1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_kern_tls.h" 32 #include "opt_ratelimit.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/endian.h> 39 #include <sys/ktls.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/rmlock.h> 44 #include <sys/proc.h> 45 #include <sys/protosw.h> 46 #include <sys/refcount.h> 47 #include <sys/smp.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <sys/kthread.h> 53 #include <sys/uio.h> 54 #include <sys/vmmeter.h> 55 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 56 #include <machine/pcb.h> 57 #endif 58 #include <machine/vmparam.h> 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #ifdef RSS 62 #include <net/netisr.h> 63 #include <net/rss_config.h> 64 #endif 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/tcp_var.h> 70 #ifdef TCP_OFFLOAD 71 #include <netinet/tcp_offload.h> 72 #endif 73 #include <opencrypto/cryptodev.h> 74 #include <opencrypto/ktls.h> 75 #include <vm/vm.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_page.h> 78 #include <vm/vm_pagequeue.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 int lastallocfail; 86 } __aligned(CACHE_LINE_SIZE); 87 88 struct ktls_reclaim_thread { 89 uint64_t wakeups; 90 uint64_t reclaims; 91 struct thread *td; 92 int running; 93 }; 94 95 struct ktls_domain_info { 96 int count; 97 int cpu[MAXCPU]; 98 struct ktls_reclaim_thread reclaim_td; 99 }; 100 101 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 102 static struct ktls_wq *ktls_wq; 103 static struct proc *ktls_proc; 104 static uma_zone_t ktls_session_zone; 105 static uma_zone_t ktls_buffer_zone; 106 static uint16_t ktls_cpuid_lookup[MAXCPU]; 107 static int ktls_init_state; 108 static struct sx ktls_init_lock; 109 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 110 111 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 112 "Kernel TLS offload"); 113 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 114 "Kernel TLS offload stats"); 115 116 #ifdef RSS 117 static int ktls_bind_threads = 1; 118 #else 119 static int ktls_bind_threads; 120 #endif 121 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 122 &ktls_bind_threads, 0, 123 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 124 125 static u_int ktls_maxlen = 16384; 126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 127 &ktls_maxlen, 0, "Maximum TLS record size"); 128 129 static int ktls_number_threads; 130 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 131 &ktls_number_threads, 0, 132 "Number of TLS threads in thread-pool"); 133 134 unsigned int ktls_ifnet_max_rexmit_pct = 2; 135 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 136 &ktls_ifnet_max_rexmit_pct, 2, 137 "Max percent bytes retransmitted before ifnet TLS is disabled"); 138 139 static bool ktls_offload_enable = true; 140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 141 &ktls_offload_enable, 0, 142 "Enable support for kernel TLS offload"); 143 144 static bool ktls_cbc_enable = true; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 146 &ktls_cbc_enable, 1, 147 "Enable support of AES-CBC crypto for kernel TLS"); 148 149 static bool ktls_sw_buffer_cache = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 151 &ktls_sw_buffer_cache, 1, 152 "Enable caching of output buffers for SW encryption"); 153 154 static int ktls_max_reclaim = 1024; 155 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN, 156 &ktls_max_reclaim, 128, 157 "Max number of 16k buffers to reclaim in thread context"); 158 159 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 160 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 161 &ktls_tasks_active, "Number of active tasks"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 165 &ktls_cnt_tx_pending, 166 "Number of TLS 1.0 records waiting for earlier TLS records"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 170 &ktls_cnt_tx_queued, 171 "Number of TLS records in queue to tasks for SW encryption"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_rx_queued, 176 "Number of TLS sockets in queue to tasks for SW decryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 180 CTLFLAG_RD, &ktls_offload_total, 181 "Total successful TLS setups (parameters set)"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 185 CTLFLAG_RD, &ktls_offload_enable_calls, 186 "Total number of TLS enable calls made"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 190 &ktls_offload_active, "Total Active TLS sessions"); 191 192 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 193 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 194 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 195 196 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 197 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 198 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 199 200 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 201 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 202 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 203 204 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 205 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 206 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 207 208 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 209 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 210 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 211 212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 214 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 215 216 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 217 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 218 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 219 220 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task); 221 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD, 222 &ktls_destroy_task, 223 "Number of times ktls session was destroyed via taskqueue"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted = 1; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_reclaim_thread(void *ctx); 301 static void ktls_reset_receive_tag(void *context, int pending); 302 static void ktls_reset_send_tag(void *context, int pending); 303 static void ktls_work_thread(void *ctx); 304 305 int 306 ktls_copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls) 307 { 308 struct tls_enable_v0 tls_v0; 309 int error; 310 uint8_t *cipher_key = NULL, *iv = NULL, *auth_key = NULL; 311 312 if (sopt->sopt_valsize == sizeof(tls_v0)) { 313 error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0), sizeof(tls_v0)); 314 if (error != 0) 315 goto done; 316 memset(tls, 0, sizeof(*tls)); 317 tls->cipher_key = tls_v0.cipher_key; 318 tls->iv = tls_v0.iv; 319 tls->auth_key = tls_v0.auth_key; 320 tls->cipher_algorithm = tls_v0.cipher_algorithm; 321 tls->cipher_key_len = tls_v0.cipher_key_len; 322 tls->iv_len = tls_v0.iv_len; 323 tls->auth_algorithm = tls_v0.auth_algorithm; 324 tls->auth_key_len = tls_v0.auth_key_len; 325 tls->flags = tls_v0.flags; 326 tls->tls_vmajor = tls_v0.tls_vmajor; 327 tls->tls_vminor = tls_v0.tls_vminor; 328 } else 329 error = sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls)); 330 331 if (error != 0) 332 return (error); 333 334 if (tls->cipher_key_len < 0 || tls->cipher_key_len > TLS_MAX_PARAM_SIZE) 335 return (EINVAL); 336 if (tls->iv_len < 0 || tls->iv_len > sizeof(((struct ktls_session *)NULL)->params.iv)) 337 return (EINVAL); 338 if (tls->auth_key_len < 0 || tls->auth_key_len > TLS_MAX_PARAM_SIZE) 339 return (EINVAL); 340 341 /* All supported algorithms require a cipher key. */ 342 if (tls->cipher_key_len == 0) 343 return (EINVAL); 344 345 /* 346 * Now do a deep copy of the variable-length arrays in the struct, so that 347 * subsequent consumers of it can reliably assume kernel memory. This 348 * requires doing our own allocations, which we will free in the 349 * error paths so that our caller need only worry about outstanding 350 * allocations existing on successful return. 351 */ 352 if (tls->cipher_key_len != 0) { 353 cipher_key = malloc(tls->cipher_key_len, M_KTLS, M_WAITOK); 354 if (sopt->sopt_td != NULL) { 355 error = copyin(tls->cipher_key, cipher_key, tls->cipher_key_len); 356 if (error != 0) 357 goto done; 358 } else { 359 bcopy(tls->cipher_key, cipher_key, tls->cipher_key_len); 360 } 361 } 362 if (tls->iv_len != 0) { 363 iv = malloc(tls->iv_len, M_KTLS, M_WAITOK); 364 if (sopt->sopt_td != NULL) { 365 error = copyin(tls->iv, iv, tls->iv_len); 366 if (error != 0) 367 goto done; 368 } else { 369 bcopy(tls->iv, iv, tls->iv_len); 370 } 371 } 372 if (tls->auth_key_len != 0) { 373 auth_key = malloc(tls->auth_key_len, M_KTLS, M_WAITOK); 374 if (sopt->sopt_td != NULL) { 375 error = copyin(tls->auth_key, auth_key, tls->auth_key_len); 376 if (error != 0) 377 goto done; 378 } else { 379 bcopy(tls->auth_key, auth_key, tls->auth_key_len); 380 } 381 } 382 tls->cipher_key = cipher_key; 383 tls->iv = iv; 384 tls->auth_key = auth_key; 385 386 done: 387 if (error != 0) { 388 zfree(cipher_key, M_KTLS); 389 zfree(iv, M_KTLS); 390 zfree(auth_key, M_KTLS); 391 } 392 393 return (error); 394 } 395 396 void 397 ktls_cleanup_tls_enable(struct tls_enable *tls) 398 { 399 zfree(__DECONST(void *, tls->cipher_key), M_KTLS); 400 zfree(__DECONST(void *, tls->iv), M_KTLS); 401 zfree(__DECONST(void *, tls->auth_key), M_KTLS); 402 } 403 404 static u_int 405 ktls_get_cpu(struct socket *so) 406 { 407 struct inpcb *inp; 408 #ifdef NUMA 409 struct ktls_domain_info *di; 410 #endif 411 u_int cpuid; 412 413 inp = sotoinpcb(so); 414 #ifdef RSS 415 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 416 if (cpuid != NETISR_CPUID_NONE) 417 return (cpuid); 418 #endif 419 /* 420 * Just use the flowid to shard connections in a repeatable 421 * fashion. Note that TLS 1.0 sessions rely on the 422 * serialization provided by having the same connection use 423 * the same queue. 424 */ 425 #ifdef NUMA 426 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 427 di = &ktls_domains[inp->inp_numa_domain]; 428 cpuid = di->cpu[inp->inp_flowid % di->count]; 429 } else 430 #endif 431 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 432 return (cpuid); 433 } 434 435 static int 436 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 437 { 438 vm_page_t m; 439 int i, req; 440 441 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 442 ("%s: ktls max length %d is not page size-aligned", 443 __func__, ktls_maxlen)); 444 445 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 446 for (i = 0; i < count; i++) { 447 m = vm_page_alloc_noobj_contig_domain(domain, req, 448 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 449 VM_MEMATTR_DEFAULT); 450 if (m == NULL) 451 break; 452 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 453 } 454 return (i); 455 } 456 457 static void 458 ktls_buffer_release(void *arg __unused, void **store, int count) 459 { 460 vm_page_t m; 461 int i, j; 462 463 for (i = 0; i < count; i++) { 464 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 465 for (j = 0; j < atop(ktls_maxlen); j++) { 466 (void)vm_page_unwire_noq(m + j); 467 vm_page_free(m + j); 468 } 469 } 470 } 471 472 static void 473 ktls_free_mext_contig(struct mbuf *m) 474 { 475 M_ASSERTEXTPG(m); 476 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 477 } 478 479 static int 480 ktls_init(void) 481 { 482 struct thread *td; 483 struct pcpu *pc; 484 int count, domain, error, i; 485 486 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 487 M_WAITOK | M_ZERO); 488 489 ktls_session_zone = uma_zcreate("ktls_session", 490 sizeof(struct ktls_session), 491 NULL, NULL, NULL, NULL, 492 UMA_ALIGN_CACHE, 0); 493 494 if (ktls_sw_buffer_cache) { 495 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 496 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 497 ktls_buffer_import, ktls_buffer_release, NULL, 498 UMA_ZONE_FIRSTTOUCH | UMA_ZONE_NOTRIM); 499 } 500 501 /* 502 * Initialize the workqueues to run the TLS work. We create a 503 * work queue for each CPU. 504 */ 505 CPU_FOREACH(i) { 506 STAILQ_INIT(&ktls_wq[i].m_head); 507 STAILQ_INIT(&ktls_wq[i].so_head); 508 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 509 if (ktls_bind_threads > 1) { 510 pc = pcpu_find(i); 511 domain = pc->pc_domain; 512 count = ktls_domains[domain].count; 513 ktls_domains[domain].cpu[count] = i; 514 ktls_domains[domain].count++; 515 } 516 ktls_cpuid_lookup[ktls_number_threads] = i; 517 ktls_number_threads++; 518 } 519 520 /* 521 * If we somehow have an empty domain, fall back to choosing 522 * among all KTLS threads. 523 */ 524 if (ktls_bind_threads > 1) { 525 for (i = 0; i < vm_ndomains; i++) { 526 if (ktls_domains[i].count == 0) { 527 ktls_bind_threads = 1; 528 break; 529 } 530 } 531 } 532 533 /* Start kthreads for each workqueue. */ 534 CPU_FOREACH(i) { 535 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 536 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 537 if (error) { 538 printf("Can't add KTLS thread %d error %d\n", i, error); 539 return (error); 540 } 541 } 542 543 /* 544 * Start an allocation thread per-domain to perform blocking allocations 545 * of 16k physically contiguous TLS crypto destination buffers. 546 */ 547 if (ktls_sw_buffer_cache) { 548 for (domain = 0; domain < vm_ndomains; domain++) { 549 if (VM_DOMAIN_EMPTY(domain)) 550 continue; 551 if (CPU_EMPTY(&cpuset_domain[domain])) 552 continue; 553 error = kproc_kthread_add(ktls_reclaim_thread, 554 &ktls_domains[domain], &ktls_proc, 555 &ktls_domains[domain].reclaim_td.td, 556 0, 0, "KTLS", "reclaim_%d", domain); 557 if (error) { 558 printf("Can't add KTLS reclaim thread %d error %d\n", 559 domain, error); 560 return (error); 561 } 562 } 563 } 564 565 if (bootverbose) 566 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 567 return (0); 568 } 569 570 static int 571 ktls_start_kthreads(void) 572 { 573 int error, state; 574 575 start: 576 state = atomic_load_acq_int(&ktls_init_state); 577 if (__predict_true(state > 0)) 578 return (0); 579 if (state < 0) 580 return (ENXIO); 581 582 sx_xlock(&ktls_init_lock); 583 if (ktls_init_state != 0) { 584 sx_xunlock(&ktls_init_lock); 585 goto start; 586 } 587 588 error = ktls_init(); 589 if (error == 0) 590 state = 1; 591 else 592 state = -1; 593 atomic_store_rel_int(&ktls_init_state, state); 594 sx_xunlock(&ktls_init_lock); 595 return (error); 596 } 597 598 static int 599 ktls_create_session(struct socket *so, struct tls_enable *en, 600 struct ktls_session **tlsp, int direction) 601 { 602 struct ktls_session *tls; 603 int error; 604 605 /* Only TLS 1.0 - 1.3 are supported. */ 606 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 607 return (EINVAL); 608 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 609 en->tls_vminor > TLS_MINOR_VER_THREE) 610 return (EINVAL); 611 612 613 /* No flags are currently supported. */ 614 if (en->flags != 0) 615 return (EINVAL); 616 617 /* Common checks for supported algorithms. */ 618 switch (en->cipher_algorithm) { 619 case CRYPTO_AES_NIST_GCM_16: 620 /* 621 * auth_algorithm isn't used, but permit GMAC values 622 * for compatibility. 623 */ 624 switch (en->auth_algorithm) { 625 case 0: 626 #ifdef COMPAT_FREEBSD12 627 /* XXX: Really 13.0-current COMPAT. */ 628 case CRYPTO_AES_128_NIST_GMAC: 629 case CRYPTO_AES_192_NIST_GMAC: 630 case CRYPTO_AES_256_NIST_GMAC: 631 #endif 632 break; 633 default: 634 return (EINVAL); 635 } 636 if (en->auth_key_len != 0) 637 return (EINVAL); 638 switch (en->tls_vminor) { 639 case TLS_MINOR_VER_TWO: 640 if (en->iv_len != TLS_AEAD_GCM_LEN) 641 return (EINVAL); 642 break; 643 case TLS_MINOR_VER_THREE: 644 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 645 return (EINVAL); 646 break; 647 default: 648 return (EINVAL); 649 } 650 break; 651 case CRYPTO_AES_CBC: 652 switch (en->auth_algorithm) { 653 case CRYPTO_SHA1_HMAC: 654 break; 655 case CRYPTO_SHA2_256_HMAC: 656 case CRYPTO_SHA2_384_HMAC: 657 if (en->tls_vminor != TLS_MINOR_VER_TWO) 658 return (EINVAL); 659 break; 660 default: 661 return (EINVAL); 662 } 663 if (en->auth_key_len == 0) 664 return (EINVAL); 665 666 /* 667 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 668 * use explicit IVs. 669 */ 670 switch (en->tls_vminor) { 671 case TLS_MINOR_VER_ZERO: 672 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 673 return (EINVAL); 674 break; 675 case TLS_MINOR_VER_ONE: 676 case TLS_MINOR_VER_TWO: 677 /* Ignore any supplied IV. */ 678 en->iv_len = 0; 679 break; 680 default: 681 return (EINVAL); 682 } 683 break; 684 case CRYPTO_CHACHA20_POLY1305: 685 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 686 return (EINVAL); 687 if (en->tls_vminor != TLS_MINOR_VER_TWO && 688 en->tls_vminor != TLS_MINOR_VER_THREE) 689 return (EINVAL); 690 if (en->iv_len != TLS_CHACHA20_IV_LEN) 691 return (EINVAL); 692 break; 693 default: 694 return (EINVAL); 695 } 696 697 error = ktls_start_kthreads(); 698 if (error != 0) 699 return (error); 700 701 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 702 703 counter_u64_add(ktls_offload_active, 1); 704 705 refcount_init(&tls->refcount, 1); 706 if (direction == KTLS_RX) { 707 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 708 } else { 709 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 710 tls->inp = so->so_pcb; 711 in_pcbref(tls->inp); 712 tls->tx = true; 713 } 714 715 tls->wq_index = ktls_get_cpu(so); 716 717 tls->params.cipher_algorithm = en->cipher_algorithm; 718 tls->params.auth_algorithm = en->auth_algorithm; 719 tls->params.tls_vmajor = en->tls_vmajor; 720 tls->params.tls_vminor = en->tls_vminor; 721 tls->params.flags = en->flags; 722 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 723 724 /* Set the header and trailer lengths. */ 725 tls->params.tls_hlen = sizeof(struct tls_record_layer); 726 switch (en->cipher_algorithm) { 727 case CRYPTO_AES_NIST_GCM_16: 728 /* 729 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 730 * nonce. TLS 1.3 uses a 12 byte implicit IV. 731 */ 732 if (en->tls_vminor < TLS_MINOR_VER_THREE) 733 tls->params.tls_hlen += sizeof(uint64_t); 734 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 735 tls->params.tls_bs = 1; 736 break; 737 case CRYPTO_AES_CBC: 738 switch (en->auth_algorithm) { 739 case CRYPTO_SHA1_HMAC: 740 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 741 /* Implicit IV, no nonce. */ 742 tls->sequential_records = true; 743 tls->next_seqno = be64dec(en->rec_seq); 744 STAILQ_INIT(&tls->pending_records); 745 } else { 746 tls->params.tls_hlen += AES_BLOCK_LEN; 747 } 748 tls->params.tls_tlen = AES_BLOCK_LEN + 749 SHA1_HASH_LEN; 750 break; 751 case CRYPTO_SHA2_256_HMAC: 752 tls->params.tls_hlen += AES_BLOCK_LEN; 753 tls->params.tls_tlen = AES_BLOCK_LEN + 754 SHA2_256_HASH_LEN; 755 break; 756 case CRYPTO_SHA2_384_HMAC: 757 tls->params.tls_hlen += AES_BLOCK_LEN; 758 tls->params.tls_tlen = AES_BLOCK_LEN + 759 SHA2_384_HASH_LEN; 760 break; 761 default: 762 panic("invalid hmac"); 763 } 764 tls->params.tls_bs = AES_BLOCK_LEN; 765 break; 766 case CRYPTO_CHACHA20_POLY1305: 767 /* 768 * Chacha20 uses a 12 byte implicit IV. 769 */ 770 tls->params.tls_tlen = POLY1305_HASH_LEN; 771 tls->params.tls_bs = 1; 772 break; 773 default: 774 panic("invalid cipher"); 775 } 776 777 /* 778 * TLS 1.3 includes optional padding which we do not support, 779 * and also puts the "real" record type at the end of the 780 * encrypted data. 781 */ 782 if (en->tls_vminor == TLS_MINOR_VER_THREE) 783 tls->params.tls_tlen += sizeof(uint8_t); 784 785 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 786 ("TLS header length too long: %d", tls->params.tls_hlen)); 787 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 788 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 789 790 if (en->auth_key_len != 0) { 791 tls->params.auth_key_len = en->auth_key_len; 792 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 793 M_WAITOK); 794 bcopy(en->auth_key, tls->params.auth_key, en->auth_key_len); 795 } 796 797 tls->params.cipher_key_len = en->cipher_key_len; 798 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 799 bcopy(en->cipher_key, tls->params.cipher_key, en->cipher_key_len); 800 801 /* 802 * This holds the implicit portion of the nonce for AEAD 803 * ciphers and the initial implicit IV for TLS 1.0. The 804 * explicit portions of the IV are generated in ktls_frame(). 805 */ 806 if (en->iv_len != 0) { 807 tls->params.iv_len = en->iv_len; 808 bcopy(en->iv, tls->params.iv, en->iv_len); 809 810 /* 811 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 812 * counter to generate unique explicit IVs. 813 * 814 * Store this counter in the last 8 bytes of the IV 815 * array so that it is 8-byte aligned. 816 */ 817 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 818 en->tls_vminor == TLS_MINOR_VER_TWO) 819 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 820 } 821 822 *tlsp = tls; 823 return (0); 824 } 825 826 static struct ktls_session * 827 ktls_clone_session(struct ktls_session *tls, int direction) 828 { 829 struct ktls_session *tls_new; 830 831 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 832 833 counter_u64_add(ktls_offload_active, 1); 834 835 refcount_init(&tls_new->refcount, 1); 836 if (direction == KTLS_RX) { 837 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 838 tls_new); 839 } else { 840 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 841 tls_new); 842 tls_new->inp = tls->inp; 843 tls_new->tx = true; 844 in_pcbref(tls_new->inp); 845 } 846 847 /* Copy fields from existing session. */ 848 tls_new->params = tls->params; 849 tls_new->wq_index = tls->wq_index; 850 851 /* Deep copy keys. */ 852 if (tls_new->params.auth_key != NULL) { 853 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 854 M_KTLS, M_WAITOK); 855 memcpy(tls_new->params.auth_key, tls->params.auth_key, 856 tls->params.auth_key_len); 857 } 858 859 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 860 M_WAITOK); 861 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 862 tls->params.cipher_key_len); 863 864 return (tls_new); 865 } 866 867 #ifdef TCP_OFFLOAD 868 static int 869 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 870 { 871 struct inpcb *inp; 872 struct tcpcb *tp; 873 int error; 874 875 inp = so->so_pcb; 876 INP_WLOCK(inp); 877 if (inp->inp_flags & INP_DROPPED) { 878 INP_WUNLOCK(inp); 879 return (ECONNRESET); 880 } 881 if (inp->inp_socket == NULL) { 882 INP_WUNLOCK(inp); 883 return (ECONNRESET); 884 } 885 tp = intotcpcb(inp); 886 if (!(tp->t_flags & TF_TOE)) { 887 INP_WUNLOCK(inp); 888 return (EOPNOTSUPP); 889 } 890 891 error = tcp_offload_alloc_tls_session(tp, tls, direction); 892 INP_WUNLOCK(inp); 893 if (error == 0) { 894 tls->mode = TCP_TLS_MODE_TOE; 895 switch (tls->params.cipher_algorithm) { 896 case CRYPTO_AES_CBC: 897 counter_u64_add(ktls_toe_cbc, 1); 898 break; 899 case CRYPTO_AES_NIST_GCM_16: 900 counter_u64_add(ktls_toe_gcm, 1); 901 break; 902 case CRYPTO_CHACHA20_POLY1305: 903 counter_u64_add(ktls_toe_chacha20, 1); 904 break; 905 } 906 } 907 return (error); 908 } 909 #endif 910 911 /* 912 * Common code used when first enabling ifnet TLS on a connection or 913 * when allocating a new ifnet TLS session due to a routing change. 914 * This function allocates a new TLS send tag on whatever interface 915 * the connection is currently routed over. 916 */ 917 static int 918 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 919 struct m_snd_tag **mstp) 920 { 921 union if_snd_tag_alloc_params params; 922 struct ifnet *ifp; 923 struct nhop_object *nh; 924 struct tcpcb *tp; 925 int error; 926 927 INP_RLOCK(inp); 928 if (inp->inp_flags & INP_DROPPED) { 929 INP_RUNLOCK(inp); 930 return (ECONNRESET); 931 } 932 if (inp->inp_socket == NULL) { 933 INP_RUNLOCK(inp); 934 return (ECONNRESET); 935 } 936 tp = intotcpcb(inp); 937 938 /* 939 * Check administrative controls on ifnet TLS to determine if 940 * ifnet TLS should be denied. 941 * 942 * - Always permit 'force' requests. 943 * - ktls_ifnet_permitted == 0: always deny. 944 */ 945 if (!force && ktls_ifnet_permitted == 0) { 946 INP_RUNLOCK(inp); 947 return (ENXIO); 948 } 949 950 /* 951 * XXX: Use the cached route in the inpcb to find the 952 * interface. This should perhaps instead use 953 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 954 * enabled after a connection has completed key negotiation in 955 * userland, the cached route will be present in practice. 956 */ 957 nh = inp->inp_route.ro_nh; 958 if (nh == NULL) { 959 INP_RUNLOCK(inp); 960 return (ENXIO); 961 } 962 ifp = nh->nh_ifp; 963 if_ref(ifp); 964 965 /* 966 * Allocate a TLS + ratelimit tag if the connection has an 967 * existing pacing rate. 968 */ 969 if (tp->t_pacing_rate != -1 && 970 (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) { 971 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 972 params.tls_rate_limit.inp = inp; 973 params.tls_rate_limit.tls = tls; 974 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 975 } else { 976 params.hdr.type = IF_SND_TAG_TYPE_TLS; 977 params.tls.inp = inp; 978 params.tls.tls = tls; 979 } 980 params.hdr.flowid = inp->inp_flowid; 981 params.hdr.flowtype = inp->inp_flowtype; 982 params.hdr.numa_domain = inp->inp_numa_domain; 983 INP_RUNLOCK(inp); 984 985 if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) { 986 error = EOPNOTSUPP; 987 goto out; 988 } 989 if (inp->inp_vflag & INP_IPV6) { 990 if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) { 991 error = EOPNOTSUPP; 992 goto out; 993 } 994 } else { 995 if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) { 996 error = EOPNOTSUPP; 997 goto out; 998 } 999 } 1000 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1001 out: 1002 if_rele(ifp); 1003 return (error); 1004 } 1005 1006 /* 1007 * Allocate an initial TLS receive tag for doing HW decryption of TLS 1008 * data. 1009 * 1010 * This function allocates a new TLS receive tag on whatever interface 1011 * the connection is currently routed over. If the connection ends up 1012 * using a different interface for receive this will get fixed up via 1013 * ktls_input_ifp_mismatch as future packets arrive. 1014 */ 1015 static int 1016 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 1017 struct m_snd_tag **mstp) 1018 { 1019 union if_snd_tag_alloc_params params; 1020 struct ifnet *ifp; 1021 struct nhop_object *nh; 1022 int error; 1023 1024 if (!ktls_ocf_recrypt_supported(tls)) 1025 return (ENXIO); 1026 1027 INP_RLOCK(inp); 1028 if (inp->inp_flags & INP_DROPPED) { 1029 INP_RUNLOCK(inp); 1030 return (ECONNRESET); 1031 } 1032 if (inp->inp_socket == NULL) { 1033 INP_RUNLOCK(inp); 1034 return (ECONNRESET); 1035 } 1036 1037 /* 1038 * Check administrative controls on ifnet TLS to determine if 1039 * ifnet TLS should be denied. 1040 */ 1041 if (ktls_ifnet_permitted == 0) { 1042 INP_RUNLOCK(inp); 1043 return (ENXIO); 1044 } 1045 1046 /* 1047 * XXX: As with ktls_alloc_snd_tag, use the cached route in 1048 * the inpcb to find the interface. 1049 */ 1050 nh = inp->inp_route.ro_nh; 1051 if (nh == NULL) { 1052 INP_RUNLOCK(inp); 1053 return (ENXIO); 1054 } 1055 ifp = nh->nh_ifp; 1056 if_ref(ifp); 1057 tls->rx_ifp = ifp; 1058 1059 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1060 params.hdr.flowid = inp->inp_flowid; 1061 params.hdr.flowtype = inp->inp_flowtype; 1062 params.hdr.numa_domain = inp->inp_numa_domain; 1063 params.tls_rx.inp = inp; 1064 params.tls_rx.tls = tls; 1065 params.tls_rx.vlan_id = 0; 1066 1067 INP_RUNLOCK(inp); 1068 1069 if (inp->inp_vflag & INP_IPV6) { 1070 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) { 1071 error = EOPNOTSUPP; 1072 goto out; 1073 } 1074 } else { 1075 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) { 1076 error = EOPNOTSUPP; 1077 goto out; 1078 } 1079 } 1080 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1081 1082 /* 1083 * If this connection is over a vlan, vlan_snd_tag_alloc 1084 * rewrites vlan_id with the saved interface. Save the VLAN 1085 * ID for use in ktls_reset_receive_tag which allocates new 1086 * receive tags directly from the leaf interface bypassing 1087 * if_vlan. 1088 */ 1089 if (error == 0) 1090 tls->rx_vlan_id = params.tls_rx.vlan_id; 1091 out: 1092 return (error); 1093 } 1094 1095 static int 1096 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1097 bool force) 1098 { 1099 struct m_snd_tag *mst; 1100 int error; 1101 1102 switch (direction) { 1103 case KTLS_TX: 1104 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1105 if (__predict_false(error != 0)) 1106 goto done; 1107 break; 1108 case KTLS_RX: 1109 KASSERT(!force, ("%s: forced receive tag", __func__)); 1110 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1111 if (__predict_false(error != 0)) 1112 goto done; 1113 break; 1114 default: 1115 __assert_unreachable(); 1116 } 1117 1118 tls->mode = TCP_TLS_MODE_IFNET; 1119 tls->snd_tag = mst; 1120 1121 switch (tls->params.cipher_algorithm) { 1122 case CRYPTO_AES_CBC: 1123 counter_u64_add(ktls_ifnet_cbc, 1); 1124 break; 1125 case CRYPTO_AES_NIST_GCM_16: 1126 counter_u64_add(ktls_ifnet_gcm, 1); 1127 break; 1128 case CRYPTO_CHACHA20_POLY1305: 1129 counter_u64_add(ktls_ifnet_chacha20, 1); 1130 break; 1131 default: 1132 break; 1133 } 1134 done: 1135 return (error); 1136 } 1137 1138 static void 1139 ktls_use_sw(struct ktls_session *tls) 1140 { 1141 tls->mode = TCP_TLS_MODE_SW; 1142 switch (tls->params.cipher_algorithm) { 1143 case CRYPTO_AES_CBC: 1144 counter_u64_add(ktls_sw_cbc, 1); 1145 break; 1146 case CRYPTO_AES_NIST_GCM_16: 1147 counter_u64_add(ktls_sw_gcm, 1); 1148 break; 1149 case CRYPTO_CHACHA20_POLY1305: 1150 counter_u64_add(ktls_sw_chacha20, 1); 1151 break; 1152 } 1153 } 1154 1155 static int 1156 ktls_try_sw(struct ktls_session *tls, int direction) 1157 { 1158 int error; 1159 1160 error = ktls_ocf_try(tls, direction); 1161 if (error) 1162 return (error); 1163 ktls_use_sw(tls); 1164 return (0); 1165 } 1166 1167 /* 1168 * KTLS RX stores data in the socket buffer as a list of TLS records, 1169 * where each record is stored as a control message containg the TLS 1170 * header followed by data mbufs containing the decrypted data. This 1171 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1172 * both encrypted and decrypted data. TLS records decrypted by a NIC 1173 * should be queued to the socket buffer as records, but encrypted 1174 * data which needs to be decrypted by software arrives as a stream of 1175 * regular mbufs which need to be converted. In addition, there may 1176 * already be pending encrypted data in the socket buffer when KTLS RX 1177 * is enabled. 1178 * 1179 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1180 * is used: 1181 * 1182 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1183 * 1184 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1185 * from the first mbuf. Once all of the data for that TLS record is 1186 * queued, the socket is queued to a worker thread. 1187 * 1188 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1189 * the TLS chain. Each TLS record is detached from the TLS chain, 1190 * decrypted, and inserted into the regular socket buffer chain as 1191 * record starting with a control message holding the TLS header and 1192 * a chain of mbufs holding the encrypted data. 1193 */ 1194 1195 static void 1196 sb_mark_notready(struct sockbuf *sb) 1197 { 1198 struct mbuf *m; 1199 1200 m = sb->sb_mb; 1201 sb->sb_mtls = m; 1202 sb->sb_mb = NULL; 1203 sb->sb_mbtail = NULL; 1204 sb->sb_lastrecord = NULL; 1205 for (; m != NULL; m = m->m_next) { 1206 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1207 __func__)); 1208 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1209 __func__)); 1210 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1211 __func__)); 1212 m->m_flags |= M_NOTREADY; 1213 sb->sb_acc -= m->m_len; 1214 sb->sb_tlscc += m->m_len; 1215 sb->sb_mtlstail = m; 1216 } 1217 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1218 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1219 sb->sb_ccc)); 1220 } 1221 1222 /* 1223 * Return information about the pending TLS data in a socket 1224 * buffer. On return, 'seqno' is set to the sequence number 1225 * of the next TLS record to be received, 'resid' is set to 1226 * the amount of bytes still needed for the last pending 1227 * record. The function returns 'false' if the last pending 1228 * record contains a partial TLS header. In that case, 'resid' 1229 * is the number of bytes needed to complete the TLS header. 1230 */ 1231 bool 1232 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1233 { 1234 struct tls_record_layer hdr; 1235 struct mbuf *m; 1236 uint64_t seqno; 1237 size_t resid; 1238 u_int offset, record_len; 1239 1240 SOCKBUF_LOCK_ASSERT(sb); 1241 MPASS(sb->sb_flags & SB_TLS_RX); 1242 seqno = sb->sb_tls_seqno; 1243 resid = sb->sb_tlscc; 1244 m = sb->sb_mtls; 1245 offset = 0; 1246 1247 if (resid == 0) { 1248 *seqnop = seqno; 1249 *residp = 0; 1250 return (true); 1251 } 1252 1253 for (;;) { 1254 seqno++; 1255 1256 if (resid < sizeof(hdr)) { 1257 *seqnop = seqno; 1258 *residp = sizeof(hdr) - resid; 1259 return (false); 1260 } 1261 1262 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1263 1264 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1265 if (resid <= record_len) { 1266 *seqnop = seqno; 1267 *residp = record_len - resid; 1268 return (true); 1269 } 1270 resid -= record_len; 1271 1272 while (record_len != 0) { 1273 if (m->m_len - offset > record_len) { 1274 offset += record_len; 1275 break; 1276 } 1277 1278 record_len -= (m->m_len - offset); 1279 offset = 0; 1280 m = m->m_next; 1281 } 1282 } 1283 } 1284 1285 int 1286 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1287 { 1288 struct ktls_session *tls; 1289 int error; 1290 1291 if (!ktls_offload_enable) 1292 return (ENOTSUP); 1293 1294 counter_u64_add(ktls_offload_enable_calls, 1); 1295 1296 /* 1297 * This should always be true since only the TCP socket option 1298 * invokes this function. 1299 */ 1300 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1301 return (EINVAL); 1302 1303 /* 1304 * XXX: Don't overwrite existing sessions. We should permit 1305 * this to support rekeying in the future. 1306 */ 1307 if (so->so_rcv.sb_tls_info != NULL) 1308 return (EALREADY); 1309 1310 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1311 return (ENOTSUP); 1312 1313 error = ktls_create_session(so, en, &tls, KTLS_RX); 1314 if (error) 1315 return (error); 1316 1317 error = ktls_ocf_try(tls, KTLS_RX); 1318 if (error) { 1319 ktls_free(tls); 1320 return (error); 1321 } 1322 1323 /* 1324 * Serialize with soreceive_generic() and make sure that we're not 1325 * operating on a listening socket. 1326 */ 1327 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT); 1328 if (error) { 1329 ktls_free(tls); 1330 return (error); 1331 } 1332 1333 /* Mark the socket as using TLS offload. */ 1334 SOCK_RECVBUF_LOCK(so); 1335 if (__predict_false(so->so_rcv.sb_tls_info != NULL)) 1336 error = EALREADY; 1337 else if ((so->so_rcv.sb_flags & SB_SPLICED) != 0) 1338 error = EINVAL; 1339 if (error != 0) { 1340 SOCK_RECVBUF_UNLOCK(so); 1341 SOCK_IO_RECV_UNLOCK(so); 1342 ktls_free(tls); 1343 return (EALREADY); 1344 } 1345 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1346 so->so_rcv.sb_tls_info = tls; 1347 so->so_rcv.sb_flags |= SB_TLS_RX; 1348 1349 /* Mark existing data as not ready until it can be decrypted. */ 1350 sb_mark_notready(&so->so_rcv); 1351 ktls_check_rx(&so->so_rcv); 1352 SOCK_RECVBUF_UNLOCK(so); 1353 SOCK_IO_RECV_UNLOCK(so); 1354 1355 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1356 #ifdef TCP_OFFLOAD 1357 error = ktls_try_toe(so, tls, KTLS_RX); 1358 if (error) 1359 #endif 1360 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1361 if (error) 1362 ktls_use_sw(tls); 1363 1364 counter_u64_add(ktls_offload_total, 1); 1365 1366 return (0); 1367 } 1368 1369 int 1370 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1371 { 1372 struct ktls_session *tls; 1373 struct inpcb *inp; 1374 struct tcpcb *tp; 1375 int error; 1376 1377 if (!ktls_offload_enable) 1378 return (ENOTSUP); 1379 1380 counter_u64_add(ktls_offload_enable_calls, 1); 1381 1382 /* 1383 * This should always be true since only the TCP socket option 1384 * invokes this function. 1385 */ 1386 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1387 return (EINVAL); 1388 1389 /* 1390 * XXX: Don't overwrite existing sessions. We should permit 1391 * this to support rekeying in the future. 1392 */ 1393 if (so->so_snd.sb_tls_info != NULL) 1394 return (EALREADY); 1395 1396 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1397 return (ENOTSUP); 1398 1399 /* TLS requires ext pgs */ 1400 if (mb_use_ext_pgs == 0) 1401 return (ENXIO); 1402 1403 error = ktls_create_session(so, en, &tls, KTLS_TX); 1404 if (error) 1405 return (error); 1406 1407 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1408 #ifdef TCP_OFFLOAD 1409 error = ktls_try_toe(so, tls, KTLS_TX); 1410 if (error) 1411 #endif 1412 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1413 if (error) 1414 error = ktls_try_sw(tls, KTLS_TX); 1415 1416 if (error) { 1417 ktls_free(tls); 1418 return (error); 1419 } 1420 1421 /* 1422 * Serialize with sosend_generic() and make sure that we're not 1423 * operating on a listening socket. 1424 */ 1425 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1426 if (error) { 1427 ktls_free(tls); 1428 return (error); 1429 } 1430 1431 /* 1432 * Write lock the INP when setting sb_tls_info so that 1433 * routines in tcp_ratelimit.c can read sb_tls_info while 1434 * holding the INP lock. 1435 */ 1436 inp = so->so_pcb; 1437 INP_WLOCK(inp); 1438 SOCK_SENDBUF_LOCK(so); 1439 if (__predict_false(so->so_snd.sb_tls_info != NULL)) 1440 error = EALREADY; 1441 else if ((so->so_snd.sb_flags & SB_SPLICED) != 0) 1442 error = EINVAL; 1443 if (error != 0) { 1444 SOCK_SENDBUF_UNLOCK(so); 1445 INP_WUNLOCK(inp); 1446 SOCK_IO_SEND_UNLOCK(so); 1447 ktls_free(tls); 1448 return (error); 1449 } 1450 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1451 so->so_snd.sb_tls_info = tls; 1452 if (tls->mode != TCP_TLS_MODE_SW) { 1453 tp = intotcpcb(inp); 1454 MPASS(tp->t_nic_ktls_xmit == 0); 1455 tp->t_nic_ktls_xmit = 1; 1456 if (tp->t_fb->tfb_hwtls_change != NULL) 1457 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1458 } 1459 SOCK_SENDBUF_UNLOCK(so); 1460 INP_WUNLOCK(inp); 1461 SOCK_IO_SEND_UNLOCK(so); 1462 1463 counter_u64_add(ktls_offload_total, 1); 1464 1465 return (0); 1466 } 1467 1468 int 1469 ktls_get_rx_mode(struct socket *so, int *modep) 1470 { 1471 struct ktls_session *tls; 1472 struct inpcb *inp __diagused; 1473 1474 if (SOLISTENING(so)) 1475 return (EINVAL); 1476 inp = so->so_pcb; 1477 INP_WLOCK_ASSERT(inp); 1478 SOCK_RECVBUF_LOCK(so); 1479 tls = so->so_rcv.sb_tls_info; 1480 if (tls == NULL) 1481 *modep = TCP_TLS_MODE_NONE; 1482 else 1483 *modep = tls->mode; 1484 SOCK_RECVBUF_UNLOCK(so); 1485 return (0); 1486 } 1487 1488 /* 1489 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1490 * 1491 * This function gets information about the next TCP- and TLS- 1492 * sequence number to be processed by the TLS receive worker 1493 * thread. The information is extracted from the given "inpcb" 1494 * structure. The values are stored in host endian format at the two 1495 * given output pointer locations. The TCP sequence number points to 1496 * the beginning of the TLS header. 1497 * 1498 * This function returns zero on success, else a non-zero error code 1499 * is returned. 1500 */ 1501 int 1502 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1503 { 1504 struct socket *so; 1505 struct tcpcb *tp; 1506 1507 INP_RLOCK(inp); 1508 so = inp->inp_socket; 1509 if (__predict_false(so == NULL)) { 1510 INP_RUNLOCK(inp); 1511 return (EINVAL); 1512 } 1513 if (inp->inp_flags & INP_DROPPED) { 1514 INP_RUNLOCK(inp); 1515 return (ECONNRESET); 1516 } 1517 1518 tp = intotcpcb(inp); 1519 MPASS(tp != NULL); 1520 1521 SOCKBUF_LOCK(&so->so_rcv); 1522 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1523 *tlsseq = so->so_rcv.sb_tls_seqno; 1524 SOCKBUF_UNLOCK(&so->so_rcv); 1525 1526 INP_RUNLOCK(inp); 1527 1528 return (0); 1529 } 1530 1531 int 1532 ktls_get_tx_mode(struct socket *so, int *modep) 1533 { 1534 struct ktls_session *tls; 1535 struct inpcb *inp __diagused; 1536 1537 if (SOLISTENING(so)) 1538 return (EINVAL); 1539 inp = so->so_pcb; 1540 INP_WLOCK_ASSERT(inp); 1541 SOCK_SENDBUF_LOCK(so); 1542 tls = so->so_snd.sb_tls_info; 1543 if (tls == NULL) 1544 *modep = TCP_TLS_MODE_NONE; 1545 else 1546 *modep = tls->mode; 1547 SOCK_SENDBUF_UNLOCK(so); 1548 return (0); 1549 } 1550 1551 /* 1552 * Switch between SW and ifnet TLS sessions as requested. 1553 */ 1554 int 1555 ktls_set_tx_mode(struct socket *so, int mode) 1556 { 1557 struct ktls_session *tls, *tls_new; 1558 struct inpcb *inp; 1559 struct tcpcb *tp; 1560 int error; 1561 1562 if (SOLISTENING(so)) 1563 return (EINVAL); 1564 switch (mode) { 1565 case TCP_TLS_MODE_SW: 1566 case TCP_TLS_MODE_IFNET: 1567 break; 1568 default: 1569 return (EINVAL); 1570 } 1571 1572 inp = so->so_pcb; 1573 INP_WLOCK_ASSERT(inp); 1574 tp = intotcpcb(inp); 1575 1576 if (mode == TCP_TLS_MODE_IFNET) { 1577 /* Don't allow enabling ifnet ktls multiple times */ 1578 if (tp->t_nic_ktls_xmit) 1579 return (EALREADY); 1580 1581 /* 1582 * Don't enable ifnet ktls if we disabled it due to an 1583 * excessive retransmission rate 1584 */ 1585 if (tp->t_nic_ktls_xmit_dis) 1586 return (ENXIO); 1587 } 1588 1589 SOCKBUF_LOCK(&so->so_snd); 1590 tls = so->so_snd.sb_tls_info; 1591 if (tls == NULL) { 1592 SOCKBUF_UNLOCK(&so->so_snd); 1593 return (0); 1594 } 1595 1596 if (tls->mode == mode) { 1597 SOCKBUF_UNLOCK(&so->so_snd); 1598 return (0); 1599 } 1600 1601 tls = ktls_hold(tls); 1602 SOCKBUF_UNLOCK(&so->so_snd); 1603 INP_WUNLOCK(inp); 1604 1605 tls_new = ktls_clone_session(tls, KTLS_TX); 1606 1607 if (mode == TCP_TLS_MODE_IFNET) 1608 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1609 else 1610 error = ktls_try_sw(tls_new, KTLS_TX); 1611 if (error) { 1612 counter_u64_add(ktls_switch_failed, 1); 1613 ktls_free(tls_new); 1614 ktls_free(tls); 1615 INP_WLOCK(inp); 1616 return (error); 1617 } 1618 1619 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1620 if (error) { 1621 counter_u64_add(ktls_switch_failed, 1); 1622 ktls_free(tls_new); 1623 ktls_free(tls); 1624 INP_WLOCK(inp); 1625 return (error); 1626 } 1627 1628 /* 1629 * If we raced with another session change, keep the existing 1630 * session. 1631 */ 1632 if (tls != so->so_snd.sb_tls_info) { 1633 counter_u64_add(ktls_switch_failed, 1); 1634 SOCK_IO_SEND_UNLOCK(so); 1635 ktls_free(tls_new); 1636 ktls_free(tls); 1637 INP_WLOCK(inp); 1638 return (EBUSY); 1639 } 1640 1641 INP_WLOCK(inp); 1642 SOCKBUF_LOCK(&so->so_snd); 1643 so->so_snd.sb_tls_info = tls_new; 1644 if (tls_new->mode != TCP_TLS_MODE_SW) { 1645 MPASS(tp->t_nic_ktls_xmit == 0); 1646 tp->t_nic_ktls_xmit = 1; 1647 if (tp->t_fb->tfb_hwtls_change != NULL) 1648 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1649 } 1650 SOCKBUF_UNLOCK(&so->so_snd); 1651 SOCK_IO_SEND_UNLOCK(so); 1652 1653 /* 1654 * Drop two references on 'tls'. The first is for the 1655 * ktls_hold() above. The second drops the reference from the 1656 * socket buffer. 1657 */ 1658 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1659 ktls_free(tls); 1660 ktls_free(tls); 1661 1662 if (mode == TCP_TLS_MODE_IFNET) 1663 counter_u64_add(ktls_switch_to_ifnet, 1); 1664 else 1665 counter_u64_add(ktls_switch_to_sw, 1); 1666 1667 return (0); 1668 } 1669 1670 /* 1671 * Try to allocate a new TLS receive tag. This task is scheduled when 1672 * sbappend_ktls_rx detects an input path change. If a new tag is 1673 * allocated, replace the tag in the TLS session. If a new tag cannot 1674 * be allocated, let the session fall back to software decryption. 1675 */ 1676 static void 1677 ktls_reset_receive_tag(void *context, int pending) 1678 { 1679 union if_snd_tag_alloc_params params; 1680 struct ktls_session *tls; 1681 struct m_snd_tag *mst; 1682 struct inpcb *inp; 1683 struct ifnet *ifp; 1684 struct socket *so; 1685 int error; 1686 1687 MPASS(pending == 1); 1688 1689 tls = context; 1690 so = tls->so; 1691 inp = so->so_pcb; 1692 ifp = NULL; 1693 1694 INP_RLOCK(inp); 1695 if (inp->inp_flags & INP_DROPPED) { 1696 INP_RUNLOCK(inp); 1697 goto out; 1698 } 1699 1700 SOCKBUF_LOCK(&so->so_rcv); 1701 mst = tls->snd_tag; 1702 tls->snd_tag = NULL; 1703 if (mst != NULL) 1704 m_snd_tag_rele(mst); 1705 1706 ifp = tls->rx_ifp; 1707 if_ref(ifp); 1708 SOCKBUF_UNLOCK(&so->so_rcv); 1709 1710 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1711 params.hdr.flowid = inp->inp_flowid; 1712 params.hdr.flowtype = inp->inp_flowtype; 1713 params.hdr.numa_domain = inp->inp_numa_domain; 1714 params.tls_rx.inp = inp; 1715 params.tls_rx.tls = tls; 1716 params.tls_rx.vlan_id = tls->rx_vlan_id; 1717 INP_RUNLOCK(inp); 1718 1719 if (inp->inp_vflag & INP_IPV6) { 1720 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) 1721 goto out; 1722 } else { 1723 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) 1724 goto out; 1725 } 1726 1727 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1728 if (error == 0) { 1729 SOCKBUF_LOCK(&so->so_rcv); 1730 tls->snd_tag = mst; 1731 SOCKBUF_UNLOCK(&so->so_rcv); 1732 1733 counter_u64_add(ktls_ifnet_reset, 1); 1734 } else { 1735 /* 1736 * Just fall back to software decryption if a tag 1737 * cannot be allocated leaving the connection intact. 1738 * If a future input path change switches to another 1739 * interface this connection will resume ifnet TLS. 1740 */ 1741 counter_u64_add(ktls_ifnet_reset_failed, 1); 1742 } 1743 1744 out: 1745 mtx_pool_lock(mtxpool_sleep, tls); 1746 tls->reset_pending = false; 1747 mtx_pool_unlock(mtxpool_sleep, tls); 1748 1749 if (ifp != NULL) 1750 if_rele(ifp); 1751 CURVNET_SET(so->so_vnet); 1752 sorele(so); 1753 CURVNET_RESTORE(); 1754 ktls_free(tls); 1755 } 1756 1757 /* 1758 * Try to allocate a new TLS send tag. This task is scheduled when 1759 * ip_output detects a route change while trying to transmit a packet 1760 * holding a TLS record. If a new tag is allocated, replace the tag 1761 * in the TLS session. Subsequent packets on the connection will use 1762 * the new tag. If a new tag cannot be allocated, drop the 1763 * connection. 1764 */ 1765 static void 1766 ktls_reset_send_tag(void *context, int pending) 1767 { 1768 struct epoch_tracker et; 1769 struct ktls_session *tls; 1770 struct m_snd_tag *old, *new; 1771 struct inpcb *inp; 1772 struct tcpcb *tp; 1773 int error; 1774 1775 MPASS(pending == 1); 1776 1777 tls = context; 1778 inp = tls->inp; 1779 1780 /* 1781 * Free the old tag first before allocating a new one. 1782 * ip[6]_output_send() will treat a NULL send tag the same as 1783 * an ifp mismatch and drop packets until a new tag is 1784 * allocated. 1785 * 1786 * Write-lock the INP when changing tls->snd_tag since 1787 * ip[6]_output_send() holds a read-lock when reading the 1788 * pointer. 1789 */ 1790 INP_WLOCK(inp); 1791 old = tls->snd_tag; 1792 tls->snd_tag = NULL; 1793 INP_WUNLOCK(inp); 1794 if (old != NULL) 1795 m_snd_tag_rele(old); 1796 1797 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1798 1799 if (error == 0) { 1800 INP_WLOCK(inp); 1801 tls->snd_tag = new; 1802 mtx_pool_lock(mtxpool_sleep, tls); 1803 tls->reset_pending = false; 1804 mtx_pool_unlock(mtxpool_sleep, tls); 1805 INP_WUNLOCK(inp); 1806 1807 counter_u64_add(ktls_ifnet_reset, 1); 1808 1809 /* 1810 * XXX: Should we kick tcp_output explicitly now that 1811 * the send tag is fixed or just rely on timers? 1812 */ 1813 } else { 1814 NET_EPOCH_ENTER(et); 1815 INP_WLOCK(inp); 1816 if (!(inp->inp_flags & INP_DROPPED)) { 1817 tp = intotcpcb(inp); 1818 CURVNET_SET(inp->inp_vnet); 1819 tp = tcp_drop(tp, ECONNABORTED); 1820 CURVNET_RESTORE(); 1821 if (tp != NULL) { 1822 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1823 INP_WUNLOCK(inp); 1824 } 1825 } else 1826 INP_WUNLOCK(inp); 1827 NET_EPOCH_EXIT(et); 1828 1829 counter_u64_add(ktls_ifnet_reset_failed, 1); 1830 1831 /* 1832 * Leave reset_pending true to avoid future tasks while 1833 * the socket goes away. 1834 */ 1835 } 1836 1837 ktls_free(tls); 1838 } 1839 1840 void 1841 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1842 { 1843 struct ktls_session *tls; 1844 struct socket *so; 1845 1846 SOCKBUF_LOCK_ASSERT(sb); 1847 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1848 __func__, sb)); 1849 so = __containerof(sb, struct socket, so_rcv); 1850 1851 tls = sb->sb_tls_info; 1852 if_rele(tls->rx_ifp); 1853 if_ref(ifp); 1854 tls->rx_ifp = ifp; 1855 1856 /* 1857 * See if we should schedule a task to update the receive tag for 1858 * this session. 1859 */ 1860 mtx_pool_lock(mtxpool_sleep, tls); 1861 if (!tls->reset_pending) { 1862 (void) ktls_hold(tls); 1863 soref(so); 1864 tls->so = so; 1865 tls->reset_pending = true; 1866 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1867 } 1868 mtx_pool_unlock(mtxpool_sleep, tls); 1869 } 1870 1871 int 1872 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1873 { 1874 1875 if (inp == NULL) 1876 return (ENOBUFS); 1877 1878 INP_LOCK_ASSERT(inp); 1879 1880 /* 1881 * See if we should schedule a task to update the send tag for 1882 * this session. 1883 */ 1884 mtx_pool_lock(mtxpool_sleep, tls); 1885 if (!tls->reset_pending) { 1886 (void) ktls_hold(tls); 1887 tls->reset_pending = true; 1888 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1889 } 1890 mtx_pool_unlock(mtxpool_sleep, tls); 1891 return (ENOBUFS); 1892 } 1893 1894 #ifdef RATELIMIT 1895 int 1896 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1897 { 1898 union if_snd_tag_modify_params params = { 1899 .rate_limit.max_rate = max_pacing_rate, 1900 .rate_limit.flags = M_NOWAIT, 1901 }; 1902 struct m_snd_tag *mst; 1903 1904 /* Can't get to the inp, but it should be locked. */ 1905 /* INP_LOCK_ASSERT(inp); */ 1906 1907 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1908 1909 if (tls->snd_tag == NULL) { 1910 /* 1911 * Resetting send tag, ignore this change. The 1912 * pending reset may or may not see this updated rate 1913 * in the tcpcb. If it doesn't, we will just lose 1914 * this rate change. 1915 */ 1916 return (0); 1917 } 1918 1919 mst = tls->snd_tag; 1920 1921 MPASS(mst != NULL); 1922 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1923 1924 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1925 } 1926 #endif 1927 1928 static void 1929 ktls_destroy_help(void *context, int pending __unused) 1930 { 1931 ktls_destroy(context); 1932 } 1933 1934 void 1935 ktls_destroy(struct ktls_session *tls) 1936 { 1937 struct inpcb *inp; 1938 struct tcpcb *tp; 1939 bool wlocked; 1940 1941 MPASS(tls->refcount == 0); 1942 1943 inp = tls->inp; 1944 if (tls->tx) { 1945 wlocked = INP_WLOCKED(inp); 1946 if (!wlocked && !INP_TRY_WLOCK(inp)) { 1947 /* 1948 * rwlocks read locks are anonymous, and there 1949 * is no way to know if our current thread 1950 * holds an rlock on the inp. As a rough 1951 * estimate, check to see if the thread holds 1952 * *any* rlocks at all. If it does not, then we 1953 * know that we don't hold the inp rlock, and 1954 * can safely take the wlock 1955 */ 1956 if (curthread->td_rw_rlocks == 0) { 1957 INP_WLOCK(inp); 1958 } else { 1959 /* 1960 * We might hold the rlock, so let's 1961 * do the destroy in a taskqueue 1962 * context to avoid a potential 1963 * deadlock. This should be very 1964 * rare. 1965 */ 1966 counter_u64_add(ktls_destroy_task, 1); 1967 TASK_INIT(&tls->destroy_task, 0, 1968 ktls_destroy_help, tls); 1969 (void)taskqueue_enqueue(taskqueue_thread, 1970 &tls->destroy_task); 1971 return; 1972 } 1973 } 1974 } 1975 1976 if (tls->sequential_records) { 1977 struct mbuf *m, *n; 1978 int page_count; 1979 1980 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1981 page_count = m->m_epg_enc_cnt; 1982 while (page_count > 0) { 1983 KASSERT(page_count >= m->m_epg_nrdy, 1984 ("%s: too few pages", __func__)); 1985 page_count -= m->m_epg_nrdy; 1986 m = m_free(m); 1987 } 1988 } 1989 } 1990 1991 counter_u64_add(ktls_offload_active, -1); 1992 switch (tls->mode) { 1993 case TCP_TLS_MODE_SW: 1994 switch (tls->params.cipher_algorithm) { 1995 case CRYPTO_AES_CBC: 1996 counter_u64_add(ktls_sw_cbc, -1); 1997 break; 1998 case CRYPTO_AES_NIST_GCM_16: 1999 counter_u64_add(ktls_sw_gcm, -1); 2000 break; 2001 case CRYPTO_CHACHA20_POLY1305: 2002 counter_u64_add(ktls_sw_chacha20, -1); 2003 break; 2004 } 2005 break; 2006 case TCP_TLS_MODE_IFNET: 2007 switch (tls->params.cipher_algorithm) { 2008 case CRYPTO_AES_CBC: 2009 counter_u64_add(ktls_ifnet_cbc, -1); 2010 break; 2011 case CRYPTO_AES_NIST_GCM_16: 2012 counter_u64_add(ktls_ifnet_gcm, -1); 2013 break; 2014 case CRYPTO_CHACHA20_POLY1305: 2015 counter_u64_add(ktls_ifnet_chacha20, -1); 2016 break; 2017 } 2018 if (tls->snd_tag != NULL) 2019 m_snd_tag_rele(tls->snd_tag); 2020 if (tls->rx_ifp != NULL) 2021 if_rele(tls->rx_ifp); 2022 if (tls->tx) { 2023 INP_WLOCK_ASSERT(inp); 2024 tp = intotcpcb(inp); 2025 MPASS(tp->t_nic_ktls_xmit == 1); 2026 tp->t_nic_ktls_xmit = 0; 2027 } 2028 break; 2029 #ifdef TCP_OFFLOAD 2030 case TCP_TLS_MODE_TOE: 2031 switch (tls->params.cipher_algorithm) { 2032 case CRYPTO_AES_CBC: 2033 counter_u64_add(ktls_toe_cbc, -1); 2034 break; 2035 case CRYPTO_AES_NIST_GCM_16: 2036 counter_u64_add(ktls_toe_gcm, -1); 2037 break; 2038 case CRYPTO_CHACHA20_POLY1305: 2039 counter_u64_add(ktls_toe_chacha20, -1); 2040 break; 2041 } 2042 break; 2043 #endif 2044 } 2045 if (tls->ocf_session != NULL) 2046 ktls_ocf_free(tls); 2047 if (tls->params.auth_key != NULL) { 2048 zfree(tls->params.auth_key, M_KTLS); 2049 tls->params.auth_key = NULL; 2050 tls->params.auth_key_len = 0; 2051 } 2052 if (tls->params.cipher_key != NULL) { 2053 zfree(tls->params.cipher_key, M_KTLS); 2054 tls->params.cipher_key = NULL; 2055 tls->params.cipher_key_len = 0; 2056 } 2057 if (tls->tx) { 2058 INP_WLOCK_ASSERT(inp); 2059 if (!in_pcbrele_wlocked(inp) && !wlocked) 2060 INP_WUNLOCK(inp); 2061 } 2062 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 2063 2064 uma_zfree(ktls_session_zone, tls); 2065 } 2066 2067 void 2068 ktls_seq(struct sockbuf *sb, struct mbuf *m) 2069 { 2070 2071 for (; m != NULL; m = m->m_next) { 2072 KASSERT((m->m_flags & M_EXTPG) != 0, 2073 ("ktls_seq: mapped mbuf %p", m)); 2074 2075 m->m_epg_seqno = sb->sb_tls_seqno; 2076 sb->sb_tls_seqno++; 2077 } 2078 } 2079 2080 /* 2081 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 2082 * mbuf in the chain must be an unmapped mbuf. The payload of the 2083 * mbuf must be populated with the payload of each TLS record. 2084 * 2085 * The record_type argument specifies the TLS record type used when 2086 * populating the TLS header. 2087 * 2088 * The enq_count argument on return is set to the number of pages of 2089 * payload data for this entire chain that need to be encrypted via SW 2090 * encryption. The returned value should be passed to ktls_enqueue 2091 * when scheduling encryption of this chain of mbufs. To handle the 2092 * special case of empty fragments for TLS 1.0 sessions, an empty 2093 * fragment counts as one page. 2094 */ 2095 void 2096 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 2097 uint8_t record_type) 2098 { 2099 struct tls_record_layer *tlshdr; 2100 struct mbuf *m; 2101 uint64_t *noncep; 2102 uint16_t tls_len; 2103 int maxlen __diagused; 2104 2105 maxlen = tls->params.max_frame_len; 2106 *enq_cnt = 0; 2107 for (m = top; m != NULL; m = m->m_next) { 2108 /* 2109 * All mbufs in the chain should be TLS records whose 2110 * payload does not exceed the maximum frame length. 2111 * 2112 * Empty TLS 1.0 records are permitted when using CBC. 2113 */ 2114 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 2115 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 2116 ("ktls_frame: m %p len %d", m, m->m_len)); 2117 2118 /* 2119 * TLS frames require unmapped mbufs to store session 2120 * info. 2121 */ 2122 KASSERT((m->m_flags & M_EXTPG) != 0, 2123 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 2124 2125 tls_len = m->m_len; 2126 2127 /* Save a reference to the session. */ 2128 m->m_epg_tls = ktls_hold(tls); 2129 2130 m->m_epg_hdrlen = tls->params.tls_hlen; 2131 m->m_epg_trllen = tls->params.tls_tlen; 2132 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 2133 int bs, delta; 2134 2135 /* 2136 * AES-CBC pads messages to a multiple of the 2137 * block size. Note that the padding is 2138 * applied after the digest and the encryption 2139 * is done on the "plaintext || mac || padding". 2140 * At least one byte of padding is always 2141 * present. 2142 * 2143 * Compute the final trailer length assuming 2144 * at most one block of padding. 2145 * tls->params.tls_tlen is the maximum 2146 * possible trailer length (padding + digest). 2147 * delta holds the number of excess padding 2148 * bytes if the maximum were used. Those 2149 * extra bytes are removed. 2150 */ 2151 bs = tls->params.tls_bs; 2152 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 2153 m->m_epg_trllen -= delta; 2154 } 2155 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 2156 2157 /* Populate the TLS header. */ 2158 tlshdr = (void *)m->m_epg_hdr; 2159 tlshdr->tls_vmajor = tls->params.tls_vmajor; 2160 2161 /* 2162 * TLS 1.3 masquarades as TLS 1.2 with a record type 2163 * of TLS_RLTYPE_APP. 2164 */ 2165 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 2166 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 2167 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 2168 tlshdr->tls_type = TLS_RLTYPE_APP; 2169 /* save the real record type for later */ 2170 m->m_epg_record_type = record_type; 2171 m->m_epg_trail[0] = record_type; 2172 } else { 2173 tlshdr->tls_vminor = tls->params.tls_vminor; 2174 tlshdr->tls_type = record_type; 2175 } 2176 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 2177 2178 /* 2179 * Store nonces / explicit IVs after the end of the 2180 * TLS header. 2181 * 2182 * For GCM with TLS 1.2, an 8 byte nonce is copied 2183 * from the end of the IV. The nonce is then 2184 * incremented for use by the next record. 2185 * 2186 * For CBC, a random nonce is inserted for TLS 1.1+. 2187 */ 2188 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2189 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2190 noncep = (uint64_t *)(tls->params.iv + 8); 2191 be64enc(tlshdr + 1, *noncep); 2192 (*noncep)++; 2193 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2194 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2195 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2196 2197 /* 2198 * When using SW encryption, mark the mbuf not ready. 2199 * It will be marked ready via sbready() after the 2200 * record has been encrypted. 2201 * 2202 * When using ifnet TLS, unencrypted TLS records are 2203 * sent down the stack to the NIC. 2204 */ 2205 if (tls->mode == TCP_TLS_MODE_SW) { 2206 m->m_flags |= M_NOTREADY; 2207 if (__predict_false(tls_len == 0)) { 2208 /* TLS 1.0 empty fragment. */ 2209 m->m_epg_nrdy = 1; 2210 } else 2211 m->m_epg_nrdy = m->m_epg_npgs; 2212 *enq_cnt += m->m_epg_nrdy; 2213 } 2214 } 2215 } 2216 2217 bool 2218 ktls_permit_empty_frames(struct ktls_session *tls) 2219 { 2220 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2221 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2222 } 2223 2224 void 2225 ktls_check_rx(struct sockbuf *sb) 2226 { 2227 struct tls_record_layer hdr; 2228 struct ktls_wq *wq; 2229 struct socket *so; 2230 bool running; 2231 2232 SOCKBUF_LOCK_ASSERT(sb); 2233 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2234 __func__, sb)); 2235 so = __containerof(sb, struct socket, so_rcv); 2236 2237 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2238 return; 2239 2240 /* Is there enough queued for a TLS header? */ 2241 if (sb->sb_tlscc < sizeof(hdr)) { 2242 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2243 so->so_error = EMSGSIZE; 2244 return; 2245 } 2246 2247 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2248 2249 /* Is the entire record queued? */ 2250 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2251 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2252 so->so_error = EMSGSIZE; 2253 return; 2254 } 2255 2256 sb->sb_flags |= SB_TLS_RX_RUNNING; 2257 2258 soref(so); 2259 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2260 mtx_lock(&wq->mtx); 2261 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2262 running = wq->running; 2263 mtx_unlock(&wq->mtx); 2264 if (!running) 2265 wakeup(wq); 2266 counter_u64_add(ktls_cnt_rx_queued, 1); 2267 } 2268 2269 static struct mbuf * 2270 ktls_detach_record(struct sockbuf *sb, int len) 2271 { 2272 struct mbuf *m, *n, *top; 2273 int remain; 2274 2275 SOCKBUF_LOCK_ASSERT(sb); 2276 MPASS(len <= sb->sb_tlscc); 2277 2278 /* 2279 * If TLS chain is the exact size of the record, 2280 * just grab the whole record. 2281 */ 2282 top = sb->sb_mtls; 2283 if (sb->sb_tlscc == len) { 2284 sb->sb_mtls = NULL; 2285 sb->sb_mtlstail = NULL; 2286 goto out; 2287 } 2288 2289 /* 2290 * While it would be nice to use m_split() here, we need 2291 * to know exactly what m_split() allocates to update the 2292 * accounting, so do it inline instead. 2293 */ 2294 remain = len; 2295 for (m = top; remain > m->m_len; m = m->m_next) 2296 remain -= m->m_len; 2297 2298 /* Easy case: don't have to split 'm'. */ 2299 if (remain == m->m_len) { 2300 sb->sb_mtls = m->m_next; 2301 if (sb->sb_mtls == NULL) 2302 sb->sb_mtlstail = NULL; 2303 m->m_next = NULL; 2304 goto out; 2305 } 2306 2307 /* 2308 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2309 * with M_NOWAIT first. 2310 */ 2311 n = m_get(M_NOWAIT, MT_DATA); 2312 if (n == NULL) { 2313 /* 2314 * Use M_WAITOK with socket buffer unlocked. If 2315 * 'sb_mtls' changes while the lock is dropped, return 2316 * NULL to force the caller to retry. 2317 */ 2318 SOCKBUF_UNLOCK(sb); 2319 2320 n = m_get(M_WAITOK, MT_DATA); 2321 2322 SOCKBUF_LOCK(sb); 2323 if (sb->sb_mtls != top) { 2324 m_free(n); 2325 return (NULL); 2326 } 2327 } 2328 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2329 2330 /* Store remainder in 'n'. */ 2331 n->m_len = m->m_len - remain; 2332 if (m->m_flags & M_EXT) { 2333 n->m_data = m->m_data + remain; 2334 mb_dupcl(n, m); 2335 } else { 2336 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2337 } 2338 2339 /* Trim 'm' and update accounting. */ 2340 m->m_len -= n->m_len; 2341 sb->sb_tlscc -= n->m_len; 2342 sb->sb_ccc -= n->m_len; 2343 2344 /* Account for 'n'. */ 2345 sballoc_ktls_rx(sb, n); 2346 2347 /* Insert 'n' into the TLS chain. */ 2348 sb->sb_mtls = n; 2349 n->m_next = m->m_next; 2350 if (sb->sb_mtlstail == m) 2351 sb->sb_mtlstail = n; 2352 2353 /* Detach the record from the TLS chain. */ 2354 m->m_next = NULL; 2355 2356 out: 2357 MPASS(m_length(top, NULL) == len); 2358 for (m = top; m != NULL; m = m->m_next) 2359 sbfree_ktls_rx(sb, m); 2360 sb->sb_tlsdcc = len; 2361 sb->sb_ccc += len; 2362 SBCHECK(sb); 2363 return (top); 2364 } 2365 2366 /* 2367 * Determine the length of the trailing zero padding and find the real 2368 * record type in the byte before the padding. 2369 * 2370 * Walking the mbuf chain backwards is clumsy, so another option would 2371 * be to scan forwards remembering the last non-zero byte before the 2372 * trailer. However, it would be expensive to scan the entire record. 2373 * Instead, find the last non-zero byte of each mbuf in the chain 2374 * keeping track of the relative offset of that nonzero byte. 2375 * 2376 * trail_len is the size of the MAC/tag on input and is set to the 2377 * size of the full trailer including padding and the record type on 2378 * return. 2379 */ 2380 static int 2381 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2382 int *trailer_len, uint8_t *record_typep) 2383 { 2384 char *cp; 2385 u_int digest_start, last_offset, m_len, offset; 2386 uint8_t record_type; 2387 2388 digest_start = tls_len - *trailer_len; 2389 last_offset = 0; 2390 offset = 0; 2391 for (; m != NULL && offset < digest_start; 2392 offset += m->m_len, m = m->m_next) { 2393 /* Don't look for padding in the tag. */ 2394 m_len = min(digest_start - offset, m->m_len); 2395 cp = mtod(m, char *); 2396 2397 /* Find last non-zero byte in this mbuf. */ 2398 while (m_len > 0 && cp[m_len - 1] == 0) 2399 m_len--; 2400 if (m_len > 0) { 2401 record_type = cp[m_len - 1]; 2402 last_offset = offset + m_len; 2403 } 2404 } 2405 if (last_offset < tls->params.tls_hlen) 2406 return (EBADMSG); 2407 2408 *record_typep = record_type; 2409 *trailer_len = tls_len - last_offset + 1; 2410 return (0); 2411 } 2412 2413 /* 2414 * Check if a mbuf chain is fully decrypted at the given offset and 2415 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2416 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2417 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2418 * is encrypted. 2419 */ 2420 ktls_mbuf_crypto_st_t 2421 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2422 { 2423 int m_flags_ored = 0; 2424 int m_flags_anded = -1; 2425 2426 for (; mb != NULL; mb = mb->m_next) { 2427 if (offset < mb->m_len) 2428 break; 2429 offset -= mb->m_len; 2430 } 2431 offset += len; 2432 2433 for (; mb != NULL; mb = mb->m_next) { 2434 m_flags_ored |= mb->m_flags; 2435 m_flags_anded &= mb->m_flags; 2436 2437 if (offset <= mb->m_len) 2438 break; 2439 offset -= mb->m_len; 2440 } 2441 MPASS(mb != NULL || offset == 0); 2442 2443 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2444 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2445 else 2446 return ((m_flags_ored & M_DECRYPTED) ? 2447 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2448 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2449 } 2450 2451 /* 2452 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2453 */ 2454 static int 2455 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2456 { 2457 union if_snd_tag_modify_params params; 2458 struct m_snd_tag *mst; 2459 struct inpcb *inp; 2460 struct tcpcb *tp; 2461 2462 mst = so->so_rcv.sb_tls_info->snd_tag; 2463 if (__predict_false(mst == NULL)) 2464 return (EINVAL); 2465 2466 inp = sotoinpcb(so); 2467 if (__predict_false(inp == NULL)) 2468 return (EINVAL); 2469 2470 INP_RLOCK(inp); 2471 if (inp->inp_flags & INP_DROPPED) { 2472 INP_RUNLOCK(inp); 2473 return (ECONNRESET); 2474 } 2475 2476 tp = intotcpcb(inp); 2477 MPASS(tp != NULL); 2478 2479 /* Get the TCP sequence number of the next valid TLS header. */ 2480 SOCKBUF_LOCK(&so->so_rcv); 2481 params.tls_rx.tls_hdr_tcp_sn = 2482 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2483 params.tls_rx.tls_rec_length = tls_len; 2484 params.tls_rx.tls_seq_number = tls_rcd_num; 2485 SOCKBUF_UNLOCK(&so->so_rcv); 2486 2487 INP_RUNLOCK(inp); 2488 2489 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2490 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2491 } 2492 2493 static void 2494 ktls_drop(struct socket *so, int error) 2495 { 2496 struct epoch_tracker et; 2497 struct inpcb *inp = sotoinpcb(so); 2498 struct tcpcb *tp; 2499 2500 NET_EPOCH_ENTER(et); 2501 INP_WLOCK(inp); 2502 if (!(inp->inp_flags & INP_DROPPED)) { 2503 tp = intotcpcb(inp); 2504 CURVNET_SET(inp->inp_vnet); 2505 tp = tcp_drop(tp, error); 2506 CURVNET_RESTORE(); 2507 if (tp != NULL) 2508 INP_WUNLOCK(inp); 2509 } else { 2510 so->so_error = error; 2511 SOCK_RECVBUF_LOCK(so); 2512 sorwakeup_locked(so); 2513 INP_WUNLOCK(inp); 2514 } 2515 NET_EPOCH_EXIT(et); 2516 } 2517 2518 static void 2519 ktls_decrypt(struct socket *so) 2520 { 2521 char tls_header[MBUF_PEXT_HDR_LEN]; 2522 struct ktls_session *tls; 2523 struct sockbuf *sb; 2524 struct tls_record_layer *hdr; 2525 struct tls_get_record tgr; 2526 struct mbuf *control, *data, *m; 2527 ktls_mbuf_crypto_st_t state; 2528 uint64_t seqno; 2529 int error, remain, tls_len, trail_len; 2530 bool tls13; 2531 uint8_t vminor, record_type; 2532 2533 hdr = (struct tls_record_layer *)tls_header; 2534 sb = &so->so_rcv; 2535 SOCKBUF_LOCK(sb); 2536 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2537 ("%s: socket %p not running", __func__, so)); 2538 2539 tls = sb->sb_tls_info; 2540 MPASS(tls != NULL); 2541 2542 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2543 if (tls13) 2544 vminor = TLS_MINOR_VER_TWO; 2545 else 2546 vminor = tls->params.tls_vminor; 2547 for (;;) { 2548 /* Is there enough queued for a TLS header? */ 2549 if (sb->sb_tlscc < tls->params.tls_hlen) 2550 break; 2551 2552 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2553 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2554 2555 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2556 hdr->tls_vminor != vminor) 2557 error = EINVAL; 2558 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2559 error = EINVAL; 2560 else if (tls_len < tls->params.tls_hlen || tls_len > 2561 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2562 tls->params.tls_tlen) 2563 error = EMSGSIZE; 2564 else 2565 error = 0; 2566 if (__predict_false(error != 0)) { 2567 /* 2568 * We have a corrupted record and are likely 2569 * out of sync. The connection isn't 2570 * recoverable at this point, so abort it. 2571 */ 2572 SOCKBUF_UNLOCK(sb); 2573 counter_u64_add(ktls_offload_corrupted_records, 1); 2574 2575 ktls_drop(so, error); 2576 goto deref; 2577 } 2578 2579 /* Is the entire record queued? */ 2580 if (sb->sb_tlscc < tls_len) 2581 break; 2582 2583 /* 2584 * Split out the portion of the mbuf chain containing 2585 * this TLS record. 2586 */ 2587 data = ktls_detach_record(sb, tls_len); 2588 if (data == NULL) 2589 continue; 2590 MPASS(sb->sb_tlsdcc == tls_len); 2591 2592 seqno = sb->sb_tls_seqno; 2593 sb->sb_tls_seqno++; 2594 SBCHECK(sb); 2595 SOCKBUF_UNLOCK(sb); 2596 2597 /* get crypto state for this TLS record */ 2598 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2599 2600 switch (state) { 2601 case KTLS_MBUF_CRYPTO_ST_MIXED: 2602 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2603 if (error) 2604 break; 2605 /* FALLTHROUGH */ 2606 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2607 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2608 &trail_len); 2609 if (__predict_true(error == 0)) { 2610 if (tls13) { 2611 error = tls13_find_record_type(tls, data, 2612 tls_len, &trail_len, &record_type); 2613 } else { 2614 record_type = hdr->tls_type; 2615 } 2616 } 2617 break; 2618 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2619 /* 2620 * NIC TLS is only supported for AEAD 2621 * ciphersuites which used a fixed sized 2622 * trailer. 2623 */ 2624 if (tls13) { 2625 trail_len = tls->params.tls_tlen - 1; 2626 error = tls13_find_record_type(tls, data, 2627 tls_len, &trail_len, &record_type); 2628 } else { 2629 trail_len = tls->params.tls_tlen; 2630 error = 0; 2631 record_type = hdr->tls_type; 2632 } 2633 break; 2634 default: 2635 error = EINVAL; 2636 break; 2637 } 2638 if (error) { 2639 counter_u64_add(ktls_offload_failed_crypto, 1); 2640 2641 SOCKBUF_LOCK(sb); 2642 if (sb->sb_tlsdcc == 0) { 2643 /* 2644 * sbcut/drop/flush discarded these 2645 * mbufs. 2646 */ 2647 m_freem(data); 2648 break; 2649 } 2650 2651 /* 2652 * Drop this TLS record's data, but keep 2653 * decrypting subsequent records. 2654 */ 2655 sb->sb_ccc -= tls_len; 2656 sb->sb_tlsdcc = 0; 2657 2658 if (error != EMSGSIZE) 2659 error = EBADMSG; 2660 CURVNET_SET(so->so_vnet); 2661 so->so_error = error; 2662 sorwakeup_locked(so); 2663 CURVNET_RESTORE(); 2664 2665 m_freem(data); 2666 2667 SOCKBUF_LOCK(sb); 2668 continue; 2669 } 2670 2671 /* Allocate the control mbuf. */ 2672 memset(&tgr, 0, sizeof(tgr)); 2673 tgr.tls_type = record_type; 2674 tgr.tls_vmajor = hdr->tls_vmajor; 2675 tgr.tls_vminor = hdr->tls_vminor; 2676 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2677 trail_len); 2678 control = sbcreatecontrol(&tgr, sizeof(tgr), 2679 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2680 2681 SOCKBUF_LOCK(sb); 2682 if (sb->sb_tlsdcc == 0) { 2683 /* sbcut/drop/flush discarded these mbufs. */ 2684 MPASS(sb->sb_tlscc == 0); 2685 m_freem(data); 2686 m_freem(control); 2687 break; 2688 } 2689 2690 /* 2691 * Clear the 'dcc' accounting in preparation for 2692 * adding the decrypted record. 2693 */ 2694 sb->sb_ccc -= tls_len; 2695 sb->sb_tlsdcc = 0; 2696 SBCHECK(sb); 2697 2698 /* If there is no payload, drop all of the data. */ 2699 if (tgr.tls_length == htobe16(0)) { 2700 m_freem(data); 2701 data = NULL; 2702 } else { 2703 /* Trim header. */ 2704 remain = tls->params.tls_hlen; 2705 while (remain > 0) { 2706 if (data->m_len > remain) { 2707 data->m_data += remain; 2708 data->m_len -= remain; 2709 break; 2710 } 2711 remain -= data->m_len; 2712 data = m_free(data); 2713 } 2714 2715 /* Trim trailer and clear M_NOTREADY. */ 2716 remain = be16toh(tgr.tls_length); 2717 m = data; 2718 for (m = data; remain > m->m_len; m = m->m_next) { 2719 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2720 remain -= m->m_len; 2721 } 2722 m->m_len = remain; 2723 m_freem(m->m_next); 2724 m->m_next = NULL; 2725 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2726 2727 /* Set EOR on the final mbuf. */ 2728 m->m_flags |= M_EOR; 2729 } 2730 2731 sbappendcontrol_locked(sb, data, control, 0); 2732 2733 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2734 sb->sb_flags |= SB_TLS_RX_RESYNC; 2735 SOCKBUF_UNLOCK(sb); 2736 ktls_resync_ifnet(so, tls_len, seqno); 2737 SOCKBUF_LOCK(sb); 2738 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2739 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2740 SOCKBUF_UNLOCK(sb); 2741 ktls_resync_ifnet(so, 0, seqno); 2742 SOCKBUF_LOCK(sb); 2743 } 2744 } 2745 2746 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2747 2748 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2749 so->so_error = EMSGSIZE; 2750 2751 sorwakeup_locked(so); 2752 2753 deref: 2754 SOCKBUF_UNLOCK_ASSERT(sb); 2755 2756 CURVNET_SET(so->so_vnet); 2757 sorele(so); 2758 CURVNET_RESTORE(); 2759 } 2760 2761 void 2762 ktls_enqueue_to_free(struct mbuf *m) 2763 { 2764 struct ktls_wq *wq; 2765 bool running; 2766 2767 /* Mark it for freeing. */ 2768 m->m_epg_flags |= EPG_FLAG_2FREE; 2769 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2770 mtx_lock(&wq->mtx); 2771 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2772 running = wq->running; 2773 mtx_unlock(&wq->mtx); 2774 if (!running) 2775 wakeup(wq); 2776 } 2777 2778 static void * 2779 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2780 { 2781 void *buf; 2782 int domain, running; 2783 2784 if (m->m_epg_npgs <= 2) 2785 return (NULL); 2786 if (ktls_buffer_zone == NULL) 2787 return (NULL); 2788 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2789 /* 2790 * Rate-limit allocation attempts after a failure. 2791 * ktls_buffer_import() will acquire a per-domain mutex to check 2792 * the free page queues and may fail consistently if memory is 2793 * fragmented. 2794 */ 2795 return (NULL); 2796 } 2797 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2798 if (buf == NULL) { 2799 domain = PCPU_GET(domain); 2800 wq->lastallocfail = ticks; 2801 2802 /* 2803 * Note that this check is "racy", but the races are 2804 * harmless, and are either a spurious wakeup if 2805 * multiple threads fail allocations before the alloc 2806 * thread wakes, or waiting an extra second in case we 2807 * see an old value of running == true. 2808 */ 2809 if (!VM_DOMAIN_EMPTY(domain)) { 2810 running = atomic_load_int(&ktls_domains[domain].reclaim_td.running); 2811 if (!running) 2812 wakeup(&ktls_domains[domain].reclaim_td); 2813 } 2814 } 2815 return (buf); 2816 } 2817 2818 static int 2819 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2820 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2821 { 2822 vm_page_t pg; 2823 int error, i, len, off; 2824 2825 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2826 ("%p not unready & nomap mbuf\n", m)); 2827 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2828 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2829 ktls_maxlen)); 2830 2831 /* Anonymous mbufs are encrypted in place. */ 2832 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2833 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2834 2835 /* 2836 * For file-backed mbufs (from sendfile), anonymous wired 2837 * pages are allocated and used as the encryption destination. 2838 */ 2839 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2840 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2841 m->m_epg_1st_off; 2842 state->dst_iov[0].iov_base = (char *)state->cbuf + 2843 m->m_epg_1st_off; 2844 state->dst_iov[0].iov_len = len; 2845 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2846 i = 1; 2847 } else { 2848 off = m->m_epg_1st_off; 2849 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2850 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2851 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2852 len = m_epg_pagelen(m, i, off); 2853 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2854 state->dst_iov[i].iov_base = 2855 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2856 state->dst_iov[i].iov_len = len; 2857 } 2858 } 2859 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2860 state->dst_iov[i].iov_base = m->m_epg_trail; 2861 state->dst_iov[i].iov_len = m->m_epg_trllen; 2862 2863 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2864 2865 if (__predict_false(error != 0)) { 2866 /* Free the anonymous pages. */ 2867 if (state->cbuf != NULL) 2868 uma_zfree(ktls_buffer_zone, state->cbuf); 2869 else { 2870 for (i = 0; i < m->m_epg_npgs; i++) { 2871 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2872 (void)vm_page_unwire_noq(pg); 2873 vm_page_free(pg); 2874 } 2875 } 2876 } 2877 return (error); 2878 } 2879 2880 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2881 static u_int 2882 ktls_batched_records(struct mbuf *m) 2883 { 2884 int page_count, records; 2885 2886 records = 0; 2887 page_count = m->m_epg_enc_cnt; 2888 while (page_count > 0) { 2889 records++; 2890 page_count -= m->m_epg_nrdy; 2891 m = m->m_next; 2892 } 2893 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2894 return (records); 2895 } 2896 2897 void 2898 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2899 { 2900 struct ktls_session *tls; 2901 struct ktls_wq *wq; 2902 int queued; 2903 bool running; 2904 2905 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2906 (M_EXTPG | M_NOTREADY)), 2907 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2908 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2909 2910 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2911 2912 m->m_epg_enc_cnt = page_count; 2913 2914 /* 2915 * Save a pointer to the socket. The caller is responsible 2916 * for taking an additional reference via soref(). 2917 */ 2918 m->m_epg_so = so; 2919 2920 queued = 1; 2921 tls = m->m_epg_tls; 2922 wq = &ktls_wq[tls->wq_index]; 2923 mtx_lock(&wq->mtx); 2924 if (__predict_false(tls->sequential_records)) { 2925 /* 2926 * For TLS 1.0, records must be encrypted 2927 * sequentially. For a given connection, all records 2928 * queued to the associated work queue are processed 2929 * sequentially. However, sendfile(2) might complete 2930 * I/O requests spanning multiple TLS records out of 2931 * order. Here we ensure TLS records are enqueued to 2932 * the work queue in FIFO order. 2933 * 2934 * tls->next_seqno holds the sequence number of the 2935 * next TLS record that should be enqueued to the work 2936 * queue. If this next record is not tls->next_seqno, 2937 * it must be a future record, so insert it, sorted by 2938 * TLS sequence number, into tls->pending_records and 2939 * return. 2940 * 2941 * If this TLS record matches tls->next_seqno, place 2942 * it in the work queue and then check 2943 * tls->pending_records to see if any 2944 * previously-queued records are now ready for 2945 * encryption. 2946 */ 2947 if (m->m_epg_seqno != tls->next_seqno) { 2948 struct mbuf *n, *p; 2949 2950 p = NULL; 2951 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2952 if (n->m_epg_seqno > m->m_epg_seqno) 2953 break; 2954 p = n; 2955 } 2956 if (n == NULL) 2957 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2958 m_epg_stailq); 2959 else if (p == NULL) 2960 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2961 m_epg_stailq); 2962 else 2963 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2964 m_epg_stailq); 2965 mtx_unlock(&wq->mtx); 2966 counter_u64_add(ktls_cnt_tx_pending, 1); 2967 return; 2968 } 2969 2970 tls->next_seqno += ktls_batched_records(m); 2971 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2972 2973 while (!STAILQ_EMPTY(&tls->pending_records)) { 2974 struct mbuf *n; 2975 2976 n = STAILQ_FIRST(&tls->pending_records); 2977 if (n->m_epg_seqno != tls->next_seqno) 2978 break; 2979 2980 queued++; 2981 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2982 tls->next_seqno += ktls_batched_records(n); 2983 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2984 } 2985 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2986 } else 2987 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2988 2989 running = wq->running; 2990 mtx_unlock(&wq->mtx); 2991 if (!running) 2992 wakeup(wq); 2993 counter_u64_add(ktls_cnt_tx_queued, queued); 2994 } 2995 2996 /* 2997 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2998 * the pages from the file and replace them with the anonymous pages 2999 * allocated in ktls_encrypt_record(). 3000 */ 3001 static void 3002 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 3003 { 3004 int i; 3005 3006 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 3007 3008 /* Free the old pages. */ 3009 m->m_ext.ext_free(m); 3010 3011 /* Replace them with the new pages. */ 3012 if (state->cbuf != NULL) { 3013 for (i = 0; i < m->m_epg_npgs; i++) 3014 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 3015 3016 /* Contig pages should go back to the cache. */ 3017 m->m_ext.ext_free = ktls_free_mext_contig; 3018 } else { 3019 for (i = 0; i < m->m_epg_npgs; i++) 3020 m->m_epg_pa[i] = state->parray[i]; 3021 3022 /* Use the basic free routine. */ 3023 m->m_ext.ext_free = mb_free_mext_pgs; 3024 } 3025 3026 /* Pages are now writable. */ 3027 m->m_epg_flags |= EPG_FLAG_ANON; 3028 } 3029 3030 static __noinline void 3031 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 3032 { 3033 struct ktls_ocf_encrypt_state state; 3034 struct ktls_session *tls; 3035 struct socket *so; 3036 struct mbuf *m; 3037 int error, npages, total_pages; 3038 3039 so = top->m_epg_so; 3040 tls = top->m_epg_tls; 3041 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3042 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3043 #ifdef INVARIANTS 3044 top->m_epg_so = NULL; 3045 #endif 3046 total_pages = top->m_epg_enc_cnt; 3047 npages = 0; 3048 3049 /* 3050 * Encrypt the TLS records in the chain of mbufs starting with 3051 * 'top'. 'total_pages' gives us a total count of pages and is 3052 * used to know when we have finished encrypting the TLS 3053 * records originally queued with 'top'. 3054 * 3055 * NB: These mbufs are queued in the socket buffer and 3056 * 'm_next' is traversing the mbufs in the socket buffer. The 3057 * socket buffer lock is not held while traversing this chain. 3058 * Since the mbufs are all marked M_NOTREADY their 'm_next' 3059 * pointers should be stable. However, the 'm_next' of the 3060 * last mbuf encrypted is not necessarily NULL. It can point 3061 * to other mbufs appended while 'top' was on the TLS work 3062 * queue. 3063 * 3064 * Each mbuf holds an entire TLS record. 3065 */ 3066 error = 0; 3067 for (m = top; npages != total_pages; m = m->m_next) { 3068 KASSERT(m->m_epg_tls == tls, 3069 ("different TLS sessions in a single mbuf chain: %p vs %p", 3070 tls, m->m_epg_tls)); 3071 KASSERT(npages + m->m_epg_npgs <= total_pages, 3072 ("page count mismatch: top %p, total_pages %d, m %p", top, 3073 total_pages, m)); 3074 3075 error = ktls_encrypt_record(wq, m, tls, &state); 3076 if (error) { 3077 counter_u64_add(ktls_offload_failed_crypto, 1); 3078 break; 3079 } 3080 3081 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3082 ktls_finish_nonanon(m, &state); 3083 m->m_flags |= M_RDONLY; 3084 3085 npages += m->m_epg_nrdy; 3086 3087 /* 3088 * Drop a reference to the session now that it is no 3089 * longer needed. Existing code depends on encrypted 3090 * records having no associated session vs 3091 * yet-to-be-encrypted records having an associated 3092 * session. 3093 */ 3094 m->m_epg_tls = NULL; 3095 ktls_free(tls); 3096 } 3097 3098 CURVNET_SET(so->so_vnet); 3099 if (error == 0) { 3100 (void)so->so_proto->pr_ready(so, top, npages); 3101 } else { 3102 ktls_drop(so, EIO); 3103 mb_free_notready(top, total_pages); 3104 } 3105 3106 sorele(so); 3107 CURVNET_RESTORE(); 3108 } 3109 3110 void 3111 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 3112 { 3113 struct ktls_session *tls; 3114 struct socket *so; 3115 struct mbuf *m; 3116 int npages; 3117 3118 m = state->m; 3119 3120 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3121 ktls_finish_nonanon(m, state); 3122 m->m_flags |= M_RDONLY; 3123 3124 so = state->so; 3125 free(state, M_KTLS); 3126 3127 /* 3128 * Drop a reference to the session now that it is no longer 3129 * needed. Existing code depends on encrypted records having 3130 * no associated session vs yet-to-be-encrypted records having 3131 * an associated session. 3132 */ 3133 tls = m->m_epg_tls; 3134 m->m_epg_tls = NULL; 3135 ktls_free(tls); 3136 3137 if (error != 0) 3138 counter_u64_add(ktls_offload_failed_crypto, 1); 3139 3140 CURVNET_SET(so->so_vnet); 3141 npages = m->m_epg_nrdy; 3142 3143 if (error == 0) { 3144 (void)so->so_proto->pr_ready(so, m, npages); 3145 } else { 3146 ktls_drop(so, EIO); 3147 mb_free_notready(m, npages); 3148 } 3149 3150 sorele(so); 3151 CURVNET_RESTORE(); 3152 } 3153 3154 /* 3155 * Similar to ktls_encrypt, but used with asynchronous OCF backends 3156 * (coprocessors) where encryption does not use host CPU resources and 3157 * it can be beneficial to queue more requests than CPUs. 3158 */ 3159 static __noinline void 3160 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 3161 { 3162 struct ktls_ocf_encrypt_state *state; 3163 struct ktls_session *tls; 3164 struct socket *so; 3165 struct mbuf *m, *n; 3166 int error, mpages, npages, total_pages; 3167 3168 so = top->m_epg_so; 3169 tls = top->m_epg_tls; 3170 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3171 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3172 #ifdef INVARIANTS 3173 top->m_epg_so = NULL; 3174 #endif 3175 total_pages = top->m_epg_enc_cnt; 3176 npages = 0; 3177 3178 error = 0; 3179 for (m = top; npages != total_pages; m = n) { 3180 KASSERT(m->m_epg_tls == tls, 3181 ("different TLS sessions in a single mbuf chain: %p vs %p", 3182 tls, m->m_epg_tls)); 3183 KASSERT(npages + m->m_epg_npgs <= total_pages, 3184 ("page count mismatch: top %p, total_pages %d, m %p", top, 3185 total_pages, m)); 3186 3187 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 3188 soref(so); 3189 state->so = so; 3190 state->m = m; 3191 3192 mpages = m->m_epg_nrdy; 3193 n = m->m_next; 3194 3195 error = ktls_encrypt_record(wq, m, tls, state); 3196 if (error) { 3197 counter_u64_add(ktls_offload_failed_crypto, 1); 3198 free(state, M_KTLS); 3199 CURVNET_SET(so->so_vnet); 3200 sorele(so); 3201 CURVNET_RESTORE(); 3202 break; 3203 } 3204 3205 npages += mpages; 3206 } 3207 3208 CURVNET_SET(so->so_vnet); 3209 if (error != 0) { 3210 ktls_drop(so, EIO); 3211 mb_free_notready(m, total_pages - npages); 3212 } 3213 3214 sorele(so); 3215 CURVNET_RESTORE(); 3216 } 3217 3218 static int 3219 ktls_bind_domain(int domain) 3220 { 3221 int error; 3222 3223 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3224 if (error != 0) 3225 return (error); 3226 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3227 return (0); 3228 } 3229 3230 static void 3231 ktls_reclaim_thread(void *ctx) 3232 { 3233 struct ktls_domain_info *ktls_domain = ctx; 3234 struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td; 3235 struct sysctl_oid *oid; 3236 char name[80]; 3237 int error, domain; 3238 3239 domain = ktls_domain - ktls_domains; 3240 if (bootverbose) 3241 printf("Starting KTLS reclaim thread for domain %d\n", domain); 3242 error = ktls_bind_domain(domain); 3243 if (error) 3244 printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n", 3245 domain, error); 3246 snprintf(name, sizeof(name), "domain%d", domain); 3247 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3248 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3249 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims", 3250 CTLFLAG_RD, &sc->reclaims, 0, "buffers reclaimed"); 3251 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3252 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3253 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3254 CTLFLAG_RD, &sc->running, 0, "thread running"); 3255 3256 for (;;) { 3257 atomic_store_int(&sc->running, 0); 3258 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3259 atomic_store_int(&sc->running, 1); 3260 sc->wakeups++; 3261 /* 3262 * Below we attempt to reclaim ktls_max_reclaim 3263 * buffers using vm_page_reclaim_contig_domain_ext(). 3264 * We do this here, as this function can take several 3265 * seconds to scan all of memory and it does not 3266 * matter if this thread pauses for a while. If we 3267 * block a ktls worker thread, we risk developing 3268 * backlogs of buffers to be encrypted, leading to 3269 * surges of traffic and potential NIC output drops. 3270 */ 3271 if (vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL, 3272 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 3273 ktls_max_reclaim) != 0) { 3274 vm_wait_domain(domain); 3275 } else { 3276 sc->reclaims += ktls_max_reclaim; 3277 } 3278 } 3279 } 3280 3281 static void 3282 ktls_work_thread(void *ctx) 3283 { 3284 struct ktls_wq *wq = ctx; 3285 struct mbuf *m, *n; 3286 struct socket *so, *son; 3287 STAILQ_HEAD(, mbuf) local_m_head; 3288 STAILQ_HEAD(, socket) local_so_head; 3289 int cpu; 3290 3291 cpu = wq - ktls_wq; 3292 if (bootverbose) 3293 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3294 3295 /* 3296 * Bind to a core. If ktls_bind_threads is > 1, then 3297 * we bind to the NUMA domain instead. 3298 */ 3299 if (ktls_bind_threads) { 3300 int error; 3301 3302 if (ktls_bind_threads > 1) { 3303 struct pcpu *pc = pcpu_find(cpu); 3304 3305 error = ktls_bind_domain(pc->pc_domain); 3306 } else { 3307 cpuset_t mask; 3308 3309 CPU_SETOF(cpu, &mask); 3310 error = cpuset_setthread(curthread->td_tid, &mask); 3311 } 3312 if (error) 3313 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3314 cpu, error); 3315 } 3316 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3317 fpu_kern_thread(0); 3318 #endif 3319 for (;;) { 3320 mtx_lock(&wq->mtx); 3321 while (STAILQ_EMPTY(&wq->m_head) && 3322 STAILQ_EMPTY(&wq->so_head)) { 3323 wq->running = false; 3324 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3325 wq->running = true; 3326 } 3327 3328 STAILQ_INIT(&local_m_head); 3329 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3330 STAILQ_INIT(&local_so_head); 3331 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3332 mtx_unlock(&wq->mtx); 3333 3334 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3335 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3336 ktls_free(m->m_epg_tls); 3337 m_free_raw(m); 3338 } else { 3339 if (m->m_epg_tls->sync_dispatch) 3340 ktls_encrypt(wq, m); 3341 else 3342 ktls_encrypt_async(wq, m); 3343 counter_u64_add(ktls_cnt_tx_queued, -1); 3344 } 3345 } 3346 3347 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3348 ktls_decrypt(so); 3349 counter_u64_add(ktls_cnt_rx_queued, -1); 3350 } 3351 } 3352 } 3353 3354 static void 3355 ktls_disable_ifnet_help(void *context, int pending __unused) 3356 { 3357 struct ktls_session *tls; 3358 struct inpcb *inp; 3359 struct tcpcb *tp; 3360 struct socket *so; 3361 int err; 3362 3363 tls = context; 3364 inp = tls->inp; 3365 if (inp == NULL) 3366 return; 3367 INP_WLOCK(inp); 3368 so = inp->inp_socket; 3369 MPASS(so != NULL); 3370 if (inp->inp_flags & INP_DROPPED) { 3371 goto out; 3372 } 3373 3374 if (so->so_snd.sb_tls_info != NULL) 3375 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3376 else 3377 err = ENXIO; 3378 if (err == 0) { 3379 counter_u64_add(ktls_ifnet_disable_ok, 1); 3380 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3381 if ((inp->inp_flags & INP_DROPPED) == 0 && 3382 (tp = intotcpcb(inp)) != NULL && 3383 tp->t_fb->tfb_hwtls_change != NULL) 3384 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3385 } else { 3386 counter_u64_add(ktls_ifnet_disable_fail, 1); 3387 } 3388 3389 out: 3390 CURVNET_SET(so->so_vnet); 3391 sorele(so); 3392 CURVNET_RESTORE(); 3393 INP_WUNLOCK(inp); 3394 ktls_free(tls); 3395 } 3396 3397 /* 3398 * Called when re-transmits are becoming a substantial portion of the 3399 * sends on this connection. When this happens, we transition the 3400 * connection to software TLS. This is needed because most inline TLS 3401 * NICs keep crypto state only for in-order transmits. This means 3402 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3403 * re-DMA the entire TLS record up to and including the current 3404 * segment. This means that when re-transmitting the last ~1448 byte 3405 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3406 * of magnitude more data than we are sending. This can cause the 3407 * PCIe link to saturate well before the network, which can cause 3408 * output drops, and a general loss of capacity. 3409 */ 3410 void 3411 ktls_disable_ifnet(void *arg) 3412 { 3413 struct tcpcb *tp; 3414 struct inpcb *inp; 3415 struct socket *so; 3416 struct ktls_session *tls; 3417 3418 tp = arg; 3419 inp = tptoinpcb(tp); 3420 INP_WLOCK_ASSERT(inp); 3421 so = inp->inp_socket; 3422 SOCK_LOCK(so); 3423 tls = so->so_snd.sb_tls_info; 3424 if (tp->t_nic_ktls_xmit_dis == 1) { 3425 SOCK_UNLOCK(so); 3426 return; 3427 } 3428 3429 /* 3430 * note that t_nic_ktls_xmit_dis is never cleared; disabling 3431 * ifnet can only be done once per connection, so we never want 3432 * to do it again 3433 */ 3434 3435 (void)ktls_hold(tls); 3436 soref(so); 3437 tp->t_nic_ktls_xmit_dis = 1; 3438 SOCK_UNLOCK(so); 3439 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3440 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3441 } 3442