xref: /freebsd/sys/kern/uipc_usrreq.c (revision 8aac90f18aef7c9eea906c3ff9a001ca7b94f375)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  * Copyright (c) 2022 Gleb Smirnoff <glebius@FreeBSD.org>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * UNIX Domain (Local) Sockets
37  *
38  * This is an implementation of UNIX (local) domain sockets.  Each socket has
39  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
40  * may be connected to 0 or 1 other socket.  Datagram sockets may be
41  * connected to 0, 1, or many other sockets.  Sockets may be created and
42  * connected in pairs (socketpair(2)), or bound/connected to using the file
43  * system name space.  For most purposes, only the receive socket buffer is
44  * used, as sending on one socket delivers directly to the receive socket
45  * buffer of a second socket.
46  *
47  * The implementation is substantially complicated by the fact that
48  * "ancillary data", such as file descriptors or credentials, may be passed
49  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
50  * over other UNIX domain sockets requires the implementation of a simple
51  * garbage collector to find and tear down cycles of disconnected sockets.
52  *
53  * TODO:
54  *	RDM
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 #include "opt_ddb.h"
61 
62 #include <sys/param.h>
63 #include <sys/capsicum.h>
64 #include <sys/domain.h>
65 #include <sys/eventhandler.h>
66 #include <sys/fcntl.h>
67 #include <sys/file.h>
68 #include <sys/filedesc.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/namei.h>
76 #include <sys/proc.h>
77 #include <sys/protosw.h>
78 #include <sys/queue.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/stat.h>
85 #include <sys/sx.h>
86 #include <sys/sysctl.h>
87 #include <sys/systm.h>
88 #include <sys/taskqueue.h>
89 #include <sys/un.h>
90 #include <sys/unpcb.h>
91 #include <sys/vnode.h>
92 
93 #include <net/vnet.h>
94 
95 #ifdef DDB
96 #include <ddb/ddb.h>
97 #endif
98 
99 #include <security/mac/mac_framework.h>
100 
101 #include <vm/uma.h>
102 
103 MALLOC_DECLARE(M_FILECAPS);
104 
105 static struct domain localdomain;
106 
107 static uma_zone_t	unp_zone;
108 static unp_gen_t	unp_gencnt;	/* (l) */
109 static u_int		unp_count;	/* (l) Count of local sockets. */
110 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
111 static int		unp_rights;	/* (g) File descriptors in flight. */
112 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
113 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
114 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
115 
116 struct unp_defer {
117 	SLIST_ENTRY(unp_defer) ud_link;
118 	struct file *ud_fp;
119 };
120 static SLIST_HEAD(, unp_defer) unp_defers;
121 static int unp_defers_count;
122 
123 static const struct sockaddr	sun_noname = {
124 	.sa_len = sizeof(sun_noname),
125 	.sa_family = AF_LOCAL,
126 };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct timeout_task unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_maxdgram = 8*1024;	/* support 8KB syslog msgs */
158 static u_long	unpdg_recvspace = 16*1024;
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
163     "Local domain");
164 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
165     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "SOCK_SEQPACKET");
173 
174 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
175 	   &unpst_sendspace, 0, "Default stream send space.");
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
177 	   &unpst_recvspace, 0, "Default stream receive space.");
178 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
179 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
181 	   &unpdg_recvspace, 0, "Default datagram receive space.");
182 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
183 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
185 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
186 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
187     "File descriptors in flight.");
188 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
189     &unp_defers_count, 0,
190     "File descriptors deferred to taskqueue for close.");
191 
192 /*
193  * Locking and synchronization:
194  *
195  * Several types of locks exist in the local domain socket implementation:
196  * - a global linkage lock
197  * - a global connection list lock
198  * - the mtxpool lock
199  * - per-unpcb mutexes
200  *
201  * The linkage lock protects the global socket lists, the generation number
202  * counter and garbage collector state.
203  *
204  * The connection list lock protects the list of referring sockets in a datagram
205  * socket PCB.  This lock is also overloaded to protect a global list of
206  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
207  * messages.  To avoid recursion, such references are released by a dedicated
208  * thread.
209  *
210  * The mtxpool lock protects the vnode from being modified while referenced.
211  * Lock ordering rules require that it be acquired before any PCB locks.
212  *
213  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
214  * unpcb.  This includes the unp_conn field, which either links two connected
215  * PCBs together (for connected socket types) or points at the destination
216  * socket (for connectionless socket types).  The operations of creating or
217  * destroying a connection therefore involve locking multiple PCBs.  To avoid
218  * lock order reversals, in some cases this involves dropping a PCB lock and
219  * using a reference counter to maintain liveness.
220  *
221  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
222  * allocated in pr_attach() and freed in pr_detach().  The validity of that
223  * pointer is an invariant, so no lock is required to dereference the so_pcb
224  * pointer if a valid socket reference is held by the caller.  In practice,
225  * this is always true during operations performed on a socket.  Each unpcb
226  * has a back-pointer to its socket, unp_socket, which will be stable under
227  * the same circumstances.
228  *
229  * This pointer may only be safely dereferenced as long as a valid reference
230  * to the unpcb is held.  Typically, this reference will be from the socket,
231  * or from another unpcb when the referring unpcb's lock is held (in order
232  * that the reference not be invalidated during use).  For example, to follow
233  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
234  * that detach is not run clearing unp_socket.
235  *
236  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
237  * protocols, bind() is a non-atomic operation, and connect() requires
238  * potential sleeping in the protocol, due to potentially waiting on local or
239  * distributed file systems.  We try to separate "lookup" operations, which
240  * may sleep, and the IPC operations themselves, which typically can occur
241  * with relative atomicity as locks can be held over the entire operation.
242  *
243  * Another tricky issue is simultaneous multi-threaded or multi-process
244  * access to a single UNIX domain socket.  These are handled by the flags
245  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
246  * binding, both of which involve dropping UNIX domain socket locks in order
247  * to perform namei() and other file system operations.
248  */
249 static struct rwlock	unp_link_rwlock;
250 static struct mtx	unp_defers_lock;
251 
252 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
253 					    "unp_link_rwlock")
254 
255 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
256 					    RA_LOCKED)
257 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
258 					    RA_UNLOCKED)
259 
260 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
261 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
262 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
263 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
265 					    RA_WLOCKED)
266 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
267 
268 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
269 					    "unp_defer", NULL, MTX_DEF)
270 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
271 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
272 
273 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
274 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
275 
276 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
277 					    "unp", "unp",	\
278 					    MTX_DUPOK|MTX_DEF)
279 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
280 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
281 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
282 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
283 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
284 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
285 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
286 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
287 
288 static int	uipc_connect2(struct socket *, struct socket *);
289 static int	uipc_ctloutput(struct socket *, struct sockopt *);
290 static int	unp_connect(struct socket *, struct sockaddr *,
291 		    struct thread *);
292 static int	unp_connectat(int, struct socket *, struct sockaddr *,
293 		    struct thread *, bool);
294 static void	unp_connect2(struct socket *so, struct socket *so2);
295 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
296 static void	unp_dispose(struct socket *so);
297 static void	unp_shutdown(struct unpcb *);
298 static void	unp_drop(struct unpcb *);
299 static void	unp_gc(__unused void *, int);
300 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
301 static void	unp_discard(struct file *);
302 static void	unp_freerights(struct filedescent **, int);
303 static int	unp_internalize(struct mbuf **, struct thread *,
304 		    struct mbuf **, u_int *, u_int *);
305 static void	unp_internalize_fp(struct file *);
306 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
307 static int	unp_externalize_fp(struct file *);
308 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *,
309 		    int, struct mbuf **, u_int *, u_int *);
310 static void	unp_process_defers(void * __unused, int);
311 
312 static void
313 unp_pcb_hold(struct unpcb *unp)
314 {
315 	u_int old __unused;
316 
317 	old = refcount_acquire(&unp->unp_refcount);
318 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
319 }
320 
321 static __result_use_check bool
322 unp_pcb_rele(struct unpcb *unp)
323 {
324 	bool ret;
325 
326 	UNP_PCB_LOCK_ASSERT(unp);
327 
328 	if ((ret = refcount_release(&unp->unp_refcount))) {
329 		UNP_PCB_UNLOCK(unp);
330 		UNP_PCB_LOCK_DESTROY(unp);
331 		uma_zfree(unp_zone, unp);
332 	}
333 	return (ret);
334 }
335 
336 static void
337 unp_pcb_rele_notlast(struct unpcb *unp)
338 {
339 	bool ret __unused;
340 
341 	ret = refcount_release(&unp->unp_refcount);
342 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
343 }
344 
345 static void
346 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
347 {
348 	UNP_PCB_UNLOCK_ASSERT(unp);
349 	UNP_PCB_UNLOCK_ASSERT(unp2);
350 
351 	if (unp == unp2) {
352 		UNP_PCB_LOCK(unp);
353 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
354 		UNP_PCB_LOCK(unp);
355 		UNP_PCB_LOCK(unp2);
356 	} else {
357 		UNP_PCB_LOCK(unp2);
358 		UNP_PCB_LOCK(unp);
359 	}
360 }
361 
362 static void
363 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
364 {
365 	UNP_PCB_UNLOCK(unp);
366 	if (unp != unp2)
367 		UNP_PCB_UNLOCK(unp2);
368 }
369 
370 /*
371  * Try to lock the connected peer of an already locked socket.  In some cases
372  * this requires that we unlock the current socket.  The pairbusy counter is
373  * used to block concurrent connection attempts while the lock is dropped.  The
374  * caller must be careful to revalidate PCB state.
375  */
376 static struct unpcb *
377 unp_pcb_lock_peer(struct unpcb *unp)
378 {
379 	struct unpcb *unp2;
380 
381 	UNP_PCB_LOCK_ASSERT(unp);
382 	unp2 = unp->unp_conn;
383 	if (unp2 == NULL)
384 		return (NULL);
385 	if (__predict_false(unp == unp2))
386 		return (unp);
387 
388 	UNP_PCB_UNLOCK_ASSERT(unp2);
389 
390 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
391 		return (unp2);
392 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
393 		UNP_PCB_LOCK(unp2);
394 		return (unp2);
395 	}
396 	unp->unp_pairbusy++;
397 	unp_pcb_hold(unp2);
398 	UNP_PCB_UNLOCK(unp);
399 
400 	UNP_PCB_LOCK(unp2);
401 	UNP_PCB_LOCK(unp);
402 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
403 	    ("%s: socket %p was reconnected", __func__, unp));
404 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
405 		unp->unp_flags &= ~UNP_WAITING;
406 		wakeup(unp);
407 	}
408 	if (unp_pcb_rele(unp2)) {
409 		/* unp2 is unlocked. */
410 		return (NULL);
411 	}
412 	if (unp->unp_conn == NULL) {
413 		UNP_PCB_UNLOCK(unp2);
414 		return (NULL);
415 	}
416 	return (unp2);
417 }
418 
419 static void
420 uipc_abort(struct socket *so)
421 {
422 	struct unpcb *unp, *unp2;
423 
424 	unp = sotounpcb(so);
425 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
426 	UNP_PCB_UNLOCK_ASSERT(unp);
427 
428 	UNP_PCB_LOCK(unp);
429 	unp2 = unp->unp_conn;
430 	if (unp2 != NULL) {
431 		unp_pcb_hold(unp2);
432 		UNP_PCB_UNLOCK(unp);
433 		unp_drop(unp2);
434 	} else
435 		UNP_PCB_UNLOCK(unp);
436 }
437 
438 static int
439 uipc_attach(struct socket *so, int proto, struct thread *td)
440 {
441 	u_long sendspace, recvspace;
442 	struct unpcb *unp;
443 	int error;
444 	bool locked;
445 
446 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
447 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
448 		switch (so->so_type) {
449 		case SOCK_STREAM:
450 			sendspace = unpst_sendspace;
451 			recvspace = unpst_recvspace;
452 			break;
453 
454 		case SOCK_DGRAM:
455 			STAILQ_INIT(&so->so_rcv.uxdg_mb);
456 			STAILQ_INIT(&so->so_snd.uxdg_mb);
457 			TAILQ_INIT(&so->so_rcv.uxdg_conns);
458 			/*
459 			 * Since send buffer is either bypassed or is a part
460 			 * of one-to-many receive buffer, we assign both space
461 			 * limits to unpdg_recvspace.
462 			 */
463 			sendspace = recvspace = unpdg_recvspace;
464 			break;
465 
466 		case SOCK_SEQPACKET:
467 			sendspace = unpsp_sendspace;
468 			recvspace = unpsp_recvspace;
469 			break;
470 
471 		default:
472 			panic("uipc_attach");
473 		}
474 		error = soreserve(so, sendspace, recvspace);
475 		if (error)
476 			return (error);
477 	}
478 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
479 	if (unp == NULL)
480 		return (ENOBUFS);
481 	LIST_INIT(&unp->unp_refs);
482 	UNP_PCB_LOCK_INIT(unp);
483 	unp->unp_socket = so;
484 	so->so_pcb = unp;
485 	refcount_init(&unp->unp_refcount, 1);
486 
487 	if ((locked = UNP_LINK_WOWNED()) == false)
488 		UNP_LINK_WLOCK();
489 
490 	unp->unp_gencnt = ++unp_gencnt;
491 	unp->unp_ino = ++unp_ino;
492 	unp_count++;
493 	switch (so->so_type) {
494 	case SOCK_STREAM:
495 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
496 		break;
497 
498 	case SOCK_DGRAM:
499 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
500 		break;
501 
502 	case SOCK_SEQPACKET:
503 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
504 		break;
505 
506 	default:
507 		panic("uipc_attach");
508 	}
509 
510 	if (locked == false)
511 		UNP_LINK_WUNLOCK();
512 
513 	return (0);
514 }
515 
516 static int
517 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
518 {
519 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
520 	struct vattr vattr;
521 	int error, namelen;
522 	struct nameidata nd;
523 	struct unpcb *unp;
524 	struct vnode *vp;
525 	struct mount *mp;
526 	cap_rights_t rights;
527 	char *buf;
528 
529 	if (nam->sa_family != AF_UNIX)
530 		return (EAFNOSUPPORT);
531 
532 	unp = sotounpcb(so);
533 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
534 
535 	if (soun->sun_len > sizeof(struct sockaddr_un))
536 		return (EINVAL);
537 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
538 	if (namelen <= 0)
539 		return (EINVAL);
540 
541 	/*
542 	 * We don't allow simultaneous bind() calls on a single UNIX domain
543 	 * socket, so flag in-progress operations, and return an error if an
544 	 * operation is already in progress.
545 	 *
546 	 * Historically, we have not allowed a socket to be rebound, so this
547 	 * also returns an error.  Not allowing re-binding simplifies the
548 	 * implementation and avoids a great many possible failure modes.
549 	 */
550 	UNP_PCB_LOCK(unp);
551 	if (unp->unp_vnode != NULL) {
552 		UNP_PCB_UNLOCK(unp);
553 		return (EINVAL);
554 	}
555 	if (unp->unp_flags & UNP_BINDING) {
556 		UNP_PCB_UNLOCK(unp);
557 		return (EALREADY);
558 	}
559 	unp->unp_flags |= UNP_BINDING;
560 	UNP_PCB_UNLOCK(unp);
561 
562 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
563 	bcopy(soun->sun_path, buf, namelen);
564 	buf[namelen] = 0;
565 
566 restart:
567 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
568 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
569 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
570 	error = namei(&nd);
571 	if (error)
572 		goto error;
573 	vp = nd.ni_vp;
574 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
575 		NDFREE_PNBUF(&nd);
576 		if (nd.ni_dvp == vp)
577 			vrele(nd.ni_dvp);
578 		else
579 			vput(nd.ni_dvp);
580 		if (vp != NULL) {
581 			vrele(vp);
582 			error = EADDRINUSE;
583 			goto error;
584 		}
585 		error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
586 		if (error)
587 			goto error;
588 		goto restart;
589 	}
590 	VATTR_NULL(&vattr);
591 	vattr.va_type = VSOCK;
592 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
593 #ifdef MAC
594 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
595 	    &vattr);
596 #endif
597 	if (error == 0) {
598 		/*
599 		 * The prior lookup may have left LK_SHARED in cn_lkflags,
600 		 * and VOP_CREATE technically only requires the new vnode to
601 		 * be locked shared. Most filesystems will return the new vnode
602 		 * locked exclusive regardless, but we should explicitly
603 		 * specify that here since we require it and assert to that
604 		 * effect below.
605 		 */
606 		nd.ni_cnd.cn_lkflags = (nd.ni_cnd.cn_lkflags & ~LK_SHARED) |
607 		    LK_EXCLUSIVE;
608 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
609 	}
610 	NDFREE_PNBUF(&nd);
611 	if (error) {
612 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
613 		vn_finished_write(mp);
614 		if (error == ERELOOKUP)
615 			goto restart;
616 		goto error;
617 	}
618 	vp = nd.ni_vp;
619 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
620 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
621 
622 	UNP_PCB_LOCK(unp);
623 	VOP_UNP_BIND(vp, unp);
624 	unp->unp_vnode = vp;
625 	unp->unp_addr = soun;
626 	unp->unp_flags &= ~UNP_BINDING;
627 	UNP_PCB_UNLOCK(unp);
628 	vref(vp);
629 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
630 	vn_finished_write(mp);
631 	free(buf, M_TEMP);
632 	return (0);
633 
634 error:
635 	UNP_PCB_LOCK(unp);
636 	unp->unp_flags &= ~UNP_BINDING;
637 	UNP_PCB_UNLOCK(unp);
638 	free(buf, M_TEMP);
639 	return (error);
640 }
641 
642 static int
643 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
644 {
645 
646 	return (uipc_bindat(AT_FDCWD, so, nam, td));
647 }
648 
649 static int
650 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
651 {
652 	int error;
653 
654 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
655 	error = unp_connect(so, nam, td);
656 	return (error);
657 }
658 
659 static int
660 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
661     struct thread *td)
662 {
663 	int error;
664 
665 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
666 	error = unp_connectat(fd, so, nam, td, false);
667 	return (error);
668 }
669 
670 static void
671 uipc_close(struct socket *so)
672 {
673 	struct unpcb *unp, *unp2;
674 	struct vnode *vp = NULL;
675 	struct mtx *vplock;
676 
677 	unp = sotounpcb(so);
678 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
679 
680 	vplock = NULL;
681 	if ((vp = unp->unp_vnode) != NULL) {
682 		vplock = mtx_pool_find(mtxpool_sleep, vp);
683 		mtx_lock(vplock);
684 	}
685 	UNP_PCB_LOCK(unp);
686 	if (vp && unp->unp_vnode == NULL) {
687 		mtx_unlock(vplock);
688 		vp = NULL;
689 	}
690 	if (vp != NULL) {
691 		VOP_UNP_DETACH(vp);
692 		unp->unp_vnode = NULL;
693 	}
694 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
695 		unp_disconnect(unp, unp2);
696 	else
697 		UNP_PCB_UNLOCK(unp);
698 	if (vp) {
699 		mtx_unlock(vplock);
700 		vrele(vp);
701 	}
702 }
703 
704 static int
705 uipc_connect2(struct socket *so1, struct socket *so2)
706 {
707 	struct unpcb *unp, *unp2;
708 
709 	if (so1->so_type != so2->so_type)
710 		return (EPROTOTYPE);
711 
712 	unp = so1->so_pcb;
713 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
714 	unp2 = so2->so_pcb;
715 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
716 	unp_pcb_lock_pair(unp, unp2);
717 	unp_connect2(so1, so2);
718 	unp_pcb_unlock_pair(unp, unp2);
719 
720 	return (0);
721 }
722 
723 static void
724 uipc_detach(struct socket *so)
725 {
726 	struct unpcb *unp, *unp2;
727 	struct mtx *vplock;
728 	struct vnode *vp;
729 	int local_unp_rights;
730 
731 	unp = sotounpcb(so);
732 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
733 
734 	vp = NULL;
735 	vplock = NULL;
736 
737 	if (!SOLISTENING(so))
738 		unp_dispose(so);
739 
740 	UNP_LINK_WLOCK();
741 	LIST_REMOVE(unp, unp_link);
742 	if (unp->unp_gcflag & UNPGC_DEAD)
743 		LIST_REMOVE(unp, unp_dead);
744 	unp->unp_gencnt = ++unp_gencnt;
745 	--unp_count;
746 	UNP_LINK_WUNLOCK();
747 
748 	UNP_PCB_UNLOCK_ASSERT(unp);
749  restart:
750 	if ((vp = unp->unp_vnode) != NULL) {
751 		vplock = mtx_pool_find(mtxpool_sleep, vp);
752 		mtx_lock(vplock);
753 	}
754 	UNP_PCB_LOCK(unp);
755 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
756 		if (vplock)
757 			mtx_unlock(vplock);
758 		UNP_PCB_UNLOCK(unp);
759 		goto restart;
760 	}
761 	if ((vp = unp->unp_vnode) != NULL) {
762 		VOP_UNP_DETACH(vp);
763 		unp->unp_vnode = NULL;
764 	}
765 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
766 		unp_disconnect(unp, unp2);
767 	else
768 		UNP_PCB_UNLOCK(unp);
769 
770 	UNP_REF_LIST_LOCK();
771 	while (!LIST_EMPTY(&unp->unp_refs)) {
772 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
773 
774 		unp_pcb_hold(ref);
775 		UNP_REF_LIST_UNLOCK();
776 
777 		MPASS(ref != unp);
778 		UNP_PCB_UNLOCK_ASSERT(ref);
779 		unp_drop(ref);
780 		UNP_REF_LIST_LOCK();
781 	}
782 	UNP_REF_LIST_UNLOCK();
783 
784 	UNP_PCB_LOCK(unp);
785 	local_unp_rights = unp_rights;
786 	unp->unp_socket->so_pcb = NULL;
787 	unp->unp_socket = NULL;
788 	free(unp->unp_addr, M_SONAME);
789 	unp->unp_addr = NULL;
790 	if (!unp_pcb_rele(unp))
791 		UNP_PCB_UNLOCK(unp);
792 	if (vp) {
793 		mtx_unlock(vplock);
794 		vrele(vp);
795 	}
796 	if (local_unp_rights)
797 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
798 
799 	switch (so->so_type) {
800 	case SOCK_DGRAM:
801 		/*
802 		 * Everything should have been unlinked/freed by unp_dispose()
803 		 * and/or unp_disconnect().
804 		 */
805 		MPASS(so->so_rcv.uxdg_peeked == NULL);
806 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
807 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
808 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
809 	}
810 }
811 
812 static int
813 uipc_disconnect(struct socket *so)
814 {
815 	struct unpcb *unp, *unp2;
816 
817 	unp = sotounpcb(so);
818 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
819 
820 	UNP_PCB_LOCK(unp);
821 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
822 		unp_disconnect(unp, unp2);
823 	else
824 		UNP_PCB_UNLOCK(unp);
825 	return (0);
826 }
827 
828 static int
829 uipc_listen(struct socket *so, int backlog, struct thread *td)
830 {
831 	struct unpcb *unp;
832 	int error;
833 
834 	MPASS(so->so_type != SOCK_DGRAM);
835 
836 	/*
837 	 * Synchronize with concurrent connection attempts.
838 	 */
839 	error = 0;
840 	unp = sotounpcb(so);
841 	UNP_PCB_LOCK(unp);
842 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
843 		error = EINVAL;
844 	else if (unp->unp_vnode == NULL)
845 		error = EDESTADDRREQ;
846 	if (error != 0) {
847 		UNP_PCB_UNLOCK(unp);
848 		return (error);
849 	}
850 
851 	SOCK_LOCK(so);
852 	error = solisten_proto_check(so);
853 	if (error == 0) {
854 		cru2xt(td, &unp->unp_peercred);
855 		solisten_proto(so, backlog);
856 	}
857 	SOCK_UNLOCK(so);
858 	UNP_PCB_UNLOCK(unp);
859 	return (error);
860 }
861 
862 static int
863 uipc_peeraddr(struct socket *so, struct sockaddr *ret)
864 {
865 	struct unpcb *unp, *unp2;
866 	const struct sockaddr *sa;
867 
868 	unp = sotounpcb(so);
869 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
870 
871 	UNP_PCB_LOCK(unp);
872 	unp2 = unp_pcb_lock_peer(unp);
873 	if (unp2 != NULL) {
874 		if (unp2->unp_addr != NULL)
875 			sa = (struct sockaddr *)unp2->unp_addr;
876 		else
877 			sa = &sun_noname;
878 		bcopy(sa, ret, sa->sa_len);
879 		unp_pcb_unlock_pair(unp, unp2);
880 	} else {
881 		UNP_PCB_UNLOCK(unp);
882 		sa = &sun_noname;
883 		bcopy(sa, ret, sa->sa_len);
884 	}
885 	return (0);
886 }
887 
888 static int
889 uipc_rcvd(struct socket *so, int flags)
890 {
891 	struct unpcb *unp, *unp2;
892 	struct socket *so2;
893 	u_int mbcnt, sbcc;
894 
895 	unp = sotounpcb(so);
896 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
897 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
898 	    ("%s: socktype %d", __func__, so->so_type));
899 
900 	/*
901 	 * Adjust backpressure on sender and wakeup any waiting to write.
902 	 *
903 	 * The unp lock is acquired to maintain the validity of the unp_conn
904 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
905 	 * static as long as we don't permit unp2 to disconnect from unp,
906 	 * which is prevented by the lock on unp.  We cache values from
907 	 * so_rcv to avoid holding the so_rcv lock over the entire
908 	 * transaction on the remote so_snd.
909 	 */
910 	SOCKBUF_LOCK(&so->so_rcv);
911 	mbcnt = so->so_rcv.sb_mbcnt;
912 	sbcc = sbavail(&so->so_rcv);
913 	SOCKBUF_UNLOCK(&so->so_rcv);
914 	/*
915 	 * There is a benign race condition at this point.  If we're planning to
916 	 * clear SB_STOP, but uipc_send is called on the connected socket at
917 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
918 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
919 	 * full.  The race is benign because the only ill effect is to allow the
920 	 * sockbuf to exceed its size limit, and the size limits are not
921 	 * strictly guaranteed anyway.
922 	 */
923 	UNP_PCB_LOCK(unp);
924 	unp2 = unp->unp_conn;
925 	if (unp2 == NULL) {
926 		UNP_PCB_UNLOCK(unp);
927 		return (0);
928 	}
929 	so2 = unp2->unp_socket;
930 	SOCKBUF_LOCK(&so2->so_snd);
931 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
932 		so2->so_snd.sb_flags &= ~SB_STOP;
933 	sowwakeup_locked(so2);
934 	UNP_PCB_UNLOCK(unp);
935 	return (0);
936 }
937 
938 static int
939 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
940     struct mbuf *control, struct thread *td)
941 {
942 	struct unpcb *unp, *unp2;
943 	struct socket *so2;
944 	u_int mbcnt, sbcc;
945 	int error;
946 
947 	unp = sotounpcb(so);
948 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
949 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
950 	    ("%s: socktype %d", __func__, so->so_type));
951 
952 	error = 0;
953 	if (flags & PRUS_OOB) {
954 		error = EOPNOTSUPP;
955 		goto release;
956 	}
957 	if (control != NULL &&
958 	    (error = unp_internalize(&control, td, NULL, NULL, NULL)))
959 		goto release;
960 
961 	unp2 = NULL;
962 	if ((so->so_state & SS_ISCONNECTED) == 0) {
963 		if (nam != NULL) {
964 			if ((error = unp_connect(so, nam, td)) != 0)
965 				goto out;
966 		} else {
967 			error = ENOTCONN;
968 			goto out;
969 		}
970 	}
971 
972 	UNP_PCB_LOCK(unp);
973 	if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
974 		UNP_PCB_UNLOCK(unp);
975 		error = ENOTCONN;
976 		goto out;
977 	} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
978 		unp_pcb_unlock_pair(unp, unp2);
979 		error = EPIPE;
980 		goto out;
981 	}
982 	UNP_PCB_UNLOCK(unp);
983 	if ((so2 = unp2->unp_socket) == NULL) {
984 		UNP_PCB_UNLOCK(unp2);
985 		error = ENOTCONN;
986 		goto out;
987 	}
988 	SOCKBUF_LOCK(&so2->so_rcv);
989 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
990 		/*
991 		 * Credentials are passed only once on SOCK_STREAM and
992 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
993 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
994 		 */
995 		control = unp_addsockcred(td, control, unp2->unp_flags, NULL,
996 		    NULL, NULL);
997 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
998 	}
999 
1000 	/*
1001 	 * Send to paired receive port and wake up readers.  Don't
1002 	 * check for space available in the receive buffer if we're
1003 	 * attaching ancillary data; Unix domain sockets only check
1004 	 * for space in the sending sockbuf, and that check is
1005 	 * performed one level up the stack.  At that level we cannot
1006 	 * precisely account for the amount of buffer space used
1007 	 * (e.g., because control messages are not yet internalized).
1008 	 */
1009 	switch (so->so_type) {
1010 	case SOCK_STREAM:
1011 		if (control != NULL) {
1012 			sbappendcontrol_locked(&so2->so_rcv,
1013 			    m->m_len > 0 ?  m : NULL, control, flags);
1014 			control = NULL;
1015 		} else
1016 			sbappend_locked(&so2->so_rcv, m, flags);
1017 		break;
1018 
1019 	case SOCK_SEQPACKET:
1020 		if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1021 		    &sun_noname, m, control))
1022 			control = NULL;
1023 		break;
1024 	}
1025 
1026 	mbcnt = so2->so_rcv.sb_mbcnt;
1027 	sbcc = sbavail(&so2->so_rcv);
1028 	if (sbcc)
1029 		sorwakeup_locked(so2);
1030 	else
1031 		SOCKBUF_UNLOCK(&so2->so_rcv);
1032 
1033 	/*
1034 	 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1035 	 * it would be possible for uipc_rcvd to be called at this
1036 	 * point, drain the receiving sockbuf, clear SB_STOP, and then
1037 	 * we would set SB_STOP below.  That could lead to an empty
1038 	 * sockbuf having SB_STOP set
1039 	 */
1040 	SOCKBUF_LOCK(&so->so_snd);
1041 	if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1042 		so->so_snd.sb_flags |= SB_STOP;
1043 	SOCKBUF_UNLOCK(&so->so_snd);
1044 	UNP_PCB_UNLOCK(unp2);
1045 	m = NULL;
1046 out:
1047 	/*
1048 	 * PRUS_EOF is equivalent to pr_send followed by pr_shutdown.
1049 	 */
1050 	if (flags & PRUS_EOF) {
1051 		UNP_PCB_LOCK(unp);
1052 		socantsendmore(so);
1053 		unp_shutdown(unp);
1054 		UNP_PCB_UNLOCK(unp);
1055 	}
1056 	if (control != NULL && error != 0)
1057 		unp_scan(control, unp_freerights);
1058 
1059 release:
1060 	if (control != NULL)
1061 		m_freem(control);
1062 	/*
1063 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1064 	 * for freeing memory.
1065 	 */
1066 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1067 		m_freem(m);
1068 	return (error);
1069 }
1070 
1071 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1072 static inline bool
1073 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1074 {
1075 	u_int bleft, mleft;
1076 
1077 	/*
1078 	 * Negative space may happen if send(2) is followed by
1079 	 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1080 	 */
1081 	if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1082 	    sb->sb_mbmax < sb->uxdg_mbcnt))
1083 		return (false);
1084 
1085 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1086 		return (false);
1087 
1088 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1089 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1090 
1091 	return (bleft >= cc && mleft >= mbcnt);
1092 }
1093 
1094 /*
1095  * PF_UNIX/SOCK_DGRAM send
1096  *
1097  * Allocate a record consisting of 3 mbufs in the sequence of
1098  * from -> control -> data and append it to the socket buffer.
1099  *
1100  * The first mbuf carries sender's name and is a pkthdr that stores
1101  * overall length of datagram, its memory consumption and control length.
1102  */
1103 #define	ctllen	PH_loc.thirtytwo[1]
1104 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1105     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1106 static int
1107 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1108     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1109 {
1110 	struct unpcb *unp, *unp2;
1111 	const struct sockaddr *from;
1112 	struct socket *so2;
1113 	struct sockbuf *sb;
1114 	struct mbuf *f, *clast;
1115 	u_int cc, ctl, mbcnt;
1116 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1117 	int error;
1118 
1119 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1120 
1121 	error = 0;
1122 	f = NULL;
1123 	ctl = 0;
1124 
1125 	if (__predict_false(flags & MSG_OOB)) {
1126 		error = EOPNOTSUPP;
1127 		goto out;
1128 	}
1129 	if (m == NULL) {
1130 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1131 			error = EMSGSIZE;
1132 			goto out;
1133 		}
1134 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1135 		if (__predict_false(m == NULL)) {
1136 			error = EFAULT;
1137 			goto out;
1138 		}
1139 		f = m_gethdr(M_WAITOK, MT_SONAME);
1140 		cc = m->m_pkthdr.len;
1141 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1142 		if (c != NULL &&
1143 		    (error = unp_internalize(&c, td, &clast, &ctl, &mbcnt)))
1144 			goto out;
1145 	} else {
1146 		/* pr_sosend() with mbuf usually is a kernel thread. */
1147 
1148 		M_ASSERTPKTHDR(m);
1149 		if (__predict_false(c != NULL))
1150 			panic("%s: control from a kernel thread", __func__);
1151 
1152 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1153 			error = EMSGSIZE;
1154 			goto out;
1155 		}
1156 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1157 			error = ENOBUFS;
1158 			goto out;
1159 		}
1160 		/* Condition the foreign mbuf to our standards. */
1161 		m_clrprotoflags(m);
1162 		m_tag_delete_chain(m, NULL);
1163 		m->m_pkthdr.rcvif = NULL;
1164 		m->m_pkthdr.flowid = 0;
1165 		m->m_pkthdr.csum_flags = 0;
1166 		m->m_pkthdr.fibnum = 0;
1167 		m->m_pkthdr.rsstype = 0;
1168 
1169 		cc = m->m_pkthdr.len;
1170 		mbcnt = MSIZE;
1171 		for (struct mbuf *mb = m; mb != NULL; mb = mb->m_next) {
1172 			mbcnt += MSIZE;
1173 			if (mb->m_flags & M_EXT)
1174 				mbcnt += mb->m_ext.ext_size;
1175 		}
1176 	}
1177 
1178 	unp = sotounpcb(so);
1179 	MPASS(unp);
1180 
1181 	/*
1182 	 * XXXGL: would be cool to fully remove so_snd out of the equation
1183 	 * and avoid this lock, which is not only extraneous, but also being
1184 	 * released, thus still leaving possibility for a race.  We can easily
1185 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
1186 	 * is more difficult to invent something to handle so_error.
1187 	 */
1188 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1189 	if (error)
1190 		goto out2;
1191 	SOCK_SENDBUF_LOCK(so);
1192 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1193 		SOCK_SENDBUF_UNLOCK(so);
1194 		error = EPIPE;
1195 		goto out3;
1196 	}
1197 	if (so->so_error != 0) {
1198 		error = so->so_error;
1199 		so->so_error = 0;
1200 		SOCK_SENDBUF_UNLOCK(so);
1201 		goto out3;
1202 	}
1203 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
1204 		SOCK_SENDBUF_UNLOCK(so);
1205 		error = EDESTADDRREQ;
1206 		goto out3;
1207 	}
1208 	SOCK_SENDBUF_UNLOCK(so);
1209 
1210 	if (addr != NULL) {
1211 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
1212 			goto out3;
1213 		UNP_PCB_LOCK_ASSERT(unp);
1214 		unp2 = unp->unp_conn;
1215 		UNP_PCB_LOCK_ASSERT(unp2);
1216 	} else {
1217 		UNP_PCB_LOCK(unp);
1218 		unp2 = unp_pcb_lock_peer(unp);
1219 		if (unp2 == NULL) {
1220 			UNP_PCB_UNLOCK(unp);
1221 			error = ENOTCONN;
1222 			goto out3;
1223 		}
1224 	}
1225 
1226 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
1227 		c = unp_addsockcred(td, c, unp2->unp_flags, &clast, &ctl,
1228 		    &mbcnt);
1229 	if (unp->unp_addr != NULL)
1230 		from = (struct sockaddr *)unp->unp_addr;
1231 	else
1232 		from = &sun_noname;
1233 	f->m_len = from->sa_len;
1234 	MPASS(from->sa_len <= MLEN);
1235 	bcopy(from, mtod(f, void *), from->sa_len);
1236 	ctl += f->m_len;
1237 
1238 	/*
1239 	 * Concatenate mbufs: from -> control -> data.
1240 	 * Save overall cc and mbcnt in "from" mbuf.
1241 	 */
1242 	if (c != NULL) {
1243 #ifdef INVARIANTS
1244 		struct mbuf *mc;
1245 
1246 		for (mc = c; mc->m_next != NULL; mc = mc->m_next);
1247 		MPASS(mc == clast);
1248 #endif
1249 		f->m_next = c;
1250 		clast->m_next = m;
1251 		c = NULL;
1252 	} else
1253 		f->m_next = m;
1254 	m = NULL;
1255 #ifdef INVARIANTS
1256 	dcc = dctl = dmbcnt = 0;
1257 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
1258 		if (mb->m_type == MT_DATA)
1259 			dcc += mb->m_len;
1260 		else
1261 			dctl += mb->m_len;
1262 		dmbcnt += MSIZE;
1263 		if (mb->m_flags & M_EXT)
1264 			dmbcnt += mb->m_ext.ext_size;
1265 	}
1266 	MPASS(dcc == cc);
1267 	MPASS(dctl == ctl);
1268 	MPASS(dmbcnt == mbcnt);
1269 #endif
1270 	f->m_pkthdr.len = cc + ctl;
1271 	f->m_pkthdr.memlen = mbcnt;
1272 	f->m_pkthdr.ctllen = ctl;
1273 
1274 	/*
1275 	 * Destination socket buffer selection.
1276 	 *
1277 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
1278 	 * destination address is supplied, create a temporary connection for
1279 	 * the run time of the function (see call to unp_connectat() above and
1280 	 * to unp_disconnect() below).  We distinguish them by condition of
1281 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
1282 	 * that condition, since, again, through the run time of this code we
1283 	 * are always connected.  For such "unconnected" sends, the destination
1284 	 * buffer would be the receive buffer of destination socket so2.
1285 	 *
1286 	 * For connected sends, data lands on the send buffer of the sender's
1287 	 * socket "so".  Then, if we just added the very first datagram
1288 	 * on this send buffer, we need to add the send buffer on to the
1289 	 * receiving socket's buffer list.  We put ourselves on top of the
1290 	 * list.  Such logic gives infrequent senders priority over frequent
1291 	 * senders.
1292 	 *
1293 	 * Note on byte count management. As long as event methods kevent(2),
1294 	 * select(2) are not protocol specific (yet), we need to maintain
1295 	 * meaningful values on the receive buffer.  So, the receive buffer
1296 	 * would accumulate counters from all connected buffers potentially
1297 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
1298 	 */
1299 	so2 = unp2->unp_socket;
1300 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
1301 	SOCK_RECVBUF_LOCK(so2);
1302 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
1303 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
1304 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
1305 			    uxdg_clist);
1306 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
1307 		sb->uxdg_cc += cc + ctl;
1308 		sb->uxdg_ctl += ctl;
1309 		sb->uxdg_mbcnt += mbcnt;
1310 		so2->so_rcv.sb_acc += cc + ctl;
1311 		so2->so_rcv.sb_ccc += cc + ctl;
1312 		so2->so_rcv.sb_ctl += ctl;
1313 		so2->so_rcv.sb_mbcnt += mbcnt;
1314 		sorwakeup_locked(so2);
1315 		f = NULL;
1316 	} else {
1317 		soroverflow_locked(so2);
1318 		error = ENOBUFS;
1319 		if (f->m_next->m_type == MT_CONTROL) {
1320 			c = f->m_next;
1321 			f->m_next = NULL;
1322 		}
1323 	}
1324 
1325 	if (addr != NULL)
1326 		unp_disconnect(unp, unp2);
1327 	else
1328 		unp_pcb_unlock_pair(unp, unp2);
1329 
1330 	td->td_ru.ru_msgsnd++;
1331 
1332 out3:
1333 	SOCK_IO_SEND_UNLOCK(so);
1334 out2:
1335 	if (c)
1336 		unp_scan(c, unp_freerights);
1337 out:
1338 	if (f)
1339 		m_freem(f);
1340 	if (c)
1341 		m_freem(c);
1342 	if (m)
1343 		m_freem(m);
1344 
1345 	return (error);
1346 }
1347 
1348 /*
1349  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
1350  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
1351  * and needs to be linked onto uxdg_peeked of receive socket buffer.
1352  */
1353 static int
1354 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
1355     struct uio *uio, struct mbuf **controlp, int *flagsp)
1356 {
1357 	ssize_t len = 0;
1358 	int error;
1359 
1360 	so->so_rcv.uxdg_peeked = m;
1361 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
1362 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
1363 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
1364 	SOCK_RECVBUF_UNLOCK(so);
1365 
1366 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1367 	if (psa != NULL)
1368 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1369 
1370 	m = m->m_next;
1371 	KASSERT(m, ("%s: no data or control after soname", __func__));
1372 
1373 	/*
1374 	 * With MSG_PEEK the control isn't executed, just copied.
1375 	 */
1376 	while (m != NULL && m->m_type == MT_CONTROL) {
1377 		if (controlp != NULL) {
1378 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
1379 			controlp = &(*controlp)->m_next;
1380 		}
1381 		m = m->m_next;
1382 	}
1383 	KASSERT(m == NULL || m->m_type == MT_DATA,
1384 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1385 	while (m != NULL && uio->uio_resid > 0) {
1386 		len = uio->uio_resid;
1387 		if (len > m->m_len)
1388 			len = m->m_len;
1389 		error = uiomove(mtod(m, char *), (int)len, uio);
1390 		if (error) {
1391 			SOCK_IO_RECV_UNLOCK(so);
1392 			return (error);
1393 		}
1394 		if (len == m->m_len)
1395 			m = m->m_next;
1396 	}
1397 	SOCK_IO_RECV_UNLOCK(so);
1398 
1399 	if (flagsp != NULL) {
1400 		if (m != NULL) {
1401 			if (*flagsp & MSG_TRUNC) {
1402 				/* Report real length of the packet */
1403 				uio->uio_resid -= m_length(m, NULL) - len;
1404 			}
1405 			*flagsp |= MSG_TRUNC;
1406 		} else
1407 			*flagsp &= ~MSG_TRUNC;
1408 	}
1409 
1410 	return (0);
1411 }
1412 
1413 /*
1414  * PF_UNIX/SOCK_DGRAM receive
1415  */
1416 static int
1417 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1418     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1419 {
1420 	struct sockbuf *sb = NULL;
1421 	struct mbuf *m;
1422 	int flags, error;
1423 	ssize_t len = 0;
1424 	bool nonblock;
1425 
1426 	MPASS(mp0 == NULL);
1427 
1428 	if (psa != NULL)
1429 		*psa = NULL;
1430 	if (controlp != NULL)
1431 		*controlp = NULL;
1432 
1433 	flags = flagsp != NULL ? *flagsp : 0;
1434 	nonblock = (so->so_state & SS_NBIO) ||
1435 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1436 
1437 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1438 	if (__predict_false(error))
1439 		return (error);
1440 
1441 	/*
1442 	 * Loop blocking while waiting for a datagram.  Prioritize connected
1443 	 * peers over unconnected sends.  Set sb to selected socket buffer
1444 	 * containing an mbuf on exit from the wait loop.  A datagram that
1445 	 * had already been peeked at has top priority.
1446 	 */
1447 	SOCK_RECVBUF_LOCK(so);
1448 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
1449 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
1450 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
1451 		if (so->so_error) {
1452 			error = so->so_error;
1453 			if (!(flags & MSG_PEEK))
1454 				so->so_error = 0;
1455 			SOCK_RECVBUF_UNLOCK(so);
1456 			SOCK_IO_RECV_UNLOCK(so);
1457 			return (error);
1458 		}
1459 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1460 		    uio->uio_resid == 0) {
1461 			SOCK_RECVBUF_UNLOCK(so);
1462 			SOCK_IO_RECV_UNLOCK(so);
1463 			return (0);
1464 		}
1465 		if (nonblock) {
1466 			SOCK_RECVBUF_UNLOCK(so);
1467 			SOCK_IO_RECV_UNLOCK(so);
1468 			return (EWOULDBLOCK);
1469 		}
1470 		error = sbwait(so, SO_RCV);
1471 		if (error) {
1472 			SOCK_RECVBUF_UNLOCK(so);
1473 			SOCK_IO_RECV_UNLOCK(so);
1474 			return (error);
1475 		}
1476 	}
1477 
1478 	if (sb == NULL)
1479 		sb = &so->so_rcv;
1480 	else if (m == NULL)
1481 		m = STAILQ_FIRST(&sb->uxdg_mb);
1482 	else
1483 		MPASS(m == so->so_rcv.uxdg_peeked);
1484 
1485 	MPASS(sb->uxdg_cc > 0);
1486 	M_ASSERTPKTHDR(m);
1487 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1488 
1489 	if (uio->uio_td)
1490 		uio->uio_td->td_ru.ru_msgrcv++;
1491 
1492 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
1493 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
1494 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
1495 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
1496 	} else
1497 		so->so_rcv.uxdg_peeked = NULL;
1498 
1499 	sb->uxdg_cc -= m->m_pkthdr.len;
1500 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
1501 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
1502 
1503 	if (__predict_false(flags & MSG_PEEK))
1504 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
1505 
1506 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
1507 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
1508 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
1509 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
1510 	SOCK_RECVBUF_UNLOCK(so);
1511 
1512 	if (psa != NULL)
1513 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1514 	m = m_free(m);
1515 	KASSERT(m, ("%s: no data or control after soname", __func__));
1516 
1517 	/*
1518 	 * Packet to copyout() is now in 'm' and it is disconnected from the
1519 	 * queue.
1520 	 *
1521 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1522 	 * in the first mbuf chain on the socket buffer.  We call into the
1523 	 * unp_externalize() to perform externalization (or freeing if
1524 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
1525 	 * without MT_DATA mbufs.
1526 	 */
1527 	while (m != NULL && m->m_type == MT_CONTROL) {
1528 		struct mbuf *cm;
1529 
1530 		/* XXXGL: unp_externalize() is also dom_externalize() KBI and
1531 		 * it frees whole chain, so we must disconnect the mbuf.
1532 		 */
1533 		cm = m; m = m->m_next; cm->m_next = NULL;
1534 		error = unp_externalize(cm, controlp, flags);
1535 		if (error != 0) {
1536 			SOCK_IO_RECV_UNLOCK(so);
1537 			unp_scan(m, unp_freerights);
1538 			m_freem(m);
1539 			return (error);
1540 		}
1541 		if (controlp != NULL) {
1542 			while (*controlp != NULL)
1543 				controlp = &(*controlp)->m_next;
1544 		}
1545 	}
1546 	KASSERT(m == NULL || m->m_type == MT_DATA,
1547 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1548 	while (m != NULL && uio->uio_resid > 0) {
1549 		len = uio->uio_resid;
1550 		if (len > m->m_len)
1551 			len = m->m_len;
1552 		error = uiomove(mtod(m, char *), (int)len, uio);
1553 		if (error) {
1554 			SOCK_IO_RECV_UNLOCK(so);
1555 			m_freem(m);
1556 			return (error);
1557 		}
1558 		if (len == m->m_len)
1559 			m = m_free(m);
1560 		else {
1561 			m->m_data += len;
1562 			m->m_len -= len;
1563 		}
1564 	}
1565 	SOCK_IO_RECV_UNLOCK(so);
1566 
1567 	if (m != NULL) {
1568 		if (flagsp != NULL) {
1569 			if (flags & MSG_TRUNC) {
1570 				/* Report real length of the packet */
1571 				uio->uio_resid -= m_length(m, NULL);
1572 			}
1573 			*flagsp |= MSG_TRUNC;
1574 		}
1575 		m_freem(m);
1576 	} else if (flagsp != NULL)
1577 		*flagsp &= ~MSG_TRUNC;
1578 
1579 	return (0);
1580 }
1581 
1582 static bool
1583 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1584 {
1585 	struct mbuf *mb, *n;
1586 	struct sockbuf *sb;
1587 
1588 	SOCK_LOCK(so);
1589 	if (SOLISTENING(so)) {
1590 		SOCK_UNLOCK(so);
1591 		return (false);
1592 	}
1593 	mb = NULL;
1594 	sb = &so->so_rcv;
1595 	SOCKBUF_LOCK(sb);
1596 	if (sb->sb_fnrdy != NULL) {
1597 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1598 			if (mb == m) {
1599 				*errorp = sbready(sb, m, count);
1600 				break;
1601 			}
1602 			mb = mb->m_next;
1603 			if (mb == NULL) {
1604 				mb = n;
1605 				if (mb != NULL)
1606 					n = mb->m_nextpkt;
1607 			}
1608 		}
1609 	}
1610 	SOCKBUF_UNLOCK(sb);
1611 	SOCK_UNLOCK(so);
1612 	return (mb != NULL);
1613 }
1614 
1615 static int
1616 uipc_ready(struct socket *so, struct mbuf *m, int count)
1617 {
1618 	struct unpcb *unp, *unp2;
1619 	struct socket *so2;
1620 	int error, i;
1621 
1622 	unp = sotounpcb(so);
1623 
1624 	KASSERT(so->so_type == SOCK_STREAM,
1625 	    ("%s: unexpected socket type for %p", __func__, so));
1626 
1627 	UNP_PCB_LOCK(unp);
1628 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1629 		UNP_PCB_UNLOCK(unp);
1630 		so2 = unp2->unp_socket;
1631 		SOCKBUF_LOCK(&so2->so_rcv);
1632 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1633 			sorwakeup_locked(so2);
1634 		else
1635 			SOCKBUF_UNLOCK(&so2->so_rcv);
1636 		UNP_PCB_UNLOCK(unp2);
1637 		return (error);
1638 	}
1639 	UNP_PCB_UNLOCK(unp);
1640 
1641 	/*
1642 	 * The receiving socket has been disconnected, but may still be valid.
1643 	 * In this case, the now-ready mbufs are still present in its socket
1644 	 * buffer, so perform an exhaustive search before giving up and freeing
1645 	 * the mbufs.
1646 	 */
1647 	UNP_LINK_RLOCK();
1648 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1649 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1650 			break;
1651 	}
1652 	UNP_LINK_RUNLOCK();
1653 
1654 	if (unp == NULL) {
1655 		for (i = 0; i < count; i++)
1656 			m = m_free(m);
1657 		error = ECONNRESET;
1658 	}
1659 	return (error);
1660 }
1661 
1662 static int
1663 uipc_sense(struct socket *so, struct stat *sb)
1664 {
1665 	struct unpcb *unp;
1666 
1667 	unp = sotounpcb(so);
1668 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1669 
1670 	sb->st_blksize = so->so_snd.sb_hiwat;
1671 	sb->st_dev = NODEV;
1672 	sb->st_ino = unp->unp_ino;
1673 	return (0);
1674 }
1675 
1676 static int
1677 uipc_shutdown(struct socket *so, enum shutdown_how how)
1678 {
1679 	struct unpcb *unp = sotounpcb(so);
1680 	int error;
1681 
1682 	SOCK_LOCK(so);
1683 	if (SOLISTENING(so)) {
1684 		if (how != SHUT_WR) {
1685 			so->so_error = ECONNABORTED;
1686 			solisten_wakeup(so);    /* unlocks so */
1687 		} else
1688 			SOCK_UNLOCK(so);
1689 		return (ENOTCONN);
1690 	} else if ((so->so_state &
1691 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
1692 		/*
1693 		 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
1694 		 * invoked on a datagram sockets, however historically we would
1695 		 * actually tear socket down.  This is known to be leveraged by
1696 		 * some applications to unblock process waiting in recv(2) by
1697 		 * other process that it shares that socket with.  Try to meet
1698 		 * both backward-compatibility and POSIX requirements by forcing
1699 		 * ENOTCONN but still flushing buffers and performing wakeup(9).
1700 		 *
1701 		 * XXXGL: it remains unknown what applications expect this
1702 		 * behavior and is this isolated to unix/dgram or inet/dgram or
1703 		 * both.  See: D10351, D3039.
1704 		 */
1705 		error = ENOTCONN;
1706 		if (so->so_type != SOCK_DGRAM) {
1707 			SOCK_UNLOCK(so);
1708 			return (error);
1709 		}
1710 	} else
1711 		error = 0;
1712 	SOCK_UNLOCK(so);
1713 
1714 	switch (how) {
1715 	case SHUT_RD:
1716 		socantrcvmore(so);
1717 		unp_dispose(so);
1718 		break;
1719 	case SHUT_RDWR:
1720 		socantrcvmore(so);
1721 		unp_dispose(so);
1722 		/* FALLTHROUGH */
1723 	case SHUT_WR:
1724 		UNP_PCB_LOCK(unp);
1725 		socantsendmore(so);
1726 		unp_shutdown(unp);
1727 		UNP_PCB_UNLOCK(unp);
1728 	}
1729 	wakeup(&so->so_timeo);
1730 
1731 	return (error);
1732 }
1733 
1734 static int
1735 uipc_sockaddr(struct socket *so, struct sockaddr *ret)
1736 {
1737 	struct unpcb *unp;
1738 	const struct sockaddr *sa;
1739 
1740 	unp = sotounpcb(so);
1741 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1742 
1743 	UNP_PCB_LOCK(unp);
1744 	if (unp->unp_addr != NULL)
1745 		sa = (struct sockaddr *) unp->unp_addr;
1746 	else
1747 		sa = &sun_noname;
1748 	bcopy(sa, ret, sa->sa_len);
1749 	UNP_PCB_UNLOCK(unp);
1750 	return (0);
1751 }
1752 
1753 static int
1754 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1755 {
1756 	struct unpcb *unp;
1757 	struct xucred xu;
1758 	int error, optval;
1759 
1760 	if (sopt->sopt_level != SOL_LOCAL)
1761 		return (EINVAL);
1762 
1763 	unp = sotounpcb(so);
1764 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1765 	error = 0;
1766 	switch (sopt->sopt_dir) {
1767 	case SOPT_GET:
1768 		switch (sopt->sopt_name) {
1769 		case LOCAL_PEERCRED:
1770 			UNP_PCB_LOCK(unp);
1771 			if (unp->unp_flags & UNP_HAVEPC)
1772 				xu = unp->unp_peercred;
1773 			else {
1774 				if (so->so_type == SOCK_STREAM)
1775 					error = ENOTCONN;
1776 				else
1777 					error = EINVAL;
1778 			}
1779 			UNP_PCB_UNLOCK(unp);
1780 			if (error == 0)
1781 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1782 			break;
1783 
1784 		case LOCAL_CREDS:
1785 			/* Unlocked read. */
1786 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1787 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1788 			break;
1789 
1790 		case LOCAL_CREDS_PERSISTENT:
1791 			/* Unlocked read. */
1792 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1793 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1794 			break;
1795 
1796 		default:
1797 			error = EOPNOTSUPP;
1798 			break;
1799 		}
1800 		break;
1801 
1802 	case SOPT_SET:
1803 		switch (sopt->sopt_name) {
1804 		case LOCAL_CREDS:
1805 		case LOCAL_CREDS_PERSISTENT:
1806 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1807 					    sizeof(optval));
1808 			if (error)
1809 				break;
1810 
1811 #define	OPTSET(bit, exclusive) do {					\
1812 	UNP_PCB_LOCK(unp);						\
1813 	if (optval) {							\
1814 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1815 			UNP_PCB_UNLOCK(unp);				\
1816 			error = EINVAL;					\
1817 			break;						\
1818 		}							\
1819 		unp->unp_flags |= (bit);				\
1820 	} else								\
1821 		unp->unp_flags &= ~(bit);				\
1822 	UNP_PCB_UNLOCK(unp);						\
1823 } while (0)
1824 
1825 			switch (sopt->sopt_name) {
1826 			case LOCAL_CREDS:
1827 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1828 				break;
1829 
1830 			case LOCAL_CREDS_PERSISTENT:
1831 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1832 				break;
1833 
1834 			default:
1835 				break;
1836 			}
1837 			break;
1838 #undef	OPTSET
1839 		default:
1840 			error = ENOPROTOOPT;
1841 			break;
1842 		}
1843 		break;
1844 
1845 	default:
1846 		error = EOPNOTSUPP;
1847 		break;
1848 	}
1849 	return (error);
1850 }
1851 
1852 static int
1853 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1854 {
1855 
1856 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
1857 }
1858 
1859 static int
1860 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1861     struct thread *td, bool return_locked)
1862 {
1863 	struct mtx *vplock;
1864 	struct sockaddr_un *soun;
1865 	struct vnode *vp;
1866 	struct socket *so2;
1867 	struct unpcb *unp, *unp2, *unp3;
1868 	struct nameidata nd;
1869 	char buf[SOCK_MAXADDRLEN];
1870 	struct sockaddr *sa;
1871 	cap_rights_t rights;
1872 	int error, len;
1873 	bool connreq;
1874 
1875 	if (nam->sa_family != AF_UNIX)
1876 		return (EAFNOSUPPORT);
1877 	if (nam->sa_len > sizeof(struct sockaddr_un))
1878 		return (EINVAL);
1879 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1880 	if (len <= 0)
1881 		return (EINVAL);
1882 	soun = (struct sockaddr_un *)nam;
1883 	bcopy(soun->sun_path, buf, len);
1884 	buf[len] = 0;
1885 
1886 	error = 0;
1887 	unp = sotounpcb(so);
1888 	UNP_PCB_LOCK(unp);
1889 	for (;;) {
1890 		/*
1891 		 * Wait for connection state to stabilize.  If a connection
1892 		 * already exists, give up.  For datagram sockets, which permit
1893 		 * multiple consecutive connect(2) calls, upper layers are
1894 		 * responsible for disconnecting in advance of a subsequent
1895 		 * connect(2), but this is not synchronized with PCB connection
1896 		 * state.
1897 		 *
1898 		 * Also make sure that no threads are currently attempting to
1899 		 * lock the peer socket, to ensure that unp_conn cannot
1900 		 * transition between two valid sockets while locks are dropped.
1901 		 */
1902 		if (SOLISTENING(so))
1903 			error = EOPNOTSUPP;
1904 		else if (unp->unp_conn != NULL)
1905 			error = EISCONN;
1906 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1907 			error = EALREADY;
1908 		}
1909 		if (error != 0) {
1910 			UNP_PCB_UNLOCK(unp);
1911 			return (error);
1912 		}
1913 		if (unp->unp_pairbusy > 0) {
1914 			unp->unp_flags |= UNP_WAITING;
1915 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1916 			continue;
1917 		}
1918 		break;
1919 	}
1920 	unp->unp_flags |= UNP_CONNECTING;
1921 	UNP_PCB_UNLOCK(unp);
1922 
1923 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1924 	if (connreq)
1925 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1926 	else
1927 		sa = NULL;
1928 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1929 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
1930 	error = namei(&nd);
1931 	if (error)
1932 		vp = NULL;
1933 	else
1934 		vp = nd.ni_vp;
1935 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1936 	if (error)
1937 		goto bad;
1938 	NDFREE_PNBUF(&nd);
1939 
1940 	if (vp->v_type != VSOCK) {
1941 		error = ENOTSOCK;
1942 		goto bad;
1943 	}
1944 #ifdef MAC
1945 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1946 	if (error)
1947 		goto bad;
1948 #endif
1949 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1950 	if (error)
1951 		goto bad;
1952 
1953 	unp = sotounpcb(so);
1954 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1955 
1956 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1957 	mtx_lock(vplock);
1958 	VOP_UNP_CONNECT(vp, &unp2);
1959 	if (unp2 == NULL) {
1960 		error = ECONNREFUSED;
1961 		goto bad2;
1962 	}
1963 	so2 = unp2->unp_socket;
1964 	if (so->so_type != so2->so_type) {
1965 		error = EPROTOTYPE;
1966 		goto bad2;
1967 	}
1968 	if (connreq) {
1969 		if (SOLISTENING(so2)) {
1970 			CURVNET_SET(so2->so_vnet);
1971 			so2 = sonewconn(so2, 0);
1972 			CURVNET_RESTORE();
1973 		} else
1974 			so2 = NULL;
1975 		if (so2 == NULL) {
1976 			error = ECONNREFUSED;
1977 			goto bad2;
1978 		}
1979 		unp3 = sotounpcb(so2);
1980 		unp_pcb_lock_pair(unp2, unp3);
1981 		if (unp2->unp_addr != NULL) {
1982 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1983 			unp3->unp_addr = (struct sockaddr_un *) sa;
1984 			sa = NULL;
1985 		}
1986 
1987 		unp_copy_peercred(td, unp3, unp, unp2);
1988 
1989 		UNP_PCB_UNLOCK(unp2);
1990 		unp2 = unp3;
1991 
1992 		/*
1993 		 * It is safe to block on the PCB lock here since unp2 is
1994 		 * nascent and cannot be connected to any other sockets.
1995 		 */
1996 		UNP_PCB_LOCK(unp);
1997 #ifdef MAC
1998 		mac_socketpeer_set_from_socket(so, so2);
1999 		mac_socketpeer_set_from_socket(so2, so);
2000 #endif
2001 	} else {
2002 		unp_pcb_lock_pair(unp, unp2);
2003 	}
2004 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
2005 	    sotounpcb(so2) == unp2,
2006 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
2007 	unp_connect2(so, so2);
2008 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2009 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2010 	unp->unp_flags &= ~UNP_CONNECTING;
2011 	if (!return_locked)
2012 		unp_pcb_unlock_pair(unp, unp2);
2013 bad2:
2014 	mtx_unlock(vplock);
2015 bad:
2016 	if (vp != NULL) {
2017 		/*
2018 		 * If we are returning locked (called via uipc_sosend_dgram()),
2019 		 * we need to be sure that vput() won't sleep.  This is
2020 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
2021 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
2022 		 */
2023 		MPASS(!(return_locked && connreq));
2024 		vput(vp);
2025 	}
2026 	free(sa, M_SONAME);
2027 	if (__predict_false(error)) {
2028 		UNP_PCB_LOCK(unp);
2029 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2030 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2031 		unp->unp_flags &= ~UNP_CONNECTING;
2032 		UNP_PCB_UNLOCK(unp);
2033 	}
2034 	return (error);
2035 }
2036 
2037 /*
2038  * Set socket peer credentials at connection time.
2039  *
2040  * The client's PCB credentials are copied from its process structure.  The
2041  * server's PCB credentials are copied from the socket on which it called
2042  * listen(2).  uipc_listen cached that process's credentials at the time.
2043  */
2044 void
2045 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
2046     struct unpcb *server_unp, struct unpcb *listen_unp)
2047 {
2048 	cru2xt(td, &client_unp->unp_peercred);
2049 	client_unp->unp_flags |= UNP_HAVEPC;
2050 
2051 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
2052 	    sizeof(server_unp->unp_peercred));
2053 	server_unp->unp_flags |= UNP_HAVEPC;
2054 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
2055 }
2056 
2057 static void
2058 unp_connect2(struct socket *so, struct socket *so2)
2059 {
2060 	struct unpcb *unp;
2061 	struct unpcb *unp2;
2062 
2063 	MPASS(so2->so_type == so->so_type);
2064 	unp = sotounpcb(so);
2065 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
2066 	unp2 = sotounpcb(so2);
2067 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
2068 
2069 	UNP_PCB_LOCK_ASSERT(unp);
2070 	UNP_PCB_LOCK_ASSERT(unp2);
2071 	KASSERT(unp->unp_conn == NULL,
2072 	    ("%s: socket %p is already connected", __func__, unp));
2073 
2074 	unp->unp_conn = unp2;
2075 	unp_pcb_hold(unp2);
2076 	unp_pcb_hold(unp);
2077 	switch (so->so_type) {
2078 	case SOCK_DGRAM:
2079 		UNP_REF_LIST_LOCK();
2080 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
2081 		UNP_REF_LIST_UNLOCK();
2082 		soisconnected(so);
2083 		break;
2084 
2085 	case SOCK_STREAM:
2086 	case SOCK_SEQPACKET:
2087 		KASSERT(unp2->unp_conn == NULL,
2088 		    ("%s: socket %p is already connected", __func__, unp2));
2089 		unp2->unp_conn = unp;
2090 		soisconnected(so);
2091 		soisconnected(so2);
2092 		break;
2093 
2094 	default:
2095 		panic("unp_connect2");
2096 	}
2097 }
2098 
2099 static void
2100 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
2101 {
2102 	struct socket *so, *so2;
2103 	struct mbuf *m = NULL;
2104 #ifdef INVARIANTS
2105 	struct unpcb *unptmp;
2106 #endif
2107 
2108 	UNP_PCB_LOCK_ASSERT(unp);
2109 	UNP_PCB_LOCK_ASSERT(unp2);
2110 	KASSERT(unp->unp_conn == unp2,
2111 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
2112 
2113 	unp->unp_conn = NULL;
2114 	so = unp->unp_socket;
2115 	so2 = unp2->unp_socket;
2116 	switch (unp->unp_socket->so_type) {
2117 	case SOCK_DGRAM:
2118 		/*
2119 		 * Remove our send socket buffer from the peer's receive buffer.
2120 		 * Move the data to the receive buffer only if it is empty.
2121 		 * This is a protection against a scenario where a peer
2122 		 * connects, floods and disconnects, effectively blocking
2123 		 * sendto() from unconnected sockets.
2124 		 */
2125 		SOCK_RECVBUF_LOCK(so2);
2126 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
2127 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
2128 			    uxdg_clist);
2129 			if (__predict_true((so2->so_rcv.sb_state &
2130 			    SBS_CANTRCVMORE) == 0) &&
2131 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
2132 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
2133 				    &so->so_snd.uxdg_mb);
2134 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
2135 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
2136 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
2137 			} else {
2138 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
2139 				STAILQ_INIT(&so->so_snd.uxdg_mb);
2140 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
2141 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
2142 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
2143 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
2144 			}
2145 			/* Note: so may reconnect. */
2146 			so->so_snd.uxdg_cc = 0;
2147 			so->so_snd.uxdg_ctl = 0;
2148 			so->so_snd.uxdg_mbcnt = 0;
2149 		}
2150 		SOCK_RECVBUF_UNLOCK(so2);
2151 		UNP_REF_LIST_LOCK();
2152 #ifdef INVARIANTS
2153 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
2154 			if (unptmp == unp)
2155 				break;
2156 		}
2157 		KASSERT(unptmp != NULL,
2158 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
2159 #endif
2160 		LIST_REMOVE(unp, unp_reflink);
2161 		UNP_REF_LIST_UNLOCK();
2162 		if (so) {
2163 			SOCK_LOCK(so);
2164 			so->so_state &= ~SS_ISCONNECTED;
2165 			SOCK_UNLOCK(so);
2166 		}
2167 		break;
2168 
2169 	case SOCK_STREAM:
2170 	case SOCK_SEQPACKET:
2171 		if (so)
2172 			soisdisconnected(so);
2173 		MPASS(unp2->unp_conn == unp);
2174 		unp2->unp_conn = NULL;
2175 		if (so2)
2176 			soisdisconnected(so2);
2177 		break;
2178 	}
2179 
2180 	if (unp == unp2) {
2181 		unp_pcb_rele_notlast(unp);
2182 		if (!unp_pcb_rele(unp))
2183 			UNP_PCB_UNLOCK(unp);
2184 	} else {
2185 		if (!unp_pcb_rele(unp))
2186 			UNP_PCB_UNLOCK(unp);
2187 		if (!unp_pcb_rele(unp2))
2188 			UNP_PCB_UNLOCK(unp2);
2189 	}
2190 
2191 	if (m != NULL) {
2192 		unp_scan(m, unp_freerights);
2193 		m_freem(m);
2194 	}
2195 }
2196 
2197 /*
2198  * unp_pcblist() walks the global list of struct unpcb's to generate a
2199  * pointer list, bumping the refcount on each unpcb.  It then copies them out
2200  * sequentially, validating the generation number on each to see if it has
2201  * been detached.  All of this is necessary because copyout() may sleep on
2202  * disk I/O.
2203  */
2204 static int
2205 unp_pcblist(SYSCTL_HANDLER_ARGS)
2206 {
2207 	struct unpcb *unp, **unp_list;
2208 	unp_gen_t gencnt;
2209 	struct xunpgen *xug;
2210 	struct unp_head *head;
2211 	struct xunpcb *xu;
2212 	u_int i;
2213 	int error, n;
2214 
2215 	switch ((intptr_t)arg1) {
2216 	case SOCK_STREAM:
2217 		head = &unp_shead;
2218 		break;
2219 
2220 	case SOCK_DGRAM:
2221 		head = &unp_dhead;
2222 		break;
2223 
2224 	case SOCK_SEQPACKET:
2225 		head = &unp_sphead;
2226 		break;
2227 
2228 	default:
2229 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
2230 	}
2231 
2232 	/*
2233 	 * The process of preparing the PCB list is too time-consuming and
2234 	 * resource-intensive to repeat twice on every request.
2235 	 */
2236 	if (req->oldptr == NULL) {
2237 		n = unp_count;
2238 		req->oldidx = 2 * (sizeof *xug)
2239 			+ (n + n/8) * sizeof(struct xunpcb);
2240 		return (0);
2241 	}
2242 
2243 	if (req->newptr != NULL)
2244 		return (EPERM);
2245 
2246 	/*
2247 	 * OK, now we're committed to doing something.
2248 	 */
2249 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
2250 	UNP_LINK_RLOCK();
2251 	gencnt = unp_gencnt;
2252 	n = unp_count;
2253 	UNP_LINK_RUNLOCK();
2254 
2255 	xug->xug_len = sizeof *xug;
2256 	xug->xug_count = n;
2257 	xug->xug_gen = gencnt;
2258 	xug->xug_sogen = so_gencnt;
2259 	error = SYSCTL_OUT(req, xug, sizeof *xug);
2260 	if (error) {
2261 		free(xug, M_TEMP);
2262 		return (error);
2263 	}
2264 
2265 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
2266 
2267 	UNP_LINK_RLOCK();
2268 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
2269 	     unp = LIST_NEXT(unp, unp_link)) {
2270 		UNP_PCB_LOCK(unp);
2271 		if (unp->unp_gencnt <= gencnt) {
2272 			if (cr_cansee(req->td->td_ucred,
2273 			    unp->unp_socket->so_cred)) {
2274 				UNP_PCB_UNLOCK(unp);
2275 				continue;
2276 			}
2277 			unp_list[i++] = unp;
2278 			unp_pcb_hold(unp);
2279 		}
2280 		UNP_PCB_UNLOCK(unp);
2281 	}
2282 	UNP_LINK_RUNLOCK();
2283 	n = i;			/* In case we lost some during malloc. */
2284 
2285 	error = 0;
2286 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
2287 	for (i = 0; i < n; i++) {
2288 		unp = unp_list[i];
2289 		UNP_PCB_LOCK(unp);
2290 		if (unp_pcb_rele(unp))
2291 			continue;
2292 
2293 		if (unp->unp_gencnt <= gencnt) {
2294 			xu->xu_len = sizeof *xu;
2295 			xu->xu_unpp = (uintptr_t)unp;
2296 			/*
2297 			 * XXX - need more locking here to protect against
2298 			 * connect/disconnect races for SMP.
2299 			 */
2300 			if (unp->unp_addr != NULL)
2301 				bcopy(unp->unp_addr, &xu->xu_addr,
2302 				      unp->unp_addr->sun_len);
2303 			else
2304 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
2305 			if (unp->unp_conn != NULL &&
2306 			    unp->unp_conn->unp_addr != NULL)
2307 				bcopy(unp->unp_conn->unp_addr,
2308 				      &xu->xu_caddr,
2309 				      unp->unp_conn->unp_addr->sun_len);
2310 			else
2311 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
2312 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
2313 			xu->unp_conn = (uintptr_t)unp->unp_conn;
2314 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
2315 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
2316 			xu->unp_gencnt = unp->unp_gencnt;
2317 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
2318 			UNP_PCB_UNLOCK(unp);
2319 			error = SYSCTL_OUT(req, xu, sizeof *xu);
2320 		} else {
2321 			UNP_PCB_UNLOCK(unp);
2322 		}
2323 	}
2324 	free(xu, M_TEMP);
2325 	if (!error) {
2326 		/*
2327 		 * Give the user an updated idea of our state.  If the
2328 		 * generation differs from what we told her before, she knows
2329 		 * that something happened while we were processing this
2330 		 * request, and it might be necessary to retry.
2331 		 */
2332 		xug->xug_gen = unp_gencnt;
2333 		xug->xug_sogen = so_gencnt;
2334 		xug->xug_count = unp_count;
2335 		error = SYSCTL_OUT(req, xug, sizeof *xug);
2336 	}
2337 	free(unp_list, M_TEMP);
2338 	free(xug, M_TEMP);
2339 	return (error);
2340 }
2341 
2342 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
2343     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2344     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
2345     "List of active local datagram sockets");
2346 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
2347     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2348     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
2349     "List of active local stream sockets");
2350 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
2351     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2352     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
2353     "List of active local seqpacket sockets");
2354 
2355 static void
2356 unp_shutdown(struct unpcb *unp)
2357 {
2358 	struct unpcb *unp2;
2359 	struct socket *so;
2360 
2361 	UNP_PCB_LOCK_ASSERT(unp);
2362 
2363 	unp2 = unp->unp_conn;
2364 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
2365 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
2366 		so = unp2->unp_socket;
2367 		if (so != NULL)
2368 			socantrcvmore(so);
2369 	}
2370 }
2371 
2372 static void
2373 unp_drop(struct unpcb *unp)
2374 {
2375 	struct socket *so;
2376 	struct unpcb *unp2;
2377 
2378 	/*
2379 	 * Regardless of whether the socket's peer dropped the connection
2380 	 * with this socket by aborting or disconnecting, POSIX requires
2381 	 * that ECONNRESET is returned.
2382 	 */
2383 
2384 	UNP_PCB_LOCK(unp);
2385 	so = unp->unp_socket;
2386 	if (so)
2387 		so->so_error = ECONNRESET;
2388 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
2389 		/* Last reference dropped in unp_disconnect(). */
2390 		unp_pcb_rele_notlast(unp);
2391 		unp_disconnect(unp, unp2);
2392 	} else if (!unp_pcb_rele(unp)) {
2393 		UNP_PCB_UNLOCK(unp);
2394 	}
2395 }
2396 
2397 static void
2398 unp_freerights(struct filedescent **fdep, int fdcount)
2399 {
2400 	struct file *fp;
2401 	int i;
2402 
2403 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
2404 
2405 	for (i = 0; i < fdcount; i++) {
2406 		fp = fdep[i]->fde_file;
2407 		filecaps_free(&fdep[i]->fde_caps);
2408 		unp_discard(fp);
2409 	}
2410 	free(fdep[0], M_FILECAPS);
2411 }
2412 
2413 static int
2414 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2415 {
2416 	struct thread *td = curthread;		/* XXX */
2417 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2418 	int i;
2419 	int *fdp;
2420 	struct filedesc *fdesc = td->td_proc->p_fd;
2421 	struct filedescent **fdep;
2422 	void *data;
2423 	socklen_t clen = control->m_len, datalen;
2424 	int error, newfds;
2425 	u_int newlen;
2426 
2427 	UNP_LINK_UNLOCK_ASSERT();
2428 
2429 	error = 0;
2430 	if (controlp != NULL) /* controlp == NULL => free control messages */
2431 		*controlp = NULL;
2432 	while (cm != NULL) {
2433 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
2434 
2435 		data = CMSG_DATA(cm);
2436 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2437 		if (cm->cmsg_level == SOL_SOCKET
2438 		    && cm->cmsg_type == SCM_RIGHTS) {
2439 			newfds = datalen / sizeof(*fdep);
2440 			if (newfds == 0)
2441 				goto next;
2442 			fdep = data;
2443 
2444 			/* If we're not outputting the descriptors free them. */
2445 			if (error || controlp == NULL) {
2446 				unp_freerights(fdep, newfds);
2447 				goto next;
2448 			}
2449 			FILEDESC_XLOCK(fdesc);
2450 
2451 			/*
2452 			 * Now change each pointer to an fd in the global
2453 			 * table to an integer that is the index to the local
2454 			 * fd table entry that we set up to point to the
2455 			 * global one we are transferring.
2456 			 */
2457 			newlen = newfds * sizeof(int);
2458 			*controlp = sbcreatecontrol(NULL, newlen,
2459 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2460 
2461 			fdp = (int *)
2462 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2463 			if ((error = fdallocn(td, 0, fdp, newfds))) {
2464 				FILEDESC_XUNLOCK(fdesc);
2465 				unp_freerights(fdep, newfds);
2466 				m_freem(*controlp);
2467 				*controlp = NULL;
2468 				goto next;
2469 			}
2470 			for (i = 0; i < newfds; i++, fdp++) {
2471 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2472 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0,
2473 				    &fdep[i]->fde_caps);
2474 				unp_externalize_fp(fdep[i]->fde_file);
2475 			}
2476 
2477 			/*
2478 			 * The new type indicates that the mbuf data refers to
2479 			 * kernel resources that may need to be released before
2480 			 * the mbuf is freed.
2481 			 */
2482 			m_chtype(*controlp, MT_EXTCONTROL);
2483 			FILEDESC_XUNLOCK(fdesc);
2484 			free(fdep[0], M_FILECAPS);
2485 		} else {
2486 			/* We can just copy anything else across. */
2487 			if (error || controlp == NULL)
2488 				goto next;
2489 			*controlp = sbcreatecontrol(NULL, datalen,
2490 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
2491 			bcopy(data,
2492 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2493 			    datalen);
2494 		}
2495 		controlp = &(*controlp)->m_next;
2496 
2497 next:
2498 		if (CMSG_SPACE(datalen) < clen) {
2499 			clen -= CMSG_SPACE(datalen);
2500 			cm = (struct cmsghdr *)
2501 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2502 		} else {
2503 			clen = 0;
2504 			cm = NULL;
2505 		}
2506 	}
2507 
2508 	m_freem(control);
2509 	return (error);
2510 }
2511 
2512 static void
2513 unp_zone_change(void *tag)
2514 {
2515 
2516 	uma_zone_set_max(unp_zone, maxsockets);
2517 }
2518 
2519 #ifdef INVARIANTS
2520 static void
2521 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2522 {
2523 	struct unpcb *unp;
2524 
2525 	unp = mem;
2526 
2527 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2528 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2529 	KASSERT(unp->unp_socket == NULL,
2530 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2531 	KASSERT(unp->unp_vnode == NULL,
2532 	    ("%s: unpcb %p has vnode references", __func__, unp));
2533 	KASSERT(unp->unp_conn == NULL,
2534 	    ("%s: unpcb %p is still connected", __func__, unp));
2535 	KASSERT(unp->unp_addr == NULL,
2536 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2537 }
2538 #endif
2539 
2540 static void
2541 unp_init(void *arg __unused)
2542 {
2543 	uma_dtor dtor;
2544 
2545 #ifdef INVARIANTS
2546 	dtor = unp_zdtor;
2547 #else
2548 	dtor = NULL;
2549 #endif
2550 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2551 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2552 	uma_zone_set_max(unp_zone, maxsockets);
2553 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2554 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2555 	    NULL, EVENTHANDLER_PRI_ANY);
2556 	LIST_INIT(&unp_dhead);
2557 	LIST_INIT(&unp_shead);
2558 	LIST_INIT(&unp_sphead);
2559 	SLIST_INIT(&unp_defers);
2560 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2561 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2562 	UNP_LINK_LOCK_INIT();
2563 	UNP_DEFERRED_LOCK_INIT();
2564 }
2565 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
2566 
2567 static void
2568 unp_internalize_cleanup_rights(struct mbuf *control)
2569 {
2570 	struct cmsghdr *cp;
2571 	struct mbuf *m;
2572 	void *data;
2573 	socklen_t datalen;
2574 
2575 	for (m = control; m != NULL; m = m->m_next) {
2576 		cp = mtod(m, struct cmsghdr *);
2577 		if (cp->cmsg_level != SOL_SOCKET ||
2578 		    cp->cmsg_type != SCM_RIGHTS)
2579 			continue;
2580 		data = CMSG_DATA(cp);
2581 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2582 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2583 	}
2584 }
2585 
2586 static int
2587 unp_internalize(struct mbuf **controlp, struct thread *td,
2588     struct mbuf **clast, u_int *space, u_int *mbcnt)
2589 {
2590 	struct mbuf *control, **initial_controlp;
2591 	struct proc *p;
2592 	struct filedesc *fdesc;
2593 	struct bintime *bt;
2594 	struct cmsghdr *cm;
2595 	struct cmsgcred *cmcred;
2596 	struct filedescent *fde, **fdep, *fdev;
2597 	struct file *fp;
2598 	struct timeval *tv;
2599 	struct timespec *ts;
2600 	void *data;
2601 	socklen_t clen, datalen;
2602 	int i, j, error, *fdp, oldfds;
2603 	u_int newlen;
2604 
2605 	MPASS((*controlp)->m_next == NULL); /* COMPAT_OLDSOCK may violate */
2606 	UNP_LINK_UNLOCK_ASSERT();
2607 
2608 	p = td->td_proc;
2609 	fdesc = p->p_fd;
2610 	error = 0;
2611 	control = *controlp;
2612 	*controlp = NULL;
2613 	initial_controlp = controlp;
2614 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
2615 	    data = CMSG_DATA(cm);
2616 
2617 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
2618 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
2619 	    (char *)cm + cm->cmsg_len >= (char *)data;
2620 
2621 	    clen -= min(CMSG_SPACE(datalen), clen),
2622 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
2623 	    data = CMSG_DATA(cm)) {
2624 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
2625 		switch (cm->cmsg_type) {
2626 		case SCM_CREDS:
2627 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2628 			    SCM_CREDS, SOL_SOCKET, M_WAITOK);
2629 			cmcred = (struct cmsgcred *)
2630 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2631 			cmcred->cmcred_pid = p->p_pid;
2632 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2633 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2634 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2635 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2636 			    CMGROUP_MAX);
2637 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2638 				cmcred->cmcred_groups[i] =
2639 				    td->td_ucred->cr_groups[i];
2640 			break;
2641 
2642 		case SCM_RIGHTS:
2643 			oldfds = datalen / sizeof (int);
2644 			if (oldfds == 0)
2645 				continue;
2646 			/* On some machines sizeof pointer is bigger than
2647 			 * sizeof int, so we need to check if data fits into
2648 			 * single mbuf.  We could allocate several mbufs, and
2649 			 * unp_externalize() should even properly handle that.
2650 			 * But it is not worth to complicate the code for an
2651 			 * insane scenario of passing over 200 file descriptors
2652 			 * at once.
2653 			 */
2654 			newlen = oldfds * sizeof(fdep[0]);
2655 			if (CMSG_SPACE(newlen) > MCLBYTES) {
2656 				error = EMSGSIZE;
2657 				goto out;
2658 			}
2659 			/*
2660 			 * Check that all the FDs passed in refer to legal
2661 			 * files.  If not, reject the entire operation.
2662 			 */
2663 			fdp = data;
2664 			FILEDESC_SLOCK(fdesc);
2665 			for (i = 0; i < oldfds; i++, fdp++) {
2666 				fp = fget_noref(fdesc, *fdp);
2667 				if (fp == NULL) {
2668 					FILEDESC_SUNLOCK(fdesc);
2669 					error = EBADF;
2670 					goto out;
2671 				}
2672 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2673 					FILEDESC_SUNLOCK(fdesc);
2674 					error = EOPNOTSUPP;
2675 					goto out;
2676 				}
2677 			}
2678 
2679 			/*
2680 			 * Now replace the integer FDs with pointers to the
2681 			 * file structure and capability rights.
2682 			 */
2683 			*controlp = sbcreatecontrol(NULL, newlen,
2684 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2685 			fdp = data;
2686 			for (i = 0; i < oldfds; i++, fdp++) {
2687 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2688 					fdp = data;
2689 					for (j = 0; j < i; j++, fdp++) {
2690 						fdrop(fdesc->fd_ofiles[*fdp].
2691 						    fde_file, td);
2692 					}
2693 					FILEDESC_SUNLOCK(fdesc);
2694 					error = EBADF;
2695 					goto out;
2696 				}
2697 			}
2698 			fdp = data;
2699 			fdep = (struct filedescent **)
2700 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2701 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2702 			    M_WAITOK);
2703 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2704 				fde = &fdesc->fd_ofiles[*fdp];
2705 				fdep[i] = fdev;
2706 				fdep[i]->fde_file = fde->fde_file;
2707 				filecaps_copy(&fde->fde_caps,
2708 				    &fdep[i]->fde_caps, true);
2709 				unp_internalize_fp(fdep[i]->fde_file);
2710 			}
2711 			FILEDESC_SUNLOCK(fdesc);
2712 			break;
2713 
2714 		case SCM_TIMESTAMP:
2715 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2716 			    SCM_TIMESTAMP, SOL_SOCKET, M_WAITOK);
2717 			tv = (struct timeval *)
2718 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2719 			microtime(tv);
2720 			break;
2721 
2722 		case SCM_BINTIME:
2723 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2724 			    SCM_BINTIME, SOL_SOCKET, M_WAITOK);
2725 			bt = (struct bintime *)
2726 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2727 			bintime(bt);
2728 			break;
2729 
2730 		case SCM_REALTIME:
2731 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2732 			    SCM_REALTIME, SOL_SOCKET, M_WAITOK);
2733 			ts = (struct timespec *)
2734 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2735 			nanotime(ts);
2736 			break;
2737 
2738 		case SCM_MONOTONIC:
2739 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2740 			    SCM_MONOTONIC, SOL_SOCKET, M_WAITOK);
2741 			ts = (struct timespec *)
2742 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2743 			nanouptime(ts);
2744 			break;
2745 
2746 		default:
2747 			error = EINVAL;
2748 			goto out;
2749 		}
2750 
2751 		if (space != NULL) {
2752 			*space += (*controlp)->m_len;
2753 			*mbcnt += MSIZE;
2754 			if ((*controlp)->m_flags & M_EXT)
2755 				*mbcnt += (*controlp)->m_ext.ext_size;
2756 			*clast = *controlp;
2757 		}
2758 		controlp = &(*controlp)->m_next;
2759 	}
2760 	if (clen > 0)
2761 		error = EINVAL;
2762 
2763 out:
2764 	if (error != 0 && initial_controlp != NULL)
2765 		unp_internalize_cleanup_rights(*initial_controlp);
2766 	m_freem(control);
2767 	return (error);
2768 }
2769 
2770 static struct mbuf *
2771 unp_addsockcred(struct thread *td, struct mbuf *control, int mode,
2772     struct mbuf **clast, u_int *space, u_int *mbcnt)
2773 {
2774 	struct mbuf *m, *n, *n_prev;
2775 	const struct cmsghdr *cm;
2776 	int ngroups, i, cmsgtype;
2777 	size_t ctrlsz;
2778 
2779 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2780 	if (mode & UNP_WANTCRED_ALWAYS) {
2781 		ctrlsz = SOCKCRED2SIZE(ngroups);
2782 		cmsgtype = SCM_CREDS2;
2783 	} else {
2784 		ctrlsz = SOCKCREDSIZE(ngroups);
2785 		cmsgtype = SCM_CREDS;
2786 	}
2787 
2788 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
2789 	if (m == NULL)
2790 		return (control);
2791 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
2792 
2793 	if (mode & UNP_WANTCRED_ALWAYS) {
2794 		struct sockcred2 *sc;
2795 
2796 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2797 		sc->sc_version = 0;
2798 		sc->sc_pid = td->td_proc->p_pid;
2799 		sc->sc_uid = td->td_ucred->cr_ruid;
2800 		sc->sc_euid = td->td_ucred->cr_uid;
2801 		sc->sc_gid = td->td_ucred->cr_rgid;
2802 		sc->sc_egid = td->td_ucred->cr_gid;
2803 		sc->sc_ngroups = ngroups;
2804 		for (i = 0; i < sc->sc_ngroups; i++)
2805 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2806 	} else {
2807 		struct sockcred *sc;
2808 
2809 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2810 		sc->sc_uid = td->td_ucred->cr_ruid;
2811 		sc->sc_euid = td->td_ucred->cr_uid;
2812 		sc->sc_gid = td->td_ucred->cr_rgid;
2813 		sc->sc_egid = td->td_ucred->cr_gid;
2814 		sc->sc_ngroups = ngroups;
2815 		for (i = 0; i < sc->sc_ngroups; i++)
2816 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2817 	}
2818 
2819 	/*
2820 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2821 	 * created SCM_CREDS control message (struct sockcred) has another
2822 	 * format.
2823 	 */
2824 	if (control != NULL && cmsgtype == SCM_CREDS)
2825 		for (n = control, n_prev = NULL; n != NULL;) {
2826 			cm = mtod(n, struct cmsghdr *);
2827     			if (cm->cmsg_level == SOL_SOCKET &&
2828 			    cm->cmsg_type == SCM_CREDS) {
2829     				if (n_prev == NULL)
2830 					control = n->m_next;
2831 				else
2832 					n_prev->m_next = n->m_next;
2833 				if (space != NULL) {
2834 					MPASS(*space >= n->m_len);
2835 					*space -= n->m_len;
2836 					MPASS(*mbcnt >= MSIZE);
2837 					*mbcnt -= MSIZE;
2838 					if (n->m_flags & M_EXT) {
2839 						MPASS(*mbcnt >=
2840 						    n->m_ext.ext_size);
2841 						*mbcnt -= n->m_ext.ext_size;
2842 					}
2843 					MPASS(clast);
2844 					if (*clast == n) {
2845 						MPASS(n->m_next == NULL);
2846 						if (n_prev == NULL)
2847 							*clast = m;
2848 						else
2849 							*clast = n_prev;
2850 					}
2851 				}
2852 				n = m_free(n);
2853 			} else {
2854 				n_prev = n;
2855 				n = n->m_next;
2856 			}
2857 		}
2858 
2859 	/* Prepend it to the head. */
2860 	m->m_next = control;
2861 	if (space != NULL) {
2862 		*space += m->m_len;
2863 		*mbcnt += MSIZE;
2864 		if (control == NULL)
2865 			*clast = m;
2866 	}
2867 	return (m);
2868 }
2869 
2870 static struct unpcb *
2871 fptounp(struct file *fp)
2872 {
2873 	struct socket *so;
2874 
2875 	if (fp->f_type != DTYPE_SOCKET)
2876 		return (NULL);
2877 	if ((so = fp->f_data) == NULL)
2878 		return (NULL);
2879 	if (so->so_proto->pr_domain != &localdomain)
2880 		return (NULL);
2881 	return sotounpcb(so);
2882 }
2883 
2884 static void
2885 unp_discard(struct file *fp)
2886 {
2887 	struct unp_defer *dr;
2888 
2889 	if (unp_externalize_fp(fp)) {
2890 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2891 		dr->ud_fp = fp;
2892 		UNP_DEFERRED_LOCK();
2893 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2894 		UNP_DEFERRED_UNLOCK();
2895 		atomic_add_int(&unp_defers_count, 1);
2896 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2897 	} else
2898 		closef_nothread(fp);
2899 }
2900 
2901 static void
2902 unp_process_defers(void *arg __unused, int pending)
2903 {
2904 	struct unp_defer *dr;
2905 	SLIST_HEAD(, unp_defer) drl;
2906 	int count;
2907 
2908 	SLIST_INIT(&drl);
2909 	for (;;) {
2910 		UNP_DEFERRED_LOCK();
2911 		if (SLIST_FIRST(&unp_defers) == NULL) {
2912 			UNP_DEFERRED_UNLOCK();
2913 			break;
2914 		}
2915 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2916 		UNP_DEFERRED_UNLOCK();
2917 		count = 0;
2918 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2919 			SLIST_REMOVE_HEAD(&drl, ud_link);
2920 			closef_nothread(dr->ud_fp);
2921 			free(dr, M_TEMP);
2922 			count++;
2923 		}
2924 		atomic_add_int(&unp_defers_count, -count);
2925 	}
2926 }
2927 
2928 static void
2929 unp_internalize_fp(struct file *fp)
2930 {
2931 	struct unpcb *unp;
2932 
2933 	UNP_LINK_WLOCK();
2934 	if ((unp = fptounp(fp)) != NULL) {
2935 		unp->unp_file = fp;
2936 		unp->unp_msgcount++;
2937 	}
2938 	unp_rights++;
2939 	UNP_LINK_WUNLOCK();
2940 }
2941 
2942 static int
2943 unp_externalize_fp(struct file *fp)
2944 {
2945 	struct unpcb *unp;
2946 	int ret;
2947 
2948 	UNP_LINK_WLOCK();
2949 	if ((unp = fptounp(fp)) != NULL) {
2950 		unp->unp_msgcount--;
2951 		ret = 1;
2952 	} else
2953 		ret = 0;
2954 	unp_rights--;
2955 	UNP_LINK_WUNLOCK();
2956 	return (ret);
2957 }
2958 
2959 /*
2960  * unp_defer indicates whether additional work has been defered for a future
2961  * pass through unp_gc().  It is thread local and does not require explicit
2962  * synchronization.
2963  */
2964 static int	unp_marked;
2965 
2966 static void
2967 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2968 {
2969 	struct unpcb *unp;
2970 	struct file *fp;
2971 	int i;
2972 
2973 	/*
2974 	 * This function can only be called from the gc task.
2975 	 */
2976 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2977 	    ("%s: not on gc callout", __func__));
2978 	UNP_LINK_LOCK_ASSERT();
2979 
2980 	for (i = 0; i < fdcount; i++) {
2981 		fp = fdep[i]->fde_file;
2982 		if ((unp = fptounp(fp)) == NULL)
2983 			continue;
2984 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2985 			continue;
2986 		unp->unp_gcrefs--;
2987 	}
2988 }
2989 
2990 static void
2991 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2992 {
2993 	struct unpcb *unp;
2994 	struct file *fp;
2995 	int i;
2996 
2997 	/*
2998 	 * This function can only be called from the gc task.
2999 	 */
3000 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
3001 	    ("%s: not on gc callout", __func__));
3002 	UNP_LINK_LOCK_ASSERT();
3003 
3004 	for (i = 0; i < fdcount; i++) {
3005 		fp = fdep[i]->fde_file;
3006 		if ((unp = fptounp(fp)) == NULL)
3007 			continue;
3008 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
3009 			continue;
3010 		unp->unp_gcrefs++;
3011 		unp_marked++;
3012 	}
3013 }
3014 
3015 static void
3016 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
3017 {
3018 	struct sockbuf *sb;
3019 
3020 	SOCK_LOCK_ASSERT(so);
3021 
3022 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
3023 		return;
3024 
3025 	SOCK_RECVBUF_LOCK(so);
3026 	switch (so->so_type) {
3027 	case SOCK_DGRAM:
3028 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
3029 		unp_scan(so->so_rcv.uxdg_peeked, op);
3030 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
3031 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
3032 		break;
3033 	case SOCK_STREAM:
3034 	case SOCK_SEQPACKET:
3035 		unp_scan(so->so_rcv.sb_mb, op);
3036 		break;
3037 	}
3038 	SOCK_RECVBUF_UNLOCK(so);
3039 }
3040 
3041 static void
3042 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
3043 {
3044 	struct socket *so, *soa;
3045 
3046 	so = unp->unp_socket;
3047 	SOCK_LOCK(so);
3048 	if (SOLISTENING(so)) {
3049 		/*
3050 		 * Mark all sockets in our accept queue.
3051 		 */
3052 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
3053 			unp_scan_socket(soa, op);
3054 	} else {
3055 		/*
3056 		 * Mark all sockets we reference with RIGHTS.
3057 		 */
3058 		unp_scan_socket(so, op);
3059 	}
3060 	SOCK_UNLOCK(so);
3061 }
3062 
3063 static int unp_recycled;
3064 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
3065     "Number of unreachable sockets claimed by the garbage collector.");
3066 
3067 static int unp_taskcount;
3068 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
3069     "Number of times the garbage collector has run.");
3070 
3071 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
3072     "Number of active local sockets.");
3073 
3074 static void
3075 unp_gc(__unused void *arg, int pending)
3076 {
3077 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
3078 				    NULL };
3079 	struct unp_head **head;
3080 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
3081 	struct file *f, **unref;
3082 	struct unpcb *unp, *unptmp;
3083 	int i, total, unp_unreachable;
3084 
3085 	LIST_INIT(&unp_deadhead);
3086 	unp_taskcount++;
3087 	UNP_LINK_RLOCK();
3088 	/*
3089 	 * First determine which sockets may be in cycles.
3090 	 */
3091 	unp_unreachable = 0;
3092 
3093 	for (head = heads; *head != NULL; head++)
3094 		LIST_FOREACH(unp, *head, unp_link) {
3095 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
3096 			    ("%s: unp %p has unexpected gc flags 0x%x",
3097 			    __func__, unp, (unsigned int)unp->unp_gcflag));
3098 
3099 			f = unp->unp_file;
3100 
3101 			/*
3102 			 * Check for an unreachable socket potentially in a
3103 			 * cycle.  It must be in a queue as indicated by
3104 			 * msgcount, and this must equal the file reference
3105 			 * count.  Note that when msgcount is 0 the file is
3106 			 * NULL.
3107 			 */
3108 			if (f != NULL && unp->unp_msgcount != 0 &&
3109 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
3110 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
3111 				unp->unp_gcflag |= UNPGC_DEAD;
3112 				unp->unp_gcrefs = unp->unp_msgcount;
3113 				unp_unreachable++;
3114 			}
3115 		}
3116 
3117 	/*
3118 	 * Scan all sockets previously marked as potentially being in a cycle
3119 	 * and remove the references each socket holds on any UNPGC_DEAD
3120 	 * sockets in its queue.  After this step, all remaining references on
3121 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
3122 	 */
3123 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
3124 		unp_gc_scan(unp, unp_remove_dead_ref);
3125 
3126 	/*
3127 	 * If a socket still has a non-negative refcount, it cannot be in a
3128 	 * cycle.  In this case increment refcount of all children iteratively.
3129 	 * Stop the scan once we do a complete loop without discovering
3130 	 * a new reachable socket.
3131 	 */
3132 	do {
3133 		unp_marked = 0;
3134 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
3135 			if (unp->unp_gcrefs > 0) {
3136 				unp->unp_gcflag &= ~UNPGC_DEAD;
3137 				LIST_REMOVE(unp, unp_dead);
3138 				KASSERT(unp_unreachable > 0,
3139 				    ("%s: unp_unreachable underflow.",
3140 				    __func__));
3141 				unp_unreachable--;
3142 				unp_gc_scan(unp, unp_restore_undead_ref);
3143 			}
3144 	} while (unp_marked);
3145 
3146 	UNP_LINK_RUNLOCK();
3147 
3148 	if (unp_unreachable == 0)
3149 		return;
3150 
3151 	/*
3152 	 * Allocate space for a local array of dead unpcbs.
3153 	 * TODO: can this path be simplified by instead using the local
3154 	 * dead list at unp_deadhead, after taking out references
3155 	 * on the file object and/or unpcb and dropping the link lock?
3156 	 */
3157 	unref = malloc(unp_unreachable * sizeof(struct file *),
3158 	    M_TEMP, M_WAITOK);
3159 
3160 	/*
3161 	 * Iterate looking for sockets which have been specifically marked
3162 	 * as unreachable and store them locally.
3163 	 */
3164 	UNP_LINK_RLOCK();
3165 	total = 0;
3166 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
3167 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
3168 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
3169 		unp->unp_gcflag &= ~UNPGC_DEAD;
3170 		f = unp->unp_file;
3171 		if (unp->unp_msgcount == 0 || f == NULL ||
3172 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
3173 		    !fhold(f))
3174 			continue;
3175 		unref[total++] = f;
3176 		KASSERT(total <= unp_unreachable,
3177 		    ("%s: incorrect unreachable count.", __func__));
3178 	}
3179 	UNP_LINK_RUNLOCK();
3180 
3181 	/*
3182 	 * Now flush all sockets, free'ing rights.  This will free the
3183 	 * struct files associated with these sockets but leave each socket
3184 	 * with one remaining ref.
3185 	 */
3186 	for (i = 0; i < total; i++) {
3187 		struct socket *so;
3188 
3189 		so = unref[i]->f_data;
3190 		CURVNET_SET(so->so_vnet);
3191 		socantrcvmore(so);
3192 		unp_dispose(so);
3193 		CURVNET_RESTORE();
3194 	}
3195 
3196 	/*
3197 	 * And finally release the sockets so they can be reclaimed.
3198 	 */
3199 	for (i = 0; i < total; i++)
3200 		fdrop(unref[i], NULL);
3201 	unp_recycled += total;
3202 	free(unref, M_TEMP);
3203 }
3204 
3205 /*
3206  * Synchronize against unp_gc, which can trip over data as we are freeing it.
3207  */
3208 static void
3209 unp_dispose(struct socket *so)
3210 {
3211 	struct sockbuf *sb;
3212 	struct unpcb *unp;
3213 	struct mbuf *m;
3214 	int error __diagused;
3215 
3216 	MPASS(!SOLISTENING(so));
3217 
3218 	unp = sotounpcb(so);
3219 	UNP_LINK_WLOCK();
3220 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
3221 	UNP_LINK_WUNLOCK();
3222 
3223 	/*
3224 	 * Grab our special mbufs before calling sbrelease().
3225 	 */
3226 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3227 	MPASS(!error);
3228 	SOCK_RECVBUF_LOCK(so);
3229 	switch (so->so_type) {
3230 	case SOCK_DGRAM:
3231 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
3232 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
3233 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
3234 			/* Note: socket of sb may reconnect. */
3235 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
3236 		}
3237 		sb = &so->so_rcv;
3238 		if (sb->uxdg_peeked != NULL) {
3239 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
3240 			    m_stailqpkt);
3241 			sb->uxdg_peeked = NULL;
3242 		}
3243 		m = STAILQ_FIRST(&sb->uxdg_mb);
3244 		STAILQ_INIT(&sb->uxdg_mb);
3245 		/* XXX: our shortened sbrelease() */
3246 		(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
3247 		    RLIM_INFINITY);
3248 		/*
3249 		 * XXXGL Mark sb with SBS_CANTRCVMORE.  This is needed to
3250 		 * prevent uipc_sosend_dgram() or unp_disconnect() adding more
3251 		 * data to the socket.
3252 		 * We came here either through shutdown(2) or from the final
3253 		 * sofree().  The sofree() case is simple as it guarantees
3254 		 * that no more sends will happen, however we can race with
3255 		 * unp_disconnect() from our peer.  The shutdown(2) case is
3256 		 * more exotic.  It would call into unp_dispose() only if
3257 		 * socket is SS_ISCONNECTED.  This is possible if we did
3258 		 * connect(2) on this socket and we also had it bound with
3259 		 * bind(2) and receive connections from other sockets.
3260 		 * Because uipc_shutdown() violates POSIX (see comment
3261 		 * there) we will end up here shutting down our receive side.
3262 		 * Of course this will have affect not only on the peer we
3263 		 * connect(2)ed to, but also on all of the peers who had
3264 		 * connect(2)ed to us.  Their sends would end up with ENOBUFS.
3265 		 */
3266 		sb->sb_state |= SBS_CANTRCVMORE;
3267 		break;
3268 	case SOCK_STREAM:
3269 	case SOCK_SEQPACKET:
3270 		sb = &so->so_rcv;
3271 		m = sbcut_locked(sb, sb->sb_ccc);
3272 		KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
3273 		    ("%s: ccc %u mb %p mbcnt %u", __func__,
3274 		    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
3275 		sbrelease_locked(so, SO_RCV);
3276 		break;
3277 	}
3278 	SOCK_RECVBUF_UNLOCK(so);
3279 	SOCK_IO_RECV_UNLOCK(so);
3280 
3281 	if (m != NULL) {
3282 		unp_scan(m, unp_freerights);
3283 		m_freem(m);
3284 	}
3285 }
3286 
3287 static void
3288 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
3289 {
3290 	struct mbuf *m;
3291 	struct cmsghdr *cm;
3292 	void *data;
3293 	socklen_t clen, datalen;
3294 
3295 	while (m0 != NULL) {
3296 		for (m = m0; m; m = m->m_next) {
3297 			if (m->m_type != MT_CONTROL)
3298 				continue;
3299 
3300 			cm = mtod(m, struct cmsghdr *);
3301 			clen = m->m_len;
3302 
3303 			while (cm != NULL) {
3304 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
3305 					break;
3306 
3307 				data = CMSG_DATA(cm);
3308 				datalen = (caddr_t)cm + cm->cmsg_len
3309 				    - (caddr_t)data;
3310 
3311 				if (cm->cmsg_level == SOL_SOCKET &&
3312 				    cm->cmsg_type == SCM_RIGHTS) {
3313 					(*op)(data, datalen /
3314 					    sizeof(struct filedescent *));
3315 				}
3316 
3317 				if (CMSG_SPACE(datalen) < clen) {
3318 					clen -= CMSG_SPACE(datalen);
3319 					cm = (struct cmsghdr *)
3320 					    ((caddr_t)cm + CMSG_SPACE(datalen));
3321 				} else {
3322 					clen = 0;
3323 					cm = NULL;
3324 				}
3325 			}
3326 		}
3327 		m0 = m0->m_nextpkt;
3328 	}
3329 }
3330 
3331 /*
3332  * Definitions of protocols supported in the LOCAL domain.
3333  */
3334 static struct protosw streamproto = {
3335 	.pr_type =		SOCK_STREAM,
3336 	.pr_flags =		PR_CONNREQUIRED | PR_WANTRCVD | PR_CAPATTACH,
3337 	.pr_ctloutput =		&uipc_ctloutput,
3338 	.pr_abort = 		uipc_abort,
3339 	.pr_accept =		uipc_peeraddr,
3340 	.pr_attach =		uipc_attach,
3341 	.pr_bind =		uipc_bind,
3342 	.pr_bindat =		uipc_bindat,
3343 	.pr_connect =		uipc_connect,
3344 	.pr_connectat =		uipc_connectat,
3345 	.pr_connect2 =		uipc_connect2,
3346 	.pr_detach =		uipc_detach,
3347 	.pr_disconnect =	uipc_disconnect,
3348 	.pr_listen =		uipc_listen,
3349 	.pr_peeraddr =		uipc_peeraddr,
3350 	.pr_rcvd =		uipc_rcvd,
3351 	.pr_send =		uipc_send,
3352 	.pr_ready =		uipc_ready,
3353 	.pr_sense =		uipc_sense,
3354 	.pr_shutdown =		uipc_shutdown,
3355 	.pr_sockaddr =		uipc_sockaddr,
3356 	.pr_soreceive =		soreceive_generic,
3357 	.pr_close =		uipc_close,
3358 };
3359 
3360 static struct protosw dgramproto = {
3361 	.pr_type =		SOCK_DGRAM,
3362 	.pr_flags =		PR_ATOMIC | PR_ADDR | PR_CAPATTACH | PR_SOCKBUF,
3363 	.pr_ctloutput =		&uipc_ctloutput,
3364 	.pr_abort = 		uipc_abort,
3365 	.pr_accept =		uipc_peeraddr,
3366 	.pr_attach =		uipc_attach,
3367 	.pr_bind =		uipc_bind,
3368 	.pr_bindat =		uipc_bindat,
3369 	.pr_connect =		uipc_connect,
3370 	.pr_connectat =		uipc_connectat,
3371 	.pr_connect2 =		uipc_connect2,
3372 	.pr_detach =		uipc_detach,
3373 	.pr_disconnect =	uipc_disconnect,
3374 	.pr_peeraddr =		uipc_peeraddr,
3375 	.pr_sosend =		uipc_sosend_dgram,
3376 	.pr_sense =		uipc_sense,
3377 	.pr_shutdown =		uipc_shutdown,
3378 	.pr_sockaddr =		uipc_sockaddr,
3379 	.pr_soreceive =		uipc_soreceive_dgram,
3380 	.pr_close =		uipc_close,
3381 };
3382 
3383 static struct protosw seqpacketproto = {
3384 	.pr_type =		SOCK_SEQPACKET,
3385 	/*
3386 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
3387 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
3388 	 * that supports both atomic record writes and control data.
3389 	 */
3390 	.pr_flags =		PR_ADDR | PR_ATOMIC | PR_CONNREQUIRED |
3391 				PR_WANTRCVD | PR_CAPATTACH,
3392 	.pr_ctloutput =		&uipc_ctloutput,
3393 	.pr_abort =		uipc_abort,
3394 	.pr_accept =		uipc_peeraddr,
3395 	.pr_attach =		uipc_attach,
3396 	.pr_bind =		uipc_bind,
3397 	.pr_bindat =		uipc_bindat,
3398 	.pr_connect =		uipc_connect,
3399 	.pr_connectat =		uipc_connectat,
3400 	.pr_connect2 =		uipc_connect2,
3401 	.pr_detach =		uipc_detach,
3402 	.pr_disconnect =	uipc_disconnect,
3403 	.pr_listen =		uipc_listen,
3404 	.pr_peeraddr =		uipc_peeraddr,
3405 	.pr_rcvd =		uipc_rcvd,
3406 	.pr_send =		uipc_send,
3407 	.pr_sense =		uipc_sense,
3408 	.pr_shutdown =		uipc_shutdown,
3409 	.pr_sockaddr =		uipc_sockaddr,
3410 	.pr_soreceive =		soreceive_generic,	/* XXX: or...? */
3411 	.pr_close =		uipc_close,
3412 };
3413 
3414 static struct domain localdomain = {
3415 	.dom_family =		AF_LOCAL,
3416 	.dom_name =		"local",
3417 	.dom_externalize =	unp_externalize,
3418 	.dom_nprotosw =		3,
3419 	.dom_protosw =		{
3420 		&streamproto,
3421 		&dgramproto,
3422 		&seqpacketproto,
3423 	}
3424 };
3425 DOMAIN_SET(local);
3426 
3427 /*
3428  * A helper function called by VFS before socket-type vnode reclamation.
3429  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
3430  * use count.
3431  */
3432 void
3433 vfs_unp_reclaim(struct vnode *vp)
3434 {
3435 	struct unpcb *unp;
3436 	int active;
3437 	struct mtx *vplock;
3438 
3439 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
3440 	KASSERT(vp->v_type == VSOCK,
3441 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
3442 
3443 	active = 0;
3444 	vplock = mtx_pool_find(mtxpool_sleep, vp);
3445 	mtx_lock(vplock);
3446 	VOP_UNP_CONNECT(vp, &unp);
3447 	if (unp == NULL)
3448 		goto done;
3449 	UNP_PCB_LOCK(unp);
3450 	if (unp->unp_vnode == vp) {
3451 		VOP_UNP_DETACH(vp);
3452 		unp->unp_vnode = NULL;
3453 		active = 1;
3454 	}
3455 	UNP_PCB_UNLOCK(unp);
3456  done:
3457 	mtx_unlock(vplock);
3458 	if (active)
3459 		vunref(vp);
3460 }
3461 
3462 #ifdef DDB
3463 static void
3464 db_print_indent(int indent)
3465 {
3466 	int i;
3467 
3468 	for (i = 0; i < indent; i++)
3469 		db_printf(" ");
3470 }
3471 
3472 static void
3473 db_print_unpflags(int unp_flags)
3474 {
3475 	int comma;
3476 
3477 	comma = 0;
3478 	if (unp_flags & UNP_HAVEPC) {
3479 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
3480 		comma = 1;
3481 	}
3482 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
3483 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
3484 		comma = 1;
3485 	}
3486 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
3487 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
3488 		comma = 1;
3489 	}
3490 	if (unp_flags & UNP_CONNECTING) {
3491 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
3492 		comma = 1;
3493 	}
3494 	if (unp_flags & UNP_BINDING) {
3495 		db_printf("%sUNP_BINDING", comma ? ", " : "");
3496 		comma = 1;
3497 	}
3498 }
3499 
3500 static void
3501 db_print_xucred(int indent, struct xucred *xu)
3502 {
3503 	int comma, i;
3504 
3505 	db_print_indent(indent);
3506 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
3507 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
3508 	db_print_indent(indent);
3509 	db_printf("cr_groups: ");
3510 	comma = 0;
3511 	for (i = 0; i < xu->cr_ngroups; i++) {
3512 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
3513 		comma = 1;
3514 	}
3515 	db_printf("\n");
3516 }
3517 
3518 static void
3519 db_print_unprefs(int indent, struct unp_head *uh)
3520 {
3521 	struct unpcb *unp;
3522 	int counter;
3523 
3524 	counter = 0;
3525 	LIST_FOREACH(unp, uh, unp_reflink) {
3526 		if (counter % 4 == 0)
3527 			db_print_indent(indent);
3528 		db_printf("%p  ", unp);
3529 		if (counter % 4 == 3)
3530 			db_printf("\n");
3531 		counter++;
3532 	}
3533 	if (counter != 0 && counter % 4 != 0)
3534 		db_printf("\n");
3535 }
3536 
3537 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
3538 {
3539 	struct unpcb *unp;
3540 
3541         if (!have_addr) {
3542                 db_printf("usage: show unpcb <addr>\n");
3543                 return;
3544         }
3545         unp = (struct unpcb *)addr;
3546 
3547 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
3548 	    unp->unp_vnode);
3549 
3550 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
3551 	    unp->unp_conn);
3552 
3553 	db_printf("unp_refs:\n");
3554 	db_print_unprefs(2, &unp->unp_refs);
3555 
3556 	/* XXXRW: Would be nice to print the full address, if any. */
3557 	db_printf("unp_addr: %p\n", unp->unp_addr);
3558 
3559 	db_printf("unp_gencnt: %llu\n",
3560 	    (unsigned long long)unp->unp_gencnt);
3561 
3562 	db_printf("unp_flags: %x (", unp->unp_flags);
3563 	db_print_unpflags(unp->unp_flags);
3564 	db_printf(")\n");
3565 
3566 	db_printf("unp_peercred:\n");
3567 	db_print_xucred(2, &unp->unp_peercred);
3568 
3569 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
3570 }
3571 #endif
3572