1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/param.h> 24 #include <sys/systm.h> 25 #include <sys/malloc.h> 26 #include <sys/bio.h> 27 #include <sys/buf.h> 28 #include <sys/capsicum.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/posix4.h> 42 #include <sys/proc.h> 43 #include <sys/resourcevar.h> 44 #include <sys/signalvar.h> 45 #include <sys/syscallsubr.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/sema.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/syscall.h> 52 #include <sys/sysctl.h> 53 #include <sys/syslog.h> 54 #include <sys/sx.h> 55 #include <sys/taskqueue.h> 56 #include <sys/vnode.h> 57 #include <sys/conf.h> 58 #include <sys/event.h> 59 #include <sys/mount.h> 60 #include <geom/geom.h> 61 62 #include <machine/atomic.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_page.h> 66 #include <vm/vm_extern.h> 67 #include <vm/pmap.h> 68 #include <vm/vm_map.h> 69 #include <vm/vm_object.h> 70 #include <vm/vnode_pager.h> 71 #include <vm/uma.h> 72 #include <sys/aio.h> 73 74 /* 75 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 76 * overflow. (XXX will be removed soon.) 77 */ 78 static u_long jobrefid; 79 80 /* 81 * Counter for aio_fsync. 82 */ 83 static uint64_t jobseqno; 84 85 #ifndef MAX_AIO_PER_PROC 86 #define MAX_AIO_PER_PROC 32 87 #endif 88 89 #ifndef MAX_AIO_QUEUE_PER_PROC 90 #define MAX_AIO_QUEUE_PER_PROC 256 91 #endif 92 93 #ifndef MAX_AIO_QUEUE 94 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 95 #endif 96 97 #ifndef MAX_BUF_AIO 98 #define MAX_BUF_AIO 16 99 #endif 100 101 FEATURE(aio, "Asynchronous I/O"); 102 SYSCTL_DECL(_p1003_1b); 103 104 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 105 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O"); 106 107 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 108 "Async IO management"); 109 110 static int enable_aio_unsafe = 0; 111 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 112 "Permit asynchronous IO on all file types, not just known-safe types"); 113 114 static unsigned int unsafe_warningcnt = 1; 115 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 116 &unsafe_warningcnt, 0, 117 "Warnings that will be triggered upon failed IO requests on unsafe files"); 118 119 static int max_aio_procs = MAX_AIO_PROCS; 120 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 121 "Maximum number of kernel processes to use for handling async IO "); 122 123 static int num_aio_procs = 0; 124 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 125 "Number of presently active kernel processes for async IO"); 126 127 /* 128 * The code will adjust the actual number of AIO processes towards this 129 * number when it gets a chance. 130 */ 131 static int target_aio_procs = TARGET_AIO_PROCS; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 133 0, 134 "Preferred number of ready kernel processes for async IO"); 135 136 static int max_queue_count = MAX_AIO_QUEUE; 137 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 138 "Maximum number of aio requests to queue, globally"); 139 140 static int num_queue_count = 0; 141 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 142 "Number of queued aio requests"); 143 144 static int num_buf_aio = 0; 145 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 146 "Number of aio requests presently handled by the buf subsystem"); 147 148 static int num_unmapped_aio = 0; 149 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 150 0, 151 "Number of aio requests presently handled by unmapped I/O buffers"); 152 153 /* Number of async I/O processes in the process of being started */ 154 /* XXX This should be local to aio_aqueue() */ 155 static int num_aio_resv_start = 0; 156 157 static int aiod_lifetime; 158 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 159 "Maximum lifetime for idle aiod"); 160 161 static int max_aio_per_proc = MAX_AIO_PER_PROC; 162 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 163 0, 164 "Maximum active aio requests per process"); 165 166 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 168 &max_aio_queue_per_proc, 0, 169 "Maximum queued aio requests per process"); 170 171 static int max_buf_aio = MAX_BUF_AIO; 172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 173 "Maximum buf aio requests per process"); 174 175 /* 176 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 177 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 178 * vfs.aio.aio_listio_max. 179 */ 180 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 181 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 182 0, "Maximum aio requests for a single lio_listio call"); 183 184 #ifdef COMPAT_FREEBSD6 185 typedef struct oaiocb { 186 int aio_fildes; /* File descriptor */ 187 off_t aio_offset; /* File offset for I/O */ 188 volatile void *aio_buf; /* I/O buffer in process space */ 189 size_t aio_nbytes; /* Number of bytes for I/O */ 190 struct osigevent aio_sigevent; /* Signal to deliver */ 191 int aio_lio_opcode; /* LIO opcode */ 192 int aio_reqprio; /* Request priority -- ignored */ 193 struct __aiocb_private _aiocb_private; 194 } oaiocb_t; 195 #endif 196 197 /* 198 * Below is a key of locks used to protect each member of struct kaiocb 199 * aioliojob and kaioinfo and any backends. 200 * 201 * * - need not protected 202 * a - locked by kaioinfo lock 203 * b - locked by backend lock, the backend lock can be null in some cases, 204 * for example, BIO belongs to this type, in this case, proc lock is 205 * reused. 206 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 207 */ 208 209 /* 210 * If the routine that services an AIO request blocks while running in an 211 * AIO kernel process it can starve other I/O requests. BIO requests 212 * queued via aio_qbio() complete asynchronously and do not use AIO kernel 213 * processes at all. Socket I/O requests use a separate pool of 214 * kprocs and also force non-blocking I/O. Other file I/O requests 215 * use the generic fo_read/fo_write operations which can block. The 216 * fsync and mlock operations can also block while executing. Ideally 217 * none of these requests would block while executing. 218 * 219 * Note that the service routines cannot toggle O_NONBLOCK in the file 220 * structure directly while handling a request due to races with 221 * userland threads. 222 */ 223 224 /* jobflags */ 225 #define KAIOCB_QUEUEING 0x01 226 #define KAIOCB_CANCELLED 0x02 227 #define KAIOCB_CANCELLING 0x04 228 #define KAIOCB_CHECKSYNC 0x08 229 #define KAIOCB_CLEARED 0x10 230 #define KAIOCB_FINISHED 0x20 231 232 /* ioflags */ 233 #define KAIOCB_IO_FOFFSET 0x01 234 235 /* 236 * AIO process info 237 */ 238 #define AIOP_FREE 0x1 /* proc on free queue */ 239 240 struct aioproc { 241 int aioprocflags; /* (c) AIO proc flags */ 242 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 243 struct proc *aioproc; /* (*) the AIO proc */ 244 }; 245 246 /* 247 * data-structure for lio signal management 248 */ 249 struct aioliojob { 250 int lioj_flags; /* (a) listio flags */ 251 int lioj_count; /* (a) count of jobs */ 252 int lioj_finished_count; /* (a) count of finished jobs */ 253 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 254 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 255 struct knlist klist; /* (a) list of knotes */ 256 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 257 }; 258 259 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 260 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 261 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 262 263 /* 264 * per process aio data structure 265 */ 266 struct kaioinfo { 267 struct mtx kaio_mtx; /* the lock to protect this struct */ 268 int kaio_flags; /* (a) per process kaio flags */ 269 int kaio_active_count; /* (c) number of currently used AIOs */ 270 int kaio_count; /* (a) size of AIO queue */ 271 int kaio_buffer_count; /* (a) number of bio buffers */ 272 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 273 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 274 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 275 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 276 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 277 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 278 struct task kaio_task; /* (*) task to kick aio processes */ 279 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 280 }; 281 282 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 283 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 284 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 285 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 286 287 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 288 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 289 290 /* 291 * Operations used to interact with userland aio control blocks. 292 * Different ABIs provide their own operations. 293 */ 294 struct aiocb_ops { 295 int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty); 296 long (*fetch_status)(struct aiocb *ujob); 297 long (*fetch_error)(struct aiocb *ujob); 298 int (*store_status)(struct aiocb *ujob, long status); 299 int (*store_error)(struct aiocb *ujob, long error); 300 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 301 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 302 }; 303 304 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 305 static struct sema aio_newproc_sem; 306 static struct mtx aio_job_mtx; 307 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 308 static struct unrhdr *aiod_unr; 309 310 static void aio_biocleanup(struct bio *bp); 311 void aio_init_aioinfo(struct proc *p); 312 static int aio_onceonly(void); 313 static int aio_free_entry(struct kaiocb *job); 314 static void aio_process_rw(struct kaiocb *job); 315 static void aio_process_sync(struct kaiocb *job); 316 static void aio_process_mlock(struct kaiocb *job); 317 static void aio_schedule_fsync(void *context, int pending); 318 static int aio_newproc(int *); 319 int aio_aqueue(struct thread *td, struct aiocb *ujob, 320 struct aioliojob *lio, int type, struct aiocb_ops *ops); 321 static int aio_queue_file(struct file *fp, struct kaiocb *job); 322 static void aio_biowakeup(struct bio *bp); 323 static void aio_proc_rundown(void *arg, struct proc *p); 324 static void aio_proc_rundown_exec(void *arg, struct proc *p, 325 struct image_params *imgp); 326 static int aio_qbio(struct proc *p, struct kaiocb *job); 327 static void aio_daemon(void *param); 328 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 329 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 330 static int aio_kick(struct proc *userp); 331 static void aio_kick_nowait(struct proc *userp); 332 static void aio_kick_helper(void *context, int pending); 333 static int filt_aioattach(struct knote *kn); 334 static void filt_aiodetach(struct knote *kn); 335 static int filt_aio(struct knote *kn, long hint); 336 static int filt_lioattach(struct knote *kn); 337 static void filt_liodetach(struct knote *kn); 338 static int filt_lio(struct knote *kn, long hint); 339 340 /* 341 * Zones for: 342 * kaio Per process async io info 343 * aiocb async io jobs 344 * aiolio list io jobs 345 */ 346 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone; 347 348 /* kqueue filters for aio */ 349 static struct filterops aio_filtops = { 350 .f_isfd = 0, 351 .f_attach = filt_aioattach, 352 .f_detach = filt_aiodetach, 353 .f_event = filt_aio, 354 }; 355 static struct filterops lio_filtops = { 356 .f_isfd = 0, 357 .f_attach = filt_lioattach, 358 .f_detach = filt_liodetach, 359 .f_event = filt_lio 360 }; 361 362 static eventhandler_tag exit_tag, exec_tag; 363 364 TASKQUEUE_DEFINE_THREAD(aiod_kick); 365 366 /* 367 * Main operations function for use as a kernel module. 368 */ 369 static int 370 aio_modload(struct module *module, int cmd, void *arg) 371 { 372 int error = 0; 373 374 switch (cmd) { 375 case MOD_LOAD: 376 aio_onceonly(); 377 break; 378 case MOD_SHUTDOWN: 379 break; 380 default: 381 error = EOPNOTSUPP; 382 break; 383 } 384 return (error); 385 } 386 387 static moduledata_t aio_mod = { 388 "aio", 389 &aio_modload, 390 NULL 391 }; 392 393 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 394 MODULE_VERSION(aio, 1); 395 396 /* 397 * Startup initialization 398 */ 399 static int 400 aio_onceonly(void) 401 { 402 403 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 404 EVENTHANDLER_PRI_ANY); 405 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 406 NULL, EVENTHANDLER_PRI_ANY); 407 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 408 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 409 TAILQ_INIT(&aio_freeproc); 410 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 411 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 412 TAILQ_INIT(&aio_jobs); 413 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 414 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 415 NULL, NULL, UMA_ALIGN_PTR, 0); 416 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 417 NULL, NULL, UMA_ALIGN_PTR, 0); 418 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 419 NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 420 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 421 jobrefid = 1; 422 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 423 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 424 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 425 426 return (0); 427 } 428 429 /* 430 * Init the per-process aioinfo structure. The aioinfo limits are set 431 * per-process for user limit (resource) management. 432 */ 433 void 434 aio_init_aioinfo(struct proc *p) 435 { 436 struct kaioinfo *ki; 437 438 ki = uma_zalloc(kaio_zone, M_WAITOK); 439 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 440 ki->kaio_flags = 0; 441 ki->kaio_active_count = 0; 442 ki->kaio_count = 0; 443 ki->kaio_buffer_count = 0; 444 TAILQ_INIT(&ki->kaio_all); 445 TAILQ_INIT(&ki->kaio_done); 446 TAILQ_INIT(&ki->kaio_jobqueue); 447 TAILQ_INIT(&ki->kaio_liojoblist); 448 TAILQ_INIT(&ki->kaio_syncqueue); 449 TAILQ_INIT(&ki->kaio_syncready); 450 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 451 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 452 PROC_LOCK(p); 453 if (p->p_aioinfo == NULL) { 454 p->p_aioinfo = ki; 455 PROC_UNLOCK(p); 456 } else { 457 PROC_UNLOCK(p); 458 mtx_destroy(&ki->kaio_mtx); 459 uma_zfree(kaio_zone, ki); 460 } 461 462 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 463 aio_newproc(NULL); 464 } 465 466 static int 467 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext) 468 { 469 struct thread *td; 470 int error; 471 472 error = sigev_findtd(p, sigev, &td); 473 if (error) 474 return (error); 475 if (!KSI_ONQ(ksi)) { 476 ksiginfo_set_sigev(ksi, sigev); 477 ksi->ksi_code = SI_ASYNCIO; 478 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0; 479 tdsendsignal(p, td, ksi->ksi_signo, ksi); 480 } 481 PROC_UNLOCK(p); 482 return (error); 483 } 484 485 /* 486 * Free a job entry. Wait for completion if it is currently active, but don't 487 * delay forever. If we delay, we return a flag that says that we have to 488 * restart the queue scan. 489 */ 490 static int 491 aio_free_entry(struct kaiocb *job) 492 { 493 struct kaioinfo *ki; 494 struct aioliojob *lj; 495 struct proc *p; 496 497 p = job->userproc; 498 MPASS(curproc == p); 499 ki = p->p_aioinfo; 500 MPASS(ki != NULL); 501 502 AIO_LOCK_ASSERT(ki, MA_OWNED); 503 MPASS(job->jobflags & KAIOCB_FINISHED); 504 505 atomic_subtract_int(&num_queue_count, 1); 506 507 ki->kaio_count--; 508 MPASS(ki->kaio_count >= 0); 509 510 TAILQ_REMOVE(&ki->kaio_done, job, plist); 511 TAILQ_REMOVE(&ki->kaio_all, job, allist); 512 513 lj = job->lio; 514 if (lj) { 515 lj->lioj_count--; 516 lj->lioj_finished_count--; 517 518 if (lj->lioj_count == 0) { 519 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 520 /* lio is going away, we need to destroy any knotes */ 521 knlist_delete(&lj->klist, curthread, 1); 522 PROC_LOCK(p); 523 sigqueue_take(&lj->lioj_ksi); 524 PROC_UNLOCK(p); 525 uma_zfree(aiolio_zone, lj); 526 } 527 } 528 529 /* job is going away, we need to destroy any knotes */ 530 knlist_delete(&job->klist, curthread, 1); 531 PROC_LOCK(p); 532 sigqueue_take(&job->ksi); 533 PROC_UNLOCK(p); 534 535 AIO_UNLOCK(ki); 536 537 /* 538 * The thread argument here is used to find the owning process 539 * and is also passed to fo_close() which may pass it to various 540 * places such as devsw close() routines. Because of that, we 541 * need a thread pointer from the process owning the job that is 542 * persistent and won't disappear out from under us or move to 543 * another process. 544 * 545 * Currently, all the callers of this function call it to remove 546 * a kaiocb from the current process' job list either via a 547 * syscall or due to the current process calling exit() or 548 * execve(). Thus, we know that p == curproc. We also know that 549 * curthread can't exit since we are curthread. 550 * 551 * Therefore, we use curthread as the thread to pass to 552 * knlist_delete(). This does mean that it is possible for the 553 * thread pointer at close time to differ from the thread pointer 554 * at open time, but this is already true of file descriptors in 555 * a multithreaded process. 556 */ 557 if (job->fd_file) 558 fdrop(job->fd_file, curthread); 559 crfree(job->cred); 560 if (job->uiop != &job->uio) 561 freeuio(job->uiop); 562 uma_zfree(aiocb_zone, job); 563 AIO_LOCK(ki); 564 565 return (0); 566 } 567 568 static void 569 aio_proc_rundown_exec(void *arg, struct proc *p, 570 struct image_params *imgp __unused) 571 { 572 aio_proc_rundown(arg, p); 573 } 574 575 static int 576 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 577 { 578 aio_cancel_fn_t *func; 579 int cancelled; 580 581 AIO_LOCK_ASSERT(ki, MA_OWNED); 582 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 583 return (0); 584 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 585 job->jobflags |= KAIOCB_CANCELLED; 586 587 func = job->cancel_fn; 588 589 /* 590 * If there is no cancel routine, just leave the job marked as 591 * cancelled. The job should be in active use by a caller who 592 * should complete it normally or when it fails to install a 593 * cancel routine. 594 */ 595 if (func == NULL) 596 return (0); 597 598 /* 599 * Set the CANCELLING flag so that aio_complete() will defer 600 * completions of this job. This prevents the job from being 601 * freed out from under the cancel callback. After the 602 * callback any deferred completion (whether from the callback 603 * or any other source) will be completed. 604 */ 605 job->jobflags |= KAIOCB_CANCELLING; 606 AIO_UNLOCK(ki); 607 func(job); 608 AIO_LOCK(ki); 609 job->jobflags &= ~KAIOCB_CANCELLING; 610 if (job->jobflags & KAIOCB_FINISHED) { 611 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 612 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 613 aio_bio_done_notify(p, job); 614 } else { 615 /* 616 * The cancel callback might have scheduled an 617 * operation to cancel this request, but it is 618 * only counted as cancelled if the request is 619 * cancelled when the callback returns. 620 */ 621 cancelled = 0; 622 } 623 return (cancelled); 624 } 625 626 /* 627 * Rundown the jobs for a given process. 628 */ 629 static void 630 aio_proc_rundown(void *arg, struct proc *p) 631 { 632 struct kaioinfo *ki; 633 struct aioliojob *lj; 634 struct kaiocb *job, *jobn; 635 636 KASSERT(curthread->td_proc == p, 637 ("%s: called on non-curproc", __func__)); 638 ki = p->p_aioinfo; 639 if (ki == NULL) 640 return; 641 642 AIO_LOCK(ki); 643 ki->kaio_flags |= KAIO_RUNDOWN; 644 645 restart: 646 647 /* 648 * Try to cancel all pending requests. This code simulates 649 * aio_cancel on all pending I/O requests. 650 */ 651 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 652 aio_cancel_job(p, ki, job); 653 } 654 655 /* Wait for all running I/O to be finished */ 656 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 657 ki->kaio_flags |= KAIO_WAKEUP; 658 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 659 goto restart; 660 } 661 662 /* Free all completed I/O requests. */ 663 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 664 aio_free_entry(job); 665 666 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 667 if (lj->lioj_count == 0) { 668 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 669 knlist_delete(&lj->klist, curthread, 1); 670 PROC_LOCK(p); 671 sigqueue_take(&lj->lioj_ksi); 672 PROC_UNLOCK(p); 673 uma_zfree(aiolio_zone, lj); 674 } else { 675 panic("LIO job not cleaned up: C:%d, FC:%d\n", 676 lj->lioj_count, lj->lioj_finished_count); 677 } 678 } 679 AIO_UNLOCK(ki); 680 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 681 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 682 mtx_destroy(&ki->kaio_mtx); 683 uma_zfree(kaio_zone, ki); 684 p->p_aioinfo = NULL; 685 } 686 687 /* 688 * Select a job to run (called by an AIO daemon). 689 */ 690 static struct kaiocb * 691 aio_selectjob(struct aioproc *aiop) 692 { 693 struct kaiocb *job; 694 struct kaioinfo *ki; 695 struct proc *userp; 696 697 mtx_assert(&aio_job_mtx, MA_OWNED); 698 restart: 699 TAILQ_FOREACH(job, &aio_jobs, list) { 700 userp = job->userproc; 701 ki = userp->p_aioinfo; 702 703 if (ki->kaio_active_count < max_aio_per_proc) { 704 TAILQ_REMOVE(&aio_jobs, job, list); 705 if (!aio_clear_cancel_function(job)) 706 goto restart; 707 708 /* Account for currently active jobs. */ 709 ki->kaio_active_count++; 710 break; 711 } 712 } 713 return (job); 714 } 715 716 /* 717 * Move all data to a permanent storage device. This code 718 * simulates the fsync and fdatasync syscalls. 719 */ 720 static int 721 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op) 722 { 723 struct mount *mp; 724 int error; 725 726 for (;;) { 727 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH); 728 if (error != 0) 729 break; 730 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 731 vnode_pager_clean_async(vp); 732 if (op == LIO_DSYNC) 733 error = VOP_FDATASYNC(vp, td); 734 else 735 error = VOP_FSYNC(vp, MNT_WAIT, td); 736 737 VOP_UNLOCK(vp); 738 vn_finished_write(mp); 739 if (error != ERELOOKUP) 740 break; 741 } 742 return (error); 743 } 744 745 /* 746 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 747 * does the I/O request for the non-bio version of the operations. The normal 748 * vn operations are used, and this code should work in all instances for every 749 * type of file, including pipes, sockets, fifos, and regular files. 750 * 751 * XXX I don't think it works well for socket, pipe, and fifo. 752 */ 753 static void 754 aio_process_rw(struct kaiocb *job) 755 { 756 struct ucred *td_savedcred; 757 struct thread *td; 758 struct file *fp; 759 ssize_t cnt; 760 long msgsnd_st, msgsnd_end; 761 long msgrcv_st, msgrcv_end; 762 long oublock_st, oublock_end; 763 long inblock_st, inblock_end; 764 int error, opcode; 765 766 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 767 job->uaiocb.aio_lio_opcode == LIO_READV || 768 job->uaiocb.aio_lio_opcode == LIO_WRITE || 769 job->uaiocb.aio_lio_opcode == LIO_WRITEV, 770 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 771 772 aio_switch_vmspace(job); 773 td = curthread; 774 td_savedcred = td->td_ucred; 775 td->td_ucred = job->cred; 776 job->uiop->uio_td = td; 777 fp = job->fd_file; 778 779 opcode = job->uaiocb.aio_lio_opcode; 780 cnt = job->uiop->uio_resid; 781 782 msgrcv_st = td->td_ru.ru_msgrcv; 783 msgsnd_st = td->td_ru.ru_msgsnd; 784 inblock_st = td->td_ru.ru_inblock; 785 oublock_st = td->td_ru.ru_oublock; 786 787 /* 788 * aio_aqueue() acquires a reference to the file that is 789 * released in aio_free_entry(). 790 */ 791 if (opcode == LIO_READ || opcode == LIO_READV) { 792 if (job->uiop->uio_resid == 0) 793 error = 0; 794 else 795 error = fo_read(fp, job->uiop, fp->f_cred, 796 (job->ioflags & KAIOCB_IO_FOFFSET) != 0 ? 0 : 797 FOF_OFFSET, td); 798 } else { 799 if (fp->f_type == DTYPE_VNODE) 800 bwillwrite(); 801 error = fo_write(fp, job->uiop, fp->f_cred, (job->ioflags & 802 KAIOCB_IO_FOFFSET) != 0 ? 0 : FOF_OFFSET, td); 803 } 804 msgrcv_end = td->td_ru.ru_msgrcv; 805 msgsnd_end = td->td_ru.ru_msgsnd; 806 inblock_end = td->td_ru.ru_inblock; 807 oublock_end = td->td_ru.ru_oublock; 808 809 job->msgrcv = msgrcv_end - msgrcv_st; 810 job->msgsnd = msgsnd_end - msgsnd_st; 811 job->inblock = inblock_end - inblock_st; 812 job->outblock = oublock_end - oublock_st; 813 814 if (error != 0 && job->uiop->uio_resid != cnt) { 815 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 816 error = 0; 817 if (error == EPIPE && (opcode & LIO_WRITE)) { 818 PROC_LOCK(job->userproc); 819 kern_psignal(job->userproc, SIGPIPE); 820 PROC_UNLOCK(job->userproc); 821 } 822 } 823 824 cnt -= job->uiop->uio_resid; 825 td->td_ucred = td_savedcred; 826 if (error) 827 aio_complete(job, -1, error); 828 else 829 aio_complete(job, cnt, 0); 830 } 831 832 static void 833 aio_process_sync(struct kaiocb *job) 834 { 835 struct thread *td = curthread; 836 struct ucred *td_savedcred = td->td_ucred; 837 struct file *fp = job->fd_file; 838 int error = 0; 839 840 KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC, 841 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 842 843 td->td_ucred = job->cred; 844 if (fp->f_vnode != NULL) { 845 error = aio_fsync_vnode(td, fp->f_vnode, 846 job->uaiocb.aio_lio_opcode); 847 } 848 td->td_ucred = td_savedcred; 849 if (error) 850 aio_complete(job, -1, error); 851 else 852 aio_complete(job, 0, 0); 853 } 854 855 static void 856 aio_process_mlock(struct kaiocb *job) 857 { 858 struct aiocb *cb = &job->uaiocb; 859 int error; 860 861 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 862 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 863 864 aio_switch_vmspace(job); 865 error = kern_mlock(job->userproc, job->cred, 866 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 867 aio_complete(job, error != 0 ? -1 : 0, error); 868 } 869 870 static void 871 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 872 { 873 struct aioliojob *lj; 874 struct kaioinfo *ki; 875 struct kaiocb *sjob, *sjobn; 876 int lj_done; 877 bool schedule_fsync; 878 879 ki = userp->p_aioinfo; 880 AIO_LOCK_ASSERT(ki, MA_OWNED); 881 lj = job->lio; 882 lj_done = 0; 883 if (lj) { 884 lj->lioj_finished_count++; 885 if (lj->lioj_count == lj->lioj_finished_count) 886 lj_done = 1; 887 } 888 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 889 MPASS(job->jobflags & KAIOCB_FINISHED); 890 891 if (ki->kaio_flags & KAIO_RUNDOWN) 892 goto notification_done; 893 894 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 895 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 896 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true); 897 898 KNOTE_LOCKED(&job->klist, 1); 899 900 if (lj_done) { 901 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 902 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 903 KNOTE_LOCKED(&lj->klist, 1); 904 } 905 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED)) 906 == LIOJ_SIGNAL && 907 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 908 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 909 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi, 910 true); 911 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 912 } 913 } 914 915 notification_done: 916 if (job->jobflags & KAIOCB_CHECKSYNC) { 917 schedule_fsync = false; 918 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 919 if (job->fd_file != sjob->fd_file || 920 job->seqno >= sjob->seqno) 921 continue; 922 if (--sjob->pending > 0) 923 continue; 924 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 925 if (!aio_clear_cancel_function_locked(sjob)) 926 continue; 927 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 928 schedule_fsync = true; 929 } 930 if (schedule_fsync) 931 taskqueue_enqueue(taskqueue_aiod_kick, 932 &ki->kaio_sync_task); 933 } 934 if (ki->kaio_flags & KAIO_WAKEUP) { 935 ki->kaio_flags &= ~KAIO_WAKEUP; 936 wakeup(&userp->p_aioinfo); 937 } 938 } 939 940 static void 941 aio_schedule_fsync(void *context, int pending) 942 { 943 struct kaioinfo *ki; 944 struct kaiocb *job; 945 946 ki = context; 947 AIO_LOCK(ki); 948 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 949 job = TAILQ_FIRST(&ki->kaio_syncready); 950 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 951 AIO_UNLOCK(ki); 952 aio_schedule(job, aio_process_sync); 953 AIO_LOCK(ki); 954 } 955 AIO_UNLOCK(ki); 956 } 957 958 bool 959 aio_cancel_cleared(struct kaiocb *job) 960 { 961 962 /* 963 * The caller should hold the same queue lock held when 964 * aio_clear_cancel_function() was called and set this flag 965 * ensuring this check sees an up-to-date value. However, 966 * there is no way to assert that. 967 */ 968 return ((job->jobflags & KAIOCB_CLEARED) != 0); 969 } 970 971 static bool 972 aio_clear_cancel_function_locked(struct kaiocb *job) 973 { 974 975 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 976 MPASS(job->cancel_fn != NULL); 977 if (job->jobflags & KAIOCB_CANCELLING) { 978 job->jobflags |= KAIOCB_CLEARED; 979 return (false); 980 } 981 job->cancel_fn = NULL; 982 return (true); 983 } 984 985 bool 986 aio_clear_cancel_function(struct kaiocb *job) 987 { 988 struct kaioinfo *ki; 989 bool ret; 990 991 ki = job->userproc->p_aioinfo; 992 AIO_LOCK(ki); 993 ret = aio_clear_cancel_function_locked(job); 994 AIO_UNLOCK(ki); 995 return (ret); 996 } 997 998 static bool 999 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1000 { 1001 1002 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1003 if (job->jobflags & KAIOCB_CANCELLED) 1004 return (false); 1005 job->cancel_fn = func; 1006 return (true); 1007 } 1008 1009 bool 1010 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1011 { 1012 struct kaioinfo *ki; 1013 bool ret; 1014 1015 ki = job->userproc->p_aioinfo; 1016 AIO_LOCK(ki); 1017 ret = aio_set_cancel_function_locked(job, func); 1018 AIO_UNLOCK(ki); 1019 return (ret); 1020 } 1021 1022 void 1023 aio_complete(struct kaiocb *job, long status, int error) 1024 { 1025 struct kaioinfo *ki; 1026 struct proc *userp; 1027 1028 job->uaiocb._aiocb_private.error = error; 1029 job->uaiocb._aiocb_private.status = status; 1030 1031 userp = job->userproc; 1032 ki = userp->p_aioinfo; 1033 1034 AIO_LOCK(ki); 1035 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1036 ("duplicate aio_complete")); 1037 job->jobflags |= KAIOCB_FINISHED; 1038 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1039 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1040 aio_bio_done_notify(userp, job); 1041 } 1042 AIO_UNLOCK(ki); 1043 } 1044 1045 void 1046 aio_cancel(struct kaiocb *job) 1047 { 1048 1049 aio_complete(job, -1, ECANCELED); 1050 } 1051 1052 void 1053 aio_switch_vmspace(struct kaiocb *job) 1054 { 1055 1056 vmspace_switch_aio(job->userproc->p_vmspace); 1057 } 1058 1059 /* 1060 * The AIO daemon, most of the actual work is done in aio_process_*, 1061 * but the setup (and address space mgmt) is done in this routine. 1062 */ 1063 static void 1064 aio_daemon(void *_id) 1065 { 1066 struct kaiocb *job; 1067 struct aioproc *aiop; 1068 struct kaioinfo *ki; 1069 struct proc *p; 1070 struct vmspace *myvm; 1071 struct thread *td = curthread; 1072 int id = (intptr_t)_id; 1073 1074 /* 1075 * Grab an extra reference on the daemon's vmspace so that it 1076 * doesn't get freed by jobs that switch to a different 1077 * vmspace. 1078 */ 1079 p = td->td_proc; 1080 myvm = vmspace_acquire_ref(p); 1081 1082 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1083 1084 /* 1085 * Allocate and ready the aio control info. There is one aiop structure 1086 * per daemon. 1087 */ 1088 aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK); 1089 aiop->aioproc = p; 1090 aiop->aioprocflags = 0; 1091 1092 /* 1093 * Wakeup parent process. (Parent sleeps to keep from blasting away 1094 * and creating too many daemons.) 1095 */ 1096 sema_post(&aio_newproc_sem); 1097 1098 mtx_lock(&aio_job_mtx); 1099 for (;;) { 1100 /* 1101 * Take daemon off of free queue 1102 */ 1103 if (aiop->aioprocflags & AIOP_FREE) { 1104 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1105 aiop->aioprocflags &= ~AIOP_FREE; 1106 } 1107 1108 /* 1109 * Check for jobs. 1110 */ 1111 while ((job = aio_selectjob(aiop)) != NULL) { 1112 mtx_unlock(&aio_job_mtx); 1113 1114 ki = job->userproc->p_aioinfo; 1115 job->handle_fn(job); 1116 1117 mtx_lock(&aio_job_mtx); 1118 /* Decrement the active job count. */ 1119 ki->kaio_active_count--; 1120 } 1121 1122 /* 1123 * Disconnect from user address space. 1124 */ 1125 if (p->p_vmspace != myvm) { 1126 mtx_unlock(&aio_job_mtx); 1127 vmspace_switch_aio(myvm); 1128 mtx_lock(&aio_job_mtx); 1129 /* 1130 * We have to restart to avoid race, we only sleep if 1131 * no job can be selected. 1132 */ 1133 continue; 1134 } 1135 1136 mtx_assert(&aio_job_mtx, MA_OWNED); 1137 1138 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1139 aiop->aioprocflags |= AIOP_FREE; 1140 1141 /* 1142 * If daemon is inactive for a long time, allow it to exit, 1143 * thereby freeing resources. 1144 */ 1145 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1146 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1147 (aiop->aioprocflags & AIOP_FREE) && 1148 num_aio_procs > target_aio_procs) 1149 break; 1150 } 1151 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1152 num_aio_procs--; 1153 mtx_unlock(&aio_job_mtx); 1154 free(aiop, M_AIO); 1155 free_unr(aiod_unr, id); 1156 vmspace_free(myvm); 1157 1158 KASSERT(p->p_vmspace == myvm, 1159 ("AIOD: bad vmspace for exiting daemon")); 1160 KASSERT(refcount_load(&myvm->vm_refcnt) > 1, 1161 ("AIOD: bad vm refcnt for exiting daemon: %d", 1162 refcount_load(&myvm->vm_refcnt))); 1163 kproc_exit(0); 1164 } 1165 1166 /* 1167 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1168 * AIO daemon modifies its environment itself. 1169 */ 1170 static int 1171 aio_newproc(int *start) 1172 { 1173 int error; 1174 struct proc *p; 1175 int id; 1176 1177 id = alloc_unr(aiod_unr); 1178 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1179 RFNOWAIT, 0, "aiod%d", id); 1180 if (error == 0) { 1181 /* 1182 * Wait until daemon is started. 1183 */ 1184 sema_wait(&aio_newproc_sem); 1185 mtx_lock(&aio_job_mtx); 1186 num_aio_procs++; 1187 if (start != NULL) 1188 (*start)--; 1189 mtx_unlock(&aio_job_mtx); 1190 } else { 1191 free_unr(aiod_unr, id); 1192 } 1193 return (error); 1194 } 1195 1196 /* 1197 * Try the high-performance, low-overhead bio method for eligible 1198 * VCHR devices. This method doesn't use an aio helper thread, and 1199 * thus has very low overhead. 1200 * 1201 * Assumes that the caller, aio_aqueue(), has incremented the file 1202 * structure's reference count, preventing its deallocation for the 1203 * duration of this call. 1204 */ 1205 static int 1206 aio_qbio(struct proc *p, struct kaiocb *job) 1207 { 1208 struct aiocb *cb; 1209 struct file *fp; 1210 struct buf *pbuf; 1211 struct vnode *vp; 1212 struct cdevsw *csw; 1213 struct cdev *dev; 1214 struct kaioinfo *ki; 1215 struct bio **bios = NULL; 1216 off_t offset; 1217 int bio_cmd, error, i, iovcnt, opcode, poff, ref; 1218 vm_prot_t prot; 1219 bool use_unmapped; 1220 1221 cb = &job->uaiocb; 1222 fp = job->fd_file; 1223 opcode = cb->aio_lio_opcode; 1224 1225 if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV || 1226 opcode == LIO_READ || opcode == LIO_READV)) 1227 return (-1); 1228 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1229 return (-1); 1230 1231 vp = fp->f_vnode; 1232 if (vp->v_type != VCHR) 1233 return (-1); 1234 if (vp->v_bufobj.bo_bsize == 0) 1235 return (-1); 1236 1237 bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ; 1238 iovcnt = job->uiop->uio_iovcnt; 1239 if (iovcnt > max_buf_aio) 1240 return (-1); 1241 for (i = 0; i < iovcnt; i++) { 1242 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0) 1243 return (-1); 1244 if (job->uiop->uio_iov[i].iov_len > maxphys) { 1245 error = -1; 1246 return (-1); 1247 } 1248 } 1249 offset = cb->aio_offset; 1250 1251 ref = 0; 1252 csw = devvn_refthread(vp, &dev, &ref); 1253 if (csw == NULL) 1254 return (ENXIO); 1255 1256 if ((csw->d_flags & D_DISK) == 0) { 1257 error = -1; 1258 goto unref; 1259 } 1260 if (job->uiop->uio_resid > dev->si_iosize_max) { 1261 error = -1; 1262 goto unref; 1263 } 1264 1265 ki = p->p_aioinfo; 1266 job->error = 0; 1267 1268 use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed; 1269 if (!use_unmapped) { 1270 AIO_LOCK(ki); 1271 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) { 1272 AIO_UNLOCK(ki); 1273 error = EAGAIN; 1274 goto unref; 1275 } 1276 ki->kaio_buffer_count += iovcnt; 1277 AIO_UNLOCK(ki); 1278 } 1279 1280 bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK); 1281 refcount_init(&job->nbio, iovcnt); 1282 for (i = 0; i < iovcnt; i++) { 1283 struct vm_page** pages; 1284 struct bio *bp; 1285 void *buf; 1286 size_t nbytes; 1287 int npages; 1288 1289 buf = job->uiop->uio_iov[i].iov_base; 1290 nbytes = job->uiop->uio_iov[i].iov_len; 1291 1292 bios[i] = g_alloc_bio(); 1293 bp = bios[i]; 1294 1295 poff = (vm_offset_t)buf & PAGE_MASK; 1296 if (use_unmapped) { 1297 pbuf = NULL; 1298 pages = malloc(sizeof(vm_page_t) * (atop(round_page( 1299 nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO); 1300 } else { 1301 pbuf = uma_zalloc(pbuf_zone, M_WAITOK); 1302 BUF_KERNPROC(pbuf); 1303 pages = pbuf->b_pages; 1304 } 1305 1306 bp->bio_length = nbytes; 1307 bp->bio_bcount = nbytes; 1308 bp->bio_done = aio_biowakeup; 1309 bp->bio_offset = offset; 1310 bp->bio_cmd = bio_cmd; 1311 bp->bio_dev = dev; 1312 bp->bio_caller1 = job; 1313 bp->bio_caller2 = pbuf; 1314 1315 prot = VM_PROT_READ; 1316 if (opcode == LIO_READ || opcode == LIO_READV) 1317 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1318 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1319 (vm_offset_t)buf, bp->bio_length, prot, pages, 1320 atop(maxphys) + 1); 1321 if (npages < 0) { 1322 if (pbuf != NULL) 1323 uma_zfree(pbuf_zone, pbuf); 1324 else 1325 free(pages, M_TEMP); 1326 error = EFAULT; 1327 g_destroy_bio(bp); 1328 i--; 1329 goto destroy_bios; 1330 } 1331 if (pbuf != NULL) { 1332 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages); 1333 bp->bio_data = pbuf->b_data + poff; 1334 pbuf->b_npages = npages; 1335 atomic_add_int(&num_buf_aio, 1); 1336 } else { 1337 bp->bio_ma = pages; 1338 bp->bio_ma_n = npages; 1339 bp->bio_ma_offset = poff; 1340 bp->bio_data = unmapped_buf; 1341 bp->bio_flags |= BIO_UNMAPPED; 1342 atomic_add_int(&num_unmapped_aio, 1); 1343 } 1344 1345 offset += nbytes; 1346 } 1347 1348 /* Perform transfer. */ 1349 for (i = 0; i < iovcnt; i++) 1350 csw->d_strategy(bios[i]); 1351 free(bios, M_TEMP); 1352 1353 dev_relthread(dev, ref); 1354 return (0); 1355 1356 destroy_bios: 1357 for (; i >= 0; i--) 1358 aio_biocleanup(bios[i]); 1359 free(bios, M_TEMP); 1360 unref: 1361 dev_relthread(dev, ref); 1362 return (error); 1363 } 1364 1365 #ifdef COMPAT_FREEBSD6 1366 static int 1367 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1368 { 1369 1370 /* 1371 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1372 * supported by AIO with the old sigevent structure. 1373 */ 1374 nsig->sigev_notify = osig->sigev_notify; 1375 switch (nsig->sigev_notify) { 1376 case SIGEV_NONE: 1377 break; 1378 case SIGEV_SIGNAL: 1379 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1380 break; 1381 case SIGEV_KEVENT: 1382 nsig->sigev_notify_kqueue = 1383 osig->__sigev_u.__sigev_notify_kqueue; 1384 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1385 break; 1386 default: 1387 return (EINVAL); 1388 } 1389 return (0); 1390 } 1391 1392 static int 1393 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 1394 int type __unused) 1395 { 1396 struct oaiocb *ojob; 1397 struct aiocb *kcb = &kjob->uaiocb; 1398 int error; 1399 1400 bzero(kcb, sizeof(struct aiocb)); 1401 error = copyin(ujob, kcb, sizeof(struct oaiocb)); 1402 if (error) 1403 return (error); 1404 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 1405 ojob = (struct oaiocb *)kcb; 1406 return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent)); 1407 } 1408 #endif 1409 1410 static int 1411 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 1412 { 1413 struct aiocb *kcb = &kjob->uaiocb; 1414 int error; 1415 1416 error = copyin(ujob, kcb, sizeof(struct aiocb)); 1417 if (error) 1418 return (error); 1419 if (type == LIO_NOP) 1420 type = kcb->aio_lio_opcode; 1421 if (type & LIO_VECTORED) { 1422 /* malloc a uio and copy in the iovec */ 1423 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov), 1424 kcb->aio_iovcnt, &kjob->uiop); 1425 } 1426 1427 return (error); 1428 } 1429 1430 static long 1431 aiocb_fetch_status(struct aiocb *ujob) 1432 { 1433 1434 return (fuword(&ujob->_aiocb_private.status)); 1435 } 1436 1437 static long 1438 aiocb_fetch_error(struct aiocb *ujob) 1439 { 1440 1441 return (fuword(&ujob->_aiocb_private.error)); 1442 } 1443 1444 static int 1445 aiocb_store_status(struct aiocb *ujob, long status) 1446 { 1447 1448 return (suword(&ujob->_aiocb_private.status, status)); 1449 } 1450 1451 static int 1452 aiocb_store_error(struct aiocb *ujob, long error) 1453 { 1454 1455 return (suword(&ujob->_aiocb_private.error, error)); 1456 } 1457 1458 static int 1459 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1460 { 1461 1462 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1463 } 1464 1465 static int 1466 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1467 { 1468 1469 return (suword(ujobp, (long)ujob)); 1470 } 1471 1472 static struct aiocb_ops aiocb_ops = { 1473 .aio_copyin = aiocb_copyin, 1474 .fetch_status = aiocb_fetch_status, 1475 .fetch_error = aiocb_fetch_error, 1476 .store_status = aiocb_store_status, 1477 .store_error = aiocb_store_error, 1478 .store_kernelinfo = aiocb_store_kernelinfo, 1479 .store_aiocb = aiocb_store_aiocb, 1480 }; 1481 1482 #ifdef COMPAT_FREEBSD6 1483 static struct aiocb_ops aiocb_ops_osigevent = { 1484 .aio_copyin = aiocb_copyin_old_sigevent, 1485 .fetch_status = aiocb_fetch_status, 1486 .fetch_error = aiocb_fetch_error, 1487 .store_status = aiocb_store_status, 1488 .store_error = aiocb_store_error, 1489 .store_kernelinfo = aiocb_store_kernelinfo, 1490 .store_aiocb = aiocb_store_aiocb, 1491 }; 1492 #endif 1493 1494 /* 1495 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR 1496 * technique is done in this code. 1497 */ 1498 int 1499 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1500 int type, struct aiocb_ops *ops) 1501 { 1502 struct proc *p = td->td_proc; 1503 struct file *fp = NULL; 1504 struct kaiocb *job; 1505 struct kaioinfo *ki; 1506 struct kevent kev; 1507 int opcode; 1508 int error; 1509 int fd, kqfd; 1510 int jid; 1511 u_short evflags; 1512 1513 if (p->p_aioinfo == NULL) 1514 aio_init_aioinfo(p); 1515 1516 ki = p->p_aioinfo; 1517 1518 ops->store_status(ujob, -1); 1519 ops->store_error(ujob, 0); 1520 ops->store_kernelinfo(ujob, -1); 1521 1522 if (num_queue_count >= max_queue_count || 1523 ki->kaio_count >= max_aio_queue_per_proc) { 1524 error = EAGAIN; 1525 goto err1; 1526 } 1527 1528 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1529 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1530 1531 error = ops->aio_copyin(ujob, job, type); 1532 if (error) 1533 goto err2; 1534 1535 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1536 error = EINVAL; 1537 goto err2; 1538 } 1539 1540 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1541 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1542 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1543 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1544 error = EINVAL; 1545 goto err2; 1546 } 1547 1548 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1549 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1550 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1551 error = EINVAL; 1552 goto err2; 1553 } 1554 1555 /* Get the opcode. */ 1556 if (type == LIO_NOP) { 1557 switch (job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET) { 1558 case LIO_WRITE: 1559 case LIO_WRITEV: 1560 case LIO_NOP: 1561 case LIO_READ: 1562 case LIO_READV: 1563 opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET; 1564 if ((job->uaiocb.aio_lio_opcode & LIO_FOFFSET) != 0) 1565 job->ioflags |= KAIOCB_IO_FOFFSET; 1566 break; 1567 default: 1568 error = EINVAL; 1569 goto err2; 1570 } 1571 } else 1572 opcode = job->uaiocb.aio_lio_opcode = type; 1573 1574 ksiginfo_init(&job->ksi); 1575 1576 /* Save userspace address of the job info. */ 1577 job->ujob = ujob; 1578 1579 /* 1580 * Validate the opcode and fetch the file object for the specified 1581 * file descriptor. 1582 * 1583 * XXXRW: Moved the opcode validation up here so that we don't 1584 * retrieve a file descriptor without knowing what the capabiltity 1585 * should be. 1586 */ 1587 fd = job->uaiocb.aio_fildes; 1588 switch (opcode) { 1589 case LIO_WRITE: 1590 case LIO_WRITEV: 1591 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 1592 break; 1593 case LIO_READ: 1594 case LIO_READV: 1595 error = fget_read(td, fd, &cap_pread_rights, &fp); 1596 break; 1597 case LIO_SYNC: 1598 case LIO_DSYNC: 1599 error = fget(td, fd, &cap_fsync_rights, &fp); 1600 break; 1601 case LIO_MLOCK: 1602 break; 1603 case LIO_NOP: 1604 error = fget(td, fd, &cap_no_rights, &fp); 1605 break; 1606 default: 1607 error = EINVAL; 1608 } 1609 if (error) 1610 goto err3; 1611 1612 if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) { 1613 error = EINVAL; 1614 goto err3; 1615 } 1616 1617 if ((opcode == LIO_READ || opcode == LIO_READV || 1618 opcode == LIO_WRITE || opcode == LIO_WRITEV) && 1619 job->uaiocb.aio_offset < 0 && 1620 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1621 error = EINVAL; 1622 goto err3; 1623 } 1624 1625 if (fp != NULL && fp->f_ops == &path_fileops) { 1626 error = EBADF; 1627 goto err3; 1628 } 1629 1630 job->fd_file = fp; 1631 1632 mtx_lock(&aio_job_mtx); 1633 jid = jobrefid++; 1634 job->seqno = jobseqno++; 1635 mtx_unlock(&aio_job_mtx); 1636 error = ops->store_kernelinfo(ujob, jid); 1637 if (error) { 1638 error = EINVAL; 1639 goto err3; 1640 } 1641 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1642 1643 if (opcode == LIO_NOP) { 1644 fdrop(fp, td); 1645 MPASS(job->uiop == &job->uio || job->uiop == NULL); 1646 uma_zfree(aiocb_zone, job); 1647 return (0); 1648 } 1649 1650 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1651 goto no_kqueue; 1652 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1653 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1654 error = EINVAL; 1655 goto err3; 1656 } 1657 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1658 memset(&kev, 0, sizeof(kev)); 1659 kev.ident = (uintptr_t)job->ujob; 1660 kev.filter = EVFILT_AIO; 1661 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1662 kev.data = (intptr_t)job; 1663 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1664 error = kqfd_register(kqfd, &kev, td, M_WAITOK); 1665 if (error) 1666 goto err3; 1667 1668 no_kqueue: 1669 1670 ops->store_error(ujob, EINPROGRESS); 1671 job->uaiocb._aiocb_private.error = EINPROGRESS; 1672 job->userproc = p; 1673 job->cred = crhold(td->td_ucred); 1674 job->jobflags = KAIOCB_QUEUEING; 1675 job->lio = lj; 1676 1677 if (opcode & LIO_VECTORED) { 1678 /* Use the uio copied in by aio_copyin */ 1679 MPASS(job->uiop != &job->uio && job->uiop != NULL); 1680 } else { 1681 /* Setup the inline uio */ 1682 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf; 1683 job->iov[0].iov_len = job->uaiocb.aio_nbytes; 1684 job->uio.uio_iov = job->iov; 1685 job->uio.uio_iovcnt = 1; 1686 job->uio.uio_resid = job->uaiocb.aio_nbytes; 1687 job->uio.uio_segflg = UIO_USERSPACE; 1688 job->uiop = &job->uio; 1689 } 1690 switch (opcode & (LIO_READ | LIO_WRITE)) { 1691 case LIO_READ: 1692 job->uiop->uio_rw = UIO_READ; 1693 break; 1694 case LIO_WRITE: 1695 job->uiop->uio_rw = UIO_WRITE; 1696 break; 1697 } 1698 job->uiop->uio_offset = job->uaiocb.aio_offset; 1699 job->uiop->uio_td = td; 1700 1701 if (opcode == LIO_MLOCK) { 1702 aio_schedule(job, aio_process_mlock); 1703 error = 0; 1704 } else if (fp->f_ops->fo_aio_queue == NULL) 1705 error = aio_queue_file(fp, job); 1706 else 1707 error = fo_aio_queue(fp, job); 1708 if (error) 1709 goto err4; 1710 1711 AIO_LOCK(ki); 1712 job->jobflags &= ~KAIOCB_QUEUEING; 1713 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1714 ki->kaio_count++; 1715 if (lj) 1716 lj->lioj_count++; 1717 atomic_add_int(&num_queue_count, 1); 1718 if (job->jobflags & KAIOCB_FINISHED) { 1719 /* 1720 * The queue callback completed the request synchronously. 1721 * The bulk of the completion is deferred in that case 1722 * until this point. 1723 */ 1724 aio_bio_done_notify(p, job); 1725 } else 1726 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1727 AIO_UNLOCK(ki); 1728 return (0); 1729 1730 err4: 1731 crfree(job->cred); 1732 err3: 1733 if (fp) 1734 fdrop(fp, td); 1735 knlist_delete(&job->klist, curthread, 0); 1736 err2: 1737 if (job->uiop != &job->uio) 1738 freeuio(job->uiop); 1739 uma_zfree(aiocb_zone, job); 1740 err1: 1741 ops->store_error(ujob, error); 1742 return (error); 1743 } 1744 1745 static void 1746 aio_cancel_daemon_job(struct kaiocb *job) 1747 { 1748 1749 mtx_lock(&aio_job_mtx); 1750 if (!aio_cancel_cleared(job)) 1751 TAILQ_REMOVE(&aio_jobs, job, list); 1752 mtx_unlock(&aio_job_mtx); 1753 aio_cancel(job); 1754 } 1755 1756 void 1757 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1758 { 1759 1760 mtx_lock(&aio_job_mtx); 1761 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1762 mtx_unlock(&aio_job_mtx); 1763 aio_cancel(job); 1764 return; 1765 } 1766 job->handle_fn = func; 1767 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1768 aio_kick_nowait(job->userproc); 1769 mtx_unlock(&aio_job_mtx); 1770 } 1771 1772 static void 1773 aio_cancel_sync(struct kaiocb *job) 1774 { 1775 struct kaioinfo *ki; 1776 1777 ki = job->userproc->p_aioinfo; 1778 AIO_LOCK(ki); 1779 if (!aio_cancel_cleared(job)) 1780 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1781 AIO_UNLOCK(ki); 1782 aio_cancel(job); 1783 } 1784 1785 int 1786 aio_queue_file(struct file *fp, struct kaiocb *job) 1787 { 1788 struct kaioinfo *ki; 1789 struct kaiocb *job2; 1790 struct vnode *vp; 1791 struct mount *mp; 1792 int error; 1793 bool safe; 1794 1795 ki = job->userproc->p_aioinfo; 1796 error = aio_qbio(job->userproc, job); 1797 if (error >= 0) 1798 return (error); 1799 safe = false; 1800 if (fp->f_type == DTYPE_VNODE) { 1801 vp = fp->f_vnode; 1802 if (vp->v_type == VREG || vp->v_type == VDIR) { 1803 mp = fp->f_vnode->v_mount; 1804 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1805 safe = true; 1806 } 1807 } 1808 if (!(safe || enable_aio_unsafe)) { 1809 counted_warning(&unsafe_warningcnt, 1810 "is attempting to use unsafe AIO requests"); 1811 return (EOPNOTSUPP); 1812 } 1813 1814 if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) { 1815 aio_schedule(job, aio_process_rw); 1816 error = 0; 1817 } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) { 1818 AIO_LOCK(ki); 1819 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1820 if (job2->fd_file == job->fd_file && 1821 ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) && 1822 job2->seqno < job->seqno) { 1823 job2->jobflags |= KAIOCB_CHECKSYNC; 1824 job->pending++; 1825 } 1826 } 1827 if (job->pending != 0) { 1828 if (!aio_set_cancel_function_locked(job, 1829 aio_cancel_sync)) { 1830 AIO_UNLOCK(ki); 1831 aio_cancel(job); 1832 return (0); 1833 } 1834 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1835 AIO_UNLOCK(ki); 1836 return (0); 1837 } 1838 AIO_UNLOCK(ki); 1839 aio_schedule(job, aio_process_sync); 1840 error = 0; 1841 } else { 1842 error = EINVAL; 1843 } 1844 return (error); 1845 } 1846 1847 static void 1848 aio_kick_nowait(struct proc *userp) 1849 { 1850 struct kaioinfo *ki = userp->p_aioinfo; 1851 struct aioproc *aiop; 1852 1853 mtx_assert(&aio_job_mtx, MA_OWNED); 1854 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1855 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1856 aiop->aioprocflags &= ~AIOP_FREE; 1857 wakeup(aiop->aioproc); 1858 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1859 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1860 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1861 } 1862 } 1863 1864 static int 1865 aio_kick(struct proc *userp) 1866 { 1867 struct kaioinfo *ki = userp->p_aioinfo; 1868 struct aioproc *aiop; 1869 int error, ret = 0; 1870 1871 mtx_assert(&aio_job_mtx, MA_OWNED); 1872 retryproc: 1873 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1874 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1875 aiop->aioprocflags &= ~AIOP_FREE; 1876 wakeup(aiop->aioproc); 1877 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1878 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1879 num_aio_resv_start++; 1880 mtx_unlock(&aio_job_mtx); 1881 error = aio_newproc(&num_aio_resv_start); 1882 mtx_lock(&aio_job_mtx); 1883 if (error) { 1884 num_aio_resv_start--; 1885 goto retryproc; 1886 } 1887 } else { 1888 ret = -1; 1889 } 1890 return (ret); 1891 } 1892 1893 static void 1894 aio_kick_helper(void *context, int pending) 1895 { 1896 struct proc *userp = context; 1897 1898 mtx_lock(&aio_job_mtx); 1899 while (--pending >= 0) { 1900 if (aio_kick(userp)) 1901 break; 1902 } 1903 mtx_unlock(&aio_job_mtx); 1904 } 1905 1906 /* 1907 * Support the aio_return system call, as a side-effect, kernel resources are 1908 * released. 1909 */ 1910 static int 1911 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1912 { 1913 struct proc *p = td->td_proc; 1914 struct kaiocb *job; 1915 struct kaioinfo *ki; 1916 long status, error; 1917 1918 ki = p->p_aioinfo; 1919 if (ki == NULL) 1920 return (EINVAL); 1921 AIO_LOCK(ki); 1922 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1923 if (job->ujob == ujob) 1924 break; 1925 } 1926 if (job != NULL) { 1927 MPASS(job->jobflags & KAIOCB_FINISHED); 1928 status = job->uaiocb._aiocb_private.status; 1929 error = job->uaiocb._aiocb_private.error; 1930 td->td_retval[0] = status; 1931 td->td_ru.ru_oublock += job->outblock; 1932 td->td_ru.ru_inblock += job->inblock; 1933 td->td_ru.ru_msgsnd += job->msgsnd; 1934 td->td_ru.ru_msgrcv += job->msgrcv; 1935 aio_free_entry(job); 1936 AIO_UNLOCK(ki); 1937 ops->store_error(ujob, error); 1938 ops->store_status(ujob, status); 1939 } else { 1940 error = EINVAL; 1941 AIO_UNLOCK(ki); 1942 } 1943 return (error); 1944 } 1945 1946 int 1947 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1948 { 1949 1950 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1951 } 1952 1953 /* 1954 * Allow a process to wakeup when any of the I/O requests are completed. 1955 */ 1956 static int 1957 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1958 struct timespec *ts) 1959 { 1960 struct proc *p = td->td_proc; 1961 struct timeval atv; 1962 struct kaioinfo *ki; 1963 struct kaiocb *firstjob, *job; 1964 int error, i, timo; 1965 1966 timo = 0; 1967 if (ts) { 1968 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1969 return (EINVAL); 1970 1971 TIMESPEC_TO_TIMEVAL(&atv, ts); 1972 if (itimerfix(&atv)) 1973 return (EINVAL); 1974 timo = tvtohz(&atv); 1975 } 1976 1977 ki = p->p_aioinfo; 1978 if (ki == NULL) 1979 return (EAGAIN); 1980 1981 if (njoblist == 0) 1982 return (0); 1983 1984 AIO_LOCK(ki); 1985 for (;;) { 1986 firstjob = NULL; 1987 error = 0; 1988 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1989 for (i = 0; i < njoblist; i++) { 1990 if (job->ujob == ujoblist[i]) { 1991 if (firstjob == NULL) 1992 firstjob = job; 1993 if (job->jobflags & KAIOCB_FINISHED) 1994 goto RETURN; 1995 } 1996 } 1997 } 1998 /* All tasks were finished. */ 1999 if (firstjob == NULL) 2000 break; 2001 2002 ki->kaio_flags |= KAIO_WAKEUP; 2003 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2004 "aiospn", timo); 2005 if (error == ERESTART) 2006 error = EINTR; 2007 if (error) 2008 break; 2009 } 2010 RETURN: 2011 AIO_UNLOCK(ki); 2012 return (error); 2013 } 2014 2015 int 2016 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 2017 { 2018 struct timespec ts, *tsp; 2019 struct aiocb **ujoblist; 2020 int error; 2021 2022 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2023 return (EINVAL); 2024 2025 if (uap->timeout) { 2026 /* Get timespec struct. */ 2027 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 2028 return (error); 2029 tsp = &ts; 2030 } else 2031 tsp = NULL; 2032 2033 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK); 2034 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 2035 if (error == 0) 2036 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2037 free(ujoblist, M_AIO); 2038 return (error); 2039 } 2040 2041 /* 2042 * aio_cancel cancels any non-bio aio operations not currently in progress. 2043 */ 2044 int 2045 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 2046 { 2047 struct proc *p = td->td_proc; 2048 struct kaioinfo *ki; 2049 struct kaiocb *job, *jobn; 2050 struct file *fp; 2051 int error; 2052 int cancelled = 0; 2053 int notcancelled = 0; 2054 struct vnode *vp; 2055 2056 /* Lookup file object. */ 2057 error = fget(td, uap->fd, &cap_no_rights, &fp); 2058 if (error) 2059 return (error); 2060 2061 ki = p->p_aioinfo; 2062 if (ki == NULL) 2063 goto done; 2064 2065 if (fp->f_type == DTYPE_VNODE) { 2066 vp = fp->f_vnode; 2067 if (vn_isdisk(vp)) { 2068 fdrop(fp, td); 2069 td->td_retval[0] = AIO_NOTCANCELED; 2070 return (0); 2071 } 2072 } 2073 2074 AIO_LOCK(ki); 2075 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2076 if ((uap->fd == job->uaiocb.aio_fildes) && 2077 ((uap->aiocbp == NULL) || 2078 (uap->aiocbp == job->ujob))) { 2079 if (aio_cancel_job(p, ki, job)) { 2080 cancelled++; 2081 } else { 2082 notcancelled++; 2083 } 2084 if (uap->aiocbp != NULL) 2085 break; 2086 } 2087 } 2088 AIO_UNLOCK(ki); 2089 2090 done: 2091 fdrop(fp, td); 2092 2093 if (uap->aiocbp != NULL) { 2094 if (cancelled) { 2095 td->td_retval[0] = AIO_CANCELED; 2096 return (0); 2097 } 2098 } 2099 2100 if (notcancelled) { 2101 td->td_retval[0] = AIO_NOTCANCELED; 2102 return (0); 2103 } 2104 2105 if (cancelled) { 2106 td->td_retval[0] = AIO_CANCELED; 2107 return (0); 2108 } 2109 2110 td->td_retval[0] = AIO_ALLDONE; 2111 2112 return (0); 2113 } 2114 2115 /* 2116 * aio_error is implemented in the kernel level for compatibility purposes 2117 * only. For a user mode async implementation, it would be best to do it in 2118 * a userland subroutine. 2119 */ 2120 static int 2121 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2122 { 2123 struct proc *p = td->td_proc; 2124 struct kaiocb *job; 2125 struct kaioinfo *ki; 2126 int status; 2127 2128 ki = p->p_aioinfo; 2129 if (ki == NULL) { 2130 td->td_retval[0] = EINVAL; 2131 return (0); 2132 } 2133 2134 AIO_LOCK(ki); 2135 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2136 if (job->ujob == ujob) { 2137 if (job->jobflags & KAIOCB_FINISHED) 2138 td->td_retval[0] = 2139 job->uaiocb._aiocb_private.error; 2140 else 2141 td->td_retval[0] = EINPROGRESS; 2142 AIO_UNLOCK(ki); 2143 return (0); 2144 } 2145 } 2146 AIO_UNLOCK(ki); 2147 2148 /* 2149 * Hack for failure of aio_aqueue. 2150 */ 2151 status = ops->fetch_status(ujob); 2152 if (status == -1) { 2153 td->td_retval[0] = ops->fetch_error(ujob); 2154 return (0); 2155 } 2156 2157 td->td_retval[0] = EINVAL; 2158 return (0); 2159 } 2160 2161 int 2162 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2163 { 2164 2165 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2166 } 2167 2168 /* syscall - asynchronous read from a file (REALTIME) */ 2169 #ifdef COMPAT_FREEBSD6 2170 int 2171 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2172 { 2173 2174 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2175 &aiocb_ops_osigevent)); 2176 } 2177 #endif 2178 2179 int 2180 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2181 { 2182 2183 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2184 } 2185 2186 int 2187 sys_aio_readv(struct thread *td, struct aio_readv_args *uap) 2188 { 2189 2190 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops)); 2191 } 2192 2193 /* syscall - asynchronous write to a file (REALTIME) */ 2194 #ifdef COMPAT_FREEBSD6 2195 int 2196 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2197 { 2198 2199 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2200 &aiocb_ops_osigevent)); 2201 } 2202 #endif 2203 2204 int 2205 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2206 { 2207 2208 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2209 } 2210 2211 int 2212 sys_aio_writev(struct thread *td, struct aio_writev_args *uap) 2213 { 2214 2215 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops)); 2216 } 2217 2218 int 2219 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2220 { 2221 2222 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2223 } 2224 2225 static int 2226 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2227 struct aiocb **acb_list, int nent, struct sigevent *sig, 2228 struct aiocb_ops *ops) 2229 { 2230 struct proc *p = td->td_proc; 2231 struct aiocb *job; 2232 struct kaioinfo *ki; 2233 struct aioliojob *lj; 2234 struct kevent kev; 2235 int error; 2236 int nagain, nerror; 2237 int i; 2238 2239 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2240 return (EINVAL); 2241 2242 if (nent < 0 || nent > max_aio_queue_per_proc) 2243 return (EINVAL); 2244 2245 if (p->p_aioinfo == NULL) 2246 aio_init_aioinfo(p); 2247 2248 ki = p->p_aioinfo; 2249 2250 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2251 lj->lioj_flags = 0; 2252 lj->lioj_count = 0; 2253 lj->lioj_finished_count = 0; 2254 lj->lioj_signal.sigev_notify = SIGEV_NONE; 2255 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2256 ksiginfo_init(&lj->lioj_ksi); 2257 2258 /* 2259 * Setup signal. 2260 */ 2261 if (sig && (mode == LIO_NOWAIT)) { 2262 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2263 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2264 /* Assume only new style KEVENT */ 2265 memset(&kev, 0, sizeof(kev)); 2266 kev.filter = EVFILT_LIO; 2267 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2268 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2269 kev.data = (intptr_t)lj; 2270 /* pass user defined sigval data */ 2271 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2272 error = kqfd_register( 2273 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 2274 M_WAITOK); 2275 if (error) { 2276 uma_zfree(aiolio_zone, lj); 2277 return (error); 2278 } 2279 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2280 ; 2281 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2282 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2283 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2284 uma_zfree(aiolio_zone, lj); 2285 return EINVAL; 2286 } 2287 lj->lioj_flags |= LIOJ_SIGNAL; 2288 } else { 2289 uma_zfree(aiolio_zone, lj); 2290 return EINVAL; 2291 } 2292 } 2293 2294 AIO_LOCK(ki); 2295 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2296 /* 2297 * Add extra aiocb count to avoid the lio to be freed 2298 * by other threads doing aio_waitcomplete or aio_return, 2299 * and prevent event from being sent until we have queued 2300 * all tasks. 2301 */ 2302 lj->lioj_count = 1; 2303 AIO_UNLOCK(ki); 2304 2305 /* 2306 * Get pointers to the list of I/O requests. 2307 */ 2308 nagain = 0; 2309 nerror = 0; 2310 for (i = 0; i < nent; i++) { 2311 job = acb_list[i]; 2312 if (job != NULL) { 2313 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2314 if (error == EAGAIN) 2315 nagain++; 2316 else if (error != 0) 2317 nerror++; 2318 } 2319 } 2320 2321 error = 0; 2322 AIO_LOCK(ki); 2323 if (mode == LIO_WAIT) { 2324 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2325 ki->kaio_flags |= KAIO_WAKEUP; 2326 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2327 PRIBIO | PCATCH, "aiospn", 0); 2328 if (error == ERESTART) 2329 error = EINTR; 2330 if (error) 2331 break; 2332 } 2333 } else { 2334 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2335 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2336 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2337 KNOTE_LOCKED(&lj->klist, 1); 2338 } 2339 if ((lj->lioj_flags & (LIOJ_SIGNAL | 2340 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && 2341 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2342 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2343 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi, 2344 lj->lioj_count != 1); 2345 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2346 } 2347 } 2348 } 2349 lj->lioj_count--; 2350 if (lj->lioj_count == 0) { 2351 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2352 knlist_delete(&lj->klist, curthread, 1); 2353 PROC_LOCK(p); 2354 sigqueue_take(&lj->lioj_ksi); 2355 PROC_UNLOCK(p); 2356 AIO_UNLOCK(ki); 2357 uma_zfree(aiolio_zone, lj); 2358 } else 2359 AIO_UNLOCK(ki); 2360 2361 if (nerror) 2362 return (EIO); 2363 else if (nagain) 2364 return (EAGAIN); 2365 else 2366 return (error); 2367 } 2368 2369 /* syscall - list directed I/O (REALTIME) */ 2370 #ifdef COMPAT_FREEBSD6 2371 int 2372 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2373 { 2374 struct aiocb **acb_list; 2375 struct sigevent *sigp, sig; 2376 struct osigevent osig; 2377 int error, nent; 2378 2379 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2380 return (EINVAL); 2381 2382 nent = uap->nent; 2383 if (nent < 0 || nent > max_aio_queue_per_proc) 2384 return (EINVAL); 2385 2386 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2387 error = copyin(uap->sig, &osig, sizeof(osig)); 2388 if (error) 2389 return (error); 2390 error = convert_old_sigevent(&osig, &sig); 2391 if (error) 2392 return (error); 2393 sigp = &sig; 2394 } else 2395 sigp = NULL; 2396 2397 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2398 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2399 if (error == 0) 2400 error = kern_lio_listio(td, uap->mode, 2401 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2402 &aiocb_ops_osigevent); 2403 free(acb_list, M_LIO); 2404 return (error); 2405 } 2406 #endif 2407 2408 /* syscall - list directed I/O (REALTIME) */ 2409 int 2410 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2411 { 2412 struct aiocb **acb_list; 2413 struct sigevent *sigp, sig; 2414 int error, nent; 2415 2416 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2417 return (EINVAL); 2418 2419 nent = uap->nent; 2420 if (nent < 0 || nent > max_aio_queue_per_proc) 2421 return (EINVAL); 2422 2423 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2424 error = copyin(uap->sig, &sig, sizeof(sig)); 2425 if (error) 2426 return (error); 2427 sigp = &sig; 2428 } else 2429 sigp = NULL; 2430 2431 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2432 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2433 if (error == 0) 2434 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2435 nent, sigp, &aiocb_ops); 2436 free(acb_list, M_LIO); 2437 return (error); 2438 } 2439 2440 static void 2441 aio_biocleanup(struct bio *bp) 2442 { 2443 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2444 struct kaioinfo *ki; 2445 struct buf *pbuf = (struct buf *)bp->bio_caller2; 2446 2447 /* Release mapping into kernel space. */ 2448 if (pbuf != NULL) { 2449 MPASS(pbuf->b_npages <= atop(maxphys) + 1); 2450 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages); 2451 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages); 2452 uma_zfree(pbuf_zone, pbuf); 2453 atomic_subtract_int(&num_buf_aio, 1); 2454 ki = job->userproc->p_aioinfo; 2455 AIO_LOCK(ki); 2456 ki->kaio_buffer_count--; 2457 AIO_UNLOCK(ki); 2458 } else { 2459 MPASS(bp->bio_ma_n <= atop(maxphys) + 1); 2460 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n); 2461 free(bp->bio_ma, M_TEMP); 2462 atomic_subtract_int(&num_unmapped_aio, 1); 2463 } 2464 g_destroy_bio(bp); 2465 } 2466 2467 static void 2468 aio_biowakeup(struct bio *bp) 2469 { 2470 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2471 size_t nbytes; 2472 long bcount = bp->bio_bcount; 2473 long resid = bp->bio_resid; 2474 int opcode, nblks; 2475 int bio_error = bp->bio_error; 2476 uint16_t flags = bp->bio_flags; 2477 2478 opcode = job->uaiocb.aio_lio_opcode; 2479 2480 aio_biocleanup(bp); 2481 2482 nbytes = bcount - resid; 2483 atomic_add_acq_long(&job->nbytes, nbytes); 2484 nblks = btodb(nbytes); 2485 2486 /* 2487 * If multiple bios experienced an error, the job will reflect the 2488 * error of whichever failed bio completed last. 2489 */ 2490 if (flags & BIO_ERROR) 2491 atomic_store_int(&job->error, bio_error); 2492 if (opcode & LIO_WRITE) 2493 atomic_add_int(&job->outblock, nblks); 2494 else 2495 atomic_add_int(&job->inblock, nblks); 2496 2497 if (refcount_release(&job->nbio)) { 2498 bio_error = atomic_load_int(&job->error); 2499 if (bio_error != 0) 2500 aio_complete(job, -1, bio_error); 2501 else 2502 aio_complete(job, atomic_load_long(&job->nbytes), 0); 2503 } 2504 } 2505 2506 /* syscall - wait for the next completion of an aio request */ 2507 static int 2508 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2509 struct timespec *ts, struct aiocb_ops *ops) 2510 { 2511 struct proc *p = td->td_proc; 2512 struct timeval atv; 2513 struct kaioinfo *ki; 2514 struct kaiocb *job; 2515 struct aiocb *ujob; 2516 long error, status; 2517 int timo; 2518 2519 ops->store_aiocb(ujobp, NULL); 2520 2521 if (ts == NULL) { 2522 timo = 0; 2523 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2524 timo = -1; 2525 } else { 2526 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2527 return (EINVAL); 2528 2529 TIMESPEC_TO_TIMEVAL(&atv, ts); 2530 if (itimerfix(&atv)) 2531 return (EINVAL); 2532 timo = tvtohz(&atv); 2533 } 2534 2535 if (p->p_aioinfo == NULL) 2536 aio_init_aioinfo(p); 2537 ki = p->p_aioinfo; 2538 2539 error = 0; 2540 job = NULL; 2541 AIO_LOCK(ki); 2542 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2543 if (timo == -1) { 2544 error = EWOULDBLOCK; 2545 break; 2546 } 2547 ki->kaio_flags |= KAIO_WAKEUP; 2548 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2549 "aiowc", timo); 2550 if (timo && error == ERESTART) 2551 error = EINTR; 2552 if (error) 2553 break; 2554 } 2555 2556 if (job != NULL) { 2557 MPASS(job->jobflags & KAIOCB_FINISHED); 2558 ujob = job->ujob; 2559 status = job->uaiocb._aiocb_private.status; 2560 error = job->uaiocb._aiocb_private.error; 2561 td->td_retval[0] = status; 2562 td->td_ru.ru_oublock += job->outblock; 2563 td->td_ru.ru_inblock += job->inblock; 2564 td->td_ru.ru_msgsnd += job->msgsnd; 2565 td->td_ru.ru_msgrcv += job->msgrcv; 2566 aio_free_entry(job); 2567 AIO_UNLOCK(ki); 2568 ops->store_aiocb(ujobp, ujob); 2569 ops->store_error(ujob, error); 2570 ops->store_status(ujob, status); 2571 } else 2572 AIO_UNLOCK(ki); 2573 2574 return (error); 2575 } 2576 2577 int 2578 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2579 { 2580 struct timespec ts, *tsp; 2581 int error; 2582 2583 if (uap->timeout) { 2584 /* Get timespec struct. */ 2585 error = copyin(uap->timeout, &ts, sizeof(ts)); 2586 if (error) 2587 return (error); 2588 tsp = &ts; 2589 } else 2590 tsp = NULL; 2591 2592 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2593 } 2594 2595 static int 2596 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2597 struct aiocb_ops *ops) 2598 { 2599 int listop; 2600 2601 switch (op) { 2602 case O_SYNC: 2603 listop = LIO_SYNC; 2604 break; 2605 case O_DSYNC: 2606 listop = LIO_DSYNC; 2607 break; 2608 default: 2609 return (EINVAL); 2610 } 2611 2612 return (aio_aqueue(td, ujob, NULL, listop, ops)); 2613 } 2614 2615 int 2616 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2617 { 2618 2619 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2620 } 2621 2622 /* kqueue attach function */ 2623 static int 2624 filt_aioattach(struct knote *kn) 2625 { 2626 struct kaiocb *job; 2627 2628 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2629 2630 /* 2631 * The job pointer must be validated before using it, so 2632 * registration is restricted to the kernel; the user cannot 2633 * set EV_FLAG1. 2634 */ 2635 if ((kn->kn_flags & EV_FLAG1) == 0) 2636 return (EPERM); 2637 kn->kn_ptr.p_aio = job; 2638 kn->kn_flags &= ~EV_FLAG1; 2639 2640 knlist_add(&job->klist, kn, 0); 2641 2642 return (0); 2643 } 2644 2645 /* kqueue detach function */ 2646 static void 2647 filt_aiodetach(struct knote *kn) 2648 { 2649 struct knlist *knl; 2650 2651 knl = &kn->kn_ptr.p_aio->klist; 2652 knl->kl_lock(knl->kl_lockarg); 2653 if (!knlist_empty(knl)) 2654 knlist_remove(knl, kn, 1); 2655 knl->kl_unlock(knl->kl_lockarg); 2656 } 2657 2658 /* kqueue filter function */ 2659 /*ARGSUSED*/ 2660 static int 2661 filt_aio(struct knote *kn, long hint) 2662 { 2663 struct kaiocb *job = kn->kn_ptr.p_aio; 2664 2665 kn->kn_data = job->uaiocb._aiocb_private.error; 2666 if (!(job->jobflags & KAIOCB_FINISHED)) 2667 return (0); 2668 kn->kn_flags |= EV_EOF; 2669 return (1); 2670 } 2671 2672 /* kqueue attach function */ 2673 static int 2674 filt_lioattach(struct knote *kn) 2675 { 2676 struct aioliojob *lj; 2677 2678 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2679 2680 /* 2681 * The aioliojob pointer must be validated before using it, so 2682 * registration is restricted to the kernel; the user cannot 2683 * set EV_FLAG1. 2684 */ 2685 if ((kn->kn_flags & EV_FLAG1) == 0) 2686 return (EPERM); 2687 kn->kn_ptr.p_lio = lj; 2688 kn->kn_flags &= ~EV_FLAG1; 2689 2690 knlist_add(&lj->klist, kn, 0); 2691 2692 return (0); 2693 } 2694 2695 /* kqueue detach function */ 2696 static void 2697 filt_liodetach(struct knote *kn) 2698 { 2699 struct knlist *knl; 2700 2701 knl = &kn->kn_ptr.p_lio->klist; 2702 knl->kl_lock(knl->kl_lockarg); 2703 if (!knlist_empty(knl)) 2704 knlist_remove(knl, kn, 1); 2705 knl->kl_unlock(knl->kl_lockarg); 2706 } 2707 2708 /* kqueue filter function */ 2709 /*ARGSUSED*/ 2710 static int 2711 filt_lio(struct knote *kn, long hint) 2712 { 2713 struct aioliojob * lj = kn->kn_ptr.p_lio; 2714 2715 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2716 } 2717 2718 #ifdef COMPAT_FREEBSD32 2719 #include <sys/mount.h> 2720 #include <sys/socket.h> 2721 #include <sys/sysent.h> 2722 #include <compat/freebsd32/freebsd32.h> 2723 #include <compat/freebsd32/freebsd32_proto.h> 2724 #include <compat/freebsd32/freebsd32_signal.h> 2725 #include <compat/freebsd32/freebsd32_syscall.h> 2726 #include <compat/freebsd32/freebsd32_util.h> 2727 2728 struct __aiocb_private32 { 2729 int32_t status; 2730 int32_t error; 2731 uint32_t kernelinfo; 2732 }; 2733 2734 #ifdef COMPAT_FREEBSD6 2735 typedef struct oaiocb32 { 2736 int aio_fildes; /* File descriptor */ 2737 uint64_t aio_offset __packed; /* File offset for I/O */ 2738 uint32_t aio_buf; /* I/O buffer in process space */ 2739 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2740 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2741 int aio_lio_opcode; /* LIO opcode */ 2742 int aio_reqprio; /* Request priority -- ignored */ 2743 struct __aiocb_private32 _aiocb_private; 2744 } oaiocb32_t; 2745 #endif 2746 2747 typedef struct aiocb32 { 2748 int32_t aio_fildes; /* File descriptor */ 2749 uint64_t aio_offset __packed; /* File offset for I/O */ 2750 uint32_t aio_buf; /* I/O buffer in process space */ 2751 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2752 int __spare__[2]; 2753 uint32_t __spare2__; 2754 int aio_lio_opcode; /* LIO opcode */ 2755 int aio_reqprio; /* Request priority -- ignored */ 2756 struct __aiocb_private32 _aiocb_private; 2757 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2758 } aiocb32_t; 2759 2760 #ifdef COMPAT_FREEBSD6 2761 static int 2762 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2763 { 2764 2765 /* 2766 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2767 * supported by AIO with the old sigevent structure. 2768 */ 2769 CP(*osig, *nsig, sigev_notify); 2770 switch (nsig->sigev_notify) { 2771 case SIGEV_NONE: 2772 break; 2773 case SIGEV_SIGNAL: 2774 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2775 break; 2776 case SIGEV_KEVENT: 2777 nsig->sigev_notify_kqueue = 2778 osig->__sigev_u.__sigev_notify_kqueue; 2779 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2780 break; 2781 default: 2782 return (EINVAL); 2783 } 2784 return (0); 2785 } 2786 2787 static int 2788 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 2789 int type __unused) 2790 { 2791 struct oaiocb32 job32; 2792 struct aiocb *kcb = &kjob->uaiocb; 2793 int error; 2794 2795 bzero(kcb, sizeof(struct aiocb)); 2796 error = copyin(ujob, &job32, sizeof(job32)); 2797 if (error) 2798 return (error); 2799 2800 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 2801 2802 CP(job32, *kcb, aio_fildes); 2803 CP(job32, *kcb, aio_offset); 2804 PTRIN_CP(job32, *kcb, aio_buf); 2805 CP(job32, *kcb, aio_nbytes); 2806 CP(job32, *kcb, aio_lio_opcode); 2807 CP(job32, *kcb, aio_reqprio); 2808 CP(job32, *kcb, _aiocb_private.status); 2809 CP(job32, *kcb, _aiocb_private.error); 2810 PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); 2811 return (convert_old_sigevent32(&job32.aio_sigevent, 2812 &kcb->aio_sigevent)); 2813 } 2814 #endif 2815 2816 static int 2817 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 2818 { 2819 struct aiocb32 job32; 2820 struct aiocb *kcb = &kjob->uaiocb; 2821 struct iovec32 *iov32; 2822 int error; 2823 2824 error = copyin(ujob, &job32, sizeof(job32)); 2825 if (error) 2826 return (error); 2827 CP(job32, *kcb, aio_fildes); 2828 CP(job32, *kcb, aio_offset); 2829 CP(job32, *kcb, aio_lio_opcode); 2830 if (type == LIO_NOP) 2831 type = kcb->aio_lio_opcode; 2832 if (type & LIO_VECTORED) { 2833 iov32 = PTRIN(job32.aio_iov); 2834 CP(job32, *kcb, aio_iovcnt); 2835 /* malloc a uio and copy in the iovec */ 2836 error = freebsd32_copyinuio(iov32, 2837 kcb->aio_iovcnt, &kjob->uiop); 2838 if (error) 2839 return (error); 2840 } else { 2841 PTRIN_CP(job32, *kcb, aio_buf); 2842 CP(job32, *kcb, aio_nbytes); 2843 } 2844 CP(job32, *kcb, aio_reqprio); 2845 CP(job32, *kcb, _aiocb_private.status); 2846 CP(job32, *kcb, _aiocb_private.error); 2847 PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); 2848 error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent); 2849 2850 return (error); 2851 } 2852 2853 static long 2854 aiocb32_fetch_status(struct aiocb *ujob) 2855 { 2856 struct aiocb32 *ujob32; 2857 2858 ujob32 = (struct aiocb32 *)ujob; 2859 return (fuword32(&ujob32->_aiocb_private.status)); 2860 } 2861 2862 static long 2863 aiocb32_fetch_error(struct aiocb *ujob) 2864 { 2865 struct aiocb32 *ujob32; 2866 2867 ujob32 = (struct aiocb32 *)ujob; 2868 return (fuword32(&ujob32->_aiocb_private.error)); 2869 } 2870 2871 static int 2872 aiocb32_store_status(struct aiocb *ujob, long status) 2873 { 2874 struct aiocb32 *ujob32; 2875 2876 ujob32 = (struct aiocb32 *)ujob; 2877 return (suword32(&ujob32->_aiocb_private.status, status)); 2878 } 2879 2880 static int 2881 aiocb32_store_error(struct aiocb *ujob, long error) 2882 { 2883 struct aiocb32 *ujob32; 2884 2885 ujob32 = (struct aiocb32 *)ujob; 2886 return (suword32(&ujob32->_aiocb_private.error, error)); 2887 } 2888 2889 static int 2890 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2891 { 2892 struct aiocb32 *ujob32; 2893 2894 ujob32 = (struct aiocb32 *)ujob; 2895 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2896 } 2897 2898 static int 2899 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2900 { 2901 2902 return (suword32(ujobp, (long)ujob)); 2903 } 2904 2905 static struct aiocb_ops aiocb32_ops = { 2906 .aio_copyin = aiocb32_copyin, 2907 .fetch_status = aiocb32_fetch_status, 2908 .fetch_error = aiocb32_fetch_error, 2909 .store_status = aiocb32_store_status, 2910 .store_error = aiocb32_store_error, 2911 .store_kernelinfo = aiocb32_store_kernelinfo, 2912 .store_aiocb = aiocb32_store_aiocb, 2913 }; 2914 2915 #ifdef COMPAT_FREEBSD6 2916 static struct aiocb_ops aiocb32_ops_osigevent = { 2917 .aio_copyin = aiocb32_copyin_old_sigevent, 2918 .fetch_status = aiocb32_fetch_status, 2919 .fetch_error = aiocb32_fetch_error, 2920 .store_status = aiocb32_store_status, 2921 .store_error = aiocb32_store_error, 2922 .store_kernelinfo = aiocb32_store_kernelinfo, 2923 .store_aiocb = aiocb32_store_aiocb, 2924 }; 2925 #endif 2926 2927 int 2928 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2929 { 2930 2931 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2932 } 2933 2934 int 2935 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2936 { 2937 struct timespec32 ts32; 2938 struct timespec ts, *tsp; 2939 struct aiocb **ujoblist; 2940 uint32_t *ujoblist32; 2941 int error, i; 2942 2943 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2944 return (EINVAL); 2945 2946 if (uap->timeout) { 2947 /* Get timespec struct. */ 2948 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2949 return (error); 2950 CP(ts32, ts, tv_sec); 2951 CP(ts32, ts, tv_nsec); 2952 tsp = &ts; 2953 } else 2954 tsp = NULL; 2955 2956 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK); 2957 ujoblist32 = (uint32_t *)ujoblist; 2958 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2959 sizeof(ujoblist32[0])); 2960 if (error == 0) { 2961 for (i = uap->nent - 1; i >= 0; i--) 2962 ujoblist[i] = PTRIN(ujoblist32[i]); 2963 2964 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2965 } 2966 free(ujoblist, M_AIO); 2967 return (error); 2968 } 2969 2970 int 2971 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2972 { 2973 2974 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2975 } 2976 2977 #ifdef COMPAT_FREEBSD6 2978 int 2979 freebsd6_freebsd32_aio_read(struct thread *td, 2980 struct freebsd6_freebsd32_aio_read_args *uap) 2981 { 2982 2983 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2984 &aiocb32_ops_osigevent)); 2985 } 2986 #endif 2987 2988 int 2989 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2990 { 2991 2992 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2993 &aiocb32_ops)); 2994 } 2995 2996 int 2997 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap) 2998 { 2999 3000 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV, 3001 &aiocb32_ops)); 3002 } 3003 3004 #ifdef COMPAT_FREEBSD6 3005 int 3006 freebsd6_freebsd32_aio_write(struct thread *td, 3007 struct freebsd6_freebsd32_aio_write_args *uap) 3008 { 3009 3010 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3011 &aiocb32_ops_osigevent)); 3012 } 3013 #endif 3014 3015 int 3016 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 3017 { 3018 3019 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3020 &aiocb32_ops)); 3021 } 3022 3023 int 3024 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap) 3025 { 3026 3027 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV, 3028 &aiocb32_ops)); 3029 } 3030 3031 int 3032 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 3033 { 3034 3035 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 3036 &aiocb32_ops)); 3037 } 3038 3039 int 3040 freebsd32_aio_waitcomplete(struct thread *td, 3041 struct freebsd32_aio_waitcomplete_args *uap) 3042 { 3043 struct timespec32 ts32; 3044 struct timespec ts, *tsp; 3045 int error; 3046 3047 if (uap->timeout) { 3048 /* Get timespec struct. */ 3049 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3050 if (error) 3051 return (error); 3052 CP(ts32, ts, tv_sec); 3053 CP(ts32, ts, tv_nsec); 3054 tsp = &ts; 3055 } else 3056 tsp = NULL; 3057 3058 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 3059 &aiocb32_ops)); 3060 } 3061 3062 int 3063 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 3064 { 3065 3066 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 3067 &aiocb32_ops)); 3068 } 3069 3070 #ifdef COMPAT_FREEBSD6 3071 int 3072 freebsd6_freebsd32_lio_listio(struct thread *td, 3073 struct freebsd6_freebsd32_lio_listio_args *uap) 3074 { 3075 struct aiocb **acb_list; 3076 struct sigevent *sigp, sig; 3077 struct osigevent32 osig; 3078 uint32_t *acb_list32; 3079 int error, i, nent; 3080 3081 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3082 return (EINVAL); 3083 3084 nent = uap->nent; 3085 if (nent < 0 || nent > max_aio_queue_per_proc) 3086 return (EINVAL); 3087 3088 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3089 error = copyin(uap->sig, &osig, sizeof(osig)); 3090 if (error) 3091 return (error); 3092 error = convert_old_sigevent32(&osig, &sig); 3093 if (error) 3094 return (error); 3095 sigp = &sig; 3096 } else 3097 sigp = NULL; 3098 3099 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3100 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3101 if (error) { 3102 free(acb_list32, M_LIO); 3103 return (error); 3104 } 3105 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3106 for (i = 0; i < nent; i++) 3107 acb_list[i] = PTRIN(acb_list32[i]); 3108 free(acb_list32, M_LIO); 3109 3110 error = kern_lio_listio(td, uap->mode, 3111 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3112 &aiocb32_ops_osigevent); 3113 free(acb_list, M_LIO); 3114 return (error); 3115 } 3116 #endif 3117 3118 int 3119 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 3120 { 3121 struct aiocb **acb_list; 3122 struct sigevent *sigp, sig; 3123 struct sigevent32 sig32; 3124 uint32_t *acb_list32; 3125 int error, i, nent; 3126 3127 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3128 return (EINVAL); 3129 3130 nent = uap->nent; 3131 if (nent < 0 || nent > max_aio_queue_per_proc) 3132 return (EINVAL); 3133 3134 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3135 error = copyin(uap->sig, &sig32, sizeof(sig32)); 3136 if (error) 3137 return (error); 3138 error = convert_sigevent32(&sig32, &sig); 3139 if (error) 3140 return (error); 3141 sigp = &sig; 3142 } else 3143 sigp = NULL; 3144 3145 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3146 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3147 if (error) { 3148 free(acb_list32, M_LIO); 3149 return (error); 3150 } 3151 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3152 for (i = 0; i < nent; i++) 3153 acb_list[i] = PTRIN(acb_list32[i]); 3154 free(acb_list32, M_LIO); 3155 3156 error = kern_lio_listio(td, uap->mode, 3157 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3158 &aiocb32_ops); 3159 free(acb_list, M_LIO); 3160 return (error); 3161 } 3162 3163 #endif 3164