1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1996 John S. Dyson 5 * Copyright (c) 2012 Giovanni Trematerra 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice immediately at the beginning of the file, without modification, 13 * this list of conditions, and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Absolutely no warranty of function or purpose is made by the author 18 * John S. Dyson. 19 * 4. Modifications may be freely made to this file if the above conditions 20 * are met. 21 */ 22 23 /* 24 * This file contains a high-performance replacement for the socket-based 25 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 26 * all features of sockets, but does do everything that pipes normally 27 * do. 28 */ 29 30 /* 31 * This code has two modes of operation, a small write mode and a large 32 * write mode. The small write mode acts like conventional pipes with 33 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 34 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 35 * and PIPE_SIZE in size, the sending process pins the underlying pages in 36 * memory, and the receiving process copies directly from these pinned pages 37 * in the sending process. 38 * 39 * If the sending process receives a signal, it is possible that it will 40 * go away, and certainly its address space can change, because control 41 * is returned back to the user-mode side. In that case, the pipe code 42 * arranges to copy the buffer supplied by the user process, to a pageable 43 * kernel buffer, and the receiving process will grab the data from the 44 * pageable kernel buffer. Since signals don't happen all that often, 45 * the copy operation is normally eliminated. 46 * 47 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 48 * happen for small transfers so that the system will not spend all of 49 * its time context switching. 50 * 51 * In order to limit the resource use of pipes, two sysctls exist: 52 * 53 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 54 * address space available to us in pipe_map. This value is normally 55 * autotuned, but may also be loader tuned. 56 * 57 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 58 * memory in use by pipes. 59 * 60 * Based on how large pipekva is relative to maxpipekva, the following 61 * will happen: 62 * 63 * 0% - 50%: 64 * New pipes are given 16K of memory backing, pipes may dynamically 65 * grow to as large as 64K where needed. 66 * 50% - 75%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes may NOT grow. 69 * 75% - 100%: 70 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 71 * existing pipes will be shrunk down to 4K whenever possible. 72 * 73 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 74 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 75 * resize which MUST occur for reverse-direction pipes when they are 76 * first used. 77 * 78 * Additional information about the current state of pipes may be obtained 79 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 80 * and kern.ipc.piperesizefail. 81 * 82 * Locking rules: There are two locks present here: A mutex, used via 83 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 84 * the flag, as mutexes can not persist over uiomove. The mutex 85 * exists only to guard access to the flag, and is not in itself a 86 * locking mechanism. Also note that there is only a single mutex for 87 * both directions of a pipe. 88 * 89 * As pipelock() may have to sleep before it can acquire the flag, it 90 * is important to reread all data after a call to pipelock(); everything 91 * in the structure may have changed. 92 */ 93 94 #include <sys/cdefs.h> 95 __FBSDID("$FreeBSD$"); 96 97 #include <sys/param.h> 98 #include <sys/systm.h> 99 #include <sys/conf.h> 100 #include <sys/fcntl.h> 101 #include <sys/file.h> 102 #include <sys/filedesc.h> 103 #include <sys/filio.h> 104 #include <sys/kernel.h> 105 #include <sys/lock.h> 106 #include <sys/mutex.h> 107 #include <sys/ttycom.h> 108 #include <sys/stat.h> 109 #include <sys/malloc.h> 110 #include <sys/poll.h> 111 #include <sys/selinfo.h> 112 #include <sys/signalvar.h> 113 #include <sys/syscallsubr.h> 114 #include <sys/sysctl.h> 115 #include <sys/sysproto.h> 116 #include <sys/pipe.h> 117 #include <sys/proc.h> 118 #include <sys/vnode.h> 119 #include <sys/uio.h> 120 #include <sys/user.h> 121 #include <sys/event.h> 122 123 #include <security/mac/mac_framework.h> 124 125 #include <vm/vm.h> 126 #include <vm/vm_param.h> 127 #include <vm/vm_object.h> 128 #include <vm/vm_kern.h> 129 #include <vm/vm_extern.h> 130 #include <vm/pmap.h> 131 #include <vm/vm_map.h> 132 #include <vm/vm_page.h> 133 #include <vm/uma.h> 134 135 /* 136 * Use this define if you want to disable *fancy* VM things. Expect an 137 * approx 30% decrease in transfer rate. This could be useful for 138 * NetBSD or OpenBSD. 139 */ 140 /* #define PIPE_NODIRECT */ 141 142 #define PIPE_PEER(pipe) \ 143 (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer)) 144 145 /* 146 * interfaces to the outside world 147 */ 148 static fo_rdwr_t pipe_read; 149 static fo_rdwr_t pipe_write; 150 static fo_truncate_t pipe_truncate; 151 static fo_ioctl_t pipe_ioctl; 152 static fo_poll_t pipe_poll; 153 static fo_kqfilter_t pipe_kqfilter; 154 static fo_stat_t pipe_stat; 155 static fo_close_t pipe_close; 156 static fo_chmod_t pipe_chmod; 157 static fo_chown_t pipe_chown; 158 static fo_fill_kinfo_t pipe_fill_kinfo; 159 160 struct fileops pipeops = { 161 .fo_read = pipe_read, 162 .fo_write = pipe_write, 163 .fo_truncate = pipe_truncate, 164 .fo_ioctl = pipe_ioctl, 165 .fo_poll = pipe_poll, 166 .fo_kqfilter = pipe_kqfilter, 167 .fo_stat = pipe_stat, 168 .fo_close = pipe_close, 169 .fo_chmod = pipe_chmod, 170 .fo_chown = pipe_chown, 171 .fo_sendfile = invfo_sendfile, 172 .fo_fill_kinfo = pipe_fill_kinfo, 173 .fo_flags = DFLAG_PASSABLE 174 }; 175 176 static void filt_pipedetach(struct knote *kn); 177 static void filt_pipedetach_notsup(struct knote *kn); 178 static int filt_pipenotsup(struct knote *kn, long hint); 179 static int filt_piperead(struct knote *kn, long hint); 180 static int filt_pipewrite(struct knote *kn, long hint); 181 182 static struct filterops pipe_nfiltops = { 183 .f_isfd = 1, 184 .f_detach = filt_pipedetach_notsup, 185 .f_event = filt_pipenotsup 186 }; 187 static struct filterops pipe_rfiltops = { 188 .f_isfd = 1, 189 .f_detach = filt_pipedetach, 190 .f_event = filt_piperead 191 }; 192 static struct filterops pipe_wfiltops = { 193 .f_isfd = 1, 194 .f_detach = filt_pipedetach, 195 .f_event = filt_pipewrite 196 }; 197 198 /* 199 * Default pipe buffer size(s), this can be kind-of large now because pipe 200 * space is pageable. The pipe code will try to maintain locality of 201 * reference for performance reasons, so small amounts of outstanding I/O 202 * will not wipe the cache. 203 */ 204 #define MINPIPESIZE (PIPE_SIZE/3) 205 #define MAXPIPESIZE (2*PIPE_SIZE/3) 206 207 static long amountpipekva; 208 static int pipefragretry; 209 static int pipeallocfail; 210 static int piperesizefail; 211 static int piperesizeallowed = 1; 212 213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 214 &maxpipekva, 0, "Pipe KVA limit"); 215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 216 &amountpipekva, 0, "Pipe KVA usage"); 217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 218 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 220 &pipeallocfail, 0, "Pipe allocation failures"); 221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 222 &piperesizefail, 0, "Pipe resize failures"); 223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 224 &piperesizeallowed, 0, "Pipe resizing allowed"); 225 226 static void pipeinit(void *dummy __unused); 227 static void pipeclose(struct pipe *cpipe); 228 static void pipe_free_kmem(struct pipe *cpipe); 229 static int pipe_create(struct pipe *pipe, bool backing); 230 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp); 231 static __inline int pipelock(struct pipe *cpipe, int catch); 232 static __inline void pipeunlock(struct pipe *cpipe); 233 #ifndef PIPE_NODIRECT 234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 235 static void pipe_destroy_write_buffer(struct pipe *wpipe); 236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 237 static void pipe_clone_write_buffer(struct pipe *wpipe); 238 #endif 239 static int pipespace(struct pipe *cpipe, int size); 240 static int pipespace_new(struct pipe *cpipe, int size); 241 242 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 243 static int pipe_zone_init(void *mem, int size, int flags); 244 static void pipe_zone_fini(void *mem, int size); 245 246 static uma_zone_t pipe_zone; 247 static struct unrhdr64 pipeino_unr; 248 static dev_t pipedev_ino; 249 250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 251 252 static void 253 pipeinit(void *dummy __unused) 254 { 255 256 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), 257 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, 258 UMA_ALIGN_PTR, 0); 259 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 260 new_unrhdr64(&pipeino_unr, 1); 261 pipedev_ino = devfs_alloc_cdp_inode(); 262 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized")); 263 } 264 265 static int 266 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 267 { 268 struct pipepair *pp; 269 struct pipe *rpipe, *wpipe; 270 271 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 272 273 pp = (struct pipepair *)mem; 274 275 /* 276 * We zero both pipe endpoints to make sure all the kmem pointers 277 * are NULL, flag fields are zero'd, etc. We timestamp both 278 * endpoints with the same time. 279 */ 280 rpipe = &pp->pp_rpipe; 281 bzero(rpipe, sizeof(*rpipe)); 282 vfs_timestamp(&rpipe->pipe_ctime); 283 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 284 285 wpipe = &pp->pp_wpipe; 286 bzero(wpipe, sizeof(*wpipe)); 287 wpipe->pipe_ctime = rpipe->pipe_ctime; 288 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 289 290 rpipe->pipe_peer = wpipe; 291 rpipe->pipe_pair = pp; 292 wpipe->pipe_peer = rpipe; 293 wpipe->pipe_pair = pp; 294 295 /* 296 * Mark both endpoints as present; they will later get free'd 297 * one at a time. When both are free'd, then the whole pair 298 * is released. 299 */ 300 rpipe->pipe_present = PIPE_ACTIVE; 301 wpipe->pipe_present = PIPE_ACTIVE; 302 303 /* 304 * Eventually, the MAC Framework may initialize the label 305 * in ctor or init, but for now we do it elswhere to avoid 306 * blocking in ctor or init. 307 */ 308 pp->pp_label = NULL; 309 310 return (0); 311 } 312 313 static int 314 pipe_zone_init(void *mem, int size, int flags) 315 { 316 struct pipepair *pp; 317 318 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 319 320 pp = (struct pipepair *)mem; 321 322 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW); 323 return (0); 324 } 325 326 static void 327 pipe_zone_fini(void *mem, int size) 328 { 329 struct pipepair *pp; 330 331 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 332 333 pp = (struct pipepair *)mem; 334 335 mtx_destroy(&pp->pp_mtx); 336 } 337 338 static int 339 pipe_paircreate(struct thread *td, struct pipepair **p_pp) 340 { 341 struct pipepair *pp; 342 struct pipe *rpipe, *wpipe; 343 int error; 344 345 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK); 346 #ifdef MAC 347 /* 348 * The MAC label is shared between the connected endpoints. As a 349 * result mac_pipe_init() and mac_pipe_create() are called once 350 * for the pair, and not on the endpoints. 351 */ 352 mac_pipe_init(pp); 353 mac_pipe_create(td->td_ucred, pp); 354 #endif 355 rpipe = &pp->pp_rpipe; 356 wpipe = &pp->pp_wpipe; 357 358 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe)); 359 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe)); 360 361 /* 362 * Only the forward direction pipe is backed by big buffer by 363 * default. 364 */ 365 error = pipe_create(rpipe, true); 366 if (error != 0) 367 goto fail; 368 error = pipe_create(wpipe, false); 369 if (error != 0) { 370 /* 371 * This cleanup leaves the pipe inode number for rpipe 372 * still allocated, but never used. We do not free 373 * inode numbers for opened pipes, which is required 374 * for correctness because numbers must be unique. 375 * But also it avoids any memory use by the unr 376 * allocator, so stashing away the transient inode 377 * number is reasonable. 378 */ 379 pipe_free_kmem(rpipe); 380 goto fail; 381 } 382 383 rpipe->pipe_state |= PIPE_DIRECTOK; 384 wpipe->pipe_state |= PIPE_DIRECTOK; 385 return (0); 386 387 fail: 388 knlist_destroy(&rpipe->pipe_sel.si_note); 389 knlist_destroy(&wpipe->pipe_sel.si_note); 390 #ifdef MAC 391 mac_pipe_destroy(pp); 392 #endif 393 return (error); 394 } 395 396 int 397 pipe_named_ctor(struct pipe **ppipe, struct thread *td) 398 { 399 struct pipepair *pp; 400 int error; 401 402 error = pipe_paircreate(td, &pp); 403 if (error != 0) 404 return (error); 405 pp->pp_rpipe.pipe_state |= PIPE_NAMED; 406 *ppipe = &pp->pp_rpipe; 407 return (0); 408 } 409 410 void 411 pipe_dtor(struct pipe *dpipe) 412 { 413 struct pipe *peer; 414 415 peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL; 416 funsetown(&dpipe->pipe_sigio); 417 pipeclose(dpipe); 418 if (peer != NULL) { 419 funsetown(&peer->pipe_sigio); 420 pipeclose(peer); 421 } 422 } 423 424 /* 425 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let 426 * the zone pick up the pieces via pipeclose(). 427 */ 428 int 429 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1, 430 struct filecaps *fcaps2) 431 { 432 struct file *rf, *wf; 433 struct pipe *rpipe, *wpipe; 434 struct pipepair *pp; 435 int fd, fflags, error; 436 437 error = pipe_paircreate(td, &pp); 438 if (error != 0) 439 return (error); 440 rpipe = &pp->pp_rpipe; 441 wpipe = &pp->pp_wpipe; 442 error = falloc_caps(td, &rf, &fd, flags, fcaps1); 443 if (error) { 444 pipeclose(rpipe); 445 pipeclose(wpipe); 446 return (error); 447 } 448 /* An extra reference on `rf' has been held for us by falloc_caps(). */ 449 fildes[0] = fd; 450 451 fflags = FREAD | FWRITE; 452 if ((flags & O_NONBLOCK) != 0) 453 fflags |= FNONBLOCK; 454 455 /* 456 * Warning: once we've gotten past allocation of the fd for the 457 * read-side, we can only drop the read side via fdrop() in order 458 * to avoid races against processes which manage to dup() the read 459 * side while we are blocked trying to allocate the write side. 460 */ 461 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops); 462 error = falloc_caps(td, &wf, &fd, flags, fcaps2); 463 if (error) { 464 fdclose(td, rf, fildes[0]); 465 fdrop(rf, td); 466 /* rpipe has been closed by fdrop(). */ 467 pipeclose(wpipe); 468 return (error); 469 } 470 /* An extra reference on `wf' has been held for us by falloc_caps(). */ 471 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops); 472 fdrop(wf, td); 473 fildes[1] = fd; 474 fdrop(rf, td); 475 476 return (0); 477 } 478 479 #ifdef COMPAT_FREEBSD10 480 /* ARGSUSED */ 481 int 482 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused) 483 { 484 int error; 485 int fildes[2]; 486 487 error = kern_pipe(td, fildes, 0, NULL, NULL); 488 if (error) 489 return (error); 490 491 td->td_retval[0] = fildes[0]; 492 td->td_retval[1] = fildes[1]; 493 494 return (0); 495 } 496 #endif 497 498 int 499 sys_pipe2(struct thread *td, struct pipe2_args *uap) 500 { 501 int error, fildes[2]; 502 503 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK)) 504 return (EINVAL); 505 error = kern_pipe(td, fildes, uap->flags, NULL, NULL); 506 if (error) 507 return (error); 508 error = copyout(fildes, uap->fildes, 2 * sizeof(int)); 509 if (error) { 510 (void)kern_close(td, fildes[0]); 511 (void)kern_close(td, fildes[1]); 512 } 513 return (error); 514 } 515 516 /* 517 * Allocate kva for pipe circular buffer, the space is pageable 518 * This routine will 'realloc' the size of a pipe safely, if it fails 519 * it will retain the old buffer. 520 * If it fails it will return ENOMEM. 521 */ 522 static int 523 pipespace_new(struct pipe *cpipe, int size) 524 { 525 caddr_t buffer; 526 int error, cnt, firstseg; 527 static int curfail = 0; 528 static struct timeval lastfail; 529 530 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 531 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 532 ("pipespace: resize of direct writes not allowed")); 533 retry: 534 cnt = cpipe->pipe_buffer.cnt; 535 if (cnt > size) 536 size = cnt; 537 538 size = round_page(size); 539 buffer = (caddr_t) vm_map_min(pipe_map); 540 541 error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0, 542 VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0); 543 if (error != KERN_SUCCESS) { 544 if (cpipe->pipe_buffer.buffer == NULL && 545 size > SMALL_PIPE_SIZE) { 546 size = SMALL_PIPE_SIZE; 547 pipefragretry++; 548 goto retry; 549 } 550 if (cpipe->pipe_buffer.buffer == NULL) { 551 pipeallocfail++; 552 if (ppsratecheck(&lastfail, &curfail, 1)) 553 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 554 } else { 555 piperesizefail++; 556 } 557 return (ENOMEM); 558 } 559 560 /* copy data, then free old resources if we're resizing */ 561 if (cnt > 0) { 562 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 563 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 564 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 565 buffer, firstseg); 566 if ((cnt - firstseg) > 0) 567 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 568 cpipe->pipe_buffer.in); 569 } else { 570 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 571 buffer, cnt); 572 } 573 } 574 pipe_free_kmem(cpipe); 575 cpipe->pipe_buffer.buffer = buffer; 576 cpipe->pipe_buffer.size = size; 577 cpipe->pipe_buffer.in = cnt; 578 cpipe->pipe_buffer.out = 0; 579 cpipe->pipe_buffer.cnt = cnt; 580 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size); 581 return (0); 582 } 583 584 /* 585 * Wrapper for pipespace_new() that performs locking assertions. 586 */ 587 static int 588 pipespace(struct pipe *cpipe, int size) 589 { 590 591 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 592 ("Unlocked pipe passed to pipespace")); 593 return (pipespace_new(cpipe, size)); 594 } 595 596 /* 597 * lock a pipe for I/O, blocking other access 598 */ 599 static __inline int 600 pipelock(struct pipe *cpipe, int catch) 601 { 602 int error; 603 604 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 605 while (cpipe->pipe_state & PIPE_LOCKFL) { 606 cpipe->pipe_state |= PIPE_LWANT; 607 error = msleep(cpipe, PIPE_MTX(cpipe), 608 catch ? (PRIBIO | PCATCH) : PRIBIO, 609 "pipelk", 0); 610 if (error != 0) 611 return (error); 612 } 613 cpipe->pipe_state |= PIPE_LOCKFL; 614 return (0); 615 } 616 617 /* 618 * unlock a pipe I/O lock 619 */ 620 static __inline void 621 pipeunlock(struct pipe *cpipe) 622 { 623 624 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 625 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 626 ("Unlocked pipe passed to pipeunlock")); 627 cpipe->pipe_state &= ~PIPE_LOCKFL; 628 if (cpipe->pipe_state & PIPE_LWANT) { 629 cpipe->pipe_state &= ~PIPE_LWANT; 630 wakeup(cpipe); 631 } 632 } 633 634 void 635 pipeselwakeup(struct pipe *cpipe) 636 { 637 638 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 639 if (cpipe->pipe_state & PIPE_SEL) { 640 selwakeuppri(&cpipe->pipe_sel, PSOCK); 641 if (!SEL_WAITING(&cpipe->pipe_sel)) 642 cpipe->pipe_state &= ~PIPE_SEL; 643 } 644 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 645 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 646 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 647 } 648 649 /* 650 * Initialize and allocate VM and memory for pipe. The structure 651 * will start out zero'd from the ctor, so we just manage the kmem. 652 */ 653 static int 654 pipe_create(struct pipe *pipe, bool large_backing) 655 { 656 int error; 657 658 error = pipespace_new(pipe, !large_backing || amountpipekva > 659 maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE); 660 if (error == 0) 661 pipe->pipe_ino = alloc_unr64(&pipeino_unr); 662 return (error); 663 } 664 665 /* ARGSUSED */ 666 static int 667 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred, 668 int flags, struct thread *td) 669 { 670 struct pipe *rpipe; 671 int error; 672 int nread = 0; 673 int size; 674 675 rpipe = fp->f_data; 676 PIPE_LOCK(rpipe); 677 ++rpipe->pipe_busy; 678 error = pipelock(rpipe, 1); 679 if (error) 680 goto unlocked_error; 681 682 #ifdef MAC 683 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); 684 if (error) 685 goto locked_error; 686 #endif 687 if (amountpipekva > (3 * maxpipekva) / 4) { 688 if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 && 689 rpipe->pipe_buffer.size > SMALL_PIPE_SIZE && 690 rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE && 691 piperesizeallowed == 1) { 692 PIPE_UNLOCK(rpipe); 693 pipespace(rpipe, SMALL_PIPE_SIZE); 694 PIPE_LOCK(rpipe); 695 } 696 } 697 698 while (uio->uio_resid) { 699 /* 700 * normal pipe buffer receive 701 */ 702 if (rpipe->pipe_buffer.cnt > 0) { 703 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 704 if (size > rpipe->pipe_buffer.cnt) 705 size = rpipe->pipe_buffer.cnt; 706 if (size > uio->uio_resid) 707 size = uio->uio_resid; 708 709 PIPE_UNLOCK(rpipe); 710 error = uiomove( 711 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 712 size, uio); 713 PIPE_LOCK(rpipe); 714 if (error) 715 break; 716 717 rpipe->pipe_buffer.out += size; 718 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 719 rpipe->pipe_buffer.out = 0; 720 721 rpipe->pipe_buffer.cnt -= size; 722 723 /* 724 * If there is no more to read in the pipe, reset 725 * its pointers to the beginning. This improves 726 * cache hit stats. 727 */ 728 if (rpipe->pipe_buffer.cnt == 0) { 729 rpipe->pipe_buffer.in = 0; 730 rpipe->pipe_buffer.out = 0; 731 } 732 nread += size; 733 #ifndef PIPE_NODIRECT 734 /* 735 * Direct copy, bypassing a kernel buffer. 736 */ 737 } else if ((size = rpipe->pipe_map.cnt) != 0) { 738 if (size > uio->uio_resid) 739 size = (u_int) uio->uio_resid; 740 PIPE_UNLOCK(rpipe); 741 error = uiomove_fromphys(rpipe->pipe_map.ms, 742 rpipe->pipe_map.pos, size, uio); 743 PIPE_LOCK(rpipe); 744 if (error) 745 break; 746 nread += size; 747 rpipe->pipe_map.pos += size; 748 rpipe->pipe_map.cnt -= size; 749 if (rpipe->pipe_map.cnt == 0) { 750 rpipe->pipe_state &= ~PIPE_WANTW; 751 wakeup(rpipe); 752 } 753 #endif 754 } else { 755 /* 756 * detect EOF condition 757 * read returns 0 on EOF, no need to set error 758 */ 759 if (rpipe->pipe_state & PIPE_EOF) 760 break; 761 762 /* 763 * If the "write-side" has been blocked, wake it up now. 764 */ 765 if (rpipe->pipe_state & PIPE_WANTW) { 766 rpipe->pipe_state &= ~PIPE_WANTW; 767 wakeup(rpipe); 768 } 769 770 /* 771 * Break if some data was read. 772 */ 773 if (nread > 0) 774 break; 775 776 /* 777 * Unlock the pipe buffer for our remaining processing. 778 * We will either break out with an error or we will 779 * sleep and relock to loop. 780 */ 781 pipeunlock(rpipe); 782 783 /* 784 * Handle non-blocking mode operation or 785 * wait for more data. 786 */ 787 if (fp->f_flag & FNONBLOCK) { 788 error = EAGAIN; 789 } else { 790 rpipe->pipe_state |= PIPE_WANTR; 791 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 792 PRIBIO | PCATCH, 793 "piperd", 0)) == 0) 794 error = pipelock(rpipe, 1); 795 } 796 if (error) 797 goto unlocked_error; 798 } 799 } 800 #ifdef MAC 801 locked_error: 802 #endif 803 pipeunlock(rpipe); 804 805 /* XXX: should probably do this before getting any locks. */ 806 if (error == 0) 807 vfs_timestamp(&rpipe->pipe_atime); 808 unlocked_error: 809 --rpipe->pipe_busy; 810 811 /* 812 * PIPE_WANT processing only makes sense if pipe_busy is 0. 813 */ 814 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 815 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 816 wakeup(rpipe); 817 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 818 /* 819 * Handle write blocking hysteresis. 820 */ 821 if (rpipe->pipe_state & PIPE_WANTW) { 822 rpipe->pipe_state &= ~PIPE_WANTW; 823 wakeup(rpipe); 824 } 825 } 826 827 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 828 pipeselwakeup(rpipe); 829 830 PIPE_UNLOCK(rpipe); 831 return (error); 832 } 833 834 #ifndef PIPE_NODIRECT 835 /* 836 * Map the sending processes' buffer into kernel space and wire it. 837 * This is similar to a physical write operation. 838 */ 839 static int 840 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio) 841 { 842 u_int size; 843 int i; 844 845 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 846 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0, 847 ("%s: PIPE_DIRECTW set on %p", __func__, wpipe)); 848 KASSERT(wpipe->pipe_map.cnt == 0, 849 ("%s: pipe map for %p contains residual data", __func__, wpipe)); 850 851 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size) 852 size = wpipe->pipe_buffer.size; 853 else 854 size = uio->uio_iov->iov_len; 855 856 wpipe->pipe_state |= PIPE_DIRECTW; 857 PIPE_UNLOCK(wpipe); 858 i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 859 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ, 860 wpipe->pipe_map.ms, PIPENPAGES); 861 PIPE_LOCK(wpipe); 862 if (i < 0) { 863 wpipe->pipe_state &= ~PIPE_DIRECTW; 864 return (EFAULT); 865 } 866 867 wpipe->pipe_map.npages = i; 868 wpipe->pipe_map.pos = 869 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 870 wpipe->pipe_map.cnt = size; 871 872 uio->uio_iov->iov_len -= size; 873 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 874 if (uio->uio_iov->iov_len == 0) 875 uio->uio_iov++; 876 uio->uio_resid -= size; 877 uio->uio_offset += size; 878 return (0); 879 } 880 881 /* 882 * Unwire the process buffer. 883 */ 884 static void 885 pipe_destroy_write_buffer(struct pipe *wpipe) 886 { 887 888 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 889 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0, 890 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe)); 891 KASSERT(wpipe->pipe_map.cnt == 0, 892 ("%s: pipe map for %p contains residual data", __func__, wpipe)); 893 894 wpipe->pipe_state &= ~PIPE_DIRECTW; 895 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages); 896 wpipe->pipe_map.npages = 0; 897 } 898 899 /* 900 * In the case of a signal, the writing process might go away. This 901 * code copies the data into the circular buffer so that the source 902 * pages can be freed without loss of data. 903 */ 904 static void 905 pipe_clone_write_buffer(struct pipe *wpipe) 906 { 907 struct uio uio; 908 struct iovec iov; 909 int size; 910 int pos; 911 912 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 913 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0, 914 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe)); 915 916 size = wpipe->pipe_map.cnt; 917 pos = wpipe->pipe_map.pos; 918 wpipe->pipe_map.cnt = 0; 919 920 wpipe->pipe_buffer.in = size; 921 wpipe->pipe_buffer.out = 0; 922 wpipe->pipe_buffer.cnt = size; 923 924 PIPE_UNLOCK(wpipe); 925 iov.iov_base = wpipe->pipe_buffer.buffer; 926 iov.iov_len = size; 927 uio.uio_iov = &iov; 928 uio.uio_iovcnt = 1; 929 uio.uio_offset = 0; 930 uio.uio_resid = size; 931 uio.uio_segflg = UIO_SYSSPACE; 932 uio.uio_rw = UIO_READ; 933 uio.uio_td = curthread; 934 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 935 PIPE_LOCK(wpipe); 936 pipe_destroy_write_buffer(wpipe); 937 } 938 939 /* 940 * This implements the pipe buffer write mechanism. Note that only 941 * a direct write OR a normal pipe write can be pending at any given time. 942 * If there are any characters in the pipe buffer, the direct write will 943 * be deferred until the receiving process grabs all of the bytes from 944 * the pipe buffer. Then the direct mapping write is set-up. 945 */ 946 static int 947 pipe_direct_write(struct pipe *wpipe, struct uio *uio) 948 { 949 int error; 950 951 retry: 952 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 953 error = pipelock(wpipe, 1); 954 if (error != 0) 955 goto error1; 956 if ((wpipe->pipe_state & PIPE_EOF) != 0) { 957 error = EPIPE; 958 pipeunlock(wpipe); 959 goto error1; 960 } 961 if (wpipe->pipe_state & PIPE_DIRECTW) { 962 if (wpipe->pipe_state & PIPE_WANTR) { 963 wpipe->pipe_state &= ~PIPE_WANTR; 964 wakeup(wpipe); 965 } 966 pipeselwakeup(wpipe); 967 wpipe->pipe_state |= PIPE_WANTW; 968 pipeunlock(wpipe); 969 error = msleep(wpipe, PIPE_MTX(wpipe), 970 PRIBIO | PCATCH, "pipdww", 0); 971 if (error) 972 goto error1; 973 else 974 goto retry; 975 } 976 if (wpipe->pipe_buffer.cnt > 0) { 977 if (wpipe->pipe_state & PIPE_WANTR) { 978 wpipe->pipe_state &= ~PIPE_WANTR; 979 wakeup(wpipe); 980 } 981 pipeselwakeup(wpipe); 982 wpipe->pipe_state |= PIPE_WANTW; 983 pipeunlock(wpipe); 984 error = msleep(wpipe, PIPE_MTX(wpipe), 985 PRIBIO | PCATCH, "pipdwc", 0); 986 if (error) 987 goto error1; 988 else 989 goto retry; 990 } 991 992 error = pipe_build_write_buffer(wpipe, uio); 993 if (error) { 994 pipeunlock(wpipe); 995 goto error1; 996 } 997 998 while (wpipe->pipe_map.cnt != 0 && 999 (wpipe->pipe_state & PIPE_EOF) == 0) { 1000 if (wpipe->pipe_state & PIPE_WANTR) { 1001 wpipe->pipe_state &= ~PIPE_WANTR; 1002 wakeup(wpipe); 1003 } 1004 pipeselwakeup(wpipe); 1005 wpipe->pipe_state |= PIPE_WANTW; 1006 pipeunlock(wpipe); 1007 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 1008 "pipdwt", 0); 1009 pipelock(wpipe, 0); 1010 if (error != 0) 1011 break; 1012 } 1013 1014 if ((wpipe->pipe_state & PIPE_EOF) != 0) { 1015 wpipe->pipe_map.cnt = 0; 1016 pipe_destroy_write_buffer(wpipe); 1017 pipeselwakeup(wpipe); 1018 error = EPIPE; 1019 } else if (error == EINTR || error == ERESTART) { 1020 pipe_clone_write_buffer(wpipe); 1021 } else { 1022 pipe_destroy_write_buffer(wpipe); 1023 } 1024 pipeunlock(wpipe); 1025 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0, 1026 ("pipe %p leaked PIPE_DIRECTW", wpipe)); 1027 return (error); 1028 1029 error1: 1030 wakeup(wpipe); 1031 return (error); 1032 } 1033 #endif 1034 1035 static int 1036 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred, 1037 int flags, struct thread *td) 1038 { 1039 struct pipe *wpipe, *rpipe; 1040 ssize_t orig_resid; 1041 int desiredsize, error; 1042 1043 rpipe = fp->f_data; 1044 wpipe = PIPE_PEER(rpipe); 1045 PIPE_LOCK(rpipe); 1046 error = pipelock(wpipe, 1); 1047 if (error) { 1048 PIPE_UNLOCK(rpipe); 1049 return (error); 1050 } 1051 /* 1052 * detect loss of pipe read side, issue SIGPIPE if lost. 1053 */ 1054 if (wpipe->pipe_present != PIPE_ACTIVE || 1055 (wpipe->pipe_state & PIPE_EOF)) { 1056 pipeunlock(wpipe); 1057 PIPE_UNLOCK(rpipe); 1058 return (EPIPE); 1059 } 1060 #ifdef MAC 1061 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); 1062 if (error) { 1063 pipeunlock(wpipe); 1064 PIPE_UNLOCK(rpipe); 1065 return (error); 1066 } 1067 #endif 1068 ++wpipe->pipe_busy; 1069 1070 /* Choose a larger size if it's advantageous */ 1071 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1072 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1073 if (piperesizeallowed != 1) 1074 break; 1075 if (amountpipekva > maxpipekva / 2) 1076 break; 1077 if (desiredsize == BIG_PIPE_SIZE) 1078 break; 1079 desiredsize = desiredsize * 2; 1080 } 1081 1082 /* Choose a smaller size if we're in a OOM situation */ 1083 if (amountpipekva > (3 * maxpipekva) / 4 && 1084 wpipe->pipe_buffer.size > SMALL_PIPE_SIZE && 1085 wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE && 1086 piperesizeallowed == 1) 1087 desiredsize = SMALL_PIPE_SIZE; 1088 1089 /* Resize if the above determined that a new size was necessary */ 1090 if (desiredsize != wpipe->pipe_buffer.size && 1091 (wpipe->pipe_state & PIPE_DIRECTW) == 0) { 1092 PIPE_UNLOCK(wpipe); 1093 pipespace(wpipe, desiredsize); 1094 PIPE_LOCK(wpipe); 1095 } 1096 MPASS(wpipe->pipe_buffer.size != 0); 1097 1098 pipeunlock(wpipe); 1099 1100 orig_resid = uio->uio_resid; 1101 1102 while (uio->uio_resid) { 1103 int space; 1104 1105 pipelock(wpipe, 0); 1106 if (wpipe->pipe_state & PIPE_EOF) { 1107 pipeunlock(wpipe); 1108 error = EPIPE; 1109 break; 1110 } 1111 #ifndef PIPE_NODIRECT 1112 /* 1113 * If the transfer is large, we can gain performance if 1114 * we do process-to-process copies directly. 1115 * If the write is non-blocking, we don't use the 1116 * direct write mechanism. 1117 * 1118 * The direct write mechanism will detect the reader going 1119 * away on us. 1120 */ 1121 if (uio->uio_segflg == UIO_USERSPACE && 1122 uio->uio_iov->iov_len >= PIPE_MINDIRECT && 1123 wpipe->pipe_buffer.size >= PIPE_MINDIRECT && 1124 (fp->f_flag & FNONBLOCK) == 0) { 1125 pipeunlock(wpipe); 1126 error = pipe_direct_write(wpipe, uio); 1127 if (error) 1128 break; 1129 continue; 1130 } 1131 #endif 1132 1133 /* 1134 * Pipe buffered writes cannot be coincidental with 1135 * direct writes. We wait until the currently executing 1136 * direct write is completed before we start filling the 1137 * pipe buffer. We break out if a signal occurs or the 1138 * reader goes away. 1139 */ 1140 if (wpipe->pipe_map.cnt != 0) { 1141 if (wpipe->pipe_state & PIPE_WANTR) { 1142 wpipe->pipe_state &= ~PIPE_WANTR; 1143 wakeup(wpipe); 1144 } 1145 pipeselwakeup(wpipe); 1146 wpipe->pipe_state |= PIPE_WANTW; 1147 pipeunlock(wpipe); 1148 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1149 "pipbww", 0); 1150 if (error) 1151 break; 1152 else 1153 continue; 1154 } 1155 1156 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1157 1158 /* Writes of size <= PIPE_BUF must be atomic. */ 1159 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1160 space = 0; 1161 1162 if (space > 0) { 1163 int size; /* Transfer size */ 1164 int segsize; /* first segment to transfer */ 1165 1166 /* 1167 * Transfer size is minimum of uio transfer 1168 * and free space in pipe buffer. 1169 */ 1170 if (space > uio->uio_resid) 1171 size = uio->uio_resid; 1172 else 1173 size = space; 1174 /* 1175 * First segment to transfer is minimum of 1176 * transfer size and contiguous space in 1177 * pipe buffer. If first segment to transfer 1178 * is less than the transfer size, we've got 1179 * a wraparound in the buffer. 1180 */ 1181 segsize = wpipe->pipe_buffer.size - 1182 wpipe->pipe_buffer.in; 1183 if (segsize > size) 1184 segsize = size; 1185 1186 /* Transfer first segment */ 1187 1188 PIPE_UNLOCK(rpipe); 1189 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1190 segsize, uio); 1191 PIPE_LOCK(rpipe); 1192 1193 if (error == 0 && segsize < size) { 1194 KASSERT(wpipe->pipe_buffer.in + segsize == 1195 wpipe->pipe_buffer.size, 1196 ("Pipe buffer wraparound disappeared")); 1197 /* 1198 * Transfer remaining part now, to 1199 * support atomic writes. Wraparound 1200 * happened. 1201 */ 1202 1203 PIPE_UNLOCK(rpipe); 1204 error = uiomove( 1205 &wpipe->pipe_buffer.buffer[0], 1206 size - segsize, uio); 1207 PIPE_LOCK(rpipe); 1208 } 1209 if (error == 0) { 1210 wpipe->pipe_buffer.in += size; 1211 if (wpipe->pipe_buffer.in >= 1212 wpipe->pipe_buffer.size) { 1213 KASSERT(wpipe->pipe_buffer.in == 1214 size - segsize + 1215 wpipe->pipe_buffer.size, 1216 ("Expected wraparound bad")); 1217 wpipe->pipe_buffer.in = size - segsize; 1218 } 1219 1220 wpipe->pipe_buffer.cnt += size; 1221 KASSERT(wpipe->pipe_buffer.cnt <= 1222 wpipe->pipe_buffer.size, 1223 ("Pipe buffer overflow")); 1224 } 1225 pipeunlock(wpipe); 1226 if (error != 0) 1227 break; 1228 } else { 1229 /* 1230 * If the "read-side" has been blocked, wake it up now. 1231 */ 1232 if (wpipe->pipe_state & PIPE_WANTR) { 1233 wpipe->pipe_state &= ~PIPE_WANTR; 1234 wakeup(wpipe); 1235 } 1236 1237 /* 1238 * don't block on non-blocking I/O 1239 */ 1240 if (fp->f_flag & FNONBLOCK) { 1241 error = EAGAIN; 1242 pipeunlock(wpipe); 1243 break; 1244 } 1245 1246 /* 1247 * We have no more space and have something to offer, 1248 * wake up select/poll. 1249 */ 1250 pipeselwakeup(wpipe); 1251 1252 wpipe->pipe_state |= PIPE_WANTW; 1253 pipeunlock(wpipe); 1254 error = msleep(wpipe, PIPE_MTX(rpipe), 1255 PRIBIO | PCATCH, "pipewr", 0); 1256 if (error != 0) 1257 break; 1258 } 1259 } 1260 1261 pipelock(wpipe, 0); 1262 --wpipe->pipe_busy; 1263 1264 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1265 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1266 wakeup(wpipe); 1267 } else if (wpipe->pipe_buffer.cnt > 0) { 1268 /* 1269 * If we have put any characters in the buffer, we wake up 1270 * the reader. 1271 */ 1272 if (wpipe->pipe_state & PIPE_WANTR) { 1273 wpipe->pipe_state &= ~PIPE_WANTR; 1274 wakeup(wpipe); 1275 } 1276 } 1277 1278 /* 1279 * Don't return EPIPE if any byte was written. 1280 * EINTR and other interrupts are handled by generic I/O layer. 1281 * Do not pretend that I/O succeeded for obvious user error 1282 * like EFAULT. 1283 */ 1284 if (uio->uio_resid != orig_resid && error == EPIPE) 1285 error = 0; 1286 1287 if (error == 0) 1288 vfs_timestamp(&wpipe->pipe_mtime); 1289 1290 /* 1291 * We have something to offer, 1292 * wake up select/poll. 1293 */ 1294 if (wpipe->pipe_buffer.cnt) 1295 pipeselwakeup(wpipe); 1296 1297 pipeunlock(wpipe); 1298 PIPE_UNLOCK(rpipe); 1299 return (error); 1300 } 1301 1302 /* ARGSUSED */ 1303 static int 1304 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1305 struct thread *td) 1306 { 1307 struct pipe *cpipe; 1308 int error; 1309 1310 cpipe = fp->f_data; 1311 if (cpipe->pipe_state & PIPE_NAMED) 1312 error = vnops.fo_truncate(fp, length, active_cred, td); 1313 else 1314 error = invfo_truncate(fp, length, active_cred, td); 1315 return (error); 1316 } 1317 1318 /* 1319 * we implement a very minimal set of ioctls for compatibility with sockets. 1320 */ 1321 static int 1322 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred, 1323 struct thread *td) 1324 { 1325 struct pipe *mpipe = fp->f_data; 1326 int error; 1327 1328 PIPE_LOCK(mpipe); 1329 1330 #ifdef MAC 1331 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1332 if (error) { 1333 PIPE_UNLOCK(mpipe); 1334 return (error); 1335 } 1336 #endif 1337 1338 error = 0; 1339 switch (cmd) { 1340 1341 case FIONBIO: 1342 break; 1343 1344 case FIOASYNC: 1345 if (*(int *)data) { 1346 mpipe->pipe_state |= PIPE_ASYNC; 1347 } else { 1348 mpipe->pipe_state &= ~PIPE_ASYNC; 1349 } 1350 break; 1351 1352 case FIONREAD: 1353 if (!(fp->f_flag & FREAD)) { 1354 *(int *)data = 0; 1355 PIPE_UNLOCK(mpipe); 1356 return (0); 1357 } 1358 if (mpipe->pipe_map.cnt != 0) 1359 *(int *)data = mpipe->pipe_map.cnt; 1360 else 1361 *(int *)data = mpipe->pipe_buffer.cnt; 1362 break; 1363 1364 case FIOSETOWN: 1365 PIPE_UNLOCK(mpipe); 1366 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1367 goto out_unlocked; 1368 1369 case FIOGETOWN: 1370 *(int *)data = fgetown(&mpipe->pipe_sigio); 1371 break; 1372 1373 /* This is deprecated, FIOSETOWN should be used instead. */ 1374 case TIOCSPGRP: 1375 PIPE_UNLOCK(mpipe); 1376 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1377 goto out_unlocked; 1378 1379 /* This is deprecated, FIOGETOWN should be used instead. */ 1380 case TIOCGPGRP: 1381 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1382 break; 1383 1384 default: 1385 error = ENOTTY; 1386 break; 1387 } 1388 PIPE_UNLOCK(mpipe); 1389 out_unlocked: 1390 return (error); 1391 } 1392 1393 static int 1394 pipe_poll(struct file *fp, int events, struct ucred *active_cred, 1395 struct thread *td) 1396 { 1397 struct pipe *rpipe; 1398 struct pipe *wpipe; 1399 int levents, revents; 1400 #ifdef MAC 1401 int error; 1402 #endif 1403 1404 revents = 0; 1405 rpipe = fp->f_data; 1406 wpipe = PIPE_PEER(rpipe); 1407 PIPE_LOCK(rpipe); 1408 #ifdef MAC 1409 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); 1410 if (error) 1411 goto locked_error; 1412 #endif 1413 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) 1414 if (rpipe->pipe_map.cnt > 0 || rpipe->pipe_buffer.cnt > 0) 1415 revents |= events & (POLLIN | POLLRDNORM); 1416 1417 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) 1418 if (wpipe->pipe_present != PIPE_ACTIVE || 1419 (wpipe->pipe_state & PIPE_EOF) || 1420 ((wpipe->pipe_state & PIPE_DIRECTW) == 0 && 1421 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF || 1422 wpipe->pipe_buffer.size == 0))) 1423 revents |= events & (POLLOUT | POLLWRNORM); 1424 1425 levents = events & 1426 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND); 1427 if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents && 1428 fp->f_pipegen == rpipe->pipe_wgen) 1429 events |= POLLINIGNEOF; 1430 1431 if ((events & POLLINIGNEOF) == 0) { 1432 if (rpipe->pipe_state & PIPE_EOF) { 1433 revents |= (events & (POLLIN | POLLRDNORM)); 1434 if (wpipe->pipe_present != PIPE_ACTIVE || 1435 (wpipe->pipe_state & PIPE_EOF)) 1436 revents |= POLLHUP; 1437 } 1438 } 1439 1440 if (revents == 0) { 1441 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) { 1442 selrecord(td, &rpipe->pipe_sel); 1443 if (SEL_WAITING(&rpipe->pipe_sel)) 1444 rpipe->pipe_state |= PIPE_SEL; 1445 } 1446 1447 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) { 1448 selrecord(td, &wpipe->pipe_sel); 1449 if (SEL_WAITING(&wpipe->pipe_sel)) 1450 wpipe->pipe_state |= PIPE_SEL; 1451 } 1452 } 1453 #ifdef MAC 1454 locked_error: 1455 #endif 1456 PIPE_UNLOCK(rpipe); 1457 1458 return (revents); 1459 } 1460 1461 /* 1462 * We shouldn't need locks here as we're doing a read and this should 1463 * be a natural race. 1464 */ 1465 static int 1466 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred, 1467 struct thread *td) 1468 { 1469 struct pipe *pipe; 1470 #ifdef MAC 1471 int error; 1472 #endif 1473 1474 pipe = fp->f_data; 1475 PIPE_LOCK(pipe); 1476 #ifdef MAC 1477 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); 1478 if (error) { 1479 PIPE_UNLOCK(pipe); 1480 return (error); 1481 } 1482 #endif 1483 1484 /* For named pipes ask the underlying filesystem. */ 1485 if (pipe->pipe_state & PIPE_NAMED) { 1486 PIPE_UNLOCK(pipe); 1487 return (vnops.fo_stat(fp, ub, active_cred, td)); 1488 } 1489 1490 PIPE_UNLOCK(pipe); 1491 1492 bzero(ub, sizeof(*ub)); 1493 ub->st_mode = S_IFIFO; 1494 ub->st_blksize = PAGE_SIZE; 1495 if (pipe->pipe_map.cnt != 0) 1496 ub->st_size = pipe->pipe_map.cnt; 1497 else 1498 ub->st_size = pipe->pipe_buffer.cnt; 1499 ub->st_blocks = howmany(ub->st_size, ub->st_blksize); 1500 ub->st_atim = pipe->pipe_atime; 1501 ub->st_mtim = pipe->pipe_mtime; 1502 ub->st_ctim = pipe->pipe_ctime; 1503 ub->st_uid = fp->f_cred->cr_uid; 1504 ub->st_gid = fp->f_cred->cr_gid; 1505 ub->st_dev = pipedev_ino; 1506 ub->st_ino = pipe->pipe_ino; 1507 /* 1508 * Left as 0: st_nlink, st_rdev, st_flags, st_gen. 1509 */ 1510 return (0); 1511 } 1512 1513 /* ARGSUSED */ 1514 static int 1515 pipe_close(struct file *fp, struct thread *td) 1516 { 1517 1518 if (fp->f_vnode != NULL) 1519 return vnops.fo_close(fp, td); 1520 fp->f_ops = &badfileops; 1521 pipe_dtor(fp->f_data); 1522 fp->f_data = NULL; 1523 return (0); 1524 } 1525 1526 static int 1527 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td) 1528 { 1529 struct pipe *cpipe; 1530 int error; 1531 1532 cpipe = fp->f_data; 1533 if (cpipe->pipe_state & PIPE_NAMED) 1534 error = vn_chmod(fp, mode, active_cred, td); 1535 else 1536 error = invfo_chmod(fp, mode, active_cred, td); 1537 return (error); 1538 } 1539 1540 static int 1541 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 1542 struct thread *td) 1543 { 1544 struct pipe *cpipe; 1545 int error; 1546 1547 cpipe = fp->f_data; 1548 if (cpipe->pipe_state & PIPE_NAMED) 1549 error = vn_chown(fp, uid, gid, active_cred, td); 1550 else 1551 error = invfo_chown(fp, uid, gid, active_cred, td); 1552 return (error); 1553 } 1554 1555 static int 1556 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 1557 { 1558 struct pipe *pi; 1559 1560 if (fp->f_type == DTYPE_FIFO) 1561 return (vn_fill_kinfo(fp, kif, fdp)); 1562 kif->kf_type = KF_TYPE_PIPE; 1563 pi = fp->f_data; 1564 kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi; 1565 kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer; 1566 kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt; 1567 return (0); 1568 } 1569 1570 static void 1571 pipe_free_kmem(struct pipe *cpipe) 1572 { 1573 1574 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1575 ("pipe_free_kmem: pipe mutex locked")); 1576 1577 if (cpipe->pipe_buffer.buffer != NULL) { 1578 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size); 1579 vm_map_remove(pipe_map, 1580 (vm_offset_t)cpipe->pipe_buffer.buffer, 1581 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1582 cpipe->pipe_buffer.buffer = NULL; 1583 } 1584 #ifndef PIPE_NODIRECT 1585 { 1586 cpipe->pipe_map.cnt = 0; 1587 cpipe->pipe_map.pos = 0; 1588 cpipe->pipe_map.npages = 0; 1589 } 1590 #endif 1591 } 1592 1593 /* 1594 * shutdown the pipe 1595 */ 1596 static void 1597 pipeclose(struct pipe *cpipe) 1598 { 1599 struct pipepair *pp; 1600 struct pipe *ppipe; 1601 1602 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1603 1604 PIPE_LOCK(cpipe); 1605 pipelock(cpipe, 0); 1606 pp = cpipe->pipe_pair; 1607 1608 pipeselwakeup(cpipe); 1609 1610 /* 1611 * If the other side is blocked, wake it up saying that 1612 * we want to close it down. 1613 */ 1614 cpipe->pipe_state |= PIPE_EOF; 1615 while (cpipe->pipe_busy) { 1616 wakeup(cpipe); 1617 cpipe->pipe_state |= PIPE_WANT; 1618 pipeunlock(cpipe); 1619 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1620 pipelock(cpipe, 0); 1621 } 1622 1623 /* 1624 * Disconnect from peer, if any. 1625 */ 1626 ppipe = cpipe->pipe_peer; 1627 if (ppipe->pipe_present == PIPE_ACTIVE) { 1628 pipeselwakeup(ppipe); 1629 1630 ppipe->pipe_state |= PIPE_EOF; 1631 wakeup(ppipe); 1632 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1633 } 1634 1635 /* 1636 * Mark this endpoint as free. Release kmem resources. We 1637 * don't mark this endpoint as unused until we've finished 1638 * doing that, or the pipe might disappear out from under 1639 * us. 1640 */ 1641 PIPE_UNLOCK(cpipe); 1642 pipe_free_kmem(cpipe); 1643 PIPE_LOCK(cpipe); 1644 cpipe->pipe_present = PIPE_CLOSING; 1645 pipeunlock(cpipe); 1646 1647 /* 1648 * knlist_clear() may sleep dropping the PIPE_MTX. Set the 1649 * PIPE_FINALIZED, that allows other end to free the 1650 * pipe_pair, only after the knotes are completely dismantled. 1651 */ 1652 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1653 cpipe->pipe_present = PIPE_FINALIZED; 1654 seldrain(&cpipe->pipe_sel); 1655 knlist_destroy(&cpipe->pipe_sel.si_note); 1656 1657 /* 1658 * If both endpoints are now closed, release the memory for the 1659 * pipe pair. If not, unlock. 1660 */ 1661 if (ppipe->pipe_present == PIPE_FINALIZED) { 1662 PIPE_UNLOCK(cpipe); 1663 #ifdef MAC 1664 mac_pipe_destroy(pp); 1665 #endif 1666 uma_zfree(pipe_zone, cpipe->pipe_pair); 1667 } else 1668 PIPE_UNLOCK(cpipe); 1669 } 1670 1671 /*ARGSUSED*/ 1672 static int 1673 pipe_kqfilter(struct file *fp, struct knote *kn) 1674 { 1675 struct pipe *cpipe; 1676 1677 /* 1678 * If a filter is requested that is not supported by this file 1679 * descriptor, don't return an error, but also don't ever generate an 1680 * event. 1681 */ 1682 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) { 1683 kn->kn_fop = &pipe_nfiltops; 1684 return (0); 1685 } 1686 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) { 1687 kn->kn_fop = &pipe_nfiltops; 1688 return (0); 1689 } 1690 cpipe = fp->f_data; 1691 PIPE_LOCK(cpipe); 1692 switch (kn->kn_filter) { 1693 case EVFILT_READ: 1694 kn->kn_fop = &pipe_rfiltops; 1695 break; 1696 case EVFILT_WRITE: 1697 kn->kn_fop = &pipe_wfiltops; 1698 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) { 1699 /* other end of pipe has been closed */ 1700 PIPE_UNLOCK(cpipe); 1701 return (EPIPE); 1702 } 1703 cpipe = PIPE_PEER(cpipe); 1704 break; 1705 default: 1706 PIPE_UNLOCK(cpipe); 1707 return (EINVAL); 1708 } 1709 1710 kn->kn_hook = cpipe; 1711 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1712 PIPE_UNLOCK(cpipe); 1713 return (0); 1714 } 1715 1716 static void 1717 filt_pipedetach(struct knote *kn) 1718 { 1719 struct pipe *cpipe = kn->kn_hook; 1720 1721 PIPE_LOCK(cpipe); 1722 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1723 PIPE_UNLOCK(cpipe); 1724 } 1725 1726 /*ARGSUSED*/ 1727 static int 1728 filt_piperead(struct knote *kn, long hint) 1729 { 1730 struct pipe *rpipe = kn->kn_hook; 1731 struct pipe *wpipe = rpipe->pipe_peer; 1732 int ret; 1733 1734 PIPE_LOCK_ASSERT(rpipe, MA_OWNED); 1735 kn->kn_data = rpipe->pipe_buffer.cnt; 1736 if (kn->kn_data == 0) 1737 kn->kn_data = rpipe->pipe_map.cnt; 1738 1739 if ((rpipe->pipe_state & PIPE_EOF) || 1740 wpipe->pipe_present != PIPE_ACTIVE || 1741 (wpipe->pipe_state & PIPE_EOF)) { 1742 kn->kn_flags |= EV_EOF; 1743 return (1); 1744 } 1745 ret = kn->kn_data > 0; 1746 return ret; 1747 } 1748 1749 /*ARGSUSED*/ 1750 static int 1751 filt_pipewrite(struct knote *kn, long hint) 1752 { 1753 struct pipe *wpipe; 1754 1755 /* 1756 * If this end of the pipe is closed, the knote was removed from the 1757 * knlist and the list lock (i.e., the pipe lock) is therefore not held. 1758 */ 1759 wpipe = kn->kn_hook; 1760 if (wpipe->pipe_present != PIPE_ACTIVE || 1761 (wpipe->pipe_state & PIPE_EOF)) { 1762 kn->kn_data = 0; 1763 kn->kn_flags |= EV_EOF; 1764 return (1); 1765 } 1766 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 1767 kn->kn_data = (wpipe->pipe_buffer.size > 0) ? 1768 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF; 1769 if (wpipe->pipe_state & PIPE_DIRECTW) 1770 kn->kn_data = 0; 1771 1772 return (kn->kn_data >= PIPE_BUF); 1773 } 1774 1775 static void 1776 filt_pipedetach_notsup(struct knote *kn) 1777 { 1778 1779 } 1780 1781 static int 1782 filt_pipenotsup(struct knote *kn, long hint) 1783 { 1784 1785 return (0); 1786 } 1787