1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_kern_tls.h" 32 #include "opt_ratelimit.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/endian.h> 39 #include <sys/ktls.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/rmlock.h> 44 #include <sys/proc.h> 45 #include <sys/protosw.h> 46 #include <sys/refcount.h> 47 #include <sys/smp.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <sys/kthread.h> 53 #include <sys/uio.h> 54 #include <sys/vmmeter.h> 55 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 56 #include <machine/pcb.h> 57 #endif 58 #include <machine/vmparam.h> 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #ifdef RSS 62 #include <net/netisr.h> 63 #include <net/rss_config.h> 64 #endif 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/tcp_var.h> 70 #ifdef TCP_OFFLOAD 71 #include <netinet/tcp_offload.h> 72 #endif 73 #include <opencrypto/cryptodev.h> 74 #include <opencrypto/ktls.h> 75 #include <vm/vm.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_page.h> 78 #include <vm/vm_pagequeue.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 int lastallocfail; 86 } __aligned(CACHE_LINE_SIZE); 87 88 struct ktls_reclaim_thread { 89 uint64_t wakeups; 90 uint64_t reclaims; 91 struct thread *td; 92 int running; 93 }; 94 95 struct ktls_domain_info { 96 int count; 97 int cpu[MAXCPU]; 98 struct ktls_reclaim_thread reclaim_td; 99 }; 100 101 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 102 static struct ktls_wq *ktls_wq; 103 static struct proc *ktls_proc; 104 static uma_zone_t ktls_session_zone; 105 static uma_zone_t ktls_buffer_zone; 106 static uint16_t ktls_cpuid_lookup[MAXCPU]; 107 static int ktls_init_state; 108 static struct sx ktls_init_lock; 109 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 110 111 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 112 "Kernel TLS offload"); 113 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 114 "Kernel TLS offload stats"); 115 116 #ifdef RSS 117 static int ktls_bind_threads = 1; 118 #else 119 static int ktls_bind_threads; 120 #endif 121 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 122 &ktls_bind_threads, 0, 123 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 124 125 static u_int ktls_maxlen = 16384; 126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 127 &ktls_maxlen, 0, "Maximum TLS record size"); 128 129 static int ktls_number_threads; 130 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 131 &ktls_number_threads, 0, 132 "Number of TLS threads in thread-pool"); 133 134 unsigned int ktls_ifnet_max_rexmit_pct = 2; 135 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 136 &ktls_ifnet_max_rexmit_pct, 2, 137 "Max percent bytes retransmitted before ifnet TLS is disabled"); 138 139 static bool ktls_offload_enable; 140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 141 &ktls_offload_enable, 0, 142 "Enable support for kernel TLS offload"); 143 144 static bool ktls_cbc_enable = true; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 146 &ktls_cbc_enable, 1, 147 "Enable support of AES-CBC crypto for kernel TLS"); 148 149 static bool ktls_sw_buffer_cache = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 151 &ktls_sw_buffer_cache, 1, 152 "Enable caching of output buffers for SW encryption"); 153 154 static int ktls_max_reclaim = 1024; 155 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN, 156 &ktls_max_reclaim, 128, 157 "Max number of 16k buffers to reclaim in thread context"); 158 159 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 160 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 161 &ktls_tasks_active, "Number of active tasks"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 165 &ktls_cnt_tx_pending, 166 "Number of TLS 1.0 records waiting for earlier TLS records"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 170 &ktls_cnt_tx_queued, 171 "Number of TLS records in queue to tasks for SW encryption"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_rx_queued, 176 "Number of TLS sockets in queue to tasks for SW decryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 180 CTLFLAG_RD, &ktls_offload_total, 181 "Total successful TLS setups (parameters set)"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 185 CTLFLAG_RD, &ktls_offload_enable_calls, 186 "Total number of TLS enable calls made"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 190 &ktls_offload_active, "Total Active TLS sessions"); 191 192 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 193 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 194 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 195 196 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 197 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 198 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 199 200 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 201 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 202 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 203 204 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 205 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 206 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 207 208 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 209 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 210 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 211 212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 214 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 215 216 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 217 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 218 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 219 220 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task); 221 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD, 222 &ktls_destroy_task, 223 "Number of times ktls session was destroyed via taskqueue"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_reset_receive_tag(void *context, int pending); 301 static void ktls_reset_send_tag(void *context, int pending); 302 static void ktls_work_thread(void *ctx); 303 static void ktls_reclaim_thread(void *ctx); 304 305 static u_int 306 ktls_get_cpu(struct socket *so) 307 { 308 struct inpcb *inp; 309 #ifdef NUMA 310 struct ktls_domain_info *di; 311 #endif 312 u_int cpuid; 313 314 inp = sotoinpcb(so); 315 #ifdef RSS 316 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 317 if (cpuid != NETISR_CPUID_NONE) 318 return (cpuid); 319 #endif 320 /* 321 * Just use the flowid to shard connections in a repeatable 322 * fashion. Note that TLS 1.0 sessions rely on the 323 * serialization provided by having the same connection use 324 * the same queue. 325 */ 326 #ifdef NUMA 327 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 328 di = &ktls_domains[inp->inp_numa_domain]; 329 cpuid = di->cpu[inp->inp_flowid % di->count]; 330 } else 331 #endif 332 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 333 return (cpuid); 334 } 335 336 static int 337 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 338 { 339 vm_page_t m; 340 int i, req; 341 342 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 343 ("%s: ktls max length %d is not page size-aligned", 344 __func__, ktls_maxlen)); 345 346 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 347 for (i = 0; i < count; i++) { 348 m = vm_page_alloc_noobj_contig_domain(domain, req, 349 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 350 VM_MEMATTR_DEFAULT); 351 if (m == NULL) 352 break; 353 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 354 } 355 return (i); 356 } 357 358 static void 359 ktls_buffer_release(void *arg __unused, void **store, int count) 360 { 361 vm_page_t m; 362 int i, j; 363 364 for (i = 0; i < count; i++) { 365 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 366 for (j = 0; j < atop(ktls_maxlen); j++) { 367 (void)vm_page_unwire_noq(m + j); 368 vm_page_free(m + j); 369 } 370 } 371 } 372 373 static void 374 ktls_free_mext_contig(struct mbuf *m) 375 { 376 M_ASSERTEXTPG(m); 377 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 378 } 379 380 static int 381 ktls_init(void) 382 { 383 struct thread *td; 384 struct pcpu *pc; 385 int count, domain, error, i; 386 387 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 388 M_WAITOK | M_ZERO); 389 390 ktls_session_zone = uma_zcreate("ktls_session", 391 sizeof(struct ktls_session), 392 NULL, NULL, NULL, NULL, 393 UMA_ALIGN_CACHE, 0); 394 395 if (ktls_sw_buffer_cache) { 396 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 397 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 398 ktls_buffer_import, ktls_buffer_release, NULL, 399 UMA_ZONE_FIRSTTOUCH); 400 } 401 402 /* 403 * Initialize the workqueues to run the TLS work. We create a 404 * work queue for each CPU. 405 */ 406 CPU_FOREACH(i) { 407 STAILQ_INIT(&ktls_wq[i].m_head); 408 STAILQ_INIT(&ktls_wq[i].so_head); 409 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 410 if (ktls_bind_threads > 1) { 411 pc = pcpu_find(i); 412 domain = pc->pc_domain; 413 count = ktls_domains[domain].count; 414 ktls_domains[domain].cpu[count] = i; 415 ktls_domains[domain].count++; 416 } 417 ktls_cpuid_lookup[ktls_number_threads] = i; 418 ktls_number_threads++; 419 } 420 421 /* 422 * If we somehow have an empty domain, fall back to choosing 423 * among all KTLS threads. 424 */ 425 if (ktls_bind_threads > 1) { 426 for (i = 0; i < vm_ndomains; i++) { 427 if (ktls_domains[i].count == 0) { 428 ktls_bind_threads = 1; 429 break; 430 } 431 } 432 } 433 434 /* Start kthreads for each workqueue. */ 435 CPU_FOREACH(i) { 436 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 437 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 438 if (error) { 439 printf("Can't add KTLS thread %d error %d\n", i, error); 440 return (error); 441 } 442 } 443 444 /* 445 * Start an allocation thread per-domain to perform blocking allocations 446 * of 16k physically contiguous TLS crypto destination buffers. 447 */ 448 if (ktls_sw_buffer_cache) { 449 for (domain = 0; domain < vm_ndomains; domain++) { 450 if (VM_DOMAIN_EMPTY(domain)) 451 continue; 452 if (CPU_EMPTY(&cpuset_domain[domain])) 453 continue; 454 error = kproc_kthread_add(ktls_reclaim_thread, 455 &ktls_domains[domain], &ktls_proc, 456 &ktls_domains[domain].reclaim_td.td, 457 0, 0, "KTLS", "reclaim_%d", domain); 458 if (error) { 459 printf("Can't add KTLS reclaim thread %d error %d\n", 460 domain, error); 461 return (error); 462 } 463 } 464 } 465 466 if (bootverbose) 467 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 468 return (0); 469 } 470 471 static int 472 ktls_start_kthreads(void) 473 { 474 int error, state; 475 476 start: 477 state = atomic_load_acq_int(&ktls_init_state); 478 if (__predict_true(state > 0)) 479 return (0); 480 if (state < 0) 481 return (ENXIO); 482 483 sx_xlock(&ktls_init_lock); 484 if (ktls_init_state != 0) { 485 sx_xunlock(&ktls_init_lock); 486 goto start; 487 } 488 489 error = ktls_init(); 490 if (error == 0) 491 state = 1; 492 else 493 state = -1; 494 atomic_store_rel_int(&ktls_init_state, state); 495 sx_xunlock(&ktls_init_lock); 496 return (error); 497 } 498 499 static int 500 ktls_create_session(struct socket *so, struct tls_enable *en, 501 struct ktls_session **tlsp, int direction) 502 { 503 struct ktls_session *tls; 504 int error; 505 506 /* Only TLS 1.0 - 1.3 are supported. */ 507 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 508 return (EINVAL); 509 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 510 en->tls_vminor > TLS_MINOR_VER_THREE) 511 return (EINVAL); 512 513 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 514 return (EINVAL); 515 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 516 return (EINVAL); 517 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 518 return (EINVAL); 519 520 /* All supported algorithms require a cipher key. */ 521 if (en->cipher_key_len == 0) 522 return (EINVAL); 523 524 /* No flags are currently supported. */ 525 if (en->flags != 0) 526 return (EINVAL); 527 528 /* Common checks for supported algorithms. */ 529 switch (en->cipher_algorithm) { 530 case CRYPTO_AES_NIST_GCM_16: 531 /* 532 * auth_algorithm isn't used, but permit GMAC values 533 * for compatibility. 534 */ 535 switch (en->auth_algorithm) { 536 case 0: 537 #ifdef COMPAT_FREEBSD12 538 /* XXX: Really 13.0-current COMPAT. */ 539 case CRYPTO_AES_128_NIST_GMAC: 540 case CRYPTO_AES_192_NIST_GMAC: 541 case CRYPTO_AES_256_NIST_GMAC: 542 #endif 543 break; 544 default: 545 return (EINVAL); 546 } 547 if (en->auth_key_len != 0) 548 return (EINVAL); 549 switch (en->tls_vminor) { 550 case TLS_MINOR_VER_TWO: 551 if (en->iv_len != TLS_AEAD_GCM_LEN) 552 return (EINVAL); 553 break; 554 case TLS_MINOR_VER_THREE: 555 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 556 return (EINVAL); 557 break; 558 default: 559 return (EINVAL); 560 } 561 break; 562 case CRYPTO_AES_CBC: 563 switch (en->auth_algorithm) { 564 case CRYPTO_SHA1_HMAC: 565 break; 566 case CRYPTO_SHA2_256_HMAC: 567 case CRYPTO_SHA2_384_HMAC: 568 if (en->tls_vminor != TLS_MINOR_VER_TWO) 569 return (EINVAL); 570 break; 571 default: 572 return (EINVAL); 573 } 574 if (en->auth_key_len == 0) 575 return (EINVAL); 576 577 /* 578 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 579 * use explicit IVs. 580 */ 581 switch (en->tls_vminor) { 582 case TLS_MINOR_VER_ZERO: 583 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 584 return (EINVAL); 585 break; 586 case TLS_MINOR_VER_ONE: 587 case TLS_MINOR_VER_TWO: 588 /* Ignore any supplied IV. */ 589 en->iv_len = 0; 590 break; 591 default: 592 return (EINVAL); 593 } 594 break; 595 case CRYPTO_CHACHA20_POLY1305: 596 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 597 return (EINVAL); 598 if (en->tls_vminor != TLS_MINOR_VER_TWO && 599 en->tls_vminor != TLS_MINOR_VER_THREE) 600 return (EINVAL); 601 if (en->iv_len != TLS_CHACHA20_IV_LEN) 602 return (EINVAL); 603 break; 604 default: 605 return (EINVAL); 606 } 607 608 error = ktls_start_kthreads(); 609 if (error != 0) 610 return (error); 611 612 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 613 614 counter_u64_add(ktls_offload_active, 1); 615 616 refcount_init(&tls->refcount, 1); 617 if (direction == KTLS_RX) { 618 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 619 } else { 620 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 621 tls->inp = so->so_pcb; 622 in_pcbref(tls->inp); 623 tls->tx = true; 624 } 625 626 tls->wq_index = ktls_get_cpu(so); 627 628 tls->params.cipher_algorithm = en->cipher_algorithm; 629 tls->params.auth_algorithm = en->auth_algorithm; 630 tls->params.tls_vmajor = en->tls_vmajor; 631 tls->params.tls_vminor = en->tls_vminor; 632 tls->params.flags = en->flags; 633 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 634 635 /* Set the header and trailer lengths. */ 636 tls->params.tls_hlen = sizeof(struct tls_record_layer); 637 switch (en->cipher_algorithm) { 638 case CRYPTO_AES_NIST_GCM_16: 639 /* 640 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 641 * nonce. TLS 1.3 uses a 12 byte implicit IV. 642 */ 643 if (en->tls_vminor < TLS_MINOR_VER_THREE) 644 tls->params.tls_hlen += sizeof(uint64_t); 645 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 646 tls->params.tls_bs = 1; 647 break; 648 case CRYPTO_AES_CBC: 649 switch (en->auth_algorithm) { 650 case CRYPTO_SHA1_HMAC: 651 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 652 /* Implicit IV, no nonce. */ 653 tls->sequential_records = true; 654 tls->next_seqno = be64dec(en->rec_seq); 655 STAILQ_INIT(&tls->pending_records); 656 } else { 657 tls->params.tls_hlen += AES_BLOCK_LEN; 658 } 659 tls->params.tls_tlen = AES_BLOCK_LEN + 660 SHA1_HASH_LEN; 661 break; 662 case CRYPTO_SHA2_256_HMAC: 663 tls->params.tls_hlen += AES_BLOCK_LEN; 664 tls->params.tls_tlen = AES_BLOCK_LEN + 665 SHA2_256_HASH_LEN; 666 break; 667 case CRYPTO_SHA2_384_HMAC: 668 tls->params.tls_hlen += AES_BLOCK_LEN; 669 tls->params.tls_tlen = AES_BLOCK_LEN + 670 SHA2_384_HASH_LEN; 671 break; 672 default: 673 panic("invalid hmac"); 674 } 675 tls->params.tls_bs = AES_BLOCK_LEN; 676 break; 677 case CRYPTO_CHACHA20_POLY1305: 678 /* 679 * Chacha20 uses a 12 byte implicit IV. 680 */ 681 tls->params.tls_tlen = POLY1305_HASH_LEN; 682 tls->params.tls_bs = 1; 683 break; 684 default: 685 panic("invalid cipher"); 686 } 687 688 /* 689 * TLS 1.3 includes optional padding which we do not support, 690 * and also puts the "real" record type at the end of the 691 * encrypted data. 692 */ 693 if (en->tls_vminor == TLS_MINOR_VER_THREE) 694 tls->params.tls_tlen += sizeof(uint8_t); 695 696 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 697 ("TLS header length too long: %d", tls->params.tls_hlen)); 698 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 699 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 700 701 if (en->auth_key_len != 0) { 702 tls->params.auth_key_len = en->auth_key_len; 703 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 704 M_WAITOK); 705 error = copyin(en->auth_key, tls->params.auth_key, 706 en->auth_key_len); 707 if (error) 708 goto out; 709 } 710 711 tls->params.cipher_key_len = en->cipher_key_len; 712 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 713 error = copyin(en->cipher_key, tls->params.cipher_key, 714 en->cipher_key_len); 715 if (error) 716 goto out; 717 718 /* 719 * This holds the implicit portion of the nonce for AEAD 720 * ciphers and the initial implicit IV for TLS 1.0. The 721 * explicit portions of the IV are generated in ktls_frame(). 722 */ 723 if (en->iv_len != 0) { 724 tls->params.iv_len = en->iv_len; 725 error = copyin(en->iv, tls->params.iv, en->iv_len); 726 if (error) 727 goto out; 728 729 /* 730 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 731 * counter to generate unique explicit IVs. 732 * 733 * Store this counter in the last 8 bytes of the IV 734 * array so that it is 8-byte aligned. 735 */ 736 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 737 en->tls_vminor == TLS_MINOR_VER_TWO) 738 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 739 } 740 741 *tlsp = tls; 742 return (0); 743 744 out: 745 ktls_free(tls); 746 return (error); 747 } 748 749 static struct ktls_session * 750 ktls_clone_session(struct ktls_session *tls, int direction) 751 { 752 struct ktls_session *tls_new; 753 754 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 755 756 counter_u64_add(ktls_offload_active, 1); 757 758 refcount_init(&tls_new->refcount, 1); 759 if (direction == KTLS_RX) { 760 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 761 tls_new); 762 } else { 763 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 764 tls_new); 765 tls_new->inp = tls->inp; 766 tls_new->tx = true; 767 in_pcbref(tls_new->inp); 768 } 769 770 /* Copy fields from existing session. */ 771 tls_new->params = tls->params; 772 tls_new->wq_index = tls->wq_index; 773 774 /* Deep copy keys. */ 775 if (tls_new->params.auth_key != NULL) { 776 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 777 M_KTLS, M_WAITOK); 778 memcpy(tls_new->params.auth_key, tls->params.auth_key, 779 tls->params.auth_key_len); 780 } 781 782 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 783 M_WAITOK); 784 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 785 tls->params.cipher_key_len); 786 787 return (tls_new); 788 } 789 790 #ifdef TCP_OFFLOAD 791 static int 792 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 793 { 794 struct inpcb *inp; 795 struct tcpcb *tp; 796 int error; 797 798 inp = so->so_pcb; 799 INP_WLOCK(inp); 800 if (inp->inp_flags & INP_DROPPED) { 801 INP_WUNLOCK(inp); 802 return (ECONNRESET); 803 } 804 if (inp->inp_socket == NULL) { 805 INP_WUNLOCK(inp); 806 return (ECONNRESET); 807 } 808 tp = intotcpcb(inp); 809 if (!(tp->t_flags & TF_TOE)) { 810 INP_WUNLOCK(inp); 811 return (EOPNOTSUPP); 812 } 813 814 error = tcp_offload_alloc_tls_session(tp, tls, direction); 815 INP_WUNLOCK(inp); 816 if (error == 0) { 817 tls->mode = TCP_TLS_MODE_TOE; 818 switch (tls->params.cipher_algorithm) { 819 case CRYPTO_AES_CBC: 820 counter_u64_add(ktls_toe_cbc, 1); 821 break; 822 case CRYPTO_AES_NIST_GCM_16: 823 counter_u64_add(ktls_toe_gcm, 1); 824 break; 825 case CRYPTO_CHACHA20_POLY1305: 826 counter_u64_add(ktls_toe_chacha20, 1); 827 break; 828 } 829 } 830 return (error); 831 } 832 #endif 833 834 /* 835 * Common code used when first enabling ifnet TLS on a connection or 836 * when allocating a new ifnet TLS session due to a routing change. 837 * This function allocates a new TLS send tag on whatever interface 838 * the connection is currently routed over. 839 */ 840 static int 841 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 842 struct m_snd_tag **mstp) 843 { 844 union if_snd_tag_alloc_params params; 845 struct ifnet *ifp; 846 struct nhop_object *nh; 847 struct tcpcb *tp; 848 int error; 849 850 INP_RLOCK(inp); 851 if (inp->inp_flags & INP_DROPPED) { 852 INP_RUNLOCK(inp); 853 return (ECONNRESET); 854 } 855 if (inp->inp_socket == NULL) { 856 INP_RUNLOCK(inp); 857 return (ECONNRESET); 858 } 859 tp = intotcpcb(inp); 860 861 /* 862 * Check administrative controls on ifnet TLS to determine if 863 * ifnet TLS should be denied. 864 * 865 * - Always permit 'force' requests. 866 * - ktls_ifnet_permitted == 0: always deny. 867 */ 868 if (!force && ktls_ifnet_permitted == 0) { 869 INP_RUNLOCK(inp); 870 return (ENXIO); 871 } 872 873 /* 874 * XXX: Use the cached route in the inpcb to find the 875 * interface. This should perhaps instead use 876 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 877 * enabled after a connection has completed key negotiation in 878 * userland, the cached route will be present in practice. 879 */ 880 nh = inp->inp_route.ro_nh; 881 if (nh == NULL) { 882 INP_RUNLOCK(inp); 883 return (ENXIO); 884 } 885 ifp = nh->nh_ifp; 886 if_ref(ifp); 887 888 /* 889 * Allocate a TLS + ratelimit tag if the connection has an 890 * existing pacing rate. 891 */ 892 if (tp->t_pacing_rate != -1 && 893 (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) { 894 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 895 params.tls_rate_limit.inp = inp; 896 params.tls_rate_limit.tls = tls; 897 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 898 } else { 899 params.hdr.type = IF_SND_TAG_TYPE_TLS; 900 params.tls.inp = inp; 901 params.tls.tls = tls; 902 } 903 params.hdr.flowid = inp->inp_flowid; 904 params.hdr.flowtype = inp->inp_flowtype; 905 params.hdr.numa_domain = inp->inp_numa_domain; 906 INP_RUNLOCK(inp); 907 908 if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) { 909 error = EOPNOTSUPP; 910 goto out; 911 } 912 if (inp->inp_vflag & INP_IPV6) { 913 if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) { 914 error = EOPNOTSUPP; 915 goto out; 916 } 917 } else { 918 if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) { 919 error = EOPNOTSUPP; 920 goto out; 921 } 922 } 923 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 924 out: 925 if_rele(ifp); 926 return (error); 927 } 928 929 /* 930 * Allocate an initial TLS receive tag for doing HW decryption of TLS 931 * data. 932 * 933 * This function allocates a new TLS receive tag on whatever interface 934 * the connection is currently routed over. If the connection ends up 935 * using a different interface for receive this will get fixed up via 936 * ktls_input_ifp_mismatch as future packets arrive. 937 */ 938 static int 939 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 940 struct m_snd_tag **mstp) 941 { 942 union if_snd_tag_alloc_params params; 943 struct ifnet *ifp; 944 struct nhop_object *nh; 945 int error; 946 947 if (!ktls_ocf_recrypt_supported(tls)) 948 return (ENXIO); 949 950 INP_RLOCK(inp); 951 if (inp->inp_flags & INP_DROPPED) { 952 INP_RUNLOCK(inp); 953 return (ECONNRESET); 954 } 955 if (inp->inp_socket == NULL) { 956 INP_RUNLOCK(inp); 957 return (ECONNRESET); 958 } 959 960 /* 961 * Check administrative controls on ifnet TLS to determine if 962 * ifnet TLS should be denied. 963 */ 964 if (ktls_ifnet_permitted == 0) { 965 INP_RUNLOCK(inp); 966 return (ENXIO); 967 } 968 969 /* 970 * XXX: As with ktls_alloc_snd_tag, use the cached route in 971 * the inpcb to find the interface. 972 */ 973 nh = inp->inp_route.ro_nh; 974 if (nh == NULL) { 975 INP_RUNLOCK(inp); 976 return (ENXIO); 977 } 978 ifp = nh->nh_ifp; 979 if_ref(ifp); 980 tls->rx_ifp = ifp; 981 982 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 983 params.hdr.flowid = inp->inp_flowid; 984 params.hdr.flowtype = inp->inp_flowtype; 985 params.hdr.numa_domain = inp->inp_numa_domain; 986 params.tls_rx.inp = inp; 987 params.tls_rx.tls = tls; 988 params.tls_rx.vlan_id = 0; 989 990 INP_RUNLOCK(inp); 991 992 if (inp->inp_vflag & INP_IPV6) { 993 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) { 994 error = EOPNOTSUPP; 995 goto out; 996 } 997 } else { 998 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) { 999 error = EOPNOTSUPP; 1000 goto out; 1001 } 1002 } 1003 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1004 1005 /* 1006 * If this connection is over a vlan, vlan_snd_tag_alloc 1007 * rewrites vlan_id with the saved interface. Save the VLAN 1008 * ID for use in ktls_reset_receive_tag which allocates new 1009 * receive tags directly from the leaf interface bypassing 1010 * if_vlan. 1011 */ 1012 if (error == 0) 1013 tls->rx_vlan_id = params.tls_rx.vlan_id; 1014 out: 1015 return (error); 1016 } 1017 1018 static int 1019 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1020 bool force) 1021 { 1022 struct m_snd_tag *mst; 1023 int error; 1024 1025 switch (direction) { 1026 case KTLS_TX: 1027 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1028 if (__predict_false(error != 0)) 1029 goto done; 1030 break; 1031 case KTLS_RX: 1032 KASSERT(!force, ("%s: forced receive tag", __func__)); 1033 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1034 if (__predict_false(error != 0)) 1035 goto done; 1036 break; 1037 default: 1038 __assert_unreachable(); 1039 } 1040 1041 tls->mode = TCP_TLS_MODE_IFNET; 1042 tls->snd_tag = mst; 1043 1044 switch (tls->params.cipher_algorithm) { 1045 case CRYPTO_AES_CBC: 1046 counter_u64_add(ktls_ifnet_cbc, 1); 1047 break; 1048 case CRYPTO_AES_NIST_GCM_16: 1049 counter_u64_add(ktls_ifnet_gcm, 1); 1050 break; 1051 case CRYPTO_CHACHA20_POLY1305: 1052 counter_u64_add(ktls_ifnet_chacha20, 1); 1053 break; 1054 default: 1055 break; 1056 } 1057 done: 1058 return (error); 1059 } 1060 1061 static void 1062 ktls_use_sw(struct ktls_session *tls) 1063 { 1064 tls->mode = TCP_TLS_MODE_SW; 1065 switch (tls->params.cipher_algorithm) { 1066 case CRYPTO_AES_CBC: 1067 counter_u64_add(ktls_sw_cbc, 1); 1068 break; 1069 case CRYPTO_AES_NIST_GCM_16: 1070 counter_u64_add(ktls_sw_gcm, 1); 1071 break; 1072 case CRYPTO_CHACHA20_POLY1305: 1073 counter_u64_add(ktls_sw_chacha20, 1); 1074 break; 1075 } 1076 } 1077 1078 static int 1079 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1080 { 1081 int error; 1082 1083 error = ktls_ocf_try(so, tls, direction); 1084 if (error) 1085 return (error); 1086 ktls_use_sw(tls); 1087 return (0); 1088 } 1089 1090 /* 1091 * KTLS RX stores data in the socket buffer as a list of TLS records, 1092 * where each record is stored as a control message containg the TLS 1093 * header followed by data mbufs containing the decrypted data. This 1094 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1095 * both encrypted and decrypted data. TLS records decrypted by a NIC 1096 * should be queued to the socket buffer as records, but encrypted 1097 * data which needs to be decrypted by software arrives as a stream of 1098 * regular mbufs which need to be converted. In addition, there may 1099 * already be pending encrypted data in the socket buffer when KTLS RX 1100 * is enabled. 1101 * 1102 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1103 * is used: 1104 * 1105 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1106 * 1107 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1108 * from the first mbuf. Once all of the data for that TLS record is 1109 * queued, the socket is queued to a worker thread. 1110 * 1111 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1112 * the TLS chain. Each TLS record is detached from the TLS chain, 1113 * decrypted, and inserted into the regular socket buffer chain as 1114 * record starting with a control message holding the TLS header and 1115 * a chain of mbufs holding the encrypted data. 1116 */ 1117 1118 static void 1119 sb_mark_notready(struct sockbuf *sb) 1120 { 1121 struct mbuf *m; 1122 1123 m = sb->sb_mb; 1124 sb->sb_mtls = m; 1125 sb->sb_mb = NULL; 1126 sb->sb_mbtail = NULL; 1127 sb->sb_lastrecord = NULL; 1128 for (; m != NULL; m = m->m_next) { 1129 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1130 __func__)); 1131 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1132 __func__)); 1133 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1134 __func__)); 1135 m->m_flags |= M_NOTREADY; 1136 sb->sb_acc -= m->m_len; 1137 sb->sb_tlscc += m->m_len; 1138 sb->sb_mtlstail = m; 1139 } 1140 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1141 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1142 sb->sb_ccc)); 1143 } 1144 1145 /* 1146 * Return information about the pending TLS data in a socket 1147 * buffer. On return, 'seqno' is set to the sequence number 1148 * of the next TLS record to be received, 'resid' is set to 1149 * the amount of bytes still needed for the last pending 1150 * record. The function returns 'false' if the last pending 1151 * record contains a partial TLS header. In that case, 'resid' 1152 * is the number of bytes needed to complete the TLS header. 1153 */ 1154 bool 1155 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1156 { 1157 struct tls_record_layer hdr; 1158 struct mbuf *m; 1159 uint64_t seqno; 1160 size_t resid; 1161 u_int offset, record_len; 1162 1163 SOCKBUF_LOCK_ASSERT(sb); 1164 MPASS(sb->sb_flags & SB_TLS_RX); 1165 seqno = sb->sb_tls_seqno; 1166 resid = sb->sb_tlscc; 1167 m = sb->sb_mtls; 1168 offset = 0; 1169 1170 if (resid == 0) { 1171 *seqnop = seqno; 1172 *residp = 0; 1173 return (true); 1174 } 1175 1176 for (;;) { 1177 seqno++; 1178 1179 if (resid < sizeof(hdr)) { 1180 *seqnop = seqno; 1181 *residp = sizeof(hdr) - resid; 1182 return (false); 1183 } 1184 1185 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1186 1187 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1188 if (resid <= record_len) { 1189 *seqnop = seqno; 1190 *residp = record_len - resid; 1191 return (true); 1192 } 1193 resid -= record_len; 1194 1195 while (record_len != 0) { 1196 if (m->m_len - offset > record_len) { 1197 offset += record_len; 1198 break; 1199 } 1200 1201 record_len -= (m->m_len - offset); 1202 offset = 0; 1203 m = m->m_next; 1204 } 1205 } 1206 } 1207 1208 int 1209 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1210 { 1211 struct ktls_session *tls; 1212 int error; 1213 1214 if (!ktls_offload_enable) 1215 return (ENOTSUP); 1216 1217 counter_u64_add(ktls_offload_enable_calls, 1); 1218 1219 /* 1220 * This should always be true since only the TCP socket option 1221 * invokes this function. 1222 */ 1223 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1224 return (EINVAL); 1225 1226 /* 1227 * XXX: Don't overwrite existing sessions. We should permit 1228 * this to support rekeying in the future. 1229 */ 1230 if (so->so_rcv.sb_tls_info != NULL) 1231 return (EALREADY); 1232 1233 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1234 return (ENOTSUP); 1235 1236 error = ktls_create_session(so, en, &tls, KTLS_RX); 1237 if (error) 1238 return (error); 1239 1240 error = ktls_ocf_try(so, tls, KTLS_RX); 1241 if (error) { 1242 ktls_free(tls); 1243 return (error); 1244 } 1245 1246 /* Mark the socket as using TLS offload. */ 1247 SOCK_RECVBUF_LOCK(so); 1248 if (SOLISTENING(so)) { 1249 SOCK_RECVBUF_UNLOCK(so); 1250 ktls_free(tls); 1251 return (EINVAL); 1252 } 1253 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1254 so->so_rcv.sb_tls_info = tls; 1255 so->so_rcv.sb_flags |= SB_TLS_RX; 1256 1257 /* Mark existing data as not ready until it can be decrypted. */ 1258 sb_mark_notready(&so->so_rcv); 1259 ktls_check_rx(&so->so_rcv); 1260 SOCK_RECVBUF_UNLOCK(so); 1261 1262 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1263 #ifdef TCP_OFFLOAD 1264 error = ktls_try_toe(so, tls, KTLS_RX); 1265 if (error) 1266 #endif 1267 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1268 if (error) 1269 ktls_use_sw(tls); 1270 1271 counter_u64_add(ktls_offload_total, 1); 1272 1273 return (0); 1274 } 1275 1276 int 1277 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1278 { 1279 struct ktls_session *tls; 1280 struct inpcb *inp; 1281 struct tcpcb *tp; 1282 int error; 1283 1284 if (!ktls_offload_enable) 1285 return (ENOTSUP); 1286 1287 counter_u64_add(ktls_offload_enable_calls, 1); 1288 1289 /* 1290 * This should always be true since only the TCP socket option 1291 * invokes this function. 1292 */ 1293 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1294 return (EINVAL); 1295 1296 /* 1297 * XXX: Don't overwrite existing sessions. We should permit 1298 * this to support rekeying in the future. 1299 */ 1300 if (so->so_snd.sb_tls_info != NULL) 1301 return (EALREADY); 1302 1303 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1304 return (ENOTSUP); 1305 1306 /* TLS requires ext pgs */ 1307 if (mb_use_ext_pgs == 0) 1308 return (ENXIO); 1309 1310 error = ktls_create_session(so, en, &tls, KTLS_TX); 1311 if (error) 1312 return (error); 1313 1314 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1315 #ifdef TCP_OFFLOAD 1316 error = ktls_try_toe(so, tls, KTLS_TX); 1317 if (error) 1318 #endif 1319 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1320 if (error) 1321 error = ktls_try_sw(so, tls, KTLS_TX); 1322 1323 if (error) { 1324 ktls_free(tls); 1325 return (error); 1326 } 1327 1328 /* 1329 * Serialize with sosend_generic() and make sure that we're not 1330 * operating on a listening socket. 1331 */ 1332 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1333 if (error) { 1334 ktls_free(tls); 1335 return (error); 1336 } 1337 1338 /* 1339 * Write lock the INP when setting sb_tls_info so that 1340 * routines in tcp_ratelimit.c can read sb_tls_info while 1341 * holding the INP lock. 1342 */ 1343 inp = so->so_pcb; 1344 INP_WLOCK(inp); 1345 SOCK_SENDBUF_LOCK(so); 1346 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1347 so->so_snd.sb_tls_info = tls; 1348 if (tls->mode != TCP_TLS_MODE_SW) { 1349 tp = intotcpcb(inp); 1350 MPASS(tp->t_nic_ktls_xmit == 0); 1351 tp->t_nic_ktls_xmit = 1; 1352 if (tp->t_fb->tfb_hwtls_change != NULL) 1353 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1354 } 1355 SOCK_SENDBUF_UNLOCK(so); 1356 INP_WUNLOCK(inp); 1357 SOCK_IO_SEND_UNLOCK(so); 1358 1359 counter_u64_add(ktls_offload_total, 1); 1360 1361 return (0); 1362 } 1363 1364 int 1365 ktls_get_rx_mode(struct socket *so, int *modep) 1366 { 1367 struct ktls_session *tls; 1368 struct inpcb *inp __diagused; 1369 1370 if (SOLISTENING(so)) 1371 return (EINVAL); 1372 inp = so->so_pcb; 1373 INP_WLOCK_ASSERT(inp); 1374 SOCK_RECVBUF_LOCK(so); 1375 tls = so->so_rcv.sb_tls_info; 1376 if (tls == NULL) 1377 *modep = TCP_TLS_MODE_NONE; 1378 else 1379 *modep = tls->mode; 1380 SOCK_RECVBUF_UNLOCK(so); 1381 return (0); 1382 } 1383 1384 /* 1385 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1386 * 1387 * This function gets information about the next TCP- and TLS- 1388 * sequence number to be processed by the TLS receive worker 1389 * thread. The information is extracted from the given "inpcb" 1390 * structure. The values are stored in host endian format at the two 1391 * given output pointer locations. The TCP sequence number points to 1392 * the beginning of the TLS header. 1393 * 1394 * This function returns zero on success, else a non-zero error code 1395 * is returned. 1396 */ 1397 int 1398 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1399 { 1400 struct socket *so; 1401 struct tcpcb *tp; 1402 1403 INP_RLOCK(inp); 1404 so = inp->inp_socket; 1405 if (__predict_false(so == NULL)) { 1406 INP_RUNLOCK(inp); 1407 return (EINVAL); 1408 } 1409 if (inp->inp_flags & INP_DROPPED) { 1410 INP_RUNLOCK(inp); 1411 return (ECONNRESET); 1412 } 1413 1414 tp = intotcpcb(inp); 1415 MPASS(tp != NULL); 1416 1417 SOCKBUF_LOCK(&so->so_rcv); 1418 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1419 *tlsseq = so->so_rcv.sb_tls_seqno; 1420 SOCKBUF_UNLOCK(&so->so_rcv); 1421 1422 INP_RUNLOCK(inp); 1423 1424 return (0); 1425 } 1426 1427 int 1428 ktls_get_tx_mode(struct socket *so, int *modep) 1429 { 1430 struct ktls_session *tls; 1431 struct inpcb *inp __diagused; 1432 1433 if (SOLISTENING(so)) 1434 return (EINVAL); 1435 inp = so->so_pcb; 1436 INP_WLOCK_ASSERT(inp); 1437 SOCK_SENDBUF_LOCK(so); 1438 tls = so->so_snd.sb_tls_info; 1439 if (tls == NULL) 1440 *modep = TCP_TLS_MODE_NONE; 1441 else 1442 *modep = tls->mode; 1443 SOCK_SENDBUF_UNLOCK(so); 1444 return (0); 1445 } 1446 1447 /* 1448 * Switch between SW and ifnet TLS sessions as requested. 1449 */ 1450 int 1451 ktls_set_tx_mode(struct socket *so, int mode) 1452 { 1453 struct ktls_session *tls, *tls_new; 1454 struct inpcb *inp; 1455 struct tcpcb *tp; 1456 int error; 1457 1458 if (SOLISTENING(so)) 1459 return (EINVAL); 1460 switch (mode) { 1461 case TCP_TLS_MODE_SW: 1462 case TCP_TLS_MODE_IFNET: 1463 break; 1464 default: 1465 return (EINVAL); 1466 } 1467 1468 inp = so->so_pcb; 1469 INP_WLOCK_ASSERT(inp); 1470 tp = intotcpcb(inp); 1471 1472 if (mode == TCP_TLS_MODE_IFNET) { 1473 /* Don't allow enabling ifnet ktls multiple times */ 1474 if (tp->t_nic_ktls_xmit) 1475 return (EALREADY); 1476 1477 /* 1478 * Don't enable ifnet ktls if we disabled it due to an 1479 * excessive retransmission rate 1480 */ 1481 if (tp->t_nic_ktls_xmit_dis) 1482 return (ENXIO); 1483 } 1484 1485 SOCKBUF_LOCK(&so->so_snd); 1486 tls = so->so_snd.sb_tls_info; 1487 if (tls == NULL) { 1488 SOCKBUF_UNLOCK(&so->so_snd); 1489 return (0); 1490 } 1491 1492 if (tls->mode == mode) { 1493 SOCKBUF_UNLOCK(&so->so_snd); 1494 return (0); 1495 } 1496 1497 tls = ktls_hold(tls); 1498 SOCKBUF_UNLOCK(&so->so_snd); 1499 INP_WUNLOCK(inp); 1500 1501 tls_new = ktls_clone_session(tls, KTLS_TX); 1502 1503 if (mode == TCP_TLS_MODE_IFNET) 1504 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1505 else 1506 error = ktls_try_sw(so, tls_new, KTLS_TX); 1507 if (error) { 1508 counter_u64_add(ktls_switch_failed, 1); 1509 ktls_free(tls_new); 1510 ktls_free(tls); 1511 INP_WLOCK(inp); 1512 return (error); 1513 } 1514 1515 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1516 if (error) { 1517 counter_u64_add(ktls_switch_failed, 1); 1518 ktls_free(tls_new); 1519 ktls_free(tls); 1520 INP_WLOCK(inp); 1521 return (error); 1522 } 1523 1524 /* 1525 * If we raced with another session change, keep the existing 1526 * session. 1527 */ 1528 if (tls != so->so_snd.sb_tls_info) { 1529 counter_u64_add(ktls_switch_failed, 1); 1530 SOCK_IO_SEND_UNLOCK(so); 1531 ktls_free(tls_new); 1532 ktls_free(tls); 1533 INP_WLOCK(inp); 1534 return (EBUSY); 1535 } 1536 1537 INP_WLOCK(inp); 1538 SOCKBUF_LOCK(&so->so_snd); 1539 so->so_snd.sb_tls_info = tls_new; 1540 if (tls_new->mode != TCP_TLS_MODE_SW) { 1541 MPASS(tp->t_nic_ktls_xmit == 0); 1542 tp->t_nic_ktls_xmit = 1; 1543 if (tp->t_fb->tfb_hwtls_change != NULL) 1544 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1545 } 1546 SOCKBUF_UNLOCK(&so->so_snd); 1547 SOCK_IO_SEND_UNLOCK(so); 1548 1549 /* 1550 * Drop two references on 'tls'. The first is for the 1551 * ktls_hold() above. The second drops the reference from the 1552 * socket buffer. 1553 */ 1554 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1555 ktls_free(tls); 1556 ktls_free(tls); 1557 1558 if (mode == TCP_TLS_MODE_IFNET) 1559 counter_u64_add(ktls_switch_to_ifnet, 1); 1560 else 1561 counter_u64_add(ktls_switch_to_sw, 1); 1562 1563 return (0); 1564 } 1565 1566 /* 1567 * Try to allocate a new TLS receive tag. This task is scheduled when 1568 * sbappend_ktls_rx detects an input path change. If a new tag is 1569 * allocated, replace the tag in the TLS session. If a new tag cannot 1570 * be allocated, let the session fall back to software decryption. 1571 */ 1572 static void 1573 ktls_reset_receive_tag(void *context, int pending) 1574 { 1575 union if_snd_tag_alloc_params params; 1576 struct ktls_session *tls; 1577 struct m_snd_tag *mst; 1578 struct inpcb *inp; 1579 struct ifnet *ifp; 1580 struct socket *so; 1581 int error; 1582 1583 MPASS(pending == 1); 1584 1585 tls = context; 1586 so = tls->so; 1587 inp = so->so_pcb; 1588 ifp = NULL; 1589 1590 INP_RLOCK(inp); 1591 if (inp->inp_flags & INP_DROPPED) { 1592 INP_RUNLOCK(inp); 1593 goto out; 1594 } 1595 1596 SOCKBUF_LOCK(&so->so_rcv); 1597 mst = tls->snd_tag; 1598 tls->snd_tag = NULL; 1599 if (mst != NULL) 1600 m_snd_tag_rele(mst); 1601 1602 ifp = tls->rx_ifp; 1603 if_ref(ifp); 1604 SOCKBUF_UNLOCK(&so->so_rcv); 1605 1606 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1607 params.hdr.flowid = inp->inp_flowid; 1608 params.hdr.flowtype = inp->inp_flowtype; 1609 params.hdr.numa_domain = inp->inp_numa_domain; 1610 params.tls_rx.inp = inp; 1611 params.tls_rx.tls = tls; 1612 params.tls_rx.vlan_id = tls->rx_vlan_id; 1613 INP_RUNLOCK(inp); 1614 1615 if (inp->inp_vflag & INP_IPV6) { 1616 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) 1617 goto out; 1618 } else { 1619 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) 1620 goto out; 1621 } 1622 1623 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1624 if (error == 0) { 1625 SOCKBUF_LOCK(&so->so_rcv); 1626 tls->snd_tag = mst; 1627 SOCKBUF_UNLOCK(&so->so_rcv); 1628 1629 counter_u64_add(ktls_ifnet_reset, 1); 1630 } else { 1631 /* 1632 * Just fall back to software decryption if a tag 1633 * cannot be allocated leaving the connection intact. 1634 * If a future input path change switches to another 1635 * interface this connection will resume ifnet TLS. 1636 */ 1637 counter_u64_add(ktls_ifnet_reset_failed, 1); 1638 } 1639 1640 out: 1641 mtx_pool_lock(mtxpool_sleep, tls); 1642 tls->reset_pending = false; 1643 mtx_pool_unlock(mtxpool_sleep, tls); 1644 1645 if (ifp != NULL) 1646 if_rele(ifp); 1647 sorele(so); 1648 ktls_free(tls); 1649 } 1650 1651 /* 1652 * Try to allocate a new TLS send tag. This task is scheduled when 1653 * ip_output detects a route change while trying to transmit a packet 1654 * holding a TLS record. If a new tag is allocated, replace the tag 1655 * in the TLS session. Subsequent packets on the connection will use 1656 * the new tag. If a new tag cannot be allocated, drop the 1657 * connection. 1658 */ 1659 static void 1660 ktls_reset_send_tag(void *context, int pending) 1661 { 1662 struct epoch_tracker et; 1663 struct ktls_session *tls; 1664 struct m_snd_tag *old, *new; 1665 struct inpcb *inp; 1666 struct tcpcb *tp; 1667 int error; 1668 1669 MPASS(pending == 1); 1670 1671 tls = context; 1672 inp = tls->inp; 1673 1674 /* 1675 * Free the old tag first before allocating a new one. 1676 * ip[6]_output_send() will treat a NULL send tag the same as 1677 * an ifp mismatch and drop packets until a new tag is 1678 * allocated. 1679 * 1680 * Write-lock the INP when changing tls->snd_tag since 1681 * ip[6]_output_send() holds a read-lock when reading the 1682 * pointer. 1683 */ 1684 INP_WLOCK(inp); 1685 old = tls->snd_tag; 1686 tls->snd_tag = NULL; 1687 INP_WUNLOCK(inp); 1688 if (old != NULL) 1689 m_snd_tag_rele(old); 1690 1691 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1692 1693 if (error == 0) { 1694 INP_WLOCK(inp); 1695 tls->snd_tag = new; 1696 mtx_pool_lock(mtxpool_sleep, tls); 1697 tls->reset_pending = false; 1698 mtx_pool_unlock(mtxpool_sleep, tls); 1699 INP_WUNLOCK(inp); 1700 1701 counter_u64_add(ktls_ifnet_reset, 1); 1702 1703 /* 1704 * XXX: Should we kick tcp_output explicitly now that 1705 * the send tag is fixed or just rely on timers? 1706 */ 1707 } else { 1708 NET_EPOCH_ENTER(et); 1709 INP_WLOCK(inp); 1710 if (!(inp->inp_flags & INP_DROPPED)) { 1711 tp = intotcpcb(inp); 1712 CURVNET_SET(inp->inp_vnet); 1713 tp = tcp_drop(tp, ECONNABORTED); 1714 CURVNET_RESTORE(); 1715 if (tp != NULL) { 1716 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1717 INP_WUNLOCK(inp); 1718 } 1719 } else 1720 INP_WUNLOCK(inp); 1721 NET_EPOCH_EXIT(et); 1722 1723 counter_u64_add(ktls_ifnet_reset_failed, 1); 1724 1725 /* 1726 * Leave reset_pending true to avoid future tasks while 1727 * the socket goes away. 1728 */ 1729 } 1730 1731 ktls_free(tls); 1732 } 1733 1734 void 1735 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1736 { 1737 struct ktls_session *tls; 1738 struct socket *so; 1739 1740 SOCKBUF_LOCK_ASSERT(sb); 1741 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1742 __func__, sb)); 1743 so = __containerof(sb, struct socket, so_rcv); 1744 1745 tls = sb->sb_tls_info; 1746 if_rele(tls->rx_ifp); 1747 if_ref(ifp); 1748 tls->rx_ifp = ifp; 1749 1750 /* 1751 * See if we should schedule a task to update the receive tag for 1752 * this session. 1753 */ 1754 mtx_pool_lock(mtxpool_sleep, tls); 1755 if (!tls->reset_pending) { 1756 (void) ktls_hold(tls); 1757 soref(so); 1758 tls->so = so; 1759 tls->reset_pending = true; 1760 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1761 } 1762 mtx_pool_unlock(mtxpool_sleep, tls); 1763 } 1764 1765 int 1766 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1767 { 1768 1769 if (inp == NULL) 1770 return (ENOBUFS); 1771 1772 INP_LOCK_ASSERT(inp); 1773 1774 /* 1775 * See if we should schedule a task to update the send tag for 1776 * this session. 1777 */ 1778 mtx_pool_lock(mtxpool_sleep, tls); 1779 if (!tls->reset_pending) { 1780 (void) ktls_hold(tls); 1781 tls->reset_pending = true; 1782 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1783 } 1784 mtx_pool_unlock(mtxpool_sleep, tls); 1785 return (ENOBUFS); 1786 } 1787 1788 #ifdef RATELIMIT 1789 int 1790 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1791 { 1792 union if_snd_tag_modify_params params = { 1793 .rate_limit.max_rate = max_pacing_rate, 1794 .rate_limit.flags = M_NOWAIT, 1795 }; 1796 struct m_snd_tag *mst; 1797 1798 /* Can't get to the inp, but it should be locked. */ 1799 /* INP_LOCK_ASSERT(inp); */ 1800 1801 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1802 1803 if (tls->snd_tag == NULL) { 1804 /* 1805 * Resetting send tag, ignore this change. The 1806 * pending reset may or may not see this updated rate 1807 * in the tcpcb. If it doesn't, we will just lose 1808 * this rate change. 1809 */ 1810 return (0); 1811 } 1812 1813 mst = tls->snd_tag; 1814 1815 MPASS(mst != NULL); 1816 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1817 1818 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1819 } 1820 #endif 1821 1822 static void 1823 ktls_destroy_help(void *context, int pending __unused) 1824 { 1825 ktls_destroy(context); 1826 } 1827 1828 void 1829 ktls_destroy(struct ktls_session *tls) 1830 { 1831 struct inpcb *inp; 1832 struct tcpcb *tp; 1833 bool wlocked; 1834 1835 MPASS(tls->refcount == 0); 1836 1837 inp = tls->inp; 1838 if (tls->tx) { 1839 wlocked = INP_WLOCKED(inp); 1840 if (!wlocked && !INP_TRY_WLOCK(inp)) { 1841 /* 1842 * rwlocks read locks are anonymous, and there 1843 * is no way to know if our current thread 1844 * holds an rlock on the inp. As a rough 1845 * estimate, check to see if the thread holds 1846 * *any* rlocks at all. If it does not, then we 1847 * know that we don't hold the inp rlock, and 1848 * can safely take the wlock 1849 */ 1850 if (curthread->td_rw_rlocks == 0) { 1851 INP_WLOCK(inp); 1852 } else { 1853 /* 1854 * We might hold the rlock, so let's 1855 * do the destroy in a taskqueue 1856 * context to avoid a potential 1857 * deadlock. This should be very 1858 * rare. 1859 */ 1860 counter_u64_add(ktls_destroy_task, 1); 1861 TASK_INIT(&tls->destroy_task, 0, 1862 ktls_destroy_help, tls); 1863 (void)taskqueue_enqueue(taskqueue_thread, 1864 &tls->destroy_task); 1865 return; 1866 } 1867 } 1868 } 1869 1870 if (tls->sequential_records) { 1871 struct mbuf *m, *n; 1872 int page_count; 1873 1874 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1875 page_count = m->m_epg_enc_cnt; 1876 while (page_count > 0) { 1877 KASSERT(page_count >= m->m_epg_nrdy, 1878 ("%s: too few pages", __func__)); 1879 page_count -= m->m_epg_nrdy; 1880 m = m_free(m); 1881 } 1882 } 1883 } 1884 1885 counter_u64_add(ktls_offload_active, -1); 1886 switch (tls->mode) { 1887 case TCP_TLS_MODE_SW: 1888 switch (tls->params.cipher_algorithm) { 1889 case CRYPTO_AES_CBC: 1890 counter_u64_add(ktls_sw_cbc, -1); 1891 break; 1892 case CRYPTO_AES_NIST_GCM_16: 1893 counter_u64_add(ktls_sw_gcm, -1); 1894 break; 1895 case CRYPTO_CHACHA20_POLY1305: 1896 counter_u64_add(ktls_sw_chacha20, -1); 1897 break; 1898 } 1899 break; 1900 case TCP_TLS_MODE_IFNET: 1901 switch (tls->params.cipher_algorithm) { 1902 case CRYPTO_AES_CBC: 1903 counter_u64_add(ktls_ifnet_cbc, -1); 1904 break; 1905 case CRYPTO_AES_NIST_GCM_16: 1906 counter_u64_add(ktls_ifnet_gcm, -1); 1907 break; 1908 case CRYPTO_CHACHA20_POLY1305: 1909 counter_u64_add(ktls_ifnet_chacha20, -1); 1910 break; 1911 } 1912 if (tls->snd_tag != NULL) 1913 m_snd_tag_rele(tls->snd_tag); 1914 if (tls->rx_ifp != NULL) 1915 if_rele(tls->rx_ifp); 1916 if (tls->tx) { 1917 INP_WLOCK_ASSERT(inp); 1918 tp = intotcpcb(inp); 1919 MPASS(tp->t_nic_ktls_xmit == 1); 1920 tp->t_nic_ktls_xmit = 0; 1921 } 1922 break; 1923 #ifdef TCP_OFFLOAD 1924 case TCP_TLS_MODE_TOE: 1925 switch (tls->params.cipher_algorithm) { 1926 case CRYPTO_AES_CBC: 1927 counter_u64_add(ktls_toe_cbc, -1); 1928 break; 1929 case CRYPTO_AES_NIST_GCM_16: 1930 counter_u64_add(ktls_toe_gcm, -1); 1931 break; 1932 case CRYPTO_CHACHA20_POLY1305: 1933 counter_u64_add(ktls_toe_chacha20, -1); 1934 break; 1935 } 1936 break; 1937 #endif 1938 } 1939 if (tls->ocf_session != NULL) 1940 ktls_ocf_free(tls); 1941 if (tls->params.auth_key != NULL) { 1942 zfree(tls->params.auth_key, M_KTLS); 1943 tls->params.auth_key = NULL; 1944 tls->params.auth_key_len = 0; 1945 } 1946 if (tls->params.cipher_key != NULL) { 1947 zfree(tls->params.cipher_key, M_KTLS); 1948 tls->params.cipher_key = NULL; 1949 tls->params.cipher_key_len = 0; 1950 } 1951 if (tls->tx) { 1952 INP_WLOCK_ASSERT(inp); 1953 if (!in_pcbrele_wlocked(inp) && !wlocked) 1954 INP_WUNLOCK(inp); 1955 } 1956 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 1957 1958 uma_zfree(ktls_session_zone, tls); 1959 } 1960 1961 void 1962 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1963 { 1964 1965 for (; m != NULL; m = m->m_next) { 1966 KASSERT((m->m_flags & M_EXTPG) != 0, 1967 ("ktls_seq: mapped mbuf %p", m)); 1968 1969 m->m_epg_seqno = sb->sb_tls_seqno; 1970 sb->sb_tls_seqno++; 1971 } 1972 } 1973 1974 /* 1975 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1976 * mbuf in the chain must be an unmapped mbuf. The payload of the 1977 * mbuf must be populated with the payload of each TLS record. 1978 * 1979 * The record_type argument specifies the TLS record type used when 1980 * populating the TLS header. 1981 * 1982 * The enq_count argument on return is set to the number of pages of 1983 * payload data for this entire chain that need to be encrypted via SW 1984 * encryption. The returned value should be passed to ktls_enqueue 1985 * when scheduling encryption of this chain of mbufs. To handle the 1986 * special case of empty fragments for TLS 1.0 sessions, an empty 1987 * fragment counts as one page. 1988 */ 1989 void 1990 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1991 uint8_t record_type) 1992 { 1993 struct tls_record_layer *tlshdr; 1994 struct mbuf *m; 1995 uint64_t *noncep; 1996 uint16_t tls_len; 1997 int maxlen __diagused; 1998 1999 maxlen = tls->params.max_frame_len; 2000 *enq_cnt = 0; 2001 for (m = top; m != NULL; m = m->m_next) { 2002 /* 2003 * All mbufs in the chain should be TLS records whose 2004 * payload does not exceed the maximum frame length. 2005 * 2006 * Empty TLS 1.0 records are permitted when using CBC. 2007 */ 2008 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 2009 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 2010 ("ktls_frame: m %p len %d", m, m->m_len)); 2011 2012 /* 2013 * TLS frames require unmapped mbufs to store session 2014 * info. 2015 */ 2016 KASSERT((m->m_flags & M_EXTPG) != 0, 2017 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 2018 2019 tls_len = m->m_len; 2020 2021 /* Save a reference to the session. */ 2022 m->m_epg_tls = ktls_hold(tls); 2023 2024 m->m_epg_hdrlen = tls->params.tls_hlen; 2025 m->m_epg_trllen = tls->params.tls_tlen; 2026 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 2027 int bs, delta; 2028 2029 /* 2030 * AES-CBC pads messages to a multiple of the 2031 * block size. Note that the padding is 2032 * applied after the digest and the encryption 2033 * is done on the "plaintext || mac || padding". 2034 * At least one byte of padding is always 2035 * present. 2036 * 2037 * Compute the final trailer length assuming 2038 * at most one block of padding. 2039 * tls->params.tls_tlen is the maximum 2040 * possible trailer length (padding + digest). 2041 * delta holds the number of excess padding 2042 * bytes if the maximum were used. Those 2043 * extra bytes are removed. 2044 */ 2045 bs = tls->params.tls_bs; 2046 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 2047 m->m_epg_trllen -= delta; 2048 } 2049 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 2050 2051 /* Populate the TLS header. */ 2052 tlshdr = (void *)m->m_epg_hdr; 2053 tlshdr->tls_vmajor = tls->params.tls_vmajor; 2054 2055 /* 2056 * TLS 1.3 masquarades as TLS 1.2 with a record type 2057 * of TLS_RLTYPE_APP. 2058 */ 2059 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 2060 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 2061 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 2062 tlshdr->tls_type = TLS_RLTYPE_APP; 2063 /* save the real record type for later */ 2064 m->m_epg_record_type = record_type; 2065 m->m_epg_trail[0] = record_type; 2066 } else { 2067 tlshdr->tls_vminor = tls->params.tls_vminor; 2068 tlshdr->tls_type = record_type; 2069 } 2070 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 2071 2072 /* 2073 * Store nonces / explicit IVs after the end of the 2074 * TLS header. 2075 * 2076 * For GCM with TLS 1.2, an 8 byte nonce is copied 2077 * from the end of the IV. The nonce is then 2078 * incremented for use by the next record. 2079 * 2080 * For CBC, a random nonce is inserted for TLS 1.1+. 2081 */ 2082 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2083 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2084 noncep = (uint64_t *)(tls->params.iv + 8); 2085 be64enc(tlshdr + 1, *noncep); 2086 (*noncep)++; 2087 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2088 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2089 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2090 2091 /* 2092 * When using SW encryption, mark the mbuf not ready. 2093 * It will be marked ready via sbready() after the 2094 * record has been encrypted. 2095 * 2096 * When using ifnet TLS, unencrypted TLS records are 2097 * sent down the stack to the NIC. 2098 */ 2099 if (tls->mode == TCP_TLS_MODE_SW) { 2100 m->m_flags |= M_NOTREADY; 2101 if (__predict_false(tls_len == 0)) { 2102 /* TLS 1.0 empty fragment. */ 2103 m->m_epg_nrdy = 1; 2104 } else 2105 m->m_epg_nrdy = m->m_epg_npgs; 2106 *enq_cnt += m->m_epg_nrdy; 2107 } 2108 } 2109 } 2110 2111 bool 2112 ktls_permit_empty_frames(struct ktls_session *tls) 2113 { 2114 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2115 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2116 } 2117 2118 void 2119 ktls_check_rx(struct sockbuf *sb) 2120 { 2121 struct tls_record_layer hdr; 2122 struct ktls_wq *wq; 2123 struct socket *so; 2124 bool running; 2125 2126 SOCKBUF_LOCK_ASSERT(sb); 2127 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2128 __func__, sb)); 2129 so = __containerof(sb, struct socket, so_rcv); 2130 2131 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2132 return; 2133 2134 /* Is there enough queued for a TLS header? */ 2135 if (sb->sb_tlscc < sizeof(hdr)) { 2136 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2137 so->so_error = EMSGSIZE; 2138 return; 2139 } 2140 2141 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2142 2143 /* Is the entire record queued? */ 2144 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2145 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2146 so->so_error = EMSGSIZE; 2147 return; 2148 } 2149 2150 sb->sb_flags |= SB_TLS_RX_RUNNING; 2151 2152 soref(so); 2153 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2154 mtx_lock(&wq->mtx); 2155 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2156 running = wq->running; 2157 mtx_unlock(&wq->mtx); 2158 if (!running) 2159 wakeup(wq); 2160 counter_u64_add(ktls_cnt_rx_queued, 1); 2161 } 2162 2163 static struct mbuf * 2164 ktls_detach_record(struct sockbuf *sb, int len) 2165 { 2166 struct mbuf *m, *n, *top; 2167 int remain; 2168 2169 SOCKBUF_LOCK_ASSERT(sb); 2170 MPASS(len <= sb->sb_tlscc); 2171 2172 /* 2173 * If TLS chain is the exact size of the record, 2174 * just grab the whole record. 2175 */ 2176 top = sb->sb_mtls; 2177 if (sb->sb_tlscc == len) { 2178 sb->sb_mtls = NULL; 2179 sb->sb_mtlstail = NULL; 2180 goto out; 2181 } 2182 2183 /* 2184 * While it would be nice to use m_split() here, we need 2185 * to know exactly what m_split() allocates to update the 2186 * accounting, so do it inline instead. 2187 */ 2188 remain = len; 2189 for (m = top; remain > m->m_len; m = m->m_next) 2190 remain -= m->m_len; 2191 2192 /* Easy case: don't have to split 'm'. */ 2193 if (remain == m->m_len) { 2194 sb->sb_mtls = m->m_next; 2195 if (sb->sb_mtls == NULL) 2196 sb->sb_mtlstail = NULL; 2197 m->m_next = NULL; 2198 goto out; 2199 } 2200 2201 /* 2202 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2203 * with M_NOWAIT first. 2204 */ 2205 n = m_get(M_NOWAIT, MT_DATA); 2206 if (n == NULL) { 2207 /* 2208 * Use M_WAITOK with socket buffer unlocked. If 2209 * 'sb_mtls' changes while the lock is dropped, return 2210 * NULL to force the caller to retry. 2211 */ 2212 SOCKBUF_UNLOCK(sb); 2213 2214 n = m_get(M_WAITOK, MT_DATA); 2215 2216 SOCKBUF_LOCK(sb); 2217 if (sb->sb_mtls != top) { 2218 m_free(n); 2219 return (NULL); 2220 } 2221 } 2222 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2223 2224 /* Store remainder in 'n'. */ 2225 n->m_len = m->m_len - remain; 2226 if (m->m_flags & M_EXT) { 2227 n->m_data = m->m_data + remain; 2228 mb_dupcl(n, m); 2229 } else { 2230 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2231 } 2232 2233 /* Trim 'm' and update accounting. */ 2234 m->m_len -= n->m_len; 2235 sb->sb_tlscc -= n->m_len; 2236 sb->sb_ccc -= n->m_len; 2237 2238 /* Account for 'n'. */ 2239 sballoc_ktls_rx(sb, n); 2240 2241 /* Insert 'n' into the TLS chain. */ 2242 sb->sb_mtls = n; 2243 n->m_next = m->m_next; 2244 if (sb->sb_mtlstail == m) 2245 sb->sb_mtlstail = n; 2246 2247 /* Detach the record from the TLS chain. */ 2248 m->m_next = NULL; 2249 2250 out: 2251 MPASS(m_length(top, NULL) == len); 2252 for (m = top; m != NULL; m = m->m_next) 2253 sbfree_ktls_rx(sb, m); 2254 sb->sb_tlsdcc = len; 2255 sb->sb_ccc += len; 2256 SBCHECK(sb); 2257 return (top); 2258 } 2259 2260 /* 2261 * Determine the length of the trailing zero padding and find the real 2262 * record type in the byte before the padding. 2263 * 2264 * Walking the mbuf chain backwards is clumsy, so another option would 2265 * be to scan forwards remembering the last non-zero byte before the 2266 * trailer. However, it would be expensive to scan the entire record. 2267 * Instead, find the last non-zero byte of each mbuf in the chain 2268 * keeping track of the relative offset of that nonzero byte. 2269 * 2270 * trail_len is the size of the MAC/tag on input and is set to the 2271 * size of the full trailer including padding and the record type on 2272 * return. 2273 */ 2274 static int 2275 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2276 int *trailer_len, uint8_t *record_typep) 2277 { 2278 char *cp; 2279 u_int digest_start, last_offset, m_len, offset; 2280 uint8_t record_type; 2281 2282 digest_start = tls_len - *trailer_len; 2283 last_offset = 0; 2284 offset = 0; 2285 for (; m != NULL && offset < digest_start; 2286 offset += m->m_len, m = m->m_next) { 2287 /* Don't look for padding in the tag. */ 2288 m_len = min(digest_start - offset, m->m_len); 2289 cp = mtod(m, char *); 2290 2291 /* Find last non-zero byte in this mbuf. */ 2292 while (m_len > 0 && cp[m_len - 1] == 0) 2293 m_len--; 2294 if (m_len > 0) { 2295 record_type = cp[m_len - 1]; 2296 last_offset = offset + m_len; 2297 } 2298 } 2299 if (last_offset < tls->params.tls_hlen) 2300 return (EBADMSG); 2301 2302 *record_typep = record_type; 2303 *trailer_len = tls_len - last_offset + 1; 2304 return (0); 2305 } 2306 2307 /* 2308 * Check if a mbuf chain is fully decrypted at the given offset and 2309 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2310 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2311 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2312 * is encrypted. 2313 */ 2314 ktls_mbuf_crypto_st_t 2315 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2316 { 2317 int m_flags_ored = 0; 2318 int m_flags_anded = -1; 2319 2320 for (; mb != NULL; mb = mb->m_next) { 2321 if (offset < mb->m_len) 2322 break; 2323 offset -= mb->m_len; 2324 } 2325 offset += len; 2326 2327 for (; mb != NULL; mb = mb->m_next) { 2328 m_flags_ored |= mb->m_flags; 2329 m_flags_anded &= mb->m_flags; 2330 2331 if (offset <= mb->m_len) 2332 break; 2333 offset -= mb->m_len; 2334 } 2335 MPASS(mb != NULL || offset == 0); 2336 2337 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2338 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2339 else 2340 return ((m_flags_ored & M_DECRYPTED) ? 2341 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2342 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2343 } 2344 2345 /* 2346 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2347 */ 2348 static int 2349 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2350 { 2351 union if_snd_tag_modify_params params; 2352 struct m_snd_tag *mst; 2353 struct inpcb *inp; 2354 struct tcpcb *tp; 2355 2356 mst = so->so_rcv.sb_tls_info->snd_tag; 2357 if (__predict_false(mst == NULL)) 2358 return (EINVAL); 2359 2360 inp = sotoinpcb(so); 2361 if (__predict_false(inp == NULL)) 2362 return (EINVAL); 2363 2364 INP_RLOCK(inp); 2365 if (inp->inp_flags & INP_DROPPED) { 2366 INP_RUNLOCK(inp); 2367 return (ECONNRESET); 2368 } 2369 2370 tp = intotcpcb(inp); 2371 MPASS(tp != NULL); 2372 2373 /* Get the TCP sequence number of the next valid TLS header. */ 2374 SOCKBUF_LOCK(&so->so_rcv); 2375 params.tls_rx.tls_hdr_tcp_sn = 2376 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2377 params.tls_rx.tls_rec_length = tls_len; 2378 params.tls_rx.tls_seq_number = tls_rcd_num; 2379 SOCKBUF_UNLOCK(&so->so_rcv); 2380 2381 INP_RUNLOCK(inp); 2382 2383 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2384 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2385 } 2386 2387 static void 2388 ktls_drop(struct socket *so, int error) 2389 { 2390 struct epoch_tracker et; 2391 struct inpcb *inp = sotoinpcb(so); 2392 struct tcpcb *tp; 2393 2394 NET_EPOCH_ENTER(et); 2395 INP_WLOCK(inp); 2396 if (!(inp->inp_flags & INP_DROPPED)) { 2397 tp = intotcpcb(inp); 2398 CURVNET_SET(inp->inp_vnet); 2399 tp = tcp_drop(tp, error); 2400 CURVNET_RESTORE(); 2401 if (tp != NULL) 2402 INP_WUNLOCK(inp); 2403 } else { 2404 so->so_error = error; 2405 SOCK_RECVBUF_LOCK(so); 2406 sorwakeup_locked(so); 2407 INP_WUNLOCK(inp); 2408 } 2409 NET_EPOCH_EXIT(et); 2410 } 2411 2412 static void 2413 ktls_decrypt(struct socket *so) 2414 { 2415 char tls_header[MBUF_PEXT_HDR_LEN]; 2416 struct ktls_session *tls; 2417 struct sockbuf *sb; 2418 struct tls_record_layer *hdr; 2419 struct tls_get_record tgr; 2420 struct mbuf *control, *data, *m; 2421 ktls_mbuf_crypto_st_t state; 2422 uint64_t seqno; 2423 int error, remain, tls_len, trail_len; 2424 bool tls13; 2425 uint8_t vminor, record_type; 2426 2427 hdr = (struct tls_record_layer *)tls_header; 2428 sb = &so->so_rcv; 2429 SOCKBUF_LOCK(sb); 2430 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2431 ("%s: socket %p not running", __func__, so)); 2432 2433 tls = sb->sb_tls_info; 2434 MPASS(tls != NULL); 2435 2436 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2437 if (tls13) 2438 vminor = TLS_MINOR_VER_TWO; 2439 else 2440 vminor = tls->params.tls_vminor; 2441 for (;;) { 2442 /* Is there enough queued for a TLS header? */ 2443 if (sb->sb_tlscc < tls->params.tls_hlen) 2444 break; 2445 2446 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2447 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2448 2449 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2450 hdr->tls_vminor != vminor) 2451 error = EINVAL; 2452 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2453 error = EINVAL; 2454 else if (tls_len < tls->params.tls_hlen || tls_len > 2455 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2456 tls->params.tls_tlen) 2457 error = EMSGSIZE; 2458 else 2459 error = 0; 2460 if (__predict_false(error != 0)) { 2461 /* 2462 * We have a corrupted record and are likely 2463 * out of sync. The connection isn't 2464 * recoverable at this point, so abort it. 2465 */ 2466 SOCKBUF_UNLOCK(sb); 2467 counter_u64_add(ktls_offload_corrupted_records, 1); 2468 2469 ktls_drop(so, error); 2470 goto deref; 2471 } 2472 2473 /* Is the entire record queued? */ 2474 if (sb->sb_tlscc < tls_len) 2475 break; 2476 2477 /* 2478 * Split out the portion of the mbuf chain containing 2479 * this TLS record. 2480 */ 2481 data = ktls_detach_record(sb, tls_len); 2482 if (data == NULL) 2483 continue; 2484 MPASS(sb->sb_tlsdcc == tls_len); 2485 2486 seqno = sb->sb_tls_seqno; 2487 sb->sb_tls_seqno++; 2488 SBCHECK(sb); 2489 SOCKBUF_UNLOCK(sb); 2490 2491 /* get crypto state for this TLS record */ 2492 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2493 2494 switch (state) { 2495 case KTLS_MBUF_CRYPTO_ST_MIXED: 2496 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2497 if (error) 2498 break; 2499 /* FALLTHROUGH */ 2500 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2501 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2502 &trail_len); 2503 if (__predict_true(error == 0)) { 2504 if (tls13) { 2505 error = tls13_find_record_type(tls, data, 2506 tls_len, &trail_len, &record_type); 2507 } else { 2508 record_type = hdr->tls_type; 2509 } 2510 } 2511 break; 2512 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2513 /* 2514 * NIC TLS is only supported for AEAD 2515 * ciphersuites which used a fixed sized 2516 * trailer. 2517 */ 2518 if (tls13) { 2519 trail_len = tls->params.tls_tlen - 1; 2520 error = tls13_find_record_type(tls, data, 2521 tls_len, &trail_len, &record_type); 2522 } else { 2523 trail_len = tls->params.tls_tlen; 2524 error = 0; 2525 record_type = hdr->tls_type; 2526 } 2527 break; 2528 default: 2529 error = EINVAL; 2530 break; 2531 } 2532 if (error) { 2533 counter_u64_add(ktls_offload_failed_crypto, 1); 2534 2535 SOCKBUF_LOCK(sb); 2536 if (sb->sb_tlsdcc == 0) { 2537 /* 2538 * sbcut/drop/flush discarded these 2539 * mbufs. 2540 */ 2541 m_freem(data); 2542 break; 2543 } 2544 2545 /* 2546 * Drop this TLS record's data, but keep 2547 * decrypting subsequent records. 2548 */ 2549 sb->sb_ccc -= tls_len; 2550 sb->sb_tlsdcc = 0; 2551 2552 if (error != EMSGSIZE) 2553 error = EBADMSG; 2554 CURVNET_SET(so->so_vnet); 2555 so->so_error = error; 2556 sorwakeup_locked(so); 2557 CURVNET_RESTORE(); 2558 2559 m_freem(data); 2560 2561 SOCKBUF_LOCK(sb); 2562 continue; 2563 } 2564 2565 /* Allocate the control mbuf. */ 2566 memset(&tgr, 0, sizeof(tgr)); 2567 tgr.tls_type = record_type; 2568 tgr.tls_vmajor = hdr->tls_vmajor; 2569 tgr.tls_vminor = hdr->tls_vminor; 2570 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2571 trail_len); 2572 control = sbcreatecontrol(&tgr, sizeof(tgr), 2573 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2574 2575 SOCKBUF_LOCK(sb); 2576 if (sb->sb_tlsdcc == 0) { 2577 /* sbcut/drop/flush discarded these mbufs. */ 2578 MPASS(sb->sb_tlscc == 0); 2579 m_freem(data); 2580 m_freem(control); 2581 break; 2582 } 2583 2584 /* 2585 * Clear the 'dcc' accounting in preparation for 2586 * adding the decrypted record. 2587 */ 2588 sb->sb_ccc -= tls_len; 2589 sb->sb_tlsdcc = 0; 2590 SBCHECK(sb); 2591 2592 /* If there is no payload, drop all of the data. */ 2593 if (tgr.tls_length == htobe16(0)) { 2594 m_freem(data); 2595 data = NULL; 2596 } else { 2597 /* Trim header. */ 2598 remain = tls->params.tls_hlen; 2599 while (remain > 0) { 2600 if (data->m_len > remain) { 2601 data->m_data += remain; 2602 data->m_len -= remain; 2603 break; 2604 } 2605 remain -= data->m_len; 2606 data = m_free(data); 2607 } 2608 2609 /* Trim trailer and clear M_NOTREADY. */ 2610 remain = be16toh(tgr.tls_length); 2611 m = data; 2612 for (m = data; remain > m->m_len; m = m->m_next) { 2613 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2614 remain -= m->m_len; 2615 } 2616 m->m_len = remain; 2617 m_freem(m->m_next); 2618 m->m_next = NULL; 2619 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2620 2621 /* Set EOR on the final mbuf. */ 2622 m->m_flags |= M_EOR; 2623 } 2624 2625 sbappendcontrol_locked(sb, data, control, 0); 2626 2627 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2628 sb->sb_flags |= SB_TLS_RX_RESYNC; 2629 SOCKBUF_UNLOCK(sb); 2630 ktls_resync_ifnet(so, tls_len, seqno); 2631 SOCKBUF_LOCK(sb); 2632 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2633 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2634 SOCKBUF_UNLOCK(sb); 2635 ktls_resync_ifnet(so, 0, seqno); 2636 SOCKBUF_LOCK(sb); 2637 } 2638 } 2639 2640 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2641 2642 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2643 so->so_error = EMSGSIZE; 2644 2645 sorwakeup_locked(so); 2646 2647 deref: 2648 SOCKBUF_UNLOCK_ASSERT(sb); 2649 2650 CURVNET_SET(so->so_vnet); 2651 sorele(so); 2652 CURVNET_RESTORE(); 2653 } 2654 2655 void 2656 ktls_enqueue_to_free(struct mbuf *m) 2657 { 2658 struct ktls_wq *wq; 2659 bool running; 2660 2661 /* Mark it for freeing. */ 2662 m->m_epg_flags |= EPG_FLAG_2FREE; 2663 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2664 mtx_lock(&wq->mtx); 2665 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2666 running = wq->running; 2667 mtx_unlock(&wq->mtx); 2668 if (!running) 2669 wakeup(wq); 2670 } 2671 2672 static void * 2673 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2674 { 2675 void *buf; 2676 int domain, running; 2677 2678 if (m->m_epg_npgs <= 2) 2679 return (NULL); 2680 if (ktls_buffer_zone == NULL) 2681 return (NULL); 2682 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2683 /* 2684 * Rate-limit allocation attempts after a failure. 2685 * ktls_buffer_import() will acquire a per-domain mutex to check 2686 * the free page queues and may fail consistently if memory is 2687 * fragmented. 2688 */ 2689 return (NULL); 2690 } 2691 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2692 if (buf == NULL) { 2693 domain = PCPU_GET(domain); 2694 wq->lastallocfail = ticks; 2695 2696 /* 2697 * Note that this check is "racy", but the races are 2698 * harmless, and are either a spurious wakeup if 2699 * multiple threads fail allocations before the alloc 2700 * thread wakes, or waiting an extra second in case we 2701 * see an old value of running == true. 2702 */ 2703 if (!VM_DOMAIN_EMPTY(domain)) { 2704 running = atomic_load_int(&ktls_domains[domain].reclaim_td.running); 2705 if (!running) 2706 wakeup(&ktls_domains[domain].reclaim_td); 2707 } 2708 } 2709 return (buf); 2710 } 2711 2712 static int 2713 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2714 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2715 { 2716 vm_page_t pg; 2717 int error, i, len, off; 2718 2719 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2720 ("%p not unready & nomap mbuf\n", m)); 2721 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2722 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2723 ktls_maxlen)); 2724 2725 /* Anonymous mbufs are encrypted in place. */ 2726 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2727 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2728 2729 /* 2730 * For file-backed mbufs (from sendfile), anonymous wired 2731 * pages are allocated and used as the encryption destination. 2732 */ 2733 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2734 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2735 m->m_epg_1st_off; 2736 state->dst_iov[0].iov_base = (char *)state->cbuf + 2737 m->m_epg_1st_off; 2738 state->dst_iov[0].iov_len = len; 2739 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2740 i = 1; 2741 } else { 2742 off = m->m_epg_1st_off; 2743 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2744 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2745 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2746 len = m_epg_pagelen(m, i, off); 2747 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2748 state->dst_iov[i].iov_base = 2749 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2750 state->dst_iov[i].iov_len = len; 2751 } 2752 } 2753 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2754 state->dst_iov[i].iov_base = m->m_epg_trail; 2755 state->dst_iov[i].iov_len = m->m_epg_trllen; 2756 2757 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2758 2759 if (__predict_false(error != 0)) { 2760 /* Free the anonymous pages. */ 2761 if (state->cbuf != NULL) 2762 uma_zfree(ktls_buffer_zone, state->cbuf); 2763 else { 2764 for (i = 0; i < m->m_epg_npgs; i++) { 2765 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2766 (void)vm_page_unwire_noq(pg); 2767 vm_page_free(pg); 2768 } 2769 } 2770 } 2771 return (error); 2772 } 2773 2774 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2775 static u_int 2776 ktls_batched_records(struct mbuf *m) 2777 { 2778 int page_count, records; 2779 2780 records = 0; 2781 page_count = m->m_epg_enc_cnt; 2782 while (page_count > 0) { 2783 records++; 2784 page_count -= m->m_epg_nrdy; 2785 m = m->m_next; 2786 } 2787 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2788 return (records); 2789 } 2790 2791 void 2792 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2793 { 2794 struct ktls_session *tls; 2795 struct ktls_wq *wq; 2796 int queued; 2797 bool running; 2798 2799 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2800 (M_EXTPG | M_NOTREADY)), 2801 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2802 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2803 2804 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2805 2806 m->m_epg_enc_cnt = page_count; 2807 2808 /* 2809 * Save a pointer to the socket. The caller is responsible 2810 * for taking an additional reference via soref(). 2811 */ 2812 m->m_epg_so = so; 2813 2814 queued = 1; 2815 tls = m->m_epg_tls; 2816 wq = &ktls_wq[tls->wq_index]; 2817 mtx_lock(&wq->mtx); 2818 if (__predict_false(tls->sequential_records)) { 2819 /* 2820 * For TLS 1.0, records must be encrypted 2821 * sequentially. For a given connection, all records 2822 * queued to the associated work queue are processed 2823 * sequentially. However, sendfile(2) might complete 2824 * I/O requests spanning multiple TLS records out of 2825 * order. Here we ensure TLS records are enqueued to 2826 * the work queue in FIFO order. 2827 * 2828 * tls->next_seqno holds the sequence number of the 2829 * next TLS record that should be enqueued to the work 2830 * queue. If this next record is not tls->next_seqno, 2831 * it must be a future record, so insert it, sorted by 2832 * TLS sequence number, into tls->pending_records and 2833 * return. 2834 * 2835 * If this TLS record matches tls->next_seqno, place 2836 * it in the work queue and then check 2837 * tls->pending_records to see if any 2838 * previously-queued records are now ready for 2839 * encryption. 2840 */ 2841 if (m->m_epg_seqno != tls->next_seqno) { 2842 struct mbuf *n, *p; 2843 2844 p = NULL; 2845 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2846 if (n->m_epg_seqno > m->m_epg_seqno) 2847 break; 2848 p = n; 2849 } 2850 if (n == NULL) 2851 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2852 m_epg_stailq); 2853 else if (p == NULL) 2854 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2855 m_epg_stailq); 2856 else 2857 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2858 m_epg_stailq); 2859 mtx_unlock(&wq->mtx); 2860 counter_u64_add(ktls_cnt_tx_pending, 1); 2861 return; 2862 } 2863 2864 tls->next_seqno += ktls_batched_records(m); 2865 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2866 2867 while (!STAILQ_EMPTY(&tls->pending_records)) { 2868 struct mbuf *n; 2869 2870 n = STAILQ_FIRST(&tls->pending_records); 2871 if (n->m_epg_seqno != tls->next_seqno) 2872 break; 2873 2874 queued++; 2875 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2876 tls->next_seqno += ktls_batched_records(n); 2877 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2878 } 2879 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2880 } else 2881 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2882 2883 running = wq->running; 2884 mtx_unlock(&wq->mtx); 2885 if (!running) 2886 wakeup(wq); 2887 counter_u64_add(ktls_cnt_tx_queued, queued); 2888 } 2889 2890 /* 2891 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2892 * the pages from the file and replace them with the anonymous pages 2893 * allocated in ktls_encrypt_record(). 2894 */ 2895 static void 2896 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2897 { 2898 int i; 2899 2900 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2901 2902 /* Free the old pages. */ 2903 m->m_ext.ext_free(m); 2904 2905 /* Replace them with the new pages. */ 2906 if (state->cbuf != NULL) { 2907 for (i = 0; i < m->m_epg_npgs; i++) 2908 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2909 2910 /* Contig pages should go back to the cache. */ 2911 m->m_ext.ext_free = ktls_free_mext_contig; 2912 } else { 2913 for (i = 0; i < m->m_epg_npgs; i++) 2914 m->m_epg_pa[i] = state->parray[i]; 2915 2916 /* Use the basic free routine. */ 2917 m->m_ext.ext_free = mb_free_mext_pgs; 2918 } 2919 2920 /* Pages are now writable. */ 2921 m->m_epg_flags |= EPG_FLAG_ANON; 2922 } 2923 2924 static __noinline void 2925 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2926 { 2927 struct ktls_ocf_encrypt_state state; 2928 struct ktls_session *tls; 2929 struct socket *so; 2930 struct mbuf *m; 2931 int error, npages, total_pages; 2932 2933 so = top->m_epg_so; 2934 tls = top->m_epg_tls; 2935 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2936 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2937 #ifdef INVARIANTS 2938 top->m_epg_so = NULL; 2939 #endif 2940 total_pages = top->m_epg_enc_cnt; 2941 npages = 0; 2942 2943 /* 2944 * Encrypt the TLS records in the chain of mbufs starting with 2945 * 'top'. 'total_pages' gives us a total count of pages and is 2946 * used to know when we have finished encrypting the TLS 2947 * records originally queued with 'top'. 2948 * 2949 * NB: These mbufs are queued in the socket buffer and 2950 * 'm_next' is traversing the mbufs in the socket buffer. The 2951 * socket buffer lock is not held while traversing this chain. 2952 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2953 * pointers should be stable. However, the 'm_next' of the 2954 * last mbuf encrypted is not necessarily NULL. It can point 2955 * to other mbufs appended while 'top' was on the TLS work 2956 * queue. 2957 * 2958 * Each mbuf holds an entire TLS record. 2959 */ 2960 error = 0; 2961 for (m = top; npages != total_pages; m = m->m_next) { 2962 KASSERT(m->m_epg_tls == tls, 2963 ("different TLS sessions in a single mbuf chain: %p vs %p", 2964 tls, m->m_epg_tls)); 2965 KASSERT(npages + m->m_epg_npgs <= total_pages, 2966 ("page count mismatch: top %p, total_pages %d, m %p", top, 2967 total_pages, m)); 2968 2969 error = ktls_encrypt_record(wq, m, tls, &state); 2970 if (error) { 2971 counter_u64_add(ktls_offload_failed_crypto, 1); 2972 break; 2973 } 2974 2975 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2976 ktls_finish_nonanon(m, &state); 2977 2978 npages += m->m_epg_nrdy; 2979 2980 /* 2981 * Drop a reference to the session now that it is no 2982 * longer needed. Existing code depends on encrypted 2983 * records having no associated session vs 2984 * yet-to-be-encrypted records having an associated 2985 * session. 2986 */ 2987 m->m_epg_tls = NULL; 2988 ktls_free(tls); 2989 } 2990 2991 CURVNET_SET(so->so_vnet); 2992 if (error == 0) { 2993 (void)so->so_proto->pr_ready(so, top, npages); 2994 } else { 2995 ktls_drop(so, EIO); 2996 mb_free_notready(top, total_pages); 2997 } 2998 2999 sorele(so); 3000 CURVNET_RESTORE(); 3001 } 3002 3003 void 3004 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 3005 { 3006 struct ktls_session *tls; 3007 struct socket *so; 3008 struct mbuf *m; 3009 int npages; 3010 3011 m = state->m; 3012 3013 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3014 ktls_finish_nonanon(m, state); 3015 3016 so = state->so; 3017 free(state, M_KTLS); 3018 3019 /* 3020 * Drop a reference to the session now that it is no longer 3021 * needed. Existing code depends on encrypted records having 3022 * no associated session vs yet-to-be-encrypted records having 3023 * an associated session. 3024 */ 3025 tls = m->m_epg_tls; 3026 m->m_epg_tls = NULL; 3027 ktls_free(tls); 3028 3029 if (error != 0) 3030 counter_u64_add(ktls_offload_failed_crypto, 1); 3031 3032 CURVNET_SET(so->so_vnet); 3033 npages = m->m_epg_nrdy; 3034 3035 if (error == 0) { 3036 (void)so->so_proto->pr_ready(so, m, npages); 3037 } else { 3038 ktls_drop(so, EIO); 3039 mb_free_notready(m, npages); 3040 } 3041 3042 sorele(so); 3043 CURVNET_RESTORE(); 3044 } 3045 3046 /* 3047 * Similar to ktls_encrypt, but used with asynchronous OCF backends 3048 * (coprocessors) where encryption does not use host CPU resources and 3049 * it can be beneficial to queue more requests than CPUs. 3050 */ 3051 static __noinline void 3052 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 3053 { 3054 struct ktls_ocf_encrypt_state *state; 3055 struct ktls_session *tls; 3056 struct socket *so; 3057 struct mbuf *m, *n; 3058 int error, mpages, npages, total_pages; 3059 3060 so = top->m_epg_so; 3061 tls = top->m_epg_tls; 3062 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3063 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3064 #ifdef INVARIANTS 3065 top->m_epg_so = NULL; 3066 #endif 3067 total_pages = top->m_epg_enc_cnt; 3068 npages = 0; 3069 3070 error = 0; 3071 for (m = top; npages != total_pages; m = n) { 3072 KASSERT(m->m_epg_tls == tls, 3073 ("different TLS sessions in a single mbuf chain: %p vs %p", 3074 tls, m->m_epg_tls)); 3075 KASSERT(npages + m->m_epg_npgs <= total_pages, 3076 ("page count mismatch: top %p, total_pages %d, m %p", top, 3077 total_pages, m)); 3078 3079 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 3080 soref(so); 3081 state->so = so; 3082 state->m = m; 3083 3084 mpages = m->m_epg_nrdy; 3085 n = m->m_next; 3086 3087 error = ktls_encrypt_record(wq, m, tls, state); 3088 if (error) { 3089 counter_u64_add(ktls_offload_failed_crypto, 1); 3090 free(state, M_KTLS); 3091 CURVNET_SET(so->so_vnet); 3092 sorele(so); 3093 CURVNET_RESTORE(); 3094 break; 3095 } 3096 3097 npages += mpages; 3098 } 3099 3100 CURVNET_SET(so->so_vnet); 3101 if (error != 0) { 3102 ktls_drop(so, EIO); 3103 mb_free_notready(m, total_pages - npages); 3104 } 3105 3106 sorele(so); 3107 CURVNET_RESTORE(); 3108 } 3109 3110 static int 3111 ktls_bind_domain(int domain) 3112 { 3113 int error; 3114 3115 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3116 if (error != 0) 3117 return (error); 3118 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3119 return (0); 3120 } 3121 3122 static void 3123 ktls_reclaim_thread(void *ctx) 3124 { 3125 struct ktls_domain_info *ktls_domain = ctx; 3126 struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td; 3127 struct sysctl_oid *oid; 3128 char name[80]; 3129 int error, domain; 3130 3131 domain = ktls_domain - ktls_domains; 3132 if (bootverbose) 3133 printf("Starting KTLS reclaim thread for domain %d\n", domain); 3134 error = ktls_bind_domain(domain); 3135 if (error) 3136 printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n", 3137 domain, error); 3138 snprintf(name, sizeof(name), "domain%d", domain); 3139 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3140 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3141 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims", 3142 CTLFLAG_RD, &sc->reclaims, 0, "buffers reclaimed"); 3143 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3144 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3145 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3146 CTLFLAG_RD, &sc->running, 0, "thread running"); 3147 3148 for (;;) { 3149 atomic_store_int(&sc->running, 0); 3150 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3151 atomic_store_int(&sc->running, 1); 3152 sc->wakeups++; 3153 /* 3154 * Below we attempt to reclaim ktls_max_reclaim 3155 * buffers using vm_page_reclaim_contig_domain_ext(). 3156 * We do this here, as this function can take several 3157 * seconds to scan all of memory and it does not 3158 * matter if this thread pauses for a while. If we 3159 * block a ktls worker thread, we risk developing 3160 * backlogs of buffers to be encrypted, leading to 3161 * surges of traffic and potential NIC output drops. 3162 */ 3163 if (!vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL, 3164 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, ktls_max_reclaim)) { 3165 vm_wait_domain(domain); 3166 } else { 3167 sc->reclaims += ktls_max_reclaim; 3168 } 3169 } 3170 } 3171 3172 static void 3173 ktls_work_thread(void *ctx) 3174 { 3175 struct ktls_wq *wq = ctx; 3176 struct mbuf *m, *n; 3177 struct socket *so, *son; 3178 STAILQ_HEAD(, mbuf) local_m_head; 3179 STAILQ_HEAD(, socket) local_so_head; 3180 int cpu; 3181 3182 cpu = wq - ktls_wq; 3183 if (bootverbose) 3184 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3185 3186 /* 3187 * Bind to a core. If ktls_bind_threads is > 1, then 3188 * we bind to the NUMA domain instead. 3189 */ 3190 if (ktls_bind_threads) { 3191 int error; 3192 3193 if (ktls_bind_threads > 1) { 3194 struct pcpu *pc = pcpu_find(cpu); 3195 3196 error = ktls_bind_domain(pc->pc_domain); 3197 } else { 3198 cpuset_t mask; 3199 3200 CPU_SETOF(cpu, &mask); 3201 error = cpuset_setthread(curthread->td_tid, &mask); 3202 } 3203 if (error) 3204 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3205 cpu, error); 3206 } 3207 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3208 fpu_kern_thread(0); 3209 #endif 3210 for (;;) { 3211 mtx_lock(&wq->mtx); 3212 while (STAILQ_EMPTY(&wq->m_head) && 3213 STAILQ_EMPTY(&wq->so_head)) { 3214 wq->running = false; 3215 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3216 wq->running = true; 3217 } 3218 3219 STAILQ_INIT(&local_m_head); 3220 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3221 STAILQ_INIT(&local_so_head); 3222 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3223 mtx_unlock(&wq->mtx); 3224 3225 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3226 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3227 ktls_free(m->m_epg_tls); 3228 m_free_raw(m); 3229 } else { 3230 if (m->m_epg_tls->sync_dispatch) 3231 ktls_encrypt(wq, m); 3232 else 3233 ktls_encrypt_async(wq, m); 3234 counter_u64_add(ktls_cnt_tx_queued, -1); 3235 } 3236 } 3237 3238 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3239 ktls_decrypt(so); 3240 counter_u64_add(ktls_cnt_rx_queued, -1); 3241 } 3242 } 3243 } 3244 3245 static void 3246 ktls_disable_ifnet_help(void *context, int pending __unused) 3247 { 3248 struct ktls_session *tls; 3249 struct inpcb *inp; 3250 struct tcpcb *tp; 3251 struct socket *so; 3252 int err; 3253 3254 tls = context; 3255 inp = tls->inp; 3256 if (inp == NULL) 3257 return; 3258 INP_WLOCK(inp); 3259 so = inp->inp_socket; 3260 MPASS(so != NULL); 3261 if (inp->inp_flags & INP_DROPPED) { 3262 goto out; 3263 } 3264 3265 if (so->so_snd.sb_tls_info != NULL) 3266 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3267 else 3268 err = ENXIO; 3269 if (err == 0) { 3270 counter_u64_add(ktls_ifnet_disable_ok, 1); 3271 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3272 if ((inp->inp_flags & INP_DROPPED) == 0 && 3273 (tp = intotcpcb(inp)) != NULL && 3274 tp->t_fb->tfb_hwtls_change != NULL) 3275 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3276 } else { 3277 counter_u64_add(ktls_ifnet_disable_fail, 1); 3278 } 3279 3280 out: 3281 CURVNET_SET(so->so_vnet); 3282 sorele(so); 3283 CURVNET_RESTORE(); 3284 INP_WUNLOCK(inp); 3285 ktls_free(tls); 3286 } 3287 3288 /* 3289 * Called when re-transmits are becoming a substantial portion of the 3290 * sends on this connection. When this happens, we transition the 3291 * connection to software TLS. This is needed because most inline TLS 3292 * NICs keep crypto state only for in-order transmits. This means 3293 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3294 * re-DMA the entire TLS record up to and including the current 3295 * segment. This means that when re-transmitting the last ~1448 byte 3296 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3297 * of magnitude more data than we are sending. This can cause the 3298 * PCIe link to saturate well before the network, which can cause 3299 * output drops, and a general loss of capacity. 3300 */ 3301 void 3302 ktls_disable_ifnet(void *arg) 3303 { 3304 struct tcpcb *tp; 3305 struct inpcb *inp; 3306 struct socket *so; 3307 struct ktls_session *tls; 3308 3309 tp = arg; 3310 inp = tptoinpcb(tp); 3311 INP_WLOCK_ASSERT(inp); 3312 so = inp->inp_socket; 3313 SOCK_LOCK(so); 3314 tls = so->so_snd.sb_tls_info; 3315 if (tp->t_nic_ktls_xmit_dis == 1) { 3316 SOCK_UNLOCK(so); 3317 return; 3318 } 3319 3320 /* 3321 * note that t_nic_ktls_xmit_dis is never cleared; disabling 3322 * ifnet can only be done once per connection, so we never want 3323 * to do it again 3324 */ 3325 3326 (void)ktls_hold(tls); 3327 soref(so); 3328 tp->t_nic_ktls_xmit_dis = 1; 3329 SOCK_UNLOCK(so); 3330 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3331 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3332 } 3333