1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/protosw.h> 50 #include <sys/rwlock.h> 51 #include <sys/sema.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/syscall.h> 55 #include <sys/sysent.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 #include <sys/sx.h> 59 #include <sys/taskqueue.h> 60 #include <sys/vnode.h> 61 #include <sys/conf.h> 62 #include <sys/event.h> 63 #include <sys/mount.h> 64 #include <geom/geom.h> 65 66 #include <machine/atomic.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_page.h> 70 #include <vm/vm_extern.h> 71 #include <vm/pmap.h> 72 #include <vm/vm_map.h> 73 #include <vm/vm_object.h> 74 #include <vm/uma.h> 75 #include <sys/aio.h> 76 77 /* 78 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 79 * overflow. (XXX will be removed soon.) 80 */ 81 static u_long jobrefid; 82 83 /* 84 * Counter for aio_fsync. 85 */ 86 static uint64_t jobseqno; 87 88 #ifndef MAX_AIO_PER_PROC 89 #define MAX_AIO_PER_PROC 32 90 #endif 91 92 #ifndef MAX_AIO_QUEUE_PER_PROC 93 #define MAX_AIO_QUEUE_PER_PROC 256 94 #endif 95 96 #ifndef MAX_AIO_QUEUE 97 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 98 #endif 99 100 #ifndef MAX_BUF_AIO 101 #define MAX_BUF_AIO 16 102 #endif 103 104 FEATURE(aio, "Asynchronous I/O"); 105 SYSCTL_DECL(_p1003_1b); 106 107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 108 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list"); 109 110 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 111 "Async IO management"); 112 113 static int enable_aio_unsafe = 0; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 115 "Permit asynchronous IO on all file types, not just known-safe types"); 116 117 static unsigned int unsafe_warningcnt = 1; 118 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 119 &unsafe_warningcnt, 0, 120 "Warnings that will be triggered upon failed IO requests on unsafe files"); 121 122 static int max_aio_procs = MAX_AIO_PROCS; 123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 124 "Maximum number of kernel processes to use for handling async IO "); 125 126 static int num_aio_procs = 0; 127 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 128 "Number of presently active kernel processes for async IO"); 129 130 /* 131 * The code will adjust the actual number of AIO processes towards this 132 * number when it gets a chance. 133 */ 134 static int target_aio_procs = TARGET_AIO_PROCS; 135 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 136 0, 137 "Preferred number of ready kernel processes for async IO"); 138 139 static int max_queue_count = MAX_AIO_QUEUE; 140 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 141 "Maximum number of aio requests to queue, globally"); 142 143 static int num_queue_count = 0; 144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 145 "Number of queued aio requests"); 146 147 static int num_buf_aio = 0; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 149 "Number of aio requests presently handled by the buf subsystem"); 150 151 static int num_unmapped_aio = 0; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 153 0, 154 "Number of aio requests presently handled by unmapped I/O buffers"); 155 156 /* Number of async I/O processes in the process of being started */ 157 /* XXX This should be local to aio_aqueue() */ 158 static int num_aio_resv_start = 0; 159 160 static int aiod_lifetime; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 162 "Maximum lifetime for idle aiod"); 163 164 static int max_aio_per_proc = MAX_AIO_PER_PROC; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 166 0, 167 "Maximum active aio requests per process"); 168 169 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 171 &max_aio_queue_per_proc, 0, 172 "Maximum queued aio requests per process"); 173 174 static int max_buf_aio = MAX_BUF_AIO; 175 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 176 "Maximum buf aio requests per process"); 177 178 /* 179 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 180 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 181 * vfs.aio.aio_listio_max. 182 */ 183 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 184 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 185 0, "Maximum aio requests for a single lio_listio call"); 186 187 #ifdef COMPAT_FREEBSD6 188 typedef struct oaiocb { 189 int aio_fildes; /* File descriptor */ 190 off_t aio_offset; /* File offset for I/O */ 191 volatile void *aio_buf; /* I/O buffer in process space */ 192 size_t aio_nbytes; /* Number of bytes for I/O */ 193 struct osigevent aio_sigevent; /* Signal to deliver */ 194 int aio_lio_opcode; /* LIO opcode */ 195 int aio_reqprio; /* Request priority -- ignored */ 196 struct __aiocb_private _aiocb_private; 197 } oaiocb_t; 198 #endif 199 200 /* 201 * Below is a key of locks used to protect each member of struct kaiocb 202 * aioliojob and kaioinfo and any backends. 203 * 204 * * - need not protected 205 * a - locked by kaioinfo lock 206 * b - locked by backend lock, the backend lock can be null in some cases, 207 * for example, BIO belongs to this type, in this case, proc lock is 208 * reused. 209 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 210 */ 211 212 /* 213 * If the routine that services an AIO request blocks while running in an 214 * AIO kernel process it can starve other I/O requests. BIO requests 215 * queued via aio_qbio() complete asynchronously and do not use AIO kernel 216 * processes at all. Socket I/O requests use a separate pool of 217 * kprocs and also force non-blocking I/O. Other file I/O requests 218 * use the generic fo_read/fo_write operations which can block. The 219 * fsync and mlock operations can also block while executing. Ideally 220 * none of these requests would block while executing. 221 * 222 * Note that the service routines cannot toggle O_NONBLOCK in the file 223 * structure directly while handling a request due to races with 224 * userland threads. 225 */ 226 227 /* jobflags */ 228 #define KAIOCB_QUEUEING 0x01 229 #define KAIOCB_CANCELLED 0x02 230 #define KAIOCB_CANCELLING 0x04 231 #define KAIOCB_CHECKSYNC 0x08 232 #define KAIOCB_CLEARED 0x10 233 #define KAIOCB_FINISHED 0x20 234 235 /* 236 * AIO process info 237 */ 238 #define AIOP_FREE 0x1 /* proc on free queue */ 239 240 struct aioproc { 241 int aioprocflags; /* (c) AIO proc flags */ 242 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 243 struct proc *aioproc; /* (*) the AIO proc */ 244 }; 245 246 /* 247 * data-structure for lio signal management 248 */ 249 struct aioliojob { 250 int lioj_flags; /* (a) listio flags */ 251 int lioj_count; /* (a) count of jobs */ 252 int lioj_finished_count; /* (a) count of finished jobs */ 253 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 254 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 255 struct knlist klist; /* (a) list of knotes */ 256 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 257 }; 258 259 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 260 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 261 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 262 263 /* 264 * per process aio data structure 265 */ 266 struct kaioinfo { 267 struct mtx kaio_mtx; /* the lock to protect this struct */ 268 int kaio_flags; /* (a) per process kaio flags */ 269 int kaio_active_count; /* (c) number of currently used AIOs */ 270 int kaio_count; /* (a) size of AIO queue */ 271 int kaio_buffer_count; /* (a) number of bio buffers */ 272 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 273 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 274 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 275 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 276 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 277 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 278 struct task kaio_task; /* (*) task to kick aio processes */ 279 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 280 }; 281 282 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 283 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 284 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 285 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 286 287 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 288 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 289 290 /* 291 * Operations used to interact with userland aio control blocks. 292 * Different ABIs provide their own operations. 293 */ 294 struct aiocb_ops { 295 int (*aio_copyin)(struct aiocb *ujob, struct aiocb *kjob); 296 long (*fetch_status)(struct aiocb *ujob); 297 long (*fetch_error)(struct aiocb *ujob); 298 int (*store_status)(struct aiocb *ujob, long status); 299 int (*store_error)(struct aiocb *ujob, long error); 300 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 301 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 302 }; 303 304 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 305 static struct sema aio_newproc_sem; 306 static struct mtx aio_job_mtx; 307 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 308 static struct unrhdr *aiod_unr; 309 310 void aio_init_aioinfo(struct proc *p); 311 static int aio_onceonly(void); 312 static int aio_free_entry(struct kaiocb *job); 313 static void aio_process_rw(struct kaiocb *job); 314 static void aio_process_sync(struct kaiocb *job); 315 static void aio_process_mlock(struct kaiocb *job); 316 static void aio_schedule_fsync(void *context, int pending); 317 static int aio_newproc(int *); 318 int aio_aqueue(struct thread *td, struct aiocb *ujob, 319 struct aioliojob *lio, int type, struct aiocb_ops *ops); 320 static int aio_queue_file(struct file *fp, struct kaiocb *job); 321 static void aio_biowakeup(struct bio *bp); 322 static void aio_proc_rundown(void *arg, struct proc *p); 323 static void aio_proc_rundown_exec(void *arg, struct proc *p, 324 struct image_params *imgp); 325 static int aio_qbio(struct proc *p, struct kaiocb *job); 326 static void aio_daemon(void *param); 327 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 328 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 329 static int aio_kick(struct proc *userp); 330 static void aio_kick_nowait(struct proc *userp); 331 static void aio_kick_helper(void *context, int pending); 332 static int filt_aioattach(struct knote *kn); 333 static void filt_aiodetach(struct knote *kn); 334 static int filt_aio(struct knote *kn, long hint); 335 static int filt_lioattach(struct knote *kn); 336 static void filt_liodetach(struct knote *kn); 337 static int filt_lio(struct knote *kn, long hint); 338 339 /* 340 * Zones for: 341 * kaio Per process async io info 342 * aiop async io process data 343 * aiocb async io jobs 344 * aiolio list io jobs 345 */ 346 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone; 347 348 /* kqueue filters for aio */ 349 static struct filterops aio_filtops = { 350 .f_isfd = 0, 351 .f_attach = filt_aioattach, 352 .f_detach = filt_aiodetach, 353 .f_event = filt_aio, 354 }; 355 static struct filterops lio_filtops = { 356 .f_isfd = 0, 357 .f_attach = filt_lioattach, 358 .f_detach = filt_liodetach, 359 .f_event = filt_lio 360 }; 361 362 static eventhandler_tag exit_tag, exec_tag; 363 364 TASKQUEUE_DEFINE_THREAD(aiod_kick); 365 366 /* 367 * Main operations function for use as a kernel module. 368 */ 369 static int 370 aio_modload(struct module *module, int cmd, void *arg) 371 { 372 int error = 0; 373 374 switch (cmd) { 375 case MOD_LOAD: 376 aio_onceonly(); 377 break; 378 case MOD_SHUTDOWN: 379 break; 380 default: 381 error = EOPNOTSUPP; 382 break; 383 } 384 return (error); 385 } 386 387 static moduledata_t aio_mod = { 388 "aio", 389 &aio_modload, 390 NULL 391 }; 392 393 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 394 MODULE_VERSION(aio, 1); 395 396 /* 397 * Startup initialization 398 */ 399 static int 400 aio_onceonly(void) 401 { 402 403 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 404 EVENTHANDLER_PRI_ANY); 405 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 406 NULL, EVENTHANDLER_PRI_ANY); 407 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 408 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 409 TAILQ_INIT(&aio_freeproc); 410 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 411 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 412 TAILQ_INIT(&aio_jobs); 413 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 414 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 415 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 416 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 417 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 418 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 419 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 420 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 421 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 422 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 423 jobrefid = 1; 424 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 425 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 426 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 427 428 return (0); 429 } 430 431 /* 432 * Init the per-process aioinfo structure. The aioinfo limits are set 433 * per-process for user limit (resource) management. 434 */ 435 void 436 aio_init_aioinfo(struct proc *p) 437 { 438 struct kaioinfo *ki; 439 440 ki = uma_zalloc(kaio_zone, M_WAITOK); 441 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 442 ki->kaio_flags = 0; 443 ki->kaio_active_count = 0; 444 ki->kaio_count = 0; 445 ki->kaio_buffer_count = 0; 446 TAILQ_INIT(&ki->kaio_all); 447 TAILQ_INIT(&ki->kaio_done); 448 TAILQ_INIT(&ki->kaio_jobqueue); 449 TAILQ_INIT(&ki->kaio_liojoblist); 450 TAILQ_INIT(&ki->kaio_syncqueue); 451 TAILQ_INIT(&ki->kaio_syncready); 452 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 453 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 454 PROC_LOCK(p); 455 if (p->p_aioinfo == NULL) { 456 p->p_aioinfo = ki; 457 PROC_UNLOCK(p); 458 } else { 459 PROC_UNLOCK(p); 460 mtx_destroy(&ki->kaio_mtx); 461 uma_zfree(kaio_zone, ki); 462 } 463 464 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 465 aio_newproc(NULL); 466 } 467 468 static int 469 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext) 470 { 471 struct thread *td; 472 int error; 473 474 error = sigev_findtd(p, sigev, &td); 475 if (error) 476 return (error); 477 if (!KSI_ONQ(ksi)) { 478 ksiginfo_set_sigev(ksi, sigev); 479 ksi->ksi_code = SI_ASYNCIO; 480 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0; 481 tdsendsignal(p, td, ksi->ksi_signo, ksi); 482 } 483 PROC_UNLOCK(p); 484 return (error); 485 } 486 487 /* 488 * Free a job entry. Wait for completion if it is currently active, but don't 489 * delay forever. If we delay, we return a flag that says that we have to 490 * restart the queue scan. 491 */ 492 static int 493 aio_free_entry(struct kaiocb *job) 494 { 495 struct kaioinfo *ki; 496 struct aioliojob *lj; 497 struct proc *p; 498 499 p = job->userproc; 500 MPASS(curproc == p); 501 ki = p->p_aioinfo; 502 MPASS(ki != NULL); 503 504 AIO_LOCK_ASSERT(ki, MA_OWNED); 505 MPASS(job->jobflags & KAIOCB_FINISHED); 506 507 atomic_subtract_int(&num_queue_count, 1); 508 509 ki->kaio_count--; 510 MPASS(ki->kaio_count >= 0); 511 512 TAILQ_REMOVE(&ki->kaio_done, job, plist); 513 TAILQ_REMOVE(&ki->kaio_all, job, allist); 514 515 lj = job->lio; 516 if (lj) { 517 lj->lioj_count--; 518 lj->lioj_finished_count--; 519 520 if (lj->lioj_count == 0) { 521 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 522 /* lio is going away, we need to destroy any knotes */ 523 knlist_delete(&lj->klist, curthread, 1); 524 PROC_LOCK(p); 525 sigqueue_take(&lj->lioj_ksi); 526 PROC_UNLOCK(p); 527 uma_zfree(aiolio_zone, lj); 528 } 529 } 530 531 /* job is going away, we need to destroy any knotes */ 532 knlist_delete(&job->klist, curthread, 1); 533 PROC_LOCK(p); 534 sigqueue_take(&job->ksi); 535 PROC_UNLOCK(p); 536 537 AIO_UNLOCK(ki); 538 539 /* 540 * The thread argument here is used to find the owning process 541 * and is also passed to fo_close() which may pass it to various 542 * places such as devsw close() routines. Because of that, we 543 * need a thread pointer from the process owning the job that is 544 * persistent and won't disappear out from under us or move to 545 * another process. 546 * 547 * Currently, all the callers of this function call it to remove 548 * a kaiocb from the current process' job list either via a 549 * syscall or due to the current process calling exit() or 550 * execve(). Thus, we know that p == curproc. We also know that 551 * curthread can't exit since we are curthread. 552 * 553 * Therefore, we use curthread as the thread to pass to 554 * knlist_delete(). This does mean that it is possible for the 555 * thread pointer at close time to differ from the thread pointer 556 * at open time, but this is already true of file descriptors in 557 * a multithreaded process. 558 */ 559 if (job->fd_file) 560 fdrop(job->fd_file, curthread); 561 crfree(job->cred); 562 uma_zfree(aiocb_zone, job); 563 AIO_LOCK(ki); 564 565 return (0); 566 } 567 568 static void 569 aio_proc_rundown_exec(void *arg, struct proc *p, 570 struct image_params *imgp __unused) 571 { 572 aio_proc_rundown(arg, p); 573 } 574 575 static int 576 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 577 { 578 aio_cancel_fn_t *func; 579 int cancelled; 580 581 AIO_LOCK_ASSERT(ki, MA_OWNED); 582 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 583 return (0); 584 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 585 job->jobflags |= KAIOCB_CANCELLED; 586 587 func = job->cancel_fn; 588 589 /* 590 * If there is no cancel routine, just leave the job marked as 591 * cancelled. The job should be in active use by a caller who 592 * should complete it normally or when it fails to install a 593 * cancel routine. 594 */ 595 if (func == NULL) 596 return (0); 597 598 /* 599 * Set the CANCELLING flag so that aio_complete() will defer 600 * completions of this job. This prevents the job from being 601 * freed out from under the cancel callback. After the 602 * callback any deferred completion (whether from the callback 603 * or any other source) will be completed. 604 */ 605 job->jobflags |= KAIOCB_CANCELLING; 606 AIO_UNLOCK(ki); 607 func(job); 608 AIO_LOCK(ki); 609 job->jobflags &= ~KAIOCB_CANCELLING; 610 if (job->jobflags & KAIOCB_FINISHED) { 611 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 612 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 613 aio_bio_done_notify(p, job); 614 } else { 615 /* 616 * The cancel callback might have scheduled an 617 * operation to cancel this request, but it is 618 * only counted as cancelled if the request is 619 * cancelled when the callback returns. 620 */ 621 cancelled = 0; 622 } 623 return (cancelled); 624 } 625 626 /* 627 * Rundown the jobs for a given process. 628 */ 629 static void 630 aio_proc_rundown(void *arg, struct proc *p) 631 { 632 struct kaioinfo *ki; 633 struct aioliojob *lj; 634 struct kaiocb *job, *jobn; 635 636 KASSERT(curthread->td_proc == p, 637 ("%s: called on non-curproc", __func__)); 638 ki = p->p_aioinfo; 639 if (ki == NULL) 640 return; 641 642 AIO_LOCK(ki); 643 ki->kaio_flags |= KAIO_RUNDOWN; 644 645 restart: 646 647 /* 648 * Try to cancel all pending requests. This code simulates 649 * aio_cancel on all pending I/O requests. 650 */ 651 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 652 aio_cancel_job(p, ki, job); 653 } 654 655 /* Wait for all running I/O to be finished */ 656 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 657 ki->kaio_flags |= KAIO_WAKEUP; 658 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 659 goto restart; 660 } 661 662 /* Free all completed I/O requests. */ 663 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 664 aio_free_entry(job); 665 666 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 667 if (lj->lioj_count == 0) { 668 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 669 knlist_delete(&lj->klist, curthread, 1); 670 PROC_LOCK(p); 671 sigqueue_take(&lj->lioj_ksi); 672 PROC_UNLOCK(p); 673 uma_zfree(aiolio_zone, lj); 674 } else { 675 panic("LIO job not cleaned up: C:%d, FC:%d\n", 676 lj->lioj_count, lj->lioj_finished_count); 677 } 678 } 679 AIO_UNLOCK(ki); 680 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 681 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 682 mtx_destroy(&ki->kaio_mtx); 683 uma_zfree(kaio_zone, ki); 684 p->p_aioinfo = NULL; 685 } 686 687 /* 688 * Select a job to run (called by an AIO daemon). 689 */ 690 static struct kaiocb * 691 aio_selectjob(struct aioproc *aiop) 692 { 693 struct kaiocb *job; 694 struct kaioinfo *ki; 695 struct proc *userp; 696 697 mtx_assert(&aio_job_mtx, MA_OWNED); 698 restart: 699 TAILQ_FOREACH(job, &aio_jobs, list) { 700 userp = job->userproc; 701 ki = userp->p_aioinfo; 702 703 if (ki->kaio_active_count < max_aio_per_proc) { 704 TAILQ_REMOVE(&aio_jobs, job, list); 705 if (!aio_clear_cancel_function(job)) 706 goto restart; 707 708 /* Account for currently active jobs. */ 709 ki->kaio_active_count++; 710 break; 711 } 712 } 713 return (job); 714 } 715 716 /* 717 * Move all data to a permanent storage device. This code 718 * simulates the fsync syscall. 719 */ 720 static int 721 aio_fsync_vnode(struct thread *td, struct vnode *vp) 722 { 723 struct mount *mp; 724 int error; 725 726 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 727 goto drop; 728 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 729 if (vp->v_object != NULL) { 730 VM_OBJECT_WLOCK(vp->v_object); 731 vm_object_page_clean(vp->v_object, 0, 0, 0); 732 VM_OBJECT_WUNLOCK(vp->v_object); 733 } 734 error = VOP_FSYNC(vp, MNT_WAIT, td); 735 736 VOP_UNLOCK(vp); 737 vn_finished_write(mp); 738 drop: 739 return (error); 740 } 741 742 /* 743 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 744 * does the I/O request for the non-bio version of the operations. The normal 745 * vn operations are used, and this code should work in all instances for every 746 * type of file, including pipes, sockets, fifos, and regular files. 747 * 748 * XXX I don't think it works well for socket, pipe, and fifo. 749 */ 750 static void 751 aio_process_rw(struct kaiocb *job) 752 { 753 struct ucred *td_savedcred; 754 struct thread *td; 755 struct aiocb *cb; 756 struct file *fp; 757 struct uio auio; 758 struct iovec aiov; 759 ssize_t cnt; 760 long msgsnd_st, msgsnd_end; 761 long msgrcv_st, msgrcv_end; 762 long oublock_st, oublock_end; 763 long inblock_st, inblock_end; 764 int error; 765 766 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 767 job->uaiocb.aio_lio_opcode == LIO_WRITE, 768 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 769 770 aio_switch_vmspace(job); 771 td = curthread; 772 td_savedcred = td->td_ucred; 773 td->td_ucred = job->cred; 774 cb = &job->uaiocb; 775 fp = job->fd_file; 776 777 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 778 aiov.iov_len = cb->aio_nbytes; 779 780 auio.uio_iov = &aiov; 781 auio.uio_iovcnt = 1; 782 auio.uio_offset = cb->aio_offset; 783 auio.uio_resid = cb->aio_nbytes; 784 cnt = cb->aio_nbytes; 785 auio.uio_segflg = UIO_USERSPACE; 786 auio.uio_td = td; 787 788 msgrcv_st = td->td_ru.ru_msgrcv; 789 msgsnd_st = td->td_ru.ru_msgsnd; 790 inblock_st = td->td_ru.ru_inblock; 791 oublock_st = td->td_ru.ru_oublock; 792 793 /* 794 * aio_aqueue() acquires a reference to the file that is 795 * released in aio_free_entry(). 796 */ 797 if (cb->aio_lio_opcode == LIO_READ) { 798 auio.uio_rw = UIO_READ; 799 if (auio.uio_resid == 0) 800 error = 0; 801 else 802 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 803 } else { 804 if (fp->f_type == DTYPE_VNODE) 805 bwillwrite(); 806 auio.uio_rw = UIO_WRITE; 807 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 808 } 809 msgrcv_end = td->td_ru.ru_msgrcv; 810 msgsnd_end = td->td_ru.ru_msgsnd; 811 inblock_end = td->td_ru.ru_inblock; 812 oublock_end = td->td_ru.ru_oublock; 813 814 job->msgrcv = msgrcv_end - msgrcv_st; 815 job->msgsnd = msgsnd_end - msgsnd_st; 816 job->inblock = inblock_end - inblock_st; 817 job->outblock = oublock_end - oublock_st; 818 819 if ((error) && (auio.uio_resid != cnt)) { 820 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 821 error = 0; 822 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 823 PROC_LOCK(job->userproc); 824 kern_psignal(job->userproc, SIGPIPE); 825 PROC_UNLOCK(job->userproc); 826 } 827 } 828 829 cnt -= auio.uio_resid; 830 td->td_ucred = td_savedcred; 831 if (error) 832 aio_complete(job, -1, error); 833 else 834 aio_complete(job, cnt, 0); 835 } 836 837 static void 838 aio_process_sync(struct kaiocb *job) 839 { 840 struct thread *td = curthread; 841 struct ucred *td_savedcred = td->td_ucred; 842 struct file *fp = job->fd_file; 843 int error = 0; 844 845 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 846 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 847 848 td->td_ucred = job->cred; 849 if (fp->f_vnode != NULL) 850 error = aio_fsync_vnode(td, fp->f_vnode); 851 td->td_ucred = td_savedcred; 852 if (error) 853 aio_complete(job, -1, error); 854 else 855 aio_complete(job, 0, 0); 856 } 857 858 static void 859 aio_process_mlock(struct kaiocb *job) 860 { 861 struct aiocb *cb = &job->uaiocb; 862 int error; 863 864 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 865 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 866 867 aio_switch_vmspace(job); 868 error = kern_mlock(job->userproc, job->cred, 869 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 870 aio_complete(job, error != 0 ? -1 : 0, error); 871 } 872 873 static void 874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 875 { 876 struct aioliojob *lj; 877 struct kaioinfo *ki; 878 struct kaiocb *sjob, *sjobn; 879 int lj_done; 880 bool schedule_fsync; 881 882 ki = userp->p_aioinfo; 883 AIO_LOCK_ASSERT(ki, MA_OWNED); 884 lj = job->lio; 885 lj_done = 0; 886 if (lj) { 887 lj->lioj_finished_count++; 888 if (lj->lioj_count == lj->lioj_finished_count) 889 lj_done = 1; 890 } 891 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 892 MPASS(job->jobflags & KAIOCB_FINISHED); 893 894 if (ki->kaio_flags & KAIO_RUNDOWN) 895 goto notification_done; 896 897 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 898 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 899 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true); 900 901 KNOTE_LOCKED(&job->klist, 1); 902 903 if (lj_done) { 904 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 905 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 906 KNOTE_LOCKED(&lj->klist, 1); 907 } 908 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED)) 909 == LIOJ_SIGNAL && 910 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 911 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 912 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi, 913 true); 914 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 915 } 916 } 917 918 notification_done: 919 if (job->jobflags & KAIOCB_CHECKSYNC) { 920 schedule_fsync = false; 921 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 922 if (job->fd_file != sjob->fd_file || 923 job->seqno >= sjob->seqno) 924 continue; 925 if (--sjob->pending > 0) 926 continue; 927 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 928 if (!aio_clear_cancel_function_locked(sjob)) 929 continue; 930 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 931 schedule_fsync = true; 932 } 933 if (schedule_fsync) 934 taskqueue_enqueue(taskqueue_aiod_kick, 935 &ki->kaio_sync_task); 936 } 937 if (ki->kaio_flags & KAIO_WAKEUP) { 938 ki->kaio_flags &= ~KAIO_WAKEUP; 939 wakeup(&userp->p_aioinfo); 940 } 941 } 942 943 static void 944 aio_schedule_fsync(void *context, int pending) 945 { 946 struct kaioinfo *ki; 947 struct kaiocb *job; 948 949 ki = context; 950 AIO_LOCK(ki); 951 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 952 job = TAILQ_FIRST(&ki->kaio_syncready); 953 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 954 AIO_UNLOCK(ki); 955 aio_schedule(job, aio_process_sync); 956 AIO_LOCK(ki); 957 } 958 AIO_UNLOCK(ki); 959 } 960 961 bool 962 aio_cancel_cleared(struct kaiocb *job) 963 { 964 965 /* 966 * The caller should hold the same queue lock held when 967 * aio_clear_cancel_function() was called and set this flag 968 * ensuring this check sees an up-to-date value. However, 969 * there is no way to assert that. 970 */ 971 return ((job->jobflags & KAIOCB_CLEARED) != 0); 972 } 973 974 static bool 975 aio_clear_cancel_function_locked(struct kaiocb *job) 976 { 977 978 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 979 MPASS(job->cancel_fn != NULL); 980 if (job->jobflags & KAIOCB_CANCELLING) { 981 job->jobflags |= KAIOCB_CLEARED; 982 return (false); 983 } 984 job->cancel_fn = NULL; 985 return (true); 986 } 987 988 bool 989 aio_clear_cancel_function(struct kaiocb *job) 990 { 991 struct kaioinfo *ki; 992 bool ret; 993 994 ki = job->userproc->p_aioinfo; 995 AIO_LOCK(ki); 996 ret = aio_clear_cancel_function_locked(job); 997 AIO_UNLOCK(ki); 998 return (ret); 999 } 1000 1001 static bool 1002 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1003 { 1004 1005 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1006 if (job->jobflags & KAIOCB_CANCELLED) 1007 return (false); 1008 job->cancel_fn = func; 1009 return (true); 1010 } 1011 1012 bool 1013 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1014 { 1015 struct kaioinfo *ki; 1016 bool ret; 1017 1018 ki = job->userproc->p_aioinfo; 1019 AIO_LOCK(ki); 1020 ret = aio_set_cancel_function_locked(job, func); 1021 AIO_UNLOCK(ki); 1022 return (ret); 1023 } 1024 1025 void 1026 aio_complete(struct kaiocb *job, long status, int error) 1027 { 1028 struct kaioinfo *ki; 1029 struct proc *userp; 1030 1031 job->uaiocb._aiocb_private.error = error; 1032 job->uaiocb._aiocb_private.status = status; 1033 1034 userp = job->userproc; 1035 ki = userp->p_aioinfo; 1036 1037 AIO_LOCK(ki); 1038 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1039 ("duplicate aio_complete")); 1040 job->jobflags |= KAIOCB_FINISHED; 1041 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1042 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1043 aio_bio_done_notify(userp, job); 1044 } 1045 AIO_UNLOCK(ki); 1046 } 1047 1048 void 1049 aio_cancel(struct kaiocb *job) 1050 { 1051 1052 aio_complete(job, -1, ECANCELED); 1053 } 1054 1055 void 1056 aio_switch_vmspace(struct kaiocb *job) 1057 { 1058 1059 vmspace_switch_aio(job->userproc->p_vmspace); 1060 } 1061 1062 /* 1063 * The AIO daemon, most of the actual work is done in aio_process_*, 1064 * but the setup (and address space mgmt) is done in this routine. 1065 */ 1066 static void 1067 aio_daemon(void *_id) 1068 { 1069 struct kaiocb *job; 1070 struct aioproc *aiop; 1071 struct kaioinfo *ki; 1072 struct proc *p; 1073 struct vmspace *myvm; 1074 struct thread *td = curthread; 1075 int id = (intptr_t)_id; 1076 1077 /* 1078 * Grab an extra reference on the daemon's vmspace so that it 1079 * doesn't get freed by jobs that switch to a different 1080 * vmspace. 1081 */ 1082 p = td->td_proc; 1083 myvm = vmspace_acquire_ref(p); 1084 1085 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1086 1087 /* 1088 * Allocate and ready the aio control info. There is one aiop structure 1089 * per daemon. 1090 */ 1091 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1092 aiop->aioproc = p; 1093 aiop->aioprocflags = 0; 1094 1095 /* 1096 * Wakeup parent process. (Parent sleeps to keep from blasting away 1097 * and creating too many daemons.) 1098 */ 1099 sema_post(&aio_newproc_sem); 1100 1101 mtx_lock(&aio_job_mtx); 1102 for (;;) { 1103 /* 1104 * Take daemon off of free queue 1105 */ 1106 if (aiop->aioprocflags & AIOP_FREE) { 1107 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1108 aiop->aioprocflags &= ~AIOP_FREE; 1109 } 1110 1111 /* 1112 * Check for jobs. 1113 */ 1114 while ((job = aio_selectjob(aiop)) != NULL) { 1115 mtx_unlock(&aio_job_mtx); 1116 1117 ki = job->userproc->p_aioinfo; 1118 job->handle_fn(job); 1119 1120 mtx_lock(&aio_job_mtx); 1121 /* Decrement the active job count. */ 1122 ki->kaio_active_count--; 1123 } 1124 1125 /* 1126 * Disconnect from user address space. 1127 */ 1128 if (p->p_vmspace != myvm) { 1129 mtx_unlock(&aio_job_mtx); 1130 vmspace_switch_aio(myvm); 1131 mtx_lock(&aio_job_mtx); 1132 /* 1133 * We have to restart to avoid race, we only sleep if 1134 * no job can be selected. 1135 */ 1136 continue; 1137 } 1138 1139 mtx_assert(&aio_job_mtx, MA_OWNED); 1140 1141 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1142 aiop->aioprocflags |= AIOP_FREE; 1143 1144 /* 1145 * If daemon is inactive for a long time, allow it to exit, 1146 * thereby freeing resources. 1147 */ 1148 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1149 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1150 (aiop->aioprocflags & AIOP_FREE) && 1151 num_aio_procs > target_aio_procs) 1152 break; 1153 } 1154 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1155 num_aio_procs--; 1156 mtx_unlock(&aio_job_mtx); 1157 uma_zfree(aiop_zone, aiop); 1158 free_unr(aiod_unr, id); 1159 vmspace_free(myvm); 1160 1161 KASSERT(p->p_vmspace == myvm, 1162 ("AIOD: bad vmspace for exiting daemon")); 1163 KASSERT(refcount_load(&myvm->vm_refcnt) > 1, 1164 ("AIOD: bad vm refcnt for exiting daemon: %d", 1165 refcount_load(&myvm->vm_refcnt))); 1166 kproc_exit(0); 1167 } 1168 1169 /* 1170 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1171 * AIO daemon modifies its environment itself. 1172 */ 1173 static int 1174 aio_newproc(int *start) 1175 { 1176 int error; 1177 struct proc *p; 1178 int id; 1179 1180 id = alloc_unr(aiod_unr); 1181 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1182 RFNOWAIT, 0, "aiod%d", id); 1183 if (error == 0) { 1184 /* 1185 * Wait until daemon is started. 1186 */ 1187 sema_wait(&aio_newproc_sem); 1188 mtx_lock(&aio_job_mtx); 1189 num_aio_procs++; 1190 if (start != NULL) 1191 (*start)--; 1192 mtx_unlock(&aio_job_mtx); 1193 } else { 1194 free_unr(aiod_unr, id); 1195 } 1196 return (error); 1197 } 1198 1199 /* 1200 * Try the high-performance, low-overhead bio method for eligible 1201 * VCHR devices. This method doesn't use an aio helper thread, and 1202 * thus has very low overhead. 1203 * 1204 * Assumes that the caller, aio_aqueue(), has incremented the file 1205 * structure's reference count, preventing its deallocation for the 1206 * duration of this call. 1207 */ 1208 static int 1209 aio_qbio(struct proc *p, struct kaiocb *job) 1210 { 1211 struct aiocb *cb; 1212 struct file *fp; 1213 struct bio *bp; 1214 struct buf *pbuf; 1215 struct vnode *vp; 1216 struct cdevsw *csw; 1217 struct cdev *dev; 1218 struct kaioinfo *ki; 1219 struct vm_page **pages; 1220 int error, npages, poff, ref; 1221 vm_prot_t prot; 1222 1223 cb = &job->uaiocb; 1224 fp = job->fd_file; 1225 1226 if (!(cb->aio_lio_opcode == LIO_WRITE || 1227 cb->aio_lio_opcode == LIO_READ)) 1228 return (-1); 1229 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1230 return (-1); 1231 1232 vp = fp->f_vnode; 1233 if (vp->v_type != VCHR) 1234 return (-1); 1235 if (vp->v_bufobj.bo_bsize == 0) 1236 return (-1); 1237 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1238 return (-1); 1239 1240 ref = 0; 1241 csw = devvn_refthread(vp, &dev, &ref); 1242 if (csw == NULL) 1243 return (ENXIO); 1244 1245 if ((csw->d_flags & D_DISK) == 0) { 1246 error = -1; 1247 goto unref; 1248 } 1249 if (cb->aio_nbytes > dev->si_iosize_max) { 1250 error = -1; 1251 goto unref; 1252 } 1253 1254 ki = p->p_aioinfo; 1255 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1256 if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) { 1257 if (cb->aio_nbytes > maxphys) { 1258 error = -1; 1259 goto unref; 1260 } 1261 1262 pbuf = NULL; 1263 pages = malloc(sizeof(vm_page_t) * (atop(round_page( 1264 cb->aio_nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO); 1265 } else { 1266 if (cb->aio_nbytes > maxphys) { 1267 error = -1; 1268 goto unref; 1269 } 1270 if (ki->kaio_buffer_count >= max_buf_aio) { 1271 error = EAGAIN; 1272 goto unref; 1273 } 1274 1275 pbuf = uma_zalloc(pbuf_zone, M_WAITOK); 1276 BUF_KERNPROC(pbuf); 1277 AIO_LOCK(ki); 1278 ki->kaio_buffer_count++; 1279 AIO_UNLOCK(ki); 1280 pages = pbuf->b_pages; 1281 } 1282 bp = g_alloc_bio(); 1283 1284 bp->bio_length = cb->aio_nbytes; 1285 bp->bio_bcount = cb->aio_nbytes; 1286 bp->bio_done = aio_biowakeup; 1287 bp->bio_offset = cb->aio_offset; 1288 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1289 bp->bio_dev = dev; 1290 bp->bio_caller1 = job; 1291 bp->bio_caller2 = pbuf; 1292 1293 prot = VM_PROT_READ; 1294 if (cb->aio_lio_opcode == LIO_READ) 1295 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1296 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1297 (vm_offset_t)cb->aio_buf, bp->bio_length, prot, pages, 1298 atop(maxphys) + 1); 1299 if (npages < 0) { 1300 error = EFAULT; 1301 goto doerror; 1302 } 1303 if (pbuf != NULL) { 1304 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages); 1305 bp->bio_data = pbuf->b_data + poff; 1306 atomic_add_int(&num_buf_aio, 1); 1307 pbuf->b_npages = npages; 1308 } else { 1309 bp->bio_ma = pages; 1310 bp->bio_ma_n = npages; 1311 bp->bio_ma_offset = poff; 1312 bp->bio_data = unmapped_buf; 1313 bp->bio_flags |= BIO_UNMAPPED; 1314 atomic_add_int(&num_unmapped_aio, 1); 1315 } 1316 1317 /* Perform transfer. */ 1318 csw->d_strategy(bp); 1319 dev_relthread(dev, ref); 1320 return (0); 1321 1322 doerror: 1323 if (pbuf != NULL) { 1324 AIO_LOCK(ki); 1325 ki->kaio_buffer_count--; 1326 AIO_UNLOCK(ki); 1327 uma_zfree(pbuf_zone, pbuf); 1328 } else { 1329 free(pages, M_TEMP); 1330 } 1331 g_destroy_bio(bp); 1332 unref: 1333 dev_relthread(dev, ref); 1334 return (error); 1335 } 1336 1337 #ifdef COMPAT_FREEBSD6 1338 static int 1339 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1340 { 1341 1342 /* 1343 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1344 * supported by AIO with the old sigevent structure. 1345 */ 1346 nsig->sigev_notify = osig->sigev_notify; 1347 switch (nsig->sigev_notify) { 1348 case SIGEV_NONE: 1349 break; 1350 case SIGEV_SIGNAL: 1351 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1352 break; 1353 case SIGEV_KEVENT: 1354 nsig->sigev_notify_kqueue = 1355 osig->__sigev_u.__sigev_notify_kqueue; 1356 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1357 break; 1358 default: 1359 return (EINVAL); 1360 } 1361 return (0); 1362 } 1363 1364 static int 1365 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1366 { 1367 struct oaiocb *ojob; 1368 int error; 1369 1370 bzero(kjob, sizeof(struct aiocb)); 1371 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1372 if (error) 1373 return (error); 1374 ojob = (struct oaiocb *)kjob; 1375 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1376 } 1377 #endif 1378 1379 static int 1380 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1381 { 1382 1383 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1384 } 1385 1386 static long 1387 aiocb_fetch_status(struct aiocb *ujob) 1388 { 1389 1390 return (fuword(&ujob->_aiocb_private.status)); 1391 } 1392 1393 static long 1394 aiocb_fetch_error(struct aiocb *ujob) 1395 { 1396 1397 return (fuword(&ujob->_aiocb_private.error)); 1398 } 1399 1400 static int 1401 aiocb_store_status(struct aiocb *ujob, long status) 1402 { 1403 1404 return (suword(&ujob->_aiocb_private.status, status)); 1405 } 1406 1407 static int 1408 aiocb_store_error(struct aiocb *ujob, long error) 1409 { 1410 1411 return (suword(&ujob->_aiocb_private.error, error)); 1412 } 1413 1414 static int 1415 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1416 { 1417 1418 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1419 } 1420 1421 static int 1422 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1423 { 1424 1425 return (suword(ujobp, (long)ujob)); 1426 } 1427 1428 static struct aiocb_ops aiocb_ops = { 1429 .aio_copyin = aiocb_copyin, 1430 .fetch_status = aiocb_fetch_status, 1431 .fetch_error = aiocb_fetch_error, 1432 .store_status = aiocb_store_status, 1433 .store_error = aiocb_store_error, 1434 .store_kernelinfo = aiocb_store_kernelinfo, 1435 .store_aiocb = aiocb_store_aiocb, 1436 }; 1437 1438 #ifdef COMPAT_FREEBSD6 1439 static struct aiocb_ops aiocb_ops_osigevent = { 1440 .aio_copyin = aiocb_copyin_old_sigevent, 1441 .fetch_status = aiocb_fetch_status, 1442 .fetch_error = aiocb_fetch_error, 1443 .store_status = aiocb_store_status, 1444 .store_error = aiocb_store_error, 1445 .store_kernelinfo = aiocb_store_kernelinfo, 1446 .store_aiocb = aiocb_store_aiocb, 1447 }; 1448 #endif 1449 1450 /* 1451 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR 1452 * technique is done in this code. 1453 */ 1454 int 1455 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1456 int type, struct aiocb_ops *ops) 1457 { 1458 struct proc *p = td->td_proc; 1459 struct file *fp; 1460 struct kaiocb *job; 1461 struct kaioinfo *ki; 1462 struct kevent kev; 1463 int opcode; 1464 int error; 1465 int fd, kqfd; 1466 int jid; 1467 u_short evflags; 1468 1469 if (p->p_aioinfo == NULL) 1470 aio_init_aioinfo(p); 1471 1472 ki = p->p_aioinfo; 1473 1474 ops->store_status(ujob, -1); 1475 ops->store_error(ujob, 0); 1476 ops->store_kernelinfo(ujob, -1); 1477 1478 if (num_queue_count >= max_queue_count || 1479 ki->kaio_count >= max_aio_queue_per_proc) { 1480 ops->store_error(ujob, EAGAIN); 1481 return (EAGAIN); 1482 } 1483 1484 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1485 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1486 1487 error = ops->aio_copyin(ujob, &job->uaiocb); 1488 if (error) { 1489 ops->store_error(ujob, error); 1490 uma_zfree(aiocb_zone, job); 1491 return (error); 1492 } 1493 1494 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1495 uma_zfree(aiocb_zone, job); 1496 return (EINVAL); 1497 } 1498 1499 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1500 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1501 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1502 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1503 ops->store_error(ujob, EINVAL); 1504 uma_zfree(aiocb_zone, job); 1505 return (EINVAL); 1506 } 1507 1508 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1509 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1510 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1511 uma_zfree(aiocb_zone, job); 1512 return (EINVAL); 1513 } 1514 1515 ksiginfo_init(&job->ksi); 1516 1517 /* Save userspace address of the job info. */ 1518 job->ujob = ujob; 1519 1520 /* Get the opcode. */ 1521 if (type != LIO_NOP) 1522 job->uaiocb.aio_lio_opcode = type; 1523 opcode = job->uaiocb.aio_lio_opcode; 1524 1525 /* 1526 * Validate the opcode and fetch the file object for the specified 1527 * file descriptor. 1528 * 1529 * XXXRW: Moved the opcode validation up here so that we don't 1530 * retrieve a file descriptor without knowing what the capabiltity 1531 * should be. 1532 */ 1533 fd = job->uaiocb.aio_fildes; 1534 switch (opcode) { 1535 case LIO_WRITE: 1536 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 1537 break; 1538 case LIO_READ: 1539 error = fget_read(td, fd, &cap_pread_rights, &fp); 1540 break; 1541 case LIO_SYNC: 1542 error = fget(td, fd, &cap_fsync_rights, &fp); 1543 break; 1544 case LIO_MLOCK: 1545 fp = NULL; 1546 break; 1547 case LIO_NOP: 1548 error = fget(td, fd, &cap_no_rights, &fp); 1549 break; 1550 default: 1551 error = EINVAL; 1552 } 1553 if (error) { 1554 uma_zfree(aiocb_zone, job); 1555 ops->store_error(ujob, error); 1556 return (error); 1557 } 1558 1559 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1560 error = EINVAL; 1561 goto aqueue_fail; 1562 } 1563 1564 if ((opcode == LIO_READ || opcode == LIO_WRITE) && 1565 job->uaiocb.aio_offset < 0 && 1566 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1567 error = EINVAL; 1568 goto aqueue_fail; 1569 } 1570 1571 job->fd_file = fp; 1572 1573 mtx_lock(&aio_job_mtx); 1574 jid = jobrefid++; 1575 job->seqno = jobseqno++; 1576 mtx_unlock(&aio_job_mtx); 1577 error = ops->store_kernelinfo(ujob, jid); 1578 if (error) { 1579 error = EINVAL; 1580 goto aqueue_fail; 1581 } 1582 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1583 1584 if (opcode == LIO_NOP) { 1585 fdrop(fp, td); 1586 uma_zfree(aiocb_zone, job); 1587 return (0); 1588 } 1589 1590 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1591 goto no_kqueue; 1592 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1593 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1594 error = EINVAL; 1595 goto aqueue_fail; 1596 } 1597 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1598 memset(&kev, 0, sizeof(kev)); 1599 kev.ident = (uintptr_t)job->ujob; 1600 kev.filter = EVFILT_AIO; 1601 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1602 kev.data = (intptr_t)job; 1603 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1604 error = kqfd_register(kqfd, &kev, td, M_WAITOK); 1605 if (error) 1606 goto aqueue_fail; 1607 1608 no_kqueue: 1609 1610 ops->store_error(ujob, EINPROGRESS); 1611 job->uaiocb._aiocb_private.error = EINPROGRESS; 1612 job->userproc = p; 1613 job->cred = crhold(td->td_ucred); 1614 job->jobflags = KAIOCB_QUEUEING; 1615 job->lio = lj; 1616 1617 if (opcode == LIO_MLOCK) { 1618 aio_schedule(job, aio_process_mlock); 1619 error = 0; 1620 } else if (fp->f_ops->fo_aio_queue == NULL) 1621 error = aio_queue_file(fp, job); 1622 else 1623 error = fo_aio_queue(fp, job); 1624 if (error) 1625 goto aqueue_fail; 1626 1627 AIO_LOCK(ki); 1628 job->jobflags &= ~KAIOCB_QUEUEING; 1629 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1630 ki->kaio_count++; 1631 if (lj) 1632 lj->lioj_count++; 1633 atomic_add_int(&num_queue_count, 1); 1634 if (job->jobflags & KAIOCB_FINISHED) { 1635 /* 1636 * The queue callback completed the request synchronously. 1637 * The bulk of the completion is deferred in that case 1638 * until this point. 1639 */ 1640 aio_bio_done_notify(p, job); 1641 } else 1642 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1643 AIO_UNLOCK(ki); 1644 return (0); 1645 1646 aqueue_fail: 1647 knlist_delete(&job->klist, curthread, 0); 1648 if (fp) 1649 fdrop(fp, td); 1650 uma_zfree(aiocb_zone, job); 1651 ops->store_error(ujob, error); 1652 return (error); 1653 } 1654 1655 static void 1656 aio_cancel_daemon_job(struct kaiocb *job) 1657 { 1658 1659 mtx_lock(&aio_job_mtx); 1660 if (!aio_cancel_cleared(job)) 1661 TAILQ_REMOVE(&aio_jobs, job, list); 1662 mtx_unlock(&aio_job_mtx); 1663 aio_cancel(job); 1664 } 1665 1666 void 1667 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1668 { 1669 1670 mtx_lock(&aio_job_mtx); 1671 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1672 mtx_unlock(&aio_job_mtx); 1673 aio_cancel(job); 1674 return; 1675 } 1676 job->handle_fn = func; 1677 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1678 aio_kick_nowait(job->userproc); 1679 mtx_unlock(&aio_job_mtx); 1680 } 1681 1682 static void 1683 aio_cancel_sync(struct kaiocb *job) 1684 { 1685 struct kaioinfo *ki; 1686 1687 ki = job->userproc->p_aioinfo; 1688 AIO_LOCK(ki); 1689 if (!aio_cancel_cleared(job)) 1690 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1691 AIO_UNLOCK(ki); 1692 aio_cancel(job); 1693 } 1694 1695 int 1696 aio_queue_file(struct file *fp, struct kaiocb *job) 1697 { 1698 struct kaioinfo *ki; 1699 struct kaiocb *job2; 1700 struct vnode *vp; 1701 struct mount *mp; 1702 int error; 1703 bool safe; 1704 1705 ki = job->userproc->p_aioinfo; 1706 error = aio_qbio(job->userproc, job); 1707 if (error >= 0) 1708 return (error); 1709 safe = false; 1710 if (fp->f_type == DTYPE_VNODE) { 1711 vp = fp->f_vnode; 1712 if (vp->v_type == VREG || vp->v_type == VDIR) { 1713 mp = fp->f_vnode->v_mount; 1714 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1715 safe = true; 1716 } 1717 } 1718 if (!(safe || enable_aio_unsafe)) { 1719 counted_warning(&unsafe_warningcnt, 1720 "is attempting to use unsafe AIO requests"); 1721 return (EOPNOTSUPP); 1722 } 1723 1724 switch (job->uaiocb.aio_lio_opcode) { 1725 case LIO_READ: 1726 case LIO_WRITE: 1727 aio_schedule(job, aio_process_rw); 1728 error = 0; 1729 break; 1730 case LIO_SYNC: 1731 AIO_LOCK(ki); 1732 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1733 if (job2->fd_file == job->fd_file && 1734 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1735 job2->seqno < job->seqno) { 1736 job2->jobflags |= KAIOCB_CHECKSYNC; 1737 job->pending++; 1738 } 1739 } 1740 if (job->pending != 0) { 1741 if (!aio_set_cancel_function_locked(job, 1742 aio_cancel_sync)) { 1743 AIO_UNLOCK(ki); 1744 aio_cancel(job); 1745 return (0); 1746 } 1747 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1748 AIO_UNLOCK(ki); 1749 return (0); 1750 } 1751 AIO_UNLOCK(ki); 1752 aio_schedule(job, aio_process_sync); 1753 error = 0; 1754 break; 1755 default: 1756 error = EINVAL; 1757 } 1758 return (error); 1759 } 1760 1761 static void 1762 aio_kick_nowait(struct proc *userp) 1763 { 1764 struct kaioinfo *ki = userp->p_aioinfo; 1765 struct aioproc *aiop; 1766 1767 mtx_assert(&aio_job_mtx, MA_OWNED); 1768 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1769 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1770 aiop->aioprocflags &= ~AIOP_FREE; 1771 wakeup(aiop->aioproc); 1772 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1773 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1774 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1775 } 1776 } 1777 1778 static int 1779 aio_kick(struct proc *userp) 1780 { 1781 struct kaioinfo *ki = userp->p_aioinfo; 1782 struct aioproc *aiop; 1783 int error, ret = 0; 1784 1785 mtx_assert(&aio_job_mtx, MA_OWNED); 1786 retryproc: 1787 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1788 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1789 aiop->aioprocflags &= ~AIOP_FREE; 1790 wakeup(aiop->aioproc); 1791 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1792 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1793 num_aio_resv_start++; 1794 mtx_unlock(&aio_job_mtx); 1795 error = aio_newproc(&num_aio_resv_start); 1796 mtx_lock(&aio_job_mtx); 1797 if (error) { 1798 num_aio_resv_start--; 1799 goto retryproc; 1800 } 1801 } else { 1802 ret = -1; 1803 } 1804 return (ret); 1805 } 1806 1807 static void 1808 aio_kick_helper(void *context, int pending) 1809 { 1810 struct proc *userp = context; 1811 1812 mtx_lock(&aio_job_mtx); 1813 while (--pending >= 0) { 1814 if (aio_kick(userp)) 1815 break; 1816 } 1817 mtx_unlock(&aio_job_mtx); 1818 } 1819 1820 /* 1821 * Support the aio_return system call, as a side-effect, kernel resources are 1822 * released. 1823 */ 1824 static int 1825 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1826 { 1827 struct proc *p = td->td_proc; 1828 struct kaiocb *job; 1829 struct kaioinfo *ki; 1830 long status, error; 1831 1832 ki = p->p_aioinfo; 1833 if (ki == NULL) 1834 return (EINVAL); 1835 AIO_LOCK(ki); 1836 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1837 if (job->ujob == ujob) 1838 break; 1839 } 1840 if (job != NULL) { 1841 MPASS(job->jobflags & KAIOCB_FINISHED); 1842 status = job->uaiocb._aiocb_private.status; 1843 error = job->uaiocb._aiocb_private.error; 1844 td->td_retval[0] = status; 1845 td->td_ru.ru_oublock += job->outblock; 1846 td->td_ru.ru_inblock += job->inblock; 1847 td->td_ru.ru_msgsnd += job->msgsnd; 1848 td->td_ru.ru_msgrcv += job->msgrcv; 1849 aio_free_entry(job); 1850 AIO_UNLOCK(ki); 1851 ops->store_error(ujob, error); 1852 ops->store_status(ujob, status); 1853 } else { 1854 error = EINVAL; 1855 AIO_UNLOCK(ki); 1856 } 1857 return (error); 1858 } 1859 1860 int 1861 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1862 { 1863 1864 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1865 } 1866 1867 /* 1868 * Allow a process to wakeup when any of the I/O requests are completed. 1869 */ 1870 static int 1871 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1872 struct timespec *ts) 1873 { 1874 struct proc *p = td->td_proc; 1875 struct timeval atv; 1876 struct kaioinfo *ki; 1877 struct kaiocb *firstjob, *job; 1878 int error, i, timo; 1879 1880 timo = 0; 1881 if (ts) { 1882 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1883 return (EINVAL); 1884 1885 TIMESPEC_TO_TIMEVAL(&atv, ts); 1886 if (itimerfix(&atv)) 1887 return (EINVAL); 1888 timo = tvtohz(&atv); 1889 } 1890 1891 ki = p->p_aioinfo; 1892 if (ki == NULL) 1893 return (EAGAIN); 1894 1895 if (njoblist == 0) 1896 return (0); 1897 1898 AIO_LOCK(ki); 1899 for (;;) { 1900 firstjob = NULL; 1901 error = 0; 1902 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1903 for (i = 0; i < njoblist; i++) { 1904 if (job->ujob == ujoblist[i]) { 1905 if (firstjob == NULL) 1906 firstjob = job; 1907 if (job->jobflags & KAIOCB_FINISHED) 1908 goto RETURN; 1909 } 1910 } 1911 } 1912 /* All tasks were finished. */ 1913 if (firstjob == NULL) 1914 break; 1915 1916 ki->kaio_flags |= KAIO_WAKEUP; 1917 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1918 "aiospn", timo); 1919 if (error == ERESTART) 1920 error = EINTR; 1921 if (error) 1922 break; 1923 } 1924 RETURN: 1925 AIO_UNLOCK(ki); 1926 return (error); 1927 } 1928 1929 int 1930 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1931 { 1932 struct timespec ts, *tsp; 1933 struct aiocb **ujoblist; 1934 int error; 1935 1936 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 1937 return (EINVAL); 1938 1939 if (uap->timeout) { 1940 /* Get timespec struct. */ 1941 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1942 return (error); 1943 tsp = &ts; 1944 } else 1945 tsp = NULL; 1946 1947 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 1948 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1949 if (error == 0) 1950 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1951 free(ujoblist, M_AIOS); 1952 return (error); 1953 } 1954 1955 /* 1956 * aio_cancel cancels any non-bio aio operations not currently in progress. 1957 */ 1958 int 1959 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1960 { 1961 struct proc *p = td->td_proc; 1962 struct kaioinfo *ki; 1963 struct kaiocb *job, *jobn; 1964 struct file *fp; 1965 int error; 1966 int cancelled = 0; 1967 int notcancelled = 0; 1968 struct vnode *vp; 1969 1970 /* Lookup file object. */ 1971 error = fget(td, uap->fd, &cap_no_rights, &fp); 1972 if (error) 1973 return (error); 1974 1975 ki = p->p_aioinfo; 1976 if (ki == NULL) 1977 goto done; 1978 1979 if (fp->f_type == DTYPE_VNODE) { 1980 vp = fp->f_vnode; 1981 if (vn_isdisk(vp)) { 1982 fdrop(fp, td); 1983 td->td_retval[0] = AIO_NOTCANCELED; 1984 return (0); 1985 } 1986 } 1987 1988 AIO_LOCK(ki); 1989 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 1990 if ((uap->fd == job->uaiocb.aio_fildes) && 1991 ((uap->aiocbp == NULL) || 1992 (uap->aiocbp == job->ujob))) { 1993 if (aio_cancel_job(p, ki, job)) { 1994 cancelled++; 1995 } else { 1996 notcancelled++; 1997 } 1998 if (uap->aiocbp != NULL) 1999 break; 2000 } 2001 } 2002 AIO_UNLOCK(ki); 2003 2004 done: 2005 fdrop(fp, td); 2006 2007 if (uap->aiocbp != NULL) { 2008 if (cancelled) { 2009 td->td_retval[0] = AIO_CANCELED; 2010 return (0); 2011 } 2012 } 2013 2014 if (notcancelled) { 2015 td->td_retval[0] = AIO_NOTCANCELED; 2016 return (0); 2017 } 2018 2019 if (cancelled) { 2020 td->td_retval[0] = AIO_CANCELED; 2021 return (0); 2022 } 2023 2024 td->td_retval[0] = AIO_ALLDONE; 2025 2026 return (0); 2027 } 2028 2029 /* 2030 * aio_error is implemented in the kernel level for compatibility purposes 2031 * only. For a user mode async implementation, it would be best to do it in 2032 * a userland subroutine. 2033 */ 2034 static int 2035 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2036 { 2037 struct proc *p = td->td_proc; 2038 struct kaiocb *job; 2039 struct kaioinfo *ki; 2040 int status; 2041 2042 ki = p->p_aioinfo; 2043 if (ki == NULL) { 2044 td->td_retval[0] = EINVAL; 2045 return (0); 2046 } 2047 2048 AIO_LOCK(ki); 2049 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2050 if (job->ujob == ujob) { 2051 if (job->jobflags & KAIOCB_FINISHED) 2052 td->td_retval[0] = 2053 job->uaiocb._aiocb_private.error; 2054 else 2055 td->td_retval[0] = EINPROGRESS; 2056 AIO_UNLOCK(ki); 2057 return (0); 2058 } 2059 } 2060 AIO_UNLOCK(ki); 2061 2062 /* 2063 * Hack for failure of aio_aqueue. 2064 */ 2065 status = ops->fetch_status(ujob); 2066 if (status == -1) { 2067 td->td_retval[0] = ops->fetch_error(ujob); 2068 return (0); 2069 } 2070 2071 td->td_retval[0] = EINVAL; 2072 return (0); 2073 } 2074 2075 int 2076 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2077 { 2078 2079 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2080 } 2081 2082 /* syscall - asynchronous read from a file (REALTIME) */ 2083 #ifdef COMPAT_FREEBSD6 2084 int 2085 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2086 { 2087 2088 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2089 &aiocb_ops_osigevent)); 2090 } 2091 #endif 2092 2093 int 2094 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2095 { 2096 2097 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2098 } 2099 2100 /* syscall - asynchronous write to a file (REALTIME) */ 2101 #ifdef COMPAT_FREEBSD6 2102 int 2103 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2104 { 2105 2106 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2107 &aiocb_ops_osigevent)); 2108 } 2109 #endif 2110 2111 int 2112 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2113 { 2114 2115 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2116 } 2117 2118 int 2119 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2120 { 2121 2122 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2123 } 2124 2125 static int 2126 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2127 struct aiocb **acb_list, int nent, struct sigevent *sig, 2128 struct aiocb_ops *ops) 2129 { 2130 struct proc *p = td->td_proc; 2131 struct aiocb *job; 2132 struct kaioinfo *ki; 2133 struct aioliojob *lj; 2134 struct kevent kev; 2135 int error; 2136 int nagain, nerror; 2137 int i; 2138 2139 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2140 return (EINVAL); 2141 2142 if (nent < 0 || nent > max_aio_queue_per_proc) 2143 return (EINVAL); 2144 2145 if (p->p_aioinfo == NULL) 2146 aio_init_aioinfo(p); 2147 2148 ki = p->p_aioinfo; 2149 2150 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2151 lj->lioj_flags = 0; 2152 lj->lioj_count = 0; 2153 lj->lioj_finished_count = 0; 2154 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2155 ksiginfo_init(&lj->lioj_ksi); 2156 2157 /* 2158 * Setup signal. 2159 */ 2160 if (sig && (mode == LIO_NOWAIT)) { 2161 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2162 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2163 /* Assume only new style KEVENT */ 2164 memset(&kev, 0, sizeof(kev)); 2165 kev.filter = EVFILT_LIO; 2166 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2167 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2168 kev.data = (intptr_t)lj; 2169 /* pass user defined sigval data */ 2170 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2171 error = kqfd_register( 2172 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 2173 M_WAITOK); 2174 if (error) { 2175 uma_zfree(aiolio_zone, lj); 2176 return (error); 2177 } 2178 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2179 ; 2180 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2181 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2182 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2183 uma_zfree(aiolio_zone, lj); 2184 return EINVAL; 2185 } 2186 lj->lioj_flags |= LIOJ_SIGNAL; 2187 } else { 2188 uma_zfree(aiolio_zone, lj); 2189 return EINVAL; 2190 } 2191 } 2192 2193 AIO_LOCK(ki); 2194 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2195 /* 2196 * Add extra aiocb count to avoid the lio to be freed 2197 * by other threads doing aio_waitcomplete or aio_return, 2198 * and prevent event from being sent until we have queued 2199 * all tasks. 2200 */ 2201 lj->lioj_count = 1; 2202 AIO_UNLOCK(ki); 2203 2204 /* 2205 * Get pointers to the list of I/O requests. 2206 */ 2207 nagain = 0; 2208 nerror = 0; 2209 for (i = 0; i < nent; i++) { 2210 job = acb_list[i]; 2211 if (job != NULL) { 2212 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2213 if (error == EAGAIN) 2214 nagain++; 2215 else if (error != 0) 2216 nerror++; 2217 } 2218 } 2219 2220 error = 0; 2221 AIO_LOCK(ki); 2222 if (mode == LIO_WAIT) { 2223 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2224 ki->kaio_flags |= KAIO_WAKEUP; 2225 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2226 PRIBIO | PCATCH, "aiospn", 0); 2227 if (error == ERESTART) 2228 error = EINTR; 2229 if (error) 2230 break; 2231 } 2232 } else { 2233 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2234 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2235 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2236 KNOTE_LOCKED(&lj->klist, 1); 2237 } 2238 if ((lj->lioj_flags & (LIOJ_SIGNAL | 2239 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && 2240 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2241 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2242 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi, 2243 lj->lioj_count != 1); 2244 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2245 } 2246 } 2247 } 2248 lj->lioj_count--; 2249 if (lj->lioj_count == 0) { 2250 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2251 knlist_delete(&lj->klist, curthread, 1); 2252 PROC_LOCK(p); 2253 sigqueue_take(&lj->lioj_ksi); 2254 PROC_UNLOCK(p); 2255 AIO_UNLOCK(ki); 2256 uma_zfree(aiolio_zone, lj); 2257 } else 2258 AIO_UNLOCK(ki); 2259 2260 if (nerror) 2261 return (EIO); 2262 else if (nagain) 2263 return (EAGAIN); 2264 else 2265 return (error); 2266 } 2267 2268 /* syscall - list directed I/O (REALTIME) */ 2269 #ifdef COMPAT_FREEBSD6 2270 int 2271 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2272 { 2273 struct aiocb **acb_list; 2274 struct sigevent *sigp, sig; 2275 struct osigevent osig; 2276 int error, nent; 2277 2278 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2279 return (EINVAL); 2280 2281 nent = uap->nent; 2282 if (nent < 0 || nent > max_aio_queue_per_proc) 2283 return (EINVAL); 2284 2285 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2286 error = copyin(uap->sig, &osig, sizeof(osig)); 2287 if (error) 2288 return (error); 2289 error = convert_old_sigevent(&osig, &sig); 2290 if (error) 2291 return (error); 2292 sigp = &sig; 2293 } else 2294 sigp = NULL; 2295 2296 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2297 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2298 if (error == 0) 2299 error = kern_lio_listio(td, uap->mode, 2300 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2301 &aiocb_ops_osigevent); 2302 free(acb_list, M_LIO); 2303 return (error); 2304 } 2305 #endif 2306 2307 /* syscall - list directed I/O (REALTIME) */ 2308 int 2309 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2310 { 2311 struct aiocb **acb_list; 2312 struct sigevent *sigp, sig; 2313 int error, nent; 2314 2315 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2316 return (EINVAL); 2317 2318 nent = uap->nent; 2319 if (nent < 0 || nent > max_aio_queue_per_proc) 2320 return (EINVAL); 2321 2322 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2323 error = copyin(uap->sig, &sig, sizeof(sig)); 2324 if (error) 2325 return (error); 2326 sigp = &sig; 2327 } else 2328 sigp = NULL; 2329 2330 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2331 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2332 if (error == 0) 2333 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2334 nent, sigp, &aiocb_ops); 2335 free(acb_list, M_LIO); 2336 return (error); 2337 } 2338 2339 static void 2340 aio_biowakeup(struct bio *bp) 2341 { 2342 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2343 struct kaioinfo *ki; 2344 struct buf *pbuf = (struct buf*)bp->bio_caller2; 2345 size_t nbytes; 2346 int error, nblks; 2347 2348 /* Release mapping into kernel space. */ 2349 if (pbuf != NULL) { 2350 MPASS(pbuf->b_npages <= atop(maxphys) + 1); 2351 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages); 2352 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages); 2353 uma_zfree(pbuf_zone, pbuf); 2354 atomic_subtract_int(&num_buf_aio, 1); 2355 ki = job->userproc->p_aioinfo; 2356 AIO_LOCK(ki); 2357 ki->kaio_buffer_count--; 2358 AIO_UNLOCK(ki); 2359 } else { 2360 MPASS(bp->bio_ma_n <= atop(maxphys) + 1); 2361 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n); 2362 free(bp->bio_ma, M_TEMP); 2363 atomic_subtract_int(&num_unmapped_aio, 1); 2364 } 2365 2366 nbytes = job->uaiocb.aio_nbytes - bp->bio_resid; 2367 error = 0; 2368 if (bp->bio_flags & BIO_ERROR) 2369 error = bp->bio_error; 2370 nblks = btodb(nbytes); 2371 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2372 job->outblock += nblks; 2373 else 2374 job->inblock += nblks; 2375 2376 if (error) 2377 aio_complete(job, -1, error); 2378 else 2379 aio_complete(job, nbytes, 0); 2380 2381 g_destroy_bio(bp); 2382 } 2383 2384 /* syscall - wait for the next completion of an aio request */ 2385 static int 2386 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2387 struct timespec *ts, struct aiocb_ops *ops) 2388 { 2389 struct proc *p = td->td_proc; 2390 struct timeval atv; 2391 struct kaioinfo *ki; 2392 struct kaiocb *job; 2393 struct aiocb *ujob; 2394 long error, status; 2395 int timo; 2396 2397 ops->store_aiocb(ujobp, NULL); 2398 2399 if (ts == NULL) { 2400 timo = 0; 2401 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2402 timo = -1; 2403 } else { 2404 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2405 return (EINVAL); 2406 2407 TIMESPEC_TO_TIMEVAL(&atv, ts); 2408 if (itimerfix(&atv)) 2409 return (EINVAL); 2410 timo = tvtohz(&atv); 2411 } 2412 2413 if (p->p_aioinfo == NULL) 2414 aio_init_aioinfo(p); 2415 ki = p->p_aioinfo; 2416 2417 error = 0; 2418 job = NULL; 2419 AIO_LOCK(ki); 2420 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2421 if (timo == -1) { 2422 error = EWOULDBLOCK; 2423 break; 2424 } 2425 ki->kaio_flags |= KAIO_WAKEUP; 2426 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2427 "aiowc", timo); 2428 if (timo && error == ERESTART) 2429 error = EINTR; 2430 if (error) 2431 break; 2432 } 2433 2434 if (job != NULL) { 2435 MPASS(job->jobflags & KAIOCB_FINISHED); 2436 ujob = job->ujob; 2437 status = job->uaiocb._aiocb_private.status; 2438 error = job->uaiocb._aiocb_private.error; 2439 td->td_retval[0] = status; 2440 td->td_ru.ru_oublock += job->outblock; 2441 td->td_ru.ru_inblock += job->inblock; 2442 td->td_ru.ru_msgsnd += job->msgsnd; 2443 td->td_ru.ru_msgrcv += job->msgrcv; 2444 aio_free_entry(job); 2445 AIO_UNLOCK(ki); 2446 ops->store_aiocb(ujobp, ujob); 2447 ops->store_error(ujob, error); 2448 ops->store_status(ujob, status); 2449 } else 2450 AIO_UNLOCK(ki); 2451 2452 return (error); 2453 } 2454 2455 int 2456 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2457 { 2458 struct timespec ts, *tsp; 2459 int error; 2460 2461 if (uap->timeout) { 2462 /* Get timespec struct. */ 2463 error = copyin(uap->timeout, &ts, sizeof(ts)); 2464 if (error) 2465 return (error); 2466 tsp = &ts; 2467 } else 2468 tsp = NULL; 2469 2470 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2471 } 2472 2473 static int 2474 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2475 struct aiocb_ops *ops) 2476 { 2477 2478 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2479 return (EINVAL); 2480 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2481 } 2482 2483 int 2484 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2485 { 2486 2487 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2488 } 2489 2490 /* kqueue attach function */ 2491 static int 2492 filt_aioattach(struct knote *kn) 2493 { 2494 struct kaiocb *job; 2495 2496 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2497 2498 /* 2499 * The job pointer must be validated before using it, so 2500 * registration is restricted to the kernel; the user cannot 2501 * set EV_FLAG1. 2502 */ 2503 if ((kn->kn_flags & EV_FLAG1) == 0) 2504 return (EPERM); 2505 kn->kn_ptr.p_aio = job; 2506 kn->kn_flags &= ~EV_FLAG1; 2507 2508 knlist_add(&job->klist, kn, 0); 2509 2510 return (0); 2511 } 2512 2513 /* kqueue detach function */ 2514 static void 2515 filt_aiodetach(struct knote *kn) 2516 { 2517 struct knlist *knl; 2518 2519 knl = &kn->kn_ptr.p_aio->klist; 2520 knl->kl_lock(knl->kl_lockarg); 2521 if (!knlist_empty(knl)) 2522 knlist_remove(knl, kn, 1); 2523 knl->kl_unlock(knl->kl_lockarg); 2524 } 2525 2526 /* kqueue filter function */ 2527 /*ARGSUSED*/ 2528 static int 2529 filt_aio(struct knote *kn, long hint) 2530 { 2531 struct kaiocb *job = kn->kn_ptr.p_aio; 2532 2533 kn->kn_data = job->uaiocb._aiocb_private.error; 2534 if (!(job->jobflags & KAIOCB_FINISHED)) 2535 return (0); 2536 kn->kn_flags |= EV_EOF; 2537 return (1); 2538 } 2539 2540 /* kqueue attach function */ 2541 static int 2542 filt_lioattach(struct knote *kn) 2543 { 2544 struct aioliojob *lj; 2545 2546 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2547 2548 /* 2549 * The aioliojob pointer must be validated before using it, so 2550 * registration is restricted to the kernel; the user cannot 2551 * set EV_FLAG1. 2552 */ 2553 if ((kn->kn_flags & EV_FLAG1) == 0) 2554 return (EPERM); 2555 kn->kn_ptr.p_lio = lj; 2556 kn->kn_flags &= ~EV_FLAG1; 2557 2558 knlist_add(&lj->klist, kn, 0); 2559 2560 return (0); 2561 } 2562 2563 /* kqueue detach function */ 2564 static void 2565 filt_liodetach(struct knote *kn) 2566 { 2567 struct knlist *knl; 2568 2569 knl = &kn->kn_ptr.p_lio->klist; 2570 knl->kl_lock(knl->kl_lockarg); 2571 if (!knlist_empty(knl)) 2572 knlist_remove(knl, kn, 1); 2573 knl->kl_unlock(knl->kl_lockarg); 2574 } 2575 2576 /* kqueue filter function */ 2577 /*ARGSUSED*/ 2578 static int 2579 filt_lio(struct knote *kn, long hint) 2580 { 2581 struct aioliojob * lj = kn->kn_ptr.p_lio; 2582 2583 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2584 } 2585 2586 #ifdef COMPAT_FREEBSD32 2587 #include <sys/mount.h> 2588 #include <sys/socket.h> 2589 #include <compat/freebsd32/freebsd32.h> 2590 #include <compat/freebsd32/freebsd32_proto.h> 2591 #include <compat/freebsd32/freebsd32_signal.h> 2592 #include <compat/freebsd32/freebsd32_syscall.h> 2593 #include <compat/freebsd32/freebsd32_util.h> 2594 2595 struct __aiocb_private32 { 2596 int32_t status; 2597 int32_t error; 2598 uint32_t kernelinfo; 2599 }; 2600 2601 #ifdef COMPAT_FREEBSD6 2602 typedef struct oaiocb32 { 2603 int aio_fildes; /* File descriptor */ 2604 uint64_t aio_offset __packed; /* File offset for I/O */ 2605 uint32_t aio_buf; /* I/O buffer in process space */ 2606 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2607 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2608 int aio_lio_opcode; /* LIO opcode */ 2609 int aio_reqprio; /* Request priority -- ignored */ 2610 struct __aiocb_private32 _aiocb_private; 2611 } oaiocb32_t; 2612 #endif 2613 2614 typedef struct aiocb32 { 2615 int32_t aio_fildes; /* File descriptor */ 2616 uint64_t aio_offset __packed; /* File offset for I/O */ 2617 uint32_t aio_buf; /* I/O buffer in process space */ 2618 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2619 int __spare__[2]; 2620 uint32_t __spare2__; 2621 int aio_lio_opcode; /* LIO opcode */ 2622 int aio_reqprio; /* Request priority -- ignored */ 2623 struct __aiocb_private32 _aiocb_private; 2624 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2625 } aiocb32_t; 2626 2627 #ifdef COMPAT_FREEBSD6 2628 static int 2629 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2630 { 2631 2632 /* 2633 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2634 * supported by AIO with the old sigevent structure. 2635 */ 2636 CP(*osig, *nsig, sigev_notify); 2637 switch (nsig->sigev_notify) { 2638 case SIGEV_NONE: 2639 break; 2640 case SIGEV_SIGNAL: 2641 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2642 break; 2643 case SIGEV_KEVENT: 2644 nsig->sigev_notify_kqueue = 2645 osig->__sigev_u.__sigev_notify_kqueue; 2646 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2647 break; 2648 default: 2649 return (EINVAL); 2650 } 2651 return (0); 2652 } 2653 2654 static int 2655 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2656 { 2657 struct oaiocb32 job32; 2658 int error; 2659 2660 bzero(kjob, sizeof(struct aiocb)); 2661 error = copyin(ujob, &job32, sizeof(job32)); 2662 if (error) 2663 return (error); 2664 2665 CP(job32, *kjob, aio_fildes); 2666 CP(job32, *kjob, aio_offset); 2667 PTRIN_CP(job32, *kjob, aio_buf); 2668 CP(job32, *kjob, aio_nbytes); 2669 CP(job32, *kjob, aio_lio_opcode); 2670 CP(job32, *kjob, aio_reqprio); 2671 CP(job32, *kjob, _aiocb_private.status); 2672 CP(job32, *kjob, _aiocb_private.error); 2673 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2674 return (convert_old_sigevent32(&job32.aio_sigevent, 2675 &kjob->aio_sigevent)); 2676 } 2677 #endif 2678 2679 static int 2680 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2681 { 2682 struct aiocb32 job32; 2683 int error; 2684 2685 error = copyin(ujob, &job32, sizeof(job32)); 2686 if (error) 2687 return (error); 2688 CP(job32, *kjob, aio_fildes); 2689 CP(job32, *kjob, aio_offset); 2690 PTRIN_CP(job32, *kjob, aio_buf); 2691 CP(job32, *kjob, aio_nbytes); 2692 CP(job32, *kjob, aio_lio_opcode); 2693 CP(job32, *kjob, aio_reqprio); 2694 CP(job32, *kjob, _aiocb_private.status); 2695 CP(job32, *kjob, _aiocb_private.error); 2696 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2697 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2698 } 2699 2700 static long 2701 aiocb32_fetch_status(struct aiocb *ujob) 2702 { 2703 struct aiocb32 *ujob32; 2704 2705 ujob32 = (struct aiocb32 *)ujob; 2706 return (fuword32(&ujob32->_aiocb_private.status)); 2707 } 2708 2709 static long 2710 aiocb32_fetch_error(struct aiocb *ujob) 2711 { 2712 struct aiocb32 *ujob32; 2713 2714 ujob32 = (struct aiocb32 *)ujob; 2715 return (fuword32(&ujob32->_aiocb_private.error)); 2716 } 2717 2718 static int 2719 aiocb32_store_status(struct aiocb *ujob, long status) 2720 { 2721 struct aiocb32 *ujob32; 2722 2723 ujob32 = (struct aiocb32 *)ujob; 2724 return (suword32(&ujob32->_aiocb_private.status, status)); 2725 } 2726 2727 static int 2728 aiocb32_store_error(struct aiocb *ujob, long error) 2729 { 2730 struct aiocb32 *ujob32; 2731 2732 ujob32 = (struct aiocb32 *)ujob; 2733 return (suword32(&ujob32->_aiocb_private.error, error)); 2734 } 2735 2736 static int 2737 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2738 { 2739 struct aiocb32 *ujob32; 2740 2741 ujob32 = (struct aiocb32 *)ujob; 2742 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2743 } 2744 2745 static int 2746 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2747 { 2748 2749 return (suword32(ujobp, (long)ujob)); 2750 } 2751 2752 static struct aiocb_ops aiocb32_ops = { 2753 .aio_copyin = aiocb32_copyin, 2754 .fetch_status = aiocb32_fetch_status, 2755 .fetch_error = aiocb32_fetch_error, 2756 .store_status = aiocb32_store_status, 2757 .store_error = aiocb32_store_error, 2758 .store_kernelinfo = aiocb32_store_kernelinfo, 2759 .store_aiocb = aiocb32_store_aiocb, 2760 }; 2761 2762 #ifdef COMPAT_FREEBSD6 2763 static struct aiocb_ops aiocb32_ops_osigevent = { 2764 .aio_copyin = aiocb32_copyin_old_sigevent, 2765 .fetch_status = aiocb32_fetch_status, 2766 .fetch_error = aiocb32_fetch_error, 2767 .store_status = aiocb32_store_status, 2768 .store_error = aiocb32_store_error, 2769 .store_kernelinfo = aiocb32_store_kernelinfo, 2770 .store_aiocb = aiocb32_store_aiocb, 2771 }; 2772 #endif 2773 2774 int 2775 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2776 { 2777 2778 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2779 } 2780 2781 int 2782 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2783 { 2784 struct timespec32 ts32; 2785 struct timespec ts, *tsp; 2786 struct aiocb **ujoblist; 2787 uint32_t *ujoblist32; 2788 int error, i; 2789 2790 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2791 return (EINVAL); 2792 2793 if (uap->timeout) { 2794 /* Get timespec struct. */ 2795 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2796 return (error); 2797 CP(ts32, ts, tv_sec); 2798 CP(ts32, ts, tv_nsec); 2799 tsp = &ts; 2800 } else 2801 tsp = NULL; 2802 2803 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2804 ujoblist32 = (uint32_t *)ujoblist; 2805 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2806 sizeof(ujoblist32[0])); 2807 if (error == 0) { 2808 for (i = uap->nent - 1; i >= 0; i--) 2809 ujoblist[i] = PTRIN(ujoblist32[i]); 2810 2811 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2812 } 2813 free(ujoblist, M_AIOS); 2814 return (error); 2815 } 2816 2817 int 2818 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2819 { 2820 2821 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2822 } 2823 2824 #ifdef COMPAT_FREEBSD6 2825 int 2826 freebsd6_freebsd32_aio_read(struct thread *td, 2827 struct freebsd6_freebsd32_aio_read_args *uap) 2828 { 2829 2830 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2831 &aiocb32_ops_osigevent)); 2832 } 2833 #endif 2834 2835 int 2836 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2837 { 2838 2839 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2840 &aiocb32_ops)); 2841 } 2842 2843 #ifdef COMPAT_FREEBSD6 2844 int 2845 freebsd6_freebsd32_aio_write(struct thread *td, 2846 struct freebsd6_freebsd32_aio_write_args *uap) 2847 { 2848 2849 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2850 &aiocb32_ops_osigevent)); 2851 } 2852 #endif 2853 2854 int 2855 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2856 { 2857 2858 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2859 &aiocb32_ops)); 2860 } 2861 2862 int 2863 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2864 { 2865 2866 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2867 &aiocb32_ops)); 2868 } 2869 2870 int 2871 freebsd32_aio_waitcomplete(struct thread *td, 2872 struct freebsd32_aio_waitcomplete_args *uap) 2873 { 2874 struct timespec32 ts32; 2875 struct timespec ts, *tsp; 2876 int error; 2877 2878 if (uap->timeout) { 2879 /* Get timespec struct. */ 2880 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2881 if (error) 2882 return (error); 2883 CP(ts32, ts, tv_sec); 2884 CP(ts32, ts, tv_nsec); 2885 tsp = &ts; 2886 } else 2887 tsp = NULL; 2888 2889 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2890 &aiocb32_ops)); 2891 } 2892 2893 int 2894 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2895 { 2896 2897 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2898 &aiocb32_ops)); 2899 } 2900 2901 #ifdef COMPAT_FREEBSD6 2902 int 2903 freebsd6_freebsd32_lio_listio(struct thread *td, 2904 struct freebsd6_freebsd32_lio_listio_args *uap) 2905 { 2906 struct aiocb **acb_list; 2907 struct sigevent *sigp, sig; 2908 struct osigevent32 osig; 2909 uint32_t *acb_list32; 2910 int error, i, nent; 2911 2912 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2913 return (EINVAL); 2914 2915 nent = uap->nent; 2916 if (nent < 0 || nent > max_aio_queue_per_proc) 2917 return (EINVAL); 2918 2919 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2920 error = copyin(uap->sig, &osig, sizeof(osig)); 2921 if (error) 2922 return (error); 2923 error = convert_old_sigevent32(&osig, &sig); 2924 if (error) 2925 return (error); 2926 sigp = &sig; 2927 } else 2928 sigp = NULL; 2929 2930 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2931 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2932 if (error) { 2933 free(acb_list32, M_LIO); 2934 return (error); 2935 } 2936 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2937 for (i = 0; i < nent; i++) 2938 acb_list[i] = PTRIN(acb_list32[i]); 2939 free(acb_list32, M_LIO); 2940 2941 error = kern_lio_listio(td, uap->mode, 2942 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2943 &aiocb32_ops_osigevent); 2944 free(acb_list, M_LIO); 2945 return (error); 2946 } 2947 #endif 2948 2949 int 2950 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2951 { 2952 struct aiocb **acb_list; 2953 struct sigevent *sigp, sig; 2954 struct sigevent32 sig32; 2955 uint32_t *acb_list32; 2956 int error, i, nent; 2957 2958 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2959 return (EINVAL); 2960 2961 nent = uap->nent; 2962 if (nent < 0 || nent > max_aio_queue_per_proc) 2963 return (EINVAL); 2964 2965 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2966 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2967 if (error) 2968 return (error); 2969 error = convert_sigevent32(&sig32, &sig); 2970 if (error) 2971 return (error); 2972 sigp = &sig; 2973 } else 2974 sigp = NULL; 2975 2976 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2977 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2978 if (error) { 2979 free(acb_list32, M_LIO); 2980 return (error); 2981 } 2982 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2983 for (i = 0; i < nent; i++) 2984 acb_list[i] = PTRIN(acb_list32[i]); 2985 free(acb_list32, M_LIO); 2986 2987 error = kern_lio_listio(td, uap->mode, 2988 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2989 &aiocb32_ops); 2990 free(acb_list, M_LIO); 2991 return (error); 2992 } 2993 2994 #endif 2995