1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1994, Sean Eric Fagan 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Sean Eric Fagan. 18 * 4. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/ktr.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mman.h> 40 #include <sys/mutex.h> 41 #include <sys/reg.h> 42 #include <sys/sleepqueue.h> 43 #include <sys/syscallsubr.h> 44 #include <sys/sysent.h> 45 #include <sys/sysproto.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/vnode.h> 49 #include <sys/ptrace.h> 50 #include <sys/rwlock.h> 51 #include <sys/sx.h> 52 #include <sys/malloc.h> 53 #include <sys/signalvar.h> 54 #include <sys/caprights.h> 55 #include <sys/filedesc.h> 56 57 #include <security/audit/audit.h> 58 59 #include <vm/vm.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_extern.h> 62 #include <vm/vm_map.h> 63 #include <vm/vm_kern.h> 64 #include <vm/vm_object.h> 65 #include <vm/vm_page.h> 66 #include <vm/vm_param.h> 67 68 #ifdef COMPAT_FREEBSD32 69 #include <sys/procfs.h> 70 #endif 71 72 /* Assert it's safe to unlock a process, e.g. to allocate working memory */ 73 #define PROC_ASSERT_TRACEREQ(p) MPASS(((p)->p_flag2 & P2_PTRACEREQ) != 0) 74 75 /* 76 * Functions implemented below: 77 * 78 * proc_read_regs(proc, regs) 79 * Get the current user-visible register set from the process 80 * and copy it into the regs structure (<machine/reg.h>). 81 * The process is stopped at the time read_regs is called. 82 * 83 * proc_write_regs(proc, regs) 84 * Update the current register set from the passed in regs 85 * structure. Take care to avoid clobbering special CPU 86 * registers or privileged bits in the PSL. 87 * Depending on the architecture this may have fix-up work to do, 88 * especially if the IAR or PCW are modified. 89 * The process is stopped at the time write_regs is called. 90 * 91 * proc_read_fpregs, proc_write_fpregs 92 * deal with the floating point register set, otherwise as above. 93 * 94 * proc_read_dbregs, proc_write_dbregs 95 * deal with the processor debug register set, otherwise as above. 96 * 97 * proc_sstep(proc) 98 * Arrange for the process to trap after executing a single instruction. 99 */ 100 101 int 102 proc_read_regs(struct thread *td, struct reg *regs) 103 { 104 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 105 return (fill_regs(td, regs)); 106 } 107 108 int 109 proc_write_regs(struct thread *td, struct reg *regs) 110 { 111 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 112 return (set_regs(td, regs)); 113 } 114 115 int 116 proc_read_dbregs(struct thread *td, struct dbreg *dbregs) 117 { 118 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 119 return (fill_dbregs(td, dbregs)); 120 } 121 122 int 123 proc_write_dbregs(struct thread *td, struct dbreg *dbregs) 124 { 125 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 126 return (set_dbregs(td, dbregs)); 127 } 128 129 /* 130 * Ptrace doesn't support fpregs at all, and there are no security holes 131 * or translations for fpregs, so we can just copy them. 132 */ 133 int 134 proc_read_fpregs(struct thread *td, struct fpreg *fpregs) 135 { 136 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 137 return (fill_fpregs(td, fpregs)); 138 } 139 140 int 141 proc_write_fpregs(struct thread *td, struct fpreg *fpregs) 142 { 143 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 144 return (set_fpregs(td, fpregs)); 145 } 146 147 static struct regset * 148 proc_find_regset(struct thread *td, int note) 149 { 150 struct regset **regsetp, **regset_end, *regset; 151 struct sysentvec *sv; 152 153 sv = td->td_proc->p_sysent; 154 regsetp = sv->sv_regset_begin; 155 if (regsetp == NULL) 156 return (NULL); 157 regset_end = sv->sv_regset_end; 158 MPASS(regset_end != NULL); 159 for (; regsetp < regset_end; regsetp++) { 160 regset = *regsetp; 161 if (regset->note != note) 162 continue; 163 164 return (regset); 165 } 166 167 return (NULL); 168 } 169 170 static int 171 proc_read_regset(struct thread *td, int note, struct iovec *iov) 172 { 173 struct regset *regset; 174 struct proc *p; 175 void *buf; 176 size_t size; 177 int error; 178 179 regset = proc_find_regset(td, note); 180 if (regset == NULL) 181 return (EINVAL); 182 183 if (regset->get == NULL) 184 return (EINVAL); 185 186 size = regset->size; 187 /* 188 * The regset is dynamically sized, e.g. the size could change 189 * depending on the hardware, or may have a per-thread size. 190 */ 191 if (size == 0) { 192 if (!regset->get(regset, td, NULL, &size)) 193 return (EINVAL); 194 } 195 196 if (iov->iov_base == NULL) { 197 iov->iov_len = size; 198 if (iov->iov_len == 0) 199 return (EINVAL); 200 201 return (0); 202 } 203 204 /* The length is wrong, return an error */ 205 if (iov->iov_len != size) 206 return (EINVAL); 207 208 error = 0; 209 p = td->td_proc; 210 211 /* Drop the proc lock while allocating the temp buffer */ 212 PROC_ASSERT_TRACEREQ(p); 213 PROC_UNLOCK(p); 214 buf = malloc(size, M_TEMP, M_WAITOK); 215 PROC_LOCK(p); 216 217 if (!regset->get(regset, td, buf, &size)) { 218 error = EINVAL; 219 } else { 220 KASSERT(size == regset->size || regset->size == 0, 221 ("%s: Getter function changed the size", __func__)); 222 223 iov->iov_len = size; 224 PROC_UNLOCK(p); 225 error = copyout(buf, iov->iov_base, size); 226 PROC_LOCK(p); 227 } 228 229 free(buf, M_TEMP); 230 231 return (error); 232 } 233 234 static int 235 proc_write_regset(struct thread *td, int note, struct iovec *iov) 236 { 237 struct regset *regset; 238 struct proc *p; 239 void *buf; 240 size_t size; 241 int error; 242 243 regset = proc_find_regset(td, note); 244 if (regset == NULL) 245 return (EINVAL); 246 247 size = regset->size; 248 /* 249 * The regset is dynamically sized, e.g. the size could change 250 * depending on the hardware, or may have a per-thread size. 251 */ 252 if (size == 0) { 253 if (!regset->get(regset, td, NULL, &size)) 254 return (EINVAL); 255 } 256 257 /* The length is wrong, return an error */ 258 if (iov->iov_len != size) 259 return (EINVAL); 260 261 if (regset->set == NULL) 262 return (EINVAL); 263 264 p = td->td_proc; 265 266 /* Drop the proc lock while allocating the temp buffer */ 267 PROC_ASSERT_TRACEREQ(p); 268 PROC_UNLOCK(p); 269 buf = malloc(size, M_TEMP, M_WAITOK); 270 error = copyin(iov->iov_base, buf, size); 271 PROC_LOCK(p); 272 273 if (error == 0) { 274 if (!regset->set(regset, td, buf, size)) { 275 error = EINVAL; 276 } 277 } 278 279 free(buf, M_TEMP); 280 281 return (error); 282 } 283 284 #ifdef COMPAT_FREEBSD32 285 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */ 286 int 287 proc_read_regs32(struct thread *td, struct reg32 *regs32) 288 { 289 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 290 return (fill_regs32(td, regs32)); 291 } 292 293 int 294 proc_write_regs32(struct thread *td, struct reg32 *regs32) 295 { 296 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 297 return (set_regs32(td, regs32)); 298 } 299 300 int 301 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 302 { 303 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 304 return (fill_dbregs32(td, dbregs32)); 305 } 306 307 int 308 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 309 { 310 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 311 return (set_dbregs32(td, dbregs32)); 312 } 313 314 int 315 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 316 { 317 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 318 return (fill_fpregs32(td, fpregs32)); 319 } 320 321 int 322 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 323 { 324 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 325 return (set_fpregs32(td, fpregs32)); 326 } 327 #endif 328 329 int 330 proc_sstep(struct thread *td) 331 { 332 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 333 return (ptrace_single_step(td)); 334 } 335 336 int 337 proc_rwmem(struct proc *p, struct uio *uio) 338 { 339 vm_map_t map; 340 vm_offset_t pageno; /* page number */ 341 vm_prot_t reqprot; 342 int error, fault_flags, page_offset, writing; 343 344 /* 345 * Make sure that the process' vmspace remains live. 346 */ 347 if (p != curproc) 348 PROC_ASSERT_HELD(p); 349 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 350 351 /* 352 * The map we want... 353 */ 354 map = &p->p_vmspace->vm_map; 355 356 /* 357 * If we are writing, then we request vm_fault() to create a private 358 * copy of each page. Since these copies will not be writeable by the 359 * process, we must explicitly request that they be dirtied. 360 */ 361 writing = uio->uio_rw == UIO_WRITE; 362 reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ; 363 fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL; 364 365 if (writing) { 366 error = priv_check_cred(p->p_ucred, PRIV_PROC_MEM_WRITE); 367 if (error) 368 return (error); 369 } 370 371 /* 372 * Only map in one page at a time. We don't have to, but it 373 * makes things easier. This way is trivial - right? 374 */ 375 do { 376 vm_offset_t uva; 377 u_int len; 378 vm_page_t m; 379 380 uva = (vm_offset_t)uio->uio_offset; 381 382 /* 383 * Get the page number of this segment. 384 */ 385 pageno = trunc_page(uva); 386 page_offset = uva - pageno; 387 388 /* 389 * How many bytes to copy 390 */ 391 len = MIN(PAGE_SIZE - page_offset, uio->uio_resid); 392 393 /* 394 * Fault and hold the page on behalf of the process. 395 */ 396 error = vm_fault(map, pageno, reqprot, fault_flags, &m); 397 if (error != KERN_SUCCESS) { 398 if (error == KERN_RESOURCE_SHORTAGE) 399 error = ENOMEM; 400 else 401 error = EFAULT; 402 break; 403 } 404 405 /* 406 * Now do the i/o move. 407 */ 408 error = uiomove_fromphys(&m, page_offset, len, uio); 409 410 /* Make the I-cache coherent for breakpoints. */ 411 if (writing && error == 0) { 412 vm_map_lock_read(map); 413 if (vm_map_check_protection(map, pageno, pageno + 414 PAGE_SIZE, VM_PROT_EXECUTE)) 415 vm_sync_icache(map, uva, len); 416 vm_map_unlock_read(map); 417 } 418 419 /* 420 * Release the page. 421 */ 422 vm_page_unwire(m, PQ_ACTIVE); 423 424 } while (error == 0 && uio->uio_resid > 0); 425 426 return (error); 427 } 428 429 static ssize_t 430 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 431 size_t len, enum uio_rw rw) 432 { 433 struct iovec iov; 434 struct uio uio; 435 ssize_t slen; 436 437 MPASS(len < SSIZE_MAX); 438 slen = (ssize_t)len; 439 440 iov.iov_base = (caddr_t)buf; 441 iov.iov_len = len; 442 uio.uio_iov = &iov; 443 uio.uio_iovcnt = 1; 444 uio.uio_offset = va; 445 uio.uio_resid = slen; 446 uio.uio_segflg = UIO_SYSSPACE; 447 uio.uio_rw = rw; 448 uio.uio_td = td; 449 proc_rwmem(p, &uio); 450 if (uio.uio_resid == slen) 451 return (-1); 452 return (slen - uio.uio_resid); 453 } 454 455 ssize_t 456 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 457 size_t len) 458 { 459 460 return (proc_iop(td, p, va, buf, len, UIO_READ)); 461 } 462 463 ssize_t 464 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 465 size_t len) 466 { 467 468 return (proc_iop(td, p, va, buf, len, UIO_WRITE)); 469 } 470 471 static int 472 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve) 473 { 474 struct vattr vattr; 475 vm_map_t map; 476 vm_map_entry_t entry; 477 vm_object_t obj, tobj, lobj; 478 struct vmspace *vm; 479 struct vnode *vp; 480 char *freepath, *fullpath; 481 u_int pathlen; 482 int error, index; 483 484 error = 0; 485 obj = NULL; 486 487 vm = vmspace_acquire_ref(p); 488 map = &vm->vm_map; 489 vm_map_lock_read(map); 490 491 do { 492 KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 493 ("Submap in map header")); 494 index = 0; 495 VM_MAP_ENTRY_FOREACH(entry, map) { 496 if (index >= pve->pve_entry && 497 (entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 498 break; 499 index++; 500 } 501 if (index < pve->pve_entry) { 502 error = EINVAL; 503 break; 504 } 505 if (entry == &map->header) { 506 error = ENOENT; 507 break; 508 } 509 510 /* We got an entry. */ 511 pve->pve_entry = index + 1; 512 pve->pve_timestamp = map->timestamp; 513 pve->pve_start = entry->start; 514 pve->pve_end = entry->end - 1; 515 pve->pve_offset = entry->offset; 516 pve->pve_prot = entry->protection | 517 PROT_MAX(entry->max_protection); 518 519 /* Backing object's path needed? */ 520 if (pve->pve_pathlen == 0) 521 break; 522 523 pathlen = pve->pve_pathlen; 524 pve->pve_pathlen = 0; 525 526 obj = entry->object.vm_object; 527 if (obj != NULL) 528 VM_OBJECT_RLOCK(obj); 529 } while (0); 530 531 vm_map_unlock_read(map); 532 533 pve->pve_fsid = VNOVAL; 534 pve->pve_fileid = VNOVAL; 535 536 if (error == 0 && obj != NULL) { 537 lobj = obj; 538 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { 539 if (tobj != obj) 540 VM_OBJECT_RLOCK(tobj); 541 if (lobj != obj) 542 VM_OBJECT_RUNLOCK(lobj); 543 lobj = tobj; 544 pve->pve_offset += tobj->backing_object_offset; 545 } 546 vp = vm_object_vnode(lobj); 547 if (vp != NULL) 548 vref(vp); 549 if (lobj != obj) 550 VM_OBJECT_RUNLOCK(lobj); 551 VM_OBJECT_RUNLOCK(obj); 552 553 if (vp != NULL) { 554 freepath = NULL; 555 fullpath = NULL; 556 vn_fullpath(vp, &fullpath, &freepath); 557 vn_lock(vp, LK_SHARED | LK_RETRY); 558 if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) { 559 pve->pve_fileid = vattr.va_fileid; 560 pve->pve_fsid = vattr.va_fsid; 561 } 562 vput(vp); 563 564 if (fullpath != NULL) { 565 pve->pve_pathlen = strlen(fullpath) + 1; 566 if (pve->pve_pathlen <= pathlen) { 567 error = copyout(fullpath, pve->pve_path, 568 pve->pve_pathlen); 569 } else 570 error = ENAMETOOLONG; 571 } 572 if (freepath != NULL) 573 free(freepath, M_TEMP); 574 } 575 } 576 vmspace_free(vm); 577 if (error == 0) 578 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p", 579 p->p_pid, pve->pve_entry, pve->pve_start); 580 581 return (error); 582 } 583 584 /* 585 * Process debugging system call. 586 */ 587 #ifndef _SYS_SYSPROTO_H_ 588 struct ptrace_args { 589 int req; 590 pid_t pid; 591 caddr_t addr; 592 int data; 593 }; 594 #endif 595 596 int 597 sys_ptrace(struct thread *td, struct ptrace_args *uap) 598 { 599 /* 600 * XXX this obfuscation is to reduce stack usage, but the register 601 * structs may be too large to put on the stack anyway. 602 */ 603 union { 604 struct ptrace_io_desc piod; 605 struct ptrace_lwpinfo pl; 606 struct ptrace_vm_entry pve; 607 struct ptrace_coredump pc; 608 struct ptrace_sc_remote sr; 609 struct dbreg dbreg; 610 struct fpreg fpreg; 611 struct reg reg; 612 struct iovec vec; 613 syscallarg_t args[nitems(td->td_sa.args)]; 614 struct ptrace_sc_ret psr; 615 int ptevents; 616 } r; 617 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 618 void *addr; 619 int error; 620 621 if (!allow_ptrace) 622 return (ENOSYS); 623 error = 0; 624 625 AUDIT_ARG_PID(uap->pid); 626 AUDIT_ARG_CMD(uap->req); 627 AUDIT_ARG_VALUE(uap->data); 628 addr = &r; 629 switch (uap->req) { 630 case PT_GET_EVENT_MASK: 631 case PT_LWPINFO: 632 case PT_GET_SC_ARGS: 633 case PT_GET_SC_RET: 634 break; 635 case PT_GETREGS: 636 bzero(&r.reg, sizeof(r.reg)); 637 break; 638 case PT_GETFPREGS: 639 bzero(&r.fpreg, sizeof(r.fpreg)); 640 break; 641 case PT_GETDBREGS: 642 bzero(&r.dbreg, sizeof(r.dbreg)); 643 break; 644 case PT_GETREGSET: 645 case PT_SETREGSET: 646 error = copyin(uap->addr, &r.vec, sizeof(r.vec)); 647 break; 648 case PT_SETREGS: 649 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 650 break; 651 case PT_SETFPREGS: 652 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 653 break; 654 case PT_SETDBREGS: 655 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 656 break; 657 case PT_SET_EVENT_MASK: 658 if (uap->data != sizeof(r.ptevents)) 659 error = EINVAL; 660 else 661 error = copyin(uap->addr, &r.ptevents, uap->data); 662 break; 663 case PT_IO: 664 error = copyin(uap->addr, &r.piod, sizeof(r.piod)); 665 break; 666 case PT_VM_ENTRY: 667 error = copyin(uap->addr, &r.pve, sizeof(r.pve)); 668 break; 669 case PT_COREDUMP: 670 if (uap->data != sizeof(r.pc)) 671 error = EINVAL; 672 else 673 error = copyin(uap->addr, &r.pc, uap->data); 674 break; 675 case PT_SC_REMOTE: 676 if (uap->data != sizeof(r.sr)) { 677 error = EINVAL; 678 break; 679 } 680 error = copyin(uap->addr, &r.sr, uap->data); 681 if (error != 0) 682 break; 683 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 684 error = EINVAL; 685 break; 686 } 687 error = copyin(r.sr.pscr_args, pscr_args, 688 sizeof(u_long) * r.sr.pscr_nargs); 689 if (error != 0) 690 break; 691 r.sr.pscr_args = pscr_args; 692 break; 693 default: 694 addr = uap->addr; 695 break; 696 } 697 if (error) 698 return (error); 699 700 error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data); 701 if (error) 702 return (error); 703 704 switch (uap->req) { 705 case PT_VM_ENTRY: 706 error = copyout(&r.pve, uap->addr, sizeof(r.pve)); 707 break; 708 case PT_IO: 709 error = copyout(&r.piod, uap->addr, sizeof(r.piod)); 710 break; 711 case PT_GETREGS: 712 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 713 break; 714 case PT_GETFPREGS: 715 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 716 break; 717 case PT_GETDBREGS: 718 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 719 break; 720 case PT_GETREGSET: 721 error = copyout(&r.vec, uap->addr, sizeof(r.vec)); 722 break; 723 case PT_GET_EVENT_MASK: 724 /* NB: The size in uap->data is validated in kern_ptrace(). */ 725 error = copyout(&r.ptevents, uap->addr, uap->data); 726 break; 727 case PT_LWPINFO: 728 /* NB: The size in uap->data is validated in kern_ptrace(). */ 729 error = copyout(&r.pl, uap->addr, uap->data); 730 break; 731 case PT_GET_SC_ARGS: 732 error = copyout(r.args, uap->addr, MIN(uap->data, 733 sizeof(r.args))); 734 break; 735 case PT_GET_SC_RET: 736 error = copyout(&r.psr, uap->addr, MIN(uap->data, 737 sizeof(r.psr))); 738 break; 739 case PT_SC_REMOTE: 740 error = copyout(&r.sr.pscr_ret, uap->addr + 741 offsetof(struct ptrace_sc_remote, pscr_ret), 742 sizeof(r.sr.pscr_ret)); 743 break; 744 } 745 746 return (error); 747 } 748 749 #ifdef COMPAT_FREEBSD32 750 /* 751 * PROC_READ(regs, td2, addr); 752 * becomes either: 753 * proc_read_regs(td2, addr); 754 * or 755 * proc_read_regs32(td2, addr); 756 * .. except this is done at runtime. There is an additional 757 * complication in that PROC_WRITE disallows 32 bit consumers 758 * from writing to 64 bit address space targets. 759 */ 760 #define PROC_READ(w, t, a) wrap32 ? \ 761 proc_read_ ## w ## 32(t, a) : \ 762 proc_read_ ## w (t, a) 763 #define PROC_WRITE(w, t, a) wrap32 ? \ 764 (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \ 765 proc_write_ ## w (t, a) 766 #else 767 #define PROC_READ(w, t, a) proc_read_ ## w (t, a) 768 #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a) 769 #endif 770 771 void 772 proc_set_traced(struct proc *p, bool stop) 773 { 774 775 sx_assert(&proctree_lock, SX_XLOCKED); 776 PROC_LOCK_ASSERT(p, MA_OWNED); 777 p->p_flag |= P_TRACED; 778 if (stop) 779 p->p_flag2 |= P2_PTRACE_FSTP; 780 p->p_ptevents = PTRACE_DEFAULT; 781 } 782 783 void 784 ptrace_unsuspend(struct proc *p) 785 { 786 PROC_LOCK_ASSERT(p, MA_OWNED); 787 788 PROC_SLOCK(p); 789 p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED); 790 thread_unsuspend(p); 791 PROC_SUNLOCK(p); 792 itimer_proc_continue(p); 793 kqtimer_proc_continue(p); 794 } 795 796 static int 797 proc_can_ptrace(struct thread *td, struct proc *p) 798 { 799 int error; 800 801 PROC_LOCK_ASSERT(p, MA_OWNED); 802 803 if ((p->p_flag & P_WEXIT) != 0) 804 return (ESRCH); 805 806 if ((error = p_cansee(td, p)) != 0) 807 return (error); 808 if ((error = p_candebug(td, p)) != 0) 809 return (error); 810 811 /* not being traced... */ 812 if ((p->p_flag & P_TRACED) == 0) 813 return (EPERM); 814 815 /* not being traced by YOU */ 816 if (p->p_pptr != td->td_proc) 817 return (EBUSY); 818 819 /* not currently stopped */ 820 if ((p->p_flag & P_STOPPED_TRACE) == 0 || 821 p->p_suspcount != p->p_numthreads || 822 (p->p_flag & P_WAITED) == 0) 823 return (EBUSY); 824 825 return (0); 826 } 827 828 static struct thread * 829 ptrace_sel_coredump_thread(struct proc *p) 830 { 831 struct thread *td2; 832 833 PROC_LOCK_ASSERT(p, MA_OWNED); 834 MPASS((p->p_flag & P_STOPPED_TRACE) != 0); 835 836 FOREACH_THREAD_IN_PROC(p, td2) { 837 if ((td2->td_dbgflags & TDB_SSWITCH) != 0) 838 return (td2); 839 } 840 return (NULL); 841 } 842 843 int 844 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data) 845 { 846 struct iovec iov; 847 struct uio uio; 848 struct proc *curp, *p, *pp; 849 struct thread *td2 = NULL, *td3; 850 struct ptrace_io_desc *piod = NULL; 851 struct ptrace_lwpinfo *pl; 852 struct ptrace_sc_ret *psr; 853 struct ptrace_sc_remote *pscr; 854 struct file *fp; 855 struct ptrace_coredump *pc; 856 struct thr_coredump_req *tcq; 857 struct thr_syscall_req *tsr; 858 int error, num, tmp; 859 lwpid_t tid = 0, *buf; 860 #ifdef COMPAT_FREEBSD32 861 int wrap32 = 0, safe = 0; 862 #endif 863 bool proctree_locked, p2_req_set; 864 865 curp = td->td_proc; 866 proctree_locked = false; 867 p2_req_set = false; 868 869 /* Lock proctree before locking the process. */ 870 switch (req) { 871 case PT_TRACE_ME: 872 case PT_ATTACH: 873 case PT_STEP: 874 case PT_CONTINUE: 875 case PT_TO_SCE: 876 case PT_TO_SCX: 877 case PT_SYSCALL: 878 case PT_FOLLOW_FORK: 879 case PT_LWP_EVENTS: 880 case PT_GET_EVENT_MASK: 881 case PT_SET_EVENT_MASK: 882 case PT_DETACH: 883 case PT_GET_SC_ARGS: 884 sx_xlock(&proctree_lock); 885 proctree_locked = true; 886 break; 887 default: 888 break; 889 } 890 891 if (req == PT_TRACE_ME) { 892 p = td->td_proc; 893 PROC_LOCK(p); 894 } else { 895 if (pid <= PID_MAX) { 896 if ((p = pfind(pid)) == NULL) { 897 if (proctree_locked) 898 sx_xunlock(&proctree_lock); 899 return (ESRCH); 900 } 901 } else { 902 td2 = tdfind(pid, -1); 903 if (td2 == NULL) { 904 if (proctree_locked) 905 sx_xunlock(&proctree_lock); 906 return (ESRCH); 907 } 908 p = td2->td_proc; 909 tid = pid; 910 pid = p->p_pid; 911 } 912 } 913 AUDIT_ARG_PROCESS(p); 914 915 if ((p->p_flag & P_WEXIT) != 0) { 916 error = ESRCH; 917 goto fail; 918 } 919 if ((error = p_cansee(td, p)) != 0) 920 goto fail; 921 922 if ((error = p_candebug(td, p)) != 0) 923 goto fail; 924 925 /* 926 * System processes can't be debugged. 927 */ 928 if ((p->p_flag & P_SYSTEM) != 0) { 929 error = EINVAL; 930 goto fail; 931 } 932 933 if (tid == 0) { 934 if ((p->p_flag & P_STOPPED_TRACE) != 0) 935 td2 = p->p_xthread; 936 if (td2 == NULL) 937 td2 = FIRST_THREAD_IN_PROC(p); 938 tid = td2->td_tid; 939 } 940 941 #ifdef COMPAT_FREEBSD32 942 /* 943 * Test if we're a 32 bit client and what the target is. 944 * Set the wrap controls accordingly. 945 */ 946 if (SV_CURPROC_FLAG(SV_ILP32)) { 947 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32)) 948 safe = 1; 949 wrap32 = 1; 950 } 951 #endif 952 /* 953 * Permissions check 954 */ 955 switch (req) { 956 case PT_TRACE_ME: 957 /* 958 * Always legal, when there is a parent process which 959 * could trace us. Otherwise, reject. 960 */ 961 if ((p->p_flag & P_TRACED) != 0) { 962 error = EBUSY; 963 goto fail; 964 } 965 if (p->p_pptr == initproc) { 966 error = EPERM; 967 goto fail; 968 } 969 break; 970 971 case PT_ATTACH: 972 /* Self */ 973 if (p == td->td_proc) { 974 error = EINVAL; 975 goto fail; 976 } 977 978 /* Already traced */ 979 if (p->p_flag & P_TRACED) { 980 error = EBUSY; 981 goto fail; 982 } 983 984 /* Can't trace an ancestor if you're being traced. */ 985 if (curp->p_flag & P_TRACED) { 986 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) { 987 if (pp == p) { 988 error = EINVAL; 989 goto fail; 990 } 991 } 992 } 993 994 /* OK */ 995 break; 996 997 case PT_CLEARSTEP: 998 /* Allow thread to clear single step for itself */ 999 if (td->td_tid == tid) 1000 break; 1001 1002 /* FALLTHROUGH */ 1003 default: 1004 /* 1005 * Check for ptrace eligibility before waiting for 1006 * holds to drain. 1007 */ 1008 error = proc_can_ptrace(td, p); 1009 if (error != 0) 1010 goto fail; 1011 1012 /* 1013 * Block parallel ptrace requests. Most important, do 1014 * not allow other thread in debugger to continue the 1015 * debuggee until coredump finished. 1016 */ 1017 while ((p->p_flag2 & P2_PTRACEREQ) != 0) { 1018 if (proctree_locked) 1019 sx_xunlock(&proctree_lock); 1020 error = msleep(&p->p_flag2, &p->p_mtx, PPAUSE | PCATCH | 1021 (proctree_locked ? PDROP : 0), "pptrace", 0); 1022 if (proctree_locked) { 1023 sx_xlock(&proctree_lock); 1024 PROC_LOCK(p); 1025 } 1026 if (error == 0 && td2->td_proc != p) 1027 error = ESRCH; 1028 if (error == 0) 1029 error = proc_can_ptrace(td, p); 1030 if (error != 0) 1031 goto fail; 1032 } 1033 1034 /* Ok */ 1035 break; 1036 } 1037 1038 /* 1039 * Keep this process around and request parallel ptrace() 1040 * request to wait until we finish this request. 1041 */ 1042 MPASS((p->p_flag2 & P2_PTRACEREQ) == 0); 1043 p->p_flag2 |= P2_PTRACEREQ; 1044 p2_req_set = true; 1045 _PHOLD(p); 1046 1047 /* 1048 * Actually do the requests 1049 */ 1050 1051 td->td_retval[0] = 0; 1052 1053 switch (req) { 1054 case PT_TRACE_ME: 1055 /* set my trace flag and "owner" so it can read/write me */ 1056 proc_set_traced(p, false); 1057 if (p->p_flag & P_PPWAIT) 1058 p->p_flag |= P_PPTRACE; 1059 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid); 1060 break; 1061 1062 case PT_ATTACH: 1063 /* security check done above */ 1064 /* 1065 * It would be nice if the tracing relationship was separate 1066 * from the parent relationship but that would require 1067 * another set of links in the proc struct or for "wait" 1068 * to scan the entire proc table. To make life easier, 1069 * we just re-parent the process we're trying to trace. 1070 * The old parent is remembered so we can put things back 1071 * on a "detach". 1072 */ 1073 proc_set_traced(p, true); 1074 proc_reparent(p, td->td_proc, false); 1075 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid, 1076 p->p_oppid); 1077 1078 sx_xunlock(&proctree_lock); 1079 proctree_locked = false; 1080 MPASS(p->p_xthread == NULL); 1081 MPASS((p->p_flag & P_STOPPED_TRACE) == 0); 1082 1083 /* 1084 * If already stopped due to a stop signal, clear the 1085 * existing stop before triggering a traced SIGSTOP. 1086 */ 1087 if ((p->p_flag & P_STOPPED_SIG) != 0) { 1088 PROC_SLOCK(p); 1089 p->p_flag &= ~(P_STOPPED_SIG | P_WAITED); 1090 thread_unsuspend(p); 1091 PROC_SUNLOCK(p); 1092 } 1093 1094 kern_psignal(p, SIGSTOP); 1095 break; 1096 1097 case PT_CLEARSTEP: 1098 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid, 1099 p->p_pid); 1100 error = ptrace_clear_single_step(td2); 1101 break; 1102 1103 case PT_SETSTEP: 1104 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid, 1105 p->p_pid); 1106 error = ptrace_single_step(td2); 1107 break; 1108 1109 case PT_SUSPEND: 1110 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid, 1111 p->p_pid); 1112 td2->td_dbgflags |= TDB_SUSPEND; 1113 ast_sched(td2, TDA_SUSPEND); 1114 break; 1115 1116 case PT_RESUME: 1117 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid, 1118 p->p_pid); 1119 td2->td_dbgflags &= ~TDB_SUSPEND; 1120 break; 1121 1122 case PT_FOLLOW_FORK: 1123 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid, 1124 p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled", 1125 data ? "enabled" : "disabled"); 1126 if (data) 1127 p->p_ptevents |= PTRACE_FORK; 1128 else 1129 p->p_ptevents &= ~PTRACE_FORK; 1130 break; 1131 1132 case PT_LWP_EVENTS: 1133 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid, 1134 p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled", 1135 data ? "enabled" : "disabled"); 1136 if (data) 1137 p->p_ptevents |= PTRACE_LWP; 1138 else 1139 p->p_ptevents &= ~PTRACE_LWP; 1140 break; 1141 1142 case PT_GET_EVENT_MASK: 1143 if (data != sizeof(p->p_ptevents)) { 1144 error = EINVAL; 1145 break; 1146 } 1147 CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid, 1148 p->p_ptevents); 1149 *(int *)addr = p->p_ptevents; 1150 break; 1151 1152 case PT_SET_EVENT_MASK: 1153 if (data != sizeof(p->p_ptevents)) { 1154 error = EINVAL; 1155 break; 1156 } 1157 tmp = *(int *)addr; 1158 if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX | 1159 PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) { 1160 error = EINVAL; 1161 break; 1162 } 1163 CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x", 1164 p->p_pid, p->p_ptevents, tmp); 1165 p->p_ptevents = tmp; 1166 break; 1167 1168 case PT_GET_SC_ARGS: 1169 CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid); 1170 if (((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0 && 1171 td2->td_sa.code == 0) 1172 #ifdef COMPAT_FREEBSD32 1173 || (wrap32 && !safe) 1174 #endif 1175 ) { 1176 error = EINVAL; 1177 break; 1178 } 1179 bzero(addr, sizeof(td2->td_sa.args)); 1180 /* See the explanation in linux_ptrace_get_syscall_info(). */ 1181 bcopy(td2->td_sa.args, addr, SV_PROC_ABI(td->td_proc) == 1182 SV_ABI_LINUX ? sizeof(td2->td_sa.args) : 1183 td2->td_sa.callp->sy_narg * sizeof(syscallarg_t)); 1184 break; 1185 1186 case PT_GET_SC_RET: 1187 if ((td2->td_dbgflags & (TDB_SCX)) == 0 1188 #ifdef COMPAT_FREEBSD32 1189 || (wrap32 && !safe) 1190 #endif 1191 ) { 1192 error = EINVAL; 1193 break; 1194 } 1195 psr = addr; 1196 bzero(psr, sizeof(*psr)); 1197 psr->sr_error = td2->td_errno; 1198 if (psr->sr_error == 0) { 1199 psr->sr_retval[0] = td2->td_retval[0]; 1200 psr->sr_retval[1] = td2->td_retval[1]; 1201 } 1202 CTR4(KTR_PTRACE, 1203 "PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx", 1204 p->p_pid, psr->sr_error, psr->sr_retval[0], 1205 psr->sr_retval[1]); 1206 break; 1207 1208 case PT_STEP: 1209 case PT_CONTINUE: 1210 case PT_TO_SCE: 1211 case PT_TO_SCX: 1212 case PT_SYSCALL: 1213 case PT_DETACH: 1214 /* Zero means do not send any signal */ 1215 if (data < 0 || data > _SIG_MAXSIG) { 1216 error = EINVAL; 1217 break; 1218 } 1219 1220 switch (req) { 1221 case PT_STEP: 1222 CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d", 1223 td2->td_tid, p->p_pid, data); 1224 error = ptrace_single_step(td2); 1225 if (error) 1226 goto out; 1227 break; 1228 case PT_CONTINUE: 1229 case PT_TO_SCE: 1230 case PT_TO_SCX: 1231 case PT_SYSCALL: 1232 if (addr != (void *)1) { 1233 error = ptrace_set_pc(td2, 1234 (u_long)(uintfptr_t)addr); 1235 if (error) 1236 goto out; 1237 td2->td_dbgflags |= TDB_USERWR; 1238 } 1239 switch (req) { 1240 case PT_TO_SCE: 1241 p->p_ptevents |= PTRACE_SCE; 1242 CTR4(KTR_PTRACE, 1243 "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d", 1244 p->p_pid, p->p_ptevents, 1245 (u_long)(uintfptr_t)addr, data); 1246 break; 1247 case PT_TO_SCX: 1248 p->p_ptevents |= PTRACE_SCX; 1249 CTR4(KTR_PTRACE, 1250 "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d", 1251 p->p_pid, p->p_ptevents, 1252 (u_long)(uintfptr_t)addr, data); 1253 break; 1254 case PT_SYSCALL: 1255 p->p_ptevents |= PTRACE_SYSCALL; 1256 CTR4(KTR_PTRACE, 1257 "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d", 1258 p->p_pid, p->p_ptevents, 1259 (u_long)(uintfptr_t)addr, data); 1260 break; 1261 case PT_CONTINUE: 1262 CTR3(KTR_PTRACE, 1263 "PT_CONTINUE: pid %d, PC = %#lx, sig = %d", 1264 p->p_pid, (u_long)(uintfptr_t)addr, data); 1265 break; 1266 } 1267 break; 1268 case PT_DETACH: 1269 /* 1270 * Clear P_TRACED before reparenting 1271 * a detached process back to its original 1272 * parent. Otherwise the debugee will be set 1273 * as an orphan of the debugger. 1274 */ 1275 p->p_flag &= ~(P_TRACED | P_WAITED); 1276 1277 /* 1278 * Reset the process parent. 1279 */ 1280 if (p->p_oppid != p->p_pptr->p_pid) { 1281 PROC_LOCK(p->p_pptr); 1282 sigqueue_take(p->p_ksi); 1283 PROC_UNLOCK(p->p_pptr); 1284 1285 pp = proc_realparent(p); 1286 proc_reparent(p, pp, false); 1287 if (pp == initproc) 1288 p->p_sigparent = SIGCHLD; 1289 CTR3(KTR_PTRACE, 1290 "PT_DETACH: pid %d reparented to pid %d, sig %d", 1291 p->p_pid, pp->p_pid, data); 1292 } else { 1293 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d", 1294 p->p_pid, data); 1295 } 1296 1297 p->p_ptevents = 0; 1298 FOREACH_THREAD_IN_PROC(p, td3) { 1299 if ((td3->td_dbgflags & TDB_FSTP) != 0) { 1300 sigqueue_delete(&td3->td_sigqueue, 1301 SIGSTOP); 1302 } 1303 td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP | 1304 TDB_SUSPEND | TDB_BORN); 1305 } 1306 1307 if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) { 1308 sigqueue_delete(&p->p_sigqueue, SIGSTOP); 1309 p->p_flag2 &= ~P2_PTRACE_FSTP; 1310 } 1311 1312 /* should we send SIGCHLD? */ 1313 /* childproc_continued(p); */ 1314 break; 1315 } 1316 1317 sx_xunlock(&proctree_lock); 1318 proctree_locked = false; 1319 1320 sendsig: 1321 MPASS(!proctree_locked); 1322 1323 /* 1324 * Clear the pending event for the thread that just 1325 * reported its event (p_xthread), if any. This may 1326 * not be the thread passed to PT_CONTINUE, PT_STEP, 1327 * etc. if the debugger is resuming a different 1328 * thread. There might be no reporting thread if 1329 * the process was just attached. 1330 * 1331 * Deliver any pending signal via the reporting thread. 1332 */ 1333 if (p->p_xthread != NULL) { 1334 p->p_xthread->td_dbgflags &= ~TDB_XSIG; 1335 p->p_xthread->td_xsig = data; 1336 p->p_xthread = NULL; 1337 } 1338 p->p_xsig = data; 1339 1340 /* 1341 * P_WKILLED is insurance that a PT_KILL/SIGKILL 1342 * always works immediately, even if another thread is 1343 * unsuspended first and attempts to handle a 1344 * different signal or if the POSIX.1b style signal 1345 * queue cannot accommodate any new signals. 1346 */ 1347 if (data == SIGKILL) 1348 proc_wkilled(p); 1349 1350 /* 1351 * If the PT_CONTINUE-like operation is attempted on 1352 * the thread on sleepq, this is possible only after 1353 * the transparent PT_ATTACH. In this case, if the 1354 * caller modified the thread state, e.g. by writing 1355 * register file or specifying the pc, make the thread 1356 * xstopped by waking it up. 1357 */ 1358 if ((td2->td_dbgflags & TDB_USERWR) != 0) { 1359 if (pt_attach_transparent) { 1360 thread_lock(td2); 1361 if (TD_ON_SLEEPQ(td2) && 1362 (td2->td_flags & TDF_SINTR) != 0) { 1363 sleepq_abort(td2, EINTR); 1364 } else { 1365 thread_unlock(td2); 1366 } 1367 } 1368 td2->td_dbgflags &= ~TDB_USERWR; 1369 } 1370 1371 /* 1372 * Unsuspend all threads. To leave a thread 1373 * suspended, use PT_SUSPEND to suspend it before 1374 * continuing the process. 1375 */ 1376 ptrace_unsuspend(p); 1377 break; 1378 1379 case PT_WRITE_I: 1380 case PT_WRITE_D: 1381 td2->td_dbgflags |= TDB_USERWR; 1382 PROC_UNLOCK(p); 1383 error = 0; 1384 if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data, 1385 sizeof(int)) != sizeof(int)) 1386 error = ENOMEM; 1387 else 1388 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x", 1389 p->p_pid, addr, data); 1390 PROC_LOCK(p); 1391 break; 1392 1393 case PT_READ_I: 1394 case PT_READ_D: 1395 PROC_UNLOCK(p); 1396 error = tmp = 0; 1397 if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp, 1398 sizeof(int)) != sizeof(int)) 1399 error = ENOMEM; 1400 else 1401 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x", 1402 p->p_pid, addr, tmp); 1403 td->td_retval[0] = tmp; 1404 PROC_LOCK(p); 1405 break; 1406 1407 case PT_IO: 1408 piod = addr; 1409 if (piod->piod_len > SSIZE_MAX) { 1410 error = EINVAL; 1411 goto out; 1412 } 1413 iov.iov_base = piod->piod_addr; 1414 iov.iov_len = piod->piod_len; 1415 uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs; 1416 uio.uio_resid = piod->piod_len; 1417 uio.uio_iov = &iov; 1418 uio.uio_iovcnt = 1; 1419 uio.uio_segflg = UIO_USERSPACE; 1420 uio.uio_td = td; 1421 switch (piod->piod_op) { 1422 case PIOD_READ_D: 1423 case PIOD_READ_I: 1424 CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)", 1425 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1426 uio.uio_rw = UIO_READ; 1427 break; 1428 case PIOD_WRITE_D: 1429 case PIOD_WRITE_I: 1430 CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)", 1431 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1432 td2->td_dbgflags |= TDB_USERWR; 1433 uio.uio_rw = UIO_WRITE; 1434 break; 1435 default: 1436 error = EINVAL; 1437 goto out; 1438 } 1439 PROC_UNLOCK(p); 1440 error = proc_rwmem(p, &uio); 1441 piod->piod_len -= uio.uio_resid; 1442 PROC_LOCK(p); 1443 break; 1444 1445 case PT_KILL: 1446 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid); 1447 data = SIGKILL; 1448 goto sendsig; /* in PT_CONTINUE above */ 1449 1450 case PT_SETREGS: 1451 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid, 1452 p->p_pid); 1453 td2->td_dbgflags |= TDB_USERWR; 1454 error = PROC_WRITE(regs, td2, addr); 1455 break; 1456 1457 case PT_GETREGS: 1458 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid, 1459 p->p_pid); 1460 error = PROC_READ(regs, td2, addr); 1461 break; 1462 1463 case PT_SETFPREGS: 1464 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid, 1465 p->p_pid); 1466 td2->td_dbgflags |= TDB_USERWR; 1467 error = PROC_WRITE(fpregs, td2, addr); 1468 break; 1469 1470 case PT_GETFPREGS: 1471 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid, 1472 p->p_pid); 1473 error = PROC_READ(fpregs, td2, addr); 1474 break; 1475 1476 case PT_SETDBREGS: 1477 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid, 1478 p->p_pid); 1479 td2->td_dbgflags |= TDB_USERWR; 1480 error = PROC_WRITE(dbregs, td2, addr); 1481 break; 1482 1483 case PT_GETDBREGS: 1484 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid, 1485 p->p_pid); 1486 error = PROC_READ(dbregs, td2, addr); 1487 break; 1488 1489 case PT_SETREGSET: 1490 CTR2(KTR_PTRACE, "PT_SETREGSET: tid %d (pid %d)", td2->td_tid, 1491 p->p_pid); 1492 error = proc_write_regset(td2, data, addr); 1493 break; 1494 1495 case PT_GETREGSET: 1496 CTR2(KTR_PTRACE, "PT_GETREGSET: tid %d (pid %d)", td2->td_tid, 1497 p->p_pid); 1498 error = proc_read_regset(td2, data, addr); 1499 break; 1500 1501 case PT_LWPINFO: 1502 if (data <= 0 || data > sizeof(*pl)) { 1503 error = EINVAL; 1504 break; 1505 } 1506 pl = addr; 1507 bzero(pl, sizeof(*pl)); 1508 pl->pl_lwpid = td2->td_tid; 1509 pl->pl_event = PL_EVENT_NONE; 1510 pl->pl_flags = 0; 1511 if (td2->td_dbgflags & TDB_XSIG) { 1512 pl->pl_event = PL_EVENT_SIGNAL; 1513 if (td2->td_si.si_signo != 0 && 1514 data >= offsetof(struct ptrace_lwpinfo, pl_siginfo) 1515 + sizeof(pl->pl_siginfo)){ 1516 pl->pl_flags |= PL_FLAG_SI; 1517 pl->pl_siginfo = td2->td_si; 1518 } 1519 } 1520 if (td2->td_dbgflags & TDB_SCE) 1521 pl->pl_flags |= PL_FLAG_SCE; 1522 else if (td2->td_dbgflags & TDB_SCX) 1523 pl->pl_flags |= PL_FLAG_SCX; 1524 if (td2->td_dbgflags & TDB_EXEC) 1525 pl->pl_flags |= PL_FLAG_EXEC; 1526 if (td2->td_dbgflags & TDB_FORK) { 1527 pl->pl_flags |= PL_FLAG_FORKED; 1528 pl->pl_child_pid = td2->td_dbg_forked; 1529 if (td2->td_dbgflags & TDB_VFORK) 1530 pl->pl_flags |= PL_FLAG_VFORKED; 1531 } else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) == 1532 TDB_VFORK) 1533 pl->pl_flags |= PL_FLAG_VFORK_DONE; 1534 if (td2->td_dbgflags & TDB_CHILD) 1535 pl->pl_flags |= PL_FLAG_CHILD; 1536 if (td2->td_dbgflags & TDB_BORN) 1537 pl->pl_flags |= PL_FLAG_BORN; 1538 if (td2->td_dbgflags & TDB_EXIT) 1539 pl->pl_flags |= PL_FLAG_EXITED; 1540 pl->pl_sigmask = td2->td_sigmask; 1541 pl->pl_siglist = td2->td_siglist; 1542 strcpy(pl->pl_tdname, td2->td_name); 1543 if (td2->td_sa.code != 0) { 1544 pl->pl_syscall_code = td2->td_sa.code; 1545 pl->pl_syscall_narg = td2->td_sa.callp->sy_narg; 1546 } 1547 CTR6(KTR_PTRACE, 1548 "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d", 1549 td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags, 1550 pl->pl_child_pid, pl->pl_syscall_code); 1551 break; 1552 1553 case PT_GETNUMLWPS: 1554 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid, 1555 p->p_numthreads); 1556 td->td_retval[0] = p->p_numthreads; 1557 break; 1558 1559 case PT_GETLWPLIST: 1560 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d", 1561 p->p_pid, data, p->p_numthreads); 1562 if (data <= 0) { 1563 error = EINVAL; 1564 break; 1565 } 1566 num = imin(p->p_numthreads, data); 1567 PROC_UNLOCK(p); 1568 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK); 1569 tmp = 0; 1570 PROC_LOCK(p); 1571 FOREACH_THREAD_IN_PROC(p, td2) { 1572 if (tmp >= num) 1573 break; 1574 buf[tmp++] = td2->td_tid; 1575 } 1576 PROC_UNLOCK(p); 1577 error = copyout(buf, addr, tmp * sizeof(lwpid_t)); 1578 free(buf, M_TEMP); 1579 if (!error) 1580 td->td_retval[0] = tmp; 1581 PROC_LOCK(p); 1582 break; 1583 1584 case PT_VM_TIMESTAMP: 1585 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d", 1586 p->p_pid, p->p_vmspace->vm_map.timestamp); 1587 td->td_retval[0] = p->p_vmspace->vm_map.timestamp; 1588 break; 1589 1590 case PT_VM_ENTRY: 1591 PROC_UNLOCK(p); 1592 error = ptrace_vm_entry(td, p, addr); 1593 PROC_LOCK(p); 1594 break; 1595 1596 case PT_COREDUMP: 1597 pc = addr; 1598 CTR2(KTR_PTRACE, "PT_COREDUMP: pid %d, fd %d", 1599 p->p_pid, pc->pc_fd); 1600 1601 if ((pc->pc_flags & ~(PC_COMPRESS | PC_ALL)) != 0) { 1602 error = EINVAL; 1603 break; 1604 } 1605 PROC_UNLOCK(p); 1606 1607 tcq = malloc(sizeof(*tcq), M_TEMP, M_WAITOK | M_ZERO); 1608 fp = NULL; 1609 error = fget_write(td, pc->pc_fd, &cap_write_rights, &fp); 1610 if (error != 0) 1611 goto coredump_cleanup_nofp; 1612 if (fp->f_type != DTYPE_VNODE || fp->f_vnode->v_type != VREG) { 1613 error = EPIPE; 1614 goto coredump_cleanup; 1615 } 1616 1617 PROC_LOCK(p); 1618 error = proc_can_ptrace(td, p); 1619 if (error != 0) 1620 goto coredump_cleanup_locked; 1621 1622 td2 = ptrace_sel_coredump_thread(p); 1623 if (td2 == NULL) { 1624 error = EBUSY; 1625 goto coredump_cleanup_locked; 1626 } 1627 KASSERT((td2->td_dbgflags & (TDB_COREDUMPREQ | 1628 TDB_SCREMOTEREQ)) == 0, 1629 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid)); 1630 1631 tcq->tc_vp = fp->f_vnode; 1632 tcq->tc_limit = pc->pc_limit == 0 ? OFF_MAX : pc->pc_limit; 1633 tcq->tc_flags = SVC_PT_COREDUMP; 1634 if ((pc->pc_flags & PC_COMPRESS) == 0) 1635 tcq->tc_flags |= SVC_NOCOMPRESS; 1636 if ((pc->pc_flags & PC_ALL) != 0) 1637 tcq->tc_flags |= SVC_ALL; 1638 td2->td_remotereq = tcq; 1639 td2->td_dbgflags |= TDB_COREDUMPREQ; 1640 thread_run_flash(td2); 1641 while ((td2->td_dbgflags & TDB_COREDUMPREQ) != 0) 1642 msleep(p, &p->p_mtx, PPAUSE, "crdmp", 0); 1643 error = tcq->tc_error; 1644 coredump_cleanup_locked: 1645 PROC_UNLOCK(p); 1646 coredump_cleanup: 1647 fdrop(fp, td); 1648 coredump_cleanup_nofp: 1649 free(tcq, M_TEMP); 1650 PROC_LOCK(p); 1651 break; 1652 1653 case PT_SC_REMOTE: 1654 pscr = addr; 1655 CTR2(KTR_PTRACE, "PT_SC_REMOTE: pid %d, syscall %d", 1656 p->p_pid, pscr->pscr_syscall); 1657 if ((td2->td_dbgflags & TDB_BOUNDARY) == 0) { 1658 error = EBUSY; 1659 break; 1660 } 1661 PROC_UNLOCK(p); 1662 MPASS(pscr->pscr_nargs <= nitems(td->td_sa.args)); 1663 1664 tsr = malloc(sizeof(struct thr_syscall_req), M_TEMP, 1665 M_WAITOK | M_ZERO); 1666 1667 tsr->ts_sa.code = pscr->pscr_syscall; 1668 tsr->ts_nargs = pscr->pscr_nargs; 1669 memcpy(&tsr->ts_sa.args, pscr->pscr_args, 1670 sizeof(syscallarg_t) * tsr->ts_nargs); 1671 1672 PROC_LOCK(p); 1673 error = proc_can_ptrace(td, p); 1674 if (error != 0) { 1675 free(tsr, M_TEMP); 1676 break; 1677 } 1678 if (td2->td_proc != p) { 1679 free(tsr, M_TEMP); 1680 error = ESRCH; 1681 break; 1682 } 1683 KASSERT((td2->td_dbgflags & (TDB_COREDUMPREQ | 1684 TDB_SCREMOTEREQ)) == 0, 1685 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid)); 1686 1687 td2->td_remotereq = tsr; 1688 td2->td_dbgflags |= TDB_SCREMOTEREQ; 1689 thread_run_flash(td2); 1690 while ((td2->td_dbgflags & TDB_SCREMOTEREQ) != 0) 1691 msleep(p, &p->p_mtx, PPAUSE, "pscrx", 0); 1692 error = 0; 1693 memcpy(&pscr->pscr_ret, &tsr->ts_ret, sizeof(tsr->ts_ret)); 1694 free(tsr, M_TEMP); 1695 break; 1696 1697 default: 1698 #ifdef __HAVE_PTRACE_MACHDEP 1699 if (req >= PT_FIRSTMACH) { 1700 PROC_UNLOCK(p); 1701 error = cpu_ptrace(td2, req, addr, data); 1702 PROC_LOCK(p); 1703 } else 1704 #endif 1705 /* Unknown request. */ 1706 error = EINVAL; 1707 break; 1708 } 1709 out: 1710 /* Drop our hold on this process now that the request has completed. */ 1711 _PRELE(p); 1712 fail: 1713 if (p2_req_set) { 1714 if ((p->p_flag2 & P2_PTRACEREQ) != 0) 1715 wakeup(&p->p_flag2); 1716 p->p_flag2 &= ~P2_PTRACEREQ; 1717 } 1718 PROC_UNLOCK(p); 1719 if (proctree_locked) 1720 sx_xunlock(&proctree_lock); 1721 return (error); 1722 } 1723 #undef PROC_READ 1724 #undef PROC_WRITE 1725