1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All Rights Reserved. 6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. 7 * Copyright (c) 2018 Matthew Macy 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 */ 35 36 /* 37 * UNIX Domain (Local) Sockets 38 * 39 * This is an implementation of UNIX (local) domain sockets. Each socket has 40 * an associated struct unpcb (UNIX protocol control block). Stream sockets 41 * may be connected to 0 or 1 other socket. Datagram sockets may be 42 * connected to 0, 1, or many other sockets. Sockets may be created and 43 * connected in pairs (socketpair(2)), or bound/connected to using the file 44 * system name space. For most purposes, only the receive socket buffer is 45 * used, as sending on one socket delivers directly to the receive socket 46 * buffer of a second socket. 47 * 48 * The implementation is substantially complicated by the fact that 49 * "ancillary data", such as file descriptors or credentials, may be passed 50 * across UNIX domain sockets. The potential for passing UNIX domain sockets 51 * over other UNIX domain sockets requires the implementation of a simple 52 * garbage collector to find and tear down cycles of disconnected sockets. 53 * 54 * TODO: 55 * RDM 56 * rethink name space problems 57 * need a proper out-of-band 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_ddb.h" 64 65 #include <sys/param.h> 66 #include <sys/capsicum.h> 67 #include <sys/domain.h> 68 #include <sys/eventhandler.h> 69 #include <sys/fcntl.h> 70 #include <sys/file.h> 71 #include <sys/filedesc.h> 72 #include <sys/kernel.h> 73 #include <sys/lock.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/mount.h> 77 #include <sys/mutex.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/signalvar.h> 87 #include <sys/stat.h> 88 #include <sys/sx.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 #include <sys/taskqueue.h> 92 #include <sys/un.h> 93 #include <sys/unpcb.h> 94 #include <sys/vnode.h> 95 96 #include <net/vnet.h> 97 98 #ifdef DDB 99 #include <ddb/ddb.h> 100 #endif 101 102 #include <security/mac/mac_framework.h> 103 104 #include <vm/uma.h> 105 106 MALLOC_DECLARE(M_FILECAPS); 107 108 /* 109 * See unpcb.h for the locking key. 110 */ 111 112 static uma_zone_t unp_zone; 113 static unp_gen_t unp_gencnt; /* (l) */ 114 static u_int unp_count; /* (l) Count of local sockets. */ 115 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 116 static int unp_rights; /* (g) File descriptors in flight. */ 117 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 118 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 119 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 120 121 struct unp_defer { 122 SLIST_ENTRY(unp_defer) ud_link; 123 struct file *ud_fp; 124 }; 125 static SLIST_HEAD(, unp_defer) unp_defers; 126 static int unp_defers_count; 127 128 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 129 130 /* 131 * Garbage collection of cyclic file descriptor/socket references occurs 132 * asynchronously in a taskqueue context in order to avoid recursion and 133 * reentrance in the UNIX domain socket, file descriptor, and socket layer 134 * code. See unp_gc() for a full description. 135 */ 136 static struct timeout_task unp_gc_task; 137 138 /* 139 * The close of unix domain sockets attached as SCM_RIGHTS is 140 * postponed to the taskqueue, to avoid arbitrary recursion depth. 141 * The attached sockets might have another sockets attached. 142 */ 143 static struct task unp_defer_task; 144 145 /* 146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 147 * stream sockets, although the total for sender and receiver is actually 148 * only PIPSIZ. 149 * 150 * Datagram sockets really use the sendspace as the maximum datagram size, 151 * and don't really want to reserve the sendspace. Their recvspace should be 152 * large enough for at least one max-size datagram plus address. 153 */ 154 #ifndef PIPSIZ 155 #define PIPSIZ 8192 156 #endif 157 static u_long unpst_sendspace = PIPSIZ; 158 static u_long unpst_recvspace = PIPSIZ; 159 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 160 static u_long unpdg_recvspace = 16*1024; /* support 8KB syslog msgs */ 161 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 162 static u_long unpsp_recvspace = PIPSIZ; 163 164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 165 "Local domain"); 166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, 167 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 168 "SOCK_STREAM"); 169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, 170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 171 "SOCK_DGRAM"); 172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, 173 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 174 "SOCK_SEQPACKET"); 175 176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 177 &unpst_sendspace, 0, "Default stream send space."); 178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 179 &unpst_recvspace, 0, "Default stream receive space."); 180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 181 &unpdg_sendspace, 0, "Default datagram send space."); 182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 183 &unpdg_recvspace, 0, "Default datagram receive space."); 184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 185 &unpsp_sendspace, 0, "Default seqpacket send space."); 186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 187 &unpsp_recvspace, 0, "Default seqpacket receive space."); 188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 189 "File descriptors in flight."); 190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 191 &unp_defers_count, 0, 192 "File descriptors deferred to taskqueue for close."); 193 194 /* 195 * Locking and synchronization: 196 * 197 * Several types of locks exist in the local domain socket implementation: 198 * - a global linkage lock 199 * - a global connection list lock 200 * - the mtxpool lock 201 * - per-unpcb mutexes 202 * 203 * The linkage lock protects the global socket lists, the generation number 204 * counter and garbage collector state. 205 * 206 * The connection list lock protects the list of referring sockets in a datagram 207 * socket PCB. This lock is also overloaded to protect a global list of 208 * sockets whose buffers contain socket references in the form of SCM_RIGHTS 209 * messages. To avoid recursion, such references are released by a dedicated 210 * thread. 211 * 212 * The mtxpool lock protects the vnode from being modified while referenced. 213 * Lock ordering rules require that it be acquired before any PCB locks. 214 * 215 * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the 216 * unpcb. This includes the unp_conn field, which either links two connected 217 * PCBs together (for connected socket types) or points at the destination 218 * socket (for connectionless socket types). The operations of creating or 219 * destroying a connection therefore involve locking multiple PCBs. To avoid 220 * lock order reversals, in some cases this involves dropping a PCB lock and 221 * using a reference counter to maintain liveness. 222 * 223 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 224 * allocated in pru_attach() and freed in pru_detach(). The validity of that 225 * pointer is an invariant, so no lock is required to dereference the so_pcb 226 * pointer if a valid socket reference is held by the caller. In practice, 227 * this is always true during operations performed on a socket. Each unpcb 228 * has a back-pointer to its socket, unp_socket, which will be stable under 229 * the same circumstances. 230 * 231 * This pointer may only be safely dereferenced as long as a valid reference 232 * to the unpcb is held. Typically, this reference will be from the socket, 233 * or from another unpcb when the referring unpcb's lock is held (in order 234 * that the reference not be invalidated during use). For example, to follow 235 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee 236 * that detach is not run clearing unp_socket. 237 * 238 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 239 * protocols, bind() is a non-atomic operation, and connect() requires 240 * potential sleeping in the protocol, due to potentially waiting on local or 241 * distributed file systems. We try to separate "lookup" operations, which 242 * may sleep, and the IPC operations themselves, which typically can occur 243 * with relative atomicity as locks can be held over the entire operation. 244 * 245 * Another tricky issue is simultaneous multi-threaded or multi-process 246 * access to a single UNIX domain socket. These are handled by the flags 247 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 248 * binding, both of which involve dropping UNIX domain socket locks in order 249 * to perform namei() and other file system operations. 250 */ 251 static struct rwlock unp_link_rwlock; 252 static struct mtx unp_defers_lock; 253 254 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 255 "unp_link_rwlock") 256 257 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 258 RA_LOCKED) 259 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 260 RA_UNLOCKED) 261 262 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 263 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 264 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 265 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 266 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 267 RA_WLOCKED) 268 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 269 270 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 271 "unp_defer", NULL, MTX_DEF) 272 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 273 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 274 275 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); 276 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); 277 278 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 279 "unp", "unp", \ 280 MTX_DUPOK|MTX_DEF) 281 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 282 #define UNP_PCB_LOCKPTR(unp) (&(unp)->unp_mtx) 283 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 284 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) 285 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 286 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) 287 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 288 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) 289 290 static int uipc_connect2(struct socket *, struct socket *); 291 static int uipc_ctloutput(struct socket *, struct sockopt *); 292 static int unp_connect(struct socket *, struct sockaddr *, 293 struct thread *); 294 static int unp_connectat(int, struct socket *, struct sockaddr *, 295 struct thread *); 296 static int unp_connect2(struct socket *so, struct socket *so2, int); 297 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 298 static void unp_dispose(struct socket *so); 299 static void unp_dispose_mbuf(struct mbuf *); 300 static void unp_shutdown(struct unpcb *); 301 static void unp_drop(struct unpcb *); 302 static void unp_gc(__unused void *, int); 303 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 304 static void unp_discard(struct file *); 305 static void unp_freerights(struct filedescent **, int); 306 static int unp_internalize(struct mbuf **, struct thread *); 307 static void unp_internalize_fp(struct file *); 308 static int unp_externalize(struct mbuf *, struct mbuf **, int); 309 static int unp_externalize_fp(struct file *); 310 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *, int); 311 static void unp_process_defers(void * __unused, int); 312 313 static void 314 unp_pcb_hold(struct unpcb *unp) 315 { 316 u_int old __unused; 317 318 old = refcount_acquire(&unp->unp_refcount); 319 KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp)); 320 } 321 322 static __result_use_check bool 323 unp_pcb_rele(struct unpcb *unp) 324 { 325 bool ret; 326 327 UNP_PCB_LOCK_ASSERT(unp); 328 329 if ((ret = refcount_release(&unp->unp_refcount))) { 330 UNP_PCB_UNLOCK(unp); 331 UNP_PCB_LOCK_DESTROY(unp); 332 uma_zfree(unp_zone, unp); 333 } 334 return (ret); 335 } 336 337 static void 338 unp_pcb_rele_notlast(struct unpcb *unp) 339 { 340 bool ret __unused; 341 342 ret = refcount_release(&unp->unp_refcount); 343 KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp)); 344 } 345 346 static void 347 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2) 348 { 349 UNP_PCB_UNLOCK_ASSERT(unp); 350 UNP_PCB_UNLOCK_ASSERT(unp2); 351 352 if (unp == unp2) { 353 UNP_PCB_LOCK(unp); 354 } else if ((uintptr_t)unp2 > (uintptr_t)unp) { 355 UNP_PCB_LOCK(unp); 356 UNP_PCB_LOCK(unp2); 357 } else { 358 UNP_PCB_LOCK(unp2); 359 UNP_PCB_LOCK(unp); 360 } 361 } 362 363 static void 364 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2) 365 { 366 UNP_PCB_UNLOCK(unp); 367 if (unp != unp2) 368 UNP_PCB_UNLOCK(unp2); 369 } 370 371 /* 372 * Try to lock the connected peer of an already locked socket. In some cases 373 * this requires that we unlock the current socket. The pairbusy counter is 374 * used to block concurrent connection attempts while the lock is dropped. The 375 * caller must be careful to revalidate PCB state. 376 */ 377 static struct unpcb * 378 unp_pcb_lock_peer(struct unpcb *unp) 379 { 380 struct unpcb *unp2; 381 382 UNP_PCB_LOCK_ASSERT(unp); 383 unp2 = unp->unp_conn; 384 if (unp2 == NULL) 385 return (NULL); 386 if (__predict_false(unp == unp2)) 387 return (unp); 388 389 UNP_PCB_UNLOCK_ASSERT(unp2); 390 391 if (__predict_true(UNP_PCB_TRYLOCK(unp2))) 392 return (unp2); 393 if ((uintptr_t)unp2 > (uintptr_t)unp) { 394 UNP_PCB_LOCK(unp2); 395 return (unp2); 396 } 397 unp->unp_pairbusy++; 398 unp_pcb_hold(unp2); 399 UNP_PCB_UNLOCK(unp); 400 401 UNP_PCB_LOCK(unp2); 402 UNP_PCB_LOCK(unp); 403 KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL, 404 ("%s: socket %p was reconnected", __func__, unp)); 405 if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) { 406 unp->unp_flags &= ~UNP_WAITING; 407 wakeup(unp); 408 } 409 if (unp_pcb_rele(unp2)) { 410 /* unp2 is unlocked. */ 411 return (NULL); 412 } 413 if (unp->unp_conn == NULL) { 414 UNP_PCB_UNLOCK(unp2); 415 return (NULL); 416 } 417 return (unp2); 418 } 419 420 /* 421 * Definitions of protocols supported in the LOCAL domain. 422 */ 423 static struct domain localdomain; 424 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 425 static struct pr_usrreqs uipc_usrreqs_seqpacket; 426 static struct protosw localsw[] = { 427 { 428 .pr_type = SOCK_STREAM, 429 .pr_domain = &localdomain, 430 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS| 431 PR_CAPATTACH, 432 .pr_ctloutput = &uipc_ctloutput, 433 .pr_usrreqs = &uipc_usrreqs_stream 434 }, 435 { 436 .pr_type = SOCK_DGRAM, 437 .pr_domain = &localdomain, 438 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS|PR_CAPATTACH, 439 .pr_ctloutput = &uipc_ctloutput, 440 .pr_usrreqs = &uipc_usrreqs_dgram 441 }, 442 { 443 .pr_type = SOCK_SEQPACKET, 444 .pr_domain = &localdomain, 445 446 /* 447 * XXXRW: For now, PR_ADDR because soreceive will bump into them 448 * due to our use of sbappendaddr. A new sbappend variants is needed 449 * that supports both atomic record writes and control data. 450 */ 451 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED| 452 PR_WANTRCVD|PR_RIGHTS|PR_CAPATTACH, 453 .pr_ctloutput = &uipc_ctloutput, 454 .pr_usrreqs = &uipc_usrreqs_seqpacket, 455 }, 456 }; 457 458 static struct domain localdomain = { 459 .dom_family = AF_LOCAL, 460 .dom_name = "local", 461 .dom_externalize = unp_externalize, 462 .dom_dispose = unp_dispose, 463 .dom_protosw = localsw, 464 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 465 }; 466 DOMAIN_SET(local); 467 468 static void 469 uipc_abort(struct socket *so) 470 { 471 struct unpcb *unp, *unp2; 472 473 unp = sotounpcb(so); 474 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 475 UNP_PCB_UNLOCK_ASSERT(unp); 476 477 UNP_PCB_LOCK(unp); 478 unp2 = unp->unp_conn; 479 if (unp2 != NULL) { 480 unp_pcb_hold(unp2); 481 UNP_PCB_UNLOCK(unp); 482 unp_drop(unp2); 483 } else 484 UNP_PCB_UNLOCK(unp); 485 } 486 487 static int 488 uipc_accept(struct socket *so, struct sockaddr **nam) 489 { 490 struct unpcb *unp, *unp2; 491 const struct sockaddr *sa; 492 493 /* 494 * Pass back name of connected socket, if it was bound and we are 495 * still connected (our peer may have closed already!). 496 */ 497 unp = sotounpcb(so); 498 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 499 500 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 501 UNP_PCB_LOCK(unp); 502 unp2 = unp_pcb_lock_peer(unp); 503 if (unp2 != NULL && unp2->unp_addr != NULL) 504 sa = (struct sockaddr *)unp2->unp_addr; 505 else 506 sa = &sun_noname; 507 bcopy(sa, *nam, sa->sa_len); 508 if (unp2 != NULL) 509 unp_pcb_unlock_pair(unp, unp2); 510 else 511 UNP_PCB_UNLOCK(unp); 512 return (0); 513 } 514 515 static int 516 uipc_attach(struct socket *so, int proto, struct thread *td) 517 { 518 u_long sendspace, recvspace; 519 struct unpcb *unp; 520 int error; 521 bool locked; 522 523 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 524 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 525 switch (so->so_type) { 526 case SOCK_STREAM: 527 sendspace = unpst_sendspace; 528 recvspace = unpst_recvspace; 529 break; 530 531 case SOCK_DGRAM: 532 sendspace = unpdg_sendspace; 533 recvspace = unpdg_recvspace; 534 break; 535 536 case SOCK_SEQPACKET: 537 sendspace = unpsp_sendspace; 538 recvspace = unpsp_recvspace; 539 break; 540 541 default: 542 panic("uipc_attach"); 543 } 544 error = soreserve(so, sendspace, recvspace); 545 if (error) 546 return (error); 547 } 548 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 549 if (unp == NULL) 550 return (ENOBUFS); 551 LIST_INIT(&unp->unp_refs); 552 UNP_PCB_LOCK_INIT(unp); 553 unp->unp_socket = so; 554 so->so_pcb = unp; 555 refcount_init(&unp->unp_refcount, 1); 556 557 if ((locked = UNP_LINK_WOWNED()) == false) 558 UNP_LINK_WLOCK(); 559 560 unp->unp_gencnt = ++unp_gencnt; 561 unp->unp_ino = ++unp_ino; 562 unp_count++; 563 switch (so->so_type) { 564 case SOCK_STREAM: 565 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 566 break; 567 568 case SOCK_DGRAM: 569 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 570 break; 571 572 case SOCK_SEQPACKET: 573 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 574 break; 575 576 default: 577 panic("uipc_attach"); 578 } 579 580 if (locked == false) 581 UNP_LINK_WUNLOCK(); 582 583 return (0); 584 } 585 586 static int 587 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 588 { 589 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 590 struct vattr vattr; 591 int error, namelen; 592 struct nameidata nd; 593 struct unpcb *unp; 594 struct vnode *vp; 595 struct mount *mp; 596 cap_rights_t rights; 597 char *buf; 598 599 if (nam->sa_family != AF_UNIX) 600 return (EAFNOSUPPORT); 601 602 unp = sotounpcb(so); 603 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 604 605 if (soun->sun_len > sizeof(struct sockaddr_un)) 606 return (EINVAL); 607 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 608 if (namelen <= 0) 609 return (EINVAL); 610 611 /* 612 * We don't allow simultaneous bind() calls on a single UNIX domain 613 * socket, so flag in-progress operations, and return an error if an 614 * operation is already in progress. 615 * 616 * Historically, we have not allowed a socket to be rebound, so this 617 * also returns an error. Not allowing re-binding simplifies the 618 * implementation and avoids a great many possible failure modes. 619 */ 620 UNP_PCB_LOCK(unp); 621 if (unp->unp_vnode != NULL) { 622 UNP_PCB_UNLOCK(unp); 623 return (EINVAL); 624 } 625 if (unp->unp_flags & UNP_BINDING) { 626 UNP_PCB_UNLOCK(unp); 627 return (EALREADY); 628 } 629 unp->unp_flags |= UNP_BINDING; 630 UNP_PCB_UNLOCK(unp); 631 632 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 633 bcopy(soun->sun_path, buf, namelen); 634 buf[namelen] = 0; 635 636 restart: 637 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 638 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT)); 639 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 640 error = namei(&nd); 641 if (error) 642 goto error; 643 vp = nd.ni_vp; 644 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 645 NDFREE(&nd, NDF_ONLY_PNBUF); 646 if (nd.ni_dvp == vp) 647 vrele(nd.ni_dvp); 648 else 649 vput(nd.ni_dvp); 650 if (vp != NULL) { 651 vrele(vp); 652 error = EADDRINUSE; 653 goto error; 654 } 655 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 656 if (error) 657 goto error; 658 goto restart; 659 } 660 VATTR_NULL(&vattr); 661 vattr.va_type = VSOCK; 662 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask); 663 #ifdef MAC 664 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 665 &vattr); 666 #endif 667 if (error == 0) 668 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 669 NDFREE(&nd, NDF_ONLY_PNBUF); 670 if (error) { 671 VOP_VPUT_PAIR(nd.ni_dvp, NULL, true); 672 vn_finished_write(mp); 673 if (error == ERELOOKUP) 674 goto restart; 675 goto error; 676 } 677 vp = nd.ni_vp; 678 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 679 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 680 681 UNP_PCB_LOCK(unp); 682 VOP_UNP_BIND(vp, unp); 683 unp->unp_vnode = vp; 684 unp->unp_addr = soun; 685 unp->unp_flags &= ~UNP_BINDING; 686 UNP_PCB_UNLOCK(unp); 687 vref(vp); 688 VOP_VPUT_PAIR(nd.ni_dvp, &vp, true); 689 vn_finished_write(mp); 690 free(buf, M_TEMP); 691 return (0); 692 693 error: 694 UNP_PCB_LOCK(unp); 695 unp->unp_flags &= ~UNP_BINDING; 696 UNP_PCB_UNLOCK(unp); 697 free(buf, M_TEMP); 698 return (error); 699 } 700 701 static int 702 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 703 { 704 705 return (uipc_bindat(AT_FDCWD, so, nam, td)); 706 } 707 708 static int 709 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 710 { 711 int error; 712 713 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 714 error = unp_connect(so, nam, td); 715 return (error); 716 } 717 718 static int 719 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 720 struct thread *td) 721 { 722 int error; 723 724 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 725 error = unp_connectat(fd, so, nam, td); 726 return (error); 727 } 728 729 static void 730 uipc_close(struct socket *so) 731 { 732 struct unpcb *unp, *unp2; 733 struct vnode *vp = NULL; 734 struct mtx *vplock; 735 736 unp = sotounpcb(so); 737 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 738 739 vplock = NULL; 740 if ((vp = unp->unp_vnode) != NULL) { 741 vplock = mtx_pool_find(mtxpool_sleep, vp); 742 mtx_lock(vplock); 743 } 744 UNP_PCB_LOCK(unp); 745 if (vp && unp->unp_vnode == NULL) { 746 mtx_unlock(vplock); 747 vp = NULL; 748 } 749 if (vp != NULL) { 750 VOP_UNP_DETACH(vp); 751 unp->unp_vnode = NULL; 752 } 753 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 754 unp_disconnect(unp, unp2); 755 else 756 UNP_PCB_UNLOCK(unp); 757 if (vp) { 758 mtx_unlock(vplock); 759 vrele(vp); 760 } 761 } 762 763 static int 764 uipc_connect2(struct socket *so1, struct socket *so2) 765 { 766 struct unpcb *unp, *unp2; 767 int error; 768 769 unp = so1->so_pcb; 770 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 771 unp2 = so2->so_pcb; 772 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 773 unp_pcb_lock_pair(unp, unp2); 774 error = unp_connect2(so1, so2, PRU_CONNECT2); 775 unp_pcb_unlock_pair(unp, unp2); 776 return (error); 777 } 778 779 static void 780 uipc_detach(struct socket *so) 781 { 782 struct unpcb *unp, *unp2; 783 struct mtx *vplock; 784 struct vnode *vp; 785 int local_unp_rights; 786 787 unp = sotounpcb(so); 788 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 789 790 vp = NULL; 791 vplock = NULL; 792 793 SOCK_LOCK(so); 794 if (!SOLISTENING(so)) { 795 /* 796 * Once the socket is removed from the global lists, 797 * uipc_ready() will not be able to locate its socket buffer, so 798 * clear the buffer now. At this point internalized rights have 799 * already been disposed of. 800 */ 801 sbrelease(&so->so_rcv, so); 802 } 803 SOCK_UNLOCK(so); 804 805 UNP_LINK_WLOCK(); 806 LIST_REMOVE(unp, unp_link); 807 if (unp->unp_gcflag & UNPGC_DEAD) 808 LIST_REMOVE(unp, unp_dead); 809 unp->unp_gencnt = ++unp_gencnt; 810 --unp_count; 811 UNP_LINK_WUNLOCK(); 812 813 UNP_PCB_UNLOCK_ASSERT(unp); 814 restart: 815 if ((vp = unp->unp_vnode) != NULL) { 816 vplock = mtx_pool_find(mtxpool_sleep, vp); 817 mtx_lock(vplock); 818 } 819 UNP_PCB_LOCK(unp); 820 if (unp->unp_vnode != vp && unp->unp_vnode != NULL) { 821 if (vplock) 822 mtx_unlock(vplock); 823 UNP_PCB_UNLOCK(unp); 824 goto restart; 825 } 826 if ((vp = unp->unp_vnode) != NULL) { 827 VOP_UNP_DETACH(vp); 828 unp->unp_vnode = NULL; 829 } 830 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 831 unp_disconnect(unp, unp2); 832 else 833 UNP_PCB_UNLOCK(unp); 834 835 UNP_REF_LIST_LOCK(); 836 while (!LIST_EMPTY(&unp->unp_refs)) { 837 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 838 839 unp_pcb_hold(ref); 840 UNP_REF_LIST_UNLOCK(); 841 842 MPASS(ref != unp); 843 UNP_PCB_UNLOCK_ASSERT(ref); 844 unp_drop(ref); 845 UNP_REF_LIST_LOCK(); 846 } 847 UNP_REF_LIST_UNLOCK(); 848 849 UNP_PCB_LOCK(unp); 850 local_unp_rights = unp_rights; 851 unp->unp_socket->so_pcb = NULL; 852 unp->unp_socket = NULL; 853 free(unp->unp_addr, M_SONAME); 854 unp->unp_addr = NULL; 855 if (!unp_pcb_rele(unp)) 856 UNP_PCB_UNLOCK(unp); 857 if (vp) { 858 mtx_unlock(vplock); 859 vrele(vp); 860 } 861 if (local_unp_rights) 862 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 863 } 864 865 static int 866 uipc_disconnect(struct socket *so) 867 { 868 struct unpcb *unp, *unp2; 869 870 unp = sotounpcb(so); 871 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 872 873 UNP_PCB_LOCK(unp); 874 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 875 unp_disconnect(unp, unp2); 876 else 877 UNP_PCB_UNLOCK(unp); 878 return (0); 879 } 880 881 static int 882 uipc_listen(struct socket *so, int backlog, struct thread *td) 883 { 884 struct unpcb *unp; 885 int error; 886 887 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 888 return (EOPNOTSUPP); 889 890 /* 891 * Synchronize with concurrent connection attempts. 892 */ 893 error = 0; 894 unp = sotounpcb(so); 895 UNP_PCB_LOCK(unp); 896 if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0) 897 error = EINVAL; 898 else if (unp->unp_vnode == NULL) 899 error = EDESTADDRREQ; 900 if (error != 0) { 901 UNP_PCB_UNLOCK(unp); 902 return (error); 903 } 904 905 SOCK_LOCK(so); 906 error = solisten_proto_check(so); 907 if (error == 0) { 908 cru2xt(td, &unp->unp_peercred); 909 solisten_proto(so, backlog); 910 } 911 SOCK_UNLOCK(so); 912 UNP_PCB_UNLOCK(unp); 913 return (error); 914 } 915 916 static int 917 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 918 { 919 struct unpcb *unp, *unp2; 920 const struct sockaddr *sa; 921 922 unp = sotounpcb(so); 923 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 924 925 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 926 UNP_LINK_RLOCK(); 927 /* 928 * XXX: It seems that this test always fails even when connection is 929 * established. So, this else clause is added as workaround to 930 * return PF_LOCAL sockaddr. 931 */ 932 unp2 = unp->unp_conn; 933 if (unp2 != NULL) { 934 UNP_PCB_LOCK(unp2); 935 if (unp2->unp_addr != NULL) 936 sa = (struct sockaddr *) unp2->unp_addr; 937 else 938 sa = &sun_noname; 939 bcopy(sa, *nam, sa->sa_len); 940 UNP_PCB_UNLOCK(unp2); 941 } else { 942 sa = &sun_noname; 943 bcopy(sa, *nam, sa->sa_len); 944 } 945 UNP_LINK_RUNLOCK(); 946 return (0); 947 } 948 949 static int 950 uipc_rcvd(struct socket *so, int flags) 951 { 952 struct unpcb *unp, *unp2; 953 struct socket *so2; 954 u_int mbcnt, sbcc; 955 956 unp = sotounpcb(so); 957 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 958 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 959 ("%s: socktype %d", __func__, so->so_type)); 960 961 /* 962 * Adjust backpressure on sender and wakeup any waiting to write. 963 * 964 * The unp lock is acquired to maintain the validity of the unp_conn 965 * pointer; no lock on unp2 is required as unp2->unp_socket will be 966 * static as long as we don't permit unp2 to disconnect from unp, 967 * which is prevented by the lock on unp. We cache values from 968 * so_rcv to avoid holding the so_rcv lock over the entire 969 * transaction on the remote so_snd. 970 */ 971 SOCKBUF_LOCK(&so->so_rcv); 972 mbcnt = so->so_rcv.sb_mbcnt; 973 sbcc = sbavail(&so->so_rcv); 974 SOCKBUF_UNLOCK(&so->so_rcv); 975 /* 976 * There is a benign race condition at this point. If we're planning to 977 * clear SB_STOP, but uipc_send is called on the connected socket at 978 * this instant, it might add data to the sockbuf and set SB_STOP. Then 979 * we would erroneously clear SB_STOP below, even though the sockbuf is 980 * full. The race is benign because the only ill effect is to allow the 981 * sockbuf to exceed its size limit, and the size limits are not 982 * strictly guaranteed anyway. 983 */ 984 UNP_PCB_LOCK(unp); 985 unp2 = unp->unp_conn; 986 if (unp2 == NULL) { 987 UNP_PCB_UNLOCK(unp); 988 return (0); 989 } 990 so2 = unp2->unp_socket; 991 SOCKBUF_LOCK(&so2->so_snd); 992 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 993 so2->so_snd.sb_flags &= ~SB_STOP; 994 sowwakeup_locked(so2); 995 UNP_PCB_UNLOCK(unp); 996 return (0); 997 } 998 999 static int 1000 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 1001 struct mbuf *control, struct thread *td) 1002 { 1003 struct unpcb *unp, *unp2; 1004 struct socket *so2; 1005 u_int mbcnt, sbcc; 1006 int error; 1007 1008 unp = sotounpcb(so); 1009 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 1010 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 1011 so->so_type == SOCK_SEQPACKET, 1012 ("%s: socktype %d", __func__, so->so_type)); 1013 1014 error = 0; 1015 if (flags & PRUS_OOB) { 1016 error = EOPNOTSUPP; 1017 goto release; 1018 } 1019 if (control != NULL && (error = unp_internalize(&control, td))) 1020 goto release; 1021 1022 unp2 = NULL; 1023 switch (so->so_type) { 1024 case SOCK_DGRAM: 1025 { 1026 const struct sockaddr *from; 1027 1028 if (nam != NULL) { 1029 error = unp_connect(so, nam, td); 1030 if (error != 0) 1031 break; 1032 } 1033 UNP_PCB_LOCK(unp); 1034 1035 /* 1036 * Because connect() and send() are non-atomic in a sendto() 1037 * with a target address, it's possible that the socket will 1038 * have disconnected before the send() can run. In that case 1039 * return the slightly counter-intuitive but otherwise 1040 * correct error that the socket is not connected. 1041 */ 1042 unp2 = unp_pcb_lock_peer(unp); 1043 if (unp2 == NULL) { 1044 UNP_PCB_UNLOCK(unp); 1045 error = ENOTCONN; 1046 break; 1047 } 1048 1049 if (unp2->unp_flags & UNP_WANTCRED_MASK) 1050 control = unp_addsockcred(td, control, 1051 unp2->unp_flags); 1052 if (unp->unp_addr != NULL) 1053 from = (struct sockaddr *)unp->unp_addr; 1054 else 1055 from = &sun_noname; 1056 so2 = unp2->unp_socket; 1057 SOCKBUF_LOCK(&so2->so_rcv); 1058 if (sbappendaddr_locked(&so2->so_rcv, from, m, 1059 control)) { 1060 sorwakeup_locked(so2); 1061 m = NULL; 1062 control = NULL; 1063 } else { 1064 soroverflow_locked(so2); 1065 error = ENOBUFS; 1066 } 1067 if (nam != NULL) 1068 unp_disconnect(unp, unp2); 1069 else 1070 unp_pcb_unlock_pair(unp, unp2); 1071 break; 1072 } 1073 1074 case SOCK_SEQPACKET: 1075 case SOCK_STREAM: 1076 if ((so->so_state & SS_ISCONNECTED) == 0) { 1077 if (nam != NULL) { 1078 error = unp_connect(so, nam, td); 1079 if (error != 0) 1080 break; 1081 } else { 1082 error = ENOTCONN; 1083 break; 1084 } 1085 } 1086 1087 UNP_PCB_LOCK(unp); 1088 if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) { 1089 UNP_PCB_UNLOCK(unp); 1090 error = ENOTCONN; 1091 break; 1092 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1093 unp_pcb_unlock_pair(unp, unp2); 1094 error = EPIPE; 1095 break; 1096 } 1097 UNP_PCB_UNLOCK(unp); 1098 if ((so2 = unp2->unp_socket) == NULL) { 1099 UNP_PCB_UNLOCK(unp2); 1100 error = ENOTCONN; 1101 break; 1102 } 1103 SOCKBUF_LOCK(&so2->so_rcv); 1104 if (unp2->unp_flags & UNP_WANTCRED_MASK) { 1105 /* 1106 * Credentials are passed only once on SOCK_STREAM and 1107 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or 1108 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS). 1109 */ 1110 control = unp_addsockcred(td, control, unp2->unp_flags); 1111 unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT; 1112 } 1113 1114 /* 1115 * Send to paired receive port and wake up readers. Don't 1116 * check for space available in the receive buffer if we're 1117 * attaching ancillary data; Unix domain sockets only check 1118 * for space in the sending sockbuf, and that check is 1119 * performed one level up the stack. At that level we cannot 1120 * precisely account for the amount of buffer space used 1121 * (e.g., because control messages are not yet internalized). 1122 */ 1123 switch (so->so_type) { 1124 case SOCK_STREAM: 1125 if (control != NULL) { 1126 sbappendcontrol_locked(&so2->so_rcv, m, 1127 control, flags); 1128 control = NULL; 1129 } else 1130 sbappend_locked(&so2->so_rcv, m, flags); 1131 break; 1132 1133 case SOCK_SEQPACKET: 1134 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1135 &sun_noname, m, control)) 1136 control = NULL; 1137 break; 1138 } 1139 1140 mbcnt = so2->so_rcv.sb_mbcnt; 1141 sbcc = sbavail(&so2->so_rcv); 1142 if (sbcc) 1143 sorwakeup_locked(so2); 1144 else 1145 SOCKBUF_UNLOCK(&so2->so_rcv); 1146 1147 /* 1148 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1149 * it would be possible for uipc_rcvd to be called at this 1150 * point, drain the receiving sockbuf, clear SB_STOP, and then 1151 * we would set SB_STOP below. That could lead to an empty 1152 * sockbuf having SB_STOP set 1153 */ 1154 SOCKBUF_LOCK(&so->so_snd); 1155 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1156 so->so_snd.sb_flags |= SB_STOP; 1157 SOCKBUF_UNLOCK(&so->so_snd); 1158 UNP_PCB_UNLOCK(unp2); 1159 m = NULL; 1160 break; 1161 } 1162 1163 /* 1164 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1165 */ 1166 if (flags & PRUS_EOF) { 1167 UNP_PCB_LOCK(unp); 1168 socantsendmore(so); 1169 unp_shutdown(unp); 1170 UNP_PCB_UNLOCK(unp); 1171 } 1172 if (control != NULL && error != 0) 1173 unp_dispose_mbuf(control); 1174 1175 release: 1176 if (control != NULL) 1177 m_freem(control); 1178 /* 1179 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1180 * for freeing memory. 1181 */ 1182 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1183 m_freem(m); 1184 return (error); 1185 } 1186 1187 static bool 1188 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp) 1189 { 1190 struct mbuf *mb, *n; 1191 struct sockbuf *sb; 1192 1193 SOCK_LOCK(so); 1194 if (SOLISTENING(so)) { 1195 SOCK_UNLOCK(so); 1196 return (false); 1197 } 1198 mb = NULL; 1199 sb = &so->so_rcv; 1200 SOCKBUF_LOCK(sb); 1201 if (sb->sb_fnrdy != NULL) { 1202 for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) { 1203 if (mb == m) { 1204 *errorp = sbready(sb, m, count); 1205 break; 1206 } 1207 mb = mb->m_next; 1208 if (mb == NULL) { 1209 mb = n; 1210 if (mb != NULL) 1211 n = mb->m_nextpkt; 1212 } 1213 } 1214 } 1215 SOCKBUF_UNLOCK(sb); 1216 SOCK_UNLOCK(so); 1217 return (mb != NULL); 1218 } 1219 1220 static int 1221 uipc_ready(struct socket *so, struct mbuf *m, int count) 1222 { 1223 struct unpcb *unp, *unp2; 1224 struct socket *so2; 1225 int error, i; 1226 1227 unp = sotounpcb(so); 1228 1229 KASSERT(so->so_type == SOCK_STREAM, 1230 ("%s: unexpected socket type for %p", __func__, so)); 1231 1232 UNP_PCB_LOCK(unp); 1233 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1234 UNP_PCB_UNLOCK(unp); 1235 so2 = unp2->unp_socket; 1236 SOCKBUF_LOCK(&so2->so_rcv); 1237 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1238 sorwakeup_locked(so2); 1239 else 1240 SOCKBUF_UNLOCK(&so2->so_rcv); 1241 UNP_PCB_UNLOCK(unp2); 1242 return (error); 1243 } 1244 UNP_PCB_UNLOCK(unp); 1245 1246 /* 1247 * The receiving socket has been disconnected, but may still be valid. 1248 * In this case, the now-ready mbufs are still present in its socket 1249 * buffer, so perform an exhaustive search before giving up and freeing 1250 * the mbufs. 1251 */ 1252 UNP_LINK_RLOCK(); 1253 LIST_FOREACH(unp, &unp_shead, unp_link) { 1254 if (uipc_ready_scan(unp->unp_socket, m, count, &error)) 1255 break; 1256 } 1257 UNP_LINK_RUNLOCK(); 1258 1259 if (unp == NULL) { 1260 for (i = 0; i < count; i++) 1261 m = m_free(m); 1262 error = ECONNRESET; 1263 } 1264 return (error); 1265 } 1266 1267 static int 1268 uipc_sense(struct socket *so, struct stat *sb) 1269 { 1270 struct unpcb *unp; 1271 1272 unp = sotounpcb(so); 1273 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1274 1275 sb->st_blksize = so->so_snd.sb_hiwat; 1276 sb->st_dev = NODEV; 1277 sb->st_ino = unp->unp_ino; 1278 return (0); 1279 } 1280 1281 static int 1282 uipc_shutdown(struct socket *so) 1283 { 1284 struct unpcb *unp; 1285 1286 unp = sotounpcb(so); 1287 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1288 1289 UNP_PCB_LOCK(unp); 1290 socantsendmore(so); 1291 unp_shutdown(unp); 1292 UNP_PCB_UNLOCK(unp); 1293 return (0); 1294 } 1295 1296 static int 1297 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1298 { 1299 struct unpcb *unp; 1300 const struct sockaddr *sa; 1301 1302 unp = sotounpcb(so); 1303 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1304 1305 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1306 UNP_PCB_LOCK(unp); 1307 if (unp->unp_addr != NULL) 1308 sa = (struct sockaddr *) unp->unp_addr; 1309 else 1310 sa = &sun_noname; 1311 bcopy(sa, *nam, sa->sa_len); 1312 UNP_PCB_UNLOCK(unp); 1313 return (0); 1314 } 1315 1316 static struct pr_usrreqs uipc_usrreqs_dgram = { 1317 .pru_abort = uipc_abort, 1318 .pru_accept = uipc_accept, 1319 .pru_attach = uipc_attach, 1320 .pru_bind = uipc_bind, 1321 .pru_bindat = uipc_bindat, 1322 .pru_connect = uipc_connect, 1323 .pru_connectat = uipc_connectat, 1324 .pru_connect2 = uipc_connect2, 1325 .pru_detach = uipc_detach, 1326 .pru_disconnect = uipc_disconnect, 1327 .pru_listen = uipc_listen, 1328 .pru_peeraddr = uipc_peeraddr, 1329 .pru_rcvd = uipc_rcvd, 1330 .pru_send = uipc_send, 1331 .pru_sense = uipc_sense, 1332 .pru_shutdown = uipc_shutdown, 1333 .pru_sockaddr = uipc_sockaddr, 1334 .pru_soreceive = soreceive_dgram, 1335 .pru_close = uipc_close, 1336 }; 1337 1338 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1339 .pru_abort = uipc_abort, 1340 .pru_accept = uipc_accept, 1341 .pru_attach = uipc_attach, 1342 .pru_bind = uipc_bind, 1343 .pru_bindat = uipc_bindat, 1344 .pru_connect = uipc_connect, 1345 .pru_connectat = uipc_connectat, 1346 .pru_connect2 = uipc_connect2, 1347 .pru_detach = uipc_detach, 1348 .pru_disconnect = uipc_disconnect, 1349 .pru_listen = uipc_listen, 1350 .pru_peeraddr = uipc_peeraddr, 1351 .pru_rcvd = uipc_rcvd, 1352 .pru_send = uipc_send, 1353 .pru_sense = uipc_sense, 1354 .pru_shutdown = uipc_shutdown, 1355 .pru_sockaddr = uipc_sockaddr, 1356 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1357 .pru_close = uipc_close, 1358 }; 1359 1360 static struct pr_usrreqs uipc_usrreqs_stream = { 1361 .pru_abort = uipc_abort, 1362 .pru_accept = uipc_accept, 1363 .pru_attach = uipc_attach, 1364 .pru_bind = uipc_bind, 1365 .pru_bindat = uipc_bindat, 1366 .pru_connect = uipc_connect, 1367 .pru_connectat = uipc_connectat, 1368 .pru_connect2 = uipc_connect2, 1369 .pru_detach = uipc_detach, 1370 .pru_disconnect = uipc_disconnect, 1371 .pru_listen = uipc_listen, 1372 .pru_peeraddr = uipc_peeraddr, 1373 .pru_rcvd = uipc_rcvd, 1374 .pru_send = uipc_send, 1375 .pru_ready = uipc_ready, 1376 .pru_sense = uipc_sense, 1377 .pru_shutdown = uipc_shutdown, 1378 .pru_sockaddr = uipc_sockaddr, 1379 .pru_soreceive = soreceive_generic, 1380 .pru_close = uipc_close, 1381 }; 1382 1383 static int 1384 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1385 { 1386 struct unpcb *unp; 1387 struct xucred xu; 1388 int error, optval; 1389 1390 if (sopt->sopt_level != SOL_LOCAL) 1391 return (EINVAL); 1392 1393 unp = sotounpcb(so); 1394 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1395 error = 0; 1396 switch (sopt->sopt_dir) { 1397 case SOPT_GET: 1398 switch (sopt->sopt_name) { 1399 case LOCAL_PEERCRED: 1400 UNP_PCB_LOCK(unp); 1401 if (unp->unp_flags & UNP_HAVEPC) 1402 xu = unp->unp_peercred; 1403 else { 1404 if (so->so_type == SOCK_STREAM) 1405 error = ENOTCONN; 1406 else 1407 error = EINVAL; 1408 } 1409 UNP_PCB_UNLOCK(unp); 1410 if (error == 0) 1411 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1412 break; 1413 1414 case LOCAL_CREDS: 1415 /* Unlocked read. */ 1416 optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0; 1417 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1418 break; 1419 1420 case LOCAL_CREDS_PERSISTENT: 1421 /* Unlocked read. */ 1422 optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0; 1423 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1424 break; 1425 1426 case LOCAL_CONNWAIT: 1427 /* Unlocked read. */ 1428 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1429 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1430 break; 1431 1432 default: 1433 error = EOPNOTSUPP; 1434 break; 1435 } 1436 break; 1437 1438 case SOPT_SET: 1439 switch (sopt->sopt_name) { 1440 case LOCAL_CREDS: 1441 case LOCAL_CREDS_PERSISTENT: 1442 case LOCAL_CONNWAIT: 1443 error = sooptcopyin(sopt, &optval, sizeof(optval), 1444 sizeof(optval)); 1445 if (error) 1446 break; 1447 1448 #define OPTSET(bit, exclusive) do { \ 1449 UNP_PCB_LOCK(unp); \ 1450 if (optval) { \ 1451 if ((unp->unp_flags & (exclusive)) != 0) { \ 1452 UNP_PCB_UNLOCK(unp); \ 1453 error = EINVAL; \ 1454 break; \ 1455 } \ 1456 unp->unp_flags |= (bit); \ 1457 } else \ 1458 unp->unp_flags &= ~(bit); \ 1459 UNP_PCB_UNLOCK(unp); \ 1460 } while (0) 1461 1462 switch (sopt->sopt_name) { 1463 case LOCAL_CREDS: 1464 OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS); 1465 break; 1466 1467 case LOCAL_CREDS_PERSISTENT: 1468 OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT); 1469 break; 1470 1471 case LOCAL_CONNWAIT: 1472 OPTSET(UNP_CONNWAIT, 0); 1473 break; 1474 1475 default: 1476 break; 1477 } 1478 break; 1479 #undef OPTSET 1480 default: 1481 error = ENOPROTOOPT; 1482 break; 1483 } 1484 break; 1485 1486 default: 1487 error = EOPNOTSUPP; 1488 break; 1489 } 1490 return (error); 1491 } 1492 1493 static int 1494 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1495 { 1496 1497 return (unp_connectat(AT_FDCWD, so, nam, td)); 1498 } 1499 1500 static int 1501 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1502 struct thread *td) 1503 { 1504 struct mtx *vplock; 1505 struct sockaddr_un *soun; 1506 struct vnode *vp; 1507 struct socket *so2; 1508 struct unpcb *unp, *unp2, *unp3; 1509 struct nameidata nd; 1510 char buf[SOCK_MAXADDRLEN]; 1511 struct sockaddr *sa; 1512 cap_rights_t rights; 1513 int error, len; 1514 bool connreq; 1515 1516 if (nam->sa_family != AF_UNIX) 1517 return (EAFNOSUPPORT); 1518 if (nam->sa_len > sizeof(struct sockaddr_un)) 1519 return (EINVAL); 1520 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1521 if (len <= 0) 1522 return (EINVAL); 1523 soun = (struct sockaddr_un *)nam; 1524 bcopy(soun->sun_path, buf, len); 1525 buf[len] = 0; 1526 1527 error = 0; 1528 unp = sotounpcb(so); 1529 UNP_PCB_LOCK(unp); 1530 for (;;) { 1531 /* 1532 * Wait for connection state to stabilize. If a connection 1533 * already exists, give up. For datagram sockets, which permit 1534 * multiple consecutive connect(2) calls, upper layers are 1535 * responsible for disconnecting in advance of a subsequent 1536 * connect(2), but this is not synchronized with PCB connection 1537 * state. 1538 * 1539 * Also make sure that no threads are currently attempting to 1540 * lock the peer socket, to ensure that unp_conn cannot 1541 * transition between two valid sockets while locks are dropped. 1542 */ 1543 if (SOLISTENING(so)) 1544 error = EOPNOTSUPP; 1545 else if (unp->unp_conn != NULL) 1546 error = EISCONN; 1547 else if ((unp->unp_flags & UNP_CONNECTING) != 0) { 1548 error = EALREADY; 1549 } 1550 if (error != 0) { 1551 UNP_PCB_UNLOCK(unp); 1552 return (error); 1553 } 1554 if (unp->unp_pairbusy > 0) { 1555 unp->unp_flags |= UNP_WAITING; 1556 mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0); 1557 continue; 1558 } 1559 break; 1560 } 1561 unp->unp_flags |= UNP_CONNECTING; 1562 UNP_PCB_UNLOCK(unp); 1563 1564 connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0; 1565 if (connreq) 1566 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1567 else 1568 sa = NULL; 1569 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1570 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT)); 1571 error = namei(&nd); 1572 if (error) 1573 vp = NULL; 1574 else 1575 vp = nd.ni_vp; 1576 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1577 NDFREE_NOTHING(&nd); 1578 if (error) 1579 goto bad; 1580 1581 if (vp->v_type != VSOCK) { 1582 error = ENOTSOCK; 1583 goto bad; 1584 } 1585 #ifdef MAC 1586 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1587 if (error) 1588 goto bad; 1589 #endif 1590 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1591 if (error) 1592 goto bad; 1593 1594 unp = sotounpcb(so); 1595 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1596 1597 vplock = mtx_pool_find(mtxpool_sleep, vp); 1598 mtx_lock(vplock); 1599 VOP_UNP_CONNECT(vp, &unp2); 1600 if (unp2 == NULL) { 1601 error = ECONNREFUSED; 1602 goto bad2; 1603 } 1604 so2 = unp2->unp_socket; 1605 if (so->so_type != so2->so_type) { 1606 error = EPROTOTYPE; 1607 goto bad2; 1608 } 1609 if (connreq) { 1610 if (SOLISTENING(so2)) { 1611 CURVNET_SET(so2->so_vnet); 1612 so2 = sonewconn(so2, 0); 1613 CURVNET_RESTORE(); 1614 } else 1615 so2 = NULL; 1616 if (so2 == NULL) { 1617 error = ECONNREFUSED; 1618 goto bad2; 1619 } 1620 unp3 = sotounpcb(so2); 1621 unp_pcb_lock_pair(unp2, unp3); 1622 if (unp2->unp_addr != NULL) { 1623 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1624 unp3->unp_addr = (struct sockaddr_un *) sa; 1625 sa = NULL; 1626 } 1627 1628 unp_copy_peercred(td, unp3, unp, unp2); 1629 1630 UNP_PCB_UNLOCK(unp2); 1631 unp2 = unp3; 1632 1633 /* 1634 * It is safe to block on the PCB lock here since unp2 is 1635 * nascent and cannot be connected to any other sockets. 1636 */ 1637 UNP_PCB_LOCK(unp); 1638 #ifdef MAC 1639 mac_socketpeer_set_from_socket(so, so2); 1640 mac_socketpeer_set_from_socket(so2, so); 1641 #endif 1642 } else { 1643 unp_pcb_lock_pair(unp, unp2); 1644 } 1645 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1646 sotounpcb(so2) == unp2, 1647 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1648 error = unp_connect2(so, so2, PRU_CONNECT); 1649 unp_pcb_unlock_pair(unp, unp2); 1650 bad2: 1651 mtx_unlock(vplock); 1652 bad: 1653 if (vp != NULL) { 1654 vput(vp); 1655 } 1656 free(sa, M_SONAME); 1657 UNP_PCB_LOCK(unp); 1658 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0, 1659 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp)); 1660 unp->unp_flags &= ~UNP_CONNECTING; 1661 UNP_PCB_UNLOCK(unp); 1662 return (error); 1663 } 1664 1665 /* 1666 * Set socket peer credentials at connection time. 1667 * 1668 * The client's PCB credentials are copied from its process structure. The 1669 * server's PCB credentials are copied from the socket on which it called 1670 * listen(2). uipc_listen cached that process's credentials at the time. 1671 */ 1672 void 1673 unp_copy_peercred(struct thread *td, struct unpcb *client_unp, 1674 struct unpcb *server_unp, struct unpcb *listen_unp) 1675 { 1676 cru2xt(td, &client_unp->unp_peercred); 1677 client_unp->unp_flags |= UNP_HAVEPC; 1678 1679 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred, 1680 sizeof(server_unp->unp_peercred)); 1681 server_unp->unp_flags |= UNP_HAVEPC; 1682 client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK); 1683 } 1684 1685 static int 1686 unp_connect2(struct socket *so, struct socket *so2, int req) 1687 { 1688 struct unpcb *unp; 1689 struct unpcb *unp2; 1690 1691 unp = sotounpcb(so); 1692 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1693 unp2 = sotounpcb(so2); 1694 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1695 1696 UNP_PCB_LOCK_ASSERT(unp); 1697 UNP_PCB_LOCK_ASSERT(unp2); 1698 KASSERT(unp->unp_conn == NULL, 1699 ("%s: socket %p is already connected", __func__, unp)); 1700 1701 if (so2->so_type != so->so_type) 1702 return (EPROTOTYPE); 1703 unp->unp_conn = unp2; 1704 unp_pcb_hold(unp2); 1705 unp_pcb_hold(unp); 1706 switch (so->so_type) { 1707 case SOCK_DGRAM: 1708 UNP_REF_LIST_LOCK(); 1709 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1710 UNP_REF_LIST_UNLOCK(); 1711 soisconnected(so); 1712 break; 1713 1714 case SOCK_STREAM: 1715 case SOCK_SEQPACKET: 1716 KASSERT(unp2->unp_conn == NULL, 1717 ("%s: socket %p is already connected", __func__, unp2)); 1718 unp2->unp_conn = unp; 1719 if (req == PRU_CONNECT && 1720 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1721 soisconnecting(so); 1722 else 1723 soisconnected(so); 1724 soisconnected(so2); 1725 break; 1726 1727 default: 1728 panic("unp_connect2"); 1729 } 1730 return (0); 1731 } 1732 1733 static void 1734 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1735 { 1736 struct socket *so, *so2; 1737 #ifdef INVARIANTS 1738 struct unpcb *unptmp; 1739 #endif 1740 1741 UNP_PCB_LOCK_ASSERT(unp); 1742 UNP_PCB_LOCK_ASSERT(unp2); 1743 KASSERT(unp->unp_conn == unp2, 1744 ("%s: unpcb %p is not connected to %p", __func__, unp, unp2)); 1745 1746 unp->unp_conn = NULL; 1747 so = unp->unp_socket; 1748 so2 = unp2->unp_socket; 1749 switch (unp->unp_socket->so_type) { 1750 case SOCK_DGRAM: 1751 UNP_REF_LIST_LOCK(); 1752 #ifdef INVARIANTS 1753 LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) { 1754 if (unptmp == unp) 1755 break; 1756 } 1757 KASSERT(unptmp != NULL, 1758 ("%s: %p not found in reflist of %p", __func__, unp, unp2)); 1759 #endif 1760 LIST_REMOVE(unp, unp_reflink); 1761 UNP_REF_LIST_UNLOCK(); 1762 if (so) { 1763 SOCK_LOCK(so); 1764 so->so_state &= ~SS_ISCONNECTED; 1765 SOCK_UNLOCK(so); 1766 } 1767 break; 1768 1769 case SOCK_STREAM: 1770 case SOCK_SEQPACKET: 1771 if (so) 1772 soisdisconnected(so); 1773 MPASS(unp2->unp_conn == unp); 1774 unp2->unp_conn = NULL; 1775 if (so2) 1776 soisdisconnected(so2); 1777 break; 1778 } 1779 1780 if (unp == unp2) { 1781 unp_pcb_rele_notlast(unp); 1782 if (!unp_pcb_rele(unp)) 1783 UNP_PCB_UNLOCK(unp); 1784 } else { 1785 if (!unp_pcb_rele(unp)) 1786 UNP_PCB_UNLOCK(unp); 1787 if (!unp_pcb_rele(unp2)) 1788 UNP_PCB_UNLOCK(unp2); 1789 } 1790 } 1791 1792 /* 1793 * unp_pcblist() walks the global list of struct unpcb's to generate a 1794 * pointer list, bumping the refcount on each unpcb. It then copies them out 1795 * sequentially, validating the generation number on each to see if it has 1796 * been detached. All of this is necessary because copyout() may sleep on 1797 * disk I/O. 1798 */ 1799 static int 1800 unp_pcblist(SYSCTL_HANDLER_ARGS) 1801 { 1802 struct unpcb *unp, **unp_list; 1803 unp_gen_t gencnt; 1804 struct xunpgen *xug; 1805 struct unp_head *head; 1806 struct xunpcb *xu; 1807 u_int i; 1808 int error, n; 1809 1810 switch ((intptr_t)arg1) { 1811 case SOCK_STREAM: 1812 head = &unp_shead; 1813 break; 1814 1815 case SOCK_DGRAM: 1816 head = &unp_dhead; 1817 break; 1818 1819 case SOCK_SEQPACKET: 1820 head = &unp_sphead; 1821 break; 1822 1823 default: 1824 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1825 } 1826 1827 /* 1828 * The process of preparing the PCB list is too time-consuming and 1829 * resource-intensive to repeat twice on every request. 1830 */ 1831 if (req->oldptr == NULL) { 1832 n = unp_count; 1833 req->oldidx = 2 * (sizeof *xug) 1834 + (n + n/8) * sizeof(struct xunpcb); 1835 return (0); 1836 } 1837 1838 if (req->newptr != NULL) 1839 return (EPERM); 1840 1841 /* 1842 * OK, now we're committed to doing something. 1843 */ 1844 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO); 1845 UNP_LINK_RLOCK(); 1846 gencnt = unp_gencnt; 1847 n = unp_count; 1848 UNP_LINK_RUNLOCK(); 1849 1850 xug->xug_len = sizeof *xug; 1851 xug->xug_count = n; 1852 xug->xug_gen = gencnt; 1853 xug->xug_sogen = so_gencnt; 1854 error = SYSCTL_OUT(req, xug, sizeof *xug); 1855 if (error) { 1856 free(xug, M_TEMP); 1857 return (error); 1858 } 1859 1860 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1861 1862 UNP_LINK_RLOCK(); 1863 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1864 unp = LIST_NEXT(unp, unp_link)) { 1865 UNP_PCB_LOCK(unp); 1866 if (unp->unp_gencnt <= gencnt) { 1867 if (cr_cansee(req->td->td_ucred, 1868 unp->unp_socket->so_cred)) { 1869 UNP_PCB_UNLOCK(unp); 1870 continue; 1871 } 1872 unp_list[i++] = unp; 1873 unp_pcb_hold(unp); 1874 } 1875 UNP_PCB_UNLOCK(unp); 1876 } 1877 UNP_LINK_RUNLOCK(); 1878 n = i; /* In case we lost some during malloc. */ 1879 1880 error = 0; 1881 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1882 for (i = 0; i < n; i++) { 1883 unp = unp_list[i]; 1884 UNP_PCB_LOCK(unp); 1885 if (unp_pcb_rele(unp)) 1886 continue; 1887 1888 if (unp->unp_gencnt <= gencnt) { 1889 xu->xu_len = sizeof *xu; 1890 xu->xu_unpp = (uintptr_t)unp; 1891 /* 1892 * XXX - need more locking here to protect against 1893 * connect/disconnect races for SMP. 1894 */ 1895 if (unp->unp_addr != NULL) 1896 bcopy(unp->unp_addr, &xu->xu_addr, 1897 unp->unp_addr->sun_len); 1898 else 1899 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 1900 if (unp->unp_conn != NULL && 1901 unp->unp_conn->unp_addr != NULL) 1902 bcopy(unp->unp_conn->unp_addr, 1903 &xu->xu_caddr, 1904 unp->unp_conn->unp_addr->sun_len); 1905 else 1906 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 1907 xu->unp_vnode = (uintptr_t)unp->unp_vnode; 1908 xu->unp_conn = (uintptr_t)unp->unp_conn; 1909 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs); 1910 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink); 1911 xu->unp_gencnt = unp->unp_gencnt; 1912 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1913 UNP_PCB_UNLOCK(unp); 1914 error = SYSCTL_OUT(req, xu, sizeof *xu); 1915 } else { 1916 UNP_PCB_UNLOCK(unp); 1917 } 1918 } 1919 free(xu, M_TEMP); 1920 if (!error) { 1921 /* 1922 * Give the user an updated idea of our state. If the 1923 * generation differs from what we told her before, she knows 1924 * that something happened while we were processing this 1925 * request, and it might be necessary to retry. 1926 */ 1927 xug->xug_gen = unp_gencnt; 1928 xug->xug_sogen = so_gencnt; 1929 xug->xug_count = unp_count; 1930 error = SYSCTL_OUT(req, xug, sizeof *xug); 1931 } 1932 free(unp_list, M_TEMP); 1933 free(xug, M_TEMP); 1934 return (error); 1935 } 1936 1937 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, 1938 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1939 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1940 "List of active local datagram sockets"); 1941 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, 1942 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1943 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1944 "List of active local stream sockets"); 1945 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1946 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1947 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1948 "List of active local seqpacket sockets"); 1949 1950 static void 1951 unp_shutdown(struct unpcb *unp) 1952 { 1953 struct unpcb *unp2; 1954 struct socket *so; 1955 1956 UNP_PCB_LOCK_ASSERT(unp); 1957 1958 unp2 = unp->unp_conn; 1959 if ((unp->unp_socket->so_type == SOCK_STREAM || 1960 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1961 so = unp2->unp_socket; 1962 if (so != NULL) 1963 socantrcvmore(so); 1964 } 1965 } 1966 1967 static void 1968 unp_drop(struct unpcb *unp) 1969 { 1970 struct socket *so; 1971 struct unpcb *unp2; 1972 1973 /* 1974 * Regardless of whether the socket's peer dropped the connection 1975 * with this socket by aborting or disconnecting, POSIX requires 1976 * that ECONNRESET is returned. 1977 */ 1978 1979 UNP_PCB_LOCK(unp); 1980 so = unp->unp_socket; 1981 if (so) 1982 so->so_error = ECONNRESET; 1983 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1984 /* Last reference dropped in unp_disconnect(). */ 1985 unp_pcb_rele_notlast(unp); 1986 unp_disconnect(unp, unp2); 1987 } else if (!unp_pcb_rele(unp)) { 1988 UNP_PCB_UNLOCK(unp); 1989 } 1990 } 1991 1992 static void 1993 unp_freerights(struct filedescent **fdep, int fdcount) 1994 { 1995 struct file *fp; 1996 int i; 1997 1998 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1999 2000 for (i = 0; i < fdcount; i++) { 2001 fp = fdep[i]->fde_file; 2002 filecaps_free(&fdep[i]->fde_caps); 2003 unp_discard(fp); 2004 } 2005 free(fdep[0], M_FILECAPS); 2006 } 2007 2008 static int 2009 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 2010 { 2011 struct thread *td = curthread; /* XXX */ 2012 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 2013 int i; 2014 int *fdp; 2015 struct filedesc *fdesc = td->td_proc->p_fd; 2016 struct filedescent **fdep; 2017 void *data; 2018 socklen_t clen = control->m_len, datalen; 2019 int error, newfds; 2020 u_int newlen; 2021 2022 UNP_LINK_UNLOCK_ASSERT(); 2023 2024 error = 0; 2025 if (controlp != NULL) /* controlp == NULL => free control messages */ 2026 *controlp = NULL; 2027 while (cm != NULL) { 2028 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 2029 error = EINVAL; 2030 break; 2031 } 2032 data = CMSG_DATA(cm); 2033 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2034 if (cm->cmsg_level == SOL_SOCKET 2035 && cm->cmsg_type == SCM_RIGHTS) { 2036 newfds = datalen / sizeof(*fdep); 2037 if (newfds == 0) 2038 goto next; 2039 fdep = data; 2040 2041 /* If we're not outputting the descriptors free them. */ 2042 if (error || controlp == NULL) { 2043 unp_freerights(fdep, newfds); 2044 goto next; 2045 } 2046 FILEDESC_XLOCK(fdesc); 2047 2048 /* 2049 * Now change each pointer to an fd in the global 2050 * table to an integer that is the index to the local 2051 * fd table entry that we set up to point to the 2052 * global one we are transferring. 2053 */ 2054 newlen = newfds * sizeof(int); 2055 *controlp = sbcreatecontrol(NULL, newlen, 2056 SCM_RIGHTS, SOL_SOCKET); 2057 if (*controlp == NULL) { 2058 FILEDESC_XUNLOCK(fdesc); 2059 error = E2BIG; 2060 unp_freerights(fdep, newfds); 2061 goto next; 2062 } 2063 2064 fdp = (int *) 2065 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2066 if (fdallocn(td, 0, fdp, newfds) != 0) { 2067 FILEDESC_XUNLOCK(fdesc); 2068 error = EMSGSIZE; 2069 unp_freerights(fdep, newfds); 2070 m_freem(*controlp); 2071 *controlp = NULL; 2072 goto next; 2073 } 2074 for (i = 0; i < newfds; i++, fdp++) { 2075 _finstall(fdesc, fdep[i]->fde_file, *fdp, 2076 (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0, 2077 &fdep[i]->fde_caps); 2078 unp_externalize_fp(fdep[i]->fde_file); 2079 } 2080 2081 /* 2082 * The new type indicates that the mbuf data refers to 2083 * kernel resources that may need to be released before 2084 * the mbuf is freed. 2085 */ 2086 m_chtype(*controlp, MT_EXTCONTROL); 2087 FILEDESC_XUNLOCK(fdesc); 2088 free(fdep[0], M_FILECAPS); 2089 } else { 2090 /* We can just copy anything else across. */ 2091 if (error || controlp == NULL) 2092 goto next; 2093 *controlp = sbcreatecontrol(NULL, datalen, 2094 cm->cmsg_type, cm->cmsg_level); 2095 if (*controlp == NULL) { 2096 error = ENOBUFS; 2097 goto next; 2098 } 2099 bcopy(data, 2100 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 2101 datalen); 2102 } 2103 controlp = &(*controlp)->m_next; 2104 2105 next: 2106 if (CMSG_SPACE(datalen) < clen) { 2107 clen -= CMSG_SPACE(datalen); 2108 cm = (struct cmsghdr *) 2109 ((caddr_t)cm + CMSG_SPACE(datalen)); 2110 } else { 2111 clen = 0; 2112 cm = NULL; 2113 } 2114 } 2115 2116 m_freem(control); 2117 return (error); 2118 } 2119 2120 static void 2121 unp_zone_change(void *tag) 2122 { 2123 2124 uma_zone_set_max(unp_zone, maxsockets); 2125 } 2126 2127 #ifdef INVARIANTS 2128 static void 2129 unp_zdtor(void *mem, int size __unused, void *arg __unused) 2130 { 2131 struct unpcb *unp; 2132 2133 unp = mem; 2134 2135 KASSERT(LIST_EMPTY(&unp->unp_refs), 2136 ("%s: unpcb %p has lingering refs", __func__, unp)); 2137 KASSERT(unp->unp_socket == NULL, 2138 ("%s: unpcb %p has socket backpointer", __func__, unp)); 2139 KASSERT(unp->unp_vnode == NULL, 2140 ("%s: unpcb %p has vnode references", __func__, unp)); 2141 KASSERT(unp->unp_conn == NULL, 2142 ("%s: unpcb %p is still connected", __func__, unp)); 2143 KASSERT(unp->unp_addr == NULL, 2144 ("%s: unpcb %p has leaked addr", __func__, unp)); 2145 } 2146 #endif 2147 2148 static void 2149 unp_init(void *arg __unused) 2150 { 2151 uma_dtor dtor; 2152 2153 #ifdef INVARIANTS 2154 dtor = unp_zdtor; 2155 #else 2156 dtor = NULL; 2157 #endif 2158 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor, 2159 NULL, NULL, UMA_ALIGN_CACHE, 0); 2160 uma_zone_set_max(unp_zone, maxsockets); 2161 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 2162 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 2163 NULL, EVENTHANDLER_PRI_ANY); 2164 LIST_INIT(&unp_dhead); 2165 LIST_INIT(&unp_shead); 2166 LIST_INIT(&unp_sphead); 2167 SLIST_INIT(&unp_defers); 2168 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 2169 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 2170 UNP_LINK_LOCK_INIT(); 2171 UNP_DEFERRED_LOCK_INIT(); 2172 } 2173 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL); 2174 2175 static void 2176 unp_internalize_cleanup_rights(struct mbuf *control) 2177 { 2178 struct cmsghdr *cp; 2179 struct mbuf *m; 2180 void *data; 2181 socklen_t datalen; 2182 2183 for (m = control; m != NULL; m = m->m_next) { 2184 cp = mtod(m, struct cmsghdr *); 2185 if (cp->cmsg_level != SOL_SOCKET || 2186 cp->cmsg_type != SCM_RIGHTS) 2187 continue; 2188 data = CMSG_DATA(cp); 2189 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data; 2190 unp_freerights(data, datalen / sizeof(struct filedesc *)); 2191 } 2192 } 2193 2194 static int 2195 unp_internalize(struct mbuf **controlp, struct thread *td) 2196 { 2197 struct mbuf *control, **initial_controlp; 2198 struct proc *p; 2199 struct filedesc *fdesc; 2200 struct bintime *bt; 2201 struct cmsghdr *cm; 2202 struct cmsgcred *cmcred; 2203 struct filedescent *fde, **fdep, *fdev; 2204 struct file *fp; 2205 struct timeval *tv; 2206 struct timespec *ts; 2207 void *data; 2208 socklen_t clen, datalen; 2209 int i, j, error, *fdp, oldfds; 2210 u_int newlen; 2211 2212 UNP_LINK_UNLOCK_ASSERT(); 2213 2214 p = td->td_proc; 2215 fdesc = p->p_fd; 2216 error = 0; 2217 control = *controlp; 2218 clen = control->m_len; 2219 *controlp = NULL; 2220 initial_controlp = controlp; 2221 for (cm = mtod(control, struct cmsghdr *); cm != NULL;) { 2222 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 2223 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 2224 error = EINVAL; 2225 goto out; 2226 } 2227 data = CMSG_DATA(cm); 2228 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2229 2230 switch (cm->cmsg_type) { 2231 /* 2232 * Fill in credential information. 2233 */ 2234 case SCM_CREDS: 2235 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 2236 SCM_CREDS, SOL_SOCKET); 2237 if (*controlp == NULL) { 2238 error = ENOBUFS; 2239 goto out; 2240 } 2241 cmcred = (struct cmsgcred *) 2242 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2243 cmcred->cmcred_pid = p->p_pid; 2244 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 2245 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 2246 cmcred->cmcred_euid = td->td_ucred->cr_uid; 2247 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 2248 CMGROUP_MAX); 2249 for (i = 0; i < cmcred->cmcred_ngroups; i++) 2250 cmcred->cmcred_groups[i] = 2251 td->td_ucred->cr_groups[i]; 2252 break; 2253 2254 case SCM_RIGHTS: 2255 oldfds = datalen / sizeof (int); 2256 if (oldfds == 0) 2257 break; 2258 /* 2259 * Check that all the FDs passed in refer to legal 2260 * files. If not, reject the entire operation. 2261 */ 2262 fdp = data; 2263 FILEDESC_SLOCK(fdesc); 2264 for (i = 0; i < oldfds; i++, fdp++) { 2265 fp = fget_locked(fdesc, *fdp); 2266 if (fp == NULL) { 2267 FILEDESC_SUNLOCK(fdesc); 2268 error = EBADF; 2269 goto out; 2270 } 2271 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 2272 FILEDESC_SUNLOCK(fdesc); 2273 error = EOPNOTSUPP; 2274 goto out; 2275 } 2276 } 2277 2278 /* 2279 * Now replace the integer FDs with pointers to the 2280 * file structure and capability rights. 2281 */ 2282 newlen = oldfds * sizeof(fdep[0]); 2283 *controlp = sbcreatecontrol(NULL, newlen, 2284 SCM_RIGHTS, SOL_SOCKET); 2285 if (*controlp == NULL) { 2286 FILEDESC_SUNLOCK(fdesc); 2287 error = E2BIG; 2288 goto out; 2289 } 2290 fdp = data; 2291 for (i = 0; i < oldfds; i++, fdp++) { 2292 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) { 2293 fdp = data; 2294 for (j = 0; j < i; j++, fdp++) { 2295 fdrop(fdesc->fd_ofiles[*fdp]. 2296 fde_file, td); 2297 } 2298 FILEDESC_SUNLOCK(fdesc); 2299 error = EBADF; 2300 goto out; 2301 } 2302 } 2303 fdp = data; 2304 fdep = (struct filedescent **) 2305 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2306 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 2307 M_WAITOK); 2308 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 2309 fde = &fdesc->fd_ofiles[*fdp]; 2310 fdep[i] = fdev; 2311 fdep[i]->fde_file = fde->fde_file; 2312 filecaps_copy(&fde->fde_caps, 2313 &fdep[i]->fde_caps, true); 2314 unp_internalize_fp(fdep[i]->fde_file); 2315 } 2316 FILEDESC_SUNLOCK(fdesc); 2317 break; 2318 2319 case SCM_TIMESTAMP: 2320 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2321 SCM_TIMESTAMP, SOL_SOCKET); 2322 if (*controlp == NULL) { 2323 error = ENOBUFS; 2324 goto out; 2325 } 2326 tv = (struct timeval *) 2327 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2328 microtime(tv); 2329 break; 2330 2331 case SCM_BINTIME: 2332 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2333 SCM_BINTIME, SOL_SOCKET); 2334 if (*controlp == NULL) { 2335 error = ENOBUFS; 2336 goto out; 2337 } 2338 bt = (struct bintime *) 2339 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2340 bintime(bt); 2341 break; 2342 2343 case SCM_REALTIME: 2344 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2345 SCM_REALTIME, SOL_SOCKET); 2346 if (*controlp == NULL) { 2347 error = ENOBUFS; 2348 goto out; 2349 } 2350 ts = (struct timespec *) 2351 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2352 nanotime(ts); 2353 break; 2354 2355 case SCM_MONOTONIC: 2356 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2357 SCM_MONOTONIC, SOL_SOCKET); 2358 if (*controlp == NULL) { 2359 error = ENOBUFS; 2360 goto out; 2361 } 2362 ts = (struct timespec *) 2363 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2364 nanouptime(ts); 2365 break; 2366 2367 default: 2368 error = EINVAL; 2369 goto out; 2370 } 2371 2372 if (*controlp != NULL) 2373 controlp = &(*controlp)->m_next; 2374 if (CMSG_SPACE(datalen) < clen) { 2375 clen -= CMSG_SPACE(datalen); 2376 cm = (struct cmsghdr *) 2377 ((caddr_t)cm + CMSG_SPACE(datalen)); 2378 } else { 2379 clen = 0; 2380 cm = NULL; 2381 } 2382 } 2383 2384 out: 2385 if (error != 0 && initial_controlp != NULL) 2386 unp_internalize_cleanup_rights(*initial_controlp); 2387 m_freem(control); 2388 return (error); 2389 } 2390 2391 static struct mbuf * 2392 unp_addsockcred(struct thread *td, struct mbuf *control, int mode) 2393 { 2394 struct mbuf *m, *n, *n_prev; 2395 const struct cmsghdr *cm; 2396 int ngroups, i, cmsgtype; 2397 size_t ctrlsz; 2398 2399 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2400 if (mode & UNP_WANTCRED_ALWAYS) { 2401 ctrlsz = SOCKCRED2SIZE(ngroups); 2402 cmsgtype = SCM_CREDS2; 2403 } else { 2404 ctrlsz = SOCKCREDSIZE(ngroups); 2405 cmsgtype = SCM_CREDS; 2406 } 2407 2408 m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET); 2409 if (m == NULL) 2410 return (control); 2411 2412 if (mode & UNP_WANTCRED_ALWAYS) { 2413 struct sockcred2 *sc; 2414 2415 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *)); 2416 sc->sc_version = 0; 2417 sc->sc_pid = td->td_proc->p_pid; 2418 sc->sc_uid = td->td_ucred->cr_ruid; 2419 sc->sc_euid = td->td_ucred->cr_uid; 2420 sc->sc_gid = td->td_ucred->cr_rgid; 2421 sc->sc_egid = td->td_ucred->cr_gid; 2422 sc->sc_ngroups = ngroups; 2423 for (i = 0; i < sc->sc_ngroups; i++) 2424 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2425 } else { 2426 struct sockcred *sc; 2427 2428 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *)); 2429 sc->sc_uid = td->td_ucred->cr_ruid; 2430 sc->sc_euid = td->td_ucred->cr_uid; 2431 sc->sc_gid = td->td_ucred->cr_rgid; 2432 sc->sc_egid = td->td_ucred->cr_gid; 2433 sc->sc_ngroups = ngroups; 2434 for (i = 0; i < sc->sc_ngroups; i++) 2435 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2436 } 2437 2438 /* 2439 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2440 * created SCM_CREDS control message (struct sockcred) has another 2441 * format. 2442 */ 2443 if (control != NULL && cmsgtype == SCM_CREDS) 2444 for (n = control, n_prev = NULL; n != NULL;) { 2445 cm = mtod(n, struct cmsghdr *); 2446 if (cm->cmsg_level == SOL_SOCKET && 2447 cm->cmsg_type == SCM_CREDS) { 2448 if (n_prev == NULL) 2449 control = n->m_next; 2450 else 2451 n_prev->m_next = n->m_next; 2452 n = m_free(n); 2453 } else { 2454 n_prev = n; 2455 n = n->m_next; 2456 } 2457 } 2458 2459 /* Prepend it to the head. */ 2460 m->m_next = control; 2461 return (m); 2462 } 2463 2464 static struct unpcb * 2465 fptounp(struct file *fp) 2466 { 2467 struct socket *so; 2468 2469 if (fp->f_type != DTYPE_SOCKET) 2470 return (NULL); 2471 if ((so = fp->f_data) == NULL) 2472 return (NULL); 2473 if (so->so_proto->pr_domain != &localdomain) 2474 return (NULL); 2475 return sotounpcb(so); 2476 } 2477 2478 static void 2479 unp_discard(struct file *fp) 2480 { 2481 struct unp_defer *dr; 2482 2483 if (unp_externalize_fp(fp)) { 2484 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2485 dr->ud_fp = fp; 2486 UNP_DEFERRED_LOCK(); 2487 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2488 UNP_DEFERRED_UNLOCK(); 2489 atomic_add_int(&unp_defers_count, 1); 2490 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2491 } else 2492 closef_nothread(fp); 2493 } 2494 2495 static void 2496 unp_process_defers(void *arg __unused, int pending) 2497 { 2498 struct unp_defer *dr; 2499 SLIST_HEAD(, unp_defer) drl; 2500 int count; 2501 2502 SLIST_INIT(&drl); 2503 for (;;) { 2504 UNP_DEFERRED_LOCK(); 2505 if (SLIST_FIRST(&unp_defers) == NULL) { 2506 UNP_DEFERRED_UNLOCK(); 2507 break; 2508 } 2509 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2510 UNP_DEFERRED_UNLOCK(); 2511 count = 0; 2512 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2513 SLIST_REMOVE_HEAD(&drl, ud_link); 2514 closef_nothread(dr->ud_fp); 2515 free(dr, M_TEMP); 2516 count++; 2517 } 2518 atomic_add_int(&unp_defers_count, -count); 2519 } 2520 } 2521 2522 static void 2523 unp_internalize_fp(struct file *fp) 2524 { 2525 struct unpcb *unp; 2526 2527 UNP_LINK_WLOCK(); 2528 if ((unp = fptounp(fp)) != NULL) { 2529 unp->unp_file = fp; 2530 unp->unp_msgcount++; 2531 } 2532 unp_rights++; 2533 UNP_LINK_WUNLOCK(); 2534 } 2535 2536 static int 2537 unp_externalize_fp(struct file *fp) 2538 { 2539 struct unpcb *unp; 2540 int ret; 2541 2542 UNP_LINK_WLOCK(); 2543 if ((unp = fptounp(fp)) != NULL) { 2544 unp->unp_msgcount--; 2545 ret = 1; 2546 } else 2547 ret = 0; 2548 unp_rights--; 2549 UNP_LINK_WUNLOCK(); 2550 return (ret); 2551 } 2552 2553 /* 2554 * unp_defer indicates whether additional work has been defered for a future 2555 * pass through unp_gc(). It is thread local and does not require explicit 2556 * synchronization. 2557 */ 2558 static int unp_marked; 2559 2560 static void 2561 unp_remove_dead_ref(struct filedescent **fdep, int fdcount) 2562 { 2563 struct unpcb *unp; 2564 struct file *fp; 2565 int i; 2566 2567 /* 2568 * This function can only be called from the gc task. 2569 */ 2570 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2571 ("%s: not on gc callout", __func__)); 2572 UNP_LINK_LOCK_ASSERT(); 2573 2574 for (i = 0; i < fdcount; i++) { 2575 fp = fdep[i]->fde_file; 2576 if ((unp = fptounp(fp)) == NULL) 2577 continue; 2578 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2579 continue; 2580 unp->unp_gcrefs--; 2581 } 2582 } 2583 2584 static void 2585 unp_restore_undead_ref(struct filedescent **fdep, int fdcount) 2586 { 2587 struct unpcb *unp; 2588 struct file *fp; 2589 int i; 2590 2591 /* 2592 * This function can only be called from the gc task. 2593 */ 2594 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2595 ("%s: not on gc callout", __func__)); 2596 UNP_LINK_LOCK_ASSERT(); 2597 2598 for (i = 0; i < fdcount; i++) { 2599 fp = fdep[i]->fde_file; 2600 if ((unp = fptounp(fp)) == NULL) 2601 continue; 2602 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2603 continue; 2604 unp->unp_gcrefs++; 2605 unp_marked++; 2606 } 2607 } 2608 2609 static void 2610 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int)) 2611 { 2612 struct socket *so, *soa; 2613 2614 so = unp->unp_socket; 2615 SOCK_LOCK(so); 2616 if (SOLISTENING(so)) { 2617 /* 2618 * Mark all sockets in our accept queue. 2619 */ 2620 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2621 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2622 continue; 2623 SOCKBUF_LOCK(&soa->so_rcv); 2624 unp_scan(soa->so_rcv.sb_mb, op); 2625 SOCKBUF_UNLOCK(&soa->so_rcv); 2626 } 2627 } else { 2628 /* 2629 * Mark all sockets we reference with RIGHTS. 2630 */ 2631 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2632 SOCKBUF_LOCK(&so->so_rcv); 2633 unp_scan(so->so_rcv.sb_mb, op); 2634 SOCKBUF_UNLOCK(&so->so_rcv); 2635 } 2636 } 2637 SOCK_UNLOCK(so); 2638 } 2639 2640 static int unp_recycled; 2641 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2642 "Number of unreachable sockets claimed by the garbage collector."); 2643 2644 static int unp_taskcount; 2645 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2646 "Number of times the garbage collector has run."); 2647 2648 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0, 2649 "Number of active local sockets."); 2650 2651 static void 2652 unp_gc(__unused void *arg, int pending) 2653 { 2654 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2655 NULL }; 2656 struct unp_head **head; 2657 struct unp_head unp_deadhead; /* List of potentially-dead sockets. */ 2658 struct file *f, **unref; 2659 struct unpcb *unp, *unptmp; 2660 int i, total, unp_unreachable; 2661 2662 LIST_INIT(&unp_deadhead); 2663 unp_taskcount++; 2664 UNP_LINK_RLOCK(); 2665 /* 2666 * First determine which sockets may be in cycles. 2667 */ 2668 unp_unreachable = 0; 2669 2670 for (head = heads; *head != NULL; head++) 2671 LIST_FOREACH(unp, *head, unp_link) { 2672 KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0, 2673 ("%s: unp %p has unexpected gc flags 0x%x", 2674 __func__, unp, (unsigned int)unp->unp_gcflag)); 2675 2676 f = unp->unp_file; 2677 2678 /* 2679 * Check for an unreachable socket potentially in a 2680 * cycle. It must be in a queue as indicated by 2681 * msgcount, and this must equal the file reference 2682 * count. Note that when msgcount is 0 the file is 2683 * NULL. 2684 */ 2685 if (f != NULL && unp->unp_msgcount != 0 && 2686 refcount_load(&f->f_count) == unp->unp_msgcount) { 2687 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead); 2688 unp->unp_gcflag |= UNPGC_DEAD; 2689 unp->unp_gcrefs = unp->unp_msgcount; 2690 unp_unreachable++; 2691 } 2692 } 2693 2694 /* 2695 * Scan all sockets previously marked as potentially being in a cycle 2696 * and remove the references each socket holds on any UNPGC_DEAD 2697 * sockets in its queue. After this step, all remaining references on 2698 * sockets marked UNPGC_DEAD should not be part of any cycle. 2699 */ 2700 LIST_FOREACH(unp, &unp_deadhead, unp_dead) 2701 unp_gc_scan(unp, unp_remove_dead_ref); 2702 2703 /* 2704 * If a socket still has a non-negative refcount, it cannot be in a 2705 * cycle. In this case increment refcount of all children iteratively. 2706 * Stop the scan once we do a complete loop without discovering 2707 * a new reachable socket. 2708 */ 2709 do { 2710 unp_marked = 0; 2711 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp) 2712 if (unp->unp_gcrefs > 0) { 2713 unp->unp_gcflag &= ~UNPGC_DEAD; 2714 LIST_REMOVE(unp, unp_dead); 2715 KASSERT(unp_unreachable > 0, 2716 ("%s: unp_unreachable underflow.", 2717 __func__)); 2718 unp_unreachable--; 2719 unp_gc_scan(unp, unp_restore_undead_ref); 2720 } 2721 } while (unp_marked); 2722 2723 UNP_LINK_RUNLOCK(); 2724 2725 if (unp_unreachable == 0) 2726 return; 2727 2728 /* 2729 * Allocate space for a local array of dead unpcbs. 2730 * TODO: can this path be simplified by instead using the local 2731 * dead list at unp_deadhead, after taking out references 2732 * on the file object and/or unpcb and dropping the link lock? 2733 */ 2734 unref = malloc(unp_unreachable * sizeof(struct file *), 2735 M_TEMP, M_WAITOK); 2736 2737 /* 2738 * Iterate looking for sockets which have been specifically marked 2739 * as unreachable and store them locally. 2740 */ 2741 UNP_LINK_RLOCK(); 2742 total = 0; 2743 LIST_FOREACH(unp, &unp_deadhead, unp_dead) { 2744 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0, 2745 ("%s: unp %p not marked UNPGC_DEAD", __func__, unp)); 2746 unp->unp_gcflag &= ~UNPGC_DEAD; 2747 f = unp->unp_file; 2748 if (unp->unp_msgcount == 0 || f == NULL || 2749 refcount_load(&f->f_count) != unp->unp_msgcount || 2750 !fhold(f)) 2751 continue; 2752 unref[total++] = f; 2753 KASSERT(total <= unp_unreachable, 2754 ("%s: incorrect unreachable count.", __func__)); 2755 } 2756 UNP_LINK_RUNLOCK(); 2757 2758 /* 2759 * Now flush all sockets, free'ing rights. This will free the 2760 * struct files associated with these sockets but leave each socket 2761 * with one remaining ref. 2762 */ 2763 for (i = 0; i < total; i++) { 2764 struct socket *so; 2765 2766 so = unref[i]->f_data; 2767 CURVNET_SET(so->so_vnet); 2768 sorflush(so); 2769 CURVNET_RESTORE(); 2770 } 2771 2772 /* 2773 * And finally release the sockets so they can be reclaimed. 2774 */ 2775 for (i = 0; i < total; i++) 2776 fdrop(unref[i], NULL); 2777 unp_recycled += total; 2778 free(unref, M_TEMP); 2779 } 2780 2781 static void 2782 unp_dispose_mbuf(struct mbuf *m) 2783 { 2784 2785 if (m) 2786 unp_scan(m, unp_freerights); 2787 } 2788 2789 /* 2790 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2791 */ 2792 static void 2793 unp_dispose(struct socket *so) 2794 { 2795 struct unpcb *unp; 2796 2797 unp = sotounpcb(so); 2798 UNP_LINK_WLOCK(); 2799 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2800 UNP_LINK_WUNLOCK(); 2801 if (!SOLISTENING(so)) 2802 unp_dispose_mbuf(so->so_rcv.sb_mb); 2803 } 2804 2805 static void 2806 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2807 { 2808 struct mbuf *m; 2809 struct cmsghdr *cm; 2810 void *data; 2811 socklen_t clen, datalen; 2812 2813 while (m0 != NULL) { 2814 for (m = m0; m; m = m->m_next) { 2815 if (m->m_type != MT_CONTROL) 2816 continue; 2817 2818 cm = mtod(m, struct cmsghdr *); 2819 clen = m->m_len; 2820 2821 while (cm != NULL) { 2822 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2823 break; 2824 2825 data = CMSG_DATA(cm); 2826 datalen = (caddr_t)cm + cm->cmsg_len 2827 - (caddr_t)data; 2828 2829 if (cm->cmsg_level == SOL_SOCKET && 2830 cm->cmsg_type == SCM_RIGHTS) { 2831 (*op)(data, datalen / 2832 sizeof(struct filedescent *)); 2833 } 2834 2835 if (CMSG_SPACE(datalen) < clen) { 2836 clen -= CMSG_SPACE(datalen); 2837 cm = (struct cmsghdr *) 2838 ((caddr_t)cm + CMSG_SPACE(datalen)); 2839 } else { 2840 clen = 0; 2841 cm = NULL; 2842 } 2843 } 2844 } 2845 m0 = m0->m_nextpkt; 2846 } 2847 } 2848 2849 /* 2850 * A helper function called by VFS before socket-type vnode reclamation. 2851 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2852 * use count. 2853 */ 2854 void 2855 vfs_unp_reclaim(struct vnode *vp) 2856 { 2857 struct unpcb *unp; 2858 int active; 2859 struct mtx *vplock; 2860 2861 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2862 KASSERT(vp->v_type == VSOCK, 2863 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2864 2865 active = 0; 2866 vplock = mtx_pool_find(mtxpool_sleep, vp); 2867 mtx_lock(vplock); 2868 VOP_UNP_CONNECT(vp, &unp); 2869 if (unp == NULL) 2870 goto done; 2871 UNP_PCB_LOCK(unp); 2872 if (unp->unp_vnode == vp) { 2873 VOP_UNP_DETACH(vp); 2874 unp->unp_vnode = NULL; 2875 active = 1; 2876 } 2877 UNP_PCB_UNLOCK(unp); 2878 done: 2879 mtx_unlock(vplock); 2880 if (active) 2881 vunref(vp); 2882 } 2883 2884 #ifdef DDB 2885 static void 2886 db_print_indent(int indent) 2887 { 2888 int i; 2889 2890 for (i = 0; i < indent; i++) 2891 db_printf(" "); 2892 } 2893 2894 static void 2895 db_print_unpflags(int unp_flags) 2896 { 2897 int comma; 2898 2899 comma = 0; 2900 if (unp_flags & UNP_HAVEPC) { 2901 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2902 comma = 1; 2903 } 2904 if (unp_flags & UNP_WANTCRED_ALWAYS) { 2905 db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : ""); 2906 comma = 1; 2907 } 2908 if (unp_flags & UNP_WANTCRED_ONESHOT) { 2909 db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : ""); 2910 comma = 1; 2911 } 2912 if (unp_flags & UNP_CONNWAIT) { 2913 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2914 comma = 1; 2915 } 2916 if (unp_flags & UNP_CONNECTING) { 2917 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2918 comma = 1; 2919 } 2920 if (unp_flags & UNP_BINDING) { 2921 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2922 comma = 1; 2923 } 2924 } 2925 2926 static void 2927 db_print_xucred(int indent, struct xucred *xu) 2928 { 2929 int comma, i; 2930 2931 db_print_indent(indent); 2932 db_printf("cr_version: %u cr_uid: %u cr_pid: %d cr_ngroups: %d\n", 2933 xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups); 2934 db_print_indent(indent); 2935 db_printf("cr_groups: "); 2936 comma = 0; 2937 for (i = 0; i < xu->cr_ngroups; i++) { 2938 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2939 comma = 1; 2940 } 2941 db_printf("\n"); 2942 } 2943 2944 static void 2945 db_print_unprefs(int indent, struct unp_head *uh) 2946 { 2947 struct unpcb *unp; 2948 int counter; 2949 2950 counter = 0; 2951 LIST_FOREACH(unp, uh, unp_reflink) { 2952 if (counter % 4 == 0) 2953 db_print_indent(indent); 2954 db_printf("%p ", unp); 2955 if (counter % 4 == 3) 2956 db_printf("\n"); 2957 counter++; 2958 } 2959 if (counter != 0 && counter % 4 != 0) 2960 db_printf("\n"); 2961 } 2962 2963 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2964 { 2965 struct unpcb *unp; 2966 2967 if (!have_addr) { 2968 db_printf("usage: show unpcb <addr>\n"); 2969 return; 2970 } 2971 unp = (struct unpcb *)addr; 2972 2973 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2974 unp->unp_vnode); 2975 2976 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2977 unp->unp_conn); 2978 2979 db_printf("unp_refs:\n"); 2980 db_print_unprefs(2, &unp->unp_refs); 2981 2982 /* XXXRW: Would be nice to print the full address, if any. */ 2983 db_printf("unp_addr: %p\n", unp->unp_addr); 2984 2985 db_printf("unp_gencnt: %llu\n", 2986 (unsigned long long)unp->unp_gencnt); 2987 2988 db_printf("unp_flags: %x (", unp->unp_flags); 2989 db_print_unpflags(unp->unp_flags); 2990 db_printf(")\n"); 2991 2992 db_printf("unp_peercred:\n"); 2993 db_print_xucred(2, &unp->unp_peercred); 2994 2995 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2996 } 2997 #endif 2998