1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004 Poul-Henning Kamp 5 * Copyright (c) 1994,1997 John S. Dyson 6 * Copyright (c) 2013 The FreeBSD Foundation 7 * All rights reserved. 8 * 9 * Portions of this software were developed by Konstantin Belousov 10 * under sponsorship from the FreeBSD Foundation. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * this file contains a new buffer I/O scheme implementing a coherent 36 * VM object and buffer cache scheme. Pains have been taken to make 37 * sure that the performance degradation associated with schemes such 38 * as this is not realized. 39 * 40 * Author: John S. Dyson 41 * Significant help during the development and debugging phases 42 * had been provided by David Greenman, also of the FreeBSD core team. 43 * 44 * see man buf(9) for more info. 45 */ 46 47 #include <sys/cdefs.h> 48 __FBSDID("$FreeBSD$"); 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/bio.h> 53 #include <sys/bitset.h> 54 #include <sys/conf.h> 55 #include <sys/counter.h> 56 #include <sys/buf.h> 57 #include <sys/devicestat.h> 58 #include <sys/eventhandler.h> 59 #include <sys/fail.h> 60 #include <sys/ktr.h> 61 #include <sys/limits.h> 62 #include <sys/lock.h> 63 #include <sys/malloc.h> 64 #include <sys/mount.h> 65 #include <sys/mutex.h> 66 #include <sys/kernel.h> 67 #include <sys/kthread.h> 68 #include <sys/proc.h> 69 #include <sys/racct.h> 70 #include <sys/refcount.h> 71 #include <sys/resourcevar.h> 72 #include <sys/rwlock.h> 73 #include <sys/smp.h> 74 #include <sys/sysctl.h> 75 #include <sys/syscallsubr.h> 76 #include <sys/vmem.h> 77 #include <sys/vmmeter.h> 78 #include <sys/vnode.h> 79 #include <sys/watchdog.h> 80 #include <geom/geom.h> 81 #include <vm/vm.h> 82 #include <vm/vm_param.h> 83 #include <vm/vm_kern.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_pager.h> 88 #include <vm/vm_extern.h> 89 #include <vm/vm_map.h> 90 #include <vm/swap_pager.h> 91 92 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer"); 93 94 struct bio_ops bioops; /* I/O operation notification */ 95 96 struct buf_ops buf_ops_bio = { 97 .bop_name = "buf_ops_bio", 98 .bop_write = bufwrite, 99 .bop_strategy = bufstrategy, 100 .bop_sync = bufsync, 101 .bop_bdflush = bufbdflush, 102 }; 103 104 struct bufqueue { 105 struct mtx_padalign bq_lock; 106 TAILQ_HEAD(, buf) bq_queue; 107 uint8_t bq_index; 108 uint16_t bq_subqueue; 109 int bq_len; 110 } __aligned(CACHE_LINE_SIZE); 111 112 #define BQ_LOCKPTR(bq) (&(bq)->bq_lock) 113 #define BQ_LOCK(bq) mtx_lock(BQ_LOCKPTR((bq))) 114 #define BQ_UNLOCK(bq) mtx_unlock(BQ_LOCKPTR((bq))) 115 #define BQ_ASSERT_LOCKED(bq) mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED) 116 117 struct bufdomain { 118 struct bufqueue bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */ 119 struct bufqueue bd_dirtyq; 120 struct bufqueue *bd_cleanq; 121 struct mtx_padalign bd_run_lock; 122 /* Constants */ 123 long bd_maxbufspace; 124 long bd_hibufspace; 125 long bd_lobufspace; 126 long bd_bufspacethresh; 127 int bd_hifreebuffers; 128 int bd_lofreebuffers; 129 int bd_hidirtybuffers; 130 int bd_lodirtybuffers; 131 int bd_dirtybufthresh; 132 int bd_lim; 133 /* atomics */ 134 int bd_wanted; 135 int __aligned(CACHE_LINE_SIZE) bd_numdirtybuffers; 136 int __aligned(CACHE_LINE_SIZE) bd_running; 137 long __aligned(CACHE_LINE_SIZE) bd_bufspace; 138 int __aligned(CACHE_LINE_SIZE) bd_freebuffers; 139 } __aligned(CACHE_LINE_SIZE); 140 141 #define BD_LOCKPTR(bd) (&(bd)->bd_cleanq->bq_lock) 142 #define BD_LOCK(bd) mtx_lock(BD_LOCKPTR((bd))) 143 #define BD_UNLOCK(bd) mtx_unlock(BD_LOCKPTR((bd))) 144 #define BD_ASSERT_LOCKED(bd) mtx_assert(BD_LOCKPTR((bd)), MA_OWNED) 145 #define BD_RUN_LOCKPTR(bd) (&(bd)->bd_run_lock) 146 #define BD_RUN_LOCK(bd) mtx_lock(BD_RUN_LOCKPTR((bd))) 147 #define BD_RUN_UNLOCK(bd) mtx_unlock(BD_RUN_LOCKPTR((bd))) 148 #define BD_DOMAIN(bd) (bd - bdomain) 149 150 static char *buf; /* buffer header pool */ 151 static struct buf * 152 nbufp(unsigned i) 153 { 154 return ((struct buf *)(buf + (sizeof(struct buf) + 155 sizeof(vm_page_t) * atop(maxbcachebuf)) * i)); 156 } 157 158 caddr_t __read_mostly unmapped_buf; 159 160 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */ 161 struct proc *bufdaemonproc; 162 163 static void vm_hold_free_pages(struct buf *bp, int newbsize); 164 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from, 165 vm_offset_t to); 166 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m); 167 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, 168 vm_page_t m); 169 static void vfs_clean_pages_dirty_buf(struct buf *bp); 170 static void vfs_setdirty_range(struct buf *bp); 171 static void vfs_vmio_invalidate(struct buf *bp); 172 static void vfs_vmio_truncate(struct buf *bp, int npages); 173 static void vfs_vmio_extend(struct buf *bp, int npages, int size); 174 static int vfs_bio_clcheck(struct vnode *vp, int size, 175 daddr_t lblkno, daddr_t blkno); 176 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int, 177 void (*)(struct buf *)); 178 static int buf_flush(struct vnode *vp, struct bufdomain *, int); 179 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int); 180 static void buf_daemon(void); 181 static __inline void bd_wakeup(void); 182 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS); 183 static void bufkva_reclaim(vmem_t *, int); 184 static void bufkva_free(struct buf *); 185 static int buf_import(void *, void **, int, int, int); 186 static void buf_release(void *, void **, int); 187 static void maxbcachebuf_adjust(void); 188 static inline struct bufdomain *bufdomain(struct buf *); 189 static void bq_remove(struct bufqueue *bq, struct buf *bp); 190 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock); 191 static int buf_recycle(struct bufdomain *, bool kva); 192 static void bq_init(struct bufqueue *bq, int qindex, int cpu, 193 const char *lockname); 194 static void bd_init(struct bufdomain *bd); 195 static int bd_flushall(struct bufdomain *bd); 196 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS); 197 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS); 198 199 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS); 200 int vmiodirenable = TRUE; 201 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 202 "Use the VM system for directory writes"); 203 long runningbufspace; 204 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 205 "Amount of presently outstanding async buffer io"); 206 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD, 207 NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers"); 208 static counter_u64_t bufkvaspace; 209 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace, 210 "Kernel virtual memory used for buffers"); 211 static long maxbufspace; 212 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace, 213 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace, 214 __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L", 215 "Maximum allowed value of bufspace (including metadata)"); 216 static long bufmallocspace; 217 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 218 "Amount of malloced memory for buffers"); 219 static long maxbufmallocspace; 220 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 221 0, "Maximum amount of malloced memory for buffers"); 222 static long lobufspace; 223 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace, 224 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace, 225 __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L", 226 "Minimum amount of buffers we want to have"); 227 long hibufspace; 228 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace, 229 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace, 230 __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L", 231 "Maximum allowed value of bufspace (excluding metadata)"); 232 long bufspacethresh; 233 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh, 234 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh, 235 __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L", 236 "Bufspace consumed before waking the daemon to free some"); 237 static counter_u64_t buffreekvacnt; 238 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 239 "Number of times we have freed the KVA space from some buffer"); 240 static counter_u64_t bufdefragcnt; 241 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 242 "Number of times we have had to repeat buffer allocation to defragment"); 243 static long lorunningspace; 244 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | 245 CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L", 246 "Minimum preferred space used for in-progress I/O"); 247 static long hirunningspace; 248 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | 249 CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L", 250 "Maximum amount of space to use for in-progress I/O"); 251 int dirtybufferflushes; 252 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes, 253 0, "Number of bdwrite to bawrite conversions to limit dirty buffers"); 254 int bdwriteskip; 255 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip, 256 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk"); 257 int altbufferflushes; 258 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS, 259 &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers"); 260 static int recursiveflushes; 261 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS, 262 &recursiveflushes, 0, "Number of flushes skipped due to being recursive"); 263 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS); 264 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers, 265 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I", 266 "Number of buffers that are dirty (has unwritten changes) at the moment"); 267 static int lodirtybuffers; 268 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers, 269 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers, 270 __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I", 271 "How many buffers we want to have free before bufdaemon can sleep"); 272 static int hidirtybuffers; 273 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers, 274 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers, 275 __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I", 276 "When the number of dirty buffers is considered severe"); 277 int dirtybufthresh; 278 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh, 279 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh, 280 __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I", 281 "Number of bdwrite to bawrite conversions to clear dirty buffers"); 282 static int numfreebuffers; 283 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 284 "Number of free buffers"); 285 static int lofreebuffers; 286 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers, 287 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers, 288 __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I", 289 "Target number of free buffers"); 290 static int hifreebuffers; 291 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers, 292 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers, 293 __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I", 294 "Threshold for clean buffer recycling"); 295 static counter_u64_t getnewbufcalls; 296 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, 297 &getnewbufcalls, "Number of calls to getnewbuf"); 298 static counter_u64_t getnewbufrestarts; 299 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, 300 &getnewbufrestarts, 301 "Number of times getnewbuf has had to restart a buffer acquisition"); 302 static counter_u64_t mappingrestarts; 303 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD, 304 &mappingrestarts, 305 "Number of times getblk has had to restart a buffer mapping for " 306 "unmapped buffer"); 307 static counter_u64_t numbufallocfails; 308 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW, 309 &numbufallocfails, "Number of times buffer allocations failed"); 310 static int flushbufqtarget = 100; 311 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0, 312 "Amount of work to do in flushbufqueues when helping bufdaemon"); 313 static counter_u64_t notbufdflushes; 314 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes, 315 "Number of dirty buffer flushes done by the bufdaemon helpers"); 316 static long barrierwrites; 317 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS, 318 &barrierwrites, 0, "Number of barrier writes"); 319 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD, 320 &unmapped_buf_allowed, 0, 321 "Permit the use of the unmapped i/o"); 322 int maxbcachebuf = MAXBCACHEBUF; 323 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0, 324 "Maximum size of a buffer cache block"); 325 326 /* 327 * This lock synchronizes access to bd_request. 328 */ 329 static struct mtx_padalign __exclusive_cache_line bdlock; 330 331 /* 332 * This lock protects the runningbufreq and synchronizes runningbufwakeup and 333 * waitrunningbufspace(). 334 */ 335 static struct mtx_padalign __exclusive_cache_line rbreqlock; 336 337 /* 338 * Lock that protects bdirtywait. 339 */ 340 static struct mtx_padalign __exclusive_cache_line bdirtylock; 341 342 /* 343 * Wakeup point for bufdaemon, as well as indicator of whether it is already 344 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 345 * is idling. 346 */ 347 static int bd_request; 348 349 /* 350 * Request for the buf daemon to write more buffers than is indicated by 351 * lodirtybuf. This may be necessary to push out excess dependencies or 352 * defragment the address space where a simple count of the number of dirty 353 * buffers is insufficient to characterize the demand for flushing them. 354 */ 355 static int bd_speedupreq; 356 357 /* 358 * Synchronization (sleep/wakeup) variable for active buffer space requests. 359 * Set when wait starts, cleared prior to wakeup(). 360 * Used in runningbufwakeup() and waitrunningbufspace(). 361 */ 362 static int runningbufreq; 363 364 /* 365 * Synchronization for bwillwrite() waiters. 366 */ 367 static int bdirtywait; 368 369 /* 370 * Definitions for the buffer free lists. 371 */ 372 #define QUEUE_NONE 0 /* on no queue */ 373 #define QUEUE_EMPTY 1 /* empty buffer headers */ 374 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */ 375 #define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */ 376 #define QUEUE_SENTINEL 4 /* not an queue index, but mark for sentinel */ 377 378 /* Maximum number of buffer domains. */ 379 #define BUF_DOMAINS 8 380 381 struct bufdomainset bdlodirty; /* Domains > lodirty */ 382 struct bufdomainset bdhidirty; /* Domains > hidirty */ 383 384 /* Configured number of clean queues. */ 385 static int __read_mostly buf_domains; 386 387 BITSET_DEFINE(bufdomainset, BUF_DOMAINS); 388 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS]; 389 struct bufqueue __exclusive_cache_line bqempty; 390 391 /* 392 * per-cpu empty buffer cache. 393 */ 394 uma_zone_t buf_zone; 395 396 /* 397 * Single global constant for BUF_WMESG, to avoid getting multiple references. 398 * buf_wmesg is referred from macros. 399 */ 400 const char *buf_wmesg = BUF_WMESG; 401 402 static int 403 sysctl_runningspace(SYSCTL_HANDLER_ARGS) 404 { 405 long value; 406 int error; 407 408 value = *(long *)arg1; 409 error = sysctl_handle_long(oidp, &value, 0, req); 410 if (error != 0 || req->newptr == NULL) 411 return (error); 412 mtx_lock(&rbreqlock); 413 if (arg1 == &hirunningspace) { 414 if (value < lorunningspace) 415 error = EINVAL; 416 else 417 hirunningspace = value; 418 } else { 419 KASSERT(arg1 == &lorunningspace, 420 ("%s: unknown arg1", __func__)); 421 if (value > hirunningspace) 422 error = EINVAL; 423 else 424 lorunningspace = value; 425 } 426 mtx_unlock(&rbreqlock); 427 return (error); 428 } 429 430 static int 431 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS) 432 { 433 int error; 434 int value; 435 int i; 436 437 value = *(int *)arg1; 438 error = sysctl_handle_int(oidp, &value, 0, req); 439 if (error != 0 || req->newptr == NULL) 440 return (error); 441 *(int *)arg1 = value; 442 for (i = 0; i < buf_domains; i++) 443 *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) = 444 value / buf_domains; 445 446 return (error); 447 } 448 449 static int 450 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS) 451 { 452 long value; 453 int error; 454 int i; 455 456 value = *(long *)arg1; 457 error = sysctl_handle_long(oidp, &value, 0, req); 458 if (error != 0 || req->newptr == NULL) 459 return (error); 460 *(long *)arg1 = value; 461 for (i = 0; i < buf_domains; i++) 462 *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) = 463 value / buf_domains; 464 465 return (error); 466 } 467 468 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 469 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 470 static int 471 sysctl_bufspace(SYSCTL_HANDLER_ARGS) 472 { 473 long lvalue; 474 int ivalue; 475 int i; 476 477 lvalue = 0; 478 for (i = 0; i < buf_domains; i++) 479 lvalue += bdomain[i].bd_bufspace; 480 if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long)) 481 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 482 if (lvalue > INT_MAX) 483 /* On overflow, still write out a long to trigger ENOMEM. */ 484 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 485 ivalue = lvalue; 486 return (sysctl_handle_int(oidp, &ivalue, 0, req)); 487 } 488 #else 489 static int 490 sysctl_bufspace(SYSCTL_HANDLER_ARGS) 491 { 492 long lvalue; 493 int i; 494 495 lvalue = 0; 496 for (i = 0; i < buf_domains; i++) 497 lvalue += bdomain[i].bd_bufspace; 498 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 499 } 500 #endif 501 502 static int 503 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS) 504 { 505 int value; 506 int i; 507 508 value = 0; 509 for (i = 0; i < buf_domains; i++) 510 value += bdomain[i].bd_numdirtybuffers; 511 return (sysctl_handle_int(oidp, &value, 0, req)); 512 } 513 514 /* 515 * bdirtywakeup: 516 * 517 * Wakeup any bwillwrite() waiters. 518 */ 519 static void 520 bdirtywakeup(void) 521 { 522 mtx_lock(&bdirtylock); 523 if (bdirtywait) { 524 bdirtywait = 0; 525 wakeup(&bdirtywait); 526 } 527 mtx_unlock(&bdirtylock); 528 } 529 530 /* 531 * bd_clear: 532 * 533 * Clear a domain from the appropriate bitsets when dirtybuffers 534 * is decremented. 535 */ 536 static void 537 bd_clear(struct bufdomain *bd) 538 { 539 540 mtx_lock(&bdirtylock); 541 if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers) 542 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty); 543 if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers) 544 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty); 545 mtx_unlock(&bdirtylock); 546 } 547 548 /* 549 * bd_set: 550 * 551 * Set a domain in the appropriate bitsets when dirtybuffers 552 * is incremented. 553 */ 554 static void 555 bd_set(struct bufdomain *bd) 556 { 557 558 mtx_lock(&bdirtylock); 559 if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers) 560 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty); 561 if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers) 562 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty); 563 mtx_unlock(&bdirtylock); 564 } 565 566 /* 567 * bdirtysub: 568 * 569 * Decrement the numdirtybuffers count by one and wakeup any 570 * threads blocked in bwillwrite(). 571 */ 572 static void 573 bdirtysub(struct buf *bp) 574 { 575 struct bufdomain *bd; 576 int num; 577 578 bd = bufdomain(bp); 579 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1); 580 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2) 581 bdirtywakeup(); 582 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers) 583 bd_clear(bd); 584 } 585 586 /* 587 * bdirtyadd: 588 * 589 * Increment the numdirtybuffers count by one and wakeup the buf 590 * daemon if needed. 591 */ 592 static void 593 bdirtyadd(struct buf *bp) 594 { 595 struct bufdomain *bd; 596 int num; 597 598 /* 599 * Only do the wakeup once as we cross the boundary. The 600 * buf daemon will keep running until the condition clears. 601 */ 602 bd = bufdomain(bp); 603 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1); 604 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2) 605 bd_wakeup(); 606 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers) 607 bd_set(bd); 608 } 609 610 /* 611 * bufspace_daemon_wakeup: 612 * 613 * Wakeup the daemons responsible for freeing clean bufs. 614 */ 615 static void 616 bufspace_daemon_wakeup(struct bufdomain *bd) 617 { 618 619 /* 620 * avoid the lock if the daemon is running. 621 */ 622 if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) { 623 BD_RUN_LOCK(bd); 624 atomic_store_int(&bd->bd_running, 1); 625 wakeup(&bd->bd_running); 626 BD_RUN_UNLOCK(bd); 627 } 628 } 629 630 /* 631 * bufspace_daemon_wait: 632 * 633 * Sleep until the domain falls below a limit or one second passes. 634 */ 635 static void 636 bufspace_daemon_wait(struct bufdomain *bd) 637 { 638 /* 639 * Re-check our limits and sleep. bd_running must be 640 * cleared prior to checking the limits to avoid missed 641 * wakeups. The waker will adjust one of bufspace or 642 * freebuffers prior to checking bd_running. 643 */ 644 BD_RUN_LOCK(bd); 645 atomic_store_int(&bd->bd_running, 0); 646 if (bd->bd_bufspace < bd->bd_bufspacethresh && 647 bd->bd_freebuffers > bd->bd_lofreebuffers) { 648 msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP, 649 "-", hz); 650 } else { 651 /* Avoid spurious wakeups while running. */ 652 atomic_store_int(&bd->bd_running, 1); 653 BD_RUN_UNLOCK(bd); 654 } 655 } 656 657 /* 658 * bufspace_adjust: 659 * 660 * Adjust the reported bufspace for a KVA managed buffer, possibly 661 * waking any waiters. 662 */ 663 static void 664 bufspace_adjust(struct buf *bp, int bufsize) 665 { 666 struct bufdomain *bd; 667 long space; 668 int diff; 669 670 KASSERT((bp->b_flags & B_MALLOC) == 0, 671 ("bufspace_adjust: malloc buf %p", bp)); 672 bd = bufdomain(bp); 673 diff = bufsize - bp->b_bufsize; 674 if (diff < 0) { 675 atomic_subtract_long(&bd->bd_bufspace, -diff); 676 } else if (diff > 0) { 677 space = atomic_fetchadd_long(&bd->bd_bufspace, diff); 678 /* Wake up the daemon on the transition. */ 679 if (space < bd->bd_bufspacethresh && 680 space + diff >= bd->bd_bufspacethresh) 681 bufspace_daemon_wakeup(bd); 682 } 683 bp->b_bufsize = bufsize; 684 } 685 686 /* 687 * bufspace_reserve: 688 * 689 * Reserve bufspace before calling allocbuf(). metadata has a 690 * different space limit than data. 691 */ 692 static int 693 bufspace_reserve(struct bufdomain *bd, int size, bool metadata) 694 { 695 long limit, new; 696 long space; 697 698 if (metadata) 699 limit = bd->bd_maxbufspace; 700 else 701 limit = bd->bd_hibufspace; 702 space = atomic_fetchadd_long(&bd->bd_bufspace, size); 703 new = space + size; 704 if (new > limit) { 705 atomic_subtract_long(&bd->bd_bufspace, size); 706 return (ENOSPC); 707 } 708 709 /* Wake up the daemon on the transition. */ 710 if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh) 711 bufspace_daemon_wakeup(bd); 712 713 return (0); 714 } 715 716 /* 717 * bufspace_release: 718 * 719 * Release reserved bufspace after bufspace_adjust() has consumed it. 720 */ 721 static void 722 bufspace_release(struct bufdomain *bd, int size) 723 { 724 725 atomic_subtract_long(&bd->bd_bufspace, size); 726 } 727 728 /* 729 * bufspace_wait: 730 * 731 * Wait for bufspace, acting as the buf daemon if a locked vnode is 732 * supplied. bd_wanted must be set prior to polling for space. The 733 * operation must be re-tried on return. 734 */ 735 static void 736 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags, 737 int slpflag, int slptimeo) 738 { 739 struct thread *td; 740 int error, fl, norunbuf; 741 742 if ((gbflags & GB_NOWAIT_BD) != 0) 743 return; 744 745 td = curthread; 746 BD_LOCK(bd); 747 while (bd->bd_wanted) { 748 if (vp != NULL && vp->v_type != VCHR && 749 (td->td_pflags & TDP_BUFNEED) == 0) { 750 BD_UNLOCK(bd); 751 /* 752 * getblk() is called with a vnode locked, and 753 * some majority of the dirty buffers may as 754 * well belong to the vnode. Flushing the 755 * buffers there would make a progress that 756 * cannot be achieved by the buf_daemon, that 757 * cannot lock the vnode. 758 */ 759 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) | 760 (td->td_pflags & TDP_NORUNNINGBUF); 761 762 /* 763 * Play bufdaemon. The getnewbuf() function 764 * may be called while the thread owns lock 765 * for another dirty buffer for the same 766 * vnode, which makes it impossible to use 767 * VOP_FSYNC() there, due to the buffer lock 768 * recursion. 769 */ 770 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF; 771 fl = buf_flush(vp, bd, flushbufqtarget); 772 td->td_pflags &= norunbuf; 773 BD_LOCK(bd); 774 if (fl != 0) 775 continue; 776 if (bd->bd_wanted == 0) 777 break; 778 } 779 error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd), 780 (PRIBIO + 4) | slpflag, "newbuf", slptimeo); 781 if (error != 0) 782 break; 783 } 784 BD_UNLOCK(bd); 785 } 786 787 /* 788 * bufspace_daemon: 789 * 790 * buffer space management daemon. Tries to maintain some marginal 791 * amount of free buffer space so that requesting processes neither 792 * block nor work to reclaim buffers. 793 */ 794 static void 795 bufspace_daemon(void *arg) 796 { 797 struct bufdomain *bd; 798 799 EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread, 800 SHUTDOWN_PRI_LAST + 100); 801 802 bd = arg; 803 for (;;) { 804 kthread_suspend_check(); 805 806 /* 807 * Free buffers from the clean queue until we meet our 808 * targets. 809 * 810 * Theory of operation: The buffer cache is most efficient 811 * when some free buffer headers and space are always 812 * available to getnewbuf(). This daemon attempts to prevent 813 * the excessive blocking and synchronization associated 814 * with shortfall. It goes through three phases according 815 * demand: 816 * 817 * 1) The daemon wakes up voluntarily once per-second 818 * during idle periods when the counters are below 819 * the wakeup thresholds (bufspacethresh, lofreebuffers). 820 * 821 * 2) The daemon wakes up as we cross the thresholds 822 * ahead of any potential blocking. This may bounce 823 * slightly according to the rate of consumption and 824 * release. 825 * 826 * 3) The daemon and consumers are starved for working 827 * clean buffers. This is the 'bufspace' sleep below 828 * which will inefficiently trade bufs with bqrelse 829 * until we return to condition 2. 830 */ 831 while (bd->bd_bufspace > bd->bd_lobufspace || 832 bd->bd_freebuffers < bd->bd_hifreebuffers) { 833 if (buf_recycle(bd, false) != 0) { 834 if (bd_flushall(bd)) 835 continue; 836 /* 837 * Speedup dirty if we've run out of clean 838 * buffers. This is possible in particular 839 * because softdep may held many bufs locked 840 * pending writes to other bufs which are 841 * marked for delayed write, exhausting 842 * clean space until they are written. 843 */ 844 bd_speedup(); 845 BD_LOCK(bd); 846 if (bd->bd_wanted) { 847 msleep(&bd->bd_wanted, BD_LOCKPTR(bd), 848 PRIBIO|PDROP, "bufspace", hz/10); 849 } else 850 BD_UNLOCK(bd); 851 } 852 maybe_yield(); 853 } 854 bufspace_daemon_wait(bd); 855 } 856 } 857 858 /* 859 * bufmallocadjust: 860 * 861 * Adjust the reported bufspace for a malloc managed buffer, possibly 862 * waking any waiters. 863 */ 864 static void 865 bufmallocadjust(struct buf *bp, int bufsize) 866 { 867 int diff; 868 869 KASSERT((bp->b_flags & B_MALLOC) != 0, 870 ("bufmallocadjust: non-malloc buf %p", bp)); 871 diff = bufsize - bp->b_bufsize; 872 if (diff < 0) 873 atomic_subtract_long(&bufmallocspace, -diff); 874 else 875 atomic_add_long(&bufmallocspace, diff); 876 bp->b_bufsize = bufsize; 877 } 878 879 /* 880 * runningwakeup: 881 * 882 * Wake up processes that are waiting on asynchronous writes to fall 883 * below lorunningspace. 884 */ 885 static void 886 runningwakeup(void) 887 { 888 889 mtx_lock(&rbreqlock); 890 if (runningbufreq) { 891 runningbufreq = 0; 892 wakeup(&runningbufreq); 893 } 894 mtx_unlock(&rbreqlock); 895 } 896 897 /* 898 * runningbufwakeup: 899 * 900 * Decrement the outstanding write count according. 901 */ 902 void 903 runningbufwakeup(struct buf *bp) 904 { 905 long space, bspace; 906 907 bspace = bp->b_runningbufspace; 908 if (bspace == 0) 909 return; 910 space = atomic_fetchadd_long(&runningbufspace, -bspace); 911 KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld", 912 space, bspace)); 913 bp->b_runningbufspace = 0; 914 /* 915 * Only acquire the lock and wakeup on the transition from exceeding 916 * the threshold to falling below it. 917 */ 918 if (space < lorunningspace) 919 return; 920 if (space - bspace > lorunningspace) 921 return; 922 runningwakeup(); 923 } 924 925 /* 926 * waitrunningbufspace() 927 * 928 * runningbufspace is a measure of the amount of I/O currently 929 * running. This routine is used in async-write situations to 930 * prevent creating huge backups of pending writes to a device. 931 * Only asynchronous writes are governed by this function. 932 * 933 * This does NOT turn an async write into a sync write. It waits 934 * for earlier writes to complete and generally returns before the 935 * caller's write has reached the device. 936 */ 937 void 938 waitrunningbufspace(void) 939 { 940 941 mtx_lock(&rbreqlock); 942 while (runningbufspace > hirunningspace) { 943 runningbufreq = 1; 944 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0); 945 } 946 mtx_unlock(&rbreqlock); 947 } 948 949 /* 950 * vfs_buf_test_cache: 951 * 952 * Called when a buffer is extended. This function clears the B_CACHE 953 * bit if the newly extended portion of the buffer does not contain 954 * valid data. 955 */ 956 static __inline void 957 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off, 958 vm_offset_t size, vm_page_t m) 959 { 960 961 /* 962 * This function and its results are protected by higher level 963 * synchronization requiring vnode and buf locks to page in and 964 * validate pages. 965 */ 966 if (bp->b_flags & B_CACHE) { 967 int base = (foff + off) & PAGE_MASK; 968 if (vm_page_is_valid(m, base, size) == 0) 969 bp->b_flags &= ~B_CACHE; 970 } 971 } 972 973 /* Wake up the buffer daemon if necessary */ 974 static void 975 bd_wakeup(void) 976 { 977 978 mtx_lock(&bdlock); 979 if (bd_request == 0) { 980 bd_request = 1; 981 wakeup(&bd_request); 982 } 983 mtx_unlock(&bdlock); 984 } 985 986 /* 987 * Adjust the maxbcachbuf tunable. 988 */ 989 static void 990 maxbcachebuf_adjust(void) 991 { 992 int i; 993 994 /* 995 * maxbcachebuf must be a power of 2 >= MAXBSIZE. 996 */ 997 i = 2; 998 while (i * 2 <= maxbcachebuf) 999 i *= 2; 1000 maxbcachebuf = i; 1001 if (maxbcachebuf < MAXBSIZE) 1002 maxbcachebuf = MAXBSIZE; 1003 if (maxbcachebuf > maxphys) 1004 maxbcachebuf = maxphys; 1005 if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF) 1006 printf("maxbcachebuf=%d\n", maxbcachebuf); 1007 } 1008 1009 /* 1010 * bd_speedup - speedup the buffer cache flushing code 1011 */ 1012 void 1013 bd_speedup(void) 1014 { 1015 int needwake; 1016 1017 mtx_lock(&bdlock); 1018 needwake = 0; 1019 if (bd_speedupreq == 0 || bd_request == 0) 1020 needwake = 1; 1021 bd_speedupreq = 1; 1022 bd_request = 1; 1023 if (needwake) 1024 wakeup(&bd_request); 1025 mtx_unlock(&bdlock); 1026 } 1027 1028 #ifdef __i386__ 1029 #define TRANSIENT_DENOM 5 1030 #else 1031 #define TRANSIENT_DENOM 10 1032 #endif 1033 1034 /* 1035 * Calculating buffer cache scaling values and reserve space for buffer 1036 * headers. This is called during low level kernel initialization and 1037 * may be called more then once. We CANNOT write to the memory area 1038 * being reserved at this time. 1039 */ 1040 caddr_t 1041 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 1042 { 1043 int tuned_nbuf; 1044 long maxbuf, maxbuf_sz, buf_sz, biotmap_sz; 1045 1046 /* 1047 * physmem_est is in pages. Convert it to kilobytes (assumes 1048 * PAGE_SIZE is >= 1K) 1049 */ 1050 physmem_est = physmem_est * (PAGE_SIZE / 1024); 1051 1052 maxbcachebuf_adjust(); 1053 /* 1054 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 1055 * For the first 64MB of ram nominally allocate sufficient buffers to 1056 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 1057 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing 1058 * the buffer cache we limit the eventual kva reservation to 1059 * maxbcache bytes. 1060 * 1061 * factor represents the 1/4 x ram conversion. 1062 */ 1063 if (nbuf == 0) { 1064 int factor = 4 * BKVASIZE / 1024; 1065 1066 nbuf = 50; 1067 if (physmem_est > 4096) 1068 nbuf += min((physmem_est - 4096) / factor, 1069 65536 / factor); 1070 if (physmem_est > 65536) 1071 nbuf += min((physmem_est - 65536) * 2 / (factor * 5), 1072 32 * 1024 * 1024 / (factor * 5)); 1073 1074 if (maxbcache && nbuf > maxbcache / BKVASIZE) 1075 nbuf = maxbcache / BKVASIZE; 1076 tuned_nbuf = 1; 1077 } else 1078 tuned_nbuf = 0; 1079 1080 /* XXX Avoid unsigned long overflows later on with maxbufspace. */ 1081 maxbuf = (LONG_MAX / 3) / BKVASIZE; 1082 if (nbuf > maxbuf) { 1083 if (!tuned_nbuf) 1084 printf("Warning: nbufs lowered from %d to %ld\n", nbuf, 1085 maxbuf); 1086 nbuf = maxbuf; 1087 } 1088 1089 /* 1090 * Ideal allocation size for the transient bio submap is 10% 1091 * of the maximal space buffer map. This roughly corresponds 1092 * to the amount of the buffer mapped for typical UFS load. 1093 * 1094 * Clip the buffer map to reserve space for the transient 1095 * BIOs, if its extent is bigger than 90% (80% on i386) of the 1096 * maximum buffer map extent on the platform. 1097 * 1098 * The fall-back to the maxbuf in case of maxbcache unset, 1099 * allows to not trim the buffer KVA for the architectures 1100 * with ample KVA space. 1101 */ 1102 if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) { 1103 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE; 1104 buf_sz = (long)nbuf * BKVASIZE; 1105 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM * 1106 (TRANSIENT_DENOM - 1)) { 1107 /* 1108 * There is more KVA than memory. Do not 1109 * adjust buffer map size, and assign the rest 1110 * of maxbuf to transient map. 1111 */ 1112 biotmap_sz = maxbuf_sz - buf_sz; 1113 } else { 1114 /* 1115 * Buffer map spans all KVA we could afford on 1116 * this platform. Give 10% (20% on i386) of 1117 * the buffer map to the transient bio map. 1118 */ 1119 biotmap_sz = buf_sz / TRANSIENT_DENOM; 1120 buf_sz -= biotmap_sz; 1121 } 1122 if (biotmap_sz / INT_MAX > maxphys) 1123 bio_transient_maxcnt = INT_MAX; 1124 else 1125 bio_transient_maxcnt = biotmap_sz / maxphys; 1126 /* 1127 * Artificially limit to 1024 simultaneous in-flight I/Os 1128 * using the transient mapping. 1129 */ 1130 if (bio_transient_maxcnt > 1024) 1131 bio_transient_maxcnt = 1024; 1132 if (tuned_nbuf) 1133 nbuf = buf_sz / BKVASIZE; 1134 } 1135 1136 if (nswbuf == 0) { 1137 nswbuf = min(nbuf / 4, 256); 1138 if (nswbuf < NSWBUF_MIN) 1139 nswbuf = NSWBUF_MIN; 1140 } 1141 1142 /* 1143 * Reserve space for the buffer cache buffers 1144 */ 1145 buf = (char *)v; 1146 v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) * 1147 atop(maxbcachebuf)) * nbuf; 1148 1149 return (v); 1150 } 1151 1152 /* Initialize the buffer subsystem. Called before use of any buffers. */ 1153 void 1154 bufinit(void) 1155 { 1156 struct buf *bp; 1157 int i; 1158 1159 KASSERT(maxbcachebuf >= MAXBSIZE, 1160 ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf, 1161 MAXBSIZE)); 1162 bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock"); 1163 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF); 1164 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF); 1165 mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF); 1166 1167 unmapped_buf = (caddr_t)kva_alloc(maxphys); 1168 1169 /* finally, initialize each buffer header and stick on empty q */ 1170 for (i = 0; i < nbuf; i++) { 1171 bp = nbufp(i); 1172 bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf)); 1173 bp->b_flags = B_INVAL; 1174 bp->b_rcred = NOCRED; 1175 bp->b_wcred = NOCRED; 1176 bp->b_qindex = QUEUE_NONE; 1177 bp->b_domain = -1; 1178 bp->b_subqueue = mp_maxid + 1; 1179 bp->b_xflags = 0; 1180 bp->b_data = bp->b_kvabase = unmapped_buf; 1181 LIST_INIT(&bp->b_dep); 1182 BUF_LOCKINIT(bp); 1183 bq_insert(&bqempty, bp, false); 1184 } 1185 1186 /* 1187 * maxbufspace is the absolute maximum amount of buffer space we are 1188 * allowed to reserve in KVM and in real terms. The absolute maximum 1189 * is nominally used by metadata. hibufspace is the nominal maximum 1190 * used by most other requests. The differential is required to 1191 * ensure that metadata deadlocks don't occur. 1192 * 1193 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 1194 * this may result in KVM fragmentation which is not handled optimally 1195 * by the system. XXX This is less true with vmem. We could use 1196 * PAGE_SIZE. 1197 */ 1198 maxbufspace = (long)nbuf * BKVASIZE; 1199 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10); 1200 lobufspace = (hibufspace / 20) * 19; /* 95% */ 1201 bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2; 1202 1203 /* 1204 * Note: The 16 MiB upper limit for hirunningspace was chosen 1205 * arbitrarily and may need further tuning. It corresponds to 1206 * 128 outstanding write IO requests (if IO size is 128 KiB), 1207 * which fits with many RAID controllers' tagged queuing limits. 1208 * The lower 1 MiB limit is the historical upper limit for 1209 * hirunningspace. 1210 */ 1211 hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf), 1212 16 * 1024 * 1024), 1024 * 1024); 1213 lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf); 1214 1215 /* 1216 * Limit the amount of malloc memory since it is wired permanently into 1217 * the kernel space. Even though this is accounted for in the buffer 1218 * allocation, we don't want the malloced region to grow uncontrolled. 1219 * The malloc scheme improves memory utilization significantly on 1220 * average (small) directories. 1221 */ 1222 maxbufmallocspace = hibufspace / 20; 1223 1224 /* 1225 * Reduce the chance of a deadlock occurring by limiting the number 1226 * of delayed-write dirty buffers we allow to stack up. 1227 */ 1228 hidirtybuffers = nbuf / 4 + 20; 1229 dirtybufthresh = hidirtybuffers * 9 / 10; 1230 /* 1231 * To support extreme low-memory systems, make sure hidirtybuffers 1232 * cannot eat up all available buffer space. This occurs when our 1233 * minimum cannot be met. We try to size hidirtybuffers to 3/4 our 1234 * buffer space assuming BKVASIZE'd buffers. 1235 */ 1236 while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 1237 hidirtybuffers >>= 1; 1238 } 1239 lodirtybuffers = hidirtybuffers / 2; 1240 1241 /* 1242 * lofreebuffers should be sufficient to avoid stalling waiting on 1243 * buf headers under heavy utilization. The bufs in per-cpu caches 1244 * are counted as free but will be unavailable to threads executing 1245 * on other cpus. 1246 * 1247 * hifreebuffers is the free target for the bufspace daemon. This 1248 * should be set appropriately to limit work per-iteration. 1249 */ 1250 lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus); 1251 hifreebuffers = (3 * lofreebuffers) / 2; 1252 numfreebuffers = nbuf; 1253 1254 /* Setup the kva and free list allocators. */ 1255 vmem_set_reclaim(buffer_arena, bufkva_reclaim); 1256 buf_zone = uma_zcache_create("buf free cache", 1257 sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf), 1258 NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0); 1259 1260 /* 1261 * Size the clean queue according to the amount of buffer space. 1262 * One queue per-256mb up to the max. More queues gives better 1263 * concurrency but less accurate LRU. 1264 */ 1265 buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS); 1266 for (i = 0 ; i < buf_domains; i++) { 1267 struct bufdomain *bd; 1268 1269 bd = &bdomain[i]; 1270 bd_init(bd); 1271 bd->bd_freebuffers = nbuf / buf_domains; 1272 bd->bd_hifreebuffers = hifreebuffers / buf_domains; 1273 bd->bd_lofreebuffers = lofreebuffers / buf_domains; 1274 bd->bd_bufspace = 0; 1275 bd->bd_maxbufspace = maxbufspace / buf_domains; 1276 bd->bd_hibufspace = hibufspace / buf_domains; 1277 bd->bd_lobufspace = lobufspace / buf_domains; 1278 bd->bd_bufspacethresh = bufspacethresh / buf_domains; 1279 bd->bd_numdirtybuffers = 0; 1280 bd->bd_hidirtybuffers = hidirtybuffers / buf_domains; 1281 bd->bd_lodirtybuffers = lodirtybuffers / buf_domains; 1282 bd->bd_dirtybufthresh = dirtybufthresh / buf_domains; 1283 /* Don't allow more than 2% of bufs in the per-cpu caches. */ 1284 bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus; 1285 } 1286 getnewbufcalls = counter_u64_alloc(M_WAITOK); 1287 getnewbufrestarts = counter_u64_alloc(M_WAITOK); 1288 mappingrestarts = counter_u64_alloc(M_WAITOK); 1289 numbufallocfails = counter_u64_alloc(M_WAITOK); 1290 notbufdflushes = counter_u64_alloc(M_WAITOK); 1291 buffreekvacnt = counter_u64_alloc(M_WAITOK); 1292 bufdefragcnt = counter_u64_alloc(M_WAITOK); 1293 bufkvaspace = counter_u64_alloc(M_WAITOK); 1294 } 1295 1296 #ifdef INVARIANTS 1297 static inline void 1298 vfs_buf_check_mapped(struct buf *bp) 1299 { 1300 1301 KASSERT(bp->b_kvabase != unmapped_buf, 1302 ("mapped buf: b_kvabase was not updated %p", bp)); 1303 KASSERT(bp->b_data != unmapped_buf, 1304 ("mapped buf: b_data was not updated %p", bp)); 1305 KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf + 1306 maxphys, ("b_data + b_offset unmapped %p", bp)); 1307 } 1308 1309 static inline void 1310 vfs_buf_check_unmapped(struct buf *bp) 1311 { 1312 1313 KASSERT(bp->b_data == unmapped_buf, 1314 ("unmapped buf: corrupted b_data %p", bp)); 1315 } 1316 1317 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp) 1318 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp) 1319 #else 1320 #define BUF_CHECK_MAPPED(bp) do {} while (0) 1321 #define BUF_CHECK_UNMAPPED(bp) do {} while (0) 1322 #endif 1323 1324 static int 1325 isbufbusy(struct buf *bp) 1326 { 1327 if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) || 1328 ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI)) 1329 return (1); 1330 return (0); 1331 } 1332 1333 /* 1334 * Shutdown the system cleanly to prepare for reboot, halt, or power off. 1335 */ 1336 void 1337 bufshutdown(int show_busybufs) 1338 { 1339 static int first_buf_printf = 1; 1340 struct buf *bp; 1341 int i, iter, nbusy, pbusy; 1342 #ifndef PREEMPTION 1343 int subiter; 1344 #endif 1345 1346 /* 1347 * Sync filesystems for shutdown 1348 */ 1349 wdog_kern_pat(WD_LASTVAL); 1350 kern_sync(curthread); 1351 1352 /* 1353 * With soft updates, some buffers that are 1354 * written will be remarked as dirty until other 1355 * buffers are written. 1356 */ 1357 for (iter = pbusy = 0; iter < 20; iter++) { 1358 nbusy = 0; 1359 for (i = nbuf - 1; i >= 0; i--) { 1360 bp = nbufp(i); 1361 if (isbufbusy(bp)) 1362 nbusy++; 1363 } 1364 if (nbusy == 0) { 1365 if (first_buf_printf) 1366 printf("All buffers synced."); 1367 break; 1368 } 1369 if (first_buf_printf) { 1370 printf("Syncing disks, buffers remaining... "); 1371 first_buf_printf = 0; 1372 } 1373 printf("%d ", nbusy); 1374 if (nbusy < pbusy) 1375 iter = 0; 1376 pbusy = nbusy; 1377 1378 wdog_kern_pat(WD_LASTVAL); 1379 kern_sync(curthread); 1380 1381 #ifdef PREEMPTION 1382 /* 1383 * Spin for a while to allow interrupt threads to run. 1384 */ 1385 DELAY(50000 * iter); 1386 #else 1387 /* 1388 * Context switch several times to allow interrupt 1389 * threads to run. 1390 */ 1391 for (subiter = 0; subiter < 50 * iter; subiter++) { 1392 thread_lock(curthread); 1393 mi_switch(SW_VOL); 1394 DELAY(1000); 1395 } 1396 #endif 1397 } 1398 printf("\n"); 1399 /* 1400 * Count only busy local buffers to prevent forcing 1401 * a fsck if we're just a client of a wedged NFS server 1402 */ 1403 nbusy = 0; 1404 for (i = nbuf - 1; i >= 0; i--) { 1405 bp = nbufp(i); 1406 if (isbufbusy(bp)) { 1407 #if 0 1408 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */ 1409 if (bp->b_dev == NULL) { 1410 TAILQ_REMOVE(&mountlist, 1411 bp->b_vp->v_mount, mnt_list); 1412 continue; 1413 } 1414 #endif 1415 nbusy++; 1416 if (show_busybufs > 0) { 1417 printf( 1418 "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:", 1419 nbusy, bp, bp->b_vp, bp->b_flags, 1420 (intmax_t)bp->b_blkno, 1421 (intmax_t)bp->b_lblkno); 1422 BUF_LOCKPRINTINFO(bp); 1423 if (show_busybufs > 1) 1424 vn_printf(bp->b_vp, 1425 "vnode content: "); 1426 } 1427 } 1428 } 1429 if (nbusy) { 1430 /* 1431 * Failed to sync all blocks. Indicate this and don't 1432 * unmount filesystems (thus forcing an fsck on reboot). 1433 */ 1434 printf("Giving up on %d buffers\n", nbusy); 1435 DELAY(5000000); /* 5 seconds */ 1436 } else { 1437 if (!first_buf_printf) 1438 printf("Final sync complete\n"); 1439 /* 1440 * Unmount filesystems 1441 */ 1442 if (!KERNEL_PANICKED()) 1443 vfs_unmountall(); 1444 } 1445 swapoff_all(); 1446 DELAY(100000); /* wait for console output to finish */ 1447 } 1448 1449 static void 1450 bpmap_qenter(struct buf *bp) 1451 { 1452 1453 BUF_CHECK_MAPPED(bp); 1454 1455 /* 1456 * bp->b_data is relative to bp->b_offset, but 1457 * bp->b_offset may be offset into the first page. 1458 */ 1459 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data); 1460 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 1461 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 1462 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 1463 } 1464 1465 static inline struct bufdomain * 1466 bufdomain(struct buf *bp) 1467 { 1468 1469 return (&bdomain[bp->b_domain]); 1470 } 1471 1472 static struct bufqueue * 1473 bufqueue(struct buf *bp) 1474 { 1475 1476 switch (bp->b_qindex) { 1477 case QUEUE_NONE: 1478 /* FALLTHROUGH */ 1479 case QUEUE_SENTINEL: 1480 return (NULL); 1481 case QUEUE_EMPTY: 1482 return (&bqempty); 1483 case QUEUE_DIRTY: 1484 return (&bufdomain(bp)->bd_dirtyq); 1485 case QUEUE_CLEAN: 1486 return (&bufdomain(bp)->bd_subq[bp->b_subqueue]); 1487 default: 1488 break; 1489 } 1490 panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex); 1491 } 1492 1493 /* 1494 * Return the locked bufqueue that bp is a member of. 1495 */ 1496 static struct bufqueue * 1497 bufqueue_acquire(struct buf *bp) 1498 { 1499 struct bufqueue *bq, *nbq; 1500 1501 /* 1502 * bp can be pushed from a per-cpu queue to the 1503 * cleanq while we're waiting on the lock. Retry 1504 * if the queues don't match. 1505 */ 1506 bq = bufqueue(bp); 1507 BQ_LOCK(bq); 1508 for (;;) { 1509 nbq = bufqueue(bp); 1510 if (bq == nbq) 1511 break; 1512 BQ_UNLOCK(bq); 1513 BQ_LOCK(nbq); 1514 bq = nbq; 1515 } 1516 return (bq); 1517 } 1518 1519 /* 1520 * binsfree: 1521 * 1522 * Insert the buffer into the appropriate free list. Requires a 1523 * locked buffer on entry and buffer is unlocked before return. 1524 */ 1525 static void 1526 binsfree(struct buf *bp, int qindex) 1527 { 1528 struct bufdomain *bd; 1529 struct bufqueue *bq; 1530 1531 KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY, 1532 ("binsfree: Invalid qindex %d", qindex)); 1533 BUF_ASSERT_XLOCKED(bp); 1534 1535 /* 1536 * Handle delayed bremfree() processing. 1537 */ 1538 if (bp->b_flags & B_REMFREE) { 1539 if (bp->b_qindex == qindex) { 1540 bp->b_flags |= B_REUSE; 1541 bp->b_flags &= ~B_REMFREE; 1542 BUF_UNLOCK(bp); 1543 return; 1544 } 1545 bq = bufqueue_acquire(bp); 1546 bq_remove(bq, bp); 1547 BQ_UNLOCK(bq); 1548 } 1549 bd = bufdomain(bp); 1550 if (qindex == QUEUE_CLEAN) { 1551 if (bd->bd_lim != 0) 1552 bq = &bd->bd_subq[PCPU_GET(cpuid)]; 1553 else 1554 bq = bd->bd_cleanq; 1555 } else 1556 bq = &bd->bd_dirtyq; 1557 bq_insert(bq, bp, true); 1558 } 1559 1560 /* 1561 * buf_free: 1562 * 1563 * Free a buffer to the buf zone once it no longer has valid contents. 1564 */ 1565 static void 1566 buf_free(struct buf *bp) 1567 { 1568 1569 if (bp->b_flags & B_REMFREE) 1570 bremfreef(bp); 1571 if (bp->b_vflags & BV_BKGRDINPROG) 1572 panic("losing buffer 1"); 1573 if (bp->b_rcred != NOCRED) { 1574 crfree(bp->b_rcred); 1575 bp->b_rcred = NOCRED; 1576 } 1577 if (bp->b_wcred != NOCRED) { 1578 crfree(bp->b_wcred); 1579 bp->b_wcred = NOCRED; 1580 } 1581 if (!LIST_EMPTY(&bp->b_dep)) 1582 buf_deallocate(bp); 1583 bufkva_free(bp); 1584 atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1); 1585 MPASS((bp->b_flags & B_MAXPHYS) == 0); 1586 BUF_UNLOCK(bp); 1587 uma_zfree(buf_zone, bp); 1588 } 1589 1590 /* 1591 * buf_import: 1592 * 1593 * Import bufs into the uma cache from the buf list. The system still 1594 * expects a static array of bufs and much of the synchronization 1595 * around bufs assumes type stable storage. As a result, UMA is used 1596 * only as a per-cpu cache of bufs still maintained on a global list. 1597 */ 1598 static int 1599 buf_import(void *arg, void **store, int cnt, int domain, int flags) 1600 { 1601 struct buf *bp; 1602 int i; 1603 1604 BQ_LOCK(&bqempty); 1605 for (i = 0; i < cnt; i++) { 1606 bp = TAILQ_FIRST(&bqempty.bq_queue); 1607 if (bp == NULL) 1608 break; 1609 bq_remove(&bqempty, bp); 1610 store[i] = bp; 1611 } 1612 BQ_UNLOCK(&bqempty); 1613 1614 return (i); 1615 } 1616 1617 /* 1618 * buf_release: 1619 * 1620 * Release bufs from the uma cache back to the buffer queues. 1621 */ 1622 static void 1623 buf_release(void *arg, void **store, int cnt) 1624 { 1625 struct bufqueue *bq; 1626 struct buf *bp; 1627 int i; 1628 1629 bq = &bqempty; 1630 BQ_LOCK(bq); 1631 for (i = 0; i < cnt; i++) { 1632 bp = store[i]; 1633 /* Inline bq_insert() to batch locking. */ 1634 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); 1635 bp->b_flags &= ~(B_AGE | B_REUSE); 1636 bq->bq_len++; 1637 bp->b_qindex = bq->bq_index; 1638 } 1639 BQ_UNLOCK(bq); 1640 } 1641 1642 /* 1643 * buf_alloc: 1644 * 1645 * Allocate an empty buffer header. 1646 */ 1647 static struct buf * 1648 buf_alloc(struct bufdomain *bd) 1649 { 1650 struct buf *bp; 1651 int freebufs, error; 1652 1653 /* 1654 * We can only run out of bufs in the buf zone if the average buf 1655 * is less than BKVASIZE. In this case the actual wait/block will 1656 * come from buf_reycle() failing to flush one of these small bufs. 1657 */ 1658 bp = NULL; 1659 freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1); 1660 if (freebufs > 0) 1661 bp = uma_zalloc(buf_zone, M_NOWAIT); 1662 if (bp == NULL) { 1663 atomic_add_int(&bd->bd_freebuffers, 1); 1664 bufspace_daemon_wakeup(bd); 1665 counter_u64_add(numbufallocfails, 1); 1666 return (NULL); 1667 } 1668 /* 1669 * Wake-up the bufspace daemon on transition below threshold. 1670 */ 1671 if (freebufs == bd->bd_lofreebuffers) 1672 bufspace_daemon_wakeup(bd); 1673 1674 error = BUF_LOCK(bp, LK_EXCLUSIVE, NULL); 1675 KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp, 1676 error)); 1677 (void)error; 1678 1679 KASSERT(bp->b_vp == NULL, 1680 ("bp: %p still has vnode %p.", bp, bp->b_vp)); 1681 KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0, 1682 ("invalid buffer %p flags %#x", bp, bp->b_flags)); 1683 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0, 1684 ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags)); 1685 KASSERT(bp->b_npages == 0, 1686 ("bp: %p still has %d vm pages\n", bp, bp->b_npages)); 1687 KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp)); 1688 KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp)); 1689 MPASS((bp->b_flags & B_MAXPHYS) == 0); 1690 1691 bp->b_domain = BD_DOMAIN(bd); 1692 bp->b_flags = 0; 1693 bp->b_ioflags = 0; 1694 bp->b_xflags = 0; 1695 bp->b_vflags = 0; 1696 bp->b_vp = NULL; 1697 bp->b_blkno = bp->b_lblkno = 0; 1698 bp->b_offset = NOOFFSET; 1699 bp->b_iodone = 0; 1700 bp->b_error = 0; 1701 bp->b_resid = 0; 1702 bp->b_bcount = 0; 1703 bp->b_npages = 0; 1704 bp->b_dirtyoff = bp->b_dirtyend = 0; 1705 bp->b_bufobj = NULL; 1706 bp->b_data = bp->b_kvabase = unmapped_buf; 1707 bp->b_fsprivate1 = NULL; 1708 bp->b_fsprivate2 = NULL; 1709 bp->b_fsprivate3 = NULL; 1710 LIST_INIT(&bp->b_dep); 1711 1712 return (bp); 1713 } 1714 1715 /* 1716 * buf_recycle: 1717 * 1718 * Free a buffer from the given bufqueue. kva controls whether the 1719 * freed buf must own some kva resources. This is used for 1720 * defragmenting. 1721 */ 1722 static int 1723 buf_recycle(struct bufdomain *bd, bool kva) 1724 { 1725 struct bufqueue *bq; 1726 struct buf *bp, *nbp; 1727 1728 if (kva) 1729 counter_u64_add(bufdefragcnt, 1); 1730 nbp = NULL; 1731 bq = bd->bd_cleanq; 1732 BQ_LOCK(bq); 1733 KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd), 1734 ("buf_recycle: Locks don't match")); 1735 nbp = TAILQ_FIRST(&bq->bq_queue); 1736 1737 /* 1738 * Run scan, possibly freeing data and/or kva mappings on the fly 1739 * depending. 1740 */ 1741 while ((bp = nbp) != NULL) { 1742 /* 1743 * Calculate next bp (we can only use it if we do not 1744 * release the bqlock). 1745 */ 1746 nbp = TAILQ_NEXT(bp, b_freelist); 1747 1748 /* 1749 * If we are defragging then we need a buffer with 1750 * some kva to reclaim. 1751 */ 1752 if (kva && bp->b_kvasize == 0) 1753 continue; 1754 1755 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1756 continue; 1757 1758 /* 1759 * Implement a second chance algorithm for frequently 1760 * accessed buffers. 1761 */ 1762 if ((bp->b_flags & B_REUSE) != 0) { 1763 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); 1764 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); 1765 bp->b_flags &= ~B_REUSE; 1766 BUF_UNLOCK(bp); 1767 continue; 1768 } 1769 1770 /* 1771 * Skip buffers with background writes in progress. 1772 */ 1773 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 1774 BUF_UNLOCK(bp); 1775 continue; 1776 } 1777 1778 KASSERT(bp->b_qindex == QUEUE_CLEAN, 1779 ("buf_recycle: inconsistent queue %d bp %p", 1780 bp->b_qindex, bp)); 1781 KASSERT(bp->b_domain == BD_DOMAIN(bd), 1782 ("getnewbuf: queue domain %d doesn't match request %d", 1783 bp->b_domain, (int)BD_DOMAIN(bd))); 1784 /* 1785 * NOTE: nbp is now entirely invalid. We can only restart 1786 * the scan from this point on. 1787 */ 1788 bq_remove(bq, bp); 1789 BQ_UNLOCK(bq); 1790 1791 /* 1792 * Requeue the background write buffer with error and 1793 * restart the scan. 1794 */ 1795 if ((bp->b_vflags & BV_BKGRDERR) != 0) { 1796 bqrelse(bp); 1797 BQ_LOCK(bq); 1798 nbp = TAILQ_FIRST(&bq->bq_queue); 1799 continue; 1800 } 1801 bp->b_flags |= B_INVAL; 1802 brelse(bp); 1803 return (0); 1804 } 1805 bd->bd_wanted = 1; 1806 BQ_UNLOCK(bq); 1807 1808 return (ENOBUFS); 1809 } 1810 1811 /* 1812 * bremfree: 1813 * 1814 * Mark the buffer for removal from the appropriate free list. 1815 * 1816 */ 1817 void 1818 bremfree(struct buf *bp) 1819 { 1820 1821 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1822 KASSERT((bp->b_flags & B_REMFREE) == 0, 1823 ("bremfree: buffer %p already marked for delayed removal.", bp)); 1824 KASSERT(bp->b_qindex != QUEUE_NONE, 1825 ("bremfree: buffer %p not on a queue.", bp)); 1826 BUF_ASSERT_XLOCKED(bp); 1827 1828 bp->b_flags |= B_REMFREE; 1829 } 1830 1831 /* 1832 * bremfreef: 1833 * 1834 * Force an immediate removal from a free list. Used only in nfs when 1835 * it abuses the b_freelist pointer. 1836 */ 1837 void 1838 bremfreef(struct buf *bp) 1839 { 1840 struct bufqueue *bq; 1841 1842 bq = bufqueue_acquire(bp); 1843 bq_remove(bq, bp); 1844 BQ_UNLOCK(bq); 1845 } 1846 1847 static void 1848 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname) 1849 { 1850 1851 mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF); 1852 TAILQ_INIT(&bq->bq_queue); 1853 bq->bq_len = 0; 1854 bq->bq_index = qindex; 1855 bq->bq_subqueue = subqueue; 1856 } 1857 1858 static void 1859 bd_init(struct bufdomain *bd) 1860 { 1861 int i; 1862 1863 bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1]; 1864 bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock"); 1865 bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock"); 1866 for (i = 0; i <= mp_maxid; i++) 1867 bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i, 1868 "bufq clean subqueue lock"); 1869 mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF); 1870 } 1871 1872 /* 1873 * bq_remove: 1874 * 1875 * Removes a buffer from the free list, must be called with the 1876 * correct qlock held. 1877 */ 1878 static void 1879 bq_remove(struct bufqueue *bq, struct buf *bp) 1880 { 1881 1882 CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X", 1883 bp, bp->b_vp, bp->b_flags); 1884 KASSERT(bp->b_qindex != QUEUE_NONE, 1885 ("bq_remove: buffer %p not on a queue.", bp)); 1886 KASSERT(bufqueue(bp) == bq, 1887 ("bq_remove: Remove buffer %p from wrong queue.", bp)); 1888 1889 BQ_ASSERT_LOCKED(bq); 1890 if (bp->b_qindex != QUEUE_EMPTY) { 1891 BUF_ASSERT_XLOCKED(bp); 1892 } 1893 KASSERT(bq->bq_len >= 1, 1894 ("queue %d underflow", bp->b_qindex)); 1895 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); 1896 bq->bq_len--; 1897 bp->b_qindex = QUEUE_NONE; 1898 bp->b_flags &= ~(B_REMFREE | B_REUSE); 1899 } 1900 1901 static void 1902 bd_flush(struct bufdomain *bd, struct bufqueue *bq) 1903 { 1904 struct buf *bp; 1905 1906 BQ_ASSERT_LOCKED(bq); 1907 if (bq != bd->bd_cleanq) { 1908 BD_LOCK(bd); 1909 while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) { 1910 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); 1911 TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp, 1912 b_freelist); 1913 bp->b_subqueue = bd->bd_cleanq->bq_subqueue; 1914 } 1915 bd->bd_cleanq->bq_len += bq->bq_len; 1916 bq->bq_len = 0; 1917 } 1918 if (bd->bd_wanted) { 1919 bd->bd_wanted = 0; 1920 wakeup(&bd->bd_wanted); 1921 } 1922 if (bq != bd->bd_cleanq) 1923 BD_UNLOCK(bd); 1924 } 1925 1926 static int 1927 bd_flushall(struct bufdomain *bd) 1928 { 1929 struct bufqueue *bq; 1930 int flushed; 1931 int i; 1932 1933 if (bd->bd_lim == 0) 1934 return (0); 1935 flushed = 0; 1936 for (i = 0; i <= mp_maxid; i++) { 1937 bq = &bd->bd_subq[i]; 1938 if (bq->bq_len == 0) 1939 continue; 1940 BQ_LOCK(bq); 1941 bd_flush(bd, bq); 1942 BQ_UNLOCK(bq); 1943 flushed++; 1944 } 1945 1946 return (flushed); 1947 } 1948 1949 static void 1950 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock) 1951 { 1952 struct bufdomain *bd; 1953 1954 if (bp->b_qindex != QUEUE_NONE) 1955 panic("bq_insert: free buffer %p onto another queue?", bp); 1956 1957 bd = bufdomain(bp); 1958 if (bp->b_flags & B_AGE) { 1959 /* Place this buf directly on the real queue. */ 1960 if (bq->bq_index == QUEUE_CLEAN) 1961 bq = bd->bd_cleanq; 1962 BQ_LOCK(bq); 1963 TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist); 1964 } else { 1965 BQ_LOCK(bq); 1966 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); 1967 } 1968 bp->b_flags &= ~(B_AGE | B_REUSE); 1969 bq->bq_len++; 1970 bp->b_qindex = bq->bq_index; 1971 bp->b_subqueue = bq->bq_subqueue; 1972 1973 /* 1974 * Unlock before we notify so that we don't wakeup a waiter that 1975 * fails a trylock on the buf and sleeps again. 1976 */ 1977 if (unlock) 1978 BUF_UNLOCK(bp); 1979 1980 if (bp->b_qindex == QUEUE_CLEAN) { 1981 /* 1982 * Flush the per-cpu queue and notify any waiters. 1983 */ 1984 if (bd->bd_wanted || (bq != bd->bd_cleanq && 1985 bq->bq_len >= bd->bd_lim)) 1986 bd_flush(bd, bq); 1987 } 1988 BQ_UNLOCK(bq); 1989 } 1990 1991 /* 1992 * bufkva_free: 1993 * 1994 * Free the kva allocation for a buffer. 1995 * 1996 */ 1997 static void 1998 bufkva_free(struct buf *bp) 1999 { 2000 2001 #ifdef INVARIANTS 2002 if (bp->b_kvasize == 0) { 2003 KASSERT(bp->b_kvabase == unmapped_buf && 2004 bp->b_data == unmapped_buf, 2005 ("Leaked KVA space on %p", bp)); 2006 } else if (buf_mapped(bp)) 2007 BUF_CHECK_MAPPED(bp); 2008 else 2009 BUF_CHECK_UNMAPPED(bp); 2010 #endif 2011 if (bp->b_kvasize == 0) 2012 return; 2013 2014 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize); 2015 counter_u64_add(bufkvaspace, -bp->b_kvasize); 2016 counter_u64_add(buffreekvacnt, 1); 2017 bp->b_data = bp->b_kvabase = unmapped_buf; 2018 bp->b_kvasize = 0; 2019 } 2020 2021 /* 2022 * bufkva_alloc: 2023 * 2024 * Allocate the buffer KVA and set b_kvasize and b_kvabase. 2025 */ 2026 static int 2027 bufkva_alloc(struct buf *bp, int maxsize, int gbflags) 2028 { 2029 vm_offset_t addr; 2030 int error; 2031 2032 KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0, 2033 ("Invalid gbflags 0x%x in %s", gbflags, __func__)); 2034 MPASS((bp->b_flags & B_MAXPHYS) == 0); 2035 KASSERT(maxsize <= maxbcachebuf, 2036 ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf)); 2037 2038 bufkva_free(bp); 2039 2040 addr = 0; 2041 error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr); 2042 if (error != 0) { 2043 /* 2044 * Buffer map is too fragmented. Request the caller 2045 * to defragment the map. 2046 */ 2047 return (error); 2048 } 2049 bp->b_kvabase = (caddr_t)addr; 2050 bp->b_kvasize = maxsize; 2051 counter_u64_add(bufkvaspace, bp->b_kvasize); 2052 if ((gbflags & GB_UNMAPPED) != 0) { 2053 bp->b_data = unmapped_buf; 2054 BUF_CHECK_UNMAPPED(bp); 2055 } else { 2056 bp->b_data = bp->b_kvabase; 2057 BUF_CHECK_MAPPED(bp); 2058 } 2059 return (0); 2060 } 2061 2062 /* 2063 * bufkva_reclaim: 2064 * 2065 * Reclaim buffer kva by freeing buffers holding kva. This is a vmem 2066 * callback that fires to avoid returning failure. 2067 */ 2068 static void 2069 bufkva_reclaim(vmem_t *vmem, int flags) 2070 { 2071 bool done; 2072 int q; 2073 int i; 2074 2075 done = false; 2076 for (i = 0; i < 5; i++) { 2077 for (q = 0; q < buf_domains; q++) 2078 if (buf_recycle(&bdomain[q], true) != 0) 2079 done = true; 2080 if (done) 2081 break; 2082 } 2083 return; 2084 } 2085 2086 /* 2087 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must 2088 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set, 2089 * the buffer is valid and we do not have to do anything. 2090 */ 2091 static void 2092 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt, 2093 struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *)) 2094 { 2095 struct buf *rabp; 2096 struct thread *td; 2097 int i; 2098 2099 td = curthread; 2100 2101 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 2102 if (inmem(vp, *rablkno)) 2103 continue; 2104 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0); 2105 if ((rabp->b_flags & B_CACHE) != 0) { 2106 brelse(rabp); 2107 continue; 2108 } 2109 #ifdef RACCT 2110 if (racct_enable) { 2111 PROC_LOCK(curproc); 2112 racct_add_buf(curproc, rabp, 0); 2113 PROC_UNLOCK(curproc); 2114 } 2115 #endif /* RACCT */ 2116 td->td_ru.ru_inblock++; 2117 rabp->b_flags |= B_ASYNC; 2118 rabp->b_flags &= ~B_INVAL; 2119 if ((flags & GB_CKHASH) != 0) { 2120 rabp->b_flags |= B_CKHASH; 2121 rabp->b_ckhashcalc = ckhashfunc; 2122 } 2123 rabp->b_ioflags &= ~BIO_ERROR; 2124 rabp->b_iocmd = BIO_READ; 2125 if (rabp->b_rcred == NOCRED && cred != NOCRED) 2126 rabp->b_rcred = crhold(cred); 2127 vfs_busy_pages(rabp, 0); 2128 BUF_KERNPROC(rabp); 2129 rabp->b_iooffset = dbtob(rabp->b_blkno); 2130 bstrategy(rabp); 2131 } 2132 } 2133 2134 /* 2135 * Entry point for bread() and breadn() via #defines in sys/buf.h. 2136 * 2137 * Get a buffer with the specified data. Look in the cache first. We 2138 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 2139 * is set, the buffer is valid and we do not have to do anything, see 2140 * getblk(). Also starts asynchronous I/O on read-ahead blocks. 2141 * 2142 * Always return a NULL buffer pointer (in bpp) when returning an error. 2143 * 2144 * The blkno parameter is the logical block being requested. Normally 2145 * the mapping of logical block number to disk block address is done 2146 * by calling VOP_BMAP(). However, if the mapping is already known, the 2147 * disk block address can be passed using the dblkno parameter. If the 2148 * disk block address is not known, then the same value should be passed 2149 * for blkno and dblkno. 2150 */ 2151 int 2152 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, 2153 daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags, 2154 void (*ckhashfunc)(struct buf *), struct buf **bpp) 2155 { 2156 struct buf *bp; 2157 struct thread *td; 2158 int error, readwait, rv; 2159 2160 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size); 2161 td = curthread; 2162 /* 2163 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags 2164 * are specified. 2165 */ 2166 error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp); 2167 if (error != 0) { 2168 *bpp = NULL; 2169 return (error); 2170 } 2171 KASSERT(blkno == bp->b_lblkno, 2172 ("getblkx returned buffer for blkno %jd instead of blkno %jd", 2173 (intmax_t)bp->b_lblkno, (intmax_t)blkno)); 2174 flags &= ~GB_NOSPARSE; 2175 *bpp = bp; 2176 2177 /* 2178 * If not found in cache, do some I/O 2179 */ 2180 readwait = 0; 2181 if ((bp->b_flags & B_CACHE) == 0) { 2182 #ifdef RACCT 2183 if (racct_enable) { 2184 PROC_LOCK(td->td_proc); 2185 racct_add_buf(td->td_proc, bp, 0); 2186 PROC_UNLOCK(td->td_proc); 2187 } 2188 #endif /* RACCT */ 2189 td->td_ru.ru_inblock++; 2190 bp->b_iocmd = BIO_READ; 2191 bp->b_flags &= ~B_INVAL; 2192 if ((flags & GB_CKHASH) != 0) { 2193 bp->b_flags |= B_CKHASH; 2194 bp->b_ckhashcalc = ckhashfunc; 2195 } 2196 if ((flags & GB_CVTENXIO) != 0) 2197 bp->b_xflags |= BX_CVTENXIO; 2198 bp->b_ioflags &= ~BIO_ERROR; 2199 if (bp->b_rcred == NOCRED && cred != NOCRED) 2200 bp->b_rcred = crhold(cred); 2201 vfs_busy_pages(bp, 0); 2202 bp->b_iooffset = dbtob(bp->b_blkno); 2203 bstrategy(bp); 2204 ++readwait; 2205 } 2206 2207 /* 2208 * Attempt to initiate asynchronous I/O on read-ahead blocks. 2209 */ 2210 breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc); 2211 2212 rv = 0; 2213 if (readwait) { 2214 rv = bufwait(bp); 2215 if (rv != 0) { 2216 brelse(bp); 2217 *bpp = NULL; 2218 } 2219 } 2220 return (rv); 2221 } 2222 2223 /* 2224 * Write, release buffer on completion. (Done by iodone 2225 * if async). Do not bother writing anything if the buffer 2226 * is invalid. 2227 * 2228 * Note that we set B_CACHE here, indicating that buffer is 2229 * fully valid and thus cacheable. This is true even of NFS 2230 * now so we set it generally. This could be set either here 2231 * or in biodone() since the I/O is synchronous. We put it 2232 * here. 2233 */ 2234 int 2235 bufwrite(struct buf *bp) 2236 { 2237 int oldflags; 2238 struct vnode *vp; 2239 long space; 2240 int vp_md; 2241 2242 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2243 if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) { 2244 bp->b_flags |= B_INVAL | B_RELBUF; 2245 bp->b_flags &= ~B_CACHE; 2246 brelse(bp); 2247 return (ENXIO); 2248 } 2249 if (bp->b_flags & B_INVAL) { 2250 brelse(bp); 2251 return (0); 2252 } 2253 2254 if (bp->b_flags & B_BARRIER) 2255 atomic_add_long(&barrierwrites, 1); 2256 2257 oldflags = bp->b_flags; 2258 2259 KASSERT(!(bp->b_vflags & BV_BKGRDINPROG), 2260 ("FFS background buffer should not get here %p", bp)); 2261 2262 vp = bp->b_vp; 2263 if (vp) 2264 vp_md = vp->v_vflag & VV_MD; 2265 else 2266 vp_md = 0; 2267 2268 /* 2269 * Mark the buffer clean. Increment the bufobj write count 2270 * before bundirty() call, to prevent other thread from seeing 2271 * empty dirty list and zero counter for writes in progress, 2272 * falsely indicating that the bufobj is clean. 2273 */ 2274 bufobj_wref(bp->b_bufobj); 2275 bundirty(bp); 2276 2277 bp->b_flags &= ~B_DONE; 2278 bp->b_ioflags &= ~BIO_ERROR; 2279 bp->b_flags |= B_CACHE; 2280 bp->b_iocmd = BIO_WRITE; 2281 2282 vfs_busy_pages(bp, 1); 2283 2284 /* 2285 * Normal bwrites pipeline writes 2286 */ 2287 bp->b_runningbufspace = bp->b_bufsize; 2288 space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace); 2289 2290 #ifdef RACCT 2291 if (racct_enable) { 2292 PROC_LOCK(curproc); 2293 racct_add_buf(curproc, bp, 1); 2294 PROC_UNLOCK(curproc); 2295 } 2296 #endif /* RACCT */ 2297 curthread->td_ru.ru_oublock++; 2298 if (oldflags & B_ASYNC) 2299 BUF_KERNPROC(bp); 2300 bp->b_iooffset = dbtob(bp->b_blkno); 2301 buf_track(bp, __func__); 2302 bstrategy(bp); 2303 2304 if ((oldflags & B_ASYNC) == 0) { 2305 int rtval = bufwait(bp); 2306 brelse(bp); 2307 return (rtval); 2308 } else if (space > hirunningspace) { 2309 /* 2310 * don't allow the async write to saturate the I/O 2311 * system. We will not deadlock here because 2312 * we are blocking waiting for I/O that is already in-progress 2313 * to complete. We do not block here if it is the update 2314 * or syncer daemon trying to clean up as that can lead 2315 * to deadlock. 2316 */ 2317 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md) 2318 waitrunningbufspace(); 2319 } 2320 2321 return (0); 2322 } 2323 2324 void 2325 bufbdflush(struct bufobj *bo, struct buf *bp) 2326 { 2327 struct buf *nbp; 2328 2329 if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) { 2330 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread); 2331 altbufferflushes++; 2332 } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) { 2333 BO_LOCK(bo); 2334 /* 2335 * Try to find a buffer to flush. 2336 */ 2337 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) { 2338 if ((nbp->b_vflags & BV_BKGRDINPROG) || 2339 BUF_LOCK(nbp, 2340 LK_EXCLUSIVE | LK_NOWAIT, NULL)) 2341 continue; 2342 if (bp == nbp) 2343 panic("bdwrite: found ourselves"); 2344 BO_UNLOCK(bo); 2345 /* Don't countdeps with the bo lock held. */ 2346 if (buf_countdeps(nbp, 0)) { 2347 BO_LOCK(bo); 2348 BUF_UNLOCK(nbp); 2349 continue; 2350 } 2351 if (nbp->b_flags & B_CLUSTEROK) { 2352 vfs_bio_awrite(nbp); 2353 } else { 2354 bremfree(nbp); 2355 bawrite(nbp); 2356 } 2357 dirtybufferflushes++; 2358 break; 2359 } 2360 if (nbp == NULL) 2361 BO_UNLOCK(bo); 2362 } 2363 } 2364 2365 /* 2366 * Delayed write. (Buffer is marked dirty). Do not bother writing 2367 * anything if the buffer is marked invalid. 2368 * 2369 * Note that since the buffer must be completely valid, we can safely 2370 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 2371 * biodone() in order to prevent getblk from writing the buffer 2372 * out synchronously. 2373 */ 2374 void 2375 bdwrite(struct buf *bp) 2376 { 2377 struct thread *td = curthread; 2378 struct vnode *vp; 2379 struct bufobj *bo; 2380 2381 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2382 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2383 KASSERT((bp->b_flags & B_BARRIER) == 0, 2384 ("Barrier request in delayed write %p", bp)); 2385 2386 if (bp->b_flags & B_INVAL) { 2387 brelse(bp); 2388 return; 2389 } 2390 2391 /* 2392 * If we have too many dirty buffers, don't create any more. 2393 * If we are wildly over our limit, then force a complete 2394 * cleanup. Otherwise, just keep the situation from getting 2395 * out of control. Note that we have to avoid a recursive 2396 * disaster and not try to clean up after our own cleanup! 2397 */ 2398 vp = bp->b_vp; 2399 bo = bp->b_bufobj; 2400 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) { 2401 td->td_pflags |= TDP_INBDFLUSH; 2402 BO_BDFLUSH(bo, bp); 2403 td->td_pflags &= ~TDP_INBDFLUSH; 2404 } else 2405 recursiveflushes++; 2406 2407 bdirty(bp); 2408 /* 2409 * Set B_CACHE, indicating that the buffer is fully valid. This is 2410 * true even of NFS now. 2411 */ 2412 bp->b_flags |= B_CACHE; 2413 2414 /* 2415 * This bmap keeps the system from needing to do the bmap later, 2416 * perhaps when the system is attempting to do a sync. Since it 2417 * is likely that the indirect block -- or whatever other datastructure 2418 * that the filesystem needs is still in memory now, it is a good 2419 * thing to do this. Note also, that if the pageout daemon is 2420 * requesting a sync -- there might not be enough memory to do 2421 * the bmap then... So, this is important to do. 2422 */ 2423 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { 2424 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 2425 } 2426 2427 buf_track(bp, __func__); 2428 2429 /* 2430 * Set the *dirty* buffer range based upon the VM system dirty 2431 * pages. 2432 * 2433 * Mark the buffer pages as clean. We need to do this here to 2434 * satisfy the vnode_pager and the pageout daemon, so that it 2435 * thinks that the pages have been "cleaned". Note that since 2436 * the pages are in a delayed write buffer -- the VFS layer 2437 * "will" see that the pages get written out on the next sync, 2438 * or perhaps the cluster will be completed. 2439 */ 2440 vfs_clean_pages_dirty_buf(bp); 2441 bqrelse(bp); 2442 2443 /* 2444 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 2445 * due to the softdep code. 2446 */ 2447 } 2448 2449 /* 2450 * bdirty: 2451 * 2452 * Turn buffer into delayed write request. We must clear BIO_READ and 2453 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 2454 * itself to properly update it in the dirty/clean lists. We mark it 2455 * B_DONE to ensure that any asynchronization of the buffer properly 2456 * clears B_DONE ( else a panic will occur later ). 2457 * 2458 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 2459 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 2460 * should only be called if the buffer is known-good. 2461 * 2462 * Since the buffer is not on a queue, we do not update the numfreebuffers 2463 * count. 2464 * 2465 * The buffer must be on QUEUE_NONE. 2466 */ 2467 void 2468 bdirty(struct buf *bp) 2469 { 2470 2471 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X", 2472 bp, bp->b_vp, bp->b_flags); 2473 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2474 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 2475 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 2476 bp->b_flags &= ~(B_RELBUF); 2477 bp->b_iocmd = BIO_WRITE; 2478 2479 if ((bp->b_flags & B_DELWRI) == 0) { 2480 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI; 2481 reassignbuf(bp); 2482 bdirtyadd(bp); 2483 } 2484 } 2485 2486 /* 2487 * bundirty: 2488 * 2489 * Clear B_DELWRI for buffer. 2490 * 2491 * Since the buffer is not on a queue, we do not update the numfreebuffers 2492 * count. 2493 * 2494 * The buffer must be on QUEUE_NONE. 2495 */ 2496 2497 void 2498 bundirty(struct buf *bp) 2499 { 2500 2501 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2502 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2503 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 2504 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 2505 2506 if (bp->b_flags & B_DELWRI) { 2507 bp->b_flags &= ~B_DELWRI; 2508 reassignbuf(bp); 2509 bdirtysub(bp); 2510 } 2511 /* 2512 * Since it is now being written, we can clear its deferred write flag. 2513 */ 2514 bp->b_flags &= ~B_DEFERRED; 2515 } 2516 2517 /* 2518 * bawrite: 2519 * 2520 * Asynchronous write. Start output on a buffer, but do not wait for 2521 * it to complete. The buffer is released when the output completes. 2522 * 2523 * bwrite() ( or the VOP routine anyway ) is responsible for handling 2524 * B_INVAL buffers. Not us. 2525 */ 2526 void 2527 bawrite(struct buf *bp) 2528 { 2529 2530 bp->b_flags |= B_ASYNC; 2531 (void) bwrite(bp); 2532 } 2533 2534 /* 2535 * babarrierwrite: 2536 * 2537 * Asynchronous barrier write. Start output on a buffer, but do not 2538 * wait for it to complete. Place a write barrier after this write so 2539 * that this buffer and all buffers written before it are committed to 2540 * the disk before any buffers written after this write are committed 2541 * to the disk. The buffer is released when the output completes. 2542 */ 2543 void 2544 babarrierwrite(struct buf *bp) 2545 { 2546 2547 bp->b_flags |= B_ASYNC | B_BARRIER; 2548 (void) bwrite(bp); 2549 } 2550 2551 /* 2552 * bbarrierwrite: 2553 * 2554 * Synchronous barrier write. Start output on a buffer and wait for 2555 * it to complete. Place a write barrier after this write so that 2556 * this buffer and all buffers written before it are committed to 2557 * the disk before any buffers written after this write are committed 2558 * to the disk. The buffer is released when the output completes. 2559 */ 2560 int 2561 bbarrierwrite(struct buf *bp) 2562 { 2563 2564 bp->b_flags |= B_BARRIER; 2565 return (bwrite(bp)); 2566 } 2567 2568 /* 2569 * bwillwrite: 2570 * 2571 * Called prior to the locking of any vnodes when we are expecting to 2572 * write. We do not want to starve the buffer cache with too many 2573 * dirty buffers so we block here. By blocking prior to the locking 2574 * of any vnodes we attempt to avoid the situation where a locked vnode 2575 * prevents the various system daemons from flushing related buffers. 2576 */ 2577 void 2578 bwillwrite(void) 2579 { 2580 2581 if (buf_dirty_count_severe()) { 2582 mtx_lock(&bdirtylock); 2583 while (buf_dirty_count_severe()) { 2584 bdirtywait = 1; 2585 msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4), 2586 "flswai", 0); 2587 } 2588 mtx_unlock(&bdirtylock); 2589 } 2590 } 2591 2592 /* 2593 * Return true if we have too many dirty buffers. 2594 */ 2595 int 2596 buf_dirty_count_severe(void) 2597 { 2598 2599 return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty)); 2600 } 2601 2602 /* 2603 * brelse: 2604 * 2605 * Release a busy buffer and, if requested, free its resources. The 2606 * buffer will be stashed in the appropriate bufqueue[] allowing it 2607 * to be accessed later as a cache entity or reused for other purposes. 2608 */ 2609 void 2610 brelse(struct buf *bp) 2611 { 2612 struct mount *v_mnt; 2613 int qindex; 2614 2615 /* 2616 * Many functions erroneously call brelse with a NULL bp under rare 2617 * error conditions. Simply return when called with a NULL bp. 2618 */ 2619 if (bp == NULL) 2620 return; 2621 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X", 2622 bp, bp->b_vp, bp->b_flags); 2623 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 2624 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 2625 KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0, 2626 ("brelse: non-VMIO buffer marked NOREUSE")); 2627 2628 if (BUF_LOCKRECURSED(bp)) { 2629 /* 2630 * Do not process, in particular, do not handle the 2631 * B_INVAL/B_RELBUF and do not release to free list. 2632 */ 2633 BUF_UNLOCK(bp); 2634 return; 2635 } 2636 2637 if (bp->b_flags & B_MANAGED) { 2638 bqrelse(bp); 2639 return; 2640 } 2641 2642 if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) { 2643 BO_LOCK(bp->b_bufobj); 2644 bp->b_vflags &= ~BV_BKGRDERR; 2645 BO_UNLOCK(bp->b_bufobj); 2646 bdirty(bp); 2647 } 2648 2649 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) && 2650 (bp->b_flags & B_INVALONERR)) { 2651 /* 2652 * Forced invalidation of dirty buffer contents, to be used 2653 * after a failed write in the rare case that the loss of the 2654 * contents is acceptable. The buffer is invalidated and 2655 * freed. 2656 */ 2657 bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE; 2658 bp->b_flags &= ~(B_ASYNC | B_CACHE); 2659 } 2660 2661 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) && 2662 (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) && 2663 !(bp->b_flags & B_INVAL)) { 2664 /* 2665 * Failed write, redirty. All errors except ENXIO (which 2666 * means the device is gone) are treated as being 2667 * transient. 2668 * 2669 * XXX Treating EIO as transient is not correct; the 2670 * contract with the local storage device drivers is that 2671 * they will only return EIO once the I/O is no longer 2672 * retriable. Network I/O also respects this through the 2673 * guarantees of TCP and/or the internal retries of NFS. 2674 * ENOMEM might be transient, but we also have no way of 2675 * knowing when its ok to retry/reschedule. In general, 2676 * this entire case should be made obsolete through better 2677 * error handling/recovery and resource scheduling. 2678 * 2679 * Do this also for buffers that failed with ENXIO, but have 2680 * non-empty dependencies - the soft updates code might need 2681 * to access the buffer to untangle them. 2682 * 2683 * Must clear BIO_ERROR to prevent pages from being scrapped. 2684 */ 2685 bp->b_ioflags &= ~BIO_ERROR; 2686 bdirty(bp); 2687 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 2688 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) { 2689 /* 2690 * Either a failed read I/O, or we were asked to free or not 2691 * cache the buffer, or we failed to write to a device that's 2692 * no longer present. 2693 */ 2694 bp->b_flags |= B_INVAL; 2695 if (!LIST_EMPTY(&bp->b_dep)) 2696 buf_deallocate(bp); 2697 if (bp->b_flags & B_DELWRI) 2698 bdirtysub(bp); 2699 bp->b_flags &= ~(B_DELWRI | B_CACHE); 2700 if ((bp->b_flags & B_VMIO) == 0) { 2701 allocbuf(bp, 0); 2702 if (bp->b_vp) 2703 brelvp(bp); 2704 } 2705 } 2706 2707 /* 2708 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate() 2709 * is called with B_DELWRI set, the underlying pages may wind up 2710 * getting freed causing a previous write (bdwrite()) to get 'lost' 2711 * because pages associated with a B_DELWRI bp are marked clean. 2712 * 2713 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even 2714 * if B_DELWRI is set. 2715 */ 2716 if (bp->b_flags & B_DELWRI) 2717 bp->b_flags &= ~B_RELBUF; 2718 2719 /* 2720 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 2721 * constituted, not even NFS buffers now. Two flags effect this. If 2722 * B_INVAL, the struct buf is invalidated but the VM object is kept 2723 * around ( i.e. so it is trivial to reconstitute the buffer later ). 2724 * 2725 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 2726 * invalidated. BIO_ERROR cannot be set for a failed write unless the 2727 * buffer is also B_INVAL because it hits the re-dirtying code above. 2728 * 2729 * Normally we can do this whether a buffer is B_DELWRI or not. If 2730 * the buffer is an NFS buffer, it is tracking piecemeal writes or 2731 * the commit state and we cannot afford to lose the buffer. If the 2732 * buffer has a background write in progress, we need to keep it 2733 * around to prevent it from being reconstituted and starting a second 2734 * background write. 2735 */ 2736 2737 v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL; 2738 2739 if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE || 2740 (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) && 2741 (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 || 2742 vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) { 2743 vfs_vmio_invalidate(bp); 2744 allocbuf(bp, 0); 2745 } 2746 2747 if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 || 2748 (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) { 2749 allocbuf(bp, 0); 2750 bp->b_flags &= ~B_NOREUSE; 2751 if (bp->b_vp != NULL) 2752 brelvp(bp); 2753 } 2754 2755 /* 2756 * If the buffer has junk contents signal it and eventually 2757 * clean up B_DELWRI and diassociate the vnode so that gbincore() 2758 * doesn't find it. 2759 */ 2760 if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 || 2761 (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0) 2762 bp->b_flags |= B_INVAL; 2763 if (bp->b_flags & B_INVAL) { 2764 if (bp->b_flags & B_DELWRI) 2765 bundirty(bp); 2766 if (bp->b_vp) 2767 brelvp(bp); 2768 } 2769 2770 buf_track(bp, __func__); 2771 2772 /* buffers with no memory */ 2773 if (bp->b_bufsize == 0) { 2774 buf_free(bp); 2775 return; 2776 } 2777 /* buffers with junk contents */ 2778 if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 2779 (bp->b_ioflags & BIO_ERROR)) { 2780 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 2781 if (bp->b_vflags & BV_BKGRDINPROG) 2782 panic("losing buffer 2"); 2783 qindex = QUEUE_CLEAN; 2784 bp->b_flags |= B_AGE; 2785 /* remaining buffers */ 2786 } else if (bp->b_flags & B_DELWRI) 2787 qindex = QUEUE_DIRTY; 2788 else 2789 qindex = QUEUE_CLEAN; 2790 2791 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 2792 panic("brelse: not dirty"); 2793 2794 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT); 2795 bp->b_xflags &= ~(BX_CVTENXIO); 2796 /* binsfree unlocks bp. */ 2797 binsfree(bp, qindex); 2798 } 2799 2800 /* 2801 * Release a buffer back to the appropriate queue but do not try to free 2802 * it. The buffer is expected to be used again soon. 2803 * 2804 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 2805 * biodone() to requeue an async I/O on completion. It is also used when 2806 * known good buffers need to be requeued but we think we may need the data 2807 * again soon. 2808 * 2809 * XXX we should be able to leave the B_RELBUF hint set on completion. 2810 */ 2811 void 2812 bqrelse(struct buf *bp) 2813 { 2814 int qindex; 2815 2816 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2817 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 2818 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 2819 2820 qindex = QUEUE_NONE; 2821 if (BUF_LOCKRECURSED(bp)) { 2822 /* do not release to free list */ 2823 BUF_UNLOCK(bp); 2824 return; 2825 } 2826 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 2827 bp->b_xflags &= ~(BX_CVTENXIO); 2828 2829 if (bp->b_flags & B_MANAGED) { 2830 if (bp->b_flags & B_REMFREE) 2831 bremfreef(bp); 2832 goto out; 2833 } 2834 2835 /* buffers with stale but valid contents */ 2836 if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG | 2837 BV_BKGRDERR)) == BV_BKGRDERR) { 2838 BO_LOCK(bp->b_bufobj); 2839 bp->b_vflags &= ~BV_BKGRDERR; 2840 BO_UNLOCK(bp->b_bufobj); 2841 qindex = QUEUE_DIRTY; 2842 } else { 2843 if ((bp->b_flags & B_DELWRI) == 0 && 2844 (bp->b_xflags & BX_VNDIRTY)) 2845 panic("bqrelse: not dirty"); 2846 if ((bp->b_flags & B_NOREUSE) != 0) { 2847 brelse(bp); 2848 return; 2849 } 2850 qindex = QUEUE_CLEAN; 2851 } 2852 buf_track(bp, __func__); 2853 /* binsfree unlocks bp. */ 2854 binsfree(bp, qindex); 2855 return; 2856 2857 out: 2858 buf_track(bp, __func__); 2859 /* unlock */ 2860 BUF_UNLOCK(bp); 2861 } 2862 2863 /* 2864 * Complete I/O to a VMIO backed page. Validate the pages as appropriate, 2865 * restore bogus pages. 2866 */ 2867 static void 2868 vfs_vmio_iodone(struct buf *bp) 2869 { 2870 vm_ooffset_t foff; 2871 vm_page_t m; 2872 vm_object_t obj; 2873 struct vnode *vp __unused; 2874 int i, iosize, resid; 2875 bool bogus; 2876 2877 obj = bp->b_bufobj->bo_object; 2878 KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages, 2879 ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)", 2880 blockcount_read(&obj->paging_in_progress), bp->b_npages)); 2881 2882 vp = bp->b_vp; 2883 VNPASS(vp->v_holdcnt > 0, vp); 2884 VNPASS(vp->v_object != NULL, vp); 2885 2886 foff = bp->b_offset; 2887 KASSERT(bp->b_offset != NOOFFSET, 2888 ("vfs_vmio_iodone: bp %p has no buffer offset", bp)); 2889 2890 bogus = false; 2891 iosize = bp->b_bcount - bp->b_resid; 2892 for (i = 0; i < bp->b_npages; i++) { 2893 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2894 if (resid > iosize) 2895 resid = iosize; 2896 2897 /* 2898 * cleanup bogus pages, restoring the originals 2899 */ 2900 m = bp->b_pages[i]; 2901 if (m == bogus_page) { 2902 bogus = true; 2903 m = vm_page_relookup(obj, OFF_TO_IDX(foff)); 2904 if (m == NULL) 2905 panic("biodone: page disappeared!"); 2906 bp->b_pages[i] = m; 2907 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) { 2908 /* 2909 * In the write case, the valid and clean bits are 2910 * already changed correctly ( see bdwrite() ), so we 2911 * only need to do this here in the read case. 2912 */ 2913 KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK, 2914 resid)) == 0, ("vfs_vmio_iodone: page %p " 2915 "has unexpected dirty bits", m)); 2916 vfs_page_set_valid(bp, foff, m); 2917 } 2918 KASSERT(OFF_TO_IDX(foff) == m->pindex, 2919 ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch", 2920 (intmax_t)foff, (uintmax_t)m->pindex)); 2921 2922 vm_page_sunbusy(m); 2923 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2924 iosize -= resid; 2925 } 2926 vm_object_pip_wakeupn(obj, bp->b_npages); 2927 if (bogus && buf_mapped(bp)) { 2928 BUF_CHECK_MAPPED(bp); 2929 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 2930 bp->b_pages, bp->b_npages); 2931 } 2932 } 2933 2934 /* 2935 * Perform page invalidation when a buffer is released. The fully invalid 2936 * pages will be reclaimed later in vfs_vmio_truncate(). 2937 */ 2938 static void 2939 vfs_vmio_invalidate(struct buf *bp) 2940 { 2941 vm_object_t obj; 2942 vm_page_t m; 2943 int flags, i, resid, poffset, presid; 2944 2945 if (buf_mapped(bp)) { 2946 BUF_CHECK_MAPPED(bp); 2947 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages); 2948 } else 2949 BUF_CHECK_UNMAPPED(bp); 2950 /* 2951 * Get the base offset and length of the buffer. Note that 2952 * in the VMIO case if the buffer block size is not 2953 * page-aligned then b_data pointer may not be page-aligned. 2954 * But our b_pages[] array *IS* page aligned. 2955 * 2956 * block sizes less then DEV_BSIZE (usually 512) are not 2957 * supported due to the page granularity bits (m->valid, 2958 * m->dirty, etc...). 2959 * 2960 * See man buf(9) for more information 2961 */ 2962 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0; 2963 obj = bp->b_bufobj->bo_object; 2964 resid = bp->b_bufsize; 2965 poffset = bp->b_offset & PAGE_MASK; 2966 VM_OBJECT_WLOCK(obj); 2967 for (i = 0; i < bp->b_npages; i++) { 2968 m = bp->b_pages[i]; 2969 if (m == bogus_page) 2970 panic("vfs_vmio_invalidate: Unexpected bogus page."); 2971 bp->b_pages[i] = NULL; 2972 2973 presid = resid > (PAGE_SIZE - poffset) ? 2974 (PAGE_SIZE - poffset) : resid; 2975 KASSERT(presid >= 0, ("brelse: extra page")); 2976 vm_page_busy_acquire(m, VM_ALLOC_SBUSY); 2977 if (pmap_page_wired_mappings(m) == 0) 2978 vm_page_set_invalid(m, poffset, presid); 2979 vm_page_sunbusy(m); 2980 vm_page_release_locked(m, flags); 2981 resid -= presid; 2982 poffset = 0; 2983 } 2984 VM_OBJECT_WUNLOCK(obj); 2985 bp->b_npages = 0; 2986 } 2987 2988 /* 2989 * Page-granular truncation of an existing VMIO buffer. 2990 */ 2991 static void 2992 vfs_vmio_truncate(struct buf *bp, int desiredpages) 2993 { 2994 vm_object_t obj; 2995 vm_page_t m; 2996 int flags, i; 2997 2998 if (bp->b_npages == desiredpages) 2999 return; 3000 3001 if (buf_mapped(bp)) { 3002 BUF_CHECK_MAPPED(bp); 3003 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) + 3004 (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages); 3005 } else 3006 BUF_CHECK_UNMAPPED(bp); 3007 3008 /* 3009 * The object lock is needed only if we will attempt to free pages. 3010 */ 3011 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0; 3012 if ((bp->b_flags & B_DIRECT) != 0) { 3013 flags |= VPR_TRYFREE; 3014 obj = bp->b_bufobj->bo_object; 3015 VM_OBJECT_WLOCK(obj); 3016 } else { 3017 obj = NULL; 3018 } 3019 for (i = desiredpages; i < bp->b_npages; i++) { 3020 m = bp->b_pages[i]; 3021 KASSERT(m != bogus_page, ("allocbuf: bogus page found")); 3022 bp->b_pages[i] = NULL; 3023 if (obj != NULL) 3024 vm_page_release_locked(m, flags); 3025 else 3026 vm_page_release(m, flags); 3027 } 3028 if (obj != NULL) 3029 VM_OBJECT_WUNLOCK(obj); 3030 bp->b_npages = desiredpages; 3031 } 3032 3033 /* 3034 * Byte granular extension of VMIO buffers. 3035 */ 3036 static void 3037 vfs_vmio_extend(struct buf *bp, int desiredpages, int size) 3038 { 3039 /* 3040 * We are growing the buffer, possibly in a 3041 * byte-granular fashion. 3042 */ 3043 vm_object_t obj; 3044 vm_offset_t toff; 3045 vm_offset_t tinc; 3046 vm_page_t m; 3047 3048 /* 3049 * Step 1, bring in the VM pages from the object, allocating 3050 * them if necessary. We must clear B_CACHE if these pages 3051 * are not valid for the range covered by the buffer. 3052 */ 3053 obj = bp->b_bufobj->bo_object; 3054 if (bp->b_npages < desiredpages) { 3055 KASSERT(desiredpages <= atop(maxbcachebuf), 3056 ("vfs_vmio_extend past maxbcachebuf %p %d %u", 3057 bp, desiredpages, maxbcachebuf)); 3058 3059 /* 3060 * We must allocate system pages since blocking 3061 * here could interfere with paging I/O, no 3062 * matter which process we are. 3063 * 3064 * Only exclusive busy can be tested here. 3065 * Blocking on shared busy might lead to 3066 * deadlocks once allocbuf() is called after 3067 * pages are vfs_busy_pages(). 3068 */ 3069 (void)vm_page_grab_pages_unlocked(obj, 3070 OFF_TO_IDX(bp->b_offset) + bp->b_npages, 3071 VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY | 3072 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED, 3073 &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages); 3074 bp->b_npages = desiredpages; 3075 } 3076 3077 /* 3078 * Step 2. We've loaded the pages into the buffer, 3079 * we have to figure out if we can still have B_CACHE 3080 * set. Note that B_CACHE is set according to the 3081 * byte-granular range ( bcount and size ), not the 3082 * aligned range ( newbsize ). 3083 * 3084 * The VM test is against m->valid, which is DEV_BSIZE 3085 * aligned. Needless to say, the validity of the data 3086 * needs to also be DEV_BSIZE aligned. Note that this 3087 * fails with NFS if the server or some other client 3088 * extends the file's EOF. If our buffer is resized, 3089 * B_CACHE may remain set! XXX 3090 */ 3091 toff = bp->b_bcount; 3092 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 3093 while ((bp->b_flags & B_CACHE) && toff < size) { 3094 vm_pindex_t pi; 3095 3096 if (tinc > (size - toff)) 3097 tinc = size - toff; 3098 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT; 3099 m = bp->b_pages[pi]; 3100 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m); 3101 toff += tinc; 3102 tinc = PAGE_SIZE; 3103 } 3104 3105 /* 3106 * Step 3, fixup the KVA pmap. 3107 */ 3108 if (buf_mapped(bp)) 3109 bpmap_qenter(bp); 3110 else 3111 BUF_CHECK_UNMAPPED(bp); 3112 } 3113 3114 /* 3115 * Check to see if a block at a particular lbn is available for a clustered 3116 * write. 3117 */ 3118 static int 3119 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno) 3120 { 3121 struct buf *bpa; 3122 int match; 3123 3124 match = 0; 3125 3126 /* If the buf isn't in core skip it */ 3127 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL) 3128 return (0); 3129 3130 /* If the buf is busy we don't want to wait for it */ 3131 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 3132 return (0); 3133 3134 /* Only cluster with valid clusterable delayed write buffers */ 3135 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) != 3136 (B_DELWRI | B_CLUSTEROK)) 3137 goto done; 3138 3139 if (bpa->b_bufsize != size) 3140 goto done; 3141 3142 /* 3143 * Check to see if it is in the expected place on disk and that the 3144 * block has been mapped. 3145 */ 3146 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno)) 3147 match = 1; 3148 done: 3149 BUF_UNLOCK(bpa); 3150 return (match); 3151 } 3152 3153 /* 3154 * vfs_bio_awrite: 3155 * 3156 * Implement clustered async writes for clearing out B_DELWRI buffers. 3157 * This is much better then the old way of writing only one buffer at 3158 * a time. Note that we may not be presented with the buffers in the 3159 * correct order, so we search for the cluster in both directions. 3160 */ 3161 int 3162 vfs_bio_awrite(struct buf *bp) 3163 { 3164 struct bufobj *bo; 3165 int i; 3166 int j; 3167 daddr_t lblkno = bp->b_lblkno; 3168 struct vnode *vp = bp->b_vp; 3169 int ncl; 3170 int nwritten; 3171 int size; 3172 int maxcl; 3173 int gbflags; 3174 3175 bo = &vp->v_bufobj; 3176 gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0; 3177 /* 3178 * right now we support clustered writing only to regular files. If 3179 * we find a clusterable block we could be in the middle of a cluster 3180 * rather then at the beginning. 3181 */ 3182 if ((vp->v_type == VREG) && 3183 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 3184 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 3185 size = vp->v_mount->mnt_stat.f_iosize; 3186 maxcl = maxphys / size; 3187 3188 BO_RLOCK(bo); 3189 for (i = 1; i < maxcl; i++) 3190 if (vfs_bio_clcheck(vp, size, lblkno + i, 3191 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0) 3192 break; 3193 3194 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 3195 if (vfs_bio_clcheck(vp, size, lblkno - j, 3196 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0) 3197 break; 3198 BO_RUNLOCK(bo); 3199 --j; 3200 ncl = i + j; 3201 /* 3202 * this is a possible cluster write 3203 */ 3204 if (ncl != 1) { 3205 BUF_UNLOCK(bp); 3206 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl, 3207 gbflags); 3208 return (nwritten); 3209 } 3210 } 3211 bremfree(bp); 3212 bp->b_flags |= B_ASYNC; 3213 /* 3214 * default (old) behavior, writing out only one block 3215 * 3216 * XXX returns b_bufsize instead of b_bcount for nwritten? 3217 */ 3218 nwritten = bp->b_bufsize; 3219 (void) bwrite(bp); 3220 3221 return (nwritten); 3222 } 3223 3224 /* 3225 * getnewbuf_kva: 3226 * 3227 * Allocate KVA for an empty buf header according to gbflags. 3228 */ 3229 static int 3230 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize) 3231 { 3232 3233 if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) { 3234 /* 3235 * In order to keep fragmentation sane we only allocate kva 3236 * in BKVASIZE chunks. XXX with vmem we can do page size. 3237 */ 3238 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 3239 3240 if (maxsize != bp->b_kvasize && 3241 bufkva_alloc(bp, maxsize, gbflags)) 3242 return (ENOSPC); 3243 } 3244 return (0); 3245 } 3246 3247 /* 3248 * getnewbuf: 3249 * 3250 * Find and initialize a new buffer header, freeing up existing buffers 3251 * in the bufqueues as necessary. The new buffer is returned locked. 3252 * 3253 * We block if: 3254 * We have insufficient buffer headers 3255 * We have insufficient buffer space 3256 * buffer_arena is too fragmented ( space reservation fails ) 3257 * If we have to flush dirty buffers ( but we try to avoid this ) 3258 * 3259 * The caller is responsible for releasing the reserved bufspace after 3260 * allocbuf() is called. 3261 */ 3262 static struct buf * 3263 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags) 3264 { 3265 struct bufdomain *bd; 3266 struct buf *bp; 3267 bool metadata, reserved; 3268 3269 bp = NULL; 3270 KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 3271 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 3272 if (!unmapped_buf_allowed) 3273 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC); 3274 3275 if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 || 3276 vp->v_type == VCHR) 3277 metadata = true; 3278 else 3279 metadata = false; 3280 if (vp == NULL) 3281 bd = &bdomain[0]; 3282 else 3283 bd = &bdomain[vp->v_bufobj.bo_domain]; 3284 3285 counter_u64_add(getnewbufcalls, 1); 3286 reserved = false; 3287 do { 3288 if (reserved == false && 3289 bufspace_reserve(bd, maxsize, metadata) != 0) { 3290 counter_u64_add(getnewbufrestarts, 1); 3291 continue; 3292 } 3293 reserved = true; 3294 if ((bp = buf_alloc(bd)) == NULL) { 3295 counter_u64_add(getnewbufrestarts, 1); 3296 continue; 3297 } 3298 if (getnewbuf_kva(bp, gbflags, maxsize) == 0) 3299 return (bp); 3300 break; 3301 } while (buf_recycle(bd, false) == 0); 3302 3303 if (reserved) 3304 bufspace_release(bd, maxsize); 3305 if (bp != NULL) { 3306 bp->b_flags |= B_INVAL; 3307 brelse(bp); 3308 } 3309 bufspace_wait(bd, vp, gbflags, slpflag, slptimeo); 3310 3311 return (NULL); 3312 } 3313 3314 /* 3315 * buf_daemon: 3316 * 3317 * buffer flushing daemon. Buffers are normally flushed by the 3318 * update daemon but if it cannot keep up this process starts to 3319 * take the load in an attempt to prevent getnewbuf() from blocking. 3320 */ 3321 static struct kproc_desc buf_kp = { 3322 "bufdaemon", 3323 buf_daemon, 3324 &bufdaemonproc 3325 }; 3326 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp); 3327 3328 static int 3329 buf_flush(struct vnode *vp, struct bufdomain *bd, int target) 3330 { 3331 int flushed; 3332 3333 flushed = flushbufqueues(vp, bd, target, 0); 3334 if (flushed == 0) { 3335 /* 3336 * Could not find any buffers without rollback 3337 * dependencies, so just write the first one 3338 * in the hopes of eventually making progress. 3339 */ 3340 if (vp != NULL && target > 2) 3341 target /= 2; 3342 flushbufqueues(vp, bd, target, 1); 3343 } 3344 return (flushed); 3345 } 3346 3347 static void 3348 buf_daemon() 3349 { 3350 struct bufdomain *bd; 3351 int speedupreq; 3352 int lodirty; 3353 int i; 3354 3355 /* 3356 * This process needs to be suspended prior to shutdown sync. 3357 */ 3358 EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread, 3359 SHUTDOWN_PRI_LAST + 100); 3360 3361 /* 3362 * Start the buf clean daemons as children threads. 3363 */ 3364 for (i = 0 ; i < buf_domains; i++) { 3365 int error; 3366 3367 error = kthread_add((void (*)(void *))bufspace_daemon, 3368 &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i); 3369 if (error) 3370 panic("error %d spawning bufspace daemon", error); 3371 } 3372 3373 /* 3374 * This process is allowed to take the buffer cache to the limit 3375 */ 3376 curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED; 3377 mtx_lock(&bdlock); 3378 for (;;) { 3379 bd_request = 0; 3380 mtx_unlock(&bdlock); 3381 3382 kthread_suspend_check(); 3383 3384 /* 3385 * Save speedupreq for this pass and reset to capture new 3386 * requests. 3387 */ 3388 speedupreq = bd_speedupreq; 3389 bd_speedupreq = 0; 3390 3391 /* 3392 * Flush each domain sequentially according to its level and 3393 * the speedup request. 3394 */ 3395 for (i = 0; i < buf_domains; i++) { 3396 bd = &bdomain[i]; 3397 if (speedupreq) 3398 lodirty = bd->bd_numdirtybuffers / 2; 3399 else 3400 lodirty = bd->bd_lodirtybuffers; 3401 while (bd->bd_numdirtybuffers > lodirty) { 3402 if (buf_flush(NULL, bd, 3403 bd->bd_numdirtybuffers - lodirty) == 0) 3404 break; 3405 kern_yield(PRI_USER); 3406 } 3407 } 3408 3409 /* 3410 * Only clear bd_request if we have reached our low water 3411 * mark. The buf_daemon normally waits 1 second and 3412 * then incrementally flushes any dirty buffers that have 3413 * built up, within reason. 3414 * 3415 * If we were unable to hit our low water mark and couldn't 3416 * find any flushable buffers, we sleep for a short period 3417 * to avoid endless loops on unlockable buffers. 3418 */ 3419 mtx_lock(&bdlock); 3420 if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) { 3421 /* 3422 * We reached our low water mark, reset the 3423 * request and sleep until we are needed again. 3424 * The sleep is just so the suspend code works. 3425 */ 3426 bd_request = 0; 3427 /* 3428 * Do an extra wakeup in case dirty threshold 3429 * changed via sysctl and the explicit transition 3430 * out of shortfall was missed. 3431 */ 3432 bdirtywakeup(); 3433 if (runningbufspace <= lorunningspace) 3434 runningwakeup(); 3435 msleep(&bd_request, &bdlock, PVM, "psleep", hz); 3436 } else { 3437 /* 3438 * We couldn't find any flushable dirty buffers but 3439 * still have too many dirty buffers, we 3440 * have to sleep and try again. (rare) 3441 */ 3442 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10); 3443 } 3444 } 3445 } 3446 3447 /* 3448 * flushbufqueues: 3449 * 3450 * Try to flush a buffer in the dirty queue. We must be careful to 3451 * free up B_INVAL buffers instead of write them, which NFS is 3452 * particularly sensitive to. 3453 */ 3454 static int flushwithdeps = 0; 3455 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS, 3456 &flushwithdeps, 0, 3457 "Number of buffers flushed with dependecies that require rollbacks"); 3458 3459 static int 3460 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target, 3461 int flushdeps) 3462 { 3463 struct bufqueue *bq; 3464 struct buf *sentinel; 3465 struct vnode *vp; 3466 struct mount *mp; 3467 struct buf *bp; 3468 int hasdeps; 3469 int flushed; 3470 int error; 3471 bool unlock; 3472 3473 flushed = 0; 3474 bq = &bd->bd_dirtyq; 3475 bp = NULL; 3476 sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO); 3477 sentinel->b_qindex = QUEUE_SENTINEL; 3478 BQ_LOCK(bq); 3479 TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist); 3480 BQ_UNLOCK(bq); 3481 while (flushed != target) { 3482 maybe_yield(); 3483 BQ_LOCK(bq); 3484 bp = TAILQ_NEXT(sentinel, b_freelist); 3485 if (bp != NULL) { 3486 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist); 3487 TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel, 3488 b_freelist); 3489 } else { 3490 BQ_UNLOCK(bq); 3491 break; 3492 } 3493 /* 3494 * Skip sentinels inserted by other invocations of the 3495 * flushbufqueues(), taking care to not reorder them. 3496 * 3497 * Only flush the buffers that belong to the 3498 * vnode locked by the curthread. 3499 */ 3500 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL && 3501 bp->b_vp != lvp)) { 3502 BQ_UNLOCK(bq); 3503 continue; 3504 } 3505 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL); 3506 BQ_UNLOCK(bq); 3507 if (error != 0) 3508 continue; 3509 3510 /* 3511 * BKGRDINPROG can only be set with the buf and bufobj 3512 * locks both held. We tolerate a race to clear it here. 3513 */ 3514 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 || 3515 (bp->b_flags & B_DELWRI) == 0) { 3516 BUF_UNLOCK(bp); 3517 continue; 3518 } 3519 if (bp->b_flags & B_INVAL) { 3520 bremfreef(bp); 3521 brelse(bp); 3522 flushed++; 3523 continue; 3524 } 3525 3526 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) { 3527 if (flushdeps == 0) { 3528 BUF_UNLOCK(bp); 3529 continue; 3530 } 3531 hasdeps = 1; 3532 } else 3533 hasdeps = 0; 3534 /* 3535 * We must hold the lock on a vnode before writing 3536 * one of its buffers. Otherwise we may confuse, or 3537 * in the case of a snapshot vnode, deadlock the 3538 * system. 3539 * 3540 * The lock order here is the reverse of the normal 3541 * of vnode followed by buf lock. This is ok because 3542 * the NOWAIT will prevent deadlock. 3543 */ 3544 vp = bp->b_vp; 3545 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 3546 BUF_UNLOCK(bp); 3547 continue; 3548 } 3549 if (lvp == NULL) { 3550 unlock = true; 3551 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 3552 } else { 3553 ASSERT_VOP_LOCKED(vp, "getbuf"); 3554 unlock = false; 3555 error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 : 3556 vn_lock(vp, LK_TRYUPGRADE); 3557 } 3558 if (error == 0) { 3559 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X", 3560 bp, bp->b_vp, bp->b_flags); 3561 if (curproc == bufdaemonproc) { 3562 vfs_bio_awrite(bp); 3563 } else { 3564 bremfree(bp); 3565 bwrite(bp); 3566 counter_u64_add(notbufdflushes, 1); 3567 } 3568 vn_finished_write(mp); 3569 if (unlock) 3570 VOP_UNLOCK(vp); 3571 flushwithdeps += hasdeps; 3572 flushed++; 3573 3574 /* 3575 * Sleeping on runningbufspace while holding 3576 * vnode lock leads to deadlock. 3577 */ 3578 if (curproc == bufdaemonproc && 3579 runningbufspace > hirunningspace) 3580 waitrunningbufspace(); 3581 continue; 3582 } 3583 vn_finished_write(mp); 3584 BUF_UNLOCK(bp); 3585 } 3586 BQ_LOCK(bq); 3587 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist); 3588 BQ_UNLOCK(bq); 3589 free(sentinel, M_TEMP); 3590 return (flushed); 3591 } 3592 3593 /* 3594 * Check to see if a block is currently memory resident. 3595 */ 3596 struct buf * 3597 incore(struct bufobj *bo, daddr_t blkno) 3598 { 3599 return (gbincore_unlocked(bo, blkno)); 3600 } 3601 3602 /* 3603 * Returns true if no I/O is needed to access the 3604 * associated VM object. This is like incore except 3605 * it also hunts around in the VM system for the data. 3606 */ 3607 bool 3608 inmem(struct vnode * vp, daddr_t blkno) 3609 { 3610 vm_object_t obj; 3611 vm_offset_t toff, tinc, size; 3612 vm_page_t m, n; 3613 vm_ooffset_t off; 3614 int valid; 3615 3616 ASSERT_VOP_LOCKED(vp, "inmem"); 3617 3618 if (incore(&vp->v_bufobj, blkno)) 3619 return (true); 3620 if (vp->v_mount == NULL) 3621 return (false); 3622 obj = vp->v_object; 3623 if (obj == NULL) 3624 return (false); 3625 3626 size = PAGE_SIZE; 3627 if (size > vp->v_mount->mnt_stat.f_iosize) 3628 size = vp->v_mount->mnt_stat.f_iosize; 3629 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 3630 3631 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 3632 m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff)); 3633 recheck: 3634 if (m == NULL) 3635 return (false); 3636 3637 tinc = size; 3638 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 3639 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 3640 /* 3641 * Consider page validity only if page mapping didn't change 3642 * during the check. 3643 */ 3644 valid = vm_page_is_valid(m, 3645 (vm_offset_t)((toff + off) & PAGE_MASK), tinc); 3646 n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff)); 3647 if (m != n) { 3648 m = n; 3649 goto recheck; 3650 } 3651 if (!valid) 3652 return (false); 3653 } 3654 return (true); 3655 } 3656 3657 /* 3658 * Set the dirty range for a buffer based on the status of the dirty 3659 * bits in the pages comprising the buffer. The range is limited 3660 * to the size of the buffer. 3661 * 3662 * Tell the VM system that the pages associated with this buffer 3663 * are clean. This is used for delayed writes where the data is 3664 * going to go to disk eventually without additional VM intevention. 3665 * 3666 * Note that while we only really need to clean through to b_bcount, we 3667 * just go ahead and clean through to b_bufsize. 3668 */ 3669 static void 3670 vfs_clean_pages_dirty_buf(struct buf *bp) 3671 { 3672 vm_ooffset_t foff, noff, eoff; 3673 vm_page_t m; 3674 int i; 3675 3676 if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0) 3677 return; 3678 3679 foff = bp->b_offset; 3680 KASSERT(bp->b_offset != NOOFFSET, 3681 ("vfs_clean_pages_dirty_buf: no buffer offset")); 3682 3683 vfs_busy_pages_acquire(bp); 3684 vfs_setdirty_range(bp); 3685 for (i = 0; i < bp->b_npages; i++) { 3686 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3687 eoff = noff; 3688 if (eoff > bp->b_offset + bp->b_bufsize) 3689 eoff = bp->b_offset + bp->b_bufsize; 3690 m = bp->b_pages[i]; 3691 vfs_page_set_validclean(bp, foff, m); 3692 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3693 foff = noff; 3694 } 3695 vfs_busy_pages_release(bp); 3696 } 3697 3698 static void 3699 vfs_setdirty_range(struct buf *bp) 3700 { 3701 vm_offset_t boffset; 3702 vm_offset_t eoffset; 3703 int i; 3704 3705 /* 3706 * test the pages to see if they have been modified directly 3707 * by users through the VM system. 3708 */ 3709 for (i = 0; i < bp->b_npages; i++) 3710 vm_page_test_dirty(bp->b_pages[i]); 3711 3712 /* 3713 * Calculate the encompassing dirty range, boffset and eoffset, 3714 * (eoffset - boffset) bytes. 3715 */ 3716 3717 for (i = 0; i < bp->b_npages; i++) { 3718 if (bp->b_pages[i]->dirty) 3719 break; 3720 } 3721 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 3722 3723 for (i = bp->b_npages - 1; i >= 0; --i) { 3724 if (bp->b_pages[i]->dirty) { 3725 break; 3726 } 3727 } 3728 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 3729 3730 /* 3731 * Fit it to the buffer. 3732 */ 3733 3734 if (eoffset > bp->b_bcount) 3735 eoffset = bp->b_bcount; 3736 3737 /* 3738 * If we have a good dirty range, merge with the existing 3739 * dirty range. 3740 */ 3741 3742 if (boffset < eoffset) { 3743 if (bp->b_dirtyoff > boffset) 3744 bp->b_dirtyoff = boffset; 3745 if (bp->b_dirtyend < eoffset) 3746 bp->b_dirtyend = eoffset; 3747 } 3748 } 3749 3750 /* 3751 * Allocate the KVA mapping for an existing buffer. 3752 * If an unmapped buffer is provided but a mapped buffer is requested, take 3753 * also care to properly setup mappings between pages and KVA. 3754 */ 3755 static void 3756 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags) 3757 { 3758 int bsize, maxsize, need_mapping, need_kva; 3759 off_t offset; 3760 3761 need_mapping = bp->b_data == unmapped_buf && 3762 (gbflags & GB_UNMAPPED) == 0; 3763 need_kva = bp->b_kvabase == unmapped_buf && 3764 bp->b_data == unmapped_buf && 3765 (gbflags & GB_KVAALLOC) != 0; 3766 if (!need_mapping && !need_kva) 3767 return; 3768 3769 BUF_CHECK_UNMAPPED(bp); 3770 3771 if (need_mapping && bp->b_kvabase != unmapped_buf) { 3772 /* 3773 * Buffer is not mapped, but the KVA was already 3774 * reserved at the time of the instantiation. Use the 3775 * allocated space. 3776 */ 3777 goto has_addr; 3778 } 3779 3780 /* 3781 * Calculate the amount of the address space we would reserve 3782 * if the buffer was mapped. 3783 */ 3784 bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize; 3785 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize")); 3786 offset = blkno * bsize; 3787 maxsize = size + (offset & PAGE_MASK); 3788 maxsize = imax(maxsize, bsize); 3789 3790 while (bufkva_alloc(bp, maxsize, gbflags) != 0) { 3791 if ((gbflags & GB_NOWAIT_BD) != 0) { 3792 /* 3793 * XXXKIB: defragmentation cannot 3794 * succeed, not sure what else to do. 3795 */ 3796 panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp); 3797 } 3798 counter_u64_add(mappingrestarts, 1); 3799 bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0); 3800 } 3801 has_addr: 3802 if (need_mapping) { 3803 /* b_offset is handled by bpmap_qenter. */ 3804 bp->b_data = bp->b_kvabase; 3805 BUF_CHECK_MAPPED(bp); 3806 bpmap_qenter(bp); 3807 } 3808 } 3809 3810 struct buf * 3811 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo, 3812 int flags) 3813 { 3814 struct buf *bp; 3815 int error; 3816 3817 error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp); 3818 if (error != 0) 3819 return (NULL); 3820 return (bp); 3821 } 3822 3823 /* 3824 * getblkx: 3825 * 3826 * Get a block given a specified block and offset into a file/device. 3827 * The buffers B_DONE bit will be cleared on return, making it almost 3828 * ready for an I/O initiation. B_INVAL may or may not be set on 3829 * return. The caller should clear B_INVAL prior to initiating a 3830 * READ. 3831 * 3832 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 3833 * an existing buffer. 3834 * 3835 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 3836 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 3837 * and then cleared based on the backing VM. If the previous buffer is 3838 * non-0-sized but invalid, B_CACHE will be cleared. 3839 * 3840 * If getblk() must create a new buffer, the new buffer is returned with 3841 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 3842 * case it is returned with B_INVAL clear and B_CACHE set based on the 3843 * backing VM. 3844 * 3845 * getblk() also forces a bwrite() for any B_DELWRI buffer whose 3846 * B_CACHE bit is clear. 3847 * 3848 * What this means, basically, is that the caller should use B_CACHE to 3849 * determine whether the buffer is fully valid or not and should clear 3850 * B_INVAL prior to issuing a read. If the caller intends to validate 3851 * the buffer by loading its data area with something, the caller needs 3852 * to clear B_INVAL. If the caller does this without issuing an I/O, 3853 * the caller should set B_CACHE ( as an optimization ), else the caller 3854 * should issue the I/O and biodone() will set B_CACHE if the I/O was 3855 * a write attempt or if it was a successful read. If the caller 3856 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 3857 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 3858 * 3859 * The blkno parameter is the logical block being requested. Normally 3860 * the mapping of logical block number to disk block address is done 3861 * by calling VOP_BMAP(). However, if the mapping is already known, the 3862 * disk block address can be passed using the dblkno parameter. If the 3863 * disk block address is not known, then the same value should be passed 3864 * for blkno and dblkno. 3865 */ 3866 int 3867 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag, 3868 int slptimeo, int flags, struct buf **bpp) 3869 { 3870 struct buf *bp; 3871 struct bufobj *bo; 3872 daddr_t d_blkno; 3873 int bsize, error, maxsize, vmio; 3874 off_t offset; 3875 3876 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size); 3877 KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 3878 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 3879 ASSERT_VOP_LOCKED(vp, "getblk"); 3880 if (size > maxbcachebuf) 3881 panic("getblk: size(%d) > maxbcachebuf(%d)\n", size, 3882 maxbcachebuf); 3883 if (!unmapped_buf_allowed) 3884 flags &= ~(GB_UNMAPPED | GB_KVAALLOC); 3885 3886 bo = &vp->v_bufobj; 3887 d_blkno = dblkno; 3888 3889 /* Attempt lockless lookup first. */ 3890 bp = gbincore_unlocked(bo, blkno); 3891 if (bp == NULL) 3892 goto newbuf_unlocked; 3893 3894 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0, 3895 0); 3896 if (error != 0) 3897 goto loop; 3898 3899 /* Verify buf identify has not changed since lookup. */ 3900 if (bp->b_bufobj == bo && bp->b_lblkno == blkno) 3901 goto foundbuf_fastpath; 3902 3903 /* It changed, fallback to locked lookup. */ 3904 BUF_UNLOCK_RAW(bp); 3905 3906 loop: 3907 BO_RLOCK(bo); 3908 bp = gbincore(bo, blkno); 3909 if (bp != NULL) { 3910 int lockflags; 3911 3912 /* 3913 * Buffer is in-core. If the buffer is not busy nor managed, 3914 * it must be on a queue. 3915 */ 3916 lockflags = LK_EXCLUSIVE | LK_INTERLOCK | 3917 ((flags & GB_LOCK_NOWAIT) ? LK_NOWAIT : LK_SLEEPFAIL); 3918 3919 error = BUF_TIMELOCK(bp, lockflags, 3920 BO_LOCKPTR(bo), "getblk", slpflag, slptimeo); 3921 3922 /* 3923 * If we slept and got the lock we have to restart in case 3924 * the buffer changed identities. 3925 */ 3926 if (error == ENOLCK) 3927 goto loop; 3928 /* We timed out or were interrupted. */ 3929 else if (error != 0) 3930 return (error); 3931 3932 foundbuf_fastpath: 3933 /* If recursed, assume caller knows the rules. */ 3934 if (BUF_LOCKRECURSED(bp)) 3935 goto end; 3936 3937 /* 3938 * The buffer is locked. B_CACHE is cleared if the buffer is 3939 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 3940 * and for a VMIO buffer B_CACHE is adjusted according to the 3941 * backing VM cache. 3942 */ 3943 if (bp->b_flags & B_INVAL) 3944 bp->b_flags &= ~B_CACHE; 3945 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 3946 bp->b_flags |= B_CACHE; 3947 if (bp->b_flags & B_MANAGED) 3948 MPASS(bp->b_qindex == QUEUE_NONE); 3949 else 3950 bremfree(bp); 3951 3952 /* 3953 * check for size inconsistencies for non-VMIO case. 3954 */ 3955 if (bp->b_bcount != size) { 3956 if ((bp->b_flags & B_VMIO) == 0 || 3957 (size > bp->b_kvasize)) { 3958 if (bp->b_flags & B_DELWRI) { 3959 bp->b_flags |= B_NOCACHE; 3960 bwrite(bp); 3961 } else { 3962 if (LIST_EMPTY(&bp->b_dep)) { 3963 bp->b_flags |= B_RELBUF; 3964 brelse(bp); 3965 } else { 3966 bp->b_flags |= B_NOCACHE; 3967 bwrite(bp); 3968 } 3969 } 3970 goto loop; 3971 } 3972 } 3973 3974 /* 3975 * Handle the case of unmapped buffer which should 3976 * become mapped, or the buffer for which KVA 3977 * reservation is requested. 3978 */ 3979 bp_unmapped_get_kva(bp, blkno, size, flags); 3980 3981 /* 3982 * If the size is inconsistent in the VMIO case, we can resize 3983 * the buffer. This might lead to B_CACHE getting set or 3984 * cleared. If the size has not changed, B_CACHE remains 3985 * unchanged from its previous state. 3986 */ 3987 allocbuf(bp, size); 3988 3989 KASSERT(bp->b_offset != NOOFFSET, 3990 ("getblk: no buffer offset")); 3991 3992 /* 3993 * A buffer with B_DELWRI set and B_CACHE clear must 3994 * be committed before we can return the buffer in 3995 * order to prevent the caller from issuing a read 3996 * ( due to B_CACHE not being set ) and overwriting 3997 * it. 3998 * 3999 * Most callers, including NFS and FFS, need this to 4000 * operate properly either because they assume they 4001 * can issue a read if B_CACHE is not set, or because 4002 * ( for example ) an uncached B_DELWRI might loop due 4003 * to softupdates re-dirtying the buffer. In the latter 4004 * case, B_CACHE is set after the first write completes, 4005 * preventing further loops. 4006 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 4007 * above while extending the buffer, we cannot allow the 4008 * buffer to remain with B_CACHE set after the write 4009 * completes or it will represent a corrupt state. To 4010 * deal with this we set B_NOCACHE to scrap the buffer 4011 * after the write. 4012 * 4013 * We might be able to do something fancy, like setting 4014 * B_CACHE in bwrite() except if B_DELWRI is already set, 4015 * so the below call doesn't set B_CACHE, but that gets real 4016 * confusing. This is much easier. 4017 */ 4018 4019 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 4020 bp->b_flags |= B_NOCACHE; 4021 bwrite(bp); 4022 goto loop; 4023 } 4024 bp->b_flags &= ~B_DONE; 4025 } else { 4026 /* 4027 * Buffer is not in-core, create new buffer. The buffer 4028 * returned by getnewbuf() is locked. Note that the returned 4029 * buffer is also considered valid (not marked B_INVAL). 4030 */ 4031 BO_RUNLOCK(bo); 4032 newbuf_unlocked: 4033 /* 4034 * If the user does not want us to create the buffer, bail out 4035 * here. 4036 */ 4037 if (flags & GB_NOCREAT) 4038 return (EEXIST); 4039 4040 bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize; 4041 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize")); 4042 offset = blkno * bsize; 4043 vmio = vp->v_object != NULL; 4044 if (vmio) { 4045 maxsize = size + (offset & PAGE_MASK); 4046 } else { 4047 maxsize = size; 4048 /* Do not allow non-VMIO notmapped buffers. */ 4049 flags &= ~(GB_UNMAPPED | GB_KVAALLOC); 4050 } 4051 maxsize = imax(maxsize, bsize); 4052 if ((flags & GB_NOSPARSE) != 0 && vmio && 4053 !vn_isdisk(vp)) { 4054 error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0); 4055 KASSERT(error != EOPNOTSUPP, 4056 ("GB_NOSPARSE from fs not supporting bmap, vp %p", 4057 vp)); 4058 if (error != 0) 4059 return (error); 4060 if (d_blkno == -1) 4061 return (EJUSTRETURN); 4062 } 4063 4064 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags); 4065 if (bp == NULL) { 4066 if (slpflag || slptimeo) 4067 return (ETIMEDOUT); 4068 /* 4069 * XXX This is here until the sleep path is diagnosed 4070 * enough to work under very low memory conditions. 4071 * 4072 * There's an issue on low memory, 4BSD+non-preempt 4073 * systems (eg MIPS routers with 32MB RAM) where buffer 4074 * exhaustion occurs without sleeping for buffer 4075 * reclaimation. This just sticks in a loop and 4076 * constantly attempts to allocate a buffer, which 4077 * hits exhaustion and tries to wakeup bufdaemon. 4078 * This never happens because we never yield. 4079 * 4080 * The real solution is to identify and fix these cases 4081 * so we aren't effectively busy-waiting in a loop 4082 * until the reclaimation path has cycles to run. 4083 */ 4084 kern_yield(PRI_USER); 4085 goto loop; 4086 } 4087 4088 /* 4089 * This code is used to make sure that a buffer is not 4090 * created while the getnewbuf routine is blocked. 4091 * This can be a problem whether the vnode is locked or not. 4092 * If the buffer is created out from under us, we have to 4093 * throw away the one we just created. 4094 * 4095 * Note: this must occur before we associate the buffer 4096 * with the vp especially considering limitations in 4097 * the splay tree implementation when dealing with duplicate 4098 * lblkno's. 4099 */ 4100 BO_LOCK(bo); 4101 if (gbincore(bo, blkno)) { 4102 BO_UNLOCK(bo); 4103 bp->b_flags |= B_INVAL; 4104 bufspace_release(bufdomain(bp), maxsize); 4105 brelse(bp); 4106 goto loop; 4107 } 4108 4109 /* 4110 * Insert the buffer into the hash, so that it can 4111 * be found by incore. 4112 */ 4113 bp->b_lblkno = blkno; 4114 bp->b_blkno = d_blkno; 4115 bp->b_offset = offset; 4116 bgetvp(vp, bp); 4117 BO_UNLOCK(bo); 4118 4119 /* 4120 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 4121 * buffer size starts out as 0, B_CACHE will be set by 4122 * allocbuf() for the VMIO case prior to it testing the 4123 * backing store for validity. 4124 */ 4125 4126 if (vmio) { 4127 bp->b_flags |= B_VMIO; 4128 KASSERT(vp->v_object == bp->b_bufobj->bo_object, 4129 ("ARGH! different b_bufobj->bo_object %p %p %p\n", 4130 bp, vp->v_object, bp->b_bufobj->bo_object)); 4131 } else { 4132 bp->b_flags &= ~B_VMIO; 4133 KASSERT(bp->b_bufobj->bo_object == NULL, 4134 ("ARGH! has b_bufobj->bo_object %p %p\n", 4135 bp, bp->b_bufobj->bo_object)); 4136 BUF_CHECK_MAPPED(bp); 4137 } 4138 4139 allocbuf(bp, size); 4140 bufspace_release(bufdomain(bp), maxsize); 4141 bp->b_flags &= ~B_DONE; 4142 } 4143 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp); 4144 end: 4145 buf_track(bp, __func__); 4146 KASSERT(bp->b_bufobj == bo, 4147 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 4148 *bpp = bp; 4149 return (0); 4150 } 4151 4152 /* 4153 * Get an empty, disassociated buffer of given size. The buffer is initially 4154 * set to B_INVAL. 4155 */ 4156 struct buf * 4157 geteblk(int size, int flags) 4158 { 4159 struct buf *bp; 4160 int maxsize; 4161 4162 maxsize = (size + BKVAMASK) & ~BKVAMASK; 4163 while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) { 4164 if ((flags & GB_NOWAIT_BD) && 4165 (curthread->td_pflags & TDP_BUFNEED) != 0) 4166 return (NULL); 4167 } 4168 allocbuf(bp, size); 4169 bufspace_release(bufdomain(bp), maxsize); 4170 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 4171 return (bp); 4172 } 4173 4174 /* 4175 * Truncate the backing store for a non-vmio buffer. 4176 */ 4177 static void 4178 vfs_nonvmio_truncate(struct buf *bp, int newbsize) 4179 { 4180 4181 if (bp->b_flags & B_MALLOC) { 4182 /* 4183 * malloced buffers are not shrunk 4184 */ 4185 if (newbsize == 0) { 4186 bufmallocadjust(bp, 0); 4187 free(bp->b_data, M_BIOBUF); 4188 bp->b_data = bp->b_kvabase; 4189 bp->b_flags &= ~B_MALLOC; 4190 } 4191 return; 4192 } 4193 vm_hold_free_pages(bp, newbsize); 4194 bufspace_adjust(bp, newbsize); 4195 } 4196 4197 /* 4198 * Extend the backing for a non-VMIO buffer. 4199 */ 4200 static void 4201 vfs_nonvmio_extend(struct buf *bp, int newbsize) 4202 { 4203 caddr_t origbuf; 4204 int origbufsize; 4205 4206 /* 4207 * We only use malloced memory on the first allocation. 4208 * and revert to page-allocated memory when the buffer 4209 * grows. 4210 * 4211 * There is a potential smp race here that could lead 4212 * to bufmallocspace slightly passing the max. It 4213 * is probably extremely rare and not worth worrying 4214 * over. 4215 */ 4216 if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 && 4217 bufmallocspace < maxbufmallocspace) { 4218 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK); 4219 bp->b_flags |= B_MALLOC; 4220 bufmallocadjust(bp, newbsize); 4221 return; 4222 } 4223 4224 /* 4225 * If the buffer is growing on its other-than-first 4226 * allocation then we revert to the page-allocation 4227 * scheme. 4228 */ 4229 origbuf = NULL; 4230 origbufsize = 0; 4231 if (bp->b_flags & B_MALLOC) { 4232 origbuf = bp->b_data; 4233 origbufsize = bp->b_bufsize; 4234 bp->b_data = bp->b_kvabase; 4235 bufmallocadjust(bp, 0); 4236 bp->b_flags &= ~B_MALLOC; 4237 newbsize = round_page(newbsize); 4238 } 4239 vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize, 4240 (vm_offset_t) bp->b_data + newbsize); 4241 if (origbuf != NULL) { 4242 bcopy(origbuf, bp->b_data, origbufsize); 4243 free(origbuf, M_BIOBUF); 4244 } 4245 bufspace_adjust(bp, newbsize); 4246 } 4247 4248 /* 4249 * This code constitutes the buffer memory from either anonymous system 4250 * memory (in the case of non-VMIO operations) or from an associated 4251 * VM object (in the case of VMIO operations). This code is able to 4252 * resize a buffer up or down. 4253 * 4254 * Note that this code is tricky, and has many complications to resolve 4255 * deadlock or inconsistent data situations. Tread lightly!!! 4256 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 4257 * the caller. Calling this code willy nilly can result in the loss of data. 4258 * 4259 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 4260 * B_CACHE for the non-VMIO case. 4261 */ 4262 int 4263 allocbuf(struct buf *bp, int size) 4264 { 4265 int newbsize; 4266 4267 if (bp->b_bcount == size) 4268 return (1); 4269 4270 if (bp->b_kvasize != 0 && bp->b_kvasize < size) 4271 panic("allocbuf: buffer too small"); 4272 4273 newbsize = roundup2(size, DEV_BSIZE); 4274 if ((bp->b_flags & B_VMIO) == 0) { 4275 if ((bp->b_flags & B_MALLOC) == 0) 4276 newbsize = round_page(newbsize); 4277 /* 4278 * Just get anonymous memory from the kernel. Don't 4279 * mess with B_CACHE. 4280 */ 4281 if (newbsize < bp->b_bufsize) 4282 vfs_nonvmio_truncate(bp, newbsize); 4283 else if (newbsize > bp->b_bufsize) 4284 vfs_nonvmio_extend(bp, newbsize); 4285 } else { 4286 int desiredpages; 4287 4288 desiredpages = (size == 0) ? 0 : 4289 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 4290 4291 if (bp->b_flags & B_MALLOC) 4292 panic("allocbuf: VMIO buffer can't be malloced"); 4293 /* 4294 * Set B_CACHE initially if buffer is 0 length or will become 4295 * 0-length. 4296 */ 4297 if (size == 0 || bp->b_bufsize == 0) 4298 bp->b_flags |= B_CACHE; 4299 4300 if (newbsize < bp->b_bufsize) 4301 vfs_vmio_truncate(bp, desiredpages); 4302 /* XXX This looks as if it should be newbsize > b_bufsize */ 4303 else if (size > bp->b_bcount) 4304 vfs_vmio_extend(bp, desiredpages, size); 4305 bufspace_adjust(bp, newbsize); 4306 } 4307 bp->b_bcount = size; /* requested buffer size. */ 4308 return (1); 4309 } 4310 4311 extern int inflight_transient_maps; 4312 4313 static struct bio_queue nondump_bios; 4314 4315 void 4316 biodone(struct bio *bp) 4317 { 4318 struct mtx *mtxp; 4319 void (*done)(struct bio *); 4320 vm_offset_t start, end; 4321 4322 biotrack(bp, __func__); 4323 4324 /* 4325 * Avoid completing I/O when dumping after a panic since that may 4326 * result in a deadlock in the filesystem or pager code. Note that 4327 * this doesn't affect dumps that were started manually since we aim 4328 * to keep the system usable after it has been resumed. 4329 */ 4330 if (__predict_false(dumping && SCHEDULER_STOPPED())) { 4331 TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue); 4332 return; 4333 } 4334 if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) { 4335 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING; 4336 bp->bio_flags |= BIO_UNMAPPED; 4337 start = trunc_page((vm_offset_t)bp->bio_data); 4338 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length); 4339 bp->bio_data = unmapped_buf; 4340 pmap_qremove(start, atop(end - start)); 4341 vmem_free(transient_arena, start, end - start); 4342 atomic_add_int(&inflight_transient_maps, -1); 4343 } 4344 done = bp->bio_done; 4345 if (done == NULL) { 4346 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4347 mtx_lock(mtxp); 4348 bp->bio_flags |= BIO_DONE; 4349 wakeup(bp); 4350 mtx_unlock(mtxp); 4351 } else 4352 done(bp); 4353 } 4354 4355 /* 4356 * Wait for a BIO to finish. 4357 */ 4358 int 4359 biowait(struct bio *bp, const char *wchan) 4360 { 4361 struct mtx *mtxp; 4362 4363 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4364 mtx_lock(mtxp); 4365 while ((bp->bio_flags & BIO_DONE) == 0) 4366 msleep(bp, mtxp, PRIBIO, wchan, 0); 4367 mtx_unlock(mtxp); 4368 if (bp->bio_error != 0) 4369 return (bp->bio_error); 4370 if (!(bp->bio_flags & BIO_ERROR)) 4371 return (0); 4372 return (EIO); 4373 } 4374 4375 void 4376 biofinish(struct bio *bp, struct devstat *stat, int error) 4377 { 4378 4379 if (error) { 4380 bp->bio_error = error; 4381 bp->bio_flags |= BIO_ERROR; 4382 } 4383 if (stat != NULL) 4384 devstat_end_transaction_bio(stat, bp); 4385 biodone(bp); 4386 } 4387 4388 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4389 void 4390 biotrack_buf(struct bio *bp, const char *location) 4391 { 4392 4393 buf_track(bp->bio_track_bp, location); 4394 } 4395 #endif 4396 4397 /* 4398 * bufwait: 4399 * 4400 * Wait for buffer I/O completion, returning error status. The buffer 4401 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR 4402 * error and cleared. 4403 */ 4404 int 4405 bufwait(struct buf *bp) 4406 { 4407 if (bp->b_iocmd == BIO_READ) 4408 bwait(bp, PRIBIO, "biord"); 4409 else 4410 bwait(bp, PRIBIO, "biowr"); 4411 if (bp->b_flags & B_EINTR) { 4412 bp->b_flags &= ~B_EINTR; 4413 return (EINTR); 4414 } 4415 if (bp->b_ioflags & BIO_ERROR) { 4416 return (bp->b_error ? bp->b_error : EIO); 4417 } else { 4418 return (0); 4419 } 4420 } 4421 4422 /* 4423 * bufdone: 4424 * 4425 * Finish I/O on a buffer, optionally calling a completion function. 4426 * This is usually called from an interrupt so process blocking is 4427 * not allowed. 4428 * 4429 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 4430 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 4431 * assuming B_INVAL is clear. 4432 * 4433 * For the VMIO case, we set B_CACHE if the op was a read and no 4434 * read error occurred, or if the op was a write. B_CACHE is never 4435 * set if the buffer is invalid or otherwise uncacheable. 4436 * 4437 * bufdone does not mess with B_INVAL, allowing the I/O routine or the 4438 * initiator to leave B_INVAL set to brelse the buffer out of existence 4439 * in the biodone routine. 4440 */ 4441 void 4442 bufdone(struct buf *bp) 4443 { 4444 struct bufobj *dropobj; 4445 void (*biodone)(struct buf *); 4446 4447 buf_track(bp, __func__); 4448 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 4449 dropobj = NULL; 4450 4451 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 4452 4453 runningbufwakeup(bp); 4454 if (bp->b_iocmd == BIO_WRITE) 4455 dropobj = bp->b_bufobj; 4456 /* call optional completion function if requested */ 4457 if (bp->b_iodone != NULL) { 4458 biodone = bp->b_iodone; 4459 bp->b_iodone = NULL; 4460 (*biodone) (bp); 4461 if (dropobj) 4462 bufobj_wdrop(dropobj); 4463 return; 4464 } 4465 if (bp->b_flags & B_VMIO) { 4466 /* 4467 * Set B_CACHE if the op was a normal read and no error 4468 * occurred. B_CACHE is set for writes in the b*write() 4469 * routines. 4470 */ 4471 if (bp->b_iocmd == BIO_READ && 4472 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 4473 !(bp->b_ioflags & BIO_ERROR)) 4474 bp->b_flags |= B_CACHE; 4475 vfs_vmio_iodone(bp); 4476 } 4477 if (!LIST_EMPTY(&bp->b_dep)) 4478 buf_complete(bp); 4479 if ((bp->b_flags & B_CKHASH) != 0) { 4480 KASSERT(bp->b_iocmd == BIO_READ, 4481 ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd)); 4482 KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp)); 4483 (*bp->b_ckhashcalc)(bp); 4484 } 4485 /* 4486 * For asynchronous completions, release the buffer now. The brelse 4487 * will do a wakeup there if necessary - so no need to do a wakeup 4488 * here in the async case. The sync case always needs to do a wakeup. 4489 */ 4490 if (bp->b_flags & B_ASYNC) { 4491 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || 4492 (bp->b_ioflags & BIO_ERROR)) 4493 brelse(bp); 4494 else 4495 bqrelse(bp); 4496 } else 4497 bdone(bp); 4498 if (dropobj) 4499 bufobj_wdrop(dropobj); 4500 } 4501 4502 /* 4503 * This routine is called in lieu of iodone in the case of 4504 * incomplete I/O. This keeps the busy status for pages 4505 * consistent. 4506 */ 4507 void 4508 vfs_unbusy_pages(struct buf *bp) 4509 { 4510 int i; 4511 vm_object_t obj; 4512 vm_page_t m; 4513 4514 runningbufwakeup(bp); 4515 if (!(bp->b_flags & B_VMIO)) 4516 return; 4517 4518 obj = bp->b_bufobj->bo_object; 4519 for (i = 0; i < bp->b_npages; i++) { 4520 m = bp->b_pages[i]; 4521 if (m == bogus_page) { 4522 m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i); 4523 if (!m) 4524 panic("vfs_unbusy_pages: page missing\n"); 4525 bp->b_pages[i] = m; 4526 if (buf_mapped(bp)) { 4527 BUF_CHECK_MAPPED(bp); 4528 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4529 bp->b_pages, bp->b_npages); 4530 } else 4531 BUF_CHECK_UNMAPPED(bp); 4532 } 4533 vm_page_sunbusy(m); 4534 } 4535 vm_object_pip_wakeupn(obj, bp->b_npages); 4536 } 4537 4538 /* 4539 * vfs_page_set_valid: 4540 * 4541 * Set the valid bits in a page based on the supplied offset. The 4542 * range is restricted to the buffer's size. 4543 * 4544 * This routine is typically called after a read completes. 4545 */ 4546 static void 4547 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m) 4548 { 4549 vm_ooffset_t eoff; 4550 4551 /* 4552 * Compute the end offset, eoff, such that [off, eoff) does not span a 4553 * page boundary and eoff is not greater than the end of the buffer. 4554 * The end of the buffer, in this case, is our file EOF, not the 4555 * allocation size of the buffer. 4556 */ 4557 eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK; 4558 if (eoff > bp->b_offset + bp->b_bcount) 4559 eoff = bp->b_offset + bp->b_bcount; 4560 4561 /* 4562 * Set valid range. This is typically the entire buffer and thus the 4563 * entire page. 4564 */ 4565 if (eoff > off) 4566 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off); 4567 } 4568 4569 /* 4570 * vfs_page_set_validclean: 4571 * 4572 * Set the valid bits and clear the dirty bits in a page based on the 4573 * supplied offset. The range is restricted to the buffer's size. 4574 */ 4575 static void 4576 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m) 4577 { 4578 vm_ooffset_t soff, eoff; 4579 4580 /* 4581 * Start and end offsets in buffer. eoff - soff may not cross a 4582 * page boundary or cross the end of the buffer. The end of the 4583 * buffer, in this case, is our file EOF, not the allocation size 4584 * of the buffer. 4585 */ 4586 soff = off; 4587 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 4588 if (eoff > bp->b_offset + bp->b_bcount) 4589 eoff = bp->b_offset + bp->b_bcount; 4590 4591 /* 4592 * Set valid range. This is typically the entire buffer and thus the 4593 * entire page. 4594 */ 4595 if (eoff > soff) { 4596 vm_page_set_validclean( 4597 m, 4598 (vm_offset_t) (soff & PAGE_MASK), 4599 (vm_offset_t) (eoff - soff) 4600 ); 4601 } 4602 } 4603 4604 /* 4605 * Acquire a shared busy on all pages in the buf. 4606 */ 4607 void 4608 vfs_busy_pages_acquire(struct buf *bp) 4609 { 4610 int i; 4611 4612 for (i = 0; i < bp->b_npages; i++) 4613 vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY); 4614 } 4615 4616 void 4617 vfs_busy_pages_release(struct buf *bp) 4618 { 4619 int i; 4620 4621 for (i = 0; i < bp->b_npages; i++) 4622 vm_page_sunbusy(bp->b_pages[i]); 4623 } 4624 4625 /* 4626 * This routine is called before a device strategy routine. 4627 * It is used to tell the VM system that paging I/O is in 4628 * progress, and treat the pages associated with the buffer 4629 * almost as being exclusive busy. Also the object paging_in_progress 4630 * flag is handled to make sure that the object doesn't become 4631 * inconsistent. 4632 * 4633 * Since I/O has not been initiated yet, certain buffer flags 4634 * such as BIO_ERROR or B_INVAL may be in an inconsistent state 4635 * and should be ignored. 4636 */ 4637 void 4638 vfs_busy_pages(struct buf *bp, int clear_modify) 4639 { 4640 vm_object_t obj; 4641 vm_ooffset_t foff; 4642 vm_page_t m; 4643 int i; 4644 bool bogus; 4645 4646 if (!(bp->b_flags & B_VMIO)) 4647 return; 4648 4649 obj = bp->b_bufobj->bo_object; 4650 foff = bp->b_offset; 4651 KASSERT(bp->b_offset != NOOFFSET, 4652 ("vfs_busy_pages: no buffer offset")); 4653 if ((bp->b_flags & B_CLUSTER) == 0) { 4654 vm_object_pip_add(obj, bp->b_npages); 4655 vfs_busy_pages_acquire(bp); 4656 } 4657 if (bp->b_bufsize != 0) 4658 vfs_setdirty_range(bp); 4659 bogus = false; 4660 for (i = 0; i < bp->b_npages; i++) { 4661 m = bp->b_pages[i]; 4662 vm_page_assert_sbusied(m); 4663 4664 /* 4665 * When readying a buffer for a read ( i.e 4666 * clear_modify == 0 ), it is important to do 4667 * bogus_page replacement for valid pages in 4668 * partially instantiated buffers. Partially 4669 * instantiated buffers can, in turn, occur when 4670 * reconstituting a buffer from its VM backing store 4671 * base. We only have to do this if B_CACHE is 4672 * clear ( which causes the I/O to occur in the 4673 * first place ). The replacement prevents the read 4674 * I/O from overwriting potentially dirty VM-backed 4675 * pages. XXX bogus page replacement is, uh, bogus. 4676 * It may not work properly with small-block devices. 4677 * We need to find a better way. 4678 */ 4679 if (clear_modify) { 4680 pmap_remove_write(m); 4681 vfs_page_set_validclean(bp, foff, m); 4682 } else if (vm_page_all_valid(m) && 4683 (bp->b_flags & B_CACHE) == 0) { 4684 bp->b_pages[i] = bogus_page; 4685 bogus = true; 4686 } 4687 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 4688 } 4689 if (bogus && buf_mapped(bp)) { 4690 BUF_CHECK_MAPPED(bp); 4691 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4692 bp->b_pages, bp->b_npages); 4693 } 4694 } 4695 4696 /* 4697 * vfs_bio_set_valid: 4698 * 4699 * Set the range within the buffer to valid. The range is 4700 * relative to the beginning of the buffer, b_offset. Note that 4701 * b_offset itself may be offset from the beginning of the first 4702 * page. 4703 */ 4704 void 4705 vfs_bio_set_valid(struct buf *bp, int base, int size) 4706 { 4707 int i, n; 4708 vm_page_t m; 4709 4710 if (!(bp->b_flags & B_VMIO)) 4711 return; 4712 4713 /* 4714 * Fixup base to be relative to beginning of first page. 4715 * Set initial n to be the maximum number of bytes in the 4716 * first page that can be validated. 4717 */ 4718 base += (bp->b_offset & PAGE_MASK); 4719 n = PAGE_SIZE - (base & PAGE_MASK); 4720 4721 /* 4722 * Busy may not be strictly necessary here because the pages are 4723 * unlikely to be fully valid and the vnode lock will synchronize 4724 * their access via getpages. It is grabbed for consistency with 4725 * other page validation. 4726 */ 4727 vfs_busy_pages_acquire(bp); 4728 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4729 m = bp->b_pages[i]; 4730 if (n > size) 4731 n = size; 4732 vm_page_set_valid_range(m, base & PAGE_MASK, n); 4733 base += n; 4734 size -= n; 4735 n = PAGE_SIZE; 4736 } 4737 vfs_busy_pages_release(bp); 4738 } 4739 4740 /* 4741 * vfs_bio_clrbuf: 4742 * 4743 * If the specified buffer is a non-VMIO buffer, clear the entire 4744 * buffer. If the specified buffer is a VMIO buffer, clear and 4745 * validate only the previously invalid portions of the buffer. 4746 * This routine essentially fakes an I/O, so we need to clear 4747 * BIO_ERROR and B_INVAL. 4748 * 4749 * Note that while we only theoretically need to clear through b_bcount, 4750 * we go ahead and clear through b_bufsize. 4751 */ 4752 void 4753 vfs_bio_clrbuf(struct buf *bp) 4754 { 4755 int i, j, mask, sa, ea, slide; 4756 4757 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) { 4758 clrbuf(bp); 4759 return; 4760 } 4761 bp->b_flags &= ~B_INVAL; 4762 bp->b_ioflags &= ~BIO_ERROR; 4763 vfs_busy_pages_acquire(bp); 4764 sa = bp->b_offset & PAGE_MASK; 4765 slide = 0; 4766 for (i = 0; i < bp->b_npages; i++, sa = 0) { 4767 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize); 4768 ea = slide & PAGE_MASK; 4769 if (ea == 0) 4770 ea = PAGE_SIZE; 4771 if (bp->b_pages[i] == bogus_page) 4772 continue; 4773 j = sa / DEV_BSIZE; 4774 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4775 if ((bp->b_pages[i]->valid & mask) == mask) 4776 continue; 4777 if ((bp->b_pages[i]->valid & mask) == 0) 4778 pmap_zero_page_area(bp->b_pages[i], sa, ea - sa); 4779 else { 4780 for (; sa < ea; sa += DEV_BSIZE, j++) { 4781 if ((bp->b_pages[i]->valid & (1 << j)) == 0) { 4782 pmap_zero_page_area(bp->b_pages[i], 4783 sa, DEV_BSIZE); 4784 } 4785 } 4786 } 4787 vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE, 4788 roundup2(ea - sa, DEV_BSIZE)); 4789 } 4790 vfs_busy_pages_release(bp); 4791 bp->b_resid = 0; 4792 } 4793 4794 void 4795 vfs_bio_bzero_buf(struct buf *bp, int base, int size) 4796 { 4797 vm_page_t m; 4798 int i, n; 4799 4800 if (buf_mapped(bp)) { 4801 BUF_CHECK_MAPPED(bp); 4802 bzero(bp->b_data + base, size); 4803 } else { 4804 BUF_CHECK_UNMAPPED(bp); 4805 n = PAGE_SIZE - (base & PAGE_MASK); 4806 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4807 m = bp->b_pages[i]; 4808 if (n > size) 4809 n = size; 4810 pmap_zero_page_area(m, base & PAGE_MASK, n); 4811 base += n; 4812 size -= n; 4813 n = PAGE_SIZE; 4814 } 4815 } 4816 } 4817 4818 /* 4819 * Update buffer flags based on I/O request parameters, optionally releasing the 4820 * buffer. If it's VMIO or direct I/O, the buffer pages are released to the VM, 4821 * where they may be placed on a page queue (VMIO) or freed immediately (direct 4822 * I/O). Otherwise the buffer is released to the cache. 4823 */ 4824 static void 4825 b_io_dismiss(struct buf *bp, int ioflag, bool release) 4826 { 4827 4828 KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0, 4829 ("buf %p non-VMIO noreuse", bp)); 4830 4831 if ((ioflag & IO_DIRECT) != 0) 4832 bp->b_flags |= B_DIRECT; 4833 if ((ioflag & IO_EXT) != 0) 4834 bp->b_xflags |= BX_ALTDATA; 4835 if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) { 4836 bp->b_flags |= B_RELBUF; 4837 if ((ioflag & IO_NOREUSE) != 0) 4838 bp->b_flags |= B_NOREUSE; 4839 if (release) 4840 brelse(bp); 4841 } else if (release) 4842 bqrelse(bp); 4843 } 4844 4845 void 4846 vfs_bio_brelse(struct buf *bp, int ioflag) 4847 { 4848 4849 b_io_dismiss(bp, ioflag, true); 4850 } 4851 4852 void 4853 vfs_bio_set_flags(struct buf *bp, int ioflag) 4854 { 4855 4856 b_io_dismiss(bp, ioflag, false); 4857 } 4858 4859 /* 4860 * vm_hold_load_pages and vm_hold_free_pages get pages into 4861 * a buffers address space. The pages are anonymous and are 4862 * not associated with a file object. 4863 */ 4864 static void 4865 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4866 { 4867 vm_offset_t pg; 4868 vm_page_t p; 4869 int index; 4870 4871 BUF_CHECK_MAPPED(bp); 4872 4873 to = round_page(to); 4874 from = round_page(from); 4875 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4876 MPASS((bp->b_flags & B_MAXPHYS) == 0); 4877 KASSERT(to - from <= maxbcachebuf, 4878 ("vm_hold_load_pages too large %p %#jx %#jx %u", 4879 bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf)); 4880 4881 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4882 /* 4883 * note: must allocate system pages since blocking here 4884 * could interfere with paging I/O, no matter which 4885 * process we are. 4886 */ 4887 p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ | 4888 VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | 4889 VM_ALLOC_WAITOK); 4890 pmap_qenter(pg, &p, 1); 4891 bp->b_pages[index] = p; 4892 } 4893 bp->b_npages = index; 4894 } 4895 4896 /* Return pages associated with this buf to the vm system */ 4897 static void 4898 vm_hold_free_pages(struct buf *bp, int newbsize) 4899 { 4900 vm_offset_t from; 4901 vm_page_t p; 4902 int index, newnpages; 4903 4904 BUF_CHECK_MAPPED(bp); 4905 4906 from = round_page((vm_offset_t)bp->b_data + newbsize); 4907 newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4908 if (bp->b_npages > newnpages) 4909 pmap_qremove(from, bp->b_npages - newnpages); 4910 for (index = newnpages; index < bp->b_npages; index++) { 4911 p = bp->b_pages[index]; 4912 bp->b_pages[index] = NULL; 4913 vm_page_unwire_noq(p); 4914 vm_page_free(p); 4915 } 4916 bp->b_npages = newnpages; 4917 } 4918 4919 /* 4920 * Map an IO request into kernel virtual address space. 4921 * 4922 * All requests are (re)mapped into kernel VA space. 4923 * Notice that we use b_bufsize for the size of the buffer 4924 * to be mapped. b_bcount might be modified by the driver. 4925 * 4926 * Note that even if the caller determines that the address space should 4927 * be valid, a race or a smaller-file mapped into a larger space may 4928 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST 4929 * check the return value. 4930 * 4931 * This function only works with pager buffers. 4932 */ 4933 int 4934 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf) 4935 { 4936 vm_prot_t prot; 4937 int pidx; 4938 4939 MPASS((bp->b_flags & B_MAXPHYS) != 0); 4940 prot = VM_PROT_READ; 4941 if (bp->b_iocmd == BIO_READ) 4942 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 4943 pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 4944 (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES); 4945 if (pidx < 0) 4946 return (-1); 4947 bp->b_bufsize = len; 4948 bp->b_npages = pidx; 4949 bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK; 4950 if (mapbuf || !unmapped_buf_allowed) { 4951 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx); 4952 bp->b_data = bp->b_kvabase + bp->b_offset; 4953 } else 4954 bp->b_data = unmapped_buf; 4955 return (0); 4956 } 4957 4958 /* 4959 * Free the io map PTEs associated with this IO operation. 4960 * We also invalidate the TLB entries and restore the original b_addr. 4961 * 4962 * This function only works with pager buffers. 4963 */ 4964 void 4965 vunmapbuf(struct buf *bp) 4966 { 4967 int npages; 4968 4969 npages = bp->b_npages; 4970 if (buf_mapped(bp)) 4971 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4972 vm_page_unhold_pages(bp->b_pages, npages); 4973 4974 bp->b_data = unmapped_buf; 4975 } 4976 4977 void 4978 bdone(struct buf *bp) 4979 { 4980 struct mtx *mtxp; 4981 4982 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4983 mtx_lock(mtxp); 4984 bp->b_flags |= B_DONE; 4985 wakeup(bp); 4986 mtx_unlock(mtxp); 4987 } 4988 4989 void 4990 bwait(struct buf *bp, u_char pri, const char *wchan) 4991 { 4992 struct mtx *mtxp; 4993 4994 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4995 mtx_lock(mtxp); 4996 while ((bp->b_flags & B_DONE) == 0) 4997 msleep(bp, mtxp, pri, wchan, 0); 4998 mtx_unlock(mtxp); 4999 } 5000 5001 int 5002 bufsync(struct bufobj *bo, int waitfor) 5003 { 5004 5005 return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread)); 5006 } 5007 5008 void 5009 bufstrategy(struct bufobj *bo, struct buf *bp) 5010 { 5011 int i __unused; 5012 struct vnode *vp; 5013 5014 vp = bp->b_vp; 5015 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy")); 5016 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 5017 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp)); 5018 i = VOP_STRATEGY(vp, bp); 5019 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp)); 5020 } 5021 5022 /* 5023 * Initialize a struct bufobj before use. Memory is assumed zero filled. 5024 */ 5025 void 5026 bufobj_init(struct bufobj *bo, void *private) 5027 { 5028 static volatile int bufobj_cleanq; 5029 5030 bo->bo_domain = 5031 atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains; 5032 rw_init(BO_LOCKPTR(bo), "bufobj interlock"); 5033 bo->bo_private = private; 5034 TAILQ_INIT(&bo->bo_clean.bv_hd); 5035 TAILQ_INIT(&bo->bo_dirty.bv_hd); 5036 } 5037 5038 void 5039 bufobj_wrefl(struct bufobj *bo) 5040 { 5041 5042 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 5043 ASSERT_BO_WLOCKED(bo); 5044 bo->bo_numoutput++; 5045 } 5046 5047 void 5048 bufobj_wref(struct bufobj *bo) 5049 { 5050 5051 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 5052 BO_LOCK(bo); 5053 bo->bo_numoutput++; 5054 BO_UNLOCK(bo); 5055 } 5056 5057 void 5058 bufobj_wdrop(struct bufobj *bo) 5059 { 5060 5061 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop")); 5062 BO_LOCK(bo); 5063 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count")); 5064 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) { 5065 bo->bo_flag &= ~BO_WWAIT; 5066 wakeup(&bo->bo_numoutput); 5067 } 5068 BO_UNLOCK(bo); 5069 } 5070 5071 int 5072 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo) 5073 { 5074 int error; 5075 5076 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait")); 5077 ASSERT_BO_WLOCKED(bo); 5078 error = 0; 5079 while (bo->bo_numoutput) { 5080 bo->bo_flag |= BO_WWAIT; 5081 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo), 5082 slpflag | (PRIBIO + 1), "bo_wwait", timeo); 5083 if (error) 5084 break; 5085 } 5086 return (error); 5087 } 5088 5089 /* 5090 * Set bio_data or bio_ma for struct bio from the struct buf. 5091 */ 5092 void 5093 bdata2bio(struct buf *bp, struct bio *bip) 5094 { 5095 5096 if (!buf_mapped(bp)) { 5097 KASSERT(unmapped_buf_allowed, ("unmapped")); 5098 bip->bio_ma = bp->b_pages; 5099 bip->bio_ma_n = bp->b_npages; 5100 bip->bio_data = unmapped_buf; 5101 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 5102 bip->bio_flags |= BIO_UNMAPPED; 5103 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) / 5104 PAGE_SIZE == bp->b_npages, 5105 ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset, 5106 (long long)bip->bio_length, bip->bio_ma_n)); 5107 } else { 5108 bip->bio_data = bp->b_data; 5109 bip->bio_ma = NULL; 5110 } 5111 } 5112 5113 /* 5114 * The MIPS pmap code currently doesn't handle aliased pages. 5115 * The VIPT caches may not handle page aliasing themselves, leading 5116 * to data corruption. 5117 * 5118 * As such, this code makes a system extremely unhappy if said 5119 * system doesn't support unaliasing the above situation in hardware. 5120 * Some "recent" systems (eg some mips24k/mips74k cores) don't enable 5121 * this feature at build time, so it has to be handled in software. 5122 * 5123 * Once the MIPS pmap/cache code grows to support this function on 5124 * earlier chips, it should be flipped back off. 5125 */ 5126 #ifdef __mips__ 5127 static int buf_pager_relbuf = 1; 5128 #else 5129 static int buf_pager_relbuf = 0; 5130 #endif 5131 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN, 5132 &buf_pager_relbuf, 0, 5133 "Make buffer pager release buffers after reading"); 5134 5135 /* 5136 * The buffer pager. It uses buffer reads to validate pages. 5137 * 5138 * In contrast to the generic local pager from vm/vnode_pager.c, this 5139 * pager correctly and easily handles volumes where the underlying 5140 * device block size is greater than the machine page size. The 5141 * buffer cache transparently extends the requested page run to be 5142 * aligned at the block boundary, and does the necessary bogus page 5143 * replacements in the addends to avoid obliterating already valid 5144 * pages. 5145 * 5146 * The only non-trivial issue is that the exclusive busy state for 5147 * pages, which is assumed by the vm_pager_getpages() interface, is 5148 * incompatible with the VMIO buffer cache's desire to share-busy the 5149 * pages. This function performs a trivial downgrade of the pages' 5150 * state before reading buffers, and a less trivial upgrade from the 5151 * shared-busy to excl-busy state after the read. 5152 */ 5153 int 5154 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count, 5155 int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno, 5156 vbg_get_blksize_t get_blksize) 5157 { 5158 vm_page_t m; 5159 vm_object_t object; 5160 struct buf *bp; 5161 struct mount *mp; 5162 daddr_t lbn, lbnp; 5163 vm_ooffset_t la, lb, poff, poffe; 5164 long bsize; 5165 int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b; 5166 bool redo, lpart; 5167 5168 object = vp->v_object; 5169 mp = vp->v_mount; 5170 error = 0; 5171 la = IDX_TO_OFF(ma[count - 1]->pindex); 5172 if (la >= object->un_pager.vnp.vnp_size) 5173 return (VM_PAGER_BAD); 5174 5175 /* 5176 * Change the meaning of la from where the last requested page starts 5177 * to where it ends, because that's the end of the requested region 5178 * and the start of the potential read-ahead region. 5179 */ 5180 la += PAGE_SIZE; 5181 lpart = la > object->un_pager.vnp.vnp_size; 5182 bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex))); 5183 5184 /* 5185 * Calculate read-ahead, behind and total pages. 5186 */ 5187 pgsin = count; 5188 lb = IDX_TO_OFF(ma[0]->pindex); 5189 pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs)); 5190 pgsin += pgsin_b; 5191 if (rbehind != NULL) 5192 *rbehind = pgsin_b; 5193 pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la); 5194 if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size) 5195 pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size, 5196 PAGE_SIZE) - la); 5197 pgsin += pgsin_a; 5198 if (rahead != NULL) 5199 *rahead = pgsin_a; 5200 VM_CNT_INC(v_vnodein); 5201 VM_CNT_ADD(v_vnodepgsin, pgsin); 5202 5203 br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) 5204 != 0) ? GB_UNMAPPED : 0; 5205 again: 5206 for (i = 0; i < count; i++) { 5207 if (ma[i] != bogus_page) 5208 vm_page_busy_downgrade(ma[i]); 5209 } 5210 5211 lbnp = -1; 5212 for (i = 0; i < count; i++) { 5213 m = ma[i]; 5214 if (m == bogus_page) 5215 continue; 5216 5217 /* 5218 * Pages are shared busy and the object lock is not 5219 * owned, which together allow for the pages' 5220 * invalidation. The racy test for validity avoids 5221 * useless creation of the buffer for the most typical 5222 * case when invalidation is not used in redo or for 5223 * parallel read. The shared->excl upgrade loop at 5224 * the end of the function catches the race in a 5225 * reliable way (protected by the object lock). 5226 */ 5227 if (vm_page_all_valid(m)) 5228 continue; 5229 5230 poff = IDX_TO_OFF(m->pindex); 5231 poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size); 5232 for (; poff < poffe; poff += bsize) { 5233 lbn = get_lblkno(vp, poff); 5234 if (lbn == lbnp) 5235 goto next_page; 5236 lbnp = lbn; 5237 5238 bsize = get_blksize(vp, lbn); 5239 error = bread_gb(vp, lbn, bsize, curthread->td_ucred, 5240 br_flags, &bp); 5241 if (error != 0) 5242 goto end_pages; 5243 if (bp->b_rcred == curthread->td_ucred) { 5244 crfree(bp->b_rcred); 5245 bp->b_rcred = NOCRED; 5246 } 5247 if (LIST_EMPTY(&bp->b_dep)) { 5248 /* 5249 * Invalidation clears m->valid, but 5250 * may leave B_CACHE flag if the 5251 * buffer existed at the invalidation 5252 * time. In this case, recycle the 5253 * buffer to do real read on next 5254 * bread() after redo. 5255 * 5256 * Otherwise B_RELBUF is not strictly 5257 * necessary, enable to reduce buf 5258 * cache pressure. 5259 */ 5260 if (buf_pager_relbuf || 5261 !vm_page_all_valid(m)) 5262 bp->b_flags |= B_RELBUF; 5263 5264 bp->b_flags &= ~B_NOCACHE; 5265 brelse(bp); 5266 } else { 5267 bqrelse(bp); 5268 } 5269 } 5270 KASSERT(1 /* racy, enable for debugging */ || 5271 vm_page_all_valid(m) || i == count - 1, 5272 ("buf %d %p invalid", i, m)); 5273 if (i == count - 1 && lpart) { 5274 if (!vm_page_none_valid(m) && 5275 !vm_page_all_valid(m)) 5276 vm_page_zero_invalid(m, TRUE); 5277 } 5278 next_page:; 5279 } 5280 end_pages: 5281 5282 redo = false; 5283 for (i = 0; i < count; i++) { 5284 if (ma[i] == bogus_page) 5285 continue; 5286 if (vm_page_busy_tryupgrade(ma[i]) == 0) { 5287 vm_page_sunbusy(ma[i]); 5288 ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex, 5289 VM_ALLOC_NORMAL); 5290 } 5291 5292 /* 5293 * Since the pages were only sbusy while neither the 5294 * buffer nor the object lock was held by us, or 5295 * reallocated while vm_page_grab() slept for busy 5296 * relinguish, they could have been invalidated. 5297 * Recheck the valid bits and re-read as needed. 5298 * 5299 * Note that the last page is made fully valid in the 5300 * read loop, and partial validity for the page at 5301 * index count - 1 could mean that the page was 5302 * invalidated or removed, so we must restart for 5303 * safety as well. 5304 */ 5305 if (!vm_page_all_valid(ma[i])) 5306 redo = true; 5307 } 5308 if (redo && error == 0) 5309 goto again; 5310 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); 5311 } 5312 5313 #include "opt_ddb.h" 5314 #ifdef DDB 5315 #include <ddb/ddb.h> 5316 5317 /* DDB command to show buffer data */ 5318 DB_SHOW_COMMAND(buffer, db_show_buffer) 5319 { 5320 /* get args */ 5321 struct buf *bp = (struct buf *)addr; 5322 #ifdef FULL_BUF_TRACKING 5323 uint32_t i, j; 5324 #endif 5325 5326 if (!have_addr) { 5327 db_printf("usage: show buffer <addr>\n"); 5328 return; 5329 } 5330 5331 db_printf("buf at %p\n", bp); 5332 db_printf("b_flags = 0x%b, b_xflags=0x%b\n", 5333 (u_int)bp->b_flags, PRINT_BUF_FLAGS, 5334 (u_int)bp->b_xflags, PRINT_BUF_XFLAGS); 5335 db_printf("b_vflags=0x%b b_ioflags0x%b\n", 5336 (u_int)bp->b_vflags, PRINT_BUF_VFLAGS, 5337 (u_int)bp->b_ioflags, PRINT_BIO_FLAGS); 5338 db_printf( 5339 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 5340 "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, " 5341 "b_vp = %p, b_dep = %p\n", 5342 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 5343 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno, 5344 (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first); 5345 db_printf("b_kvabase = %p, b_kvasize = %d\n", 5346 bp->b_kvabase, bp->b_kvasize); 5347 if (bp->b_npages) { 5348 int i; 5349 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 5350 for (i = 0; i < bp->b_npages; i++) { 5351 vm_page_t m; 5352 m = bp->b_pages[i]; 5353 if (m != NULL) 5354 db_printf("(%p, 0x%lx, 0x%lx)", m->object, 5355 (u_long)m->pindex, 5356 (u_long)VM_PAGE_TO_PHYS(m)); 5357 else 5358 db_printf("( ??? )"); 5359 if ((i + 1) < bp->b_npages) 5360 db_printf(","); 5361 } 5362 db_printf("\n"); 5363 } 5364 BUF_LOCKPRINTINFO(bp); 5365 #if defined(FULL_BUF_TRACKING) 5366 db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt); 5367 5368 i = bp->b_io_tcnt % BUF_TRACKING_SIZE; 5369 for (j = 1; j <= BUF_TRACKING_SIZE; j++) { 5370 if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL) 5371 continue; 5372 db_printf(" %2u: %s\n", j, 5373 bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]); 5374 } 5375 #elif defined(BUF_TRACKING) 5376 db_printf("b_io_tracking: %s\n", bp->b_io_tracking); 5377 #endif 5378 db_printf(" "); 5379 } 5380 5381 DB_SHOW_COMMAND(bufqueues, bufqueues) 5382 { 5383 struct bufdomain *bd; 5384 struct buf *bp; 5385 long total; 5386 int i, j, cnt; 5387 5388 db_printf("bqempty: %d\n", bqempty.bq_len); 5389 5390 for (i = 0; i < buf_domains; i++) { 5391 bd = &bdomain[i]; 5392 db_printf("Buf domain %d\n", i); 5393 db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers); 5394 db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers); 5395 db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers); 5396 db_printf("\n"); 5397 db_printf("\tbufspace\t%ld\n", bd->bd_bufspace); 5398 db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace); 5399 db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace); 5400 db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace); 5401 db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh); 5402 db_printf("\n"); 5403 db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers); 5404 db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers); 5405 db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers); 5406 db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh); 5407 db_printf("\n"); 5408 total = 0; 5409 TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist) 5410 total += bp->b_bufsize; 5411 db_printf("\tcleanq count\t%d (%ld)\n", 5412 bd->bd_cleanq->bq_len, total); 5413 total = 0; 5414 TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist) 5415 total += bp->b_bufsize; 5416 db_printf("\tdirtyq count\t%d (%ld)\n", 5417 bd->bd_dirtyq.bq_len, total); 5418 db_printf("\twakeup\t\t%d\n", bd->bd_wanted); 5419 db_printf("\tlim\t\t%d\n", bd->bd_lim); 5420 db_printf("\tCPU "); 5421 for (j = 0; j <= mp_maxid; j++) 5422 db_printf("%d, ", bd->bd_subq[j].bq_len); 5423 db_printf("\n"); 5424 cnt = 0; 5425 total = 0; 5426 for (j = 0; j < nbuf; j++) { 5427 bp = nbufp(j); 5428 if (bp->b_domain == i && BUF_ISLOCKED(bp)) { 5429 cnt++; 5430 total += bp->b_bufsize; 5431 } 5432 } 5433 db_printf("\tLocked buffers: %d space %ld\n", cnt, total); 5434 cnt = 0; 5435 total = 0; 5436 for (j = 0; j < nbuf; j++) { 5437 bp = nbufp(j); 5438 if (bp->b_domain == i) { 5439 cnt++; 5440 total += bp->b_bufsize; 5441 } 5442 } 5443 db_printf("\tTotal buffers: %d space %ld\n", cnt, total); 5444 } 5445 } 5446 5447 DB_SHOW_COMMAND(lockedbufs, lockedbufs) 5448 { 5449 struct buf *bp; 5450 int i; 5451 5452 for (i = 0; i < nbuf; i++) { 5453 bp = nbufp(i); 5454 if (BUF_ISLOCKED(bp)) { 5455 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 5456 db_printf("\n"); 5457 if (db_pager_quit) 5458 break; 5459 } 5460 } 5461 } 5462 5463 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs) 5464 { 5465 struct vnode *vp; 5466 struct buf *bp; 5467 5468 if (!have_addr) { 5469 db_printf("usage: show vnodebufs <addr>\n"); 5470 return; 5471 } 5472 vp = (struct vnode *)addr; 5473 db_printf("Clean buffers:\n"); 5474 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) { 5475 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 5476 db_printf("\n"); 5477 } 5478 db_printf("Dirty buffers:\n"); 5479 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 5480 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 5481 db_printf("\n"); 5482 } 5483 } 5484 5485 DB_COMMAND(countfreebufs, db_coundfreebufs) 5486 { 5487 struct buf *bp; 5488 int i, used = 0, nfree = 0; 5489 5490 if (have_addr) { 5491 db_printf("usage: countfreebufs\n"); 5492 return; 5493 } 5494 5495 for (i = 0; i < nbuf; i++) { 5496 bp = nbufp(i); 5497 if (bp->b_qindex == QUEUE_EMPTY) 5498 nfree++; 5499 else 5500 used++; 5501 } 5502 5503 db_printf("Counted %d free, %d used (%d tot)\n", nfree, used, 5504 nfree + used); 5505 db_printf("numfreebuffers is %d\n", numfreebuffers); 5506 } 5507 #endif /* DDB */ 5508