnp->cn_flags & SAVESTART) == 0); 4766 4767 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) { 4768 return (cache_fplookup_final_withparent(fpl)); 4769 } 4770 4771 dvs = vget_prep_smr(dvp); 4772 cache_fpl_smr_exit(fpl); 4773 if (__predict_false(dvs == VGET_NONE)) { 4774 return (cache_fpl_aborted(fpl)); 4775 } 4776 4777 if ((cnp->cn_flags & LOCKLEAF) != 0) { 4778 lkflags = LK_SHARED; 4779 if ((cnp->cn_flags & LOCKSHARED) == 0) 4780 lkflags = LK_EXCLUSIVE; 4781 error = vget_finish(dvp, lkflags, dvs); 4782 if (__predict_false(error != 0)) { 4783 return (cache_fpl_aborted(fpl)); 4784 } 4785 } else { 4786 vget_finish_ref(dvp, dvs); 4787 } 4788 return (cache_fpl_handled(fpl)); 4789 } 4790 4791 static int __noinline 4792 cache_fplookup_emptypath(struct cache_fpl *fpl) 4793 { 4794 struct nameidata *ndp; 4795 struct componentname *cnp; 4796 enum vgetstate tvs; 4797 struct vnode *tvp; 4798 int error, lkflags; 4799 4800 fpl->tvp = fpl->dvp; 4801 fpl->tvp_seqc = fpl->dvp_seqc; 4802 4803 ndp = fpl->ndp; 4804 cnp = fpl->cnp; 4805 tvp = fpl->tvp; 4806 4807 MPASS(*cnp->cn_pnbuf == '\0'); 4808 4809 if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) { 4810 cache_fpl_smr_exit(fpl); 4811 return (cache_fpl_handled_error(fpl, ENOENT)); 4812 } 4813 4814 MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0); 4815 4816 tvs = vget_prep_smr(tvp); 4817 cache_fpl_smr_exit(fpl); 4818 if (__predict_false(tvs == VGET_NONE)) { 4819 return (cache_fpl_aborted(fpl)); 4820 } 4821 4822 if ((cnp->cn_flags & LOCKLEAF) != 0) { 4823 lkflags = LK_SHARED; 4824 if ((cnp->cn_flags & LOCKSHARED) == 0) 4825 lkflags = LK_EXCLUSIVE; 4826 error = vget_finish(tvp, lkflags, tvs); 4827 if (__predict_false(error != 0)) { 4828 return (cache_fpl_aborted(fpl)); 4829 } 4830 } else { 4831 vget_finish_ref(tvp, tvs); 4832 } 4833 4834 ndp->ni_resflags |= NIRES_EMPTYPATH; 4835 return (cache_fpl_handled(fpl)); 4836 } 4837 4838 static int __noinline 4839 cache_fplookup_noentry(struct cache_fpl *fpl) 4840 { 4841 struct nameidata *ndp; 4842 struct componentname *cnp; 4843 enum vgetstate dvs; 4844 struct vnode *dvp, *tvp; 4845 seqc_t dvp_seqc; 4846 int error; 4847 4848 ndp = fpl->ndp; 4849 cnp = fpl->cnp; 4850 dvp = fpl->dvp; 4851 dvp_seqc = fpl->dvp_seqc; 4852 4853 MPASS((cnp->cn_flags & MAKEENTRY) == 0); 4854 MPASS((cnp->cn_flags & ISDOTDOT) == 0); 4855 if (cnp->cn_nameiop == LOOKUP) 4856 MPASS((cnp->cn_flags & NOCACHE) == 0); 4857 MPASS(!cache_fpl_isdotdot(cnp)); 4858 4859 /* 4860 * Hack: delayed name len checking. 4861 */ 4862 if (__predict_false(cnp->cn_namelen > NAME_MAX)) { 4863 cache_fpl_smr_exit(fpl); 4864 return (cache_fpl_handled_error(fpl, ENAMETOOLONG)); 4865 } 4866 4867 if (cnp->cn_nameptr[0] == '/') { 4868 return (cache_fplookup_skip_slashes(fpl)); 4869 } 4870 4871 if (cnp->cn_pnbuf[0] == '\0') { 4872 return (cache_fplookup_emptypath(fpl)); 4873 } 4874 4875 if (cnp->cn_nameptr[0] == '\0') { 4876 if (fpl->tvp == NULL) { 4877 return (cache_fplookup_degenerate(fpl)); 4878 } 4879 return (cache_fplookup_trailingslash(fpl)); 4880 } 4881 4882 if (cnp->cn_nameiop != LOOKUP) { 4883 fpl->tvp = NULL; 4884 return (cache_fplookup_modifying(fpl)); 4885 } 4886 4887 MPASS((cnp->cn_flags & SAVESTART) == 0); 4888 4889 /* 4890 * Only try to fill in the component if it is the last one, 4891 * otherwise not only there may be several to handle but the 4892 * walk may be complicated. 4893 */ 4894 if (!cache_fpl_islastcn(ndp)) { 4895 return (cache_fpl_partial(fpl)); 4896 } 4897 4898 /* 4899 * Regular lookup nulifies the slash, which we don't do here. 4900 * Don't take chances with filesystem routines seeing it for 4901 * the last entry. 4902 */ 4903 if (cache_fpl_istrailingslash(fpl)) { 4904 return (cache_fpl_partial(fpl)); 4905 } 4906 4907 /* 4908 * Secure access to dvp; check cache_fplookup_partial_setup for 4909 * reasoning. 4910 */ 4911 dvs = vget_prep_smr(dvp); 4912 cache_fpl_smr_exit(fpl); 4913 if (__predict_false(dvs == VGET_NONE)) { 4914 return (cache_fpl_aborted(fpl)); 4915 } 4916 4917 vget_finish_ref(dvp, dvs); 4918 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 4919 vrele(dvp); 4920 return (cache_fpl_aborted(fpl)); 4921 } 4922 4923 error = vn_lock(dvp, LK_SHARED); 4924 if (__predict_false(error != 0)) { 4925 vrele(dvp); 4926 return (cache_fpl_aborted(fpl)); 4927 } 4928 4929 tvp = NULL; 4930 /* 4931 * TODO: provide variants which don't require locking either vnode. 4932 */ 4933 cnp->cn_flags |= ISLASTCN | MAKEENTRY; 4934 cnp->cn_lkflags = LK_SHARED; 4935 if ((cnp->cn_flags & LOCKSHARED) == 0) { 4936 cnp->cn_lkflags = LK_EXCLUSIVE; 4937 } 4938 error = VOP_LOOKUP(dvp, &tvp, cnp); 4939 switch (error) { 4940 case EJUSTRETURN: 4941 case 0: 4942 break; 4943 case ENOTDIR: 4944 case ENOENT: 4945 vput(dvp); 4946 return (cache_fpl_handled_error(fpl, error)); 4947 default: 4948 vput(dvp); 4949 return (cache_fpl_aborted(fpl)); 4950 } 4951 4952 fpl->tvp = tvp; 4953 if (!fpl->savename) { 4954 MPASS((cnp->cn_flags & SAVENAME) == 0); 4955 } 4956 4957 if (tvp == NULL) { 4958 MPASS(error == EJUSTRETURN); 4959 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { 4960 vput(dvp); 4961 } else if ((cnp->cn_flags & LOCKPARENT) == 0) { 4962 VOP_UNLOCK(dvp); 4963 } 4964 return (cache_fpl_handled(fpl)); 4965 } 4966 4967 if (tvp->v_type == VLNK) { 4968 if ((cnp->cn_flags & FOLLOW) != 0) { 4969 vput(dvp); 4970 vput(tvp); 4971 return (cache_fpl_aborted(fpl)); 4972 } 4973 } 4974 4975 if (__predict_false(cache_fplookup_is_mp(fpl))) { 4976 vput(dvp); 4977 vput(tvp); 4978 return (cache_fpl_aborted(fpl)); 4979 } 4980 4981 if ((cnp->cn_flags & LOCKLEAF) == 0) { 4982 VOP_UNLOCK(tvp); 4983 } 4984 4985 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) { 4986 vput(dvp); 4987 } else if ((cnp->cn_flags & LOCKPARENT) == 0) { 4988 VOP_UNLOCK(dvp); 4989 } 4990 return (cache_fpl_handled(fpl)); 4991 } 4992 4993 static int __noinline 4994 cache_fplookup_dot(struct cache_fpl *fpl) 4995 { 4996 int error; 4997 4998 MPASS(!seqc_in_modify(fpl->dvp_seqc)); 4999 /* 5000 * Just re-assign the value. seqc will be checked later for the first 5001 * non-dot path component in line and/or before deciding to return the 5002 * vnode. 5003 */ 5004 fpl->tvp = fpl->dvp; 5005 fpl->tvp_seqc = fpl->dvp_seqc; 5006 5007 counter_u64_add(dothits, 1); 5008 SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp); 5009 5010 error = 0; 5011 if (cache_fplookup_is_mp(fpl)) { 5012 error = cache_fplookup_cross_mount(fpl); 5013 } 5014 return (error); 5015 } 5016 5017 static int __noinline 5018 cache_fplookup_dotdot(struct cache_fpl *fpl) 5019 { 5020 struct nameidata *ndp; 5021 struct componentname *cnp; 5022 struct namecache *ncp; 5023 struct vnode *dvp; 5024 struct prison *pr; 5025 u_char nc_flag; 5026 5027 ndp = fpl->ndp; 5028 cnp = fpl->cnp; 5029 dvp = fpl->dvp; 5030 5031 MPASS(cache_fpl_isdotdot(cnp)); 5032 5033 /* 5034 * XXX this is racy the same way regular lookup is 5035 */ 5036 for (pr = cnp->cn_cred->cr_prison; pr != NULL; 5037 pr = pr->pr_parent) 5038 if (dvp == pr->pr_root) 5039 break; 5040 5041 if (dvp == ndp->ni_rootdir || 5042 dvp == ndp->ni_topdir || 5043 dvp == rootvnode || 5044 pr != NULL) { 5045 fpl->tvp = dvp; 5046 fpl->tvp_seqc = vn_seqc_read_any(dvp); 5047 if (seqc_in_modify(fpl->tvp_seqc)) { 5048 return (cache_fpl_aborted(fpl)); 5049 } 5050 return (0); 5051 } 5052 5053 if ((dvp->v_vflag & VV_ROOT) != 0) { 5054 /* 5055 * TODO 5056 * The opposite of climb mount is needed here. 5057 */ 5058 return (cache_fpl_partial(fpl)); 5059 } 5060 5061 ncp = atomic_load_consume_ptr(&dvp->v_cache_dd); 5062 if (ncp == NULL) { 5063 return (cache_fpl_aborted(fpl)); 5064 } 5065 5066 nc_flag = atomic_load_char(&ncp->nc_flag); 5067 if ((nc_flag & NCF_ISDOTDOT) != 0) { 5068 if ((nc_flag & NCF_NEGATIVE) != 0) 5069 return (cache_fpl_aborted(fpl)); 5070 fpl->tvp = ncp->nc_vp; 5071 } else { 5072 fpl->tvp = ncp->nc_dvp; 5073 } 5074 5075 fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp); 5076 if (seqc_in_modify(fpl->tvp_seqc)) { 5077 return (cache_fpl_partial(fpl)); 5078 } 5079 5080 /* 5081 * Acquire fence provided by vn_seqc_read_any above. 5082 */ 5083 if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) { 5084 return (cache_fpl_aborted(fpl)); 5085 } 5086 5087 if (!cache_ncp_canuse(ncp)) { 5088 return (cache_fpl_aborted(fpl)); 5089 } 5090 5091 counter_u64_add(dotdothits, 1); 5092 return (0); 5093 } 5094 5095 static int __noinline 5096 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash) 5097 { 5098 u_char nc_flag __diagused; 5099 bool neg_promote; 5100 5101 #ifdef INVARIANTS 5102 nc_flag = atomic_load_char(&ncp->nc_flag); 5103 MPASS((nc_flag & NCF_NEGATIVE) != 0); 5104 #endif 5105 /* 5106 * If they want to create an entry we need to replace this one. 5107 */ 5108 if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) { 5109 fpl->tvp = NULL; 5110 return (cache_fplookup_modifying(fpl)); 5111 } 5112 neg_promote = cache_neg_hit_prep(ncp); 5113 if (!cache_fpl_neg_ncp_canuse(ncp)) { 5114 cache_neg_hit_abort(ncp); 5115 return (cache_fpl_partial(fpl)); 5116 } 5117 if (neg_promote) { 5118 return (cache_fplookup_negative_promote(fpl, ncp, hash)); 5119 } 5120 cache_neg_hit_finish(ncp); 5121 cache_fpl_smr_exit(fpl); 5122 return (cache_fpl_handled_error(fpl, ENOENT)); 5123 } 5124 5125 /* 5126 * Resolve a symlink. Called by filesystem-specific routines. 5127 * 5128 * Code flow is: 5129 * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve 5130 */ 5131 int 5132 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len) 5133 { 5134 struct nameidata *ndp; 5135 struct componentname *cnp; 5136 size_t adjust; 5137 5138 ndp = fpl->ndp; 5139 cnp = fpl->cnp; 5140 5141 if (__predict_false(len == 0)) { 5142 return (ENOENT); 5143 } 5144 5145 if (__predict_false(len > MAXPATHLEN - 2)) { 5146 if (cache_fpl_istrailingslash(fpl)) { 5147 return (EAGAIN); 5148 } 5149 } 5150 5151 ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1; 5152 #ifdef INVARIANTS 5153 if (ndp->ni_pathlen != fpl->debug.ni_pathlen) { 5154 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 5155 __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 5156 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 5157 } 5158 #endif 5159 5160 if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) { 5161 return (ENAMETOOLONG); 5162 } 5163 5164 if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) { 5165 return (ELOOP); 5166 } 5167 5168 adjust = len; 5169 if (ndp->ni_pathlen > 1) { 5170 bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen); 5171 } else { 5172 if (cache_fpl_istrailingslash(fpl)) { 5173 adjust = len + 1; 5174 cnp->cn_pnbuf[len] = '/'; 5175 cnp->cn_pnbuf[len + 1] = '\0'; 5176 } else { 5177 cnp->cn_pnbuf[len] = '\0'; 5178 } 5179 } 5180 bcopy(string, cnp->cn_pnbuf, len); 5181 5182 ndp->ni_pathlen += adjust; 5183 cache_fpl_pathlen_add(fpl, adjust); 5184 cnp->cn_nameptr = cnp->cn_pnbuf; 5185 fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1]; 5186 fpl->tvp = NULL; 5187 return (0); 5188 } 5189 5190 static int __noinline 5191 cache_fplookup_symlink(struct cache_fpl *fpl) 5192 { 5193 struct mount *mp; 5194 struct nameidata *ndp; 5195 struct componentname *cnp; 5196 struct vnode *dvp, *tvp; 5197 int error; 5198 5199 ndp = fpl->ndp; 5200 cnp = fpl->cnp; 5201 dvp = fpl->dvp; 5202 tvp = fpl->tvp; 5203 5204 if (cache_fpl_islastcn(ndp)) { 5205 if ((cnp->cn_flags & FOLLOW) == 0) { 5206 return (cache_fplookup_final(fpl)); 5207 } 5208 } 5209 5210 mp = atomic_load_ptr(&dvp->v_mount); 5211 if (__predict_false(mp == NULL)) { 5212 return (cache_fpl_aborted(fpl)); 5213 } 5214 5215 /* 5216 * Note this check races against setting the flag just like regular 5217 * lookup. 5218 */ 5219 if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) { 5220 cache_fpl_smr_exit(fpl); 5221 return (cache_fpl_handled_error(fpl, EACCES)); 5222 } 5223 5224 error = VOP_FPLOOKUP_SYMLINK(tvp, fpl); 5225 if (__predict_false(error != 0)) { 5226 switch (error) { 5227 case EAGAIN: 5228 return (cache_fpl_partial(fpl)); 5229 case ENOENT: 5230 case ENAMETOOLONG: 5231 case ELOOP: 5232 cache_fpl_smr_exit(fpl); 5233 return (cache_fpl_handled_error(fpl, error)); 5234 default: 5235 return (cache_fpl_aborted(fpl)); 5236 } 5237 } 5238 5239 if (*(cnp->cn_nameptr) == '/') { 5240 fpl->dvp = cache_fpl_handle_root(fpl); 5241 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); 5242 if (seqc_in_modify(fpl->dvp_seqc)) { 5243 return (cache_fpl_aborted(fpl)); 5244 } 5245 /* 5246 * The main loop assumes that ->dvp points to a vnode belonging 5247 * to a filesystem which can do lockless lookup, but the absolute 5248 * symlink can be wandering off to one which does not. 5249 */ 5250 mp = atomic_load_ptr(&fpl->dvp->v_mount); 5251 if (__predict_false(mp == NULL)) { 5252 return (cache_fpl_aborted(fpl)); 5253 } 5254 if (!cache_fplookup_mp_supported(mp)) { 5255 cache_fpl_checkpoint(fpl); 5256 return (cache_fpl_partial(fpl)); 5257 } 5258 } 5259 return (0); 5260 } 5261 5262 static int 5263 cache_fplookup_next(struct cache_fpl *fpl) 5264 { 5265 struct componentname *cnp; 5266 struct namecache *ncp; 5267 struct vnode *dvp, *tvp; 5268 u_char nc_flag; 5269 uint32_t hash; 5270 int error; 5271 5272 cnp = fpl->cnp; 5273 dvp = fpl->dvp; 5274 hash = fpl->hash; 5275 5276 if (__predict_false(cnp->cn_nameptr[0] == '.')) { 5277 if (cnp->cn_namelen == 1) { 5278 return (cache_fplookup_dot(fpl)); 5279 } 5280 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') { 5281 return (cache_fplookup_dotdot(fpl)); 5282 } 5283 } 5284 5285 MPASS(!cache_fpl_isdotdot(cnp)); 5286 5287 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) { 5288 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && 5289 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) 5290 break; 5291 } 5292 5293 if (__predict_false(ncp == NULL)) { 5294 return (cache_fplookup_noentry(fpl)); 5295 } 5296 5297 tvp = atomic_load_ptr(&ncp->nc_vp); 5298 nc_flag = atomic_load_char(&ncp->nc_flag); 5299 if ((nc_flag & NCF_NEGATIVE) != 0) { 5300 return (cache_fplookup_neg(fpl, ncp, hash)); 5301 } 5302 5303 if (!cache_ncp_canuse(ncp)) { 5304 return (cache_fpl_partial(fpl)); 5305 } 5306 5307 fpl->tvp = tvp; 5308 fpl->tvp_seqc = vn_seqc_read_any(tvp); 5309 if (seqc_in_modify(fpl->tvp_seqc)) { 5310 return (cache_fpl_partial(fpl)); 5311 } 5312 5313 counter_u64_add(numposhits, 1); 5314 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp); 5315 5316 error = 0; 5317 if (cache_fplookup_is_mp(fpl)) { 5318 error = cache_fplookup_cross_mount(fpl); 5319 } 5320 return (error); 5321 } 5322 5323 static bool 5324 cache_fplookup_mp_supported(struct mount *mp) 5325 { 5326 5327 MPASS(mp != NULL); 5328 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0) 5329 return (false); 5330 return (true); 5331 } 5332 5333 /* 5334 * Walk up the mount stack (if any). 5335 * 5336 * Correctness is provided in the following ways: 5337 * - all vnodes are protected from freeing with SMR 5338 * - struct mount objects are type stable making them always safe to access 5339 * - stability of the particular mount is provided by busying it 5340 * - relationship between the vnode which is mounted on and the mount is 5341 * verified with the vnode sequence counter after busying 5342 * - association between root vnode of the mount and the mount is protected 5343 * by busy 5344 * 5345 * From that point on we can read the sequence counter of the root vnode 5346 * and get the next mount on the stack (if any) using the same protection. 5347 * 5348 * By the end of successful walk we are guaranteed the reached state was 5349 * indeed present at least at some point which matches the regular lookup. 5350 */ 5351 static int __noinline 5352 cache_fplookup_climb_mount(struct cache_fpl *fpl) 5353 { 5354 struct mount *mp, *prev_mp; 5355 struct mount_pcpu *mpcpu, *prev_mpcpu; 5356 struct vnode *vp; 5357 seqc_t vp_seqc; 5358 5359 vp = fpl->tvp; 5360 vp_seqc = fpl->tvp_seqc; 5361 5362 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 5363 mp = atomic_load_ptr(&vp->v_mountedhere); 5364 if (__predict_false(mp == NULL)) { 5365 return (0); 5366 } 5367 5368 prev_mp = NULL; 5369 for (;;) { 5370 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 5371 if (prev_mp != NULL) 5372 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 5373 return (cache_fpl_partial(fpl)); 5374 } 5375 if (prev_mp != NULL) 5376 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 5377 if (!vn_seqc_consistent(vp, vp_seqc)) { 5378 vfs_op_thread_exit_crit(mp, mpcpu); 5379 return (cache_fpl_partial(fpl)); 5380 } 5381 if (!cache_fplookup_mp_supported(mp)) { 5382 vfs_op_thread_exit_crit(mp, mpcpu); 5383 return (cache_fpl_partial(fpl)); 5384 } 5385 vp = atomic_load_ptr(&mp->mnt_rootvnode); 5386 if (vp == NULL) { 5387 vfs_op_thread_exit_crit(mp, mpcpu); 5388 return (cache_fpl_partial(fpl)); 5389 } 5390 vp_seqc = vn_seqc_read_any(vp); 5391 if (seqc_in_modify(vp_seqc)) { 5392 vfs_op_thread_exit_crit(mp, mpcpu); 5393 return (cache_fpl_partial(fpl)); 5394 } 5395 prev_mp = mp; 5396 prev_mpcpu = mpcpu; 5397 mp = atomic_load_ptr(&vp->v_mountedhere); 5398 if (mp == NULL) 5399 break; 5400 } 5401 5402 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu); 5403 fpl->tvp = vp; 5404 fpl->tvp_seqc = vp_seqc; 5405 return (0); 5406 } 5407 5408 static int __noinline 5409 cache_fplookup_cross_mount(struct cache_fpl *fpl) 5410 { 5411 struct mount *mp; 5412 struct mount_pcpu *mpcpu; 5413 struct vnode *vp; 5414 seqc_t vp_seqc; 5415 5416 vp = fpl->tvp; 5417 vp_seqc = fpl->tvp_seqc; 5418 5419 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp); 5420 mp = atomic_load_ptr(&vp->v_mountedhere); 5421 if (__predict_false(mp == NULL)) { 5422 return (0); 5423 } 5424 5425 if (!vfs_op_thread_enter_crit(mp, mpcpu)) { 5426 return (cache_fpl_partial(fpl)); 5427 } 5428 if (!vn_seqc_consistent(vp, vp_seqc)) { 5429 vfs_op_thread_exit_crit(mp, mpcpu); 5430 return (cache_fpl_partial(fpl)); 5431 } 5432 if (!cache_fplookup_mp_supported(mp)) { 5433 vfs_op_thread_exit_crit(mp, mpcpu); 5434 return (cache_fpl_partial(fpl)); 5435 } 5436 vp = atomic_load_ptr(&mp->mnt_rootvnode); 5437 if (__predict_false(vp == NULL)) { 5438 vfs_op_thread_exit_crit(mp, mpcpu); 5439 return (cache_fpl_partial(fpl)); 5440 } 5441 vp_seqc = vn_seqc_read_any(vp); 5442 vfs_op_thread_exit_crit(mp, mpcpu); 5443 if (seqc_in_modify(vp_seqc)) { 5444 return (cache_fpl_partial(fpl)); 5445 } 5446 mp = atomic_load_ptr(&vp->v_mountedhere); 5447 if (__predict_false(mp != NULL)) { 5448 /* 5449 * There are possibly more mount points on top. 5450 * Normally this does not happen so for simplicity just start 5451 * over. 5452 */ 5453 return (cache_fplookup_climb_mount(fpl)); 5454 } 5455 5456 fpl->tvp = vp; 5457 fpl->tvp_seqc = vp_seqc; 5458 return (0); 5459 } 5460 5461 /* 5462 * Check if a vnode is mounted on. 5463 */ 5464 static bool 5465 cache_fplookup_is_mp(struct cache_fpl *fpl) 5466 { 5467 struct vnode *vp; 5468 5469 vp = fpl->tvp; 5470 return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0); 5471 } 5472 5473 /* 5474 * Parse the path. 5475 * 5476 * The code was originally copy-pasted from regular lookup and despite 5477 * clean ups leaves performance on the table. Any modifications here 5478 * must take into account that in case off fallback the resulting 5479 * nameidata state has to be compatible with the original. 5480 */ 5481 5482 /* 5483 * Debug ni_pathlen tracking. 5484 */ 5485 #ifdef INVARIANTS 5486 static void 5487 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n) 5488 { 5489 5490 fpl->debug.ni_pathlen += n; 5491 KASSERT(fpl->debug.ni_pathlen <= PATH_MAX, 5492 ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen)); 5493 } 5494 5495 static void 5496 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n) 5497 { 5498 5499 fpl->debug.ni_pathlen -= n; 5500 KASSERT(fpl->debug.ni_pathlen <= PATH_MAX, 5501 ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen)); 5502 } 5503 5504 static void 5505 cache_fpl_pathlen_inc(struct cache_fpl *fpl) 5506 { 5507 5508 cache_fpl_pathlen_add(fpl, 1); 5509 } 5510 5511 static void 5512 cache_fpl_pathlen_dec(struct cache_fpl *fpl) 5513 { 5514 5515 cache_fpl_pathlen_sub(fpl, 1); 5516 } 5517 #else 5518 static void 5519 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n) 5520 { 5521 } 5522 5523 static void 5524 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n) 5525 { 5526 } 5527 5528 static void 5529 cache_fpl_pathlen_inc(struct cache_fpl *fpl) 5530 { 5531 } 5532 5533 static void 5534 cache_fpl_pathlen_dec(struct cache_fpl *fpl) 5535 { 5536 } 5537 #endif 5538 5539 static void 5540 cache_fplookup_parse(struct cache_fpl *fpl) 5541 { 5542 struct nameidata *ndp; 5543 struct componentname *cnp; 5544 struct vnode *dvp; 5545 char *cp; 5546 uint32_t hash; 5547 5548 ndp = fpl->ndp; 5549 cnp = fpl->cnp; 5550 dvp = fpl->dvp; 5551 5552 /* 5553 * Find the end of this path component, it is either / or nul. 5554 * 5555 * Store / as a temporary sentinel so that we only have one character 5556 * to test for. Pathnames tend to be short so this should not be 5557 * resulting in cache misses. 5558 * 5559 * TODO: fix this to be word-sized. 5560 */ 5561 MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf); 5562 KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar, 5563 ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n", 5564 __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1], 5565 fpl->nulchar, cnp->cn_pnbuf)); 5566 KASSERT(*fpl->nulchar == '\0', 5567 ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar, 5568 cnp->cn_pnbuf)); 5569 hash = cache_get_hash_iter_start(dvp); 5570 *fpl->nulchar = '/'; 5571 for (cp = cnp->cn_nameptr; *cp != '/'; cp++) { 5572 KASSERT(*cp != '\0', 5573 ("%s: encountered unexpected nul; string [%s]\n", __func__, 5574 cnp->cn_nameptr)); 5575 hash = cache_get_hash_iter(*cp, hash); 5576 continue; 5577 } 5578 *fpl->nulchar = '\0'; 5579 fpl->hash = cache_get_hash_iter_finish(hash); 5580 5581 cnp->cn_namelen = cp - cnp->cn_nameptr; 5582 cache_fpl_pathlen_sub(fpl, cnp->cn_namelen); 5583 5584 #ifdef INVARIANTS 5585 /* 5586 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since 5587 * we are going to fail this lookup with ENAMETOOLONG (see below). 5588 */ 5589 if (cnp->cn_namelen <= NAME_MAX) { 5590 if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) { 5591 panic("%s: mismatched hash for [%s] len %ld", __func__, 5592 cnp->cn_nameptr, cnp->cn_namelen); 5593 } 5594 } 5595 #endif 5596 5597 /* 5598 * Hack: we have to check if the found path component's length exceeds 5599 * NAME_MAX. However, the condition is very rarely true and check can 5600 * be elided in the common case -- if an entry was found in the cache, 5601 * then it could not have been too long to begin with. 5602 */ 5603 ndp->ni_next = cp; 5604 } 5605 5606 static void 5607 cache_fplookup_parse_advance(struct cache_fpl *fpl) 5608 { 5609 struct nameidata *ndp; 5610 struct componentname *cnp; 5611 5612 ndp = fpl->ndp; 5613 cnp = fpl->cnp; 5614 5615 cnp->cn_nameptr = ndp->ni_next; 5616 KASSERT(*(cnp->cn_nameptr) == '/', 5617 ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__, 5618 cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf)); 5619 cnp->cn_nameptr++; 5620 cache_fpl_pathlen_dec(fpl); 5621 } 5622 5623 /* 5624 * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry. 5625 * 5626 * Lockless lookup tries to elide checking for spurious slashes and should they 5627 * be present is guaranteed to fail to find an entry. In this case the caller 5628 * must check if the name starts with a slash and call this routine. It is 5629 * going to fast forward across the spurious slashes and set the state up for 5630 * retry. 5631 */ 5632 static int __noinline 5633 cache_fplookup_skip_slashes(struct cache_fpl *fpl) 5634 { 5635 struct nameidata *ndp; 5636 struct componentname *cnp; 5637 5638 ndp = fpl->ndp; 5639 cnp = fpl->cnp; 5640 5641 MPASS(*(cnp->cn_nameptr) == '/'); 5642 do { 5643 cnp->cn_nameptr++; 5644 cache_fpl_pathlen_dec(fpl); 5645 } while (*(cnp->cn_nameptr) == '/'); 5646 5647 /* 5648 * Go back to one slash so that cache_fplookup_parse_advance has 5649 * something to skip. 5650 */ 5651 cnp->cn_nameptr--; 5652 cache_fpl_pathlen_inc(fpl); 5653 5654 /* 5655 * cache_fplookup_parse_advance starts from ndp->ni_next 5656 */ 5657 ndp->ni_next = cnp->cn_nameptr; 5658 5659 /* 5660 * See cache_fplookup_dot. 5661 */ 5662 fpl->tvp = fpl->dvp; 5663 fpl->tvp_seqc = fpl->dvp_seqc; 5664 5665 return (0); 5666 } 5667 5668 /* 5669 * Handle trailing slashes (e.g., "foo/"). 5670 * 5671 * If a trailing slash is found the terminal vnode must be a directory. 5672 * Regular lookup shortens the path by nulifying the first trailing slash and 5673 * sets the TRAILINGSLASH flag to denote this took place. There are several 5674 * checks on it performed later. 5675 * 5676 * Similarly to spurious slashes, lockless lookup handles this in a speculative 5677 * manner relying on an invariant that a non-directory vnode will get a miss. 5678 * In this case cn_nameptr[0] == '\0' and cn_namelen == 0. 5679 * 5680 * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/" 5681 * and denotes this is the last path component, which avoids looping back. 5682 * 5683 * Only plain lookups are supported for now to restrict corner cases to handle. 5684 */ 5685 static int __noinline 5686 cache_fplookup_trailingslash(struct cache_fpl *fpl) 5687 { 5688 #ifdef INVARIANTS 5689 size_t ni_pathlen; 5690 #endif 5691 struct nameidata *ndp; 5692 struct componentname *cnp; 5693 struct namecache *ncp; 5694 struct vnode *tvp; 5695 char *cn_nameptr_orig, *cn_nameptr_slash; 5696 seqc_t tvp_seqc; 5697 u_char nc_flag; 5698 5699 ndp = fpl->ndp; 5700 cnp = fpl->cnp; 5701 tvp = fpl->tvp; 5702 tvp_seqc = fpl->tvp_seqc; 5703 5704 MPASS(fpl->dvp == fpl->tvp); 5705 KASSERT(cache_fpl_istrailingslash(fpl), 5706 ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1, 5707 cnp->cn_pnbuf)); 5708 KASSERT(cnp->cn_nameptr[0] == '\0', 5709 ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0], 5710 cnp->cn_pnbuf)); 5711 KASSERT(cnp->cn_namelen == 0, 5712 ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen, 5713 cnp->cn_pnbuf)); 5714 MPASS(cnp->cn_nameptr > cnp->cn_pnbuf); 5715 5716 if (cnp->cn_nameiop != LOOKUP) { 5717 return (cache_fpl_aborted(fpl)); 5718 } 5719 5720 if (__predict_false(tvp->v_type != VDIR)) { 5721 if (!vn_seqc_consistent(tvp, tvp_seqc)) { 5722 return (cache_fpl_aborted(fpl)); 5723 } 5724 cache_fpl_smr_exit(fpl); 5725 return (cache_fpl_handled_error(fpl, ENOTDIR)); 5726 } 5727 5728 /* 5729 * Denote the last component. 5730 */ 5731 ndp->ni_next = &cnp->cn_nameptr[0]; 5732 MPASS(cache_fpl_islastcn(ndp)); 5733 5734 /* 5735 * Unwind trailing slashes. 5736 */ 5737 cn_nameptr_orig = cnp->cn_nameptr; 5738 while (cnp->cn_nameptr >= cnp->cn_pnbuf) { 5739 cnp->cn_nameptr--; 5740 if (cnp->cn_nameptr[0] != '/') { 5741 break; 5742 } 5743 } 5744 5745 /* 5746 * Unwind to the beginning of the path component. 5747 * 5748 * Note the path may or may not have started with a slash. 5749 */ 5750 cn_nameptr_slash = cnp->cn_nameptr; 5751 while (cnp->cn_nameptr > cnp->cn_pnbuf) { 5752 cnp->cn_nameptr--; 5753 if (cnp->cn_nameptr[0] == '/') { 5754 break; 5755 } 5756 } 5757 if (cnp->cn_nameptr[0] == '/') { 5758 cnp->cn_nameptr++; 5759 } 5760 5761 cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1; 5762 cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr); 5763 cache_fpl_checkpoint(fpl); 5764 5765 #ifdef INVARIANTS 5766 ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1; 5767 if (ni_pathlen != fpl->debug.ni_pathlen) { 5768 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n", 5769 __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar, 5770 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf); 5771 } 5772 #endif 5773 5774 /* 5775 * If this was a "./" lookup the parent directory is already correct. 5776 */ 5777 if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) { 5778 return (0); 5779 } 5780 5781 /* 5782 * Otherwise we need to look it up. 5783 */ 5784 tvp = fpl->tvp; 5785 ncp = atomic_load_consume_ptr(&tvp->v_cache_dd); 5786 if (__predict_false(ncp == NULL)) { 5787 return (cache_fpl_aborted(fpl)); 5788 } 5789 nc_flag = atomic_load_char(&ncp->nc_flag); 5790 if ((nc_flag & NCF_ISDOTDOT) != 0) { 5791 return (cache_fpl_aborted(fpl)); 5792 } 5793 fpl->dvp = ncp->nc_dvp; 5794 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp); 5795 if (seqc_in_modify(fpl->dvp_seqc)) { 5796 return (cache_fpl_aborted(fpl)); 5797 } 5798 return (0); 5799 } 5800 5801 /* 5802 * See the API contract for VOP_FPLOOKUP_VEXEC. 5803 */ 5804 static int __noinline 5805 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error) 5806 { 5807 struct componentname *cnp; 5808 struct vnode *dvp; 5809 seqc_t dvp_seqc; 5810 5811 cnp = fpl->cnp; 5812 dvp = fpl->dvp; 5813 dvp_seqc = fpl->dvp_seqc; 5814 5815 /* 5816 * Hack: delayed empty path checking. 5817 */ 5818 if (cnp->cn_pnbuf[0] == '\0') { 5819 return (cache_fplookup_emptypath(fpl)); 5820 } 5821 5822 /* 5823 * TODO: Due to ignoring trailing slashes lookup will perform a 5824 * permission check on the last dir when it should not be doing it. It 5825 * may fail, but said failure should be ignored. It is possible to fix 5826 * it up fully without resorting to regular lookup, but for now just 5827 * abort. 5828 */ 5829 if (cache_fpl_istrailingslash(fpl)) { 5830 return (cache_fpl_aborted(fpl)); 5831 } 5832 5833 /* 5834 * Hack: delayed degenerate path checking. 5835 */ 5836 if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) { 5837 return (cache_fplookup_degenerate(fpl)); 5838 } 5839 5840 /* 5841 * Hack: delayed name len checking. 5842 */ 5843 if (__predict_false(cnp->cn_namelen > NAME_MAX)) { 5844 cache_fpl_smr_exit(fpl); 5845 return (cache_fpl_handled_error(fpl, ENAMETOOLONG)); 5846 } 5847 5848 /* 5849 * Hack: they may be looking up foo/bar, where foo is not a directory. 5850 * In such a case we need to return ENOTDIR, but we may happen to get 5851 * here with a different error. 5852 */ 5853 if (dvp->v_type != VDIR) { 5854 error = ENOTDIR; 5855 } 5856 5857 /* 5858 * Hack: handle O_SEARCH. 5859 * 5860 * Open Group Base Specifications Issue 7, 2018 edition states: 5861 * <quote> 5862 * If the access mode of the open file description associated with the 5863 * file descriptor is not O_SEARCH, the function shall check whether 5864 * directory searches are permitted using the current permissions of 5865 * the directory underlying the file descriptor. If the access mode is 5866 * O_SEARCH, the function shall not perform the check. 5867 * </quote> 5868 * 5869 * Regular lookup tests for the NOEXECCHECK flag for every path 5870 * component to decide whether to do the permission check. However, 5871 * since most lookups never have the flag (and when they do it is only 5872 * present for the first path component), lockless lookup only acts on 5873 * it if there is a permission problem. Here the flag is represented 5874 * with a boolean so that we don't have to clear it on the way out. 5875 * 5876 * For simplicity this always aborts. 5877 * TODO: check if this is the first lookup and ignore the permission 5878 * problem. Note the flag has to survive fallback (if it happens to be 5879 * performed). 5880 */ 5881 if (fpl->fsearch) { 5882 return (cache_fpl_aborted(fpl)); 5883 } 5884 5885 switch (error) { 5886 case EAGAIN: 5887 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 5888 error = cache_fpl_aborted(fpl); 5889 } else { 5890 cache_fpl_partial(fpl); 5891 } 5892 break; 5893 default: 5894 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 5895 error = cache_fpl_aborted(fpl); 5896 } else { 5897 cache_fpl_smr_exit(fpl); 5898 cache_fpl_handled_error(fpl, error); 5899 } 5900 break; 5901 } 5902 return (error); 5903 } 5904 5905 static int 5906 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl) 5907 { 5908 struct nameidata *ndp; 5909 struct componentname *cnp; 5910 struct mount *mp; 5911 int error; 5912 5913 ndp = fpl->ndp; 5914 cnp = fpl->cnp; 5915 5916 cache_fpl_checkpoint(fpl); 5917 5918 /* 5919 * The vnode at hand is almost always stable, skip checking for it. 5920 * Worst case this postpones the check towards the end of the iteration 5921 * of the main loop. 5922 */ 5923 fpl->dvp = dvp; 5924 fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp); 5925 5926 mp = atomic_load_ptr(&dvp->v_mount); 5927 if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) { 5928 return (cache_fpl_aborted(fpl)); 5929 } 5930 5931 MPASS(fpl->tvp == NULL); 5932 5933 for (;;) { 5934 cache_fplookup_parse(fpl); 5935 5936 error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred); 5937 if (__predict_false(error != 0)) { 5938 error = cache_fplookup_failed_vexec(fpl, error); 5939 break; 5940 } 5941 5942 error = cache_fplookup_next(fpl); 5943 if (__predict_false(cache_fpl_terminated(fpl))) { 5944 break; 5945 } 5946 5947 VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp); 5948 5949 if (fpl->tvp->v_type == VLNK) { 5950 error = cache_fplookup_symlink(fpl); 5951 if (cache_fpl_terminated(fpl)) { 5952 break; 5953 } 5954 } else { 5955 if (cache_fpl_islastcn(ndp)) { 5956 error = cache_fplookup_final(fpl); 5957 break; 5958 } 5959 5960 if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) { 5961 error = cache_fpl_aborted(fpl); 5962 break; 5963 } 5964 5965 fpl->dvp = fpl->tvp; 5966 fpl->dvp_seqc = fpl->tvp_seqc; 5967 cache_fplookup_parse_advance(fpl); 5968 } 5969 5970 cache_fpl_checkpoint(fpl); 5971 } 5972 5973 return (error); 5974 } 5975 5976 /* 5977 * Fast path lookup protected with SMR and sequence counters. 5978 * 5979 * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one. 5980 * 5981 * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria 5982 * outlined below. 5983 * 5984 * Traditional vnode lookup conceptually looks like this: 5985 * 5986 * vn_lock(current); 5987 * for (;;) { 5988 * next = find(); 5989 * vn_lock(next); 5990 * vn_unlock(current); 5991 * current = next; 5992 * if (last) 5993 * break; 5994 * } 5995 * return (current); 5996 * 5997 * Each jump to the next vnode is safe memory-wise and atomic with respect to 5998 * any modifications thanks to holding respective locks. 5999 * 6000 * The same guarantee can be provided with a combination of safe memory 6001 * reclamation and sequence counters instead. If all operations which affect 6002 * the relationship between the current vnode and the one we are looking for 6003 * also modify the counter, we can verify whether all the conditions held as 6004 * we made the jump. This includes things like permissions, mount points etc. 6005 * Counter modification is provided by enclosing relevant places in 6006 * vn_seqc_write_begin()/end() calls. 6007 * 6008 * Thus this translates to: 6009 * 6010 * vfs_smr_enter(); 6011 * dvp_seqc = seqc_read_any(dvp); 6012 * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode 6013 * abort(); 6014 * for (;;) { 6015 * tvp = find(); 6016 * tvp_seqc = seqc_read_any(tvp); 6017 * if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode 6018 * abort(); 6019 * if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode 6020 * abort(); 6021 * dvp = tvp; // we know nothing of importance has changed 6022 * dvp_seqc = tvp_seqc; // store the counter for the tvp iteration 6023 * if (last) 6024 * break; 6025 * } 6026 * vget(); // secure the vnode 6027 * if (!seqc_consistent(tvp, tvp_seqc) // final check 6028 * abort(); 6029 * // at this point we know nothing has changed for any parent<->child pair 6030 * // as they were crossed during the lookup, meaning we matched the guarantee 6031 * // of the locked variant 6032 * return (tvp); 6033 * 6034 * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows: 6035 * - they are called while within vfs_smr protection which they must never exit 6036 * - EAGAIN can be returned to denote checking could not be performed, it is 6037 * always valid to return it 6038 * - if the sequence counter has not changed the result must be valid 6039 * - if the sequence counter has changed both false positives and false negatives 6040 * are permitted (since the result will be rejected later) 6041 * - for simple cases of unix permission checks vaccess_vexec_smr can be used 6042 * 6043 * Caveats to watch out for: 6044 * - vnodes are passed unlocked and unreferenced with nothing stopping 6045 * VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised 6046 * to use atomic_load_ptr to fetch it. 6047 * - the aforementioned object can also get freed, meaning absent other means it 6048 * should be protected with vfs_smr 6049 * - either safely checking permissions as they are modified or guaranteeing 6050 * their stability is left to the routine 6051 */ 6052 int 6053 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status, 6054 struct pwd **pwdp) 6055 { 6056 struct cache_fpl fpl; 6057 struct pwd *pwd; 6058 struct vnode *dvp; 6059 struct componentname *cnp; 6060 int error; 6061 6062 fpl.status = CACHE_FPL_STATUS_UNSET; 6063 fpl.in_smr = false; 6064 fpl.ndp = ndp; 6065 fpl.cnp = cnp = &ndp->ni_cnd; 6066 MPASS(ndp->ni_lcf == 0); 6067 KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0, 6068 ("%s: internal flags found in cn_flags %" PRIx64, __func__, 6069 cnp->cn_flags)); 6070 if ((cnp->cn_flags & SAVESTART) != 0) { 6071 MPASS(cnp->cn_nameiop != LOOKUP); 6072 } 6073 MPASS(cnp->cn_nameptr == cnp->cn_pnbuf); 6074 6075 if (__predict_false(!cache_can_fplookup(&fpl))) { 6076 *status = fpl.status; 6077 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 6078 return (EOPNOTSUPP); 6079 } 6080 6081 cache_fpl_checkpoint_outer(&fpl); 6082 6083 cache_fpl_smr_enter_initial(&fpl); 6084 #ifdef INVARIANTS 6085 fpl.debug.ni_pathlen = ndp->ni_pathlen; 6086 #endif 6087 fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1]; 6088 fpl.fsearch = false; 6089 fpl.savename = (cnp->cn_flags & SAVENAME) != 0; 6090 fpl.tvp = NULL; /* for degenerate path handling */ 6091 fpl.pwd = pwdp; 6092 pwd = pwd_get_smr(); 6093 *(fpl.pwd) = pwd; 6094 ndp->ni_rootdir = pwd->pwd_rdir; 6095 ndp->ni_topdir = pwd->pwd_jdir; 6096 6097 if (cnp->cn_pnbuf[0] == '/') { 6098 dvp = cache_fpl_handle_root(&fpl); 6099 MPASS(ndp->ni_resflags == 0); 6100 ndp->ni_resflags = NIRES_ABS; 6101 } else { 6102 if (ndp->ni_dirfd == AT_FDCWD) { 6103 dvp = pwd->pwd_cdir; 6104 } else { 6105 error = cache_fplookup_dirfd(&fpl, &dvp); 6106 if (__predict_false(error != 0)) { 6107 goto out; 6108 } 6109 } 6110 } 6111 6112 SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true); 6113 error = cache_fplookup_impl(dvp, &fpl); 6114 out: 6115 cache_fpl_smr_assert_not_entered(&fpl); 6116 cache_fpl_assert_status(&fpl); 6117 *status = fpl.status; 6118 if (SDT_PROBES_ENABLED()) { 6119 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status); 6120 if (fpl.status == CACHE_FPL_STATUS_HANDLED) 6121 SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true, 6122 ndp); 6123 } 6124 6125 if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) { 6126 MPASS(error != CACHE_FPL_FAILED); 6127 if (error != 0) { 6128 MPASS(fpl.dvp == NULL); 6129 MPASS(fpl.tvp == NULL); 6130 MPASS(fpl.savename == false); 6131 } 6132 ndp->ni_dvp = fpl.dvp; 6133 ndp->ni_vp = fpl.tvp; 6134 if (fpl.savename) { 6135 cnp->cn_flags |= HASBUF; 6136 } else { 6137 cache_fpl_cleanup_cnp(cnp); 6138 } 6139 } 6140 return (error); 6141 } 6142