1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #if defined(INET) || defined(INET6) 70 #include <netinet/in.h> 71 #include <netinet/in_pcb.h> 72 #endif 73 #include <netinet/tcp_var.h> 74 #ifdef TCP_OFFLOAD 75 #include <netinet/tcp_offload.h> 76 #endif 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/ktls.h> 79 #include <vm/uma_dbg.h> 80 #include <vm/vm.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pagequeue.h> 84 85 struct ktls_wq { 86 struct mtx mtx; 87 STAILQ_HEAD(, mbuf) m_head; 88 STAILQ_HEAD(, socket) so_head; 89 bool running; 90 int lastallocfail; 91 } __aligned(CACHE_LINE_SIZE); 92 93 struct ktls_alloc_thread { 94 uint64_t wakeups; 95 uint64_t allocs; 96 struct thread *td; 97 int running; 98 }; 99 100 struct ktls_domain_info { 101 int count; 102 int cpu[MAXCPU]; 103 struct ktls_alloc_thread alloc_td; 104 }; 105 106 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 107 static struct ktls_wq *ktls_wq; 108 static struct proc *ktls_proc; 109 static uma_zone_t ktls_session_zone; 110 static uma_zone_t ktls_buffer_zone; 111 static uint16_t ktls_cpuid_lookup[MAXCPU]; 112 static int ktls_init_state; 113 static struct sx ktls_init_lock; 114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 115 116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload"); 118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 "Kernel TLS offload stats"); 120 121 #ifdef RSS 122 static int ktls_bind_threads = 1; 123 #else 124 static int ktls_bind_threads; 125 #endif 126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 127 &ktls_bind_threads, 0, 128 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 129 130 static u_int ktls_maxlen = 16384; 131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 132 &ktls_maxlen, 0, "Maximum TLS record size"); 133 134 static int ktls_number_threads; 135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 136 &ktls_number_threads, 0, 137 "Number of TLS threads in thread-pool"); 138 139 unsigned int ktls_ifnet_max_rexmit_pct = 2; 140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 141 &ktls_ifnet_max_rexmit_pct, 2, 142 "Max percent bytes retransmitted before ifnet TLS is disabled"); 143 144 static bool ktls_offload_enable; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 146 &ktls_offload_enable, 0, 147 "Enable support for kernel TLS offload"); 148 149 static bool ktls_cbc_enable = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 151 &ktls_cbc_enable, 1, 152 "Enable support of AES-CBC crypto for kernel TLS"); 153 154 static bool ktls_sw_buffer_cache = true; 155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 156 &ktls_sw_buffer_cache, 1, 157 "Enable caching of output buffers for SW encryption"); 158 159 static int ktls_max_alloc = 128; 160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 161 &ktls_max_alloc, 128, 162 "Max number of 16k buffers to allocate in thread context"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 166 &ktls_tasks_active, "Number of active tasks"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 170 &ktls_cnt_tx_pending, 171 "Number of TLS 1.0 records waiting for earlier TLS records"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_tx_queued, 176 "Number of TLS records in queue to tasks for SW encryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 180 &ktls_cnt_rx_queued, 181 "Number of TLS sockets in queue to tasks for SW decryption"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 185 CTLFLAG_RD, &ktls_offload_total, 186 "Total successful TLS setups (parameters set)"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 190 CTLFLAG_RD, &ktls_offload_enable_calls, 191 "Total number of TLS enable calls made"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 195 &ktls_offload_active, "Total Active TLS sessions"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 199 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 203 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 207 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 211 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 215 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 219 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 223 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 224 225 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task); 226 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD, 227 &ktls_destroy_task, 228 "Number of times ktls session was destroyed via taskqueue"); 229 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "Software TLS session stats"); 232 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 233 "Hardware (ifnet) TLS session stats"); 234 #ifdef TCP_OFFLOAD 235 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 236 "TOE TLS session stats"); 237 #endif 238 239 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 240 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 241 "Active number of software TLS sessions using AES-CBC"); 242 243 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 244 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 245 "Active number of software TLS sessions using AES-GCM"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 249 &ktls_sw_chacha20, 250 "Active number of software TLS sessions using Chacha20-Poly1305"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 254 &ktls_ifnet_cbc, 255 "Active number of ifnet TLS sessions using AES-CBC"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 259 &ktls_ifnet_gcm, 260 "Active number of ifnet TLS sessions using AES-GCM"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 264 &ktls_ifnet_chacha20, 265 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 266 267 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 268 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 269 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 273 &ktls_ifnet_reset_dropped, 274 "TLS sessions dropped after failing to update ifnet send tag"); 275 276 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 277 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 278 &ktls_ifnet_reset_failed, 279 "TLS sessions that failed to allocate a new ifnet send tag"); 280 281 static int ktls_ifnet_permitted; 282 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 283 &ktls_ifnet_permitted, 1, 284 "Whether to permit hardware (ifnet) TLS sessions"); 285 286 #ifdef TCP_OFFLOAD 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 289 &ktls_toe_cbc, 290 "Active number of TOE TLS sessions using AES-CBC"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 294 &ktls_toe_gcm, 295 "Active number of TOE TLS sessions using AES-GCM"); 296 297 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 298 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 299 &ktls_toe_chacha20, 300 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 301 #endif 302 303 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 304 305 #if defined(INET) || defined(INET6) 306 static void ktls_reset_receive_tag(void *context, int pending); 307 static void ktls_reset_send_tag(void *context, int pending); 308 #endif 309 static void ktls_work_thread(void *ctx); 310 static void ktls_alloc_thread(void *ctx); 311 312 #if defined(INET) || defined(INET6) 313 static u_int 314 ktls_get_cpu(struct socket *so) 315 { 316 struct inpcb *inp; 317 #ifdef NUMA 318 struct ktls_domain_info *di; 319 #endif 320 u_int cpuid; 321 322 inp = sotoinpcb(so); 323 #ifdef RSS 324 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 325 if (cpuid != NETISR_CPUID_NONE) 326 return (cpuid); 327 #endif 328 /* 329 * Just use the flowid to shard connections in a repeatable 330 * fashion. Note that TLS 1.0 sessions rely on the 331 * serialization provided by having the same connection use 332 * the same queue. 333 */ 334 #ifdef NUMA 335 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 336 di = &ktls_domains[inp->inp_numa_domain]; 337 cpuid = di->cpu[inp->inp_flowid % di->count]; 338 } else 339 #endif 340 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 341 return (cpuid); 342 } 343 #endif 344 345 static int 346 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 347 { 348 vm_page_t m; 349 int i, req; 350 351 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 352 ("%s: ktls max length %d is not page size-aligned", 353 __func__, ktls_maxlen)); 354 355 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 356 for (i = 0; i < count; i++) { 357 m = vm_page_alloc_noobj_contig_domain(domain, req, 358 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 359 VM_MEMATTR_DEFAULT); 360 if (m == NULL) 361 break; 362 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 363 } 364 return (i); 365 } 366 367 static void 368 ktls_buffer_release(void *arg __unused, void **store, int count) 369 { 370 vm_page_t m; 371 int i, j; 372 373 for (i = 0; i < count; i++) { 374 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 375 for (j = 0; j < atop(ktls_maxlen); j++) { 376 (void)vm_page_unwire_noq(m + j); 377 vm_page_free(m + j); 378 } 379 } 380 } 381 382 static void 383 ktls_free_mext_contig(struct mbuf *m) 384 { 385 M_ASSERTEXTPG(m); 386 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 387 } 388 389 static int 390 ktls_init(void) 391 { 392 struct thread *td; 393 struct pcpu *pc; 394 int count, domain, error, i; 395 396 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 397 M_WAITOK | M_ZERO); 398 399 ktls_session_zone = uma_zcreate("ktls_session", 400 sizeof(struct ktls_session), 401 NULL, NULL, NULL, NULL, 402 UMA_ALIGN_CACHE, 0); 403 404 if (ktls_sw_buffer_cache) { 405 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 406 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 407 ktls_buffer_import, ktls_buffer_release, NULL, 408 UMA_ZONE_FIRSTTOUCH); 409 } 410 411 /* 412 * Initialize the workqueues to run the TLS work. We create a 413 * work queue for each CPU. 414 */ 415 CPU_FOREACH(i) { 416 STAILQ_INIT(&ktls_wq[i].m_head); 417 STAILQ_INIT(&ktls_wq[i].so_head); 418 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 419 if (ktls_bind_threads > 1) { 420 pc = pcpu_find(i); 421 domain = pc->pc_domain; 422 count = ktls_domains[domain].count; 423 ktls_domains[domain].cpu[count] = i; 424 ktls_domains[domain].count++; 425 } 426 ktls_cpuid_lookup[ktls_number_threads] = i; 427 ktls_number_threads++; 428 } 429 430 /* 431 * If we somehow have an empty domain, fall back to choosing 432 * among all KTLS threads. 433 */ 434 if (ktls_bind_threads > 1) { 435 for (i = 0; i < vm_ndomains; i++) { 436 if (ktls_domains[i].count == 0) { 437 ktls_bind_threads = 1; 438 break; 439 } 440 } 441 } 442 443 /* Start kthreads for each workqueue. */ 444 CPU_FOREACH(i) { 445 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 446 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 447 if (error) { 448 printf("Can't add KTLS thread %d error %d\n", i, error); 449 return (error); 450 } 451 } 452 453 /* 454 * Start an allocation thread per-domain to perform blocking allocations 455 * of 16k physically contiguous TLS crypto destination buffers. 456 */ 457 if (ktls_sw_buffer_cache) { 458 for (domain = 0; domain < vm_ndomains; domain++) { 459 if (VM_DOMAIN_EMPTY(domain)) 460 continue; 461 if (CPU_EMPTY(&cpuset_domain[domain])) 462 continue; 463 error = kproc_kthread_add(ktls_alloc_thread, 464 &ktls_domains[domain], &ktls_proc, 465 &ktls_domains[domain].alloc_td.td, 466 0, 0, "KTLS", "alloc_%d", domain); 467 if (error) { 468 printf("Can't add KTLS alloc thread %d error %d\n", 469 domain, error); 470 return (error); 471 } 472 } 473 } 474 475 if (bootverbose) 476 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 477 return (0); 478 } 479 480 static int 481 ktls_start_kthreads(void) 482 { 483 int error, state; 484 485 start: 486 state = atomic_load_acq_int(&ktls_init_state); 487 if (__predict_true(state > 0)) 488 return (0); 489 if (state < 0) 490 return (ENXIO); 491 492 sx_xlock(&ktls_init_lock); 493 if (ktls_init_state != 0) { 494 sx_xunlock(&ktls_init_lock); 495 goto start; 496 } 497 498 error = ktls_init(); 499 if (error == 0) 500 state = 1; 501 else 502 state = -1; 503 atomic_store_rel_int(&ktls_init_state, state); 504 sx_xunlock(&ktls_init_lock); 505 return (error); 506 } 507 508 #if defined(INET) || defined(INET6) 509 static int 510 ktls_create_session(struct socket *so, struct tls_enable *en, 511 struct ktls_session **tlsp, int direction) 512 { 513 struct ktls_session *tls; 514 int error; 515 516 /* Only TLS 1.0 - 1.3 are supported. */ 517 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 518 return (EINVAL); 519 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 520 en->tls_vminor > TLS_MINOR_VER_THREE) 521 return (EINVAL); 522 523 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 524 return (EINVAL); 525 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 526 return (EINVAL); 527 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 528 return (EINVAL); 529 530 /* All supported algorithms require a cipher key. */ 531 if (en->cipher_key_len == 0) 532 return (EINVAL); 533 534 /* No flags are currently supported. */ 535 if (en->flags != 0) 536 return (EINVAL); 537 538 /* Common checks for supported algorithms. */ 539 switch (en->cipher_algorithm) { 540 case CRYPTO_AES_NIST_GCM_16: 541 /* 542 * auth_algorithm isn't used, but permit GMAC values 543 * for compatibility. 544 */ 545 switch (en->auth_algorithm) { 546 case 0: 547 #ifdef COMPAT_FREEBSD12 548 /* XXX: Really 13.0-current COMPAT. */ 549 case CRYPTO_AES_128_NIST_GMAC: 550 case CRYPTO_AES_192_NIST_GMAC: 551 case CRYPTO_AES_256_NIST_GMAC: 552 #endif 553 break; 554 default: 555 return (EINVAL); 556 } 557 if (en->auth_key_len != 0) 558 return (EINVAL); 559 switch (en->tls_vminor) { 560 case TLS_MINOR_VER_TWO: 561 if (en->iv_len != TLS_AEAD_GCM_LEN) 562 return (EINVAL); 563 break; 564 case TLS_MINOR_VER_THREE: 565 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 566 return (EINVAL); 567 break; 568 default: 569 return (EINVAL); 570 } 571 break; 572 case CRYPTO_AES_CBC: 573 switch (en->auth_algorithm) { 574 case CRYPTO_SHA1_HMAC: 575 break; 576 case CRYPTO_SHA2_256_HMAC: 577 case CRYPTO_SHA2_384_HMAC: 578 if (en->tls_vminor != TLS_MINOR_VER_TWO) 579 return (EINVAL); 580 break; 581 default: 582 return (EINVAL); 583 } 584 if (en->auth_key_len == 0) 585 return (EINVAL); 586 587 /* 588 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 589 * use explicit IVs. 590 */ 591 switch (en->tls_vminor) { 592 case TLS_MINOR_VER_ZERO: 593 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 594 return (EINVAL); 595 break; 596 case TLS_MINOR_VER_ONE: 597 case TLS_MINOR_VER_TWO: 598 /* Ignore any supplied IV. */ 599 en->iv_len = 0; 600 break; 601 default: 602 return (EINVAL); 603 } 604 break; 605 case CRYPTO_CHACHA20_POLY1305: 606 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 607 return (EINVAL); 608 if (en->tls_vminor != TLS_MINOR_VER_TWO && 609 en->tls_vminor != TLS_MINOR_VER_THREE) 610 return (EINVAL); 611 if (en->iv_len != TLS_CHACHA20_IV_LEN) 612 return (EINVAL); 613 break; 614 default: 615 return (EINVAL); 616 } 617 618 error = ktls_start_kthreads(); 619 if (error != 0) 620 return (error); 621 622 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 623 624 counter_u64_add(ktls_offload_active, 1); 625 626 refcount_init(&tls->refcount, 1); 627 if (direction == KTLS_RX) { 628 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 629 } else { 630 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 631 tls->inp = so->so_pcb; 632 in_pcbref(tls->inp); 633 tls->tx = true; 634 } 635 636 tls->wq_index = ktls_get_cpu(so); 637 638 tls->params.cipher_algorithm = en->cipher_algorithm; 639 tls->params.auth_algorithm = en->auth_algorithm; 640 tls->params.tls_vmajor = en->tls_vmajor; 641 tls->params.tls_vminor = en->tls_vminor; 642 tls->params.flags = en->flags; 643 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 644 645 /* Set the header and trailer lengths. */ 646 tls->params.tls_hlen = sizeof(struct tls_record_layer); 647 switch (en->cipher_algorithm) { 648 case CRYPTO_AES_NIST_GCM_16: 649 /* 650 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 651 * nonce. TLS 1.3 uses a 12 byte implicit IV. 652 */ 653 if (en->tls_vminor < TLS_MINOR_VER_THREE) 654 tls->params.tls_hlen += sizeof(uint64_t); 655 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 656 tls->params.tls_bs = 1; 657 break; 658 case CRYPTO_AES_CBC: 659 switch (en->auth_algorithm) { 660 case CRYPTO_SHA1_HMAC: 661 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 662 /* Implicit IV, no nonce. */ 663 tls->sequential_records = true; 664 tls->next_seqno = be64dec(en->rec_seq); 665 STAILQ_INIT(&tls->pending_records); 666 } else { 667 tls->params.tls_hlen += AES_BLOCK_LEN; 668 } 669 tls->params.tls_tlen = AES_BLOCK_LEN + 670 SHA1_HASH_LEN; 671 break; 672 case CRYPTO_SHA2_256_HMAC: 673 tls->params.tls_hlen += AES_BLOCK_LEN; 674 tls->params.tls_tlen = AES_BLOCK_LEN + 675 SHA2_256_HASH_LEN; 676 break; 677 case CRYPTO_SHA2_384_HMAC: 678 tls->params.tls_hlen += AES_BLOCK_LEN; 679 tls->params.tls_tlen = AES_BLOCK_LEN + 680 SHA2_384_HASH_LEN; 681 break; 682 default: 683 panic("invalid hmac"); 684 } 685 tls->params.tls_bs = AES_BLOCK_LEN; 686 break; 687 case CRYPTO_CHACHA20_POLY1305: 688 /* 689 * Chacha20 uses a 12 byte implicit IV. 690 */ 691 tls->params.tls_tlen = POLY1305_HASH_LEN; 692 tls->params.tls_bs = 1; 693 break; 694 default: 695 panic("invalid cipher"); 696 } 697 698 /* 699 * TLS 1.3 includes optional padding which we do not support, 700 * and also puts the "real" record type at the end of the 701 * encrypted data. 702 */ 703 if (en->tls_vminor == TLS_MINOR_VER_THREE) 704 tls->params.tls_tlen += sizeof(uint8_t); 705 706 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 707 ("TLS header length too long: %d", tls->params.tls_hlen)); 708 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 709 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 710 711 if (en->auth_key_len != 0) { 712 tls->params.auth_key_len = en->auth_key_len; 713 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 714 M_WAITOK); 715 error = copyin(en->auth_key, tls->params.auth_key, 716 en->auth_key_len); 717 if (error) 718 goto out; 719 } 720 721 tls->params.cipher_key_len = en->cipher_key_len; 722 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 723 error = copyin(en->cipher_key, tls->params.cipher_key, 724 en->cipher_key_len); 725 if (error) 726 goto out; 727 728 /* 729 * This holds the implicit portion of the nonce for AEAD 730 * ciphers and the initial implicit IV for TLS 1.0. The 731 * explicit portions of the IV are generated in ktls_frame(). 732 */ 733 if (en->iv_len != 0) { 734 tls->params.iv_len = en->iv_len; 735 error = copyin(en->iv, tls->params.iv, en->iv_len); 736 if (error) 737 goto out; 738 739 /* 740 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 741 * counter to generate unique explicit IVs. 742 * 743 * Store this counter in the last 8 bytes of the IV 744 * array so that it is 8-byte aligned. 745 */ 746 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 747 en->tls_vminor == TLS_MINOR_VER_TWO) 748 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 749 } 750 751 *tlsp = tls; 752 return (0); 753 754 out: 755 ktls_free(tls); 756 return (error); 757 } 758 759 static struct ktls_session * 760 ktls_clone_session(struct ktls_session *tls, int direction) 761 { 762 struct ktls_session *tls_new; 763 764 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 765 766 counter_u64_add(ktls_offload_active, 1); 767 768 refcount_init(&tls_new->refcount, 1); 769 if (direction == KTLS_RX) { 770 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 771 tls_new); 772 } else { 773 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 774 tls_new); 775 tls_new->inp = tls->inp; 776 tls_new->tx = true; 777 in_pcbref(tls_new->inp); 778 } 779 780 /* Copy fields from existing session. */ 781 tls_new->params = tls->params; 782 tls_new->wq_index = tls->wq_index; 783 784 /* Deep copy keys. */ 785 if (tls_new->params.auth_key != NULL) { 786 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 787 M_KTLS, M_WAITOK); 788 memcpy(tls_new->params.auth_key, tls->params.auth_key, 789 tls->params.auth_key_len); 790 } 791 792 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 793 M_WAITOK); 794 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 795 tls->params.cipher_key_len); 796 797 return (tls_new); 798 } 799 800 #ifdef TCP_OFFLOAD 801 static int 802 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 803 { 804 struct inpcb *inp; 805 struct tcpcb *tp; 806 int error; 807 808 inp = so->so_pcb; 809 INP_WLOCK(inp); 810 if (inp->inp_flags & INP_DROPPED) { 811 INP_WUNLOCK(inp); 812 return (ECONNRESET); 813 } 814 if (inp->inp_socket == NULL) { 815 INP_WUNLOCK(inp); 816 return (ECONNRESET); 817 } 818 tp = intotcpcb(inp); 819 if (!(tp->t_flags & TF_TOE)) { 820 INP_WUNLOCK(inp); 821 return (EOPNOTSUPP); 822 } 823 824 error = tcp_offload_alloc_tls_session(tp, tls, direction); 825 INP_WUNLOCK(inp); 826 if (error == 0) { 827 tls->mode = TCP_TLS_MODE_TOE; 828 switch (tls->params.cipher_algorithm) { 829 case CRYPTO_AES_CBC: 830 counter_u64_add(ktls_toe_cbc, 1); 831 break; 832 case CRYPTO_AES_NIST_GCM_16: 833 counter_u64_add(ktls_toe_gcm, 1); 834 break; 835 case CRYPTO_CHACHA20_POLY1305: 836 counter_u64_add(ktls_toe_chacha20, 1); 837 break; 838 } 839 } 840 return (error); 841 } 842 #endif 843 844 /* 845 * Common code used when first enabling ifnet TLS on a connection or 846 * when allocating a new ifnet TLS session due to a routing change. 847 * This function allocates a new TLS send tag on whatever interface 848 * the connection is currently routed over. 849 */ 850 static int 851 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 852 struct m_snd_tag **mstp) 853 { 854 union if_snd_tag_alloc_params params; 855 struct ifnet *ifp; 856 struct nhop_object *nh; 857 struct tcpcb *tp; 858 int error; 859 860 INP_RLOCK(inp); 861 if (inp->inp_flags & INP_DROPPED) { 862 INP_RUNLOCK(inp); 863 return (ECONNRESET); 864 } 865 if (inp->inp_socket == NULL) { 866 INP_RUNLOCK(inp); 867 return (ECONNRESET); 868 } 869 tp = intotcpcb(inp); 870 871 /* 872 * Check administrative controls on ifnet TLS to determine if 873 * ifnet TLS should be denied. 874 * 875 * - Always permit 'force' requests. 876 * - ktls_ifnet_permitted == 0: always deny. 877 */ 878 if (!force && ktls_ifnet_permitted == 0) { 879 INP_RUNLOCK(inp); 880 return (ENXIO); 881 } 882 883 /* 884 * XXX: Use the cached route in the inpcb to find the 885 * interface. This should perhaps instead use 886 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 887 * enabled after a connection has completed key negotiation in 888 * userland, the cached route will be present in practice. 889 */ 890 nh = inp->inp_route.ro_nh; 891 if (nh == NULL) { 892 INP_RUNLOCK(inp); 893 return (ENXIO); 894 } 895 ifp = nh->nh_ifp; 896 if_ref(ifp); 897 898 /* 899 * Allocate a TLS + ratelimit tag if the connection has an 900 * existing pacing rate. 901 */ 902 if (tp->t_pacing_rate != -1 && 903 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 904 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 905 params.tls_rate_limit.inp = inp; 906 params.tls_rate_limit.tls = tls; 907 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 908 } else { 909 params.hdr.type = IF_SND_TAG_TYPE_TLS; 910 params.tls.inp = inp; 911 params.tls.tls = tls; 912 } 913 params.hdr.flowid = inp->inp_flowid; 914 params.hdr.flowtype = inp->inp_flowtype; 915 params.hdr.numa_domain = inp->inp_numa_domain; 916 INP_RUNLOCK(inp); 917 918 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 919 error = EOPNOTSUPP; 920 goto out; 921 } 922 if (inp->inp_vflag & INP_IPV6) { 923 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 924 error = EOPNOTSUPP; 925 goto out; 926 } 927 } else { 928 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 929 error = EOPNOTSUPP; 930 goto out; 931 } 932 } 933 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 934 out: 935 if_rele(ifp); 936 return (error); 937 } 938 939 /* 940 * Allocate an initial TLS receive tag for doing HW decryption of TLS 941 * data. 942 * 943 * This function allocates a new TLS receive tag on whatever interface 944 * the connection is currently routed over. If the connection ends up 945 * using a different interface for receive this will get fixed up via 946 * ktls_input_ifp_mismatch as future packets arrive. 947 */ 948 static int 949 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 950 struct m_snd_tag **mstp) 951 { 952 union if_snd_tag_alloc_params params; 953 struct ifnet *ifp; 954 struct nhop_object *nh; 955 int error; 956 957 if (!ktls_ocf_recrypt_supported(tls)) 958 return (ENXIO); 959 960 INP_RLOCK(inp); 961 if (inp->inp_flags & INP_DROPPED) { 962 INP_RUNLOCK(inp); 963 return (ECONNRESET); 964 } 965 if (inp->inp_socket == NULL) { 966 INP_RUNLOCK(inp); 967 return (ECONNRESET); 968 } 969 970 /* 971 * Check administrative controls on ifnet TLS to determine if 972 * ifnet TLS should be denied. 973 */ 974 if (ktls_ifnet_permitted == 0) { 975 INP_RUNLOCK(inp); 976 return (ENXIO); 977 } 978 979 /* 980 * XXX: As with ktls_alloc_snd_tag, use the cached route in 981 * the inpcb to find the interface. 982 */ 983 nh = inp->inp_route.ro_nh; 984 if (nh == NULL) { 985 INP_RUNLOCK(inp); 986 return (ENXIO); 987 } 988 ifp = nh->nh_ifp; 989 if_ref(ifp); 990 tls->rx_ifp = ifp; 991 992 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 993 params.hdr.flowid = inp->inp_flowid; 994 params.hdr.flowtype = inp->inp_flowtype; 995 params.hdr.numa_domain = inp->inp_numa_domain; 996 params.tls_rx.inp = inp; 997 params.tls_rx.tls = tls; 998 params.tls_rx.vlan_id = 0; 999 1000 INP_RUNLOCK(inp); 1001 1002 if (inp->inp_vflag & INP_IPV6) { 1003 if ((ifp->if_capenable2 & IFCAP2_RXTLS6) == 0) { 1004 error = EOPNOTSUPP; 1005 goto out; 1006 } 1007 } else { 1008 if ((ifp->if_capenable2 & IFCAP2_RXTLS4) == 0) { 1009 error = EOPNOTSUPP; 1010 goto out; 1011 } 1012 } 1013 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1014 1015 /* 1016 * If this connection is over a vlan, vlan_snd_tag_alloc 1017 * rewrites vlan_id with the saved interface. Save the VLAN 1018 * ID for use in ktls_reset_receive_tag which allocates new 1019 * receive tags directly from the leaf interface bypassing 1020 * if_vlan. 1021 */ 1022 if (error == 0) 1023 tls->rx_vlan_id = params.tls_rx.vlan_id; 1024 out: 1025 return (error); 1026 } 1027 1028 static int 1029 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1030 bool force) 1031 { 1032 struct m_snd_tag *mst; 1033 int error; 1034 1035 switch (direction) { 1036 case KTLS_TX: 1037 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1038 if (__predict_false(error != 0)) 1039 goto done; 1040 break; 1041 case KTLS_RX: 1042 KASSERT(!force, ("%s: forced receive tag", __func__)); 1043 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1044 if (__predict_false(error != 0)) 1045 goto done; 1046 break; 1047 default: 1048 __assert_unreachable(); 1049 } 1050 1051 tls->mode = TCP_TLS_MODE_IFNET; 1052 tls->snd_tag = mst; 1053 1054 switch (tls->params.cipher_algorithm) { 1055 case CRYPTO_AES_CBC: 1056 counter_u64_add(ktls_ifnet_cbc, 1); 1057 break; 1058 case CRYPTO_AES_NIST_GCM_16: 1059 counter_u64_add(ktls_ifnet_gcm, 1); 1060 break; 1061 case CRYPTO_CHACHA20_POLY1305: 1062 counter_u64_add(ktls_ifnet_chacha20, 1); 1063 break; 1064 default: 1065 break; 1066 } 1067 done: 1068 return (error); 1069 } 1070 1071 static void 1072 ktls_use_sw(struct ktls_session *tls) 1073 { 1074 tls->mode = TCP_TLS_MODE_SW; 1075 switch (tls->params.cipher_algorithm) { 1076 case CRYPTO_AES_CBC: 1077 counter_u64_add(ktls_sw_cbc, 1); 1078 break; 1079 case CRYPTO_AES_NIST_GCM_16: 1080 counter_u64_add(ktls_sw_gcm, 1); 1081 break; 1082 case CRYPTO_CHACHA20_POLY1305: 1083 counter_u64_add(ktls_sw_chacha20, 1); 1084 break; 1085 } 1086 } 1087 1088 static int 1089 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1090 { 1091 int error; 1092 1093 error = ktls_ocf_try(so, tls, direction); 1094 if (error) 1095 return (error); 1096 ktls_use_sw(tls); 1097 return (0); 1098 } 1099 1100 /* 1101 * KTLS RX stores data in the socket buffer as a list of TLS records, 1102 * where each record is stored as a control message containg the TLS 1103 * header followed by data mbufs containing the decrypted data. This 1104 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1105 * both encrypted and decrypted data. TLS records decrypted by a NIC 1106 * should be queued to the socket buffer as records, but encrypted 1107 * data which needs to be decrypted by software arrives as a stream of 1108 * regular mbufs which need to be converted. In addition, there may 1109 * already be pending encrypted data in the socket buffer when KTLS RX 1110 * is enabled. 1111 * 1112 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1113 * is used: 1114 * 1115 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1116 * 1117 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1118 * from the first mbuf. Once all of the data for that TLS record is 1119 * queued, the socket is queued to a worker thread. 1120 * 1121 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1122 * the TLS chain. Each TLS record is detached from the TLS chain, 1123 * decrypted, and inserted into the regular socket buffer chain as 1124 * record starting with a control message holding the TLS header and 1125 * a chain of mbufs holding the encrypted data. 1126 */ 1127 1128 static void 1129 sb_mark_notready(struct sockbuf *sb) 1130 { 1131 struct mbuf *m; 1132 1133 m = sb->sb_mb; 1134 sb->sb_mtls = m; 1135 sb->sb_mb = NULL; 1136 sb->sb_mbtail = NULL; 1137 sb->sb_lastrecord = NULL; 1138 for (; m != NULL; m = m->m_next) { 1139 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1140 __func__)); 1141 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1142 __func__)); 1143 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1144 __func__)); 1145 m->m_flags |= M_NOTREADY; 1146 sb->sb_acc -= m->m_len; 1147 sb->sb_tlscc += m->m_len; 1148 sb->sb_mtlstail = m; 1149 } 1150 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1151 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1152 sb->sb_ccc)); 1153 } 1154 1155 /* 1156 * Return information about the pending TLS data in a socket 1157 * buffer. On return, 'seqno' is set to the sequence number 1158 * of the next TLS record to be received, 'resid' is set to 1159 * the amount of bytes still needed for the last pending 1160 * record. The function returns 'false' if the last pending 1161 * record contains a partial TLS header. In that case, 'resid' 1162 * is the number of bytes needed to complete the TLS header. 1163 */ 1164 bool 1165 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1166 { 1167 struct tls_record_layer hdr; 1168 struct mbuf *m; 1169 uint64_t seqno; 1170 size_t resid; 1171 u_int offset, record_len; 1172 1173 SOCKBUF_LOCK_ASSERT(sb); 1174 MPASS(sb->sb_flags & SB_TLS_RX); 1175 seqno = sb->sb_tls_seqno; 1176 resid = sb->sb_tlscc; 1177 m = sb->sb_mtls; 1178 offset = 0; 1179 1180 if (resid == 0) { 1181 *seqnop = seqno; 1182 *residp = 0; 1183 return (true); 1184 } 1185 1186 for (;;) { 1187 seqno++; 1188 1189 if (resid < sizeof(hdr)) { 1190 *seqnop = seqno; 1191 *residp = sizeof(hdr) - resid; 1192 return (false); 1193 } 1194 1195 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1196 1197 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1198 if (resid <= record_len) { 1199 *seqnop = seqno; 1200 *residp = record_len - resid; 1201 return (true); 1202 } 1203 resid -= record_len; 1204 1205 while (record_len != 0) { 1206 if (m->m_len - offset > record_len) { 1207 offset += record_len; 1208 break; 1209 } 1210 1211 record_len -= (m->m_len - offset); 1212 offset = 0; 1213 m = m->m_next; 1214 } 1215 } 1216 } 1217 1218 int 1219 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1220 { 1221 struct ktls_session *tls; 1222 int error; 1223 1224 if (!ktls_offload_enable) 1225 return (ENOTSUP); 1226 if (SOLISTENING(so)) 1227 return (EINVAL); 1228 1229 counter_u64_add(ktls_offload_enable_calls, 1); 1230 1231 /* 1232 * This should always be true since only the TCP socket option 1233 * invokes this function. 1234 */ 1235 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1236 return (EINVAL); 1237 1238 /* 1239 * XXX: Don't overwrite existing sessions. We should permit 1240 * this to support rekeying in the future. 1241 */ 1242 if (so->so_rcv.sb_tls_info != NULL) 1243 return (EALREADY); 1244 1245 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1246 return (ENOTSUP); 1247 1248 error = ktls_create_session(so, en, &tls, KTLS_RX); 1249 if (error) 1250 return (error); 1251 1252 error = ktls_ocf_try(so, tls, KTLS_RX); 1253 if (error) { 1254 ktls_free(tls); 1255 return (error); 1256 } 1257 1258 /* Mark the socket as using TLS offload. */ 1259 SOCKBUF_LOCK(&so->so_rcv); 1260 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1261 so->so_rcv.sb_tls_info = tls; 1262 so->so_rcv.sb_flags |= SB_TLS_RX; 1263 1264 /* Mark existing data as not ready until it can be decrypted. */ 1265 sb_mark_notready(&so->so_rcv); 1266 ktls_check_rx(&so->so_rcv); 1267 SOCKBUF_UNLOCK(&so->so_rcv); 1268 1269 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1270 #ifdef TCP_OFFLOAD 1271 error = ktls_try_toe(so, tls, KTLS_RX); 1272 if (error) 1273 #endif 1274 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1275 if (error) 1276 ktls_use_sw(tls); 1277 1278 counter_u64_add(ktls_offload_total, 1); 1279 1280 return (0); 1281 } 1282 1283 int 1284 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1285 { 1286 struct ktls_session *tls; 1287 struct inpcb *inp; 1288 struct tcpcb *tp; 1289 int error; 1290 1291 if (!ktls_offload_enable) 1292 return (ENOTSUP); 1293 if (SOLISTENING(so)) 1294 return (EINVAL); 1295 1296 counter_u64_add(ktls_offload_enable_calls, 1); 1297 1298 /* 1299 * This should always be true since only the TCP socket option 1300 * invokes this function. 1301 */ 1302 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1303 return (EINVAL); 1304 1305 /* 1306 * XXX: Don't overwrite existing sessions. We should permit 1307 * this to support rekeying in the future. 1308 */ 1309 if (so->so_snd.sb_tls_info != NULL) 1310 return (EALREADY); 1311 1312 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1313 return (ENOTSUP); 1314 1315 /* TLS requires ext pgs */ 1316 if (mb_use_ext_pgs == 0) 1317 return (ENXIO); 1318 1319 error = ktls_create_session(so, en, &tls, KTLS_TX); 1320 if (error) 1321 return (error); 1322 1323 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1324 #ifdef TCP_OFFLOAD 1325 error = ktls_try_toe(so, tls, KTLS_TX); 1326 if (error) 1327 #endif 1328 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1329 if (error) 1330 error = ktls_try_sw(so, tls, KTLS_TX); 1331 1332 if (error) { 1333 ktls_free(tls); 1334 return (error); 1335 } 1336 1337 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1338 if (error) { 1339 ktls_free(tls); 1340 return (error); 1341 } 1342 1343 /* 1344 * Write lock the INP when setting sb_tls_info so that 1345 * routines in tcp_ratelimit.c can read sb_tls_info while 1346 * holding the INP lock. 1347 */ 1348 inp = so->so_pcb; 1349 INP_WLOCK(inp); 1350 SOCKBUF_LOCK(&so->so_snd); 1351 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1352 so->so_snd.sb_tls_info = tls; 1353 if (tls->mode != TCP_TLS_MODE_SW) { 1354 tp = intotcpcb(inp); 1355 MPASS(tp->t_nic_ktls_xmit == 0); 1356 tp->t_nic_ktls_xmit = 1; 1357 if (tp->t_fb->tfb_hwtls_change != NULL) 1358 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1359 } 1360 SOCKBUF_UNLOCK(&so->so_snd); 1361 INP_WUNLOCK(inp); 1362 SOCK_IO_SEND_UNLOCK(so); 1363 1364 counter_u64_add(ktls_offload_total, 1); 1365 1366 return (0); 1367 } 1368 1369 int 1370 ktls_get_rx_mode(struct socket *so, int *modep) 1371 { 1372 struct ktls_session *tls; 1373 struct inpcb *inp __diagused; 1374 1375 if (SOLISTENING(so)) 1376 return (EINVAL); 1377 inp = so->so_pcb; 1378 INP_WLOCK_ASSERT(inp); 1379 SOCK_RECVBUF_LOCK(so); 1380 tls = so->so_rcv.sb_tls_info; 1381 if (tls == NULL) 1382 *modep = TCP_TLS_MODE_NONE; 1383 else 1384 *modep = tls->mode; 1385 SOCK_RECVBUF_UNLOCK(so); 1386 return (0); 1387 } 1388 1389 /* 1390 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1391 * 1392 * This function gets information about the next TCP- and TLS- 1393 * sequence number to be processed by the TLS receive worker 1394 * thread. The information is extracted from the given "inpcb" 1395 * structure. The values are stored in host endian format at the two 1396 * given output pointer locations. The TCP sequence number points to 1397 * the beginning of the TLS header. 1398 * 1399 * This function returns zero on success, else a non-zero error code 1400 * is returned. 1401 */ 1402 int 1403 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1404 { 1405 struct socket *so; 1406 struct tcpcb *tp; 1407 1408 INP_RLOCK(inp); 1409 so = inp->inp_socket; 1410 if (__predict_false(so == NULL)) { 1411 INP_RUNLOCK(inp); 1412 return (EINVAL); 1413 } 1414 if (inp->inp_flags & INP_DROPPED) { 1415 INP_RUNLOCK(inp); 1416 return (ECONNRESET); 1417 } 1418 1419 tp = intotcpcb(inp); 1420 MPASS(tp != NULL); 1421 1422 SOCKBUF_LOCK(&so->so_rcv); 1423 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1424 *tlsseq = so->so_rcv.sb_tls_seqno; 1425 SOCKBUF_UNLOCK(&so->so_rcv); 1426 1427 INP_RUNLOCK(inp); 1428 1429 return (0); 1430 } 1431 1432 int 1433 ktls_get_tx_mode(struct socket *so, int *modep) 1434 { 1435 struct ktls_session *tls; 1436 struct inpcb *inp __diagused; 1437 1438 if (SOLISTENING(so)) 1439 return (EINVAL); 1440 inp = so->so_pcb; 1441 INP_WLOCK_ASSERT(inp); 1442 SOCK_SENDBUF_LOCK(so); 1443 tls = so->so_snd.sb_tls_info; 1444 if (tls == NULL) 1445 *modep = TCP_TLS_MODE_NONE; 1446 else 1447 *modep = tls->mode; 1448 SOCK_SENDBUF_UNLOCK(so); 1449 return (0); 1450 } 1451 1452 /* 1453 * Switch between SW and ifnet TLS sessions as requested. 1454 */ 1455 int 1456 ktls_set_tx_mode(struct socket *so, int mode) 1457 { 1458 struct ktls_session *tls, *tls_new; 1459 struct inpcb *inp; 1460 struct tcpcb *tp; 1461 int error; 1462 1463 if (SOLISTENING(so)) 1464 return (EINVAL); 1465 switch (mode) { 1466 case TCP_TLS_MODE_SW: 1467 case TCP_TLS_MODE_IFNET: 1468 break; 1469 default: 1470 return (EINVAL); 1471 } 1472 1473 inp = so->so_pcb; 1474 INP_WLOCK_ASSERT(inp); 1475 tp = intotcpcb(inp); 1476 1477 if (mode == TCP_TLS_MODE_IFNET) { 1478 /* Don't allow enabling ifnet ktls multiple times */ 1479 if (tp->t_nic_ktls_xmit) 1480 return (EALREADY); 1481 1482 /* 1483 * Don't enable ifnet ktls if we disabled it due to an 1484 * excessive retransmission rate 1485 */ 1486 if (tp->t_nic_ktls_xmit_dis) 1487 return (ENXIO); 1488 } 1489 1490 SOCKBUF_LOCK(&so->so_snd); 1491 tls = so->so_snd.sb_tls_info; 1492 if (tls == NULL) { 1493 SOCKBUF_UNLOCK(&so->so_snd); 1494 return (0); 1495 } 1496 1497 if (tls->mode == mode) { 1498 SOCKBUF_UNLOCK(&so->so_snd); 1499 return (0); 1500 } 1501 1502 tls = ktls_hold(tls); 1503 SOCKBUF_UNLOCK(&so->so_snd); 1504 INP_WUNLOCK(inp); 1505 1506 tls_new = ktls_clone_session(tls, KTLS_TX); 1507 1508 if (mode == TCP_TLS_MODE_IFNET) 1509 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1510 else 1511 error = ktls_try_sw(so, tls_new, KTLS_TX); 1512 if (error) { 1513 counter_u64_add(ktls_switch_failed, 1); 1514 ktls_free(tls_new); 1515 ktls_free(tls); 1516 INP_WLOCK(inp); 1517 return (error); 1518 } 1519 1520 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1521 if (error) { 1522 counter_u64_add(ktls_switch_failed, 1); 1523 ktls_free(tls_new); 1524 ktls_free(tls); 1525 INP_WLOCK(inp); 1526 return (error); 1527 } 1528 1529 /* 1530 * If we raced with another session change, keep the existing 1531 * session. 1532 */ 1533 if (tls != so->so_snd.sb_tls_info) { 1534 counter_u64_add(ktls_switch_failed, 1); 1535 SOCK_IO_SEND_UNLOCK(so); 1536 ktls_free(tls_new); 1537 ktls_free(tls); 1538 INP_WLOCK(inp); 1539 return (EBUSY); 1540 } 1541 1542 INP_WLOCK(inp); 1543 SOCKBUF_LOCK(&so->so_snd); 1544 so->so_snd.sb_tls_info = tls_new; 1545 if (tls_new->mode != TCP_TLS_MODE_SW) { 1546 MPASS(tp->t_nic_ktls_xmit == 0); 1547 tp->t_nic_ktls_xmit = 1; 1548 if (tp->t_fb->tfb_hwtls_change != NULL) 1549 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1550 } 1551 SOCKBUF_UNLOCK(&so->so_snd); 1552 SOCK_IO_SEND_UNLOCK(so); 1553 1554 /* 1555 * Drop two references on 'tls'. The first is for the 1556 * ktls_hold() above. The second drops the reference from the 1557 * socket buffer. 1558 */ 1559 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1560 ktls_free(tls); 1561 ktls_free(tls); 1562 1563 if (mode == TCP_TLS_MODE_IFNET) 1564 counter_u64_add(ktls_switch_to_ifnet, 1); 1565 else 1566 counter_u64_add(ktls_switch_to_sw, 1); 1567 1568 return (0); 1569 } 1570 1571 /* 1572 * Try to allocate a new TLS receive tag. This task is scheduled when 1573 * sbappend_ktls_rx detects an input path change. If a new tag is 1574 * allocated, replace the tag in the TLS session. If a new tag cannot 1575 * be allocated, let the session fall back to software decryption. 1576 */ 1577 static void 1578 ktls_reset_receive_tag(void *context, int pending) 1579 { 1580 union if_snd_tag_alloc_params params; 1581 struct ktls_session *tls; 1582 struct m_snd_tag *mst; 1583 struct inpcb *inp; 1584 struct ifnet *ifp; 1585 struct socket *so; 1586 int error; 1587 1588 MPASS(pending == 1); 1589 1590 tls = context; 1591 so = tls->so; 1592 inp = so->so_pcb; 1593 ifp = NULL; 1594 1595 INP_RLOCK(inp); 1596 if (inp->inp_flags & INP_DROPPED) { 1597 INP_RUNLOCK(inp); 1598 goto out; 1599 } 1600 1601 SOCKBUF_LOCK(&so->so_rcv); 1602 mst = tls->snd_tag; 1603 tls->snd_tag = NULL; 1604 if (mst != NULL) 1605 m_snd_tag_rele(mst); 1606 1607 ifp = tls->rx_ifp; 1608 if_ref(ifp); 1609 SOCKBUF_UNLOCK(&so->so_rcv); 1610 1611 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1612 params.hdr.flowid = inp->inp_flowid; 1613 params.hdr.flowtype = inp->inp_flowtype; 1614 params.hdr.numa_domain = inp->inp_numa_domain; 1615 params.tls_rx.inp = inp; 1616 params.tls_rx.tls = tls; 1617 params.tls_rx.vlan_id = tls->rx_vlan_id; 1618 INP_RUNLOCK(inp); 1619 1620 if (inp->inp_vflag & INP_IPV6) { 1621 if ((ifp->if_capenable2 & IFCAP2_RXTLS6) == 0) 1622 goto out; 1623 } else { 1624 if ((ifp->if_capenable2 & IFCAP2_RXTLS4) == 0) 1625 goto out; 1626 } 1627 1628 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1629 if (error == 0) { 1630 SOCKBUF_LOCK(&so->so_rcv); 1631 tls->snd_tag = mst; 1632 SOCKBUF_UNLOCK(&so->so_rcv); 1633 1634 counter_u64_add(ktls_ifnet_reset, 1); 1635 } else { 1636 /* 1637 * Just fall back to software decryption if a tag 1638 * cannot be allocated leaving the connection intact. 1639 * If a future input path change switches to another 1640 * interface this connection will resume ifnet TLS. 1641 */ 1642 counter_u64_add(ktls_ifnet_reset_failed, 1); 1643 } 1644 1645 out: 1646 mtx_pool_lock(mtxpool_sleep, tls); 1647 tls->reset_pending = false; 1648 mtx_pool_unlock(mtxpool_sleep, tls); 1649 1650 if (ifp != NULL) 1651 if_rele(ifp); 1652 sorele(so); 1653 ktls_free(tls); 1654 } 1655 1656 /* 1657 * Try to allocate a new TLS send tag. This task is scheduled when 1658 * ip_output detects a route change while trying to transmit a packet 1659 * holding a TLS record. If a new tag is allocated, replace the tag 1660 * in the TLS session. Subsequent packets on the connection will use 1661 * the new tag. If a new tag cannot be allocated, drop the 1662 * connection. 1663 */ 1664 static void 1665 ktls_reset_send_tag(void *context, int pending) 1666 { 1667 struct epoch_tracker et; 1668 struct ktls_session *tls; 1669 struct m_snd_tag *old, *new; 1670 struct inpcb *inp; 1671 struct tcpcb *tp; 1672 int error; 1673 1674 MPASS(pending == 1); 1675 1676 tls = context; 1677 inp = tls->inp; 1678 1679 /* 1680 * Free the old tag first before allocating a new one. 1681 * ip[6]_output_send() will treat a NULL send tag the same as 1682 * an ifp mismatch and drop packets until a new tag is 1683 * allocated. 1684 * 1685 * Write-lock the INP when changing tls->snd_tag since 1686 * ip[6]_output_send() holds a read-lock when reading the 1687 * pointer. 1688 */ 1689 INP_WLOCK(inp); 1690 old = tls->snd_tag; 1691 tls->snd_tag = NULL; 1692 INP_WUNLOCK(inp); 1693 if (old != NULL) 1694 m_snd_tag_rele(old); 1695 1696 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1697 1698 if (error == 0) { 1699 INP_WLOCK(inp); 1700 tls->snd_tag = new; 1701 mtx_pool_lock(mtxpool_sleep, tls); 1702 tls->reset_pending = false; 1703 mtx_pool_unlock(mtxpool_sleep, tls); 1704 INP_WUNLOCK(inp); 1705 1706 counter_u64_add(ktls_ifnet_reset, 1); 1707 1708 /* 1709 * XXX: Should we kick tcp_output explicitly now that 1710 * the send tag is fixed or just rely on timers? 1711 */ 1712 } else { 1713 NET_EPOCH_ENTER(et); 1714 INP_WLOCK(inp); 1715 if (!(inp->inp_flags & INP_DROPPED)) { 1716 tp = intotcpcb(inp); 1717 CURVNET_SET(inp->inp_vnet); 1718 tp = tcp_drop(tp, ECONNABORTED); 1719 CURVNET_RESTORE(); 1720 if (tp != NULL) 1721 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1722 } 1723 INP_WUNLOCK(inp); 1724 NET_EPOCH_EXIT(et); 1725 1726 counter_u64_add(ktls_ifnet_reset_failed, 1); 1727 1728 /* 1729 * Leave reset_pending true to avoid future tasks while 1730 * the socket goes away. 1731 */ 1732 } 1733 1734 ktls_free(tls); 1735 } 1736 1737 void 1738 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1739 { 1740 struct ktls_session *tls; 1741 struct socket *so; 1742 1743 SOCKBUF_LOCK_ASSERT(sb); 1744 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1745 __func__, sb)); 1746 so = __containerof(sb, struct socket, so_rcv); 1747 1748 tls = sb->sb_tls_info; 1749 if_rele(tls->rx_ifp); 1750 if_ref(ifp); 1751 tls->rx_ifp = ifp; 1752 1753 /* 1754 * See if we should schedule a task to update the receive tag for 1755 * this session. 1756 */ 1757 mtx_pool_lock(mtxpool_sleep, tls); 1758 if (!tls->reset_pending) { 1759 (void) ktls_hold(tls); 1760 soref(so); 1761 tls->so = so; 1762 tls->reset_pending = true; 1763 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1764 } 1765 mtx_pool_unlock(mtxpool_sleep, tls); 1766 } 1767 1768 int 1769 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1770 { 1771 1772 if (inp == NULL) 1773 return (ENOBUFS); 1774 1775 INP_LOCK_ASSERT(inp); 1776 1777 /* 1778 * See if we should schedule a task to update the send tag for 1779 * this session. 1780 */ 1781 mtx_pool_lock(mtxpool_sleep, tls); 1782 if (!tls->reset_pending) { 1783 (void) ktls_hold(tls); 1784 tls->reset_pending = true; 1785 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1786 } 1787 mtx_pool_unlock(mtxpool_sleep, tls); 1788 return (ENOBUFS); 1789 } 1790 1791 #ifdef RATELIMIT 1792 int 1793 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1794 { 1795 union if_snd_tag_modify_params params = { 1796 .rate_limit.max_rate = max_pacing_rate, 1797 .rate_limit.flags = M_NOWAIT, 1798 }; 1799 struct m_snd_tag *mst; 1800 1801 /* Can't get to the inp, but it should be locked. */ 1802 /* INP_LOCK_ASSERT(inp); */ 1803 1804 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1805 1806 if (tls->snd_tag == NULL) { 1807 /* 1808 * Resetting send tag, ignore this change. The 1809 * pending reset may or may not see this updated rate 1810 * in the tcpcb. If it doesn't, we will just lose 1811 * this rate change. 1812 */ 1813 return (0); 1814 } 1815 1816 mst = tls->snd_tag; 1817 1818 MPASS(mst != NULL); 1819 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1820 1821 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1822 } 1823 #endif 1824 #endif 1825 1826 static void 1827 ktls_destroy_help(void *context, int pending __unused) 1828 { 1829 ktls_destroy(context); 1830 } 1831 1832 void 1833 ktls_destroy(struct ktls_session *tls) 1834 { 1835 struct inpcb *inp; 1836 struct tcpcb *tp; 1837 bool wlocked; 1838 1839 MPASS(tls->refcount == 0); 1840 1841 inp = tls->inp; 1842 if (tls->tx) { 1843 wlocked = INP_WLOCKED(inp); 1844 if (!wlocked && !INP_TRY_WLOCK(inp)) { 1845 /* 1846 * rwlocks read locks are anonymous, and there 1847 * is no way to know if our current thread 1848 * holds an rlock on the inp. As a rough 1849 * estimate, check to see if the thread holds 1850 * *any* rlocks at all. If it does not, then we 1851 * know that we don't hold the inp rlock, and 1852 * can safely take the wlock 1853 */ 1854 if (curthread->td_rw_rlocks == 0) { 1855 INP_WLOCK(inp); 1856 } else { 1857 /* 1858 * We might hold the rlock, so let's 1859 * do the destroy in a taskqueue 1860 * context to avoid a potential 1861 * deadlock. This should be very 1862 * rare. 1863 */ 1864 counter_u64_add(ktls_destroy_task, 1); 1865 TASK_INIT(&tls->destroy_task, 0, 1866 ktls_destroy_help, tls); 1867 (void)taskqueue_enqueue(taskqueue_thread, 1868 &tls->destroy_task); 1869 return; 1870 } 1871 } 1872 } 1873 1874 if (tls->sequential_records) { 1875 struct mbuf *m, *n; 1876 int page_count; 1877 1878 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1879 page_count = m->m_epg_enc_cnt; 1880 while (page_count > 0) { 1881 KASSERT(page_count >= m->m_epg_nrdy, 1882 ("%s: too few pages", __func__)); 1883 page_count -= m->m_epg_nrdy; 1884 m = m_free(m); 1885 } 1886 } 1887 } 1888 1889 counter_u64_add(ktls_offload_active, -1); 1890 switch (tls->mode) { 1891 case TCP_TLS_MODE_SW: 1892 switch (tls->params.cipher_algorithm) { 1893 case CRYPTO_AES_CBC: 1894 counter_u64_add(ktls_sw_cbc, -1); 1895 break; 1896 case CRYPTO_AES_NIST_GCM_16: 1897 counter_u64_add(ktls_sw_gcm, -1); 1898 break; 1899 case CRYPTO_CHACHA20_POLY1305: 1900 counter_u64_add(ktls_sw_chacha20, -1); 1901 break; 1902 } 1903 break; 1904 case TCP_TLS_MODE_IFNET: 1905 switch (tls->params.cipher_algorithm) { 1906 case CRYPTO_AES_CBC: 1907 counter_u64_add(ktls_ifnet_cbc, -1); 1908 break; 1909 case CRYPTO_AES_NIST_GCM_16: 1910 counter_u64_add(ktls_ifnet_gcm, -1); 1911 break; 1912 case CRYPTO_CHACHA20_POLY1305: 1913 counter_u64_add(ktls_ifnet_chacha20, -1); 1914 break; 1915 } 1916 if (tls->snd_tag != NULL) 1917 m_snd_tag_rele(tls->snd_tag); 1918 if (tls->rx_ifp != NULL) 1919 if_rele(tls->rx_ifp); 1920 if (tls->tx) { 1921 INP_WLOCK_ASSERT(inp); 1922 tp = intotcpcb(inp); 1923 MPASS(tp->t_nic_ktls_xmit == 1); 1924 tp->t_nic_ktls_xmit = 0; 1925 } 1926 break; 1927 #ifdef TCP_OFFLOAD 1928 case TCP_TLS_MODE_TOE: 1929 switch (tls->params.cipher_algorithm) { 1930 case CRYPTO_AES_CBC: 1931 counter_u64_add(ktls_toe_cbc, -1); 1932 break; 1933 case CRYPTO_AES_NIST_GCM_16: 1934 counter_u64_add(ktls_toe_gcm, -1); 1935 break; 1936 case CRYPTO_CHACHA20_POLY1305: 1937 counter_u64_add(ktls_toe_chacha20, -1); 1938 break; 1939 } 1940 break; 1941 #endif 1942 } 1943 if (tls->ocf_session != NULL) 1944 ktls_ocf_free(tls); 1945 if (tls->params.auth_key != NULL) { 1946 zfree(tls->params.auth_key, M_KTLS); 1947 tls->params.auth_key = NULL; 1948 tls->params.auth_key_len = 0; 1949 } 1950 if (tls->params.cipher_key != NULL) { 1951 zfree(tls->params.cipher_key, M_KTLS); 1952 tls->params.cipher_key = NULL; 1953 tls->params.cipher_key_len = 0; 1954 } 1955 if (tls->tx) { 1956 INP_WLOCK_ASSERT(inp); 1957 if (!in_pcbrele_wlocked(inp) && !wlocked) 1958 INP_WUNLOCK(inp); 1959 } 1960 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 1961 1962 uma_zfree(ktls_session_zone, tls); 1963 } 1964 1965 void 1966 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1967 { 1968 1969 for (; m != NULL; m = m->m_next) { 1970 KASSERT((m->m_flags & M_EXTPG) != 0, 1971 ("ktls_seq: mapped mbuf %p", m)); 1972 1973 m->m_epg_seqno = sb->sb_tls_seqno; 1974 sb->sb_tls_seqno++; 1975 } 1976 } 1977 1978 /* 1979 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1980 * mbuf in the chain must be an unmapped mbuf. The payload of the 1981 * mbuf must be populated with the payload of each TLS record. 1982 * 1983 * The record_type argument specifies the TLS record type used when 1984 * populating the TLS header. 1985 * 1986 * The enq_count argument on return is set to the number of pages of 1987 * payload data for this entire chain that need to be encrypted via SW 1988 * encryption. The returned value should be passed to ktls_enqueue 1989 * when scheduling encryption of this chain of mbufs. To handle the 1990 * special case of empty fragments for TLS 1.0 sessions, an empty 1991 * fragment counts as one page. 1992 */ 1993 void 1994 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1995 uint8_t record_type) 1996 { 1997 struct tls_record_layer *tlshdr; 1998 struct mbuf *m; 1999 uint64_t *noncep; 2000 uint16_t tls_len; 2001 int maxlen __diagused; 2002 2003 maxlen = tls->params.max_frame_len; 2004 *enq_cnt = 0; 2005 for (m = top; m != NULL; m = m->m_next) { 2006 /* 2007 * All mbufs in the chain should be TLS records whose 2008 * payload does not exceed the maximum frame length. 2009 * 2010 * Empty TLS 1.0 records are permitted when using CBC. 2011 */ 2012 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 2013 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 2014 ("ktls_frame: m %p len %d", m, m->m_len)); 2015 2016 /* 2017 * TLS frames require unmapped mbufs to store session 2018 * info. 2019 */ 2020 KASSERT((m->m_flags & M_EXTPG) != 0, 2021 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 2022 2023 tls_len = m->m_len; 2024 2025 /* Save a reference to the session. */ 2026 m->m_epg_tls = ktls_hold(tls); 2027 2028 m->m_epg_hdrlen = tls->params.tls_hlen; 2029 m->m_epg_trllen = tls->params.tls_tlen; 2030 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 2031 int bs, delta; 2032 2033 /* 2034 * AES-CBC pads messages to a multiple of the 2035 * block size. Note that the padding is 2036 * applied after the digest and the encryption 2037 * is done on the "plaintext || mac || padding". 2038 * At least one byte of padding is always 2039 * present. 2040 * 2041 * Compute the final trailer length assuming 2042 * at most one block of padding. 2043 * tls->params.tls_tlen is the maximum 2044 * possible trailer length (padding + digest). 2045 * delta holds the number of excess padding 2046 * bytes if the maximum were used. Those 2047 * extra bytes are removed. 2048 */ 2049 bs = tls->params.tls_bs; 2050 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 2051 m->m_epg_trllen -= delta; 2052 } 2053 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 2054 2055 /* Populate the TLS header. */ 2056 tlshdr = (void *)m->m_epg_hdr; 2057 tlshdr->tls_vmajor = tls->params.tls_vmajor; 2058 2059 /* 2060 * TLS 1.3 masquarades as TLS 1.2 with a record type 2061 * of TLS_RLTYPE_APP. 2062 */ 2063 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 2064 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 2065 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 2066 tlshdr->tls_type = TLS_RLTYPE_APP; 2067 /* save the real record type for later */ 2068 m->m_epg_record_type = record_type; 2069 m->m_epg_trail[0] = record_type; 2070 } else { 2071 tlshdr->tls_vminor = tls->params.tls_vminor; 2072 tlshdr->tls_type = record_type; 2073 } 2074 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 2075 2076 /* 2077 * Store nonces / explicit IVs after the end of the 2078 * TLS header. 2079 * 2080 * For GCM with TLS 1.2, an 8 byte nonce is copied 2081 * from the end of the IV. The nonce is then 2082 * incremented for use by the next record. 2083 * 2084 * For CBC, a random nonce is inserted for TLS 1.1+. 2085 */ 2086 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2087 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2088 noncep = (uint64_t *)(tls->params.iv + 8); 2089 be64enc(tlshdr + 1, *noncep); 2090 (*noncep)++; 2091 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2092 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2093 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2094 2095 /* 2096 * When using SW encryption, mark the mbuf not ready. 2097 * It will be marked ready via sbready() after the 2098 * record has been encrypted. 2099 * 2100 * When using ifnet TLS, unencrypted TLS records are 2101 * sent down the stack to the NIC. 2102 */ 2103 if (tls->mode == TCP_TLS_MODE_SW) { 2104 m->m_flags |= M_NOTREADY; 2105 if (__predict_false(tls_len == 0)) { 2106 /* TLS 1.0 empty fragment. */ 2107 m->m_epg_nrdy = 1; 2108 } else 2109 m->m_epg_nrdy = m->m_epg_npgs; 2110 *enq_cnt += m->m_epg_nrdy; 2111 } 2112 } 2113 } 2114 2115 bool 2116 ktls_permit_empty_frames(struct ktls_session *tls) 2117 { 2118 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2119 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2120 } 2121 2122 void 2123 ktls_check_rx(struct sockbuf *sb) 2124 { 2125 struct tls_record_layer hdr; 2126 struct ktls_wq *wq; 2127 struct socket *so; 2128 bool running; 2129 2130 SOCKBUF_LOCK_ASSERT(sb); 2131 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2132 __func__, sb)); 2133 so = __containerof(sb, struct socket, so_rcv); 2134 2135 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2136 return; 2137 2138 /* Is there enough queued for a TLS header? */ 2139 if (sb->sb_tlscc < sizeof(hdr)) { 2140 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2141 so->so_error = EMSGSIZE; 2142 return; 2143 } 2144 2145 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2146 2147 /* Is the entire record queued? */ 2148 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2149 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2150 so->so_error = EMSGSIZE; 2151 return; 2152 } 2153 2154 sb->sb_flags |= SB_TLS_RX_RUNNING; 2155 2156 soref(so); 2157 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2158 mtx_lock(&wq->mtx); 2159 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2160 running = wq->running; 2161 mtx_unlock(&wq->mtx); 2162 if (!running) 2163 wakeup(wq); 2164 counter_u64_add(ktls_cnt_rx_queued, 1); 2165 } 2166 2167 static struct mbuf * 2168 ktls_detach_record(struct sockbuf *sb, int len) 2169 { 2170 struct mbuf *m, *n, *top; 2171 int remain; 2172 2173 SOCKBUF_LOCK_ASSERT(sb); 2174 MPASS(len <= sb->sb_tlscc); 2175 2176 /* 2177 * If TLS chain is the exact size of the record, 2178 * just grab the whole record. 2179 */ 2180 top = sb->sb_mtls; 2181 if (sb->sb_tlscc == len) { 2182 sb->sb_mtls = NULL; 2183 sb->sb_mtlstail = NULL; 2184 goto out; 2185 } 2186 2187 /* 2188 * While it would be nice to use m_split() here, we need 2189 * to know exactly what m_split() allocates to update the 2190 * accounting, so do it inline instead. 2191 */ 2192 remain = len; 2193 for (m = top; remain > m->m_len; m = m->m_next) 2194 remain -= m->m_len; 2195 2196 /* Easy case: don't have to split 'm'. */ 2197 if (remain == m->m_len) { 2198 sb->sb_mtls = m->m_next; 2199 if (sb->sb_mtls == NULL) 2200 sb->sb_mtlstail = NULL; 2201 m->m_next = NULL; 2202 goto out; 2203 } 2204 2205 /* 2206 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2207 * with M_NOWAIT first. 2208 */ 2209 n = m_get(M_NOWAIT, MT_DATA); 2210 if (n == NULL) { 2211 /* 2212 * Use M_WAITOK with socket buffer unlocked. If 2213 * 'sb_mtls' changes while the lock is dropped, return 2214 * NULL to force the caller to retry. 2215 */ 2216 SOCKBUF_UNLOCK(sb); 2217 2218 n = m_get(M_WAITOK, MT_DATA); 2219 2220 SOCKBUF_LOCK(sb); 2221 if (sb->sb_mtls != top) { 2222 m_free(n); 2223 return (NULL); 2224 } 2225 } 2226 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2227 2228 /* Store remainder in 'n'. */ 2229 n->m_len = m->m_len - remain; 2230 if (m->m_flags & M_EXT) { 2231 n->m_data = m->m_data + remain; 2232 mb_dupcl(n, m); 2233 } else { 2234 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2235 } 2236 2237 /* Trim 'm' and update accounting. */ 2238 m->m_len -= n->m_len; 2239 sb->sb_tlscc -= n->m_len; 2240 sb->sb_ccc -= n->m_len; 2241 2242 /* Account for 'n'. */ 2243 sballoc_ktls_rx(sb, n); 2244 2245 /* Insert 'n' into the TLS chain. */ 2246 sb->sb_mtls = n; 2247 n->m_next = m->m_next; 2248 if (sb->sb_mtlstail == m) 2249 sb->sb_mtlstail = n; 2250 2251 /* Detach the record from the TLS chain. */ 2252 m->m_next = NULL; 2253 2254 out: 2255 MPASS(m_length(top, NULL) == len); 2256 for (m = top; m != NULL; m = m->m_next) 2257 sbfree_ktls_rx(sb, m); 2258 sb->sb_tlsdcc = len; 2259 sb->sb_ccc += len; 2260 SBCHECK(sb); 2261 return (top); 2262 } 2263 2264 /* 2265 * Determine the length of the trailing zero padding and find the real 2266 * record type in the byte before the padding. 2267 * 2268 * Walking the mbuf chain backwards is clumsy, so another option would 2269 * be to scan forwards remembering the last non-zero byte before the 2270 * trailer. However, it would be expensive to scan the entire record. 2271 * Instead, find the last non-zero byte of each mbuf in the chain 2272 * keeping track of the relative offset of that nonzero byte. 2273 * 2274 * trail_len is the size of the MAC/tag on input and is set to the 2275 * size of the full trailer including padding and the record type on 2276 * return. 2277 */ 2278 static int 2279 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2280 int *trailer_len, uint8_t *record_typep) 2281 { 2282 char *cp; 2283 u_int digest_start, last_offset, m_len, offset; 2284 uint8_t record_type; 2285 2286 digest_start = tls_len - *trailer_len; 2287 last_offset = 0; 2288 offset = 0; 2289 for (; m != NULL && offset < digest_start; 2290 offset += m->m_len, m = m->m_next) { 2291 /* Don't look for padding in the tag. */ 2292 m_len = min(digest_start - offset, m->m_len); 2293 cp = mtod(m, char *); 2294 2295 /* Find last non-zero byte in this mbuf. */ 2296 while (m_len > 0 && cp[m_len - 1] == 0) 2297 m_len--; 2298 if (m_len > 0) { 2299 record_type = cp[m_len - 1]; 2300 last_offset = offset + m_len; 2301 } 2302 } 2303 if (last_offset < tls->params.tls_hlen) 2304 return (EBADMSG); 2305 2306 *record_typep = record_type; 2307 *trailer_len = tls_len - last_offset + 1; 2308 return (0); 2309 } 2310 2311 /* 2312 * Check if a mbuf chain is fully decrypted at the given offset and 2313 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2314 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2315 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2316 * is encrypted. 2317 */ 2318 ktls_mbuf_crypto_st_t 2319 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2320 { 2321 int m_flags_ored = 0; 2322 int m_flags_anded = -1; 2323 2324 for (; mb != NULL; mb = mb->m_next) { 2325 if (offset < mb->m_len) 2326 break; 2327 offset -= mb->m_len; 2328 } 2329 offset += len; 2330 2331 for (; mb != NULL; mb = mb->m_next) { 2332 m_flags_ored |= mb->m_flags; 2333 m_flags_anded &= mb->m_flags; 2334 2335 if (offset <= mb->m_len) 2336 break; 2337 offset -= mb->m_len; 2338 } 2339 MPASS(mb != NULL || offset == 0); 2340 2341 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2342 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2343 else 2344 return ((m_flags_ored & M_DECRYPTED) ? 2345 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2346 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2347 } 2348 2349 /* 2350 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2351 */ 2352 static int 2353 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2354 { 2355 union if_snd_tag_modify_params params; 2356 struct m_snd_tag *mst; 2357 struct inpcb *inp; 2358 struct tcpcb *tp; 2359 2360 mst = so->so_rcv.sb_tls_info->snd_tag; 2361 if (__predict_false(mst == NULL)) 2362 return (EINVAL); 2363 2364 inp = sotoinpcb(so); 2365 if (__predict_false(inp == NULL)) 2366 return (EINVAL); 2367 2368 INP_RLOCK(inp); 2369 if (inp->inp_flags & INP_DROPPED) { 2370 INP_RUNLOCK(inp); 2371 return (ECONNRESET); 2372 } 2373 2374 tp = intotcpcb(inp); 2375 MPASS(tp != NULL); 2376 2377 /* Get the TCP sequence number of the next valid TLS header. */ 2378 SOCKBUF_LOCK(&so->so_rcv); 2379 params.tls_rx.tls_hdr_tcp_sn = 2380 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2381 params.tls_rx.tls_rec_length = tls_len; 2382 params.tls_rx.tls_seq_number = tls_rcd_num; 2383 SOCKBUF_UNLOCK(&so->so_rcv); 2384 2385 INP_RUNLOCK(inp); 2386 2387 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2388 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2389 } 2390 2391 static void 2392 ktls_drop(struct socket *so, int error) 2393 { 2394 struct epoch_tracker et; 2395 struct inpcb *inp = sotoinpcb(so); 2396 struct tcpcb *tp; 2397 2398 NET_EPOCH_ENTER(et); 2399 INP_WLOCK(inp); 2400 if (!(inp->inp_flags & INP_DROPPED)) { 2401 tp = intotcpcb(inp); 2402 CURVNET_SET(inp->inp_vnet); 2403 tp = tcp_drop(tp, error); 2404 CURVNET_RESTORE(); 2405 if (tp != NULL) 2406 INP_WUNLOCK(inp); 2407 } else { 2408 so->so_error = error; 2409 SOCK_RECVBUF_LOCK(so); 2410 sorwakeup_locked(so); 2411 INP_WUNLOCK(inp); 2412 } 2413 NET_EPOCH_EXIT(et); 2414 } 2415 2416 static void 2417 ktls_decrypt(struct socket *so) 2418 { 2419 char tls_header[MBUF_PEXT_HDR_LEN]; 2420 struct ktls_session *tls; 2421 struct sockbuf *sb; 2422 struct tls_record_layer *hdr; 2423 struct tls_get_record tgr; 2424 struct mbuf *control, *data, *m; 2425 ktls_mbuf_crypto_st_t state; 2426 uint64_t seqno; 2427 int error, remain, tls_len, trail_len; 2428 bool tls13; 2429 uint8_t vminor, record_type; 2430 2431 hdr = (struct tls_record_layer *)tls_header; 2432 sb = &so->so_rcv; 2433 SOCKBUF_LOCK(sb); 2434 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2435 ("%s: socket %p not running", __func__, so)); 2436 2437 tls = sb->sb_tls_info; 2438 MPASS(tls != NULL); 2439 2440 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2441 if (tls13) 2442 vminor = TLS_MINOR_VER_TWO; 2443 else 2444 vminor = tls->params.tls_vminor; 2445 for (;;) { 2446 /* Is there enough queued for a TLS header? */ 2447 if (sb->sb_tlscc < tls->params.tls_hlen) 2448 break; 2449 2450 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2451 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2452 2453 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2454 hdr->tls_vminor != vminor) 2455 error = EINVAL; 2456 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2457 error = EINVAL; 2458 else if (tls_len < tls->params.tls_hlen || tls_len > 2459 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2460 tls->params.tls_tlen) 2461 error = EMSGSIZE; 2462 else 2463 error = 0; 2464 if (__predict_false(error != 0)) { 2465 /* 2466 * We have a corrupted record and are likely 2467 * out of sync. The connection isn't 2468 * recoverable at this point, so abort it. 2469 */ 2470 SOCKBUF_UNLOCK(sb); 2471 counter_u64_add(ktls_offload_corrupted_records, 1); 2472 2473 ktls_drop(so, error); 2474 goto deref; 2475 } 2476 2477 /* Is the entire record queued? */ 2478 if (sb->sb_tlscc < tls_len) 2479 break; 2480 2481 /* 2482 * Split out the portion of the mbuf chain containing 2483 * this TLS record. 2484 */ 2485 data = ktls_detach_record(sb, tls_len); 2486 if (data == NULL) 2487 continue; 2488 MPASS(sb->sb_tlsdcc == tls_len); 2489 2490 seqno = sb->sb_tls_seqno; 2491 sb->sb_tls_seqno++; 2492 SBCHECK(sb); 2493 SOCKBUF_UNLOCK(sb); 2494 2495 /* get crypto state for this TLS record */ 2496 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2497 2498 switch (state) { 2499 case KTLS_MBUF_CRYPTO_ST_MIXED: 2500 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2501 if (error) 2502 break; 2503 /* FALLTHROUGH */ 2504 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2505 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2506 &trail_len); 2507 if (__predict_true(error == 0)) { 2508 if (tls13) { 2509 error = tls13_find_record_type(tls, data, 2510 tls_len, &trail_len, &record_type); 2511 } else { 2512 record_type = hdr->tls_type; 2513 } 2514 } 2515 break; 2516 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2517 /* 2518 * NIC TLS is only supported for AEAD 2519 * ciphersuites which used a fixed sized 2520 * trailer. 2521 */ 2522 if (tls13) { 2523 trail_len = tls->params.tls_tlen - 1; 2524 error = tls13_find_record_type(tls, data, 2525 tls_len, &trail_len, &record_type); 2526 } else { 2527 trail_len = tls->params.tls_tlen; 2528 error = 0; 2529 record_type = hdr->tls_type; 2530 } 2531 break; 2532 default: 2533 error = EINVAL; 2534 break; 2535 } 2536 if (error) { 2537 counter_u64_add(ktls_offload_failed_crypto, 1); 2538 2539 SOCKBUF_LOCK(sb); 2540 if (sb->sb_tlsdcc == 0) { 2541 /* 2542 * sbcut/drop/flush discarded these 2543 * mbufs. 2544 */ 2545 m_freem(data); 2546 break; 2547 } 2548 2549 /* 2550 * Drop this TLS record's data, but keep 2551 * decrypting subsequent records. 2552 */ 2553 sb->sb_ccc -= tls_len; 2554 sb->sb_tlsdcc = 0; 2555 2556 if (error != EMSGSIZE) 2557 error = EBADMSG; 2558 CURVNET_SET(so->so_vnet); 2559 so->so_error = error; 2560 sorwakeup_locked(so); 2561 CURVNET_RESTORE(); 2562 2563 m_freem(data); 2564 2565 SOCKBUF_LOCK(sb); 2566 continue; 2567 } 2568 2569 /* Allocate the control mbuf. */ 2570 memset(&tgr, 0, sizeof(tgr)); 2571 tgr.tls_type = record_type; 2572 tgr.tls_vmajor = hdr->tls_vmajor; 2573 tgr.tls_vminor = hdr->tls_vminor; 2574 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2575 trail_len); 2576 control = sbcreatecontrol(&tgr, sizeof(tgr), 2577 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2578 2579 SOCKBUF_LOCK(sb); 2580 if (sb->sb_tlsdcc == 0) { 2581 /* sbcut/drop/flush discarded these mbufs. */ 2582 MPASS(sb->sb_tlscc == 0); 2583 m_freem(data); 2584 m_freem(control); 2585 break; 2586 } 2587 2588 /* 2589 * Clear the 'dcc' accounting in preparation for 2590 * adding the decrypted record. 2591 */ 2592 sb->sb_ccc -= tls_len; 2593 sb->sb_tlsdcc = 0; 2594 SBCHECK(sb); 2595 2596 /* If there is no payload, drop all of the data. */ 2597 if (tgr.tls_length == htobe16(0)) { 2598 m_freem(data); 2599 data = NULL; 2600 } else { 2601 /* Trim header. */ 2602 remain = tls->params.tls_hlen; 2603 while (remain > 0) { 2604 if (data->m_len > remain) { 2605 data->m_data += remain; 2606 data->m_len -= remain; 2607 break; 2608 } 2609 remain -= data->m_len; 2610 data = m_free(data); 2611 } 2612 2613 /* Trim trailer and clear M_NOTREADY. */ 2614 remain = be16toh(tgr.tls_length); 2615 m = data; 2616 for (m = data; remain > m->m_len; m = m->m_next) { 2617 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2618 remain -= m->m_len; 2619 } 2620 m->m_len = remain; 2621 m_freem(m->m_next); 2622 m->m_next = NULL; 2623 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2624 2625 /* Set EOR on the final mbuf. */ 2626 m->m_flags |= M_EOR; 2627 } 2628 2629 sbappendcontrol_locked(sb, data, control, 0); 2630 2631 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2632 sb->sb_flags |= SB_TLS_RX_RESYNC; 2633 SOCKBUF_UNLOCK(sb); 2634 ktls_resync_ifnet(so, tls_len, seqno); 2635 SOCKBUF_LOCK(sb); 2636 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2637 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2638 SOCKBUF_UNLOCK(sb); 2639 ktls_resync_ifnet(so, 0, seqno); 2640 SOCKBUF_LOCK(sb); 2641 } 2642 } 2643 2644 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2645 2646 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2647 so->so_error = EMSGSIZE; 2648 2649 sorwakeup_locked(so); 2650 2651 deref: 2652 SOCKBUF_UNLOCK_ASSERT(sb); 2653 2654 CURVNET_SET(so->so_vnet); 2655 sorele(so); 2656 CURVNET_RESTORE(); 2657 } 2658 2659 void 2660 ktls_enqueue_to_free(struct mbuf *m) 2661 { 2662 struct ktls_wq *wq; 2663 bool running; 2664 2665 /* Mark it for freeing. */ 2666 m->m_epg_flags |= EPG_FLAG_2FREE; 2667 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2668 mtx_lock(&wq->mtx); 2669 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2670 running = wq->running; 2671 mtx_unlock(&wq->mtx); 2672 if (!running) 2673 wakeup(wq); 2674 } 2675 2676 static void * 2677 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2678 { 2679 void *buf; 2680 int domain, running; 2681 2682 if (m->m_epg_npgs <= 2) 2683 return (NULL); 2684 if (ktls_buffer_zone == NULL) 2685 return (NULL); 2686 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2687 /* 2688 * Rate-limit allocation attempts after a failure. 2689 * ktls_buffer_import() will acquire a per-domain mutex to check 2690 * the free page queues and may fail consistently if memory is 2691 * fragmented. 2692 */ 2693 return (NULL); 2694 } 2695 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2696 if (buf == NULL) { 2697 domain = PCPU_GET(domain); 2698 wq->lastallocfail = ticks; 2699 2700 /* 2701 * Note that this check is "racy", but the races are 2702 * harmless, and are either a spurious wakeup if 2703 * multiple threads fail allocations before the alloc 2704 * thread wakes, or waiting an extra second in case we 2705 * see an old value of running == true. 2706 */ 2707 if (!VM_DOMAIN_EMPTY(domain)) { 2708 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2709 if (!running) 2710 wakeup(&ktls_domains[domain].alloc_td); 2711 } 2712 } 2713 return (buf); 2714 } 2715 2716 static int 2717 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2718 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2719 { 2720 vm_page_t pg; 2721 int error, i, len, off; 2722 2723 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2724 ("%p not unready & nomap mbuf\n", m)); 2725 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2726 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2727 ktls_maxlen)); 2728 2729 /* Anonymous mbufs are encrypted in place. */ 2730 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2731 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2732 2733 /* 2734 * For file-backed mbufs (from sendfile), anonymous wired 2735 * pages are allocated and used as the encryption destination. 2736 */ 2737 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2738 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2739 m->m_epg_1st_off; 2740 state->dst_iov[0].iov_base = (char *)state->cbuf + 2741 m->m_epg_1st_off; 2742 state->dst_iov[0].iov_len = len; 2743 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2744 i = 1; 2745 } else { 2746 off = m->m_epg_1st_off; 2747 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2748 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2749 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2750 len = m_epg_pagelen(m, i, off); 2751 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2752 state->dst_iov[i].iov_base = 2753 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2754 state->dst_iov[i].iov_len = len; 2755 } 2756 } 2757 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2758 state->dst_iov[i].iov_base = m->m_epg_trail; 2759 state->dst_iov[i].iov_len = m->m_epg_trllen; 2760 2761 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2762 2763 if (__predict_false(error != 0)) { 2764 /* Free the anonymous pages. */ 2765 if (state->cbuf != NULL) 2766 uma_zfree(ktls_buffer_zone, state->cbuf); 2767 else { 2768 for (i = 0; i < m->m_epg_npgs; i++) { 2769 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2770 (void)vm_page_unwire_noq(pg); 2771 vm_page_free(pg); 2772 } 2773 } 2774 } 2775 return (error); 2776 } 2777 2778 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2779 static u_int 2780 ktls_batched_records(struct mbuf *m) 2781 { 2782 int page_count, records; 2783 2784 records = 0; 2785 page_count = m->m_epg_enc_cnt; 2786 while (page_count > 0) { 2787 records++; 2788 page_count -= m->m_epg_nrdy; 2789 m = m->m_next; 2790 } 2791 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2792 return (records); 2793 } 2794 2795 void 2796 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2797 { 2798 struct ktls_session *tls; 2799 struct ktls_wq *wq; 2800 int queued; 2801 bool running; 2802 2803 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2804 (M_EXTPG | M_NOTREADY)), 2805 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2806 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2807 2808 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2809 2810 m->m_epg_enc_cnt = page_count; 2811 2812 /* 2813 * Save a pointer to the socket. The caller is responsible 2814 * for taking an additional reference via soref(). 2815 */ 2816 m->m_epg_so = so; 2817 2818 queued = 1; 2819 tls = m->m_epg_tls; 2820 wq = &ktls_wq[tls->wq_index]; 2821 mtx_lock(&wq->mtx); 2822 if (__predict_false(tls->sequential_records)) { 2823 /* 2824 * For TLS 1.0, records must be encrypted 2825 * sequentially. For a given connection, all records 2826 * queued to the associated work queue are processed 2827 * sequentially. However, sendfile(2) might complete 2828 * I/O requests spanning multiple TLS records out of 2829 * order. Here we ensure TLS records are enqueued to 2830 * the work queue in FIFO order. 2831 * 2832 * tls->next_seqno holds the sequence number of the 2833 * next TLS record that should be enqueued to the work 2834 * queue. If this next record is not tls->next_seqno, 2835 * it must be a future record, so insert it, sorted by 2836 * TLS sequence number, into tls->pending_records and 2837 * return. 2838 * 2839 * If this TLS record matches tls->next_seqno, place 2840 * it in the work queue and then check 2841 * tls->pending_records to see if any 2842 * previously-queued records are now ready for 2843 * encryption. 2844 */ 2845 if (m->m_epg_seqno != tls->next_seqno) { 2846 struct mbuf *n, *p; 2847 2848 p = NULL; 2849 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2850 if (n->m_epg_seqno > m->m_epg_seqno) 2851 break; 2852 p = n; 2853 } 2854 if (n == NULL) 2855 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2856 m_epg_stailq); 2857 else if (p == NULL) 2858 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2859 m_epg_stailq); 2860 else 2861 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2862 m_epg_stailq); 2863 mtx_unlock(&wq->mtx); 2864 counter_u64_add(ktls_cnt_tx_pending, 1); 2865 return; 2866 } 2867 2868 tls->next_seqno += ktls_batched_records(m); 2869 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2870 2871 while (!STAILQ_EMPTY(&tls->pending_records)) { 2872 struct mbuf *n; 2873 2874 n = STAILQ_FIRST(&tls->pending_records); 2875 if (n->m_epg_seqno != tls->next_seqno) 2876 break; 2877 2878 queued++; 2879 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2880 tls->next_seqno += ktls_batched_records(n); 2881 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2882 } 2883 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2884 } else 2885 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2886 2887 running = wq->running; 2888 mtx_unlock(&wq->mtx); 2889 if (!running) 2890 wakeup(wq); 2891 counter_u64_add(ktls_cnt_tx_queued, queued); 2892 } 2893 2894 /* 2895 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2896 * the pages from the file and replace them with the anonymous pages 2897 * allocated in ktls_encrypt_record(). 2898 */ 2899 static void 2900 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2901 { 2902 int i; 2903 2904 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2905 2906 /* Free the old pages. */ 2907 m->m_ext.ext_free(m); 2908 2909 /* Replace them with the new pages. */ 2910 if (state->cbuf != NULL) { 2911 for (i = 0; i < m->m_epg_npgs; i++) 2912 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2913 2914 /* Contig pages should go back to the cache. */ 2915 m->m_ext.ext_free = ktls_free_mext_contig; 2916 } else { 2917 for (i = 0; i < m->m_epg_npgs; i++) 2918 m->m_epg_pa[i] = state->parray[i]; 2919 2920 /* Use the basic free routine. */ 2921 m->m_ext.ext_free = mb_free_mext_pgs; 2922 } 2923 2924 /* Pages are now writable. */ 2925 m->m_epg_flags |= EPG_FLAG_ANON; 2926 } 2927 2928 static __noinline void 2929 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2930 { 2931 struct ktls_ocf_encrypt_state state; 2932 struct ktls_session *tls; 2933 struct socket *so; 2934 struct mbuf *m; 2935 int error, npages, total_pages; 2936 2937 so = top->m_epg_so; 2938 tls = top->m_epg_tls; 2939 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2940 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2941 #ifdef INVARIANTS 2942 top->m_epg_so = NULL; 2943 #endif 2944 total_pages = top->m_epg_enc_cnt; 2945 npages = 0; 2946 2947 /* 2948 * Encrypt the TLS records in the chain of mbufs starting with 2949 * 'top'. 'total_pages' gives us a total count of pages and is 2950 * used to know when we have finished encrypting the TLS 2951 * records originally queued with 'top'. 2952 * 2953 * NB: These mbufs are queued in the socket buffer and 2954 * 'm_next' is traversing the mbufs in the socket buffer. The 2955 * socket buffer lock is not held while traversing this chain. 2956 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2957 * pointers should be stable. However, the 'm_next' of the 2958 * last mbuf encrypted is not necessarily NULL. It can point 2959 * to other mbufs appended while 'top' was on the TLS work 2960 * queue. 2961 * 2962 * Each mbuf holds an entire TLS record. 2963 */ 2964 error = 0; 2965 for (m = top; npages != total_pages; m = m->m_next) { 2966 KASSERT(m->m_epg_tls == tls, 2967 ("different TLS sessions in a single mbuf chain: %p vs %p", 2968 tls, m->m_epg_tls)); 2969 KASSERT(npages + m->m_epg_npgs <= total_pages, 2970 ("page count mismatch: top %p, total_pages %d, m %p", top, 2971 total_pages, m)); 2972 2973 error = ktls_encrypt_record(wq, m, tls, &state); 2974 if (error) { 2975 counter_u64_add(ktls_offload_failed_crypto, 1); 2976 break; 2977 } 2978 2979 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2980 ktls_finish_nonanon(m, &state); 2981 2982 npages += m->m_epg_nrdy; 2983 2984 /* 2985 * Drop a reference to the session now that it is no 2986 * longer needed. Existing code depends on encrypted 2987 * records having no associated session vs 2988 * yet-to-be-encrypted records having an associated 2989 * session. 2990 */ 2991 m->m_epg_tls = NULL; 2992 ktls_free(tls); 2993 } 2994 2995 CURVNET_SET(so->so_vnet); 2996 if (error == 0) { 2997 (void)so->so_proto->pr_ready(so, top, npages); 2998 } else { 2999 ktls_drop(so, EIO); 3000 mb_free_notready(top, total_pages); 3001 } 3002 3003 sorele(so); 3004 CURVNET_RESTORE(); 3005 } 3006 3007 void 3008 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 3009 { 3010 struct ktls_session *tls; 3011 struct socket *so; 3012 struct mbuf *m; 3013 int npages; 3014 3015 m = state->m; 3016 3017 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3018 ktls_finish_nonanon(m, state); 3019 3020 so = state->so; 3021 free(state, M_KTLS); 3022 3023 /* 3024 * Drop a reference to the session now that it is no longer 3025 * needed. Existing code depends on encrypted records having 3026 * no associated session vs yet-to-be-encrypted records having 3027 * an associated session. 3028 */ 3029 tls = m->m_epg_tls; 3030 m->m_epg_tls = NULL; 3031 ktls_free(tls); 3032 3033 if (error != 0) 3034 counter_u64_add(ktls_offload_failed_crypto, 1); 3035 3036 CURVNET_SET(so->so_vnet); 3037 npages = m->m_epg_nrdy; 3038 3039 if (error == 0) { 3040 (void)so->so_proto->pr_ready(so, m, npages); 3041 } else { 3042 ktls_drop(so, EIO); 3043 mb_free_notready(m, npages); 3044 } 3045 3046 sorele(so); 3047 CURVNET_RESTORE(); 3048 } 3049 3050 /* 3051 * Similar to ktls_encrypt, but used with asynchronous OCF backends 3052 * (coprocessors) where encryption does not use host CPU resources and 3053 * it can be beneficial to queue more requests than CPUs. 3054 */ 3055 static __noinline void 3056 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 3057 { 3058 struct ktls_ocf_encrypt_state *state; 3059 struct ktls_session *tls; 3060 struct socket *so; 3061 struct mbuf *m, *n; 3062 int error, mpages, npages, total_pages; 3063 3064 so = top->m_epg_so; 3065 tls = top->m_epg_tls; 3066 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3067 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3068 #ifdef INVARIANTS 3069 top->m_epg_so = NULL; 3070 #endif 3071 total_pages = top->m_epg_enc_cnt; 3072 npages = 0; 3073 3074 error = 0; 3075 for (m = top; npages != total_pages; m = n) { 3076 KASSERT(m->m_epg_tls == tls, 3077 ("different TLS sessions in a single mbuf chain: %p vs %p", 3078 tls, m->m_epg_tls)); 3079 KASSERT(npages + m->m_epg_npgs <= total_pages, 3080 ("page count mismatch: top %p, total_pages %d, m %p", top, 3081 total_pages, m)); 3082 3083 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 3084 soref(so); 3085 state->so = so; 3086 state->m = m; 3087 3088 mpages = m->m_epg_nrdy; 3089 n = m->m_next; 3090 3091 error = ktls_encrypt_record(wq, m, tls, state); 3092 if (error) { 3093 counter_u64_add(ktls_offload_failed_crypto, 1); 3094 free(state, M_KTLS); 3095 CURVNET_SET(so->so_vnet); 3096 sorele(so); 3097 CURVNET_RESTORE(); 3098 break; 3099 } 3100 3101 npages += mpages; 3102 } 3103 3104 CURVNET_SET(so->so_vnet); 3105 if (error != 0) { 3106 ktls_drop(so, EIO); 3107 mb_free_notready(m, total_pages - npages); 3108 } 3109 3110 sorele(so); 3111 CURVNET_RESTORE(); 3112 } 3113 3114 static int 3115 ktls_bind_domain(int domain) 3116 { 3117 int error; 3118 3119 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3120 if (error != 0) 3121 return (error); 3122 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3123 return (0); 3124 } 3125 3126 static void 3127 ktls_alloc_thread(void *ctx) 3128 { 3129 struct ktls_domain_info *ktls_domain = ctx; 3130 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 3131 void **buf; 3132 struct sysctl_oid *oid; 3133 char name[80]; 3134 int domain, error, i, nbufs; 3135 3136 domain = ktls_domain - ktls_domains; 3137 if (bootverbose) 3138 printf("Starting KTLS alloc thread for domain %d\n", domain); 3139 error = ktls_bind_domain(domain); 3140 if (error) 3141 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 3142 domain, error); 3143 snprintf(name, sizeof(name), "domain%d", domain); 3144 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3145 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3146 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 3147 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 3148 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3149 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3150 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3151 CTLFLAG_RD, &sc->running, 0, "thread running"); 3152 3153 buf = NULL; 3154 nbufs = 0; 3155 for (;;) { 3156 atomic_store_int(&sc->running, 0); 3157 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3158 atomic_store_int(&sc->running, 1); 3159 sc->wakeups++; 3160 if (nbufs != ktls_max_alloc) { 3161 free(buf, M_KTLS); 3162 nbufs = atomic_load_int(&ktls_max_alloc); 3163 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 3164 M_WAITOK | M_ZERO); 3165 } 3166 /* 3167 * Below we allocate nbufs with different allocation 3168 * flags than we use when allocating normally during 3169 * encryption in the ktls worker thread. We specify 3170 * M_NORECLAIM in the worker thread. However, we omit 3171 * that flag here and add M_WAITOK so that the VM 3172 * system is permitted to perform expensive work to 3173 * defragment memory. We do this here, as it does not 3174 * matter if this thread blocks. If we block a ktls 3175 * worker thread, we risk developing backlogs of 3176 * buffers to be encrypted, leading to surges of 3177 * traffic and potential NIC output drops. 3178 */ 3179 for (i = 0; i < nbufs; i++) { 3180 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 3181 sc->allocs++; 3182 } 3183 for (i = 0; i < nbufs; i++) { 3184 uma_zfree(ktls_buffer_zone, buf[i]); 3185 buf[i] = NULL; 3186 } 3187 } 3188 } 3189 3190 static void 3191 ktls_work_thread(void *ctx) 3192 { 3193 struct ktls_wq *wq = ctx; 3194 struct mbuf *m, *n; 3195 struct socket *so, *son; 3196 STAILQ_HEAD(, mbuf) local_m_head; 3197 STAILQ_HEAD(, socket) local_so_head; 3198 int cpu; 3199 3200 cpu = wq - ktls_wq; 3201 if (bootverbose) 3202 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3203 3204 /* 3205 * Bind to a core. If ktls_bind_threads is > 1, then 3206 * we bind to the NUMA domain instead. 3207 */ 3208 if (ktls_bind_threads) { 3209 int error; 3210 3211 if (ktls_bind_threads > 1) { 3212 struct pcpu *pc = pcpu_find(cpu); 3213 3214 error = ktls_bind_domain(pc->pc_domain); 3215 } else { 3216 cpuset_t mask; 3217 3218 CPU_SETOF(cpu, &mask); 3219 error = cpuset_setthread(curthread->td_tid, &mask); 3220 } 3221 if (error) 3222 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3223 cpu, error); 3224 } 3225 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3226 fpu_kern_thread(0); 3227 #endif 3228 for (;;) { 3229 mtx_lock(&wq->mtx); 3230 while (STAILQ_EMPTY(&wq->m_head) && 3231 STAILQ_EMPTY(&wq->so_head)) { 3232 wq->running = false; 3233 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3234 wq->running = true; 3235 } 3236 3237 STAILQ_INIT(&local_m_head); 3238 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3239 STAILQ_INIT(&local_so_head); 3240 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3241 mtx_unlock(&wq->mtx); 3242 3243 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3244 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3245 ktls_free(m->m_epg_tls); 3246 m_free_raw(m); 3247 } else { 3248 if (m->m_epg_tls->sync_dispatch) 3249 ktls_encrypt(wq, m); 3250 else 3251 ktls_encrypt_async(wq, m); 3252 counter_u64_add(ktls_cnt_tx_queued, -1); 3253 } 3254 } 3255 3256 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3257 ktls_decrypt(so); 3258 counter_u64_add(ktls_cnt_rx_queued, -1); 3259 } 3260 } 3261 } 3262 3263 #if defined(INET) || defined(INET6) 3264 static void 3265 ktls_disable_ifnet_help(void *context, int pending __unused) 3266 { 3267 struct ktls_session *tls; 3268 struct inpcb *inp; 3269 struct tcpcb *tp; 3270 struct socket *so; 3271 int err; 3272 3273 tls = context; 3274 inp = tls->inp; 3275 if (inp == NULL) 3276 return; 3277 INP_WLOCK(inp); 3278 so = inp->inp_socket; 3279 MPASS(so != NULL); 3280 if (inp->inp_flags & INP_DROPPED) { 3281 goto out; 3282 } 3283 3284 if (so->so_snd.sb_tls_info != NULL) 3285 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3286 else 3287 err = ENXIO; 3288 if (err == 0) { 3289 counter_u64_add(ktls_ifnet_disable_ok, 1); 3290 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3291 if ((inp->inp_flags & INP_DROPPED) == 0 && 3292 (tp = intotcpcb(inp)) != NULL && 3293 tp->t_fb->tfb_hwtls_change != NULL) 3294 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3295 } else { 3296 counter_u64_add(ktls_ifnet_disable_fail, 1); 3297 } 3298 3299 out: 3300 CURVNET_SET(so->so_vnet); 3301 sorele(so); 3302 CURVNET_RESTORE(); 3303 INP_WUNLOCK(inp); 3304 ktls_free(tls); 3305 } 3306 3307 /* 3308 * Called when re-transmits are becoming a substantial portion of the 3309 * sends on this connection. When this happens, we transition the 3310 * connection to software TLS. This is needed because most inline TLS 3311 * NICs keep crypto state only for in-order transmits. This means 3312 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3313 * re-DMA the entire TLS record up to and including the current 3314 * segment. This means that when re-transmitting the last ~1448 byte 3315 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3316 * of magnitude more data than we are sending. This can cause the 3317 * PCIe link to saturate well before the network, which can cause 3318 * output drops, and a general loss of capacity. 3319 */ 3320 void 3321 ktls_disable_ifnet(void *arg) 3322 { 3323 struct tcpcb *tp; 3324 struct inpcb *inp; 3325 struct socket *so; 3326 struct ktls_session *tls; 3327 3328 tp = arg; 3329 inp = tptoinpcb(tp); 3330 INP_WLOCK_ASSERT(inp); 3331 so = inp->inp_socket; 3332 SOCK_LOCK(so); 3333 tls = so->so_snd.sb_tls_info; 3334 if (tp->t_nic_ktls_xmit_dis == 1) { 3335 SOCK_UNLOCK(so); 3336 return; 3337 } 3338 3339 /* 3340 * note that t_nic_ktls_xmit_dis is never cleared; disabling 3341 * ifnet can only be done once per connection, so we never want 3342 * to do it again 3343 */ 3344 3345 (void)ktls_hold(tls); 3346 soref(so); 3347 tp->t_nic_ktls_xmit_dis = 1; 3348 SOCK_UNLOCK(so); 3349 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3350 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3351 } 3352 #endif 3353