xref: /freebsd/sys/kern/subr_witness.c (revision cec50dea12481dc578c0805c887ab2097e1c06c5)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of the `witness' lock verifier.  Originally implemented for
34  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35  * classes in FreeBSD.
36  */
37 
38 /*
39  *	Main Entry: witness
40  *	Pronunciation: 'wit-n&s
41  *	Function: noun
42  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43  *	    testimony, witness, from 2wit
44  *	Date: before 12th century
45  *	1 : attestation of a fact or event : TESTIMONY
46  *	2 : one that gives evidence; specifically : one who testifies in
47  *	    a cause or before a judicial tribunal
48  *	3 : one asked to be present at a transaction so as to be able to
49  *	    testify to its having taken place
50  *	4 : one who has personal knowledge of something
51  *	5 a : something serving as evidence or proof : SIGN
52  *	  b : public affirmation by word or example of usually
53  *	      religious faith or conviction <the heroic witness to divine
54  *	      life -- Pilot>
55  *	6 capitalized : a member of the Jehovah's Witnesses
56  */
57 
58 /*
59  * Special rules concerning Giant and lock orders:
60  *
61  * 1) Giant must be acquired before any other mutexes.  Stated another way,
62  *    no other mutex may be held when Giant is acquired.
63  *
64  * 2) Giant must be released when blocking on a sleepable lock.
65  *
66  * This rule is less obvious, but is a result of Giant providing the same
67  * semantics as spl().  Basically, when a thread sleeps, it must release
68  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69  * 2).
70  *
71  * 3) Giant may be acquired before or after sleepable locks.
72  *
73  * This rule is also not quite as obvious.  Giant may be acquired after
74  * a sleepable lock because it is a non-sleepable lock and non-sleepable
75  * locks may always be acquired while holding a sleepable lock.  The second
76  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80  * execute.  Thus, acquiring Giant both before and after a sleepable lock
81  * will not result in a lock order reversal.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_ddb.h"
88 #include "opt_witness.h"
89 
90 #include <sys/param.h>
91 #include <sys/bus.h>
92 #include <sys/kdb.h>
93 #include <sys/kernel.h>
94 #include <sys/ktr.h>
95 #include <sys/lock.h>
96 #include <sys/malloc.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/sysctl.h>
100 #include <sys/systm.h>
101 
102 #include <ddb/ddb.h>
103 
104 #include <machine/stdarg.h>
105 
106 /* Define this to check for blessed mutexes */
107 #undef BLESSING
108 
109 #define WITNESS_COUNT 200
110 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
111 /*
112  * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
113  * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
114  * probably be safe for the most part, but it's still a SWAG.
115  */
116 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
117 
118 #define	WITNESS_NCHILDREN 6
119 
120 struct witness_child_list_entry;
121 
122 struct witness {
123 	const	char *w_name;
124 	struct	lock_class *w_class;
125 	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
126 	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
127 	struct	witness_child_list_entry *w_children;	/* Great evilness... */
128 	const	char *w_file;
129 	int	w_line;
130 	u_int	w_level;
131 	u_int	w_refcount;
132 	u_char	w_Giant_squawked:1;
133 	u_char	w_other_squawked:1;
134 	u_char	w_same_squawked:1;
135 	u_char	w_displayed:1;
136 };
137 
138 struct witness_child_list_entry {
139 	struct	witness_child_list_entry *wcl_next;
140 	struct	witness *wcl_children[WITNESS_NCHILDREN];
141 	u_int	wcl_count;
142 };
143 
144 STAILQ_HEAD(witness_list, witness);
145 
146 #ifdef BLESSING
147 struct witness_blessed {
148 	const	char *b_lock1;
149 	const	char *b_lock2;
150 };
151 #endif
152 
153 struct witness_order_list_entry {
154 	const	char *w_name;
155 	struct	lock_class *w_class;
156 };
157 
158 #ifdef BLESSING
159 static int	blessed(struct witness *, struct witness *);
160 #endif
161 static int	depart(struct witness *w);
162 static struct	witness *enroll(const char *description,
163 				struct lock_class *lock_class);
164 static int	insertchild(struct witness *parent, struct witness *child);
165 static int	isitmychild(struct witness *parent, struct witness *child);
166 static int	isitmydescendant(struct witness *parent, struct witness *child);
167 static int	itismychild(struct witness *parent, struct witness *child);
168 static int	rebalancetree(struct witness_list *list);
169 static void	removechild(struct witness *parent, struct witness *child);
170 static int	reparentchildren(struct witness *newparent,
171 		    struct witness *oldparent);
172 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
173 static void	witness_displaydescendants(void(*)(const char *fmt, ...),
174 					   struct witness *, int indent);
175 static const char *fixup_filename(const char *file);
176 static void	witness_leveldescendents(struct witness *parent, int level);
177 static void	witness_levelall(void);
178 static struct	witness *witness_get(void);
179 static void	witness_free(struct witness *m);
180 static struct	witness_child_list_entry *witness_child_get(void);
181 static void	witness_child_free(struct witness_child_list_entry *wcl);
182 static struct	lock_list_entry *witness_lock_list_get(void);
183 static void	witness_lock_list_free(struct lock_list_entry *lle);
184 static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
185 					     struct lock_object *lock);
186 static void	witness_list_lock(struct lock_instance *instance);
187 #ifdef DDB
188 static void	witness_list(struct thread *td);
189 static void	witness_display_list(void(*prnt)(const char *fmt, ...),
190 				     struct witness_list *list);
191 static void	witness_display(void(*)(const char *fmt, ...));
192 #endif
193 
194 MALLOC_DEFINE(M_WITNESS, "witness", "witness structure");
195 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
196 
197 /*
198  * If set to 0, witness is disabled.  If set to 1, witness performs full lock
199  * order checking for all locks.  If set to 2 or higher, then witness skips
200  * the full lock order check if the lock being acquired is at a higher level
201  * (i.e. farther down in the tree) than the current lock.  This last mode is
202  * somewhat experimental and not considered fully safe.  At runtime, this
203  * value may be set to 0 to turn off witness.  witness is not allowed be
204  * turned on once it is turned off, however.
205  */
206 static int witness_watch = 1;
207 TUNABLE_INT("debug.witness_watch", &witness_watch);
208 TUNABLE_INT("debug.witness.watch", &witness_watch);
209 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
210     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
211 
212 #ifdef KDB
213 /*
214  * When KDB is enabled and witness_kdb is set to 1, it will cause the system
215  * to drop into kdebug() when:
216  *	- a lock heirarchy violation occurs
217  *	- locks are held when going to sleep.
218  */
219 #ifdef WITNESS_KDB
220 int	witness_kdb = 1;
221 #else
222 int	witness_kdb = 0;
223 #endif
224 TUNABLE_INT("debug.witness_kdb", &witness_kdb);
225 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
226 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
227 
228 /*
229  * When KDB is enabled and witness_trace is set to 1, it will cause the system
230  * to print a stack trace:
231  *	- a lock heirarchy violation occurs
232  *	- locks are held when going to sleep.
233  */
234 int	witness_trace = 1;
235 TUNABLE_INT("debug.witness_trace", &witness_trace);
236 TUNABLE_INT("debug.witness.trace", &witness_trace);
237 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
238 #endif /* KDB */
239 
240 #ifdef WITNESS_SKIPSPIN
241 int	witness_skipspin = 1;
242 #else
243 int	witness_skipspin = 0;
244 #endif
245 TUNABLE_INT("debug.witness_skipspin", &witness_skipspin);
246 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
247 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
248     &witness_skipspin, 0, "");
249 
250 static struct mtx w_mtx;
251 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
252 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
253 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
254 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
255 static struct witness_child_list_entry *w_child_free = NULL;
256 static struct lock_list_entry *w_lock_list_free = NULL;
257 
258 static struct witness w_data[WITNESS_COUNT];
259 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
260 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
261 
262 static struct witness_order_list_entry order_lists[] = {
263 	{ "proctree", &lock_class_sx },
264 	{ "allproc", &lock_class_sx },
265 	{ "Giant", &lock_class_mtx_sleep },
266 	{ "filedesc structure", &lock_class_mtx_sleep },
267 	{ "pipe mutex", &lock_class_mtx_sleep },
268 	{ "sigio lock", &lock_class_mtx_sleep },
269 	{ "process group", &lock_class_mtx_sleep },
270 	{ "process lock", &lock_class_mtx_sleep },
271 	{ "session", &lock_class_mtx_sleep },
272 	{ "uidinfo hash", &lock_class_mtx_sleep },
273 	{ "uidinfo struct", &lock_class_mtx_sleep },
274 	{ "allprison", &lock_class_mtx_sleep },
275 	{ NULL, NULL },
276 	/*
277 	 * Sockets
278 	 */
279 	{ "filedesc structure", &lock_class_mtx_sleep },
280 	{ "accept", &lock_class_mtx_sleep },
281 	{ "so_snd", &lock_class_mtx_sleep },
282 	{ "so_rcv", &lock_class_mtx_sleep },
283 	{ "sellck", &lock_class_mtx_sleep },
284 	{ NULL, NULL },
285 	/*
286 	 * Routing
287 	 */
288 	{ "so_rcv", &lock_class_mtx_sleep },
289 	{ "radix node head", &lock_class_mtx_sleep },
290 	{ "rtentry", &lock_class_mtx_sleep },
291 	{ "ifaddr", &lock_class_mtx_sleep },
292 	{ NULL, NULL },
293 	/*
294 	 * UNIX Domain Sockets
295 	 */
296 	{ "unp", &lock_class_mtx_sleep },
297 	{ "so_snd", &lock_class_mtx_sleep },
298 	{ NULL, NULL },
299 	/*
300 	 * UDP/IP
301 	 */
302 	{ "udp", &lock_class_mtx_sleep },
303 	{ "udpinp", &lock_class_mtx_sleep },
304 	{ "so_snd", &lock_class_mtx_sleep },
305 	{ NULL, NULL },
306 	/*
307 	 * TCP/IP
308 	 */
309 	{ "tcp", &lock_class_mtx_sleep },
310 	{ "tcpinp", &lock_class_mtx_sleep },
311 	{ "so_snd", &lock_class_mtx_sleep },
312 	{ NULL, NULL },
313 	/*
314 	 * SLIP
315 	 */
316 	{ "slip_mtx", &lock_class_mtx_sleep },
317 	{ "slip sc_mtx", &lock_class_mtx_sleep },
318 	{ NULL, NULL },
319 	/*
320 	 * netatalk
321 	 */
322 	{ "ddp_list_mtx", &lock_class_mtx_sleep },
323 	{ "ddp_mtx", &lock_class_mtx_sleep },
324 	{ NULL, NULL },
325 	/*
326 	 * BPF
327 	 */
328 	{ "bpf global lock", &lock_class_mtx_sleep },
329 	{ "bpf interface lock", &lock_class_mtx_sleep },
330 	{ "bpf cdev lock", &lock_class_mtx_sleep },
331 	{ NULL, NULL },
332 	/*
333 	 * spin locks
334 	 */
335 #ifdef SMP
336 	{ "ap boot", &lock_class_mtx_spin },
337 #endif
338 	{ "sio", &lock_class_mtx_spin },
339 #ifdef __i386__
340 	{ "cy", &lock_class_mtx_spin },
341 #endif
342 	{ "uart_hwmtx", &lock_class_mtx_spin },
343 	{ "sabtty", &lock_class_mtx_spin },
344 	{ "zstty", &lock_class_mtx_spin },
345 	{ "ng_node", &lock_class_mtx_spin },
346 	{ "ng_worklist", &lock_class_mtx_spin },
347 	{ "taskqueue_fast", &lock_class_mtx_spin },
348 	{ "intr table", &lock_class_mtx_spin },
349 	{ "ithread table lock", &lock_class_mtx_spin },
350 	{ "sleepq chain", &lock_class_mtx_spin },
351 	{ "sched lock", &lock_class_mtx_spin },
352 	{ "turnstile chain", &lock_class_mtx_spin },
353 	{ "td_contested", &lock_class_mtx_spin },
354 	{ "callout", &lock_class_mtx_spin },
355 	{ "entropy harvest", &lock_class_mtx_spin },
356 	{ "entropy harvest buffers", &lock_class_mtx_spin },
357 	/*
358 	 * leaf locks
359 	 */
360 	{ "allpmaps", &lock_class_mtx_spin },
361 	{ "vm page queue free mutex", &lock_class_mtx_spin },
362 	{ "icu", &lock_class_mtx_spin },
363 #ifdef SMP
364 	{ "smp rendezvous", &lock_class_mtx_spin },
365 #if defined(__i386__) || defined(__amd64__)
366 	{ "tlb", &lock_class_mtx_spin },
367 #endif
368 #ifdef __sparc64__
369 	{ "ipi", &lock_class_mtx_spin },
370 #endif
371 #endif
372 	{ "clk", &lock_class_mtx_spin },
373 	{ "mutex profiling lock", &lock_class_mtx_spin },
374 	{ "kse zombie lock", &lock_class_mtx_spin },
375 	{ "ALD Queue", &lock_class_mtx_spin },
376 #ifdef __ia64__
377 	{ "MCA spin lock", &lock_class_mtx_spin },
378 #endif
379 #if defined(__i386__) || defined(__amd64__)
380 	{ "pcicfg", &lock_class_mtx_spin },
381 #endif
382 	{ NULL, NULL },
383 	{ NULL, NULL }
384 };
385 
386 #ifdef BLESSING
387 /*
388  * Pairs of locks which have been blessed
389  * Don't complain about order problems with blessed locks
390  */
391 static struct witness_blessed blessed_list[] = {
392 };
393 static int blessed_count =
394 	sizeof(blessed_list) / sizeof(struct witness_blessed);
395 #endif
396 
397 /*
398  * List of all locks in the system.
399  */
400 TAILQ_HEAD(, lock_object) all_locks = TAILQ_HEAD_INITIALIZER(all_locks);
401 
402 static struct mtx all_mtx = {
403 	{ &lock_class_mtx_sleep,	/* mtx_object.lo_class */
404 	  "All locks list",		/* mtx_object.lo_name */
405 	  "All locks list",		/* mtx_object.lo_type */
406 	  LO_INITIALIZED,		/* mtx_object.lo_flags */
407 	  { NULL, NULL },		/* mtx_object.lo_list */
408 	  NULL },			/* mtx_object.lo_witness */
409 	MTX_UNOWNED, 0			/* mtx_lock, mtx_recurse */
410 };
411 
412 /*
413  * This global is set to 0 once it becomes safe to use the witness code.
414  */
415 static int witness_cold = 1;
416 
417 /*
418  * Global variables for book keeping.
419  */
420 static int lock_cur_cnt;
421 static int lock_max_cnt;
422 
423 /*
424  * The WITNESS-enabled diagnostic code.
425  */
426 static void
427 witness_initialize(void *dummy __unused)
428 {
429 	struct lock_object *lock;
430 	struct witness_order_list_entry *order;
431 	struct witness *w, *w1;
432 	int i;
433 
434 	/*
435 	 * We have to release Giant before initializing its witness
436 	 * structure so that WITNESS doesn't get confused.
437 	 */
438 	mtx_unlock(&Giant);
439 	mtx_assert(&Giant, MA_NOTOWNED);
440 
441 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
442 	TAILQ_INSERT_HEAD(&all_locks, &all_mtx.mtx_object, lo_list);
443 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
444 	    MTX_NOWITNESS);
445 	for (i = 0; i < WITNESS_COUNT; i++)
446 		witness_free(&w_data[i]);
447 	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
448 		witness_child_free(&w_childdata[i]);
449 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
450 		witness_lock_list_free(&w_locklistdata[i]);
451 
452 	/* First add in all the specified order lists. */
453 	for (order = order_lists; order->w_name != NULL; order++) {
454 		w = enroll(order->w_name, order->w_class);
455 		if (w == NULL)
456 			continue;
457 		w->w_file = "order list";
458 		for (order++; order->w_name != NULL; order++) {
459 			w1 = enroll(order->w_name, order->w_class);
460 			if (w1 == NULL)
461 				continue;
462 			w1->w_file = "order list";
463 			if (!itismychild(w, w1))
464 				panic("Not enough memory for static orders!");
465 			w = w1;
466 		}
467 	}
468 
469 	/* Iterate through all locks and add them to witness. */
470 	mtx_lock(&all_mtx);
471 	TAILQ_FOREACH(lock, &all_locks, lo_list) {
472 		if (lock->lo_flags & LO_WITNESS)
473 			lock->lo_witness = enroll(lock->lo_type,
474 			    lock->lo_class);
475 		else
476 			lock->lo_witness = NULL;
477 	}
478 	mtx_unlock(&all_mtx);
479 
480 	/* Mark the witness code as being ready for use. */
481 	atomic_store_rel_int(&witness_cold, 0);
482 
483 	mtx_lock(&Giant);
484 }
485 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
486 
487 static int
488 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
489 {
490 	int error, value;
491 
492 	value = witness_watch;
493 	error = sysctl_handle_int(oidp, &value, 0, req);
494 	if (error != 0 || req->newptr == NULL)
495 		return (error);
496 	error = suser(req->td);
497 	if (error != 0)
498 		return (error);
499 	if (value == witness_watch)
500 		return (0);
501 	if (value != 0)
502 		return (EINVAL);
503 	witness_watch = 0;
504 	return (0);
505 }
506 
507 void
508 witness_init(struct lock_object *lock)
509 {
510 	struct lock_class *class;
511 
512 	class = lock->lo_class;
513 	if (lock->lo_flags & LO_INITIALIZED)
514 		panic("%s: lock (%s) %s is already initialized", __func__,
515 		    class->lc_name, lock->lo_name);
516 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
517 	    (class->lc_flags & LC_RECURSABLE) == 0)
518 		panic("%s: lock (%s) %s can not be recursable", __func__,
519 		    class->lc_name, lock->lo_name);
520 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
521 	    (class->lc_flags & LC_SLEEPABLE) == 0)
522 		panic("%s: lock (%s) %s can not be sleepable", __func__,
523 		    class->lc_name, lock->lo_name);
524 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
525 	    (class->lc_flags & LC_UPGRADABLE) == 0)
526 		panic("%s: lock (%s) %s can not be upgradable", __func__,
527 		    class->lc_name, lock->lo_name);
528 
529 	mtx_lock(&all_mtx);
530 	TAILQ_INSERT_TAIL(&all_locks, lock, lo_list);
531 	lock->lo_flags |= LO_INITIALIZED;
532 	lock_cur_cnt++;
533 	if (lock_cur_cnt > lock_max_cnt)
534 		lock_max_cnt = lock_cur_cnt;
535 	mtx_unlock(&all_mtx);
536 	if (!witness_cold && witness_watch != 0 && panicstr == NULL &&
537 	    (lock->lo_flags & LO_WITNESS) != 0)
538 		lock->lo_witness = enroll(lock->lo_type, class);
539 	else
540 		lock->lo_witness = NULL;
541 }
542 
543 void
544 witness_destroy(struct lock_object *lock)
545 {
546 	struct witness *w;
547 
548 	if (witness_cold)
549 		panic("lock (%s) %s destroyed while witness_cold",
550 		    lock->lo_class->lc_name, lock->lo_name);
551 	if ((lock->lo_flags & LO_INITIALIZED) == 0)
552 		panic("%s: lock (%s) %s is not initialized", __func__,
553 		    lock->lo_class->lc_name, lock->lo_name);
554 
555 	/* XXX: need to verify that no one holds the lock */
556 	w = lock->lo_witness;
557 	if (w != NULL) {
558 		mtx_lock_spin(&w_mtx);
559 		MPASS(w->w_refcount > 0);
560 		w->w_refcount--;
561 
562 		/*
563 		 * Lock is already released if we have an allocation failure
564 		 * and depart() fails.
565 		 */
566 		if (w->w_refcount != 0 || depart(w))
567 			mtx_unlock_spin(&w_mtx);
568 	}
569 
570 	mtx_lock(&all_mtx);
571 	lock_cur_cnt--;
572 	TAILQ_REMOVE(&all_locks, lock, lo_list);
573 	lock->lo_flags &= ~LO_INITIALIZED;
574 	mtx_unlock(&all_mtx);
575 }
576 
577 #ifdef DDB
578 static void
579 witness_display_list(void(*prnt)(const char *fmt, ...),
580 		     struct witness_list *list)
581 {
582 	struct witness *w;
583 
584 	STAILQ_FOREACH(w, list, w_typelist) {
585 		if (w->w_file == NULL || w->w_level > 0)
586 			continue;
587 		/*
588 		 * This lock has no anscestors, display its descendants.
589 		 */
590 		witness_displaydescendants(prnt, w, 0);
591 	}
592 }
593 
594 static void
595 witness_display(void(*prnt)(const char *fmt, ...))
596 {
597 	struct witness *w;
598 
599 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
600 	witness_levelall();
601 
602 	/* Clear all the displayed flags. */
603 	STAILQ_FOREACH(w, &w_all, w_list) {
604 		w->w_displayed = 0;
605 	}
606 
607 	/*
608 	 * First, handle sleep locks which have been acquired at least
609 	 * once.
610 	 */
611 	prnt("Sleep locks:\n");
612 	witness_display_list(prnt, &w_sleep);
613 
614 	/*
615 	 * Now do spin locks which have been acquired at least once.
616 	 */
617 	prnt("\nSpin locks:\n");
618 	witness_display_list(prnt, &w_spin);
619 
620 	/*
621 	 * Finally, any locks which have not been acquired yet.
622 	 */
623 	prnt("\nLocks which were never acquired:\n");
624 	STAILQ_FOREACH(w, &w_all, w_list) {
625 		if (w->w_file != NULL || w->w_refcount == 0)
626 			continue;
627 		prnt("%s\n", w->w_name);
628 	}
629 }
630 #endif /* DDB */
631 
632 /* Trim useless garbage from filenames. */
633 static const char *
634 fixup_filename(const char *file)
635 {
636 
637 	if (file == NULL)
638 		return (NULL);
639 	while (strncmp(file, "../", 3) == 0)
640 		file += 3;
641 	return (file);
642 }
643 
644 int
645 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
646 {
647 
648 	if (witness_watch == 0 || panicstr != NULL)
649 		return (0);
650 
651 	/* Require locks that witness knows about. */
652 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
653 	    lock2->lo_witness == NULL)
654 		return (EINVAL);
655 
656 	MPASS(!mtx_owned(&w_mtx));
657 	mtx_lock_spin(&w_mtx);
658 
659 	/*
660 	 * If we already have either an explicit or implied lock order that
661 	 * is the other way around, then return an error.
662 	 */
663 	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
664 		mtx_unlock_spin(&w_mtx);
665 		return (EDOOFUS);
666 	}
667 
668 	/* Try to add the new order. */
669 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
670 	    lock2->lo_type, lock1->lo_type);
671 	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
672 		return (ENOMEM);
673 	mtx_unlock_spin(&w_mtx);
674 	return (0);
675 }
676 
677 void
678 witness_checkorder(struct lock_object *lock, int flags, const char *file,
679     int line)
680 {
681 	struct lock_list_entry **lock_list, *lle;
682 	struct lock_instance *lock1, *lock2;
683 	struct lock_class *class;
684 	struct witness *w, *w1;
685 	struct thread *td;
686 	int i, j;
687 
688 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
689 	    panicstr != NULL)
690 		return;
691 
692 	/*
693 	 * Try locks do not block if they fail to acquire the lock, thus
694 	 * there is no danger of deadlocks or of switching while holding a
695 	 * spin lock if we acquire a lock via a try operation.  This
696 	 * function shouldn't even be called for try locks, so panic if
697 	 * that happens.
698 	 */
699 	if (flags & LOP_TRYLOCK)
700 		panic("%s should not be called for try lock operations",
701 		    __func__);
702 
703 	w = lock->lo_witness;
704 	class = lock->lo_class;
705 	td = curthread;
706 	file = fixup_filename(file);
707 
708 	if (class->lc_flags & LC_SLEEPLOCK) {
709 		/*
710 		 * Since spin locks include a critical section, this check
711 		 * implicitly enforces a lock order of all sleep locks before
712 		 * all spin locks.
713 		 */
714 		if (td->td_critnest != 0)
715 			panic("blockable sleep lock (%s) %s @ %s:%d",
716 			    class->lc_name, lock->lo_name, file, line);
717 
718 		/*
719 		 * If this is the first lock acquired then just return as
720 		 * no order checking is needed.
721 		 */
722 		if (td->td_sleeplocks == NULL)
723 			return;
724 		lock_list = &td->td_sleeplocks;
725 	} else {
726 		/*
727 		 * If this is the first lock, just return as no order
728 		 * checking is needed.  We check this in both if clauses
729 		 * here as unifying the check would require us to use a
730 		 * critical section to ensure we don't migrate while doing
731 		 * the check.  Note that if this is not the first lock, we
732 		 * are already in a critical section and are safe for the
733 		 * rest of the check.
734 		 */
735 		if (PCPU_GET(spinlocks) == NULL)
736 			return;
737 		lock_list = PCPU_PTR(spinlocks);
738 	}
739 
740 	/*
741 	 * Check to see if we are recursing on a lock we already own.  If
742 	 * so, make sure that we don't mismatch exclusive and shared lock
743 	 * acquires.
744 	 */
745 	lock1 = find_instance(*lock_list, lock);
746 	if (lock1 != NULL) {
747 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
748 		    (flags & LOP_EXCLUSIVE) == 0) {
749 			printf("shared lock of (%s) %s @ %s:%d\n",
750 			    class->lc_name, lock->lo_name, file, line);
751 			printf("while exclusively locked from %s:%d\n",
752 			    lock1->li_file, lock1->li_line);
753 			panic("share->excl");
754 		}
755 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
756 		    (flags & LOP_EXCLUSIVE) != 0) {
757 			printf("exclusive lock of (%s) %s @ %s:%d\n",
758 			    class->lc_name, lock->lo_name, file, line);
759 			printf("while share locked from %s:%d\n",
760 			    lock1->li_file, lock1->li_line);
761 			panic("excl->share");
762 		}
763 		return;
764 	}
765 
766 	/*
767 	 * Try locks do not block if they fail to acquire the lock, thus
768 	 * there is no danger of deadlocks or of switching while holding a
769 	 * spin lock if we acquire a lock via a try operation.
770 	 */
771 	if (flags & LOP_TRYLOCK)
772 		return;
773 
774 	/*
775 	 * Check for duplicate locks of the same type.  Note that we only
776 	 * have to check for this on the last lock we just acquired.  Any
777 	 * other cases will be caught as lock order violations.
778 	 */
779 	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
780 	w1 = lock1->li_lock->lo_witness;
781 	if (w1 == w) {
782 		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK))
783 			return;
784 		w->w_same_squawked = 1;
785 		printf("acquiring duplicate lock of same type: \"%s\"\n",
786 			lock->lo_type);
787 		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
788 		    lock1->li_file, lock1->li_line);
789 		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
790 #ifdef KDB
791 		goto debugger;
792 #else
793 		return;
794 #endif
795 	}
796 	MPASS(!mtx_owned(&w_mtx));
797 	mtx_lock_spin(&w_mtx);
798 	/*
799 	 * If we have a known higher number just say ok
800 	 */
801 	if (witness_watch > 1 && w->w_level > w1->w_level) {
802 		mtx_unlock_spin(&w_mtx);
803 		return;
804 	}
805 	/*
806 	 * If we know that the the lock we are acquiring comes after
807 	 * the lock we most recently acquired in the lock order tree,
808 	 * then there is no need for any further checks.
809 	 */
810 	if (isitmydescendant(w1, w)) {
811 		mtx_unlock_spin(&w_mtx);
812 		return;
813 	}
814 	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
815 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
816 
817 			MPASS(j < WITNESS_COUNT);
818 			lock1 = &lle->ll_children[i];
819 			w1 = lock1->li_lock->lo_witness;
820 
821 			/*
822 			 * If this lock doesn't undergo witness checking,
823 			 * then skip it.
824 			 */
825 			if (w1 == NULL) {
826 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
827 				    ("lock missing witness structure"));
828 				continue;
829 			}
830 			/*
831 			 * If we are locking Giant and this is a sleepable
832 			 * lock, then skip it.
833 			 */
834 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
835 			    lock == &Giant.mtx_object)
836 				continue;
837 			/*
838 			 * If we are locking a sleepable lock and this lock
839 			 * is Giant, then skip it.
840 			 */
841 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
842 			    lock1->li_lock == &Giant.mtx_object)
843 				continue;
844 			/*
845 			 * If we are locking a sleepable lock and this lock
846 			 * isn't sleepable, we want to treat it as a lock
847 			 * order violation to enfore a general lock order of
848 			 * sleepable locks before non-sleepable locks.
849 			 */
850 			if (!((lock->lo_flags & LO_SLEEPABLE) != 0 &&
851 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
852 			    /*
853 			     * Check the lock order hierarchy for a reveresal.
854 			     */
855 			    if (!isitmydescendant(w, w1))
856 				continue;
857 			/*
858 			 * We have a lock order violation, check to see if it
859 			 * is allowed or has already been yelled about.
860 			 */
861 			mtx_unlock_spin(&w_mtx);
862 #ifdef BLESSING
863 			/*
864 			 * If the lock order is blessed, just bail.  We don't
865 			 * look for other lock order violations though, which
866 			 * may be a bug.
867 			 */
868 			if (blessed(w, w1))
869 				return;
870 #endif
871 			if (lock1->li_lock == &Giant.mtx_object) {
872 				if (w1->w_Giant_squawked)
873 					return;
874 				else
875 					w1->w_Giant_squawked = 1;
876 			} else {
877 				if (w1->w_other_squawked)
878 					return;
879 				else
880 					w1->w_other_squawked = 1;
881 			}
882 			/*
883 			 * Ok, yell about it.
884 			 */
885 			printf("lock order reversal\n");
886 			/*
887 			 * Try to locate an earlier lock with
888 			 * witness w in our list.
889 			 */
890 			do {
891 				lock2 = &lle->ll_children[i];
892 				MPASS(lock2->li_lock != NULL);
893 				if (lock2->li_lock->lo_witness == w)
894 					break;
895 				if (i == 0 && lle->ll_next != NULL) {
896 					lle = lle->ll_next;
897 					i = lle->ll_count - 1;
898 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
899 				} else
900 					i--;
901 			} while (i >= 0);
902 			if (i < 0) {
903 				printf(" 1st %p %s (%s) @ %s:%d\n",
904 				    lock1->li_lock, lock1->li_lock->lo_name,
905 				    lock1->li_lock->lo_type, lock1->li_file,
906 				    lock1->li_line);
907 				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
908 				    lock->lo_name, lock->lo_type, file, line);
909 			} else {
910 				printf(" 1st %p %s (%s) @ %s:%d\n",
911 				    lock2->li_lock, lock2->li_lock->lo_name,
912 				    lock2->li_lock->lo_type, lock2->li_file,
913 				    lock2->li_line);
914 				printf(" 2nd %p %s (%s) @ %s:%d\n",
915 				    lock1->li_lock, lock1->li_lock->lo_name,
916 				    lock1->li_lock->lo_type, lock1->li_file,
917 				    lock1->li_line);
918 				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
919 				    lock->lo_name, lock->lo_type, file, line);
920 			}
921 #ifdef KDB
922 			goto debugger;
923 #else
924 			return;
925 #endif
926 		}
927 	}
928 	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
929 	/*
930 	 * If requested, build a new lock order.  However, don't build a new
931 	 * relationship between a sleepable lock and Giant if it is in the
932 	 * wrong direction.  The correct lock order is that sleepable locks
933 	 * always come before Giant.
934 	 */
935 	if (flags & LOP_NEWORDER &&
936 	    !(lock1->li_lock == &Giant.mtx_object &&
937 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
938 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
939 		    lock->lo_type, lock1->li_lock->lo_type);
940 		if (!itismychild(lock1->li_lock->lo_witness, w))
941 			/* Witness is dead. */
942 			return;
943 	}
944 	mtx_unlock_spin(&w_mtx);
945 	return;
946 
947 #ifdef KDB
948 debugger:
949 	if (witness_trace)
950 		kdb_backtrace();
951 	if (witness_kdb)
952 		kdb_enter(__func__);
953 #endif
954 }
955 
956 void
957 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
958 {
959 	struct lock_list_entry **lock_list, *lle;
960 	struct lock_instance *instance;
961 	struct witness *w;
962 	struct thread *td;
963 
964 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
965 	    panicstr != NULL)
966 		return;
967 	w = lock->lo_witness;
968 	td = curthread;
969 	file = fixup_filename(file);
970 
971 	/* Determine lock list for this lock. */
972 	if (lock->lo_class->lc_flags & LC_SLEEPLOCK)
973 		lock_list = &td->td_sleeplocks;
974 	else
975 		lock_list = PCPU_PTR(spinlocks);
976 
977 	/* Check to see if we are recursing on a lock we already own. */
978 	instance = find_instance(*lock_list, lock);
979 	if (instance != NULL) {
980 		instance->li_flags++;
981 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
982 		    td->td_proc->p_pid, lock->lo_name,
983 		    instance->li_flags & LI_RECURSEMASK);
984 		instance->li_file = file;
985 		instance->li_line = line;
986 		return;
987 	}
988 
989 	/* Update per-witness last file and line acquire. */
990 	w->w_file = file;
991 	w->w_line = line;
992 
993 	/* Find the next open lock instance in the list and fill it. */
994 	lle = *lock_list;
995 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
996 		lle = witness_lock_list_get();
997 		if (lle == NULL)
998 			return;
999 		lle->ll_next = *lock_list;
1000 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1001 		    td->td_proc->p_pid, lle);
1002 		*lock_list = lle;
1003 	}
1004 	instance = &lle->ll_children[lle->ll_count++];
1005 	instance->li_lock = lock;
1006 	instance->li_line = line;
1007 	instance->li_file = file;
1008 	if ((flags & LOP_EXCLUSIVE) != 0)
1009 		instance->li_flags = LI_EXCLUSIVE;
1010 	else
1011 		instance->li_flags = 0;
1012 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1013 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1014 }
1015 
1016 void
1017 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1018 {
1019 	struct lock_instance *instance;
1020 	struct lock_class *class;
1021 
1022 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1023 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1024 		return;
1025 	class = lock->lo_class;
1026 	file = fixup_filename(file);
1027 	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1028 		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1029 		    class->lc_name, lock->lo_name, file, line);
1030 	if ((flags & LOP_TRYLOCK) == 0)
1031 		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1032 		    lock->lo_name, file, line);
1033 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1034 		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1035 		    class->lc_name, lock->lo_name, file, line);
1036 	instance = find_instance(curthread->td_sleeplocks, lock);
1037 	if (instance == NULL)
1038 		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1039 		    class->lc_name, lock->lo_name, file, line);
1040 	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1041 		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1042 		    class->lc_name, lock->lo_name, file, line);
1043 	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1044 		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1045 		    class->lc_name, lock->lo_name,
1046 		    instance->li_flags & LI_RECURSEMASK, file, line);
1047 	instance->li_flags |= LI_EXCLUSIVE;
1048 }
1049 
1050 void
1051 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1052     int line)
1053 {
1054 	struct lock_instance *instance;
1055 	struct lock_class *class;
1056 
1057 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1058 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1059 		return;
1060 	class = lock->lo_class;
1061 	file = fixup_filename(file);
1062 	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1063 		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1064 		    class->lc_name, lock->lo_name, file, line);
1065 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1066 		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1067 		    class->lc_name, lock->lo_name, file, line);
1068 	instance = find_instance(curthread->td_sleeplocks, lock);
1069 	if (instance == NULL)
1070 		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1071 		    class->lc_name, lock->lo_name, file, line);
1072 	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1073 		panic("downgrade of shared lock (%s) %s @ %s:%d",
1074 		    class->lc_name, lock->lo_name, file, line);
1075 	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1076 		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1077 		    class->lc_name, lock->lo_name,
1078 		    instance->li_flags & LI_RECURSEMASK, file, line);
1079 	instance->li_flags &= ~LI_EXCLUSIVE;
1080 }
1081 
1082 void
1083 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1084 {
1085 	struct lock_list_entry **lock_list, *lle;
1086 	struct lock_instance *instance;
1087 	struct lock_class *class;
1088 	struct thread *td;
1089 	register_t s;
1090 	int i, j;
1091 
1092 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1093 	    panicstr != NULL)
1094 		return;
1095 	td = curthread;
1096 	class = lock->lo_class;
1097 	file = fixup_filename(file);
1098 
1099 	/* Find lock instance associated with this lock. */
1100 	if (class->lc_flags & LC_SLEEPLOCK)
1101 		lock_list = &td->td_sleeplocks;
1102 	else
1103 		lock_list = PCPU_PTR(spinlocks);
1104 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1105 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1106 			instance = &(*lock_list)->ll_children[i];
1107 			if (instance->li_lock == lock)
1108 				goto found;
1109 		}
1110 	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1111 	    file, line);
1112 found:
1113 
1114 	/* First, check for shared/exclusive mismatches. */
1115 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1116 	    (flags & LOP_EXCLUSIVE) == 0) {
1117 		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1118 		    lock->lo_name, file, line);
1119 		printf("while exclusively locked from %s:%d\n",
1120 		    instance->li_file, instance->li_line);
1121 		panic("excl->ushare");
1122 	}
1123 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1124 	    (flags & LOP_EXCLUSIVE) != 0) {
1125 		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1126 		    lock->lo_name, file, line);
1127 		printf("while share locked from %s:%d\n", instance->li_file,
1128 		    instance->li_line);
1129 		panic("share->uexcl");
1130 	}
1131 
1132 	/* If we are recursed, unrecurse. */
1133 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1134 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1135 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1136 		    instance->li_flags);
1137 		instance->li_flags--;
1138 		return;
1139 	}
1140 
1141 	/* Otherwise, remove this item from the list. */
1142 	s = intr_disable();
1143 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1144 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1145 	    (*lock_list)->ll_count - 1);
1146 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1147 		(*lock_list)->ll_children[j] =
1148 		    (*lock_list)->ll_children[j + 1];
1149 	(*lock_list)->ll_count--;
1150 	intr_restore(s);
1151 
1152 	/* If this lock list entry is now empty, free it. */
1153 	if ((*lock_list)->ll_count == 0) {
1154 		lle = *lock_list;
1155 		*lock_list = lle->ll_next;
1156 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1157 		    td->td_proc->p_pid, lle);
1158 		witness_lock_list_free(lle);
1159 	}
1160 }
1161 
1162 /*
1163  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1164  * exempt Giant and sleepable locks from the checks as well.  If any
1165  * non-exempt locks are held, then a supplied message is printed to the
1166  * console along with a list of the offending locks.  If indicated in the
1167  * flags then a failure results in a panic as well.
1168  */
1169 int
1170 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1171 {
1172 	struct lock_list_entry *lle;
1173 	struct lock_instance *lock1;
1174 	struct thread *td;
1175 	va_list ap;
1176 	int i, n;
1177 
1178 	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1179 		return (0);
1180 	n = 0;
1181 	td = curthread;
1182 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1183 		for (i = lle->ll_count - 1; i >= 0; i--) {
1184 			lock1 = &lle->ll_children[i];
1185 			if (lock1->li_lock == lock)
1186 				continue;
1187 			if (flags & WARN_GIANTOK &&
1188 			    lock1->li_lock == &Giant.mtx_object)
1189 				continue;
1190 			if (flags & WARN_SLEEPOK &&
1191 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1192 				continue;
1193 			if (n == 0) {
1194 				va_start(ap, fmt);
1195 				vprintf(fmt, ap);
1196 				va_end(ap);
1197 				printf(" with the following");
1198 				if (flags & WARN_SLEEPOK)
1199 					printf(" non-sleepable");
1200 				printf(" locks held:\n");
1201 			}
1202 			n++;
1203 			witness_list_lock(lock1);
1204 		}
1205 	if (PCPU_GET(spinlocks) != NULL) {
1206 		/*
1207 		 * Since we already hold a spinlock preemption is
1208 		 * already blocked.
1209 		 */
1210 		if (n == 0) {
1211 			va_start(ap, fmt);
1212 			vprintf(fmt, ap);
1213 			va_end(ap);
1214 			printf(" with the following");
1215 			if (flags & WARN_SLEEPOK)
1216 				printf(" non-sleepable");
1217 			printf(" locks held:\n");
1218 		}
1219 		n += witness_list_locks(PCPU_PTR(spinlocks));
1220 	}
1221 	if (flags & WARN_PANIC && n)
1222 		panic("witness_warn");
1223 #ifdef KDB
1224 	else if (witness_kdb && n)
1225 		kdb_enter(__func__);
1226 	else if (witness_trace && n)
1227 		kdb_backtrace();
1228 #endif
1229 	return (n);
1230 }
1231 
1232 const char *
1233 witness_file(struct lock_object *lock)
1234 {
1235 	struct witness *w;
1236 
1237 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1238 		return ("?");
1239 	w = lock->lo_witness;
1240 	return (w->w_file);
1241 }
1242 
1243 int
1244 witness_line(struct lock_object *lock)
1245 {
1246 	struct witness *w;
1247 
1248 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1249 		return (0);
1250 	w = lock->lo_witness;
1251 	return (w->w_line);
1252 }
1253 
1254 static struct witness *
1255 enroll(const char *description, struct lock_class *lock_class)
1256 {
1257 	struct witness *w;
1258 
1259 	if (witness_watch == 0 || panicstr != NULL)
1260 		return (NULL);
1261 	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1262 		return (NULL);
1263 	mtx_lock_spin(&w_mtx);
1264 	STAILQ_FOREACH(w, &w_all, w_list) {
1265 		if (w->w_name == description || (w->w_refcount > 0 &&
1266 		    strcmp(description, w->w_name) == 0)) {
1267 			w->w_refcount++;
1268 			mtx_unlock_spin(&w_mtx);
1269 			if (lock_class != w->w_class)
1270 				panic(
1271 				"lock (%s) %s does not match earlier (%s) lock",
1272 				    description, lock_class->lc_name,
1273 				    w->w_class->lc_name);
1274 			return (w);
1275 		}
1276 	}
1277 	/*
1278 	 * This isn't quite right, as witness_cold is still 0 while we
1279 	 * enroll all the locks initialized before witness_initialize().
1280 	 */
1281 	if ((lock_class->lc_flags & LC_SPINLOCK) && !witness_cold) {
1282 		mtx_unlock_spin(&w_mtx);
1283 		panic("spin lock %s not in order list", description);
1284 	}
1285 	if ((w = witness_get()) == NULL)
1286 		return (NULL);
1287 	w->w_name = description;
1288 	w->w_class = lock_class;
1289 	w->w_refcount = 1;
1290 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1291 	if (lock_class->lc_flags & LC_SPINLOCK)
1292 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1293 	else if (lock_class->lc_flags & LC_SLEEPLOCK)
1294 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1295 	else {
1296 		mtx_unlock_spin(&w_mtx);
1297 		panic("lock class %s is not sleep or spin",
1298 		    lock_class->lc_name);
1299 	}
1300 	mtx_unlock_spin(&w_mtx);
1301 	return (w);
1302 }
1303 
1304 /* Don't let the door bang you on the way out... */
1305 static int
1306 depart(struct witness *w)
1307 {
1308 	struct witness_child_list_entry *wcl, *nwcl;
1309 	struct witness_list *list;
1310 	struct witness *parent;
1311 
1312 	MPASS(w->w_refcount == 0);
1313 	if (w->w_class->lc_flags & LC_SLEEPLOCK)
1314 		list = &w_sleep;
1315 	else
1316 		list = &w_spin;
1317 	/*
1318 	 * First, we run through the entire tree looking for any
1319 	 * witnesses that the outgoing witness is a child of.  For
1320 	 * each parent that we find, we reparent all the direct
1321 	 * children of the outgoing witness to its parent.
1322 	 */
1323 	STAILQ_FOREACH(parent, list, w_typelist) {
1324 		if (!isitmychild(parent, w))
1325 			continue;
1326 		removechild(parent, w);
1327 		if (!reparentchildren(parent, w))
1328 			return (0);
1329 	}
1330 
1331 	/*
1332 	 * Now we go through and free up the child list of the
1333 	 * outgoing witness.
1334 	 */
1335 	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1336 		nwcl = wcl->wcl_next;
1337 		witness_child_free(wcl);
1338 	}
1339 
1340 	/*
1341 	 * Detach from various lists and free.
1342 	 */
1343 	STAILQ_REMOVE(list, w, witness, w_typelist);
1344 	STAILQ_REMOVE(&w_all, w, witness, w_list);
1345 	witness_free(w);
1346 
1347 	/* Finally, fixup the tree. */
1348 	return (rebalancetree(list));
1349 }
1350 
1351 /*
1352  * Prune an entire lock order tree.  We look for cases where a lock
1353  * is now both a descendant and a direct child of a given lock.  In
1354  * that case, we want to remove the direct child link from the tree.
1355  *
1356  * Returns false if insertchild() fails.
1357  */
1358 static int
1359 rebalancetree(struct witness_list *list)
1360 {
1361 	struct witness *child, *parent;
1362 
1363 	STAILQ_FOREACH(child, list, w_typelist) {
1364 		STAILQ_FOREACH(parent, list, w_typelist) {
1365 			if (!isitmychild(parent, child))
1366 				continue;
1367 			removechild(parent, child);
1368 			if (isitmydescendant(parent, child))
1369 				continue;
1370 			if (!insertchild(parent, child))
1371 				return (0);
1372 		}
1373 	}
1374 	witness_levelall();
1375 	return (1);
1376 }
1377 
1378 /*
1379  * Add "child" as a direct child of "parent".  Returns false if
1380  * we fail due to out of memory.
1381  */
1382 static int
1383 insertchild(struct witness *parent, struct witness *child)
1384 {
1385 	struct witness_child_list_entry **wcl;
1386 
1387 	MPASS(child != NULL && parent != NULL);
1388 
1389 	/*
1390 	 * Insert "child" after "parent"
1391 	 */
1392 	wcl = &parent->w_children;
1393 	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1394 		wcl = &(*wcl)->wcl_next;
1395 	if (*wcl == NULL) {
1396 		*wcl = witness_child_get();
1397 		if (*wcl == NULL)
1398 			return (0);
1399 	}
1400 	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1401 
1402 	return (1);
1403 }
1404 
1405 /*
1406  * Make all the direct descendants of oldparent be direct descendants
1407  * of newparent.
1408  */
1409 static int
1410 reparentchildren(struct witness *newparent, struct witness *oldparent)
1411 {
1412 	struct witness_child_list_entry *wcl;
1413 	int i;
1414 
1415 	/* Avoid making a witness a child of itself. */
1416 	MPASS(!isitmychild(oldparent, newparent));
1417 
1418 	for (wcl = oldparent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1419 		for (i = 0; i < wcl->wcl_count; i++)
1420 			if (!insertchild(newparent, wcl->wcl_children[i]))
1421 				return (0);
1422 	return (1);
1423 }
1424 
1425 static int
1426 itismychild(struct witness *parent, struct witness *child)
1427 {
1428 	struct witness_list *list;
1429 
1430 	MPASS(child != NULL && parent != NULL);
1431 	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1432 	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1433 		panic(
1434 		"%s: parent (%s) and child (%s) are not the same lock type",
1435 		    __func__, parent->w_class->lc_name,
1436 		    child->w_class->lc_name);
1437 
1438 	if (!insertchild(parent, child))
1439 		return (0);
1440 
1441 	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1442 		list = &w_sleep;
1443 	else
1444 		list = &w_spin;
1445 	return (rebalancetree(list));
1446 }
1447 
1448 static void
1449 removechild(struct witness *parent, struct witness *child)
1450 {
1451 	struct witness_child_list_entry **wcl, *wcl1;
1452 	int i;
1453 
1454 	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1455 		for (i = 0; i < (*wcl)->wcl_count; i++)
1456 			if ((*wcl)->wcl_children[i] == child)
1457 				goto found;
1458 	return;
1459 found:
1460 	(*wcl)->wcl_count--;
1461 	if ((*wcl)->wcl_count > i)
1462 		(*wcl)->wcl_children[i] =
1463 		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1464 	MPASS((*wcl)->wcl_children[i] != NULL);
1465 	if ((*wcl)->wcl_count != 0)
1466 		return;
1467 	wcl1 = *wcl;
1468 	*wcl = wcl1->wcl_next;
1469 	witness_child_free(wcl1);
1470 }
1471 
1472 static int
1473 isitmychild(struct witness *parent, struct witness *child)
1474 {
1475 	struct witness_child_list_entry *wcl;
1476 	int i;
1477 
1478 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1479 		for (i = 0; i < wcl->wcl_count; i++) {
1480 			if (wcl->wcl_children[i] == child)
1481 				return (1);
1482 		}
1483 	}
1484 	return (0);
1485 }
1486 
1487 static int
1488 isitmydescendant(struct witness *parent, struct witness *child)
1489 {
1490 	struct witness_child_list_entry *wcl;
1491 	int i, j;
1492 
1493 	if (isitmychild(parent, child))
1494 		return (1);
1495 	j = 0;
1496 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1497 		MPASS(j < 1000);
1498 		for (i = 0; i < wcl->wcl_count; i++) {
1499 			if (isitmydescendant(wcl->wcl_children[i], child))
1500 				return (1);
1501 		}
1502 		j++;
1503 	}
1504 	return (0);
1505 }
1506 
1507 static void
1508 witness_levelall (void)
1509 {
1510 	struct witness_list *list;
1511 	struct witness *w, *w1;
1512 
1513 	/*
1514 	 * First clear all levels.
1515 	 */
1516 	STAILQ_FOREACH(w, &w_all, w_list) {
1517 		w->w_level = 0;
1518 	}
1519 
1520 	/*
1521 	 * Look for locks with no parent and level all their descendants.
1522 	 */
1523 	STAILQ_FOREACH(w, &w_all, w_list) {
1524 		/*
1525 		 * This is just an optimization, technically we could get
1526 		 * away just walking the all list each time.
1527 		 */
1528 		if (w->w_class->lc_flags & LC_SLEEPLOCK)
1529 			list = &w_sleep;
1530 		else
1531 			list = &w_spin;
1532 		STAILQ_FOREACH(w1, list, w_typelist) {
1533 			if (isitmychild(w1, w))
1534 				goto skip;
1535 		}
1536 		witness_leveldescendents(w, 0);
1537 	skip:
1538 		;	/* silence GCC 3.x */
1539 	}
1540 }
1541 
1542 static void
1543 witness_leveldescendents(struct witness *parent, int level)
1544 {
1545 	struct witness_child_list_entry *wcl;
1546 	int i;
1547 
1548 	if (parent->w_level < level)
1549 		parent->w_level = level;
1550 	level++;
1551 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1552 		for (i = 0; i < wcl->wcl_count; i++)
1553 			witness_leveldescendents(wcl->wcl_children[i], level);
1554 }
1555 
1556 static void
1557 witness_displaydescendants(void(*prnt)(const char *fmt, ...),
1558 			   struct witness *parent, int indent)
1559 {
1560 	struct witness_child_list_entry *wcl;
1561 	int i, level;
1562 
1563 	level = parent->w_level;
1564 	prnt("%-2d", level);
1565 	for (i = 0; i < indent; i++)
1566 		prnt(" ");
1567 	if (parent->w_refcount > 0)
1568 		prnt("%s", parent->w_name);
1569 	else
1570 		prnt("(dead)");
1571 	if (parent->w_displayed) {
1572 		prnt(" -- (already displayed)\n");
1573 		return;
1574 	}
1575 	parent->w_displayed = 1;
1576 	if (parent->w_refcount > 0) {
1577 		if (parent->w_file != NULL)
1578 			prnt(" -- last acquired @ %s:%d", parent->w_file,
1579 			    parent->w_line);
1580 	}
1581 	prnt("\n");
1582 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1583 		for (i = 0; i < wcl->wcl_count; i++)
1584 			    witness_displaydescendants(prnt,
1585 				wcl->wcl_children[i], indent + 1);
1586 }
1587 
1588 #ifdef BLESSING
1589 static int
1590 blessed(struct witness *w1, struct witness *w2)
1591 {
1592 	int i;
1593 	struct witness_blessed *b;
1594 
1595 	for (i = 0; i < blessed_count; i++) {
1596 		b = &blessed_list[i];
1597 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1598 			if (strcmp(w2->w_name, b->b_lock2) == 0)
1599 				return (1);
1600 			continue;
1601 		}
1602 		if (strcmp(w1->w_name, b->b_lock2) == 0)
1603 			if (strcmp(w2->w_name, b->b_lock1) == 0)
1604 				return (1);
1605 	}
1606 	return (0);
1607 }
1608 #endif
1609 
1610 static struct witness *
1611 witness_get(void)
1612 {
1613 	struct witness *w;
1614 
1615 	if (witness_watch == 0) {
1616 		mtx_unlock_spin(&w_mtx);
1617 		return (NULL);
1618 	}
1619 	if (STAILQ_EMPTY(&w_free)) {
1620 		witness_watch = 0;
1621 		mtx_unlock_spin(&w_mtx);
1622 		printf("%s: witness exhausted\n", __func__);
1623 		return (NULL);
1624 	}
1625 	w = STAILQ_FIRST(&w_free);
1626 	STAILQ_REMOVE_HEAD(&w_free, w_list);
1627 	bzero(w, sizeof(*w));
1628 	return (w);
1629 }
1630 
1631 static void
1632 witness_free(struct witness *w)
1633 {
1634 
1635 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1636 }
1637 
1638 static struct witness_child_list_entry *
1639 witness_child_get(void)
1640 {
1641 	struct witness_child_list_entry *wcl;
1642 
1643 	if (witness_watch == 0) {
1644 		mtx_unlock_spin(&w_mtx);
1645 		return (NULL);
1646 	}
1647 	wcl = w_child_free;
1648 	if (wcl == NULL) {
1649 		witness_watch = 0;
1650 		mtx_unlock_spin(&w_mtx);
1651 		printf("%s: witness exhausted\n", __func__);
1652 		return (NULL);
1653 	}
1654 	w_child_free = wcl->wcl_next;
1655 	bzero(wcl, sizeof(*wcl));
1656 	return (wcl);
1657 }
1658 
1659 static void
1660 witness_child_free(struct witness_child_list_entry *wcl)
1661 {
1662 
1663 	wcl->wcl_next = w_child_free;
1664 	w_child_free = wcl;
1665 }
1666 
1667 static struct lock_list_entry *
1668 witness_lock_list_get(void)
1669 {
1670 	struct lock_list_entry *lle;
1671 
1672 	if (witness_watch == 0)
1673 		return (NULL);
1674 	mtx_lock_spin(&w_mtx);
1675 	lle = w_lock_list_free;
1676 	if (lle == NULL) {
1677 		witness_watch = 0;
1678 		mtx_unlock_spin(&w_mtx);
1679 		printf("%s: witness exhausted\n", __func__);
1680 		return (NULL);
1681 	}
1682 	w_lock_list_free = lle->ll_next;
1683 	mtx_unlock_spin(&w_mtx);
1684 	bzero(lle, sizeof(*lle));
1685 	return (lle);
1686 }
1687 
1688 static void
1689 witness_lock_list_free(struct lock_list_entry *lle)
1690 {
1691 
1692 	mtx_lock_spin(&w_mtx);
1693 	lle->ll_next = w_lock_list_free;
1694 	w_lock_list_free = lle;
1695 	mtx_unlock_spin(&w_mtx);
1696 }
1697 
1698 static struct lock_instance *
1699 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1700 {
1701 	struct lock_list_entry *lle;
1702 	struct lock_instance *instance;
1703 	int i;
1704 
1705 	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1706 		for (i = lle->ll_count - 1; i >= 0; i--) {
1707 			instance = &lle->ll_children[i];
1708 			if (instance->li_lock == lock)
1709 				return (instance);
1710 		}
1711 	return (NULL);
1712 }
1713 
1714 static void
1715 witness_list_lock(struct lock_instance *instance)
1716 {
1717 	struct lock_object *lock;
1718 
1719 	lock = instance->li_lock;
1720 	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1721 	    "exclusive" : "shared", lock->lo_class->lc_name, lock->lo_name);
1722 	if (lock->lo_type != lock->lo_name)
1723 		printf(" (%s)", lock->lo_type);
1724 	printf(" r = %d (%p) locked @ %s:%d\n",
1725 	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1726 	    instance->li_line);
1727 }
1728 
1729 int
1730 witness_list_locks(struct lock_list_entry **lock_list)
1731 {
1732 	struct lock_list_entry *lle;
1733 	int i, nheld;
1734 
1735 	nheld = 0;
1736 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1737 		for (i = lle->ll_count - 1; i >= 0; i--) {
1738 			witness_list_lock(&lle->ll_children[i]);
1739 			nheld++;
1740 		}
1741 	return (nheld);
1742 }
1743 
1744 /*
1745  * This is a bit risky at best.  We call this function when we have timed
1746  * out acquiring a spin lock, and we assume that the other CPU is stuck
1747  * with this lock held.  So, we go groveling around in the other CPU's
1748  * per-cpu data to try to find the lock instance for this spin lock to
1749  * see when it was last acquired.
1750  */
1751 void
1752 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1753 {
1754 	struct lock_instance *instance;
1755 	struct pcpu *pc;
1756 
1757 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1758 		return;
1759 	pc = pcpu_find(owner->td_oncpu);
1760 	instance = find_instance(pc->pc_spinlocks, lock);
1761 	if (instance != NULL)
1762 		witness_list_lock(instance);
1763 }
1764 
1765 void
1766 witness_save(struct lock_object *lock, const char **filep, int *linep)
1767 {
1768 	struct lock_instance *instance;
1769 
1770 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1771 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1772 		return;
1773 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1774 		panic("%s: lock (%s) %s is not a sleep lock", __func__,
1775 		    lock->lo_class->lc_name, lock->lo_name);
1776 	instance = find_instance(curthread->td_sleeplocks, lock);
1777 	if (instance == NULL)
1778 		panic("%s: lock (%s) %s not locked", __func__,
1779 		    lock->lo_class->lc_name, lock->lo_name);
1780 	*filep = instance->li_file;
1781 	*linep = instance->li_line;
1782 }
1783 
1784 void
1785 witness_restore(struct lock_object *lock, const char *file, int line)
1786 {
1787 	struct lock_instance *instance;
1788 
1789 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1790 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1791 		return;
1792 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1793 		panic("%s: lock (%s) %s is not a sleep lock", __func__,
1794 		    lock->lo_class->lc_name, lock->lo_name);
1795 	instance = find_instance(curthread->td_sleeplocks, lock);
1796 	if (instance == NULL)
1797 		panic("%s: lock (%s) %s not locked", __func__,
1798 		    lock->lo_class->lc_name, lock->lo_name);
1799 	lock->lo_witness->w_file = file;
1800 	lock->lo_witness->w_line = line;
1801 	instance->li_file = file;
1802 	instance->li_line = line;
1803 }
1804 
1805 void
1806 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1807 {
1808 #ifdef INVARIANT_SUPPORT
1809 	struct lock_instance *instance;
1810 
1811 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1812 		return;
1813 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) != 0)
1814 		instance = find_instance(curthread->td_sleeplocks, lock);
1815 	else if ((lock->lo_class->lc_flags & LC_SPINLOCK) != 0)
1816 		instance = find_instance(PCPU_GET(spinlocks), lock);
1817 	else {
1818 		panic("Lock (%s) %s is not sleep or spin!",
1819 		    lock->lo_class->lc_name, lock->lo_name);
1820 	}
1821 	file = fixup_filename(file);
1822 	switch (flags) {
1823 	case LA_UNLOCKED:
1824 		if (instance != NULL)
1825 			panic("Lock (%s) %s locked @ %s:%d.",
1826 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1827 		break;
1828 	case LA_LOCKED:
1829 	case LA_LOCKED | LA_RECURSED:
1830 	case LA_LOCKED | LA_NOTRECURSED:
1831 	case LA_SLOCKED:
1832 	case LA_SLOCKED | LA_RECURSED:
1833 	case LA_SLOCKED | LA_NOTRECURSED:
1834 	case LA_XLOCKED:
1835 	case LA_XLOCKED | LA_RECURSED:
1836 	case LA_XLOCKED | LA_NOTRECURSED:
1837 		if (instance == NULL) {
1838 			panic("Lock (%s) %s not locked @ %s:%d.",
1839 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1840 			break;
1841 		}
1842 		if ((flags & LA_XLOCKED) != 0 &&
1843 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1844 			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1845 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1846 		if ((flags & LA_SLOCKED) != 0 &&
1847 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1848 			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1849 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1850 		if ((flags & LA_RECURSED) != 0 &&
1851 		    (instance->li_flags & LI_RECURSEMASK) == 0)
1852 			panic("Lock (%s) %s not recursed @ %s:%d.",
1853 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1854 		if ((flags & LA_NOTRECURSED) != 0 &&
1855 		    (instance->li_flags & LI_RECURSEMASK) != 0)
1856 			panic("Lock (%s) %s recursed @ %s:%d.",
1857 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1858 		break;
1859 	default:
1860 		panic("Invalid lock assertion at %s:%d.", file, line);
1861 
1862 	}
1863 #endif	/* INVARIANT_SUPPORT */
1864 }
1865 
1866 #ifdef DDB
1867 static void
1868 witness_list(struct thread *td)
1869 {
1870 
1871 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1872 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1873 
1874 	if (witness_watch == 0)
1875 		return;
1876 
1877 	witness_list_locks(&td->td_sleeplocks);
1878 
1879 	/*
1880 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1881 	 * if td is currently executing on some other CPU and holds spin locks
1882 	 * as we won't display those locks.  If we had a MI way of getting
1883 	 * the per-cpu data for a given cpu then we could use
1884 	 * td->td_oncpu to get the list of spinlocks for this thread
1885 	 * and "fix" this.
1886 	 *
1887 	 * That still wouldn't really fix this unless we locked sched_lock
1888 	 * or stopped the other CPU to make sure it wasn't changing the list
1889 	 * out from under us.  It is probably best to just not try to handle
1890 	 * threads on other CPU's for now.
1891 	 */
1892 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1893 		witness_list_locks(PCPU_PTR(spinlocks));
1894 }
1895 
1896 DB_SHOW_COMMAND(locks, db_witness_list)
1897 {
1898 	struct thread *td;
1899 	pid_t pid;
1900 	struct proc *p;
1901 
1902 	if (have_addr) {
1903 		pid = (addr % 16) + ((addr >> 4) % 16) * 10 +
1904 		    ((addr >> 8) % 16) * 100 + ((addr >> 12) % 16) * 1000 +
1905 		    ((addr >> 16) % 16) * 10000;
1906 		/* sx_slock(&allproc_lock); */
1907 		FOREACH_PROC_IN_SYSTEM(p) {
1908 			if (p->p_pid == pid)
1909 				break;
1910 		}
1911 		/* sx_sunlock(&allproc_lock); */
1912 		if (p == NULL) {
1913 			db_printf("pid %d not found\n", pid);
1914 			return;
1915 		}
1916 		FOREACH_THREAD_IN_PROC(p, td) {
1917 			witness_list(td);
1918 		}
1919 	} else {
1920 		td = curthread;
1921 		witness_list(td);
1922 	}
1923 }
1924 
1925 DB_SHOW_COMMAND(witness, db_witness_display)
1926 {
1927 
1928 	witness_display(db_printf);
1929 }
1930 #endif
1931