1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_kern_tls.h" 32 #include "opt_ratelimit.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/endian.h> 39 #include <sys/ktls.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/rmlock.h> 44 #include <sys/proc.h> 45 #include <sys/protosw.h> 46 #include <sys/refcount.h> 47 #include <sys/smp.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <sys/kthread.h> 53 #include <sys/uio.h> 54 #include <sys/vmmeter.h> 55 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 56 #include <machine/pcb.h> 57 #endif 58 #include <machine/vmparam.h> 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #ifdef RSS 62 #include <net/netisr.h> 63 #include <net/rss_config.h> 64 #endif 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/tcp_var.h> 70 #ifdef TCP_OFFLOAD 71 #include <netinet/tcp_offload.h> 72 #endif 73 #include <opencrypto/cryptodev.h> 74 #include <opencrypto/ktls.h> 75 #include <vm/vm.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_page.h> 78 #include <vm/vm_pagequeue.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 int lastallocfail; 86 } __aligned(CACHE_LINE_SIZE); 87 88 struct ktls_reclaim_thread { 89 uint64_t wakeups; 90 uint64_t reclaims; 91 struct thread *td; 92 int running; 93 }; 94 95 struct ktls_domain_info { 96 int count; 97 int cpu[MAXCPU]; 98 struct ktls_reclaim_thread reclaim_td; 99 }; 100 101 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 102 static struct ktls_wq *ktls_wq; 103 static struct proc *ktls_proc; 104 static uma_zone_t ktls_session_zone; 105 static uma_zone_t ktls_buffer_zone; 106 static uint16_t ktls_cpuid_lookup[MAXCPU]; 107 static int ktls_init_state; 108 static struct sx ktls_init_lock; 109 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 110 111 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 112 "Kernel TLS offload"); 113 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 114 "Kernel TLS offload stats"); 115 116 #ifdef RSS 117 static int ktls_bind_threads = 1; 118 #else 119 static int ktls_bind_threads; 120 #endif 121 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 122 &ktls_bind_threads, 0, 123 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 124 125 static u_int ktls_maxlen = 16384; 126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 127 &ktls_maxlen, 0, "Maximum TLS record size"); 128 129 static int ktls_number_threads; 130 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 131 &ktls_number_threads, 0, 132 "Number of TLS threads in thread-pool"); 133 134 unsigned int ktls_ifnet_max_rexmit_pct = 2; 135 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 136 &ktls_ifnet_max_rexmit_pct, 2, 137 "Max percent bytes retransmitted before ifnet TLS is disabled"); 138 139 static bool ktls_offload_enable; 140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 141 &ktls_offload_enable, 0, 142 "Enable support for kernel TLS offload"); 143 144 static bool ktls_cbc_enable = true; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 146 &ktls_cbc_enable, 1, 147 "Enable support of AES-CBC crypto for kernel TLS"); 148 149 static bool ktls_sw_buffer_cache = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 151 &ktls_sw_buffer_cache, 1, 152 "Enable caching of output buffers for SW encryption"); 153 154 static int ktls_max_reclaim = 1024; 155 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN, 156 &ktls_max_reclaim, 128, 157 "Max number of 16k buffers to reclaim in thread context"); 158 159 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 160 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 161 &ktls_tasks_active, "Number of active tasks"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 165 &ktls_cnt_tx_pending, 166 "Number of TLS 1.0 records waiting for earlier TLS records"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 170 &ktls_cnt_tx_queued, 171 "Number of TLS records in queue to tasks for SW encryption"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_rx_queued, 176 "Number of TLS sockets in queue to tasks for SW decryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 180 CTLFLAG_RD, &ktls_offload_total, 181 "Total successful TLS setups (parameters set)"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 185 CTLFLAG_RD, &ktls_offload_enable_calls, 186 "Total number of TLS enable calls made"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 190 &ktls_offload_active, "Total Active TLS sessions"); 191 192 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 193 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 194 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 195 196 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 197 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 198 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 199 200 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 201 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 202 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 203 204 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 205 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 206 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 207 208 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 209 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 210 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 211 212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 214 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 215 216 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 217 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 218 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 219 220 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task); 221 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD, 222 &ktls_destroy_task, 223 "Number of times ktls session was destroyed via taskqueue"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_reclaim_thread(void *ctx); 301 static void ktls_reset_receive_tag(void *context, int pending); 302 static void ktls_reset_send_tag(void *context, int pending); 303 static void ktls_work_thread(void *ctx); 304 305 int 306 ktls_copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls) 307 { 308 struct tls_enable_v0 tls_v0; 309 int error; 310 uint8_t *cipher_key = NULL, *iv = NULL, *auth_key = NULL; 311 312 if (sopt->sopt_valsize == sizeof(tls_v0)) { 313 error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0), sizeof(tls_v0)); 314 if (error != 0) 315 goto done; 316 memset(tls, 0, sizeof(*tls)); 317 tls->cipher_key = tls_v0.cipher_key; 318 tls->iv = tls_v0.iv; 319 tls->auth_key = tls_v0.auth_key; 320 tls->cipher_algorithm = tls_v0.cipher_algorithm; 321 tls->cipher_key_len = tls_v0.cipher_key_len; 322 tls->iv_len = tls_v0.iv_len; 323 tls->auth_algorithm = tls_v0.auth_algorithm; 324 tls->auth_key_len = tls_v0.auth_key_len; 325 tls->flags = tls_v0.flags; 326 tls->tls_vmajor = tls_v0.tls_vmajor; 327 tls->tls_vminor = tls_v0.tls_vminor; 328 } else 329 error = sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls)); 330 331 if (error != 0) 332 return (error); 333 334 if (tls->cipher_key_len < 0 || tls->cipher_key_len > TLS_MAX_PARAM_SIZE) 335 return (EINVAL); 336 if (tls->iv_len < 0 || tls->iv_len > sizeof(((struct ktls_session *)NULL)->params.iv)) 337 return (EINVAL); 338 if (tls->auth_key_len < 0 || tls->auth_key_len > TLS_MAX_PARAM_SIZE) 339 return (EINVAL); 340 341 /* All supported algorithms require a cipher key. */ 342 if (tls->cipher_key_len == 0) 343 return (EINVAL); 344 345 /* 346 * Now do a deep copy of the variable-length arrays in the struct, so that 347 * subsequent consumers of it can reliably assume kernel memory. This 348 * requires doing our own allocations, which we will free in the 349 * error paths so that our caller need only worry about outstanding 350 * allocations existing on successful return. 351 */ 352 if (tls->cipher_key_len != 0) { 353 cipher_key = malloc(tls->cipher_key_len, M_KTLS, M_WAITOK); 354 if (sopt->sopt_td != NULL) { 355 error = copyin(tls->cipher_key, cipher_key, tls->cipher_key_len); 356 if (error != 0) 357 goto done; 358 } else { 359 bcopy(tls->cipher_key, cipher_key, tls->cipher_key_len); 360 } 361 } 362 if (tls->iv_len != 0) { 363 iv = malloc(tls->iv_len, M_KTLS, M_WAITOK); 364 if (sopt->sopt_td != NULL) { 365 error = copyin(tls->iv, iv, tls->iv_len); 366 if (error != 0) 367 goto done; 368 } else { 369 bcopy(tls->iv, iv, tls->iv_len); 370 } 371 } 372 if (tls->auth_key_len != 0) { 373 auth_key = malloc(tls->auth_key_len, M_KTLS, M_WAITOK); 374 if (sopt->sopt_td != NULL) { 375 error = copyin(tls->auth_key, auth_key, tls->auth_key_len); 376 if (error != 0) 377 goto done; 378 } else { 379 bcopy(tls->auth_key, auth_key, tls->auth_key_len); 380 } 381 } 382 tls->cipher_key = cipher_key; 383 tls->iv = iv; 384 tls->auth_key = auth_key; 385 386 done: 387 if (error != 0) { 388 zfree(cipher_key, M_KTLS); 389 zfree(iv, M_KTLS); 390 zfree(auth_key, M_KTLS); 391 } 392 393 return (error); 394 } 395 396 void 397 ktls_cleanup_tls_enable(struct tls_enable *tls) 398 { 399 zfree(__DECONST(void *, tls->cipher_key), M_KTLS); 400 zfree(__DECONST(void *, tls->iv), M_KTLS); 401 zfree(__DECONST(void *, tls->auth_key), M_KTLS); 402 } 403 404 static u_int 405 ktls_get_cpu(struct socket *so) 406 { 407 struct inpcb *inp; 408 #ifdef NUMA 409 struct ktls_domain_info *di; 410 #endif 411 u_int cpuid; 412 413 inp = sotoinpcb(so); 414 #ifdef RSS 415 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 416 if (cpuid != NETISR_CPUID_NONE) 417 return (cpuid); 418 #endif 419 /* 420 * Just use the flowid to shard connections in a repeatable 421 * fashion. Note that TLS 1.0 sessions rely on the 422 * serialization provided by having the same connection use 423 * the same queue. 424 */ 425 #ifdef NUMA 426 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 427 di = &ktls_domains[inp->inp_numa_domain]; 428 cpuid = di->cpu[inp->inp_flowid % di->count]; 429 } else 430 #endif 431 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 432 return (cpuid); 433 } 434 435 static int 436 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 437 { 438 vm_page_t m; 439 int i, req; 440 441 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 442 ("%s: ktls max length %d is not page size-aligned", 443 __func__, ktls_maxlen)); 444 445 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 446 for (i = 0; i < count; i++) { 447 m = vm_page_alloc_noobj_contig_domain(domain, req, 448 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 449 VM_MEMATTR_DEFAULT); 450 if (m == NULL) 451 break; 452 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 453 } 454 return (i); 455 } 456 457 static void 458 ktls_buffer_release(void *arg __unused, void **store, int count) 459 { 460 vm_page_t m; 461 int i, j; 462 463 for (i = 0; i < count; i++) { 464 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 465 for (j = 0; j < atop(ktls_maxlen); j++) { 466 (void)vm_page_unwire_noq(m + j); 467 vm_page_free(m + j); 468 } 469 } 470 } 471 472 static void 473 ktls_free_mext_contig(struct mbuf *m) 474 { 475 M_ASSERTEXTPG(m); 476 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 477 } 478 479 static int 480 ktls_init(void) 481 { 482 struct thread *td; 483 struct pcpu *pc; 484 int count, domain, error, i; 485 486 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 487 M_WAITOK | M_ZERO); 488 489 ktls_session_zone = uma_zcreate("ktls_session", 490 sizeof(struct ktls_session), 491 NULL, NULL, NULL, NULL, 492 UMA_ALIGN_CACHE, 0); 493 494 if (ktls_sw_buffer_cache) { 495 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 496 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 497 ktls_buffer_import, ktls_buffer_release, NULL, 498 UMA_ZONE_FIRSTTOUCH); 499 } 500 501 /* 502 * Initialize the workqueues to run the TLS work. We create a 503 * work queue for each CPU. 504 */ 505 CPU_FOREACH(i) { 506 STAILQ_INIT(&ktls_wq[i].m_head); 507 STAILQ_INIT(&ktls_wq[i].so_head); 508 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 509 if (ktls_bind_threads > 1) { 510 pc = pcpu_find(i); 511 domain = pc->pc_domain; 512 count = ktls_domains[domain].count; 513 ktls_domains[domain].cpu[count] = i; 514 ktls_domains[domain].count++; 515 } 516 ktls_cpuid_lookup[ktls_number_threads] = i; 517 ktls_number_threads++; 518 } 519 520 /* 521 * If we somehow have an empty domain, fall back to choosing 522 * among all KTLS threads. 523 */ 524 if (ktls_bind_threads > 1) { 525 for (i = 0; i < vm_ndomains; i++) { 526 if (ktls_domains[i].count == 0) { 527 ktls_bind_threads = 1; 528 break; 529 } 530 } 531 } 532 533 /* Start kthreads for each workqueue. */ 534 CPU_FOREACH(i) { 535 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 536 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 537 if (error) { 538 printf("Can't add KTLS thread %d error %d\n", i, error); 539 return (error); 540 } 541 } 542 543 /* 544 * Start an allocation thread per-domain to perform blocking allocations 545 * of 16k physically contiguous TLS crypto destination buffers. 546 */ 547 if (ktls_sw_buffer_cache) { 548 for (domain = 0; domain < vm_ndomains; domain++) { 549 if (VM_DOMAIN_EMPTY(domain)) 550 continue; 551 if (CPU_EMPTY(&cpuset_domain[domain])) 552 continue; 553 error = kproc_kthread_add(ktls_reclaim_thread, 554 &ktls_domains[domain], &ktls_proc, 555 &ktls_domains[domain].reclaim_td.td, 556 0, 0, "KTLS", "reclaim_%d", domain); 557 if (error) { 558 printf("Can't add KTLS reclaim thread %d error %d\n", 559 domain, error); 560 return (error); 561 } 562 } 563 } 564 565 if (bootverbose) 566 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 567 return (0); 568 } 569 570 static int 571 ktls_start_kthreads(void) 572 { 573 int error, state; 574 575 start: 576 state = atomic_load_acq_int(&ktls_init_state); 577 if (__predict_true(state > 0)) 578 return (0); 579 if (state < 0) 580 return (ENXIO); 581 582 sx_xlock(&ktls_init_lock); 583 if (ktls_init_state != 0) { 584 sx_xunlock(&ktls_init_lock); 585 goto start; 586 } 587 588 error = ktls_init(); 589 if (error == 0) 590 state = 1; 591 else 592 state = -1; 593 atomic_store_rel_int(&ktls_init_state, state); 594 sx_xunlock(&ktls_init_lock); 595 return (error); 596 } 597 598 static int 599 ktls_create_session(struct socket *so, struct tls_enable *en, 600 struct ktls_session **tlsp, int direction) 601 { 602 struct ktls_session *tls; 603 int error; 604 605 /* Only TLS 1.0 - 1.3 are supported. */ 606 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 607 return (EINVAL); 608 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 609 en->tls_vminor > TLS_MINOR_VER_THREE) 610 return (EINVAL); 611 612 613 /* No flags are currently supported. */ 614 if (en->flags != 0) 615 return (EINVAL); 616 617 /* Common checks for supported algorithms. */ 618 switch (en->cipher_algorithm) { 619 case CRYPTO_AES_NIST_GCM_16: 620 /* 621 * auth_algorithm isn't used, but permit GMAC values 622 * for compatibility. 623 */ 624 switch (en->auth_algorithm) { 625 case 0: 626 #ifdef COMPAT_FREEBSD12 627 /* XXX: Really 13.0-current COMPAT. */ 628 case CRYPTO_AES_128_NIST_GMAC: 629 case CRYPTO_AES_192_NIST_GMAC: 630 case CRYPTO_AES_256_NIST_GMAC: 631 #endif 632 break; 633 default: 634 return (EINVAL); 635 } 636 if (en->auth_key_len != 0) 637 return (EINVAL); 638 switch (en->tls_vminor) { 639 case TLS_MINOR_VER_TWO: 640 if (en->iv_len != TLS_AEAD_GCM_LEN) 641 return (EINVAL); 642 break; 643 case TLS_MINOR_VER_THREE: 644 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 645 return (EINVAL); 646 break; 647 default: 648 return (EINVAL); 649 } 650 break; 651 case CRYPTO_AES_CBC: 652 switch (en->auth_algorithm) { 653 case CRYPTO_SHA1_HMAC: 654 break; 655 case CRYPTO_SHA2_256_HMAC: 656 case CRYPTO_SHA2_384_HMAC: 657 if (en->tls_vminor != TLS_MINOR_VER_TWO) 658 return (EINVAL); 659 break; 660 default: 661 return (EINVAL); 662 } 663 if (en->auth_key_len == 0) 664 return (EINVAL); 665 666 /* 667 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 668 * use explicit IVs. 669 */ 670 switch (en->tls_vminor) { 671 case TLS_MINOR_VER_ZERO: 672 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 673 return (EINVAL); 674 break; 675 case TLS_MINOR_VER_ONE: 676 case TLS_MINOR_VER_TWO: 677 /* Ignore any supplied IV. */ 678 en->iv_len = 0; 679 break; 680 default: 681 return (EINVAL); 682 } 683 break; 684 case CRYPTO_CHACHA20_POLY1305: 685 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 686 return (EINVAL); 687 if (en->tls_vminor != TLS_MINOR_VER_TWO && 688 en->tls_vminor != TLS_MINOR_VER_THREE) 689 return (EINVAL); 690 if (en->iv_len != TLS_CHACHA20_IV_LEN) 691 return (EINVAL); 692 break; 693 default: 694 return (EINVAL); 695 } 696 697 error = ktls_start_kthreads(); 698 if (error != 0) 699 return (error); 700 701 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 702 703 counter_u64_add(ktls_offload_active, 1); 704 705 refcount_init(&tls->refcount, 1); 706 if (direction == KTLS_RX) { 707 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 708 } else { 709 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 710 tls->inp = so->so_pcb; 711 in_pcbref(tls->inp); 712 tls->tx = true; 713 } 714 715 tls->wq_index = ktls_get_cpu(so); 716 717 tls->params.cipher_algorithm = en->cipher_algorithm; 718 tls->params.auth_algorithm = en->auth_algorithm; 719 tls->params.tls_vmajor = en->tls_vmajor; 720 tls->params.tls_vminor = en->tls_vminor; 721 tls->params.flags = en->flags; 722 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 723 724 /* Set the header and trailer lengths. */ 725 tls->params.tls_hlen = sizeof(struct tls_record_layer); 726 switch (en->cipher_algorithm) { 727 case CRYPTO_AES_NIST_GCM_16: 728 /* 729 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 730 * nonce. TLS 1.3 uses a 12 byte implicit IV. 731 */ 732 if (en->tls_vminor < TLS_MINOR_VER_THREE) 733 tls->params.tls_hlen += sizeof(uint64_t); 734 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 735 tls->params.tls_bs = 1; 736 break; 737 case CRYPTO_AES_CBC: 738 switch (en->auth_algorithm) { 739 case CRYPTO_SHA1_HMAC: 740 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 741 /* Implicit IV, no nonce. */ 742 tls->sequential_records = true; 743 tls->next_seqno = be64dec(en->rec_seq); 744 STAILQ_INIT(&tls->pending_records); 745 } else { 746 tls->params.tls_hlen += AES_BLOCK_LEN; 747 } 748 tls->params.tls_tlen = AES_BLOCK_LEN + 749 SHA1_HASH_LEN; 750 break; 751 case CRYPTO_SHA2_256_HMAC: 752 tls->params.tls_hlen += AES_BLOCK_LEN; 753 tls->params.tls_tlen = AES_BLOCK_LEN + 754 SHA2_256_HASH_LEN; 755 break; 756 case CRYPTO_SHA2_384_HMAC: 757 tls->params.tls_hlen += AES_BLOCK_LEN; 758 tls->params.tls_tlen = AES_BLOCK_LEN + 759 SHA2_384_HASH_LEN; 760 break; 761 default: 762 panic("invalid hmac"); 763 } 764 tls->params.tls_bs = AES_BLOCK_LEN; 765 break; 766 case CRYPTO_CHACHA20_POLY1305: 767 /* 768 * Chacha20 uses a 12 byte implicit IV. 769 */ 770 tls->params.tls_tlen = POLY1305_HASH_LEN; 771 tls->params.tls_bs = 1; 772 break; 773 default: 774 panic("invalid cipher"); 775 } 776 777 /* 778 * TLS 1.3 includes optional padding which we do not support, 779 * and also puts the "real" record type at the end of the 780 * encrypted data. 781 */ 782 if (en->tls_vminor == TLS_MINOR_VER_THREE) 783 tls->params.tls_tlen += sizeof(uint8_t); 784 785 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 786 ("TLS header length too long: %d", tls->params.tls_hlen)); 787 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 788 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 789 790 if (en->auth_key_len != 0) { 791 tls->params.auth_key_len = en->auth_key_len; 792 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 793 M_WAITOK); 794 bcopy(en->auth_key, tls->params.auth_key, en->auth_key_len); 795 } 796 797 tls->params.cipher_key_len = en->cipher_key_len; 798 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 799 bcopy(en->cipher_key, tls->params.cipher_key, en->cipher_key_len); 800 801 /* 802 * This holds the implicit portion of the nonce for AEAD 803 * ciphers and the initial implicit IV for TLS 1.0. The 804 * explicit portions of the IV are generated in ktls_frame(). 805 */ 806 if (en->iv_len != 0) { 807 tls->params.iv_len = en->iv_len; 808 bcopy(en->iv, tls->params.iv, en->iv_len); 809 810 /* 811 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 812 * counter to generate unique explicit IVs. 813 * 814 * Store this counter in the last 8 bytes of the IV 815 * array so that it is 8-byte aligned. 816 */ 817 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 818 en->tls_vminor == TLS_MINOR_VER_TWO) 819 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 820 } 821 822 *tlsp = tls; 823 return (0); 824 } 825 826 static struct ktls_session * 827 ktls_clone_session(struct ktls_session *tls, int direction) 828 { 829 struct ktls_session *tls_new; 830 831 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 832 833 counter_u64_add(ktls_offload_active, 1); 834 835 refcount_init(&tls_new->refcount, 1); 836 if (direction == KTLS_RX) { 837 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 838 tls_new); 839 } else { 840 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 841 tls_new); 842 tls_new->inp = tls->inp; 843 tls_new->tx = true; 844 in_pcbref(tls_new->inp); 845 } 846 847 /* Copy fields from existing session. */ 848 tls_new->params = tls->params; 849 tls_new->wq_index = tls->wq_index; 850 851 /* Deep copy keys. */ 852 if (tls_new->params.auth_key != NULL) { 853 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 854 M_KTLS, M_WAITOK); 855 memcpy(tls_new->params.auth_key, tls->params.auth_key, 856 tls->params.auth_key_len); 857 } 858 859 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 860 M_WAITOK); 861 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 862 tls->params.cipher_key_len); 863 864 return (tls_new); 865 } 866 867 #ifdef TCP_OFFLOAD 868 static int 869 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 870 { 871 struct inpcb *inp; 872 struct tcpcb *tp; 873 int error; 874 875 inp = so->so_pcb; 876 INP_WLOCK(inp); 877 if (inp->inp_flags & INP_DROPPED) { 878 INP_WUNLOCK(inp); 879 return (ECONNRESET); 880 } 881 if (inp->inp_socket == NULL) { 882 INP_WUNLOCK(inp); 883 return (ECONNRESET); 884 } 885 tp = intotcpcb(inp); 886 if (!(tp->t_flags & TF_TOE)) { 887 INP_WUNLOCK(inp); 888 return (EOPNOTSUPP); 889 } 890 891 error = tcp_offload_alloc_tls_session(tp, tls, direction); 892 INP_WUNLOCK(inp); 893 if (error == 0) { 894 tls->mode = TCP_TLS_MODE_TOE; 895 switch (tls->params.cipher_algorithm) { 896 case CRYPTO_AES_CBC: 897 counter_u64_add(ktls_toe_cbc, 1); 898 break; 899 case CRYPTO_AES_NIST_GCM_16: 900 counter_u64_add(ktls_toe_gcm, 1); 901 break; 902 case CRYPTO_CHACHA20_POLY1305: 903 counter_u64_add(ktls_toe_chacha20, 1); 904 break; 905 } 906 } 907 return (error); 908 } 909 #endif 910 911 /* 912 * Common code used when first enabling ifnet TLS on a connection or 913 * when allocating a new ifnet TLS session due to a routing change. 914 * This function allocates a new TLS send tag on whatever interface 915 * the connection is currently routed over. 916 */ 917 static int 918 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 919 struct m_snd_tag **mstp) 920 { 921 union if_snd_tag_alloc_params params; 922 struct ifnet *ifp; 923 struct nhop_object *nh; 924 struct tcpcb *tp; 925 int error; 926 927 INP_RLOCK(inp); 928 if (inp->inp_flags & INP_DROPPED) { 929 INP_RUNLOCK(inp); 930 return (ECONNRESET); 931 } 932 if (inp->inp_socket == NULL) { 933 INP_RUNLOCK(inp); 934 return (ECONNRESET); 935 } 936 tp = intotcpcb(inp); 937 938 /* 939 * Check administrative controls on ifnet TLS to determine if 940 * ifnet TLS should be denied. 941 * 942 * - Always permit 'force' requests. 943 * - ktls_ifnet_permitted == 0: always deny. 944 */ 945 if (!force && ktls_ifnet_permitted == 0) { 946 INP_RUNLOCK(inp); 947 return (ENXIO); 948 } 949 950 /* 951 * XXX: Use the cached route in the inpcb to find the 952 * interface. This should perhaps instead use 953 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 954 * enabled after a connection has completed key negotiation in 955 * userland, the cached route will be present in practice. 956 */ 957 nh = inp->inp_route.ro_nh; 958 if (nh == NULL) { 959 INP_RUNLOCK(inp); 960 return (ENXIO); 961 } 962 ifp = nh->nh_ifp; 963 if_ref(ifp); 964 965 /* 966 * Allocate a TLS + ratelimit tag if the connection has an 967 * existing pacing rate. 968 */ 969 if (tp->t_pacing_rate != -1 && 970 (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) { 971 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 972 params.tls_rate_limit.inp = inp; 973 params.tls_rate_limit.tls = tls; 974 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 975 } else { 976 params.hdr.type = IF_SND_TAG_TYPE_TLS; 977 params.tls.inp = inp; 978 params.tls.tls = tls; 979 } 980 params.hdr.flowid = inp->inp_flowid; 981 params.hdr.flowtype = inp->inp_flowtype; 982 params.hdr.numa_domain = inp->inp_numa_domain; 983 INP_RUNLOCK(inp); 984 985 if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) { 986 error = EOPNOTSUPP; 987 goto out; 988 } 989 if (inp->inp_vflag & INP_IPV6) { 990 if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) { 991 error = EOPNOTSUPP; 992 goto out; 993 } 994 } else { 995 if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) { 996 error = EOPNOTSUPP; 997 goto out; 998 } 999 } 1000 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1001 out: 1002 if_rele(ifp); 1003 return (error); 1004 } 1005 1006 /* 1007 * Allocate an initial TLS receive tag for doing HW decryption of TLS 1008 * data. 1009 * 1010 * This function allocates a new TLS receive tag on whatever interface 1011 * the connection is currently routed over. If the connection ends up 1012 * using a different interface for receive this will get fixed up via 1013 * ktls_input_ifp_mismatch as future packets arrive. 1014 */ 1015 static int 1016 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 1017 struct m_snd_tag **mstp) 1018 { 1019 union if_snd_tag_alloc_params params; 1020 struct ifnet *ifp; 1021 struct nhop_object *nh; 1022 int error; 1023 1024 if (!ktls_ocf_recrypt_supported(tls)) 1025 return (ENXIO); 1026 1027 INP_RLOCK(inp); 1028 if (inp->inp_flags & INP_DROPPED) { 1029 INP_RUNLOCK(inp); 1030 return (ECONNRESET); 1031 } 1032 if (inp->inp_socket == NULL) { 1033 INP_RUNLOCK(inp); 1034 return (ECONNRESET); 1035 } 1036 1037 /* 1038 * Check administrative controls on ifnet TLS to determine if 1039 * ifnet TLS should be denied. 1040 */ 1041 if (ktls_ifnet_permitted == 0) { 1042 INP_RUNLOCK(inp); 1043 return (ENXIO); 1044 } 1045 1046 /* 1047 * XXX: As with ktls_alloc_snd_tag, use the cached route in 1048 * the inpcb to find the interface. 1049 */ 1050 nh = inp->inp_route.ro_nh; 1051 if (nh == NULL) { 1052 INP_RUNLOCK(inp); 1053 return (ENXIO); 1054 } 1055 ifp = nh->nh_ifp; 1056 if_ref(ifp); 1057 tls->rx_ifp = ifp; 1058 1059 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1060 params.hdr.flowid = inp->inp_flowid; 1061 params.hdr.flowtype = inp->inp_flowtype; 1062 params.hdr.numa_domain = inp->inp_numa_domain; 1063 params.tls_rx.inp = inp; 1064 params.tls_rx.tls = tls; 1065 params.tls_rx.vlan_id = 0; 1066 1067 INP_RUNLOCK(inp); 1068 1069 if (inp->inp_vflag & INP_IPV6) { 1070 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) { 1071 error = EOPNOTSUPP; 1072 goto out; 1073 } 1074 } else { 1075 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) { 1076 error = EOPNOTSUPP; 1077 goto out; 1078 } 1079 } 1080 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1081 1082 /* 1083 * If this connection is over a vlan, vlan_snd_tag_alloc 1084 * rewrites vlan_id with the saved interface. Save the VLAN 1085 * ID for use in ktls_reset_receive_tag which allocates new 1086 * receive tags directly from the leaf interface bypassing 1087 * if_vlan. 1088 */ 1089 if (error == 0) 1090 tls->rx_vlan_id = params.tls_rx.vlan_id; 1091 out: 1092 return (error); 1093 } 1094 1095 static int 1096 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1097 bool force) 1098 { 1099 struct m_snd_tag *mst; 1100 int error; 1101 1102 switch (direction) { 1103 case KTLS_TX: 1104 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1105 if (__predict_false(error != 0)) 1106 goto done; 1107 break; 1108 case KTLS_RX: 1109 KASSERT(!force, ("%s: forced receive tag", __func__)); 1110 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1111 if (__predict_false(error != 0)) 1112 goto done; 1113 break; 1114 default: 1115 __assert_unreachable(); 1116 } 1117 1118 tls->mode = TCP_TLS_MODE_IFNET; 1119 tls->snd_tag = mst; 1120 1121 switch (tls->params.cipher_algorithm) { 1122 case CRYPTO_AES_CBC: 1123 counter_u64_add(ktls_ifnet_cbc, 1); 1124 break; 1125 case CRYPTO_AES_NIST_GCM_16: 1126 counter_u64_add(ktls_ifnet_gcm, 1); 1127 break; 1128 case CRYPTO_CHACHA20_POLY1305: 1129 counter_u64_add(ktls_ifnet_chacha20, 1); 1130 break; 1131 default: 1132 break; 1133 } 1134 done: 1135 return (error); 1136 } 1137 1138 static void 1139 ktls_use_sw(struct ktls_session *tls) 1140 { 1141 tls->mode = TCP_TLS_MODE_SW; 1142 switch (tls->params.cipher_algorithm) { 1143 case CRYPTO_AES_CBC: 1144 counter_u64_add(ktls_sw_cbc, 1); 1145 break; 1146 case CRYPTO_AES_NIST_GCM_16: 1147 counter_u64_add(ktls_sw_gcm, 1); 1148 break; 1149 case CRYPTO_CHACHA20_POLY1305: 1150 counter_u64_add(ktls_sw_chacha20, 1); 1151 break; 1152 } 1153 } 1154 1155 static int 1156 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1157 { 1158 int error; 1159 1160 error = ktls_ocf_try(so, tls, direction); 1161 if (error) 1162 return (error); 1163 ktls_use_sw(tls); 1164 return (0); 1165 } 1166 1167 /* 1168 * KTLS RX stores data in the socket buffer as a list of TLS records, 1169 * where each record is stored as a control message containg the TLS 1170 * header followed by data mbufs containing the decrypted data. This 1171 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1172 * both encrypted and decrypted data. TLS records decrypted by a NIC 1173 * should be queued to the socket buffer as records, but encrypted 1174 * data which needs to be decrypted by software arrives as a stream of 1175 * regular mbufs which need to be converted. In addition, there may 1176 * already be pending encrypted data in the socket buffer when KTLS RX 1177 * is enabled. 1178 * 1179 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1180 * is used: 1181 * 1182 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1183 * 1184 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1185 * from the first mbuf. Once all of the data for that TLS record is 1186 * queued, the socket is queued to a worker thread. 1187 * 1188 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1189 * the TLS chain. Each TLS record is detached from the TLS chain, 1190 * decrypted, and inserted into the regular socket buffer chain as 1191 * record starting with a control message holding the TLS header and 1192 * a chain of mbufs holding the encrypted data. 1193 */ 1194 1195 static void 1196 sb_mark_notready(struct sockbuf *sb) 1197 { 1198 struct mbuf *m; 1199 1200 m = sb->sb_mb; 1201 sb->sb_mtls = m; 1202 sb->sb_mb = NULL; 1203 sb->sb_mbtail = NULL; 1204 sb->sb_lastrecord = NULL; 1205 for (; m != NULL; m = m->m_next) { 1206 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1207 __func__)); 1208 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1209 __func__)); 1210 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1211 __func__)); 1212 m->m_flags |= M_NOTREADY; 1213 sb->sb_acc -= m->m_len; 1214 sb->sb_tlscc += m->m_len; 1215 sb->sb_mtlstail = m; 1216 } 1217 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1218 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1219 sb->sb_ccc)); 1220 } 1221 1222 /* 1223 * Return information about the pending TLS data in a socket 1224 * buffer. On return, 'seqno' is set to the sequence number 1225 * of the next TLS record to be received, 'resid' is set to 1226 * the amount of bytes still needed for the last pending 1227 * record. The function returns 'false' if the last pending 1228 * record contains a partial TLS header. In that case, 'resid' 1229 * is the number of bytes needed to complete the TLS header. 1230 */ 1231 bool 1232 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1233 { 1234 struct tls_record_layer hdr; 1235 struct mbuf *m; 1236 uint64_t seqno; 1237 size_t resid; 1238 u_int offset, record_len; 1239 1240 SOCKBUF_LOCK_ASSERT(sb); 1241 MPASS(sb->sb_flags & SB_TLS_RX); 1242 seqno = sb->sb_tls_seqno; 1243 resid = sb->sb_tlscc; 1244 m = sb->sb_mtls; 1245 offset = 0; 1246 1247 if (resid == 0) { 1248 *seqnop = seqno; 1249 *residp = 0; 1250 return (true); 1251 } 1252 1253 for (;;) { 1254 seqno++; 1255 1256 if (resid < sizeof(hdr)) { 1257 *seqnop = seqno; 1258 *residp = sizeof(hdr) - resid; 1259 return (false); 1260 } 1261 1262 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1263 1264 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1265 if (resid <= record_len) { 1266 *seqnop = seqno; 1267 *residp = record_len - resid; 1268 return (true); 1269 } 1270 resid -= record_len; 1271 1272 while (record_len != 0) { 1273 if (m->m_len - offset > record_len) { 1274 offset += record_len; 1275 break; 1276 } 1277 1278 record_len -= (m->m_len - offset); 1279 offset = 0; 1280 m = m->m_next; 1281 } 1282 } 1283 } 1284 1285 int 1286 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1287 { 1288 struct ktls_session *tls; 1289 int error; 1290 1291 if (!ktls_offload_enable) 1292 return (ENOTSUP); 1293 1294 counter_u64_add(ktls_offload_enable_calls, 1); 1295 1296 /* 1297 * This should always be true since only the TCP socket option 1298 * invokes this function. 1299 */ 1300 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1301 return (EINVAL); 1302 1303 /* 1304 * XXX: Don't overwrite existing sessions. We should permit 1305 * this to support rekeying in the future. 1306 */ 1307 if (so->so_rcv.sb_tls_info != NULL) 1308 return (EALREADY); 1309 1310 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1311 return (ENOTSUP); 1312 1313 error = ktls_create_session(so, en, &tls, KTLS_RX); 1314 if (error) 1315 return (error); 1316 1317 error = ktls_ocf_try(so, tls, KTLS_RX); 1318 if (error) { 1319 ktls_free(tls); 1320 return (error); 1321 } 1322 1323 /* Mark the socket as using TLS offload. */ 1324 SOCK_RECVBUF_LOCK(so); 1325 if (SOLISTENING(so)) { 1326 SOCK_RECVBUF_UNLOCK(so); 1327 ktls_free(tls); 1328 return (EINVAL); 1329 } 1330 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1331 so->so_rcv.sb_tls_info = tls; 1332 so->so_rcv.sb_flags |= SB_TLS_RX; 1333 1334 /* Mark existing data as not ready until it can be decrypted. */ 1335 sb_mark_notready(&so->so_rcv); 1336 ktls_check_rx(&so->so_rcv); 1337 SOCK_RECVBUF_UNLOCK(so); 1338 1339 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1340 #ifdef TCP_OFFLOAD 1341 error = ktls_try_toe(so, tls, KTLS_RX); 1342 if (error) 1343 #endif 1344 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1345 if (error) 1346 ktls_use_sw(tls); 1347 1348 counter_u64_add(ktls_offload_total, 1); 1349 1350 return (0); 1351 } 1352 1353 int 1354 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1355 { 1356 struct ktls_session *tls; 1357 struct inpcb *inp; 1358 struct tcpcb *tp; 1359 int error; 1360 1361 if (!ktls_offload_enable) 1362 return (ENOTSUP); 1363 1364 counter_u64_add(ktls_offload_enable_calls, 1); 1365 1366 /* 1367 * This should always be true since only the TCP socket option 1368 * invokes this function. 1369 */ 1370 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1371 return (EINVAL); 1372 1373 /* 1374 * XXX: Don't overwrite existing sessions. We should permit 1375 * this to support rekeying in the future. 1376 */ 1377 if (so->so_snd.sb_tls_info != NULL) 1378 return (EALREADY); 1379 1380 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1381 return (ENOTSUP); 1382 1383 /* TLS requires ext pgs */ 1384 if (mb_use_ext_pgs == 0) 1385 return (ENXIO); 1386 1387 error = ktls_create_session(so, en, &tls, KTLS_TX); 1388 if (error) 1389 return (error); 1390 1391 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1392 #ifdef TCP_OFFLOAD 1393 error = ktls_try_toe(so, tls, KTLS_TX); 1394 if (error) 1395 #endif 1396 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1397 if (error) 1398 error = ktls_try_sw(so, tls, KTLS_TX); 1399 1400 if (error) { 1401 ktls_free(tls); 1402 return (error); 1403 } 1404 1405 /* 1406 * Serialize with sosend_generic() and make sure that we're not 1407 * operating on a listening socket. 1408 */ 1409 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1410 if (error) { 1411 ktls_free(tls); 1412 return (error); 1413 } 1414 1415 /* 1416 * Write lock the INP when setting sb_tls_info so that 1417 * routines in tcp_ratelimit.c can read sb_tls_info while 1418 * holding the INP lock. 1419 */ 1420 inp = so->so_pcb; 1421 INP_WLOCK(inp); 1422 SOCK_SENDBUF_LOCK(so); 1423 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1424 so->so_snd.sb_tls_info = tls; 1425 if (tls->mode != TCP_TLS_MODE_SW) { 1426 tp = intotcpcb(inp); 1427 MPASS(tp->t_nic_ktls_xmit == 0); 1428 tp->t_nic_ktls_xmit = 1; 1429 if (tp->t_fb->tfb_hwtls_change != NULL) 1430 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1431 } 1432 SOCK_SENDBUF_UNLOCK(so); 1433 INP_WUNLOCK(inp); 1434 SOCK_IO_SEND_UNLOCK(so); 1435 1436 counter_u64_add(ktls_offload_total, 1); 1437 1438 return (0); 1439 } 1440 1441 int 1442 ktls_get_rx_mode(struct socket *so, int *modep) 1443 { 1444 struct ktls_session *tls; 1445 struct inpcb *inp __diagused; 1446 1447 if (SOLISTENING(so)) 1448 return (EINVAL); 1449 inp = so->so_pcb; 1450 INP_WLOCK_ASSERT(inp); 1451 SOCK_RECVBUF_LOCK(so); 1452 tls = so->so_rcv.sb_tls_info; 1453 if (tls == NULL) 1454 *modep = TCP_TLS_MODE_NONE; 1455 else 1456 *modep = tls->mode; 1457 SOCK_RECVBUF_UNLOCK(so); 1458 return (0); 1459 } 1460 1461 /* 1462 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1463 * 1464 * This function gets information about the next TCP- and TLS- 1465 * sequence number to be processed by the TLS receive worker 1466 * thread. The information is extracted from the given "inpcb" 1467 * structure. The values are stored in host endian format at the two 1468 * given output pointer locations. The TCP sequence number points to 1469 * the beginning of the TLS header. 1470 * 1471 * This function returns zero on success, else a non-zero error code 1472 * is returned. 1473 */ 1474 int 1475 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1476 { 1477 struct socket *so; 1478 struct tcpcb *tp; 1479 1480 INP_RLOCK(inp); 1481 so = inp->inp_socket; 1482 if (__predict_false(so == NULL)) { 1483 INP_RUNLOCK(inp); 1484 return (EINVAL); 1485 } 1486 if (inp->inp_flags & INP_DROPPED) { 1487 INP_RUNLOCK(inp); 1488 return (ECONNRESET); 1489 } 1490 1491 tp = intotcpcb(inp); 1492 MPASS(tp != NULL); 1493 1494 SOCKBUF_LOCK(&so->so_rcv); 1495 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1496 *tlsseq = so->so_rcv.sb_tls_seqno; 1497 SOCKBUF_UNLOCK(&so->so_rcv); 1498 1499 INP_RUNLOCK(inp); 1500 1501 return (0); 1502 } 1503 1504 int 1505 ktls_get_tx_mode(struct socket *so, int *modep) 1506 { 1507 struct ktls_session *tls; 1508 struct inpcb *inp __diagused; 1509 1510 if (SOLISTENING(so)) 1511 return (EINVAL); 1512 inp = so->so_pcb; 1513 INP_WLOCK_ASSERT(inp); 1514 SOCK_SENDBUF_LOCK(so); 1515 tls = so->so_snd.sb_tls_info; 1516 if (tls == NULL) 1517 *modep = TCP_TLS_MODE_NONE; 1518 else 1519 *modep = tls->mode; 1520 SOCK_SENDBUF_UNLOCK(so); 1521 return (0); 1522 } 1523 1524 /* 1525 * Switch between SW and ifnet TLS sessions as requested. 1526 */ 1527 int 1528 ktls_set_tx_mode(struct socket *so, int mode) 1529 { 1530 struct ktls_session *tls, *tls_new; 1531 struct inpcb *inp; 1532 struct tcpcb *tp; 1533 int error; 1534 1535 if (SOLISTENING(so)) 1536 return (EINVAL); 1537 switch (mode) { 1538 case TCP_TLS_MODE_SW: 1539 case TCP_TLS_MODE_IFNET: 1540 break; 1541 default: 1542 return (EINVAL); 1543 } 1544 1545 inp = so->so_pcb; 1546 INP_WLOCK_ASSERT(inp); 1547 tp = intotcpcb(inp); 1548 1549 if (mode == TCP_TLS_MODE_IFNET) { 1550 /* Don't allow enabling ifnet ktls multiple times */ 1551 if (tp->t_nic_ktls_xmit) 1552 return (EALREADY); 1553 1554 /* 1555 * Don't enable ifnet ktls if we disabled it due to an 1556 * excessive retransmission rate 1557 */ 1558 if (tp->t_nic_ktls_xmit_dis) 1559 return (ENXIO); 1560 } 1561 1562 SOCKBUF_LOCK(&so->so_snd); 1563 tls = so->so_snd.sb_tls_info; 1564 if (tls == NULL) { 1565 SOCKBUF_UNLOCK(&so->so_snd); 1566 return (0); 1567 } 1568 1569 if (tls->mode == mode) { 1570 SOCKBUF_UNLOCK(&so->so_snd); 1571 return (0); 1572 } 1573 1574 tls = ktls_hold(tls); 1575 SOCKBUF_UNLOCK(&so->so_snd); 1576 INP_WUNLOCK(inp); 1577 1578 tls_new = ktls_clone_session(tls, KTLS_TX); 1579 1580 if (mode == TCP_TLS_MODE_IFNET) 1581 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1582 else 1583 error = ktls_try_sw(so, tls_new, KTLS_TX); 1584 if (error) { 1585 counter_u64_add(ktls_switch_failed, 1); 1586 ktls_free(tls_new); 1587 ktls_free(tls); 1588 INP_WLOCK(inp); 1589 return (error); 1590 } 1591 1592 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1593 if (error) { 1594 counter_u64_add(ktls_switch_failed, 1); 1595 ktls_free(tls_new); 1596 ktls_free(tls); 1597 INP_WLOCK(inp); 1598 return (error); 1599 } 1600 1601 /* 1602 * If we raced with another session change, keep the existing 1603 * session. 1604 */ 1605 if (tls != so->so_snd.sb_tls_info) { 1606 counter_u64_add(ktls_switch_failed, 1); 1607 SOCK_IO_SEND_UNLOCK(so); 1608 ktls_free(tls_new); 1609 ktls_free(tls); 1610 INP_WLOCK(inp); 1611 return (EBUSY); 1612 } 1613 1614 INP_WLOCK(inp); 1615 SOCKBUF_LOCK(&so->so_snd); 1616 so->so_snd.sb_tls_info = tls_new; 1617 if (tls_new->mode != TCP_TLS_MODE_SW) { 1618 MPASS(tp->t_nic_ktls_xmit == 0); 1619 tp->t_nic_ktls_xmit = 1; 1620 if (tp->t_fb->tfb_hwtls_change != NULL) 1621 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1622 } 1623 SOCKBUF_UNLOCK(&so->so_snd); 1624 SOCK_IO_SEND_UNLOCK(so); 1625 1626 /* 1627 * Drop two references on 'tls'. The first is for the 1628 * ktls_hold() above. The second drops the reference from the 1629 * socket buffer. 1630 */ 1631 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1632 ktls_free(tls); 1633 ktls_free(tls); 1634 1635 if (mode == TCP_TLS_MODE_IFNET) 1636 counter_u64_add(ktls_switch_to_ifnet, 1); 1637 else 1638 counter_u64_add(ktls_switch_to_sw, 1); 1639 1640 return (0); 1641 } 1642 1643 /* 1644 * Try to allocate a new TLS receive tag. This task is scheduled when 1645 * sbappend_ktls_rx detects an input path change. If a new tag is 1646 * allocated, replace the tag in the TLS session. If a new tag cannot 1647 * be allocated, let the session fall back to software decryption. 1648 */ 1649 static void 1650 ktls_reset_receive_tag(void *context, int pending) 1651 { 1652 union if_snd_tag_alloc_params params; 1653 struct ktls_session *tls; 1654 struct m_snd_tag *mst; 1655 struct inpcb *inp; 1656 struct ifnet *ifp; 1657 struct socket *so; 1658 int error; 1659 1660 MPASS(pending == 1); 1661 1662 tls = context; 1663 so = tls->so; 1664 inp = so->so_pcb; 1665 ifp = NULL; 1666 1667 INP_RLOCK(inp); 1668 if (inp->inp_flags & INP_DROPPED) { 1669 INP_RUNLOCK(inp); 1670 goto out; 1671 } 1672 1673 SOCKBUF_LOCK(&so->so_rcv); 1674 mst = tls->snd_tag; 1675 tls->snd_tag = NULL; 1676 if (mst != NULL) 1677 m_snd_tag_rele(mst); 1678 1679 ifp = tls->rx_ifp; 1680 if_ref(ifp); 1681 SOCKBUF_UNLOCK(&so->so_rcv); 1682 1683 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1684 params.hdr.flowid = inp->inp_flowid; 1685 params.hdr.flowtype = inp->inp_flowtype; 1686 params.hdr.numa_domain = inp->inp_numa_domain; 1687 params.tls_rx.inp = inp; 1688 params.tls_rx.tls = tls; 1689 params.tls_rx.vlan_id = tls->rx_vlan_id; 1690 INP_RUNLOCK(inp); 1691 1692 if (inp->inp_vflag & INP_IPV6) { 1693 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) 1694 goto out; 1695 } else { 1696 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) 1697 goto out; 1698 } 1699 1700 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1701 if (error == 0) { 1702 SOCKBUF_LOCK(&so->so_rcv); 1703 tls->snd_tag = mst; 1704 SOCKBUF_UNLOCK(&so->so_rcv); 1705 1706 counter_u64_add(ktls_ifnet_reset, 1); 1707 } else { 1708 /* 1709 * Just fall back to software decryption if a tag 1710 * cannot be allocated leaving the connection intact. 1711 * If a future input path change switches to another 1712 * interface this connection will resume ifnet TLS. 1713 */ 1714 counter_u64_add(ktls_ifnet_reset_failed, 1); 1715 } 1716 1717 out: 1718 mtx_pool_lock(mtxpool_sleep, tls); 1719 tls->reset_pending = false; 1720 mtx_pool_unlock(mtxpool_sleep, tls); 1721 1722 if (ifp != NULL) 1723 if_rele(ifp); 1724 CURVNET_SET(so->so_vnet); 1725 sorele(so); 1726 CURVNET_RESTORE(); 1727 ktls_free(tls); 1728 } 1729 1730 /* 1731 * Try to allocate a new TLS send tag. This task is scheduled when 1732 * ip_output detects a route change while trying to transmit a packet 1733 * holding a TLS record. If a new tag is allocated, replace the tag 1734 * in the TLS session. Subsequent packets on the connection will use 1735 * the new tag. If a new tag cannot be allocated, drop the 1736 * connection. 1737 */ 1738 static void 1739 ktls_reset_send_tag(void *context, int pending) 1740 { 1741 struct epoch_tracker et; 1742 struct ktls_session *tls; 1743 struct m_snd_tag *old, *new; 1744 struct inpcb *inp; 1745 struct tcpcb *tp; 1746 int error; 1747 1748 MPASS(pending == 1); 1749 1750 tls = context; 1751 inp = tls->inp; 1752 1753 /* 1754 * Free the old tag first before allocating a new one. 1755 * ip[6]_output_send() will treat a NULL send tag the same as 1756 * an ifp mismatch and drop packets until a new tag is 1757 * allocated. 1758 * 1759 * Write-lock the INP when changing tls->snd_tag since 1760 * ip[6]_output_send() holds a read-lock when reading the 1761 * pointer. 1762 */ 1763 INP_WLOCK(inp); 1764 old = tls->snd_tag; 1765 tls->snd_tag = NULL; 1766 INP_WUNLOCK(inp); 1767 if (old != NULL) 1768 m_snd_tag_rele(old); 1769 1770 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1771 1772 if (error == 0) { 1773 INP_WLOCK(inp); 1774 tls->snd_tag = new; 1775 mtx_pool_lock(mtxpool_sleep, tls); 1776 tls->reset_pending = false; 1777 mtx_pool_unlock(mtxpool_sleep, tls); 1778 INP_WUNLOCK(inp); 1779 1780 counter_u64_add(ktls_ifnet_reset, 1); 1781 1782 /* 1783 * XXX: Should we kick tcp_output explicitly now that 1784 * the send tag is fixed or just rely on timers? 1785 */ 1786 } else { 1787 NET_EPOCH_ENTER(et); 1788 INP_WLOCK(inp); 1789 if (!(inp->inp_flags & INP_DROPPED)) { 1790 tp = intotcpcb(inp); 1791 CURVNET_SET(inp->inp_vnet); 1792 tp = tcp_drop(tp, ECONNABORTED); 1793 CURVNET_RESTORE(); 1794 if (tp != NULL) { 1795 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1796 INP_WUNLOCK(inp); 1797 } 1798 } else 1799 INP_WUNLOCK(inp); 1800 NET_EPOCH_EXIT(et); 1801 1802 counter_u64_add(ktls_ifnet_reset_failed, 1); 1803 1804 /* 1805 * Leave reset_pending true to avoid future tasks while 1806 * the socket goes away. 1807 */ 1808 } 1809 1810 ktls_free(tls); 1811 } 1812 1813 void 1814 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1815 { 1816 struct ktls_session *tls; 1817 struct socket *so; 1818 1819 SOCKBUF_LOCK_ASSERT(sb); 1820 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1821 __func__, sb)); 1822 so = __containerof(sb, struct socket, so_rcv); 1823 1824 tls = sb->sb_tls_info; 1825 if_rele(tls->rx_ifp); 1826 if_ref(ifp); 1827 tls->rx_ifp = ifp; 1828 1829 /* 1830 * See if we should schedule a task to update the receive tag for 1831 * this session. 1832 */ 1833 mtx_pool_lock(mtxpool_sleep, tls); 1834 if (!tls->reset_pending) { 1835 (void) ktls_hold(tls); 1836 soref(so); 1837 tls->so = so; 1838 tls->reset_pending = true; 1839 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1840 } 1841 mtx_pool_unlock(mtxpool_sleep, tls); 1842 } 1843 1844 int 1845 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1846 { 1847 1848 if (inp == NULL) 1849 return (ENOBUFS); 1850 1851 INP_LOCK_ASSERT(inp); 1852 1853 /* 1854 * See if we should schedule a task to update the send tag for 1855 * this session. 1856 */ 1857 mtx_pool_lock(mtxpool_sleep, tls); 1858 if (!tls->reset_pending) { 1859 (void) ktls_hold(tls); 1860 tls->reset_pending = true; 1861 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1862 } 1863 mtx_pool_unlock(mtxpool_sleep, tls); 1864 return (ENOBUFS); 1865 } 1866 1867 #ifdef RATELIMIT 1868 int 1869 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1870 { 1871 union if_snd_tag_modify_params params = { 1872 .rate_limit.max_rate = max_pacing_rate, 1873 .rate_limit.flags = M_NOWAIT, 1874 }; 1875 struct m_snd_tag *mst; 1876 1877 /* Can't get to the inp, but it should be locked. */ 1878 /* INP_LOCK_ASSERT(inp); */ 1879 1880 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1881 1882 if (tls->snd_tag == NULL) { 1883 /* 1884 * Resetting send tag, ignore this change. The 1885 * pending reset may or may not see this updated rate 1886 * in the tcpcb. If it doesn't, we will just lose 1887 * this rate change. 1888 */ 1889 return (0); 1890 } 1891 1892 mst = tls->snd_tag; 1893 1894 MPASS(mst != NULL); 1895 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1896 1897 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1898 } 1899 #endif 1900 1901 static void 1902 ktls_destroy_help(void *context, int pending __unused) 1903 { 1904 ktls_destroy(context); 1905 } 1906 1907 void 1908 ktls_destroy(struct ktls_session *tls) 1909 { 1910 struct inpcb *inp; 1911 struct tcpcb *tp; 1912 bool wlocked; 1913 1914 MPASS(tls->refcount == 0); 1915 1916 inp = tls->inp; 1917 if (tls->tx) { 1918 wlocked = INP_WLOCKED(inp); 1919 if (!wlocked && !INP_TRY_WLOCK(inp)) { 1920 /* 1921 * rwlocks read locks are anonymous, and there 1922 * is no way to know if our current thread 1923 * holds an rlock on the inp. As a rough 1924 * estimate, check to see if the thread holds 1925 * *any* rlocks at all. If it does not, then we 1926 * know that we don't hold the inp rlock, and 1927 * can safely take the wlock 1928 */ 1929 if (curthread->td_rw_rlocks == 0) { 1930 INP_WLOCK(inp); 1931 } else { 1932 /* 1933 * We might hold the rlock, so let's 1934 * do the destroy in a taskqueue 1935 * context to avoid a potential 1936 * deadlock. This should be very 1937 * rare. 1938 */ 1939 counter_u64_add(ktls_destroy_task, 1); 1940 TASK_INIT(&tls->destroy_task, 0, 1941 ktls_destroy_help, tls); 1942 (void)taskqueue_enqueue(taskqueue_thread, 1943 &tls->destroy_task); 1944 return; 1945 } 1946 } 1947 } 1948 1949 if (tls->sequential_records) { 1950 struct mbuf *m, *n; 1951 int page_count; 1952 1953 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1954 page_count = m->m_epg_enc_cnt; 1955 while (page_count > 0) { 1956 KASSERT(page_count >= m->m_epg_nrdy, 1957 ("%s: too few pages", __func__)); 1958 page_count -= m->m_epg_nrdy; 1959 m = m_free(m); 1960 } 1961 } 1962 } 1963 1964 counter_u64_add(ktls_offload_active, -1); 1965 switch (tls->mode) { 1966 case TCP_TLS_MODE_SW: 1967 switch (tls->params.cipher_algorithm) { 1968 case CRYPTO_AES_CBC: 1969 counter_u64_add(ktls_sw_cbc, -1); 1970 break; 1971 case CRYPTO_AES_NIST_GCM_16: 1972 counter_u64_add(ktls_sw_gcm, -1); 1973 break; 1974 case CRYPTO_CHACHA20_POLY1305: 1975 counter_u64_add(ktls_sw_chacha20, -1); 1976 break; 1977 } 1978 break; 1979 case TCP_TLS_MODE_IFNET: 1980 switch (tls->params.cipher_algorithm) { 1981 case CRYPTO_AES_CBC: 1982 counter_u64_add(ktls_ifnet_cbc, -1); 1983 break; 1984 case CRYPTO_AES_NIST_GCM_16: 1985 counter_u64_add(ktls_ifnet_gcm, -1); 1986 break; 1987 case CRYPTO_CHACHA20_POLY1305: 1988 counter_u64_add(ktls_ifnet_chacha20, -1); 1989 break; 1990 } 1991 if (tls->snd_tag != NULL) 1992 m_snd_tag_rele(tls->snd_tag); 1993 if (tls->rx_ifp != NULL) 1994 if_rele(tls->rx_ifp); 1995 if (tls->tx) { 1996 INP_WLOCK_ASSERT(inp); 1997 tp = intotcpcb(inp); 1998 MPASS(tp->t_nic_ktls_xmit == 1); 1999 tp->t_nic_ktls_xmit = 0; 2000 } 2001 break; 2002 #ifdef TCP_OFFLOAD 2003 case TCP_TLS_MODE_TOE: 2004 switch (tls->params.cipher_algorithm) { 2005 case CRYPTO_AES_CBC: 2006 counter_u64_add(ktls_toe_cbc, -1); 2007 break; 2008 case CRYPTO_AES_NIST_GCM_16: 2009 counter_u64_add(ktls_toe_gcm, -1); 2010 break; 2011 case CRYPTO_CHACHA20_POLY1305: 2012 counter_u64_add(ktls_toe_chacha20, -1); 2013 break; 2014 } 2015 break; 2016 #endif 2017 } 2018 if (tls->ocf_session != NULL) 2019 ktls_ocf_free(tls); 2020 if (tls->params.auth_key != NULL) { 2021 zfree(tls->params.auth_key, M_KTLS); 2022 tls->params.auth_key = NULL; 2023 tls->params.auth_key_len = 0; 2024 } 2025 if (tls->params.cipher_key != NULL) { 2026 zfree(tls->params.cipher_key, M_KTLS); 2027 tls->params.cipher_key = NULL; 2028 tls->params.cipher_key_len = 0; 2029 } 2030 if (tls->tx) { 2031 INP_WLOCK_ASSERT(inp); 2032 if (!in_pcbrele_wlocked(inp) && !wlocked) 2033 INP_WUNLOCK(inp); 2034 } 2035 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 2036 2037 uma_zfree(ktls_session_zone, tls); 2038 } 2039 2040 void 2041 ktls_seq(struct sockbuf *sb, struct mbuf *m) 2042 { 2043 2044 for (; m != NULL; m = m->m_next) { 2045 KASSERT((m->m_flags & M_EXTPG) != 0, 2046 ("ktls_seq: mapped mbuf %p", m)); 2047 2048 m->m_epg_seqno = sb->sb_tls_seqno; 2049 sb->sb_tls_seqno++; 2050 } 2051 } 2052 2053 /* 2054 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 2055 * mbuf in the chain must be an unmapped mbuf. The payload of the 2056 * mbuf must be populated with the payload of each TLS record. 2057 * 2058 * The record_type argument specifies the TLS record type used when 2059 * populating the TLS header. 2060 * 2061 * The enq_count argument on return is set to the number of pages of 2062 * payload data for this entire chain that need to be encrypted via SW 2063 * encryption. The returned value should be passed to ktls_enqueue 2064 * when scheduling encryption of this chain of mbufs. To handle the 2065 * special case of empty fragments for TLS 1.0 sessions, an empty 2066 * fragment counts as one page. 2067 */ 2068 void 2069 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 2070 uint8_t record_type) 2071 { 2072 struct tls_record_layer *tlshdr; 2073 struct mbuf *m; 2074 uint64_t *noncep; 2075 uint16_t tls_len; 2076 int maxlen __diagused; 2077 2078 maxlen = tls->params.max_frame_len; 2079 *enq_cnt = 0; 2080 for (m = top; m != NULL; m = m->m_next) { 2081 /* 2082 * All mbufs in the chain should be TLS records whose 2083 * payload does not exceed the maximum frame length. 2084 * 2085 * Empty TLS 1.0 records are permitted when using CBC. 2086 */ 2087 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 2088 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 2089 ("ktls_frame: m %p len %d", m, m->m_len)); 2090 2091 /* 2092 * TLS frames require unmapped mbufs to store session 2093 * info. 2094 */ 2095 KASSERT((m->m_flags & M_EXTPG) != 0, 2096 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 2097 2098 tls_len = m->m_len; 2099 2100 /* Save a reference to the session. */ 2101 m->m_epg_tls = ktls_hold(tls); 2102 2103 m->m_epg_hdrlen = tls->params.tls_hlen; 2104 m->m_epg_trllen = tls->params.tls_tlen; 2105 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 2106 int bs, delta; 2107 2108 /* 2109 * AES-CBC pads messages to a multiple of the 2110 * block size. Note that the padding is 2111 * applied after the digest and the encryption 2112 * is done on the "plaintext || mac || padding". 2113 * At least one byte of padding is always 2114 * present. 2115 * 2116 * Compute the final trailer length assuming 2117 * at most one block of padding. 2118 * tls->params.tls_tlen is the maximum 2119 * possible trailer length (padding + digest). 2120 * delta holds the number of excess padding 2121 * bytes if the maximum were used. Those 2122 * extra bytes are removed. 2123 */ 2124 bs = tls->params.tls_bs; 2125 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 2126 m->m_epg_trllen -= delta; 2127 } 2128 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 2129 2130 /* Populate the TLS header. */ 2131 tlshdr = (void *)m->m_epg_hdr; 2132 tlshdr->tls_vmajor = tls->params.tls_vmajor; 2133 2134 /* 2135 * TLS 1.3 masquarades as TLS 1.2 with a record type 2136 * of TLS_RLTYPE_APP. 2137 */ 2138 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 2139 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 2140 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 2141 tlshdr->tls_type = TLS_RLTYPE_APP; 2142 /* save the real record type for later */ 2143 m->m_epg_record_type = record_type; 2144 m->m_epg_trail[0] = record_type; 2145 } else { 2146 tlshdr->tls_vminor = tls->params.tls_vminor; 2147 tlshdr->tls_type = record_type; 2148 } 2149 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 2150 2151 /* 2152 * Store nonces / explicit IVs after the end of the 2153 * TLS header. 2154 * 2155 * For GCM with TLS 1.2, an 8 byte nonce is copied 2156 * from the end of the IV. The nonce is then 2157 * incremented for use by the next record. 2158 * 2159 * For CBC, a random nonce is inserted for TLS 1.1+. 2160 */ 2161 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2162 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2163 noncep = (uint64_t *)(tls->params.iv + 8); 2164 be64enc(tlshdr + 1, *noncep); 2165 (*noncep)++; 2166 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2167 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2168 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2169 2170 /* 2171 * When using SW encryption, mark the mbuf not ready. 2172 * It will be marked ready via sbready() after the 2173 * record has been encrypted. 2174 * 2175 * When using ifnet TLS, unencrypted TLS records are 2176 * sent down the stack to the NIC. 2177 */ 2178 if (tls->mode == TCP_TLS_MODE_SW) { 2179 m->m_flags |= M_NOTREADY; 2180 if (__predict_false(tls_len == 0)) { 2181 /* TLS 1.0 empty fragment. */ 2182 m->m_epg_nrdy = 1; 2183 } else 2184 m->m_epg_nrdy = m->m_epg_npgs; 2185 *enq_cnt += m->m_epg_nrdy; 2186 } 2187 } 2188 } 2189 2190 bool 2191 ktls_permit_empty_frames(struct ktls_session *tls) 2192 { 2193 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2194 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2195 } 2196 2197 void 2198 ktls_check_rx(struct sockbuf *sb) 2199 { 2200 struct tls_record_layer hdr; 2201 struct ktls_wq *wq; 2202 struct socket *so; 2203 bool running; 2204 2205 SOCKBUF_LOCK_ASSERT(sb); 2206 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2207 __func__, sb)); 2208 so = __containerof(sb, struct socket, so_rcv); 2209 2210 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2211 return; 2212 2213 /* Is there enough queued for a TLS header? */ 2214 if (sb->sb_tlscc < sizeof(hdr)) { 2215 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2216 so->so_error = EMSGSIZE; 2217 return; 2218 } 2219 2220 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2221 2222 /* Is the entire record queued? */ 2223 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2224 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2225 so->so_error = EMSGSIZE; 2226 return; 2227 } 2228 2229 sb->sb_flags |= SB_TLS_RX_RUNNING; 2230 2231 soref(so); 2232 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2233 mtx_lock(&wq->mtx); 2234 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2235 running = wq->running; 2236 mtx_unlock(&wq->mtx); 2237 if (!running) 2238 wakeup(wq); 2239 counter_u64_add(ktls_cnt_rx_queued, 1); 2240 } 2241 2242 static struct mbuf * 2243 ktls_detach_record(struct sockbuf *sb, int len) 2244 { 2245 struct mbuf *m, *n, *top; 2246 int remain; 2247 2248 SOCKBUF_LOCK_ASSERT(sb); 2249 MPASS(len <= sb->sb_tlscc); 2250 2251 /* 2252 * If TLS chain is the exact size of the record, 2253 * just grab the whole record. 2254 */ 2255 top = sb->sb_mtls; 2256 if (sb->sb_tlscc == len) { 2257 sb->sb_mtls = NULL; 2258 sb->sb_mtlstail = NULL; 2259 goto out; 2260 } 2261 2262 /* 2263 * While it would be nice to use m_split() here, we need 2264 * to know exactly what m_split() allocates to update the 2265 * accounting, so do it inline instead. 2266 */ 2267 remain = len; 2268 for (m = top; remain > m->m_len; m = m->m_next) 2269 remain -= m->m_len; 2270 2271 /* Easy case: don't have to split 'm'. */ 2272 if (remain == m->m_len) { 2273 sb->sb_mtls = m->m_next; 2274 if (sb->sb_mtls == NULL) 2275 sb->sb_mtlstail = NULL; 2276 m->m_next = NULL; 2277 goto out; 2278 } 2279 2280 /* 2281 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2282 * with M_NOWAIT first. 2283 */ 2284 n = m_get(M_NOWAIT, MT_DATA); 2285 if (n == NULL) { 2286 /* 2287 * Use M_WAITOK with socket buffer unlocked. If 2288 * 'sb_mtls' changes while the lock is dropped, return 2289 * NULL to force the caller to retry. 2290 */ 2291 SOCKBUF_UNLOCK(sb); 2292 2293 n = m_get(M_WAITOK, MT_DATA); 2294 2295 SOCKBUF_LOCK(sb); 2296 if (sb->sb_mtls != top) { 2297 m_free(n); 2298 return (NULL); 2299 } 2300 } 2301 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2302 2303 /* Store remainder in 'n'. */ 2304 n->m_len = m->m_len - remain; 2305 if (m->m_flags & M_EXT) { 2306 n->m_data = m->m_data + remain; 2307 mb_dupcl(n, m); 2308 } else { 2309 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2310 } 2311 2312 /* Trim 'm' and update accounting. */ 2313 m->m_len -= n->m_len; 2314 sb->sb_tlscc -= n->m_len; 2315 sb->sb_ccc -= n->m_len; 2316 2317 /* Account for 'n'. */ 2318 sballoc_ktls_rx(sb, n); 2319 2320 /* Insert 'n' into the TLS chain. */ 2321 sb->sb_mtls = n; 2322 n->m_next = m->m_next; 2323 if (sb->sb_mtlstail == m) 2324 sb->sb_mtlstail = n; 2325 2326 /* Detach the record from the TLS chain. */ 2327 m->m_next = NULL; 2328 2329 out: 2330 MPASS(m_length(top, NULL) == len); 2331 for (m = top; m != NULL; m = m->m_next) 2332 sbfree_ktls_rx(sb, m); 2333 sb->sb_tlsdcc = len; 2334 sb->sb_ccc += len; 2335 SBCHECK(sb); 2336 return (top); 2337 } 2338 2339 /* 2340 * Determine the length of the trailing zero padding and find the real 2341 * record type in the byte before the padding. 2342 * 2343 * Walking the mbuf chain backwards is clumsy, so another option would 2344 * be to scan forwards remembering the last non-zero byte before the 2345 * trailer. However, it would be expensive to scan the entire record. 2346 * Instead, find the last non-zero byte of each mbuf in the chain 2347 * keeping track of the relative offset of that nonzero byte. 2348 * 2349 * trail_len is the size of the MAC/tag on input and is set to the 2350 * size of the full trailer including padding and the record type on 2351 * return. 2352 */ 2353 static int 2354 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2355 int *trailer_len, uint8_t *record_typep) 2356 { 2357 char *cp; 2358 u_int digest_start, last_offset, m_len, offset; 2359 uint8_t record_type; 2360 2361 digest_start = tls_len - *trailer_len; 2362 last_offset = 0; 2363 offset = 0; 2364 for (; m != NULL && offset < digest_start; 2365 offset += m->m_len, m = m->m_next) { 2366 /* Don't look for padding in the tag. */ 2367 m_len = min(digest_start - offset, m->m_len); 2368 cp = mtod(m, char *); 2369 2370 /* Find last non-zero byte in this mbuf. */ 2371 while (m_len > 0 && cp[m_len - 1] == 0) 2372 m_len--; 2373 if (m_len > 0) { 2374 record_type = cp[m_len - 1]; 2375 last_offset = offset + m_len; 2376 } 2377 } 2378 if (last_offset < tls->params.tls_hlen) 2379 return (EBADMSG); 2380 2381 *record_typep = record_type; 2382 *trailer_len = tls_len - last_offset + 1; 2383 return (0); 2384 } 2385 2386 /* 2387 * Check if a mbuf chain is fully decrypted at the given offset and 2388 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2389 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2390 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2391 * is encrypted. 2392 */ 2393 ktls_mbuf_crypto_st_t 2394 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2395 { 2396 int m_flags_ored = 0; 2397 int m_flags_anded = -1; 2398 2399 for (; mb != NULL; mb = mb->m_next) { 2400 if (offset < mb->m_len) 2401 break; 2402 offset -= mb->m_len; 2403 } 2404 offset += len; 2405 2406 for (; mb != NULL; mb = mb->m_next) { 2407 m_flags_ored |= mb->m_flags; 2408 m_flags_anded &= mb->m_flags; 2409 2410 if (offset <= mb->m_len) 2411 break; 2412 offset -= mb->m_len; 2413 } 2414 MPASS(mb != NULL || offset == 0); 2415 2416 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2417 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2418 else 2419 return ((m_flags_ored & M_DECRYPTED) ? 2420 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2421 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2422 } 2423 2424 /* 2425 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2426 */ 2427 static int 2428 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2429 { 2430 union if_snd_tag_modify_params params; 2431 struct m_snd_tag *mst; 2432 struct inpcb *inp; 2433 struct tcpcb *tp; 2434 2435 mst = so->so_rcv.sb_tls_info->snd_tag; 2436 if (__predict_false(mst == NULL)) 2437 return (EINVAL); 2438 2439 inp = sotoinpcb(so); 2440 if (__predict_false(inp == NULL)) 2441 return (EINVAL); 2442 2443 INP_RLOCK(inp); 2444 if (inp->inp_flags & INP_DROPPED) { 2445 INP_RUNLOCK(inp); 2446 return (ECONNRESET); 2447 } 2448 2449 tp = intotcpcb(inp); 2450 MPASS(tp != NULL); 2451 2452 /* Get the TCP sequence number of the next valid TLS header. */ 2453 SOCKBUF_LOCK(&so->so_rcv); 2454 params.tls_rx.tls_hdr_tcp_sn = 2455 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2456 params.tls_rx.tls_rec_length = tls_len; 2457 params.tls_rx.tls_seq_number = tls_rcd_num; 2458 SOCKBUF_UNLOCK(&so->so_rcv); 2459 2460 INP_RUNLOCK(inp); 2461 2462 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2463 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2464 } 2465 2466 static void 2467 ktls_drop(struct socket *so, int error) 2468 { 2469 struct epoch_tracker et; 2470 struct inpcb *inp = sotoinpcb(so); 2471 struct tcpcb *tp; 2472 2473 NET_EPOCH_ENTER(et); 2474 INP_WLOCK(inp); 2475 if (!(inp->inp_flags & INP_DROPPED)) { 2476 tp = intotcpcb(inp); 2477 CURVNET_SET(inp->inp_vnet); 2478 tp = tcp_drop(tp, error); 2479 CURVNET_RESTORE(); 2480 if (tp != NULL) 2481 INP_WUNLOCK(inp); 2482 } else { 2483 so->so_error = error; 2484 SOCK_RECVBUF_LOCK(so); 2485 sorwakeup_locked(so); 2486 INP_WUNLOCK(inp); 2487 } 2488 NET_EPOCH_EXIT(et); 2489 } 2490 2491 static void 2492 ktls_decrypt(struct socket *so) 2493 { 2494 char tls_header[MBUF_PEXT_HDR_LEN]; 2495 struct ktls_session *tls; 2496 struct sockbuf *sb; 2497 struct tls_record_layer *hdr; 2498 struct tls_get_record tgr; 2499 struct mbuf *control, *data, *m; 2500 ktls_mbuf_crypto_st_t state; 2501 uint64_t seqno; 2502 int error, remain, tls_len, trail_len; 2503 bool tls13; 2504 uint8_t vminor, record_type; 2505 2506 hdr = (struct tls_record_layer *)tls_header; 2507 sb = &so->so_rcv; 2508 SOCKBUF_LOCK(sb); 2509 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2510 ("%s: socket %p not running", __func__, so)); 2511 2512 tls = sb->sb_tls_info; 2513 MPASS(tls != NULL); 2514 2515 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2516 if (tls13) 2517 vminor = TLS_MINOR_VER_TWO; 2518 else 2519 vminor = tls->params.tls_vminor; 2520 for (;;) { 2521 /* Is there enough queued for a TLS header? */ 2522 if (sb->sb_tlscc < tls->params.tls_hlen) 2523 break; 2524 2525 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2526 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2527 2528 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2529 hdr->tls_vminor != vminor) 2530 error = EINVAL; 2531 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2532 error = EINVAL; 2533 else if (tls_len < tls->params.tls_hlen || tls_len > 2534 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2535 tls->params.tls_tlen) 2536 error = EMSGSIZE; 2537 else 2538 error = 0; 2539 if (__predict_false(error != 0)) { 2540 /* 2541 * We have a corrupted record and are likely 2542 * out of sync. The connection isn't 2543 * recoverable at this point, so abort it. 2544 */ 2545 SOCKBUF_UNLOCK(sb); 2546 counter_u64_add(ktls_offload_corrupted_records, 1); 2547 2548 ktls_drop(so, error); 2549 goto deref; 2550 } 2551 2552 /* Is the entire record queued? */ 2553 if (sb->sb_tlscc < tls_len) 2554 break; 2555 2556 /* 2557 * Split out the portion of the mbuf chain containing 2558 * this TLS record. 2559 */ 2560 data = ktls_detach_record(sb, tls_len); 2561 if (data == NULL) 2562 continue; 2563 MPASS(sb->sb_tlsdcc == tls_len); 2564 2565 seqno = sb->sb_tls_seqno; 2566 sb->sb_tls_seqno++; 2567 SBCHECK(sb); 2568 SOCKBUF_UNLOCK(sb); 2569 2570 /* get crypto state for this TLS record */ 2571 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2572 2573 switch (state) { 2574 case KTLS_MBUF_CRYPTO_ST_MIXED: 2575 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2576 if (error) 2577 break; 2578 /* FALLTHROUGH */ 2579 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2580 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2581 &trail_len); 2582 if (__predict_true(error == 0)) { 2583 if (tls13) { 2584 error = tls13_find_record_type(tls, data, 2585 tls_len, &trail_len, &record_type); 2586 } else { 2587 record_type = hdr->tls_type; 2588 } 2589 } 2590 break; 2591 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2592 /* 2593 * NIC TLS is only supported for AEAD 2594 * ciphersuites which used a fixed sized 2595 * trailer. 2596 */ 2597 if (tls13) { 2598 trail_len = tls->params.tls_tlen - 1; 2599 error = tls13_find_record_type(tls, data, 2600 tls_len, &trail_len, &record_type); 2601 } else { 2602 trail_len = tls->params.tls_tlen; 2603 error = 0; 2604 record_type = hdr->tls_type; 2605 } 2606 break; 2607 default: 2608 error = EINVAL; 2609 break; 2610 } 2611 if (error) { 2612 counter_u64_add(ktls_offload_failed_crypto, 1); 2613 2614 SOCKBUF_LOCK(sb); 2615 if (sb->sb_tlsdcc == 0) { 2616 /* 2617 * sbcut/drop/flush discarded these 2618 * mbufs. 2619 */ 2620 m_freem(data); 2621 break; 2622 } 2623 2624 /* 2625 * Drop this TLS record's data, but keep 2626 * decrypting subsequent records. 2627 */ 2628 sb->sb_ccc -= tls_len; 2629 sb->sb_tlsdcc = 0; 2630 2631 if (error != EMSGSIZE) 2632 error = EBADMSG; 2633 CURVNET_SET(so->so_vnet); 2634 so->so_error = error; 2635 sorwakeup_locked(so); 2636 CURVNET_RESTORE(); 2637 2638 m_freem(data); 2639 2640 SOCKBUF_LOCK(sb); 2641 continue; 2642 } 2643 2644 /* Allocate the control mbuf. */ 2645 memset(&tgr, 0, sizeof(tgr)); 2646 tgr.tls_type = record_type; 2647 tgr.tls_vmajor = hdr->tls_vmajor; 2648 tgr.tls_vminor = hdr->tls_vminor; 2649 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2650 trail_len); 2651 control = sbcreatecontrol(&tgr, sizeof(tgr), 2652 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2653 2654 SOCKBUF_LOCK(sb); 2655 if (sb->sb_tlsdcc == 0) { 2656 /* sbcut/drop/flush discarded these mbufs. */ 2657 MPASS(sb->sb_tlscc == 0); 2658 m_freem(data); 2659 m_freem(control); 2660 break; 2661 } 2662 2663 /* 2664 * Clear the 'dcc' accounting in preparation for 2665 * adding the decrypted record. 2666 */ 2667 sb->sb_ccc -= tls_len; 2668 sb->sb_tlsdcc = 0; 2669 SBCHECK(sb); 2670 2671 /* If there is no payload, drop all of the data. */ 2672 if (tgr.tls_length == htobe16(0)) { 2673 m_freem(data); 2674 data = NULL; 2675 } else { 2676 /* Trim header. */ 2677 remain = tls->params.tls_hlen; 2678 while (remain > 0) { 2679 if (data->m_len > remain) { 2680 data->m_data += remain; 2681 data->m_len -= remain; 2682 break; 2683 } 2684 remain -= data->m_len; 2685 data = m_free(data); 2686 } 2687 2688 /* Trim trailer and clear M_NOTREADY. */ 2689 remain = be16toh(tgr.tls_length); 2690 m = data; 2691 for (m = data; remain > m->m_len; m = m->m_next) { 2692 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2693 remain -= m->m_len; 2694 } 2695 m->m_len = remain; 2696 m_freem(m->m_next); 2697 m->m_next = NULL; 2698 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2699 2700 /* Set EOR on the final mbuf. */ 2701 m->m_flags |= M_EOR; 2702 } 2703 2704 sbappendcontrol_locked(sb, data, control, 0); 2705 2706 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2707 sb->sb_flags |= SB_TLS_RX_RESYNC; 2708 SOCKBUF_UNLOCK(sb); 2709 ktls_resync_ifnet(so, tls_len, seqno); 2710 SOCKBUF_LOCK(sb); 2711 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2712 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2713 SOCKBUF_UNLOCK(sb); 2714 ktls_resync_ifnet(so, 0, seqno); 2715 SOCKBUF_LOCK(sb); 2716 } 2717 } 2718 2719 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2720 2721 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2722 so->so_error = EMSGSIZE; 2723 2724 sorwakeup_locked(so); 2725 2726 deref: 2727 SOCKBUF_UNLOCK_ASSERT(sb); 2728 2729 CURVNET_SET(so->so_vnet); 2730 sorele(so); 2731 CURVNET_RESTORE(); 2732 } 2733 2734 void 2735 ktls_enqueue_to_free(struct mbuf *m) 2736 { 2737 struct ktls_wq *wq; 2738 bool running; 2739 2740 /* Mark it for freeing. */ 2741 m->m_epg_flags |= EPG_FLAG_2FREE; 2742 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2743 mtx_lock(&wq->mtx); 2744 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2745 running = wq->running; 2746 mtx_unlock(&wq->mtx); 2747 if (!running) 2748 wakeup(wq); 2749 } 2750 2751 static void * 2752 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2753 { 2754 void *buf; 2755 int domain, running; 2756 2757 if (m->m_epg_npgs <= 2) 2758 return (NULL); 2759 if (ktls_buffer_zone == NULL) 2760 return (NULL); 2761 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2762 /* 2763 * Rate-limit allocation attempts after a failure. 2764 * ktls_buffer_import() will acquire a per-domain mutex to check 2765 * the free page queues and may fail consistently if memory is 2766 * fragmented. 2767 */ 2768 return (NULL); 2769 } 2770 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2771 if (buf == NULL) { 2772 domain = PCPU_GET(domain); 2773 wq->lastallocfail = ticks; 2774 2775 /* 2776 * Note that this check is "racy", but the races are 2777 * harmless, and are either a spurious wakeup if 2778 * multiple threads fail allocations before the alloc 2779 * thread wakes, or waiting an extra second in case we 2780 * see an old value of running == true. 2781 */ 2782 if (!VM_DOMAIN_EMPTY(domain)) { 2783 running = atomic_load_int(&ktls_domains[domain].reclaim_td.running); 2784 if (!running) 2785 wakeup(&ktls_domains[domain].reclaim_td); 2786 } 2787 } 2788 return (buf); 2789 } 2790 2791 static int 2792 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2793 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2794 { 2795 vm_page_t pg; 2796 int error, i, len, off; 2797 2798 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2799 ("%p not unready & nomap mbuf\n", m)); 2800 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2801 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2802 ktls_maxlen)); 2803 2804 /* Anonymous mbufs are encrypted in place. */ 2805 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2806 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2807 2808 /* 2809 * For file-backed mbufs (from sendfile), anonymous wired 2810 * pages are allocated and used as the encryption destination. 2811 */ 2812 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2813 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2814 m->m_epg_1st_off; 2815 state->dst_iov[0].iov_base = (char *)state->cbuf + 2816 m->m_epg_1st_off; 2817 state->dst_iov[0].iov_len = len; 2818 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2819 i = 1; 2820 } else { 2821 off = m->m_epg_1st_off; 2822 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2823 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2824 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2825 len = m_epg_pagelen(m, i, off); 2826 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2827 state->dst_iov[i].iov_base = 2828 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2829 state->dst_iov[i].iov_len = len; 2830 } 2831 } 2832 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2833 state->dst_iov[i].iov_base = m->m_epg_trail; 2834 state->dst_iov[i].iov_len = m->m_epg_trllen; 2835 2836 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2837 2838 if (__predict_false(error != 0)) { 2839 /* Free the anonymous pages. */ 2840 if (state->cbuf != NULL) 2841 uma_zfree(ktls_buffer_zone, state->cbuf); 2842 else { 2843 for (i = 0; i < m->m_epg_npgs; i++) { 2844 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2845 (void)vm_page_unwire_noq(pg); 2846 vm_page_free(pg); 2847 } 2848 } 2849 } 2850 return (error); 2851 } 2852 2853 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2854 static u_int 2855 ktls_batched_records(struct mbuf *m) 2856 { 2857 int page_count, records; 2858 2859 records = 0; 2860 page_count = m->m_epg_enc_cnt; 2861 while (page_count > 0) { 2862 records++; 2863 page_count -= m->m_epg_nrdy; 2864 m = m->m_next; 2865 } 2866 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2867 return (records); 2868 } 2869 2870 void 2871 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2872 { 2873 struct ktls_session *tls; 2874 struct ktls_wq *wq; 2875 int queued; 2876 bool running; 2877 2878 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2879 (M_EXTPG | M_NOTREADY)), 2880 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2881 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2882 2883 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2884 2885 m->m_epg_enc_cnt = page_count; 2886 2887 /* 2888 * Save a pointer to the socket. The caller is responsible 2889 * for taking an additional reference via soref(). 2890 */ 2891 m->m_epg_so = so; 2892 2893 queued = 1; 2894 tls = m->m_epg_tls; 2895 wq = &ktls_wq[tls->wq_index]; 2896 mtx_lock(&wq->mtx); 2897 if (__predict_false(tls->sequential_records)) { 2898 /* 2899 * For TLS 1.0, records must be encrypted 2900 * sequentially. For a given connection, all records 2901 * queued to the associated work queue are processed 2902 * sequentially. However, sendfile(2) might complete 2903 * I/O requests spanning multiple TLS records out of 2904 * order. Here we ensure TLS records are enqueued to 2905 * the work queue in FIFO order. 2906 * 2907 * tls->next_seqno holds the sequence number of the 2908 * next TLS record that should be enqueued to the work 2909 * queue. If this next record is not tls->next_seqno, 2910 * it must be a future record, so insert it, sorted by 2911 * TLS sequence number, into tls->pending_records and 2912 * return. 2913 * 2914 * If this TLS record matches tls->next_seqno, place 2915 * it in the work queue and then check 2916 * tls->pending_records to see if any 2917 * previously-queued records are now ready for 2918 * encryption. 2919 */ 2920 if (m->m_epg_seqno != tls->next_seqno) { 2921 struct mbuf *n, *p; 2922 2923 p = NULL; 2924 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2925 if (n->m_epg_seqno > m->m_epg_seqno) 2926 break; 2927 p = n; 2928 } 2929 if (n == NULL) 2930 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2931 m_epg_stailq); 2932 else if (p == NULL) 2933 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2934 m_epg_stailq); 2935 else 2936 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2937 m_epg_stailq); 2938 mtx_unlock(&wq->mtx); 2939 counter_u64_add(ktls_cnt_tx_pending, 1); 2940 return; 2941 } 2942 2943 tls->next_seqno += ktls_batched_records(m); 2944 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2945 2946 while (!STAILQ_EMPTY(&tls->pending_records)) { 2947 struct mbuf *n; 2948 2949 n = STAILQ_FIRST(&tls->pending_records); 2950 if (n->m_epg_seqno != tls->next_seqno) 2951 break; 2952 2953 queued++; 2954 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2955 tls->next_seqno += ktls_batched_records(n); 2956 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2957 } 2958 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2959 } else 2960 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2961 2962 running = wq->running; 2963 mtx_unlock(&wq->mtx); 2964 if (!running) 2965 wakeup(wq); 2966 counter_u64_add(ktls_cnt_tx_queued, queued); 2967 } 2968 2969 /* 2970 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2971 * the pages from the file and replace them with the anonymous pages 2972 * allocated in ktls_encrypt_record(). 2973 */ 2974 static void 2975 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2976 { 2977 int i; 2978 2979 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2980 2981 /* Free the old pages. */ 2982 m->m_ext.ext_free(m); 2983 2984 /* Replace them with the new pages. */ 2985 if (state->cbuf != NULL) { 2986 for (i = 0; i < m->m_epg_npgs; i++) 2987 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2988 2989 /* Contig pages should go back to the cache. */ 2990 m->m_ext.ext_free = ktls_free_mext_contig; 2991 } else { 2992 for (i = 0; i < m->m_epg_npgs; i++) 2993 m->m_epg_pa[i] = state->parray[i]; 2994 2995 /* Use the basic free routine. */ 2996 m->m_ext.ext_free = mb_free_mext_pgs; 2997 } 2998 2999 /* Pages are now writable. */ 3000 m->m_epg_flags |= EPG_FLAG_ANON; 3001 } 3002 3003 static __noinline void 3004 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 3005 { 3006 struct ktls_ocf_encrypt_state state; 3007 struct ktls_session *tls; 3008 struct socket *so; 3009 struct mbuf *m; 3010 int error, npages, total_pages; 3011 3012 so = top->m_epg_so; 3013 tls = top->m_epg_tls; 3014 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3015 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3016 #ifdef INVARIANTS 3017 top->m_epg_so = NULL; 3018 #endif 3019 total_pages = top->m_epg_enc_cnt; 3020 npages = 0; 3021 3022 /* 3023 * Encrypt the TLS records in the chain of mbufs starting with 3024 * 'top'. 'total_pages' gives us a total count of pages and is 3025 * used to know when we have finished encrypting the TLS 3026 * records originally queued with 'top'. 3027 * 3028 * NB: These mbufs are queued in the socket buffer and 3029 * 'm_next' is traversing the mbufs in the socket buffer. The 3030 * socket buffer lock is not held while traversing this chain. 3031 * Since the mbufs are all marked M_NOTREADY their 'm_next' 3032 * pointers should be stable. However, the 'm_next' of the 3033 * last mbuf encrypted is not necessarily NULL. It can point 3034 * to other mbufs appended while 'top' was on the TLS work 3035 * queue. 3036 * 3037 * Each mbuf holds an entire TLS record. 3038 */ 3039 error = 0; 3040 for (m = top; npages != total_pages; m = m->m_next) { 3041 KASSERT(m->m_epg_tls == tls, 3042 ("different TLS sessions in a single mbuf chain: %p vs %p", 3043 tls, m->m_epg_tls)); 3044 KASSERT(npages + m->m_epg_npgs <= total_pages, 3045 ("page count mismatch: top %p, total_pages %d, m %p", top, 3046 total_pages, m)); 3047 3048 error = ktls_encrypt_record(wq, m, tls, &state); 3049 if (error) { 3050 counter_u64_add(ktls_offload_failed_crypto, 1); 3051 break; 3052 } 3053 3054 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3055 ktls_finish_nonanon(m, &state); 3056 3057 npages += m->m_epg_nrdy; 3058 3059 /* 3060 * Drop a reference to the session now that it is no 3061 * longer needed. Existing code depends on encrypted 3062 * records having no associated session vs 3063 * yet-to-be-encrypted records having an associated 3064 * session. 3065 */ 3066 m->m_epg_tls = NULL; 3067 ktls_free(tls); 3068 } 3069 3070 CURVNET_SET(so->so_vnet); 3071 if (error == 0) { 3072 (void)so->so_proto->pr_ready(so, top, npages); 3073 } else { 3074 ktls_drop(so, EIO); 3075 mb_free_notready(top, total_pages); 3076 } 3077 3078 sorele(so); 3079 CURVNET_RESTORE(); 3080 } 3081 3082 void 3083 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 3084 { 3085 struct ktls_session *tls; 3086 struct socket *so; 3087 struct mbuf *m; 3088 int npages; 3089 3090 m = state->m; 3091 3092 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3093 ktls_finish_nonanon(m, state); 3094 3095 so = state->so; 3096 free(state, M_KTLS); 3097 3098 /* 3099 * Drop a reference to the session now that it is no longer 3100 * needed. Existing code depends on encrypted records having 3101 * no associated session vs yet-to-be-encrypted records having 3102 * an associated session. 3103 */ 3104 tls = m->m_epg_tls; 3105 m->m_epg_tls = NULL; 3106 ktls_free(tls); 3107 3108 if (error != 0) 3109 counter_u64_add(ktls_offload_failed_crypto, 1); 3110 3111 CURVNET_SET(so->so_vnet); 3112 npages = m->m_epg_nrdy; 3113 3114 if (error == 0) { 3115 (void)so->so_proto->pr_ready(so, m, npages); 3116 } else { 3117 ktls_drop(so, EIO); 3118 mb_free_notready(m, npages); 3119 } 3120 3121 sorele(so); 3122 CURVNET_RESTORE(); 3123 } 3124 3125 /* 3126 * Similar to ktls_encrypt, but used with asynchronous OCF backends 3127 * (coprocessors) where encryption does not use host CPU resources and 3128 * it can be beneficial to queue more requests than CPUs. 3129 */ 3130 static __noinline void 3131 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 3132 { 3133 struct ktls_ocf_encrypt_state *state; 3134 struct ktls_session *tls; 3135 struct socket *so; 3136 struct mbuf *m, *n; 3137 int error, mpages, npages, total_pages; 3138 3139 so = top->m_epg_so; 3140 tls = top->m_epg_tls; 3141 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3142 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3143 #ifdef INVARIANTS 3144 top->m_epg_so = NULL; 3145 #endif 3146 total_pages = top->m_epg_enc_cnt; 3147 npages = 0; 3148 3149 error = 0; 3150 for (m = top; npages != total_pages; m = n) { 3151 KASSERT(m->m_epg_tls == tls, 3152 ("different TLS sessions in a single mbuf chain: %p vs %p", 3153 tls, m->m_epg_tls)); 3154 KASSERT(npages + m->m_epg_npgs <= total_pages, 3155 ("page count mismatch: top %p, total_pages %d, m %p", top, 3156 total_pages, m)); 3157 3158 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 3159 soref(so); 3160 state->so = so; 3161 state->m = m; 3162 3163 mpages = m->m_epg_nrdy; 3164 n = m->m_next; 3165 3166 error = ktls_encrypt_record(wq, m, tls, state); 3167 if (error) { 3168 counter_u64_add(ktls_offload_failed_crypto, 1); 3169 free(state, M_KTLS); 3170 CURVNET_SET(so->so_vnet); 3171 sorele(so); 3172 CURVNET_RESTORE(); 3173 break; 3174 } 3175 3176 npages += mpages; 3177 } 3178 3179 CURVNET_SET(so->so_vnet); 3180 if (error != 0) { 3181 ktls_drop(so, EIO); 3182 mb_free_notready(m, total_pages - npages); 3183 } 3184 3185 sorele(so); 3186 CURVNET_RESTORE(); 3187 } 3188 3189 static int 3190 ktls_bind_domain(int domain) 3191 { 3192 int error; 3193 3194 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3195 if (error != 0) 3196 return (error); 3197 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3198 return (0); 3199 } 3200 3201 static void 3202 ktls_reclaim_thread(void *ctx) 3203 { 3204 struct ktls_domain_info *ktls_domain = ctx; 3205 struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td; 3206 struct sysctl_oid *oid; 3207 char name[80]; 3208 int error, domain; 3209 3210 domain = ktls_domain - ktls_domains; 3211 if (bootverbose) 3212 printf("Starting KTLS reclaim thread for domain %d\n", domain); 3213 error = ktls_bind_domain(domain); 3214 if (error) 3215 printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n", 3216 domain, error); 3217 snprintf(name, sizeof(name), "domain%d", domain); 3218 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3219 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3220 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims", 3221 CTLFLAG_RD, &sc->reclaims, 0, "buffers reclaimed"); 3222 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3223 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3224 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3225 CTLFLAG_RD, &sc->running, 0, "thread running"); 3226 3227 for (;;) { 3228 atomic_store_int(&sc->running, 0); 3229 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3230 atomic_store_int(&sc->running, 1); 3231 sc->wakeups++; 3232 /* 3233 * Below we attempt to reclaim ktls_max_reclaim 3234 * buffers using vm_page_reclaim_contig_domain_ext(). 3235 * We do this here, as this function can take several 3236 * seconds to scan all of memory and it does not 3237 * matter if this thread pauses for a while. If we 3238 * block a ktls worker thread, we risk developing 3239 * backlogs of buffers to be encrypted, leading to 3240 * surges of traffic and potential NIC output drops. 3241 */ 3242 if (vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL, 3243 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 3244 ktls_max_reclaim) != 0) { 3245 vm_wait_domain(domain); 3246 } else { 3247 sc->reclaims += ktls_max_reclaim; 3248 } 3249 } 3250 } 3251 3252 static void 3253 ktls_work_thread(void *ctx) 3254 { 3255 struct ktls_wq *wq = ctx; 3256 struct mbuf *m, *n; 3257 struct socket *so, *son; 3258 STAILQ_HEAD(, mbuf) local_m_head; 3259 STAILQ_HEAD(, socket) local_so_head; 3260 int cpu; 3261 3262 cpu = wq - ktls_wq; 3263 if (bootverbose) 3264 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3265 3266 /* 3267 * Bind to a core. If ktls_bind_threads is > 1, then 3268 * we bind to the NUMA domain instead. 3269 */ 3270 if (ktls_bind_threads) { 3271 int error; 3272 3273 if (ktls_bind_threads > 1) { 3274 struct pcpu *pc = pcpu_find(cpu); 3275 3276 error = ktls_bind_domain(pc->pc_domain); 3277 } else { 3278 cpuset_t mask; 3279 3280 CPU_SETOF(cpu, &mask); 3281 error = cpuset_setthread(curthread->td_tid, &mask); 3282 } 3283 if (error) 3284 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3285 cpu, error); 3286 } 3287 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3288 fpu_kern_thread(0); 3289 #endif 3290 for (;;) { 3291 mtx_lock(&wq->mtx); 3292 while (STAILQ_EMPTY(&wq->m_head) && 3293 STAILQ_EMPTY(&wq->so_head)) { 3294 wq->running = false; 3295 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3296 wq->running = true; 3297 } 3298 3299 STAILQ_INIT(&local_m_head); 3300 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3301 STAILQ_INIT(&local_so_head); 3302 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3303 mtx_unlock(&wq->mtx); 3304 3305 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3306 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3307 ktls_free(m->m_epg_tls); 3308 m_free_raw(m); 3309 } else { 3310 if (m->m_epg_tls->sync_dispatch) 3311 ktls_encrypt(wq, m); 3312 else 3313 ktls_encrypt_async(wq, m); 3314 counter_u64_add(ktls_cnt_tx_queued, -1); 3315 } 3316 } 3317 3318 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3319 ktls_decrypt(so); 3320 counter_u64_add(ktls_cnt_rx_queued, -1); 3321 } 3322 } 3323 } 3324 3325 static void 3326 ktls_disable_ifnet_help(void *context, int pending __unused) 3327 { 3328 struct ktls_session *tls; 3329 struct inpcb *inp; 3330 struct tcpcb *tp; 3331 struct socket *so; 3332 int err; 3333 3334 tls = context; 3335 inp = tls->inp; 3336 if (inp == NULL) 3337 return; 3338 INP_WLOCK(inp); 3339 so = inp->inp_socket; 3340 MPASS(so != NULL); 3341 if (inp->inp_flags & INP_DROPPED) { 3342 goto out; 3343 } 3344 3345 if (so->so_snd.sb_tls_info != NULL) 3346 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3347 else 3348 err = ENXIO; 3349 if (err == 0) { 3350 counter_u64_add(ktls_ifnet_disable_ok, 1); 3351 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3352 if ((inp->inp_flags & INP_DROPPED) == 0 && 3353 (tp = intotcpcb(inp)) != NULL && 3354 tp->t_fb->tfb_hwtls_change != NULL) 3355 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3356 } else { 3357 counter_u64_add(ktls_ifnet_disable_fail, 1); 3358 } 3359 3360 out: 3361 CURVNET_SET(so->so_vnet); 3362 sorele(so); 3363 CURVNET_RESTORE(); 3364 INP_WUNLOCK(inp); 3365 ktls_free(tls); 3366 } 3367 3368 /* 3369 * Called when re-transmits are becoming a substantial portion of the 3370 * sends on this connection. When this happens, we transition the 3371 * connection to software TLS. This is needed because most inline TLS 3372 * NICs keep crypto state only for in-order transmits. This means 3373 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3374 * re-DMA the entire TLS record up to and including the current 3375 * segment. This means that when re-transmitting the last ~1448 byte 3376 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3377 * of magnitude more data than we are sending. This can cause the 3378 * PCIe link to saturate well before the network, which can cause 3379 * output drops, and a general loss of capacity. 3380 */ 3381 void 3382 ktls_disable_ifnet(void *arg) 3383 { 3384 struct tcpcb *tp; 3385 struct inpcb *inp; 3386 struct socket *so; 3387 struct ktls_session *tls; 3388 3389 tp = arg; 3390 inp = tptoinpcb(tp); 3391 INP_WLOCK_ASSERT(inp); 3392 so = inp->inp_socket; 3393 SOCK_LOCK(so); 3394 tls = so->so_snd.sb_tls_info; 3395 if (tp->t_nic_ktls_xmit_dis == 1) { 3396 SOCK_UNLOCK(so); 3397 return; 3398 } 3399 3400 /* 3401 * note that t_nic_ktls_xmit_dis is never cleared; disabling 3402 * ifnet can only be done once per connection, so we never want 3403 * to do it again 3404 */ 3405 3406 (void)ktls_hold(tls); 3407 soref(so); 3408 tp->t_nic_ktls_xmit_dis = 1; 3409 SOCK_UNLOCK(so); 3410 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3411 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3412 } 3413