1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_param.h" 34 #include "opt_mbuf_stress_test.h" 35 #include "opt_mbuf_profiling.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/sysctl.h> 45 #include <sys/domain.h> 46 #include <sys/protosw.h> 47 #include <sys/uio.h> 48 #include <sys/vmmeter.h> 49 #include <sys/sbuf.h> 50 #include <sys/sdt.h> 51 #include <vm/vm.h> 52 #include <vm/vm_pageout.h> 53 #include <vm/vm_page.h> 54 55 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init, 56 "struct mbuf *", "mbufinfo_t *", 57 "uint32_t", "uint32_t", 58 "uint16_t", "uint16_t", 59 "uint32_t", "uint32_t", 60 "uint32_t", "uint32_t"); 61 62 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr_raw, 63 "uint32_t", "uint32_t", 64 "uint16_t", "uint16_t", 65 "struct mbuf *", "mbufinfo_t *"); 66 67 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr, 68 "uint32_t", "uint32_t", 69 "uint16_t", "uint16_t", 70 "struct mbuf *", "mbufinfo_t *"); 71 72 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get_raw, 73 "uint32_t", "uint32_t", 74 "uint16_t", "uint16_t", 75 "struct mbuf *", "mbufinfo_t *"); 76 77 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get, 78 "uint32_t", "uint32_t", 79 "uint16_t", "uint16_t", 80 "struct mbuf *", "mbufinfo_t *"); 81 82 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl, 83 "uint32_t", "uint32_t", 84 "uint16_t", "uint16_t", 85 "uint32_t", "uint32_t", 86 "struct mbuf *", "mbufinfo_t *"); 87 88 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl, 89 "uint32_t", "uint32_t", 90 "uint16_t", "uint16_t", 91 "uint32_t", "uint32_t", 92 "uint32_t", "uint32_t", 93 "struct mbuf *", "mbufinfo_t *"); 94 95 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget, 96 "struct mbuf *", "mbufinfo_t *", 97 "uint32_t", "uint32_t", 98 "uint32_t", "uint32_t"); 99 100 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget, 101 "struct mbuf *", "mbufinfo_t *", 102 "uint32_t", "uint32_t", 103 "uint32_t", "uint32_t", 104 "void*", "void*"); 105 106 SDT_PROBE_DEFINE(sdt, , , m__cljset); 107 108 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free, 109 "struct mbuf *", "mbufinfo_t *"); 110 111 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem, 112 "struct mbuf *", "mbufinfo_t *"); 113 114 #include <security/mac/mac_framework.h> 115 116 /* 117 * Provide minimum possible defaults for link and protocol header space, 118 * assuming IPv4 over Ethernet. Enabling IPv6, IEEE802.11 or some other 119 * protocol may grow these values. 120 */ 121 u_int max_linkhdr = 16; 122 u_int max_protohdr = 40; 123 u_int max_hdr = 16 + 40; 124 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 125 &max_linkhdr, 16, "Size of largest link layer header"); 126 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 127 &max_protohdr, 40, "Size of largest protocol layer header"); 128 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 129 &max_hdr, 16 + 40, "Size of largest link plus protocol header"); 130 131 static void 132 max_hdr_grow(void) 133 { 134 135 max_hdr = max_linkhdr + max_protohdr; 136 MPASS(max_hdr <= MHLEN); 137 } 138 139 void 140 max_linkhdr_grow(u_int new) 141 { 142 143 if (new > max_linkhdr) { 144 max_linkhdr = new; 145 max_hdr_grow(); 146 } 147 } 148 149 void 150 max_protohdr_grow(u_int new) 151 { 152 153 if (new > max_protohdr) { 154 max_protohdr = new; 155 max_hdr_grow(); 156 } 157 } 158 159 #ifdef MBUF_STRESS_TEST 160 int m_defragpackets; 161 int m_defragbytes; 162 int m_defraguseless; 163 int m_defragfailure; 164 int m_defragrandomfailures; 165 166 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 167 &m_defragpackets, 0, ""); 168 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 169 &m_defragbytes, 0, ""); 170 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 171 &m_defraguseless, 0, ""); 172 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 173 &m_defragfailure, 0, ""); 174 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 175 &m_defragrandomfailures, 0, ""); 176 #endif 177 178 /* 179 * Ensure the correct size of various mbuf parameters. It could be off due 180 * to compiler-induced padding and alignment artifacts. 181 */ 182 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 183 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 184 185 /* 186 * mbuf data storage should be 64-bit aligned regardless of architectural 187 * pointer size; check this is the case with and without a packet header. 188 */ 189 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0); 190 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0); 191 192 /* 193 * While the specific values here don't matter too much (i.e., +/- a few 194 * words), we do want to ensure that changes to these values are carefully 195 * reasoned about and properly documented. This is especially the case as 196 * network-protocol and device-driver modules encode these layouts, and must 197 * be recompiled if the structures change. Check these values at compile time 198 * against the ones documented in comments in mbuf.h. 199 * 200 * NB: Possibly they should be documented there via #define's and not just 201 * comments. 202 */ 203 #if defined(__LP64__) 204 CTASSERT(offsetof(struct mbuf, m_dat) == 32); 205 CTASSERT(sizeof(struct pkthdr) == 64); 206 CTASSERT(sizeof(struct m_ext) == 160); 207 #else 208 CTASSERT(offsetof(struct mbuf, m_dat) == 24); 209 CTASSERT(sizeof(struct pkthdr) == 56); 210 #if defined(__powerpc__) && defined(BOOKE) 211 /* PowerPC booke has 64-bit physical pointers. */ 212 CTASSERT(sizeof(struct m_ext) == 176); 213 #else 214 CTASSERT(sizeof(struct m_ext) == 172); 215 #endif 216 #endif 217 218 /* 219 * Assert that the queue(3) macros produce code of the same size as an old 220 * plain pointer does. 221 */ 222 #ifdef INVARIANTS 223 static struct mbuf __used m_assertbuf; 224 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next)); 225 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next)); 226 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt)); 227 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt)); 228 #endif 229 230 /* 231 * Attach the cluster from *m to *n, set up m_ext in *n 232 * and bump the refcount of the cluster. 233 */ 234 void 235 mb_dupcl(struct mbuf *n, struct mbuf *m) 236 { 237 volatile u_int *refcnt; 238 239 KASSERT(m->m_flags & (M_EXT | M_EXTPG), 240 ("%s: M_EXT | M_EXTPG not set on %p", __func__, m)); 241 KASSERT(!(n->m_flags & (M_EXT | M_EXTPG)), 242 ("%s: M_EXT | M_EXTPG set on %p", __func__, n)); 243 244 /* 245 * Cache access optimization. 246 * 247 * o Regular M_EXT storage doesn't need full copy of m_ext, since 248 * the holder of the 'ext_count' is responsible to carry the free 249 * routine and its arguments. 250 * o M_EXTPG data is split between main part of mbuf and m_ext, the 251 * main part is copied in full, the m_ext part is similar to M_EXT. 252 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is 253 * special - it needs full copy of m_ext into each mbuf, since any 254 * copy could end up as the last to free. 255 */ 256 if (m->m_flags & M_EXTPG) { 257 bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy, 258 __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy)); 259 bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen); 260 } else if (m->m_ext.ext_type == EXT_EXTREF) 261 bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext)); 262 else 263 bcopy(&m->m_ext, &n->m_ext, m_ext_copylen); 264 265 n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG); 266 267 /* See if this is the mbuf that holds the embedded refcount. */ 268 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { 269 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count; 270 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF; 271 } else { 272 KASSERT(m->m_ext.ext_cnt != NULL, 273 ("%s: no refcounting pointer on %p", __func__, m)); 274 refcnt = m->m_ext.ext_cnt; 275 } 276 277 if (*refcnt == 1) 278 *refcnt += 1; 279 else 280 atomic_add_int(refcnt, 1); 281 } 282 283 void 284 m_demote_pkthdr(struct mbuf *m) 285 { 286 287 M_ASSERTPKTHDR(m); 288 M_ASSERT_NO_SND_TAG(m); 289 290 m_tag_delete_chain(m, NULL); 291 m->m_flags &= ~M_PKTHDR; 292 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 293 } 294 295 /* 296 * Clean up mbuf (chain) from any tags and packet headers. 297 * If "all" is set then the first mbuf in the chain will be 298 * cleaned too. 299 */ 300 void 301 m_demote(struct mbuf *m0, int all, int flags) 302 { 303 struct mbuf *m; 304 305 flags |= M_DEMOTEFLAGS; 306 307 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 308 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 309 __func__, m, m0)); 310 if (m->m_flags & M_PKTHDR) 311 m_demote_pkthdr(m); 312 m->m_flags &= flags; 313 } 314 } 315 316 /* 317 * Sanity checks on mbuf (chain) for use in KASSERT() and general 318 * debugging. 319 * Returns 0 or panics when bad and 1 on all tests passed. 320 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 321 * blow up later. 322 */ 323 int 324 m_sanity(struct mbuf *m0, int sanitize) 325 { 326 struct mbuf *m; 327 caddr_t a, b; 328 int pktlen = 0; 329 330 #ifdef INVARIANTS 331 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 332 #else 333 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 334 #endif 335 336 for (m = m0; m != NULL; m = m->m_next) { 337 /* 338 * Basic pointer checks. If any of these fails then some 339 * unrelated kernel memory before or after us is trashed. 340 * No way to recover from that. 341 */ 342 a = M_START(m); 343 b = a + M_SIZE(m); 344 if ((caddr_t)m->m_data < a) 345 M_SANITY_ACTION("m_data outside mbuf data range left"); 346 if ((caddr_t)m->m_data > b) 347 M_SANITY_ACTION("m_data outside mbuf data range right"); 348 if ((caddr_t)m->m_data + m->m_len > b) 349 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 350 351 /* m->m_nextpkt may only be set on first mbuf in chain. */ 352 if (m != m0 && m->m_nextpkt != NULL) { 353 if (sanitize) { 354 m_freem(m->m_nextpkt); 355 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 356 } else 357 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 358 } 359 360 /* packet length (not mbuf length!) calculation */ 361 if (m0->m_flags & M_PKTHDR) 362 pktlen += m->m_len; 363 364 /* m_tags may only be attached to first mbuf in chain. */ 365 if (m != m0 && m->m_flags & M_PKTHDR && 366 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 367 if (sanitize) { 368 m_tag_delete_chain(m, NULL); 369 /* put in 0xDEADC0DE perhaps? */ 370 } else 371 M_SANITY_ACTION("m_tags on in-chain mbuf"); 372 } 373 374 /* M_PKTHDR may only be set on first mbuf in chain */ 375 if (m != m0 && m->m_flags & M_PKTHDR) { 376 if (sanitize) { 377 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 378 m->m_flags &= ~M_PKTHDR; 379 /* put in 0xDEADCODE and leave hdr flag in */ 380 } else 381 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 382 } 383 } 384 m = m0; 385 if (pktlen && pktlen != m->m_pkthdr.len) { 386 if (sanitize) 387 m->m_pkthdr.len = 0; 388 else 389 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 390 } 391 return 1; 392 393 #undef M_SANITY_ACTION 394 } 395 396 /* 397 * Non-inlined part of m_init(). 398 */ 399 int 400 m_pkthdr_init(struct mbuf *m, int how) 401 { 402 #ifdef MAC 403 int error; 404 #endif 405 m->m_data = m->m_pktdat; 406 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 407 #ifdef NUMA 408 m->m_pkthdr.numa_domain = M_NODOM; 409 #endif 410 #ifdef MAC 411 /* If the label init fails, fail the alloc */ 412 error = mac_mbuf_init(m, how); 413 if (error) 414 return (error); 415 #endif 416 417 return (0); 418 } 419 420 /* 421 * "Move" mbuf pkthdr from "from" to "to". 422 * "from" must have M_PKTHDR set, and "to" must be empty. 423 */ 424 void 425 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 426 { 427 428 #if 0 429 /* see below for why these are not enabled */ 430 M_ASSERTPKTHDR(to); 431 /* Note: with MAC, this may not be a good assertion. */ 432 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 433 ("m_move_pkthdr: to has tags")); 434 #endif 435 #ifdef MAC 436 /* 437 * XXXMAC: It could be this should also occur for non-MAC? 438 */ 439 if (to->m_flags & M_PKTHDR) 440 m_tag_delete_chain(to, NULL); 441 #endif 442 to->m_flags = (from->m_flags & M_COPYFLAGS) | 443 (to->m_flags & (M_EXT | M_EXTPG)); 444 if ((to->m_flags & M_EXT) == 0) 445 to->m_data = to->m_pktdat; 446 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 447 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 448 from->m_flags &= ~M_PKTHDR; 449 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) { 450 from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG; 451 from->m_pkthdr.snd_tag = NULL; 452 } 453 } 454 455 /* 456 * Duplicate "from"'s mbuf pkthdr in "to". 457 * "from" must have M_PKTHDR set, and "to" must be empty. 458 * In particular, this does a deep copy of the packet tags. 459 */ 460 int 461 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how) 462 { 463 464 #if 0 465 /* 466 * The mbuf allocator only initializes the pkthdr 467 * when the mbuf is allocated with m_gethdr(). Many users 468 * (e.g. m_copy*, m_prepend) use m_get() and then 469 * smash the pkthdr as needed causing these 470 * assertions to trip. For now just disable them. 471 */ 472 M_ASSERTPKTHDR(to); 473 /* Note: with MAC, this may not be a good assertion. */ 474 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 475 #endif 476 MBUF_CHECKSLEEP(how); 477 #ifdef MAC 478 if (to->m_flags & M_PKTHDR) 479 m_tag_delete_chain(to, NULL); 480 #endif 481 to->m_flags = (from->m_flags & M_COPYFLAGS) | 482 (to->m_flags & (M_EXT | M_EXTPG)); 483 if ((to->m_flags & M_EXT) == 0) 484 to->m_data = to->m_pktdat; 485 to->m_pkthdr = from->m_pkthdr; 486 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) 487 m_snd_tag_ref(from->m_pkthdr.snd_tag); 488 SLIST_INIT(&to->m_pkthdr.tags); 489 return (m_tag_copy_chain(to, from, how)); 490 } 491 492 /* 493 * Lesser-used path for M_PREPEND: 494 * allocate new mbuf to prepend to chain, 495 * copy junk along. 496 */ 497 struct mbuf * 498 m_prepend(struct mbuf *m, int len, int how) 499 { 500 struct mbuf *mn; 501 502 if (m->m_flags & M_PKTHDR) 503 mn = m_gethdr(how, m->m_type); 504 else 505 mn = m_get(how, m->m_type); 506 if (mn == NULL) { 507 m_freem(m); 508 return (NULL); 509 } 510 if (m->m_flags & M_PKTHDR) 511 m_move_pkthdr(mn, m); 512 mn->m_next = m; 513 m = mn; 514 if (len < M_SIZE(m)) 515 M_ALIGN(m, len); 516 m->m_len = len; 517 return (m); 518 } 519 520 /* 521 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 522 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 523 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 524 * Note that the copy is read-only, because clusters are not copied, 525 * only their reference counts are incremented. 526 */ 527 struct mbuf * 528 m_copym(struct mbuf *m, int off0, int len, int wait) 529 { 530 struct mbuf *n, **np; 531 int off = off0; 532 struct mbuf *top; 533 int copyhdr = 0; 534 535 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 536 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 537 MBUF_CHECKSLEEP(wait); 538 if (off == 0 && m->m_flags & M_PKTHDR) 539 copyhdr = 1; 540 while (off > 0) { 541 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 542 if (off < m->m_len) 543 break; 544 off -= m->m_len; 545 m = m->m_next; 546 } 547 np = ⊤ 548 top = NULL; 549 while (len > 0) { 550 if (m == NULL) { 551 KASSERT(len == M_COPYALL, 552 ("m_copym, length > size of mbuf chain")); 553 break; 554 } 555 if (copyhdr) 556 n = m_gethdr(wait, m->m_type); 557 else 558 n = m_get(wait, m->m_type); 559 *np = n; 560 if (n == NULL) 561 goto nospace; 562 if (copyhdr) { 563 if (!m_dup_pkthdr(n, m, wait)) 564 goto nospace; 565 if (len == M_COPYALL) 566 n->m_pkthdr.len -= off0; 567 else 568 n->m_pkthdr.len = len; 569 copyhdr = 0; 570 } 571 n->m_len = min(len, m->m_len - off); 572 if (m->m_flags & (M_EXT | M_EXTPG)) { 573 n->m_data = m->m_data + off; 574 mb_dupcl(n, m); 575 } else 576 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 577 (u_int)n->m_len); 578 if (len != M_COPYALL) 579 len -= n->m_len; 580 off = 0; 581 m = m->m_next; 582 np = &n->m_next; 583 } 584 585 return (top); 586 nospace: 587 m_freem(top); 588 return (NULL); 589 } 590 591 /* 592 * Copy an entire packet, including header (which must be present). 593 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 594 * Note that the copy is read-only, because clusters are not copied, 595 * only their reference counts are incremented. 596 * Preserve alignment of the first mbuf so if the creator has left 597 * some room at the beginning (e.g. for inserting protocol headers) 598 * the copies still have the room available. 599 */ 600 struct mbuf * 601 m_copypacket(struct mbuf *m, int how) 602 { 603 struct mbuf *top, *n, *o; 604 605 MBUF_CHECKSLEEP(how); 606 n = m_get(how, m->m_type); 607 top = n; 608 if (n == NULL) 609 goto nospace; 610 611 if (!m_dup_pkthdr(n, m, how)) 612 goto nospace; 613 n->m_len = m->m_len; 614 if (m->m_flags & (M_EXT | M_EXTPG)) { 615 n->m_data = m->m_data; 616 mb_dupcl(n, m); 617 } else { 618 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 619 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 620 } 621 622 m = m->m_next; 623 while (m) { 624 o = m_get(how, m->m_type); 625 if (o == NULL) 626 goto nospace; 627 628 n->m_next = o; 629 n = n->m_next; 630 631 n->m_len = m->m_len; 632 if (m->m_flags & (M_EXT | M_EXTPG)) { 633 n->m_data = m->m_data; 634 mb_dupcl(n, m); 635 } else { 636 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 637 } 638 639 m = m->m_next; 640 } 641 return top; 642 nospace: 643 m_freem(top); 644 return (NULL); 645 } 646 647 static void 648 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp) 649 { 650 struct iovec iov; 651 struct uio uio; 652 int error __diagused; 653 654 KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off)); 655 KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len)); 656 KASSERT(off < m->m_len, 657 ("m_copyfromunmapped: len exceeds mbuf length")); 658 iov.iov_base = cp; 659 iov.iov_len = len; 660 uio.uio_resid = len; 661 uio.uio_iov = &iov; 662 uio.uio_segflg = UIO_SYSSPACE; 663 uio.uio_iovcnt = 1; 664 uio.uio_offset = 0; 665 uio.uio_rw = UIO_READ; 666 error = m_unmapped_uiomove(m, off, &uio, len); 667 KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off, 668 len)); 669 } 670 671 /* 672 * Copy data from an mbuf chain starting "off" bytes from the beginning, 673 * continuing for "len" bytes, into the indicated buffer. 674 */ 675 void 676 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 677 { 678 u_int count; 679 680 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 681 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 682 while (off > 0) { 683 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 684 if (off < m->m_len) 685 break; 686 off -= m->m_len; 687 m = m->m_next; 688 } 689 while (len > 0) { 690 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 691 count = min(m->m_len - off, len); 692 if ((m->m_flags & M_EXTPG) != 0) 693 m_copyfromunmapped(m, off, count, cp); 694 else 695 bcopy(mtod(m, caddr_t) + off, cp, count); 696 len -= count; 697 cp += count; 698 off = 0; 699 m = m->m_next; 700 } 701 } 702 703 /* 704 * Copy a packet header mbuf chain into a completely new chain, including 705 * copying any mbuf clusters. Use this instead of m_copypacket() when 706 * you need a writable copy of an mbuf chain. 707 */ 708 struct mbuf * 709 m_dup(const struct mbuf *m, int how) 710 { 711 struct mbuf **p, *top = NULL; 712 int remain, moff, nsize; 713 714 MBUF_CHECKSLEEP(how); 715 /* Sanity check */ 716 if (m == NULL) 717 return (NULL); 718 M_ASSERTPKTHDR(m); 719 720 /* While there's more data, get a new mbuf, tack it on, and fill it */ 721 remain = m->m_pkthdr.len; 722 moff = 0; 723 p = ⊤ 724 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 725 struct mbuf *n; 726 727 /* Get the next new mbuf */ 728 if (remain >= MINCLSIZE) { 729 n = m_getcl(how, m->m_type, 0); 730 nsize = MCLBYTES; 731 } else { 732 n = m_get(how, m->m_type); 733 nsize = MLEN; 734 } 735 if (n == NULL) 736 goto nospace; 737 738 if (top == NULL) { /* First one, must be PKTHDR */ 739 if (!m_dup_pkthdr(n, m, how)) { 740 m_free(n); 741 goto nospace; 742 } 743 if ((n->m_flags & M_EXT) == 0) 744 nsize = MHLEN; 745 n->m_flags &= ~M_RDONLY; 746 } 747 n->m_len = 0; 748 749 /* Link it into the new chain */ 750 *p = n; 751 p = &n->m_next; 752 753 /* Copy data from original mbuf(s) into new mbuf */ 754 while (n->m_len < nsize && m != NULL) { 755 int chunk = min(nsize - n->m_len, m->m_len - moff); 756 757 m_copydata(m, moff, chunk, n->m_data + n->m_len); 758 moff += chunk; 759 n->m_len += chunk; 760 remain -= chunk; 761 if (moff == m->m_len) { 762 m = m->m_next; 763 moff = 0; 764 } 765 } 766 767 /* Check correct total mbuf length */ 768 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 769 ("%s: bogus m_pkthdr.len", __func__)); 770 } 771 return (top); 772 773 nospace: 774 m_freem(top); 775 return (NULL); 776 } 777 778 /* 779 * Concatenate mbuf chain n to m. 780 * Both chains must be of the same type (e.g. MT_DATA). 781 * Any m_pkthdr is not updated. 782 */ 783 void 784 m_cat(struct mbuf *m, struct mbuf *n) 785 { 786 while (m->m_next) 787 m = m->m_next; 788 while (n) { 789 if (!M_WRITABLE(m) || 790 (n->m_flags & M_EXTPG) != 0 || 791 M_TRAILINGSPACE(m) < n->m_len) { 792 /* just join the two chains */ 793 m->m_next = n; 794 return; 795 } 796 /* splat the data from one into the other */ 797 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 798 (u_int)n->m_len); 799 m->m_len += n->m_len; 800 n = m_free(n); 801 } 802 } 803 804 /* 805 * Concatenate two pkthdr mbuf chains. 806 */ 807 void 808 m_catpkt(struct mbuf *m, struct mbuf *n) 809 { 810 811 M_ASSERTPKTHDR(m); 812 M_ASSERTPKTHDR(n); 813 814 m->m_pkthdr.len += n->m_pkthdr.len; 815 m_demote(n, 1, 0); 816 817 m_cat(m, n); 818 } 819 820 void 821 m_adj(struct mbuf *mp, int req_len) 822 { 823 int len = req_len; 824 struct mbuf *m; 825 int count; 826 827 if ((m = mp) == NULL) 828 return; 829 if (len >= 0) { 830 /* 831 * Trim from head. 832 */ 833 while (m != NULL && len > 0) { 834 if (m->m_len <= len) { 835 len -= m->m_len; 836 m->m_len = 0; 837 m = m->m_next; 838 } else { 839 m->m_len -= len; 840 m->m_data += len; 841 len = 0; 842 } 843 } 844 if (mp->m_flags & M_PKTHDR) 845 mp->m_pkthdr.len -= (req_len - len); 846 } else { 847 /* 848 * Trim from tail. Scan the mbuf chain, 849 * calculating its length and finding the last mbuf. 850 * If the adjustment only affects this mbuf, then just 851 * adjust and return. Otherwise, rescan and truncate 852 * after the remaining size. 853 */ 854 len = -len; 855 count = 0; 856 for (;;) { 857 count += m->m_len; 858 if (m->m_next == (struct mbuf *)0) 859 break; 860 m = m->m_next; 861 } 862 if (m->m_len >= len) { 863 m->m_len -= len; 864 if (mp->m_flags & M_PKTHDR) 865 mp->m_pkthdr.len -= len; 866 return; 867 } 868 count -= len; 869 if (count < 0) 870 count = 0; 871 /* 872 * Correct length for chain is "count". 873 * Find the mbuf with last data, adjust its length, 874 * and toss data from remaining mbufs on chain. 875 */ 876 m = mp; 877 if (m->m_flags & M_PKTHDR) 878 m->m_pkthdr.len = count; 879 for (; m; m = m->m_next) { 880 if (m->m_len >= count) { 881 m->m_len = count; 882 if (m->m_next != NULL) { 883 m_freem(m->m_next); 884 m->m_next = NULL; 885 } 886 break; 887 } 888 count -= m->m_len; 889 } 890 } 891 } 892 893 void 894 m_adj_decap(struct mbuf *mp, int len) 895 { 896 uint8_t rsstype; 897 898 m_adj(mp, len); 899 if ((mp->m_flags & M_PKTHDR) != 0) { 900 /* 901 * If flowid was calculated by card from the inner 902 * headers, move flowid to the decapsulated mbuf 903 * chain, otherwise clear. This depends on the 904 * internals of m_adj, which keeps pkthdr as is, in 905 * particular not changing rsstype and flowid. 906 */ 907 rsstype = mp->m_pkthdr.rsstype; 908 if ((rsstype & M_HASHTYPE_INNER) != 0) { 909 M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER); 910 } else { 911 M_HASHTYPE_CLEAR(mp); 912 } 913 } 914 } 915 916 /* 917 * Rearange an mbuf chain so that len bytes are contiguous 918 * and in the data area of an mbuf (so that mtod will work 919 * for a structure of size len). Returns the resulting 920 * mbuf chain on success, frees it and returns null on failure. 921 * If there is room, it will add up to max_protohdr-len extra bytes to the 922 * contiguous region in an attempt to avoid being called next time. 923 */ 924 struct mbuf * 925 m_pullup(struct mbuf *n, int len) 926 { 927 struct mbuf *m; 928 int count; 929 int space; 930 931 KASSERT((n->m_flags & M_EXTPG) == 0, 932 ("%s: unmapped mbuf %p", __func__, n)); 933 934 /* 935 * If first mbuf has no cluster, and has room for len bytes 936 * without shifting current data, pullup into it, 937 * otherwise allocate a new mbuf to prepend to the chain. 938 */ 939 if ((n->m_flags & M_EXT) == 0 && 940 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 941 if (n->m_len >= len) 942 return (n); 943 m = n; 944 n = n->m_next; 945 len -= m->m_len; 946 } else { 947 if (len > MHLEN) 948 goto bad; 949 m = m_get(M_NOWAIT, n->m_type); 950 if (m == NULL) 951 goto bad; 952 if (n->m_flags & M_PKTHDR) 953 m_move_pkthdr(m, n); 954 } 955 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 956 do { 957 count = min(min(max(len, max_protohdr), space), n->m_len); 958 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 959 (u_int)count); 960 len -= count; 961 m->m_len += count; 962 n->m_len -= count; 963 space -= count; 964 if (n->m_len) 965 n->m_data += count; 966 else 967 n = m_free(n); 968 } while (len > 0 && n); 969 if (len > 0) { 970 (void) m_free(m); 971 goto bad; 972 } 973 m->m_next = n; 974 return (m); 975 bad: 976 m_freem(n); 977 return (NULL); 978 } 979 980 /* 981 * Like m_pullup(), except a new mbuf is always allocated, and we allow 982 * the amount of empty space before the data in the new mbuf to be specified 983 * (in the event that the caller expects to prepend later). 984 */ 985 struct mbuf * 986 m_copyup(struct mbuf *n, int len, int dstoff) 987 { 988 struct mbuf *m; 989 int count, space; 990 991 if (len > (MHLEN - dstoff)) 992 goto bad; 993 m = m_get(M_NOWAIT, n->m_type); 994 if (m == NULL) 995 goto bad; 996 if (n->m_flags & M_PKTHDR) 997 m_move_pkthdr(m, n); 998 m->m_data += dstoff; 999 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1000 do { 1001 count = min(min(max(len, max_protohdr), space), n->m_len); 1002 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 1003 (unsigned)count); 1004 len -= count; 1005 m->m_len += count; 1006 n->m_len -= count; 1007 space -= count; 1008 if (n->m_len) 1009 n->m_data += count; 1010 else 1011 n = m_free(n); 1012 } while (len > 0 && n); 1013 if (len > 0) { 1014 (void) m_free(m); 1015 goto bad; 1016 } 1017 m->m_next = n; 1018 return (m); 1019 bad: 1020 m_freem(n); 1021 return (NULL); 1022 } 1023 1024 /* 1025 * Partition an mbuf chain in two pieces, returning the tail -- 1026 * all but the first len0 bytes. In case of failure, it returns NULL and 1027 * attempts to restore the chain to its original state. 1028 * 1029 * Note that the resulting mbufs might be read-only, because the new 1030 * mbuf can end up sharing an mbuf cluster with the original mbuf if 1031 * the "breaking point" happens to lie within a cluster mbuf. Use the 1032 * M_WRITABLE() macro to check for this case. 1033 */ 1034 struct mbuf * 1035 m_split(struct mbuf *m0, int len0, int wait) 1036 { 1037 struct mbuf *m, *n; 1038 u_int len = len0, remain; 1039 1040 MBUF_CHECKSLEEP(wait); 1041 for (m = m0; m && len > m->m_len; m = m->m_next) 1042 len -= m->m_len; 1043 if (m == NULL) 1044 return (NULL); 1045 remain = m->m_len - len; 1046 if (m0->m_flags & M_PKTHDR && remain == 0) { 1047 n = m_gethdr(wait, m0->m_type); 1048 if (n == NULL) 1049 return (NULL); 1050 n->m_next = m->m_next; 1051 m->m_next = NULL; 1052 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1053 n->m_pkthdr.snd_tag = 1054 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 1055 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 1056 } else 1057 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1058 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1059 m0->m_pkthdr.len = len0; 1060 return (n); 1061 } else if (m0->m_flags & M_PKTHDR) { 1062 n = m_gethdr(wait, m0->m_type); 1063 if (n == NULL) 1064 return (NULL); 1065 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1066 n->m_pkthdr.snd_tag = 1067 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 1068 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 1069 } else 1070 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1071 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1072 m0->m_pkthdr.len = len0; 1073 if (m->m_flags & (M_EXT | M_EXTPG)) 1074 goto extpacket; 1075 if (remain > MHLEN) { 1076 /* m can't be the lead packet */ 1077 M_ALIGN(n, 0); 1078 n->m_next = m_split(m, len, wait); 1079 if (n->m_next == NULL) { 1080 (void) m_free(n); 1081 return (NULL); 1082 } else { 1083 n->m_len = 0; 1084 return (n); 1085 } 1086 } else 1087 M_ALIGN(n, remain); 1088 } else if (remain == 0) { 1089 n = m->m_next; 1090 m->m_next = NULL; 1091 return (n); 1092 } else { 1093 n = m_get(wait, m->m_type); 1094 if (n == NULL) 1095 return (NULL); 1096 M_ALIGN(n, remain); 1097 } 1098 extpacket: 1099 if (m->m_flags & (M_EXT | M_EXTPG)) { 1100 n->m_data = m->m_data + len; 1101 mb_dupcl(n, m); 1102 } else { 1103 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1104 } 1105 n->m_len = remain; 1106 m->m_len = len; 1107 n->m_next = m->m_next; 1108 m->m_next = NULL; 1109 return (n); 1110 } 1111 1112 /* 1113 * Partition mchain in two pieces, keeping len0 bytes in head and transferring 1114 * remainder to tail. In case of failure, both chains to be left untouched. 1115 * M_EOR is observed correctly. 1116 * Resulting mbufs might be read-only. 1117 */ 1118 int 1119 mc_split(struct mchain *head, struct mchain *tail, u_int len0, int wait) 1120 { 1121 struct mbuf *m, *n; 1122 u_int len, mlen, remain; 1123 1124 MPASS(!(mc_first(head)->m_flags & M_PKTHDR)); 1125 MBUF_CHECKSLEEP(wait); 1126 1127 mlen = 0; 1128 len = len0; 1129 STAILQ_FOREACH(m, &head->mc_q, m_stailq) { 1130 mlen += MSIZE; 1131 if (m->m_flags & M_EXT) 1132 mlen += m->m_ext.ext_size; 1133 if (len > m->m_len) 1134 len -= m->m_len; 1135 else 1136 break; 1137 } 1138 if (__predict_false(m == NULL)) { 1139 *tail = MCHAIN_INITIALIZER(tail); 1140 return (0); 1141 } 1142 remain = m->m_len - len; 1143 if (remain > 0) { 1144 if (__predict_false((n = m_get(wait, m->m_type)) == NULL)) 1145 return (ENOMEM); 1146 m_align(n, remain); 1147 if (m->m_flags & M_EXT) { 1148 n->m_data = m->m_data + len; 1149 mb_dupcl(n, m); 1150 } else 1151 bcopy(mtod(m, char *) + len, mtod(n, char *), remain); 1152 } 1153 1154 /* XXXGL: need STAILQ_SPLIT */ 1155 STAILQ_FIRST(&tail->mc_q) = STAILQ_NEXT(m, m_stailq); 1156 tail->mc_q.stqh_last = head->mc_q.stqh_last; 1157 tail->mc_len = head->mc_len - len0; 1158 tail->mc_mlen = head->mc_mlen - mlen; 1159 if (remain > 0) { 1160 MPASS(n->m_len == 0); 1161 mc_prepend(tail, n); 1162 n->m_len = remain; 1163 m->m_len -= remain; 1164 if (m->m_flags & M_EOR) { 1165 m->m_flags &= ~M_EOR; 1166 n->m_flags |= M_EOR; 1167 } 1168 } 1169 head->mc_q.stqh_last = &STAILQ_NEXT(m, m_stailq); 1170 STAILQ_NEXT(m, m_stailq) = NULL; 1171 head->mc_len = len0; 1172 head->mc_mlen = mlen; 1173 1174 return (0); 1175 } 1176 1177 /* 1178 * Routine to copy from device local memory into mbufs. 1179 * Note that `off' argument is offset into first mbuf of target chain from 1180 * which to begin copying the data to. 1181 */ 1182 struct mbuf * 1183 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1184 void (*copy)(char *from, caddr_t to, u_int len)) 1185 { 1186 struct mbuf *m; 1187 struct mbuf *top = NULL, **mp = ⊤ 1188 int len; 1189 1190 if (off < 0 || off > MHLEN) 1191 return (NULL); 1192 1193 while (totlen > 0) { 1194 if (top == NULL) { /* First one, must be PKTHDR */ 1195 if (totlen + off >= MINCLSIZE) { 1196 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1197 len = MCLBYTES; 1198 } else { 1199 m = m_gethdr(M_NOWAIT, MT_DATA); 1200 len = MHLEN; 1201 1202 /* Place initial small packet/header at end of mbuf */ 1203 if (m && totlen + off + max_linkhdr <= MHLEN) { 1204 m->m_data += max_linkhdr; 1205 len -= max_linkhdr; 1206 } 1207 } 1208 if (m == NULL) 1209 return NULL; 1210 m->m_pkthdr.rcvif = ifp; 1211 m->m_pkthdr.len = totlen; 1212 } else { 1213 if (totlen + off >= MINCLSIZE) { 1214 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1215 len = MCLBYTES; 1216 } else { 1217 m = m_get(M_NOWAIT, MT_DATA); 1218 len = MLEN; 1219 } 1220 if (m == NULL) { 1221 m_freem(top); 1222 return NULL; 1223 } 1224 } 1225 if (off) { 1226 m->m_data += off; 1227 len -= off; 1228 off = 0; 1229 } 1230 m->m_len = len = min(totlen, len); 1231 if (copy) 1232 copy(buf, mtod(m, caddr_t), (u_int)len); 1233 else 1234 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1235 buf += len; 1236 *mp = m; 1237 mp = &m->m_next; 1238 totlen -= len; 1239 } 1240 return (top); 1241 } 1242 1243 static void 1244 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp) 1245 { 1246 struct iovec iov; 1247 struct uio uio; 1248 int error __diagused; 1249 1250 KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off)); 1251 KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len)); 1252 KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length")); 1253 iov.iov_base = __DECONST(caddr_t, cp); 1254 iov.iov_len = len; 1255 uio.uio_resid = len; 1256 uio.uio_iov = &iov; 1257 uio.uio_segflg = UIO_SYSSPACE; 1258 uio.uio_iovcnt = 1; 1259 uio.uio_offset = 0; 1260 uio.uio_rw = UIO_WRITE; 1261 error = m_unmapped_uiomove(m, off, &uio, len); 1262 KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off, 1263 len)); 1264 } 1265 1266 /* 1267 * Copy data from a buffer back into the indicated mbuf chain, 1268 * starting "off" bytes from the beginning, extending the mbuf 1269 * chain if necessary. 1270 */ 1271 void 1272 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1273 { 1274 int mlen; 1275 struct mbuf *m = m0, *n; 1276 int totlen = 0; 1277 1278 if (m0 == NULL) 1279 return; 1280 while (off > (mlen = m->m_len)) { 1281 off -= mlen; 1282 totlen += mlen; 1283 if (m->m_next == NULL) { 1284 n = m_get(M_NOWAIT, m->m_type); 1285 if (n == NULL) 1286 goto out; 1287 bzero(mtod(n, caddr_t), MLEN); 1288 n->m_len = min(MLEN, len + off); 1289 m->m_next = n; 1290 } 1291 m = m->m_next; 1292 } 1293 while (len > 0) { 1294 if (m->m_next == NULL && (len > m->m_len - off)) { 1295 m->m_len += min(len - (m->m_len - off), 1296 M_TRAILINGSPACE(m)); 1297 } 1298 mlen = min (m->m_len - off, len); 1299 if ((m->m_flags & M_EXTPG) != 0) 1300 m_copytounmapped(m, off, mlen, cp); 1301 else 1302 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1303 cp += mlen; 1304 len -= mlen; 1305 mlen += off; 1306 off = 0; 1307 totlen += mlen; 1308 if (len == 0) 1309 break; 1310 if (m->m_next == NULL) { 1311 n = m_get(M_NOWAIT, m->m_type); 1312 if (n == NULL) 1313 break; 1314 n->m_len = min(MLEN, len); 1315 m->m_next = n; 1316 } 1317 m = m->m_next; 1318 } 1319 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1320 m->m_pkthdr.len = totlen; 1321 } 1322 1323 /* 1324 * Append the specified data to the indicated mbuf chain, 1325 * Extend the mbuf chain if the new data does not fit in 1326 * existing space. 1327 * 1328 * Return 1 if able to complete the job; otherwise 0. 1329 */ 1330 int 1331 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1332 { 1333 struct mbuf *m, *n; 1334 int remainder, space; 1335 1336 for (m = m0; m->m_next != NULL; m = m->m_next) 1337 ; 1338 remainder = len; 1339 space = M_TRAILINGSPACE(m); 1340 if (space > 0) { 1341 /* 1342 * Copy into available space. 1343 */ 1344 if (space > remainder) 1345 space = remainder; 1346 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1347 m->m_len += space; 1348 cp += space, remainder -= space; 1349 } 1350 while (remainder > 0) { 1351 /* 1352 * Allocate a new mbuf; could check space 1353 * and allocate a cluster instead. 1354 */ 1355 n = m_get(M_NOWAIT, m->m_type); 1356 if (n == NULL) 1357 break; 1358 n->m_len = min(MLEN, remainder); 1359 bcopy(cp, mtod(n, caddr_t), n->m_len); 1360 cp += n->m_len, remainder -= n->m_len; 1361 m->m_next = n; 1362 m = n; 1363 } 1364 if (m0->m_flags & M_PKTHDR) 1365 m0->m_pkthdr.len += len - remainder; 1366 return (remainder == 0); 1367 } 1368 1369 static int 1370 m_apply_extpg_one(struct mbuf *m, int off, int len, 1371 int (*f)(void *, void *, u_int), void *arg) 1372 { 1373 void *p; 1374 u_int i, count, pgoff, pglen; 1375 int rval; 1376 1377 KASSERT(PMAP_HAS_DMAP, 1378 ("m_apply_extpg_one does not support unmapped mbufs")); 1379 off += mtod(m, vm_offset_t); 1380 if (off < m->m_epg_hdrlen) { 1381 count = min(m->m_epg_hdrlen - off, len); 1382 rval = f(arg, m->m_epg_hdr + off, count); 1383 if (rval) 1384 return (rval); 1385 len -= count; 1386 off = 0; 1387 } else 1388 off -= m->m_epg_hdrlen; 1389 pgoff = m->m_epg_1st_off; 1390 for (i = 0; i < m->m_epg_npgs && len > 0; i++) { 1391 pglen = m_epg_pagelen(m, i, pgoff); 1392 if (off < pglen) { 1393 count = min(pglen - off, len); 1394 p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff + off); 1395 rval = f(arg, p, count); 1396 if (rval) 1397 return (rval); 1398 len -= count; 1399 off = 0; 1400 } else 1401 off -= pglen; 1402 pgoff = 0; 1403 } 1404 if (len > 0) { 1405 KASSERT(off < m->m_epg_trllen, 1406 ("m_apply_extpg_one: offset beyond trailer")); 1407 KASSERT(len <= m->m_epg_trllen - off, 1408 ("m_apply_extpg_one: length beyond trailer")); 1409 return (f(arg, m->m_epg_trail + off, len)); 1410 } 1411 return (0); 1412 } 1413 1414 /* Apply function f to the data in a single mbuf. */ 1415 static int 1416 m_apply_one(struct mbuf *m, int off, int len, 1417 int (*f)(void *, void *, u_int), void *arg) 1418 { 1419 if ((m->m_flags & M_EXTPG) != 0) 1420 return (m_apply_extpg_one(m, off, len, f, arg)); 1421 else 1422 return (f(arg, mtod(m, caddr_t) + off, len)); 1423 } 1424 1425 /* 1426 * Apply function f to the data in an mbuf chain starting "off" bytes from 1427 * the beginning, continuing for "len" bytes. 1428 */ 1429 int 1430 m_apply(struct mbuf *m, int off, int len, 1431 int (*f)(void *, void *, u_int), void *arg) 1432 { 1433 u_int count; 1434 int rval; 1435 1436 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1437 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1438 while (off > 0) { 1439 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1440 if (off < m->m_len) 1441 break; 1442 off -= m->m_len; 1443 m = m->m_next; 1444 } 1445 while (len > 0) { 1446 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1447 count = min(m->m_len - off, len); 1448 rval = m_apply_one(m, off, count, f, arg); 1449 if (rval) 1450 return (rval); 1451 len -= count; 1452 off = 0; 1453 m = m->m_next; 1454 } 1455 return (0); 1456 } 1457 1458 /* 1459 * Return a pointer to mbuf/offset of location in mbuf chain. 1460 */ 1461 struct mbuf * 1462 m_getptr(struct mbuf *m, int loc, int *off) 1463 { 1464 1465 while (loc >= 0) { 1466 /* Normal end of search. */ 1467 if (m->m_len > loc) { 1468 *off = loc; 1469 return (m); 1470 } else { 1471 loc -= m->m_len; 1472 if (m->m_next == NULL) { 1473 if (loc == 0) { 1474 /* Point at the end of valid data. */ 1475 *off = m->m_len; 1476 return (m); 1477 } 1478 return (NULL); 1479 } 1480 m = m->m_next; 1481 } 1482 } 1483 return (NULL); 1484 } 1485 1486 void 1487 m_print(const struct mbuf *m, int maxlen) 1488 { 1489 int len; 1490 int pdata; 1491 const struct mbuf *m2; 1492 1493 if (m == NULL) { 1494 printf("mbuf: %p\n", m); 1495 return; 1496 } 1497 1498 if (m->m_flags & M_PKTHDR) 1499 len = m->m_pkthdr.len; 1500 else 1501 len = -1; 1502 m2 = m; 1503 while (m2 != NULL && (len == -1 || len)) { 1504 pdata = m2->m_len; 1505 if (maxlen != -1 && pdata > maxlen) 1506 pdata = maxlen; 1507 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1508 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1509 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1510 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1511 if (pdata) 1512 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1513 if (len != -1) 1514 len -= m2->m_len; 1515 m2 = m2->m_next; 1516 } 1517 if (len > 0) 1518 printf("%d bytes unaccounted for.\n", len); 1519 return; 1520 } 1521 1522 u_int 1523 m_fixhdr(struct mbuf *m0) 1524 { 1525 u_int len; 1526 1527 len = m_length(m0, NULL); 1528 m0->m_pkthdr.len = len; 1529 return (len); 1530 } 1531 1532 u_int 1533 m_length(struct mbuf *m0, struct mbuf **last) 1534 { 1535 struct mbuf *m; 1536 u_int len; 1537 1538 len = 0; 1539 for (m = m0; m != NULL; m = m->m_next) { 1540 len += m->m_len; 1541 if (m->m_next == NULL) 1542 break; 1543 } 1544 if (last != NULL) 1545 *last = m; 1546 return (len); 1547 } 1548 1549 /* 1550 * Defragment a mbuf chain, returning the shortest possible 1551 * chain of mbufs and clusters. If allocation fails and 1552 * this cannot be completed, NULL will be returned, but 1553 * the passed in chain will be unchanged. Upon success, 1554 * the original chain will be freed, and the new chain 1555 * will be returned. 1556 * 1557 * If a non-packet header is passed in, the original 1558 * mbuf (chain?) will be returned unharmed. 1559 */ 1560 struct mbuf * 1561 m_defrag(struct mbuf *m0, int how) 1562 { 1563 struct mbuf *m_new = NULL, *m_final = NULL; 1564 int progress = 0, length; 1565 1566 MBUF_CHECKSLEEP(how); 1567 if (!(m0->m_flags & M_PKTHDR)) 1568 return (m0); 1569 1570 m_fixhdr(m0); /* Needed sanity check */ 1571 1572 #ifdef MBUF_STRESS_TEST 1573 if (m_defragrandomfailures) { 1574 int temp = arc4random() & 0xff; 1575 if (temp == 0xba) 1576 goto nospace; 1577 } 1578 #endif 1579 1580 if (m0->m_pkthdr.len > MHLEN) 1581 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1582 else 1583 m_final = m_gethdr(how, MT_DATA); 1584 1585 if (m_final == NULL) 1586 goto nospace; 1587 1588 if (m_dup_pkthdr(m_final, m0, how) == 0) 1589 goto nospace; 1590 1591 m_new = m_final; 1592 1593 while (progress < m0->m_pkthdr.len) { 1594 length = m0->m_pkthdr.len - progress; 1595 if (length > MCLBYTES) 1596 length = MCLBYTES; 1597 1598 if (m_new == NULL) { 1599 if (length > MLEN) 1600 m_new = m_getcl(how, MT_DATA, 0); 1601 else 1602 m_new = m_get(how, MT_DATA); 1603 if (m_new == NULL) 1604 goto nospace; 1605 } 1606 1607 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1608 progress += length; 1609 m_new->m_len = length; 1610 if (m_new != m_final) 1611 m_cat(m_final, m_new); 1612 m_new = NULL; 1613 } 1614 #ifdef MBUF_STRESS_TEST 1615 if (m0->m_next == NULL) 1616 m_defraguseless++; 1617 #endif 1618 m_freem(m0); 1619 m0 = m_final; 1620 #ifdef MBUF_STRESS_TEST 1621 m_defragpackets++; 1622 m_defragbytes += m0->m_pkthdr.len; 1623 #endif 1624 return (m0); 1625 nospace: 1626 #ifdef MBUF_STRESS_TEST 1627 m_defragfailure++; 1628 #endif 1629 if (m_final) 1630 m_freem(m_final); 1631 return (NULL); 1632 } 1633 1634 /* 1635 * Return the number of fragments an mbuf will use. This is usually 1636 * used as a proxy for the number of scatter/gather elements needed by 1637 * a DMA engine to access an mbuf. In general mapped mbufs are 1638 * assumed to be backed by physically contiguous buffers that only 1639 * need a single fragment. Unmapped mbufs, on the other hand, can 1640 * span disjoint physical pages. 1641 */ 1642 static int 1643 frags_per_mbuf(struct mbuf *m) 1644 { 1645 int frags; 1646 1647 if ((m->m_flags & M_EXTPG) == 0) 1648 return (1); 1649 1650 /* 1651 * The header and trailer are counted as a single fragment 1652 * each when present. 1653 * 1654 * XXX: This overestimates the number of fragments by assuming 1655 * all the backing physical pages are disjoint. 1656 */ 1657 frags = 0; 1658 if (m->m_epg_hdrlen != 0) 1659 frags++; 1660 frags += m->m_epg_npgs; 1661 if (m->m_epg_trllen != 0) 1662 frags++; 1663 1664 return (frags); 1665 } 1666 1667 /* 1668 * Defragment an mbuf chain, returning at most maxfrags separate 1669 * mbufs+clusters. If this is not possible NULL is returned and 1670 * the original mbuf chain is left in its present (potentially 1671 * modified) state. We use two techniques: collapsing consecutive 1672 * mbufs and replacing consecutive mbufs by a cluster. 1673 * 1674 * NB: this should really be named m_defrag but that name is taken 1675 */ 1676 struct mbuf * 1677 m_collapse(struct mbuf *m0, int how, int maxfrags) 1678 { 1679 struct mbuf *m, *n, *n2, **prev; 1680 u_int curfrags; 1681 1682 /* 1683 * Calculate the current number of frags. 1684 */ 1685 curfrags = 0; 1686 for (m = m0; m != NULL; m = m->m_next) 1687 curfrags += frags_per_mbuf(m); 1688 /* 1689 * First, try to collapse mbufs. Note that we always collapse 1690 * towards the front so we don't need to deal with moving the 1691 * pkthdr. This may be suboptimal if the first mbuf has much 1692 * less data than the following. 1693 */ 1694 m = m0; 1695 again: 1696 for (;;) { 1697 n = m->m_next; 1698 if (n == NULL) 1699 break; 1700 if (M_WRITABLE(m) && 1701 n->m_len < M_TRAILINGSPACE(m)) { 1702 m_copydata(n, 0, n->m_len, 1703 mtod(m, char *) + m->m_len); 1704 m->m_len += n->m_len; 1705 m->m_next = n->m_next; 1706 curfrags -= frags_per_mbuf(n); 1707 m_free(n); 1708 if (curfrags <= maxfrags) 1709 return m0; 1710 } else 1711 m = n; 1712 } 1713 KASSERT(maxfrags > 1, 1714 ("maxfrags %u, but normal collapse failed", maxfrags)); 1715 /* 1716 * Collapse consecutive mbufs to a cluster. 1717 */ 1718 prev = &m0->m_next; /* NB: not the first mbuf */ 1719 while ((n = *prev) != NULL) { 1720 if ((n2 = n->m_next) != NULL && 1721 n->m_len + n2->m_len < MCLBYTES) { 1722 m = m_getcl(how, MT_DATA, 0); 1723 if (m == NULL) 1724 goto bad; 1725 m_copydata(n, 0, n->m_len, mtod(m, char *)); 1726 m_copydata(n2, 0, n2->m_len, 1727 mtod(m, char *) + n->m_len); 1728 m->m_len = n->m_len + n2->m_len; 1729 m->m_next = n2->m_next; 1730 *prev = m; 1731 curfrags += 1; /* For the new cluster */ 1732 curfrags -= frags_per_mbuf(n); 1733 curfrags -= frags_per_mbuf(n2); 1734 m_free(n); 1735 m_free(n2); 1736 if (curfrags <= maxfrags) 1737 return m0; 1738 /* 1739 * Still not there, try the normal collapse 1740 * again before we allocate another cluster. 1741 */ 1742 goto again; 1743 } 1744 prev = &n->m_next; 1745 } 1746 /* 1747 * No place where we can collapse to a cluster; punt. 1748 * This can occur if, for example, you request 2 frags 1749 * but the packet requires that both be clusters (we 1750 * never reallocate the first mbuf to avoid moving the 1751 * packet header). 1752 */ 1753 bad: 1754 return NULL; 1755 } 1756 1757 #ifdef MBUF_STRESS_TEST 1758 1759 /* 1760 * Fragment an mbuf chain. There's no reason you'd ever want to do 1761 * this in normal usage, but it's great for stress testing various 1762 * mbuf consumers. 1763 * 1764 * If fragmentation is not possible, the original chain will be 1765 * returned. 1766 * 1767 * Possible length values: 1768 * 0 no fragmentation will occur 1769 * > 0 each fragment will be of the specified length 1770 * -1 each fragment will be the same random value in length 1771 * -2 each fragment's length will be entirely random 1772 * (Random values range from 1 to 256) 1773 */ 1774 struct mbuf * 1775 m_fragment(struct mbuf *m0, int how, int length) 1776 { 1777 struct mbuf *m_first, *m_last; 1778 int divisor = 255, progress = 0, fraglen; 1779 1780 if (!(m0->m_flags & M_PKTHDR)) 1781 return (m0); 1782 1783 if (length == 0 || length < -2) 1784 return (m0); 1785 if (length > MCLBYTES) 1786 length = MCLBYTES; 1787 if (length < 0 && divisor > MCLBYTES) 1788 divisor = MCLBYTES; 1789 if (length == -1) 1790 length = 1 + (arc4random() % divisor); 1791 if (length > 0) 1792 fraglen = length; 1793 1794 m_fixhdr(m0); /* Needed sanity check */ 1795 1796 m_first = m_getcl(how, MT_DATA, M_PKTHDR); 1797 if (m_first == NULL) 1798 goto nospace; 1799 1800 if (m_dup_pkthdr(m_first, m0, how) == 0) 1801 goto nospace; 1802 1803 m_last = m_first; 1804 1805 while (progress < m0->m_pkthdr.len) { 1806 if (length == -2) 1807 fraglen = 1 + (arc4random() % divisor); 1808 if (fraglen > m0->m_pkthdr.len - progress) 1809 fraglen = m0->m_pkthdr.len - progress; 1810 1811 if (progress != 0) { 1812 struct mbuf *m_new = m_getcl(how, MT_DATA, 0); 1813 if (m_new == NULL) 1814 goto nospace; 1815 1816 m_last->m_next = m_new; 1817 m_last = m_new; 1818 } 1819 1820 m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t)); 1821 progress += fraglen; 1822 m_last->m_len = fraglen; 1823 } 1824 m_freem(m0); 1825 m0 = m_first; 1826 return (m0); 1827 nospace: 1828 if (m_first) 1829 m_freem(m_first); 1830 /* Return the original chain on failure */ 1831 return (m0); 1832 } 1833 1834 #endif 1835 1836 /* 1837 * Free pages from mbuf_ext_pgs, assuming they were allocated via 1838 * vm_page_alloc() and aren't associated with any object. Complement 1839 * to allocator from m_uiotombuf_nomap(). 1840 */ 1841 void 1842 mb_free_mext_pgs(struct mbuf *m) 1843 { 1844 vm_page_t pg; 1845 1846 M_ASSERTEXTPG(m); 1847 for (int i = 0; i < m->m_epg_npgs; i++) { 1848 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 1849 vm_page_unwire_noq(pg); 1850 vm_page_free(pg); 1851 } 1852 } 1853 1854 static struct mbuf * 1855 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags) 1856 { 1857 struct mbuf *m, *mb, *prev; 1858 vm_page_t pg_array[MBUF_PEXT_MAX_PGS]; 1859 int error, length, i, needed; 1860 ssize_t total; 1861 int pflags = malloc2vm_flags(how) | VM_ALLOC_NODUMP | VM_ALLOC_WIRED; 1862 1863 MPASS((flags & M_PKTHDR) == 0); 1864 MPASS((how & M_ZERO) == 0); 1865 1866 /* 1867 * len can be zero or an arbitrary large value bound by 1868 * the total data supplied by the uio. 1869 */ 1870 if (len > 0) 1871 total = MIN(uio->uio_resid, len); 1872 else 1873 total = uio->uio_resid; 1874 1875 if (maxseg == 0) 1876 maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE; 1877 1878 /* 1879 * If total is zero, return an empty mbuf. This can occur 1880 * for TLS 1.0 connections which send empty fragments as 1881 * a countermeasure against the known-IV weakness in CBC 1882 * ciphersuites. 1883 */ 1884 if (__predict_false(total == 0)) { 1885 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs); 1886 if (mb == NULL) 1887 return (NULL); 1888 mb->m_epg_flags = EPG_FLAG_ANON; 1889 return (mb); 1890 } 1891 1892 /* 1893 * Allocate the pages 1894 */ 1895 m = NULL; 1896 while (total > 0) { 1897 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs); 1898 if (mb == NULL) 1899 goto failed; 1900 if (m == NULL) 1901 m = mb; 1902 else 1903 prev->m_next = mb; 1904 prev = mb; 1905 mb->m_epg_flags = EPG_FLAG_ANON; 1906 needed = length = MIN(maxseg, total); 1907 for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) { 1908 retry_page: 1909 pg_array[i] = vm_page_alloc_noobj(pflags); 1910 if (pg_array[i] == NULL) { 1911 if (how & M_NOWAIT) { 1912 goto failed; 1913 } else { 1914 vm_wait(NULL); 1915 goto retry_page; 1916 } 1917 } 1918 mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]); 1919 mb->m_epg_npgs++; 1920 } 1921 mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1); 1922 MBUF_EXT_PGS_ASSERT_SANITY(mb); 1923 total -= length; 1924 error = uiomove_fromphys(pg_array, 0, length, uio); 1925 if (error != 0) 1926 goto failed; 1927 mb->m_len = length; 1928 mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs; 1929 if (flags & M_PKTHDR) 1930 m->m_pkthdr.len += length; 1931 } 1932 return (m); 1933 1934 failed: 1935 m_freem(m); 1936 return (NULL); 1937 } 1938 1939 /* 1940 * Copy the contents of uio into a properly sized mbuf chain. 1941 * A compat KPI. Users are recommended to use direct calls to backing 1942 * functions. 1943 */ 1944 struct mbuf * 1945 m_uiotombuf(struct uio *uio, int how, int len, int lspace, int flags) 1946 { 1947 1948 if (flags & M_EXTPG) { 1949 /* XXX: 'lspace' magically becomes maxseg! */ 1950 return (m_uiotombuf_nomap(uio, how, len, lspace, flags)); 1951 } else if (__predict_false(uio->uio_resid == 0)) { 1952 struct mbuf *m; 1953 1954 /* 1955 * m_uiotombuf() is known to return zero length buffer, keep 1956 * this compatibility. mc_uiotomc() won't do that. 1957 */ 1958 if (flags & M_PKTHDR) { 1959 m = m_gethdr(how, MT_DATA); 1960 m->m_pkthdr.memlen = MSIZE; 1961 } else 1962 m = m_get(how, MT_DATA); 1963 if (m != NULL) 1964 m->m_data += lspace; 1965 return (m); 1966 } else { 1967 struct mchain mc; 1968 int error; 1969 1970 error = mc_uiotomc(&mc, uio, len, lspace, how, flags); 1971 if (__predict_true(error == 0)) { 1972 if (flags & M_PKTHDR) { 1973 mc_first(&mc)->m_pkthdr.len = mc.mc_len; 1974 mc_first(&mc)->m_pkthdr.memlen = mc.mc_mlen; 1975 } 1976 return (mc_first(&mc)); 1977 } else 1978 return (NULL); 1979 } 1980 } 1981 1982 /* 1983 * Copy the contents of uio into a properly sized mbuf chain. 1984 * In case of failure state of mchain is inconsistent. 1985 * @param length Limit copyout length. If 0 entire uio_resid is copied. 1986 * @param lspace Provide leading space in the first mbuf in the chain. 1987 */ 1988 int 1989 mc_uiotomc(struct mchain *mc, struct uio *uio, u_int length, u_int lspace, 1990 int how, int flags) 1991 { 1992 struct mbuf *mb; 1993 u_int total; 1994 int error; 1995 1996 MPASS(lspace < MHLEN); 1997 MPASS(UINT_MAX - lspace >= length); 1998 MPASS(uio->uio_rw == UIO_WRITE); 1999 MPASS(uio->uio_resid >= 0); 2000 2001 if (length > 0) { 2002 if (uio->uio_resid > length) { 2003 total = length; 2004 flags &= ~M_EOR; 2005 } else 2006 total = uio->uio_resid; 2007 } else if (__predict_false(uio->uio_resid + lspace > UINT_MAX)) 2008 return (EOVERFLOW); 2009 else 2010 total = uio->uio_resid; 2011 2012 if (__predict_false(total + lspace == 0)) { 2013 *mc = MCHAIN_INITIALIZER(mc); 2014 return (0); 2015 } 2016 2017 error = mc_get(mc, total + lspace, how, MT_DATA, flags); 2018 if (__predict_false(error)) 2019 return (error); 2020 mc_first(mc)->m_data += lspace; 2021 2022 /* Fill all mbufs with uio data and update header information. */ 2023 STAILQ_FOREACH(mb, &mc->mc_q, m_stailq) { 2024 u_int mlen; 2025 2026 mlen = min(M_TRAILINGSPACE(mb), total - mc->mc_len); 2027 error = uiomove(mtod(mb, void *), mlen, uio); 2028 if (__predict_false(error)) { 2029 mc_freem(mc); 2030 return (error); 2031 } 2032 mb->m_len = mlen; 2033 mc->mc_len += mlen; 2034 } 2035 MPASS(mc->mc_len == total); 2036 2037 return (0); 2038 } 2039 2040 /* 2041 * Copy data to/from an unmapped mbuf into a uio limited by len if set. 2042 */ 2043 int 2044 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len) 2045 { 2046 vm_page_t pg; 2047 int error, i, off, pglen, pgoff, seglen, segoff; 2048 2049 M_ASSERTEXTPG(m); 2050 error = 0; 2051 2052 /* Skip over any data removed from the front. */ 2053 off = mtod(m, vm_offset_t); 2054 2055 off += m_off; 2056 if (m->m_epg_hdrlen != 0) { 2057 if (off >= m->m_epg_hdrlen) { 2058 off -= m->m_epg_hdrlen; 2059 } else { 2060 seglen = m->m_epg_hdrlen - off; 2061 segoff = off; 2062 seglen = min(seglen, len); 2063 off = 0; 2064 len -= seglen; 2065 error = uiomove(__DECONST(void *, 2066 &m->m_epg_hdr[segoff]), seglen, uio); 2067 } 2068 } 2069 pgoff = m->m_epg_1st_off; 2070 for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) { 2071 pglen = m_epg_pagelen(m, i, pgoff); 2072 if (off >= pglen) { 2073 off -= pglen; 2074 pgoff = 0; 2075 continue; 2076 } 2077 seglen = pglen - off; 2078 segoff = pgoff + off; 2079 off = 0; 2080 seglen = min(seglen, len); 2081 len -= seglen; 2082 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 2083 error = uiomove_fromphys(&pg, segoff, seglen, uio); 2084 pgoff = 0; 2085 }; 2086 if (len != 0 && error == 0) { 2087 KASSERT((off + len) <= m->m_epg_trllen, 2088 ("off + len > trail (%d + %d > %d, m_off = %d)", off, len, 2089 m->m_epg_trllen, m_off)); 2090 error = uiomove(__DECONST(void *, &m->m_epg_trail[off]), 2091 len, uio); 2092 } 2093 return (error); 2094 } 2095 2096 /* 2097 * Copy an mbuf chain into a uio limited by len if set. 2098 */ 2099 int 2100 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len) 2101 { 2102 int error, length, total; 2103 int progress = 0; 2104 2105 if (len > 0) 2106 total = min(uio->uio_resid, len); 2107 else 2108 total = uio->uio_resid; 2109 2110 /* Fill the uio with data from the mbufs. */ 2111 for (; m != NULL; m = m->m_next) { 2112 length = min(m->m_len, total - progress); 2113 2114 if ((m->m_flags & M_EXTPG) != 0) 2115 error = m_unmapped_uiomove(m, 0, uio, length); 2116 else 2117 error = uiomove(mtod(m, void *), length, uio); 2118 if (error) 2119 return (error); 2120 2121 progress += length; 2122 } 2123 2124 return (0); 2125 } 2126 2127 /* 2128 * Create a writable copy of the mbuf chain. While doing this 2129 * we compact the chain with a goal of producing a chain with 2130 * at most two mbufs. The second mbuf in this chain is likely 2131 * to be a cluster. The primary purpose of this work is to create 2132 * a writable packet for encryption, compression, etc. The 2133 * secondary goal is to linearize the data so the data can be 2134 * passed to crypto hardware in the most efficient manner possible. 2135 */ 2136 struct mbuf * 2137 m_unshare(struct mbuf *m0, int how) 2138 { 2139 struct mbuf *m, *mprev; 2140 struct mbuf *n, *mfirst, *mlast; 2141 int len, off; 2142 2143 mprev = NULL; 2144 for (m = m0; m != NULL; m = mprev->m_next) { 2145 /* 2146 * Regular mbufs are ignored unless there's a cluster 2147 * in front of it that we can use to coalesce. We do 2148 * the latter mainly so later clusters can be coalesced 2149 * also w/o having to handle them specially (i.e. convert 2150 * mbuf+cluster -> cluster). This optimization is heavily 2151 * influenced by the assumption that we're running over 2152 * Ethernet where MCLBYTES is large enough that the max 2153 * packet size will permit lots of coalescing into a 2154 * single cluster. This in turn permits efficient 2155 * crypto operations, especially when using hardware. 2156 */ 2157 if ((m->m_flags & M_EXT) == 0) { 2158 if (mprev && (mprev->m_flags & M_EXT) && 2159 m->m_len <= M_TRAILINGSPACE(mprev)) { 2160 /* XXX: this ignores mbuf types */ 2161 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 2162 mtod(m, caddr_t), m->m_len); 2163 mprev->m_len += m->m_len; 2164 mprev->m_next = m->m_next; /* unlink from chain */ 2165 m_free(m); /* reclaim mbuf */ 2166 } else { 2167 mprev = m; 2168 } 2169 continue; 2170 } 2171 /* 2172 * Writable mbufs are left alone (for now). 2173 */ 2174 if (M_WRITABLE(m)) { 2175 mprev = m; 2176 continue; 2177 } 2178 2179 /* 2180 * Not writable, replace with a copy or coalesce with 2181 * the previous mbuf if possible (since we have to copy 2182 * it anyway, we try to reduce the number of mbufs and 2183 * clusters so that future work is easier). 2184 */ 2185 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 2186 /* NB: we only coalesce into a cluster or larger */ 2187 if (mprev != NULL && (mprev->m_flags & M_EXT) && 2188 m->m_len <= M_TRAILINGSPACE(mprev)) { 2189 /* XXX: this ignores mbuf types */ 2190 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 2191 mtod(m, caddr_t), m->m_len); 2192 mprev->m_len += m->m_len; 2193 mprev->m_next = m->m_next; /* unlink from chain */ 2194 m_free(m); /* reclaim mbuf */ 2195 continue; 2196 } 2197 2198 /* 2199 * Allocate new space to hold the copy and copy the data. 2200 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 2201 * splitting them into clusters. We could just malloc a 2202 * buffer and make it external but too many device drivers 2203 * don't know how to break up the non-contiguous memory when 2204 * doing DMA. 2205 */ 2206 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 2207 if (n == NULL) { 2208 m_freem(m0); 2209 return (NULL); 2210 } 2211 if (m->m_flags & M_PKTHDR) { 2212 KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR", 2213 __func__, m0, m)); 2214 m_move_pkthdr(n, m); 2215 } 2216 len = m->m_len; 2217 off = 0; 2218 mfirst = n; 2219 mlast = NULL; 2220 for (;;) { 2221 int cc = min(len, MCLBYTES); 2222 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 2223 n->m_len = cc; 2224 if (mlast != NULL) 2225 mlast->m_next = n; 2226 mlast = n; 2227 #if 0 2228 newipsecstat.ips_clcopied++; 2229 #endif 2230 2231 len -= cc; 2232 if (len <= 0) 2233 break; 2234 off += cc; 2235 2236 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 2237 if (n == NULL) { 2238 m_freem(mfirst); 2239 m_freem(m0); 2240 return (NULL); 2241 } 2242 } 2243 n->m_next = m->m_next; 2244 if (mprev == NULL) 2245 m0 = mfirst; /* new head of chain */ 2246 else 2247 mprev->m_next = mfirst; /* replace old mbuf */ 2248 m_free(m); /* release old mbuf */ 2249 mprev = mfirst; 2250 } 2251 return (m0); 2252 } 2253 2254 #ifdef MBUF_PROFILING 2255 2256 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 2257 struct mbufprofile { 2258 uintmax_t wasted[MP_BUCKETS]; 2259 uintmax_t used[MP_BUCKETS]; 2260 uintmax_t segments[MP_BUCKETS]; 2261 } mbprof; 2262 2263 void 2264 m_profile(struct mbuf *m) 2265 { 2266 int segments = 0; 2267 int used = 0; 2268 int wasted = 0; 2269 2270 while (m) { 2271 segments++; 2272 used += m->m_len; 2273 if (m->m_flags & M_EXT) { 2274 wasted += MHLEN - sizeof(m->m_ext) + 2275 m->m_ext.ext_size - m->m_len; 2276 } else { 2277 if (m->m_flags & M_PKTHDR) 2278 wasted += MHLEN - m->m_len; 2279 else 2280 wasted += MLEN - m->m_len; 2281 } 2282 m = m->m_next; 2283 } 2284 /* be paranoid.. it helps */ 2285 if (segments > MP_BUCKETS - 1) 2286 segments = MP_BUCKETS - 1; 2287 if (used > 100000) 2288 used = 100000; 2289 if (wasted > 100000) 2290 wasted = 100000; 2291 /* store in the appropriate bucket */ 2292 /* don't bother locking. if it's slightly off, so what? */ 2293 mbprof.segments[segments]++; 2294 mbprof.used[fls(used)]++; 2295 mbprof.wasted[fls(wasted)]++; 2296 } 2297 2298 static int 2299 mbprof_handler(SYSCTL_HANDLER_ARGS) 2300 { 2301 char buf[256]; 2302 struct sbuf sb; 2303 int error; 2304 uint64_t *p; 2305 2306 sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req); 2307 2308 p = &mbprof.wasted[0]; 2309 sbuf_printf(&sb, 2310 "wasted:\n" 2311 "%ju %ju %ju %ju %ju %ju %ju %ju " 2312 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2313 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2314 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2315 #ifdef BIG_ARRAY 2316 p = &mbprof.wasted[16]; 2317 sbuf_printf(&sb, 2318 "%ju %ju %ju %ju %ju %ju %ju %ju " 2319 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2320 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2321 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2322 #endif 2323 p = &mbprof.used[0]; 2324 sbuf_printf(&sb, 2325 "used:\n" 2326 "%ju %ju %ju %ju %ju %ju %ju %ju " 2327 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2328 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2329 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2330 #ifdef BIG_ARRAY 2331 p = &mbprof.used[16]; 2332 sbuf_printf(&sb, 2333 "%ju %ju %ju %ju %ju %ju %ju %ju " 2334 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2335 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2336 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2337 #endif 2338 p = &mbprof.segments[0]; 2339 sbuf_printf(&sb, 2340 "segments:\n" 2341 "%ju %ju %ju %ju %ju %ju %ju %ju " 2342 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2343 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2344 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2345 #ifdef BIG_ARRAY 2346 p = &mbprof.segments[16]; 2347 sbuf_printf(&sb, 2348 "%ju %ju %ju %ju %ju %ju %ju %ju " 2349 "%ju %ju %ju %ju %ju %ju %ju %jju", 2350 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2351 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2352 #endif 2353 2354 error = sbuf_finish(&sb); 2355 sbuf_delete(&sb); 2356 return (error); 2357 } 2358 2359 static int 2360 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2361 { 2362 int clear, error; 2363 2364 clear = 0; 2365 error = sysctl_handle_int(oidp, &clear, 0, req); 2366 if (error || !req->newptr) 2367 return (error); 2368 2369 if (clear) { 2370 bzero(&mbprof, sizeof(mbprof)); 2371 } 2372 2373 return (error); 2374 } 2375 2376 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, 2377 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2378 mbprof_handler, "A", 2379 "mbuf profiling statistics"); 2380 2381 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, 2382 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, 2383 mbprof_clr_handler, "I", 2384 "clear mbuf profiling statistics"); 2385 #endif 2386